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Genetic Aspects of Hypospadias

Loes F. M. van der Zanden

Abbreviations

AMH Anti-Müllerian hormone
AR Androgen receptor
ATF3 Activating transcription factor 3
BMP Bone morphogenetic proteins
CAH Congenital adrenal hyperplasia
CAIS Complete androgen insensitivity 

syndromes
DGKK DiacylGlycerol kinase κ
DHT DiHydroTestosterone
DSD Disorder of sex development
ESR EStrogen receptors
FGF Fibroblast growth factor proteins
GT Genital tubercle
hCG Human chorionic gonadotropin
MAMLD1 MAstermind-like domain contain-

ing 1
PAIS Partial androgen insensitivity 

syndromes
Sf1 Splicing factor 1
SHH Sonic HedgeHog
SRD5A Steroid-5-alpha-reductase
SRY Sex-determining region Y gene
Wt1 Wilms tumor 1

11.1  Genes Involved 
in the Embryology 
of the Male External 
Genitalia

Development of the male external genitalia can 
be divided in three stages:

• The indifferent stage.
• The early patterning stage.
• The masculinization stage.

11.1.1  Indifferent Stage

Early development of the external genitalia is 
similar for males and females. The embryonic 
cloaca, the far end of the hindgut, is separated 
from the amniotic cavity by the cloacal mem-
brane. Early in the fifth week of development, a 
swelling develops on both sides of this membrane, 
the cloacal folds, which meet in the midline ante-
rior to the cloacal membrane, forming the genital 
tubercle [1]. At the same time, the genital ridges, 
the precursors of the gonads, develop. Studies in 
mice showed that this process requires Wilms 
tumor 1 (Wt1) activity, which activates splicing 
factor 1 (Sf1) [2], thus preventing degeneration of 
the developing gonads [3]. During the seventh 
week of human development, the urorectal sep-
tum fuses with the cloacal membrane, dividing 
the cloaca into the primitive urogenital sinus and 
the rectum and dividing the cloacal membrane 
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into the urogenital and the anal membrane. The 
swellings next to the urogenital membrane are 
then called the urogenital folds, and a new pair of 
swellings, the labioscrotal swellings, appears on 
either side of these folds. In addition, the urogeni-
tal membrane breaks down [1].

11.1.2  Early Patterning

Early patterning of the genital tubercle (GT) is 
androgen-independent. The distal urethral plate 
epithelium is the signaling center regulating GT 
outgrowth [4]. Fibroblast growth factor proteins 
(FGF) play a growth-promoting role in this out-
growth [5], whereas bone morphogenetic pro-
teins (BMP) stimulate apoptosis [6, 7]. Sonic 
hedgehog (SHH) modulates the balance between 
proliferation and apoptosis by regulating the 
expression of the genes encoding these and 
many other proteins [8]. This way, SHH regu-
lates the initiation of GT outgrowth [4]. 
Immunohistochemical staining of human fetal 
penises showed expression of SHH, its receptor, 
and several of its downstream genes around the 
time of urethral closure [9].

11.1.3  Masculinization

Subsequent masculinization relies on hormones 
produced by the testes. Expression of the sex- 
determining region Y gene (SRY) induces a cas-
cade of gene interactions, involving SRY-box 9 
(SOX9) [1], resulting in differentiation of the 
gonads into the testes [10]. SRY leads to the dif-
ferentiation of Sertoli cells [1], which secrete 
anti-Müllerian hormone. Anti-Müllerian hor-
mone causes regression of the Müllerian ducts 
that would otherwise form part of the female 
genital structures [1]. Human chorionic gonado-
tropin (hCG), produced by the placenta, controls 
fetal Leydig cell growth and stimulates fetal tes-
ticular steroidogenesis, the generation of steroids 
from cholesterol [11]. The enzymatic steps in ste-
roidogenesis, mainly taking place in the Leydig 
cell, are well documented, and expression of key 
genes in this pathway is dependent on expression 

of NR5A1 (Fig. 11.1) [13]. Testosterone leaves 
the Leydig cell and is converted into dihydrotes-
tosterone (DHT) by steroid-5-alpha-reductase 
(SRD5A). Testosterone promotes formation of 
the internal reproductive structures from the 
Wolffian ducts, whereas DHT induces develop-
ment of the external genitalia [1], both through 
their effects on the androgen receptor (AR). 
Expression of estrogen receptors (ESR) in male 
genital tissue during development suggests that 
the balance between androgens and estrogens is 
important as well [14].

11.2  Genes Implicated 
in the Etiology of Isolated 
Hypospadias

All genes implicated in one of the three stages 
mentioned above could play a role in the devel-
opment of hypospadias. Therefore, much of the 
genetic research on hypospadias has been focused 
on these genes.

11.3  Study Types

Different types of studies have been performed to 
examine whether specific genes have an effect on 
the occurrence of hypospadias. One example are 
the mutation analyses, for which researchers 
sequence candidate genes in hypospadias patients 
and healthy controls. These studies typically 
included tens to sometimes a little over a hundred 
hypospadias patients and healthy controls. 
Sequencing allows complete coverage of the 
gene, identifying all genetic variants present in 
that gene. With this type of studies, researchers 
were aiming to identify the causal variant for 
hypospadias in part of their patients. Although 
several studies identified new and unknown 
mutations in hypospadias patients that were not 
present in the healthy controls, it remains unclear 
whether these mutations truly have functional 
consequences. Only few studies reported conser-
vation and function of the region in which the 
mutation is located or predicted a potential influ-
ence of the mutation on protein function using 
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bioinformatics. Even if the mutations found are 
truly causal, they only explain the occurrence of 
hypospadias in a small part of the patients, and 
the majority of mutations were found only once 
and were identified in patients with posterior or 
penile hypospadias.

Another type of study that has been used to 
examine whether specific genes have an effect on 
the occurrence of hypospadias is the association 
study. In this type of study, known polymorphisms 
are genotyped in hypospadias patients and healthy 
controls. Polymorphisms are common genetic 
variants that occur with a frequency of at least 
1%. Due to the haplotype block structure of the 
human genome, genotyping a specific set of poly-
morphisms in a gene covers much more of the 
variation in that gene. Thereby, polymorphisms 
function as markers for more rare variants with 
functional consequences. In association studies, 
typically hundreds to sometimes a thousand hypo-

spadias patients and healthy controls have been 
genotyped for polymorphisms in candidate genes. 
If a polymorphism occurs more frequently in the 
patients compared to the controls, this means that 
there is an association and the variant may be a 
marker for a causal variant that increases hypo-
spadias risk. However, due to the large amount of 
polymorphisms examined, the risk of false-posi-
tive results is high. Therefore, replication of 
results is a major issue in association studies, 
especially in the genome-wide association studies 
that aim to cover the whole genome by genotyp-
ing hundreds of thousands of polymorphisms.

11.4  Study Results

Table 11.1 shows the candidate genes that were 
screened for mutations or associations in groups 
of hypospadias patients and healthy controls. 

Fig. 11.1 Steroidogenesis in the mitochondrium (top) 
and smooth endoplasmic reticulum (bottom) of the fetal 
Leydig cell. Adapted from van der Zanden et  al., 2012 
[12] (from van der Zanden, L.F.M. and van Rooij, 

I.A.L.M.: “Aetiology of hypospadias: a systematic review 
of genes and environment,” Human Reproduction Update, 
2012, Vol. 18, Issue 3, by permission of Oxford University 
Press)
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Table 11.1 Result of genetic association studies and mutation studies screening candidate genes in groups of patients 
with hypospadias and healthy controls. Genes that were only investigated once and did not show mutations or associa-
tions in that study are not shown

Mutation studies that 
found mutations

Association studies that 
found associations

Mutation studies that did 
not find mutations

Association studies that 
did not find associations

Indifferent stage
WT1 Wang et al. [15], 

Diposarosa et al. [16]
Carmichael et al. [17] Nordenskjöld et al. 

[18], Kon et al. [19], 
Zhang et al. [20]

WTAP Utsch et al. [21] Carmichael et al. [17]
Early patterning
SHH Carmichael et al. [17] Zhang et al. [20]
FGF8 Beleza-Meireles et al. 

[22]
Beleza-Meireles et al. 
[22]

Kon et al. [19], Zhang 
et al. [20]

Carmichael et al. [17]

FGF10 Carmichael et al. [17] Beleza-Meireles et al. 
[22], Zhang et al. [20]

FGFR2 Beleza-Meireles et al. 
[22]

Beleza-Meireles et al. 
[22]

Kon et al. [19], Zhang 
et al. [20]

Carmichael et al. [17]

BMP4 Chen et al. [23], Zhang 
et al. [20]

Kon et al. [19] Carmichael et al. [17]

BMP7 Chen et al. [23], Bouty 
et al. [24]

Carmichael et al. [17] Beleza-Meireles et al. 
[22], Kon et al. [19], 
Zhang et al. [20]

HOXA4 Chen et al. [23] Geller et al. [25] Kon et al. [19], Zhang 
et al. [20]

Carmichael et al. [17], 
Kojima et al. [26], 
Chen et al. [27]

HOXB6 Chen et al. [23], Kon et 
al. [19]

Zhang et al. [20] Carmichael et al. [17]

HOXA13 Utsch et al. [21], Zhang 
et al. [20]

Carmichael et al. [17]

HOXD13 Zhang et al. [20] Carmichael et al. [17]
GLI1 Carmichael et al. [17]
GLI2 Carmichael et al. [17]
GLI3 Zhang et al. [20] Carmichael et al. [17]
ZFPM2 Zhang et al. [20]
CDH7 Zhang et al. [20]
Masculinization
SRY Wang et al. [15], Zhang 

et al. [20]
Carmichael et al. [17]

SOX9 Wang et al. [15], Zhang 
et al. [20]

NR5A1 Köhler et al. [28], 
Allali et al. [29], 
Adamovic et al. [30], 
Laan et al. [31]

Kalfa et al. [32], Kon et 
al. [19], Zhang et al. 
[20]

Adamovic et al. [30]

AR Hiort et al. [33], Alléra 
et al. [34], Sutherland 
et al. [35], 
Nordenskjöld et al. 
[18], Wang et al. [15], 
Thai et al. [36], 
Borhani et al. [37], Kon 
et al. [19], Yuan et al. 
[38], Zhang et al. [20], 
Chen et al. [39]

Lim et al. [40], Aschim 
et al. [41], Radpour et 
al. [42], Parada-
Bustamante et al. [43], 
Adamovic and 
Nordenskjold [44], 
Adamovic et al. [45]

Muroya et al. [46], 
Radpour et al. [42], 
Kalfa et al. [32]

Muroya et al. [46], 
Vottero et al. [47], 
Silva et al. [48]
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Table 11.1 (continued)

Mutation studies that 
found mutations

Association studies that 
found associations

Mutation studies that did 
not find mutations

Association studies that 
did not find associations

FKBP4 Beleza-Meireles et al. 
[49], Zhang et al. [20]

Beleza-Meireles et al. 
[49]

CYP1A1 Kurahashi et al. [50], 
Carmichael et al. [51], 
Mao et al. [52]

Kon et al. [19], Zhang 
et al. [20]

Yadav et al. [53]

CYP1A2 Qin et al. [54]
CYP3A4 Carmichael et al. [51] Qin et al. [54]
CYP11A1 Zhang et al. [20] Carmichael et al. [51]
CYP17A1 Qin et al. [54], Mao et 

al. [52]
Samtani et al. [55], 
Yadav et al. [56], 
Carmichael et al. [51]

CYP19A1 Qin et al. [54], 
Carmichael et al. [51]

HSD3B1 Chen et al. [39] Carmichael et al. [51]
HSD3B2 Codner et al. [57], Kon 

et al. [19]
Zhang et al. [20] Carmichael et al. [51]

HSD17B3 Sata et al. [58], 
Carmichael et al. [51]

Thai et al. [36], Kon et 
al. [19], Yuan et al. 
[38], Zhang et al. [20]

SRD5A1 Tria et al. [59] Carmichael et al. [51]
SRD5A2 Silver and Russell [60], 

Wang et al. [15], Thai 
et al. [36], Kon et al. 
[19], Rahimi et al. [61], 
Yuan et al. [38], Zhang 
et al. [20]

Silver and Russell 
[60], Wang et al. [15], 
Thai et al. [36], Sata et 
al. [58], Samtani et al. 
[55], Carmichael et al. 
[51], Samtani et al. 
[62], Rahimi et al. [61]

Nordenskjöld et al. 
[18], Kalfa et al. [32]

van der Zanden et al. 
[63], Adamovic et al. 
[45]

STAR Zhang et al. [20] Carmichael et al. [51]
STARD3 Carmichael et al. [51]
STS Carmichael et al. [51]
Other genes
ESR1 Watanabe et al. [64], 

van der Zanden et al. 
[63], Tang et al. [65]
Choudhry et al. [66]
Ban et al. [67]

Beleza-Meireles et al. 
[68], Kon et al. [19], 
Zhang et al. [20]

Beleza-Meireles et al. 
[68]

ESR2 Beleza-Meireles et al. 
[68], Beleza-Meireles 
et al. [69], Ban et al. 
[67], Choudhry et al. 
[66], van der Zanden 
et al. [63]

Beleza-Meireles et al. 
[68], Kon et al. [19], 
Zhang et al. [20]

Aschim et al. [70]

ATF3 Beleza-Meireles et al. 
[71], Kalfa et al. [72]

Beleza-Meireles et al. 
[71], van der Zanden 
et al. [63]

Kon et al. [19], Zhang 
et al. [20]

MAMLD1 Fukami et al. [73], 
Kalfa et al. [74], Chen 
et al. [75], Kalfa et al. 
[32], Igarashi et al. 
[76], Ratan et al. [77]

Chen et al. [75], Kalfa 
et al. [78], Ratan et al. 
[77]

Kalfa et al. [78], Kon et 
al. [19], Zhang et al. 
[20]

Liu et al. [79]

(continued)
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Table 11.1 (continued)

Mutation studies that 
found mutations

Association studies that 
found associations

Mutation studies that did 
not find mutations

Association studies that 
did not find associations

DGKK van der Zanden et al. 
[80], Carmichael et al. 
[81], Geller et al. [25], 
Ma et al. [82], 
Hozyasz et al. [83], 
Xie et al. [84], Chen et 
al. [27]

Kon et al. [19], Zhang 
et al. [20]

Kojima et al. [26], 
Richard et al. [85]

TGFBR2 Han et al. [86]
CTGF Kon et al. [19], Zhang 

et al. [20]
BNC2 Bhoj et al. [87], Kon et 

al. [19]
Zhang et al. [20]

MID1 Zhang et al. [88] Zhang et al. [88] Kon et al. [19], Zhang 
et al. [20]

INSL3 El Houate et al. [89], 
Zhang et al. [20]

GSTM1 Yadav et al. [53] Kon et al. [19], Zhang 
et al. [20]

Kurahashi et al. [50]

GSTT1 Yadav et al. [53] Kon et al. [19] Kurahashi et al. [50]
ARNT2 Qin et al. [54]
NR1I2 Qin et al. [54]
AKR1C2 Soderhall et al. [90], 

Zhang et al [20] Mares 
et al. [91]

Mares er al. [91]

AKR1C3 Soderhall et al. [90] Mares et al. [91] Soderhall et al. [90], 
Mares et al. [91]

AKR1C4 Soderhall et al. [90], 
Zhang et al. [20], 
Mares et al. [91]

Soderhall et al. [90], 
Mares et al. [91]

KLF6 Soderhall et al. [82] Soderhall et al. [90]
RYR1 Zhang et al. [92]
PKDCC Geller et al. [25] Kojima et al. [26], 

Chen et al. [27]
HAAO Geller et al. [25] Kojima et al. [26], 

Chen et al. [27]
DNAH6 Geller et al. [25] Kojima et al. [26], 

Chen et al. [27]
EEFSEC Geller et al. [25] Kojima et al. [26], 

Chen et al. [27]
PDGFC Geller et al. [25] Kojima et al. [26], 

Chen et al. [27]
DAAM2 Geller et al. [25] Kojima et al. [26], 

Chen et al. [27]
TAX1BP1 Geller et al. [25] Kojima et al. [26], 

Chen et al. [27]
EYA1 Geller et al. [25] Kojima et al. [26], 

Chen et al. [27]
CCDC26 Geller et al. [25] Kojima et al. [26], 

Chen et al. [27]
KCNMA Geller et al. [25] Kojima et al. [26], 

Chen et al. [27]
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Table 11.1 (continued)

Mutation studies that 
found mutations

Association studies that 
found associations

Mutation studies that did 
not find mutations

Association studies that 
did not find associations

GREM1 Geller et al. [25] Kojima et al. [26], 
Chen et al. [27]

IRX5 Geller et al. [25] Kojima et al. [26], 
Chen et al. [27]

IRX6 Geller et al. [25] Kojima et al. [26], 
Chen et al. [27]

ZFHX3 Geller et al. [25] Kojima et al. [26], 
Chen et al. [27]

EYA1 Geller et al. [25] Kojima et al. [26]
EXOC3 Geller et al. [25]
PROKR2 Zhang et al. [20]
TRIM17 Zhang et al. [20]
SLC25A5 Chen et al. [27]
SP1 Chen et al. [27]

Genes that were only investigated once and did 
not show mutations or associations in that study 
are not shown. The table shows that only few 
studies focused on genes involved in the indiffer-
ent and early patterning stage. Although some 
mutations and associations were found in these 
genes, there is no gene that shows clear evidence 
of being involved in hypospadias etiology.

Research on genes involved in the masculin-
ization stage has been much more extensive. 
Notably, although expression of the SRY gene, 
located on the Y chromosome, is crucial for devel-
opment of the testis from the indifferent gonad 
([10, 93]), there is not much evidence that this 
gene plays a role in the development of hypospa-
dias. Research was especially focused on AR and 
SRD5A2. SRD5A2 converts testosterone to the 
more potent androgen DHT, and both testosterone 
and DHT exert their effect through the AR. The 
AR is expressed in the developing human penis 
and urethra, and SRD5A2 is expressed during 
male genital development around the ventral part 
of the remodeling urethra [94]. Multiple studies 
found mutations and associations with polymor-
phisms in these genes (Table 11.1). In addition, 
there are other studies that indicated the involve-
ment of the AR in hypospadias etiology. For 
example, some studies indicated different expres-
sion levels in patients compared to controls [39, 

47, 48, 95–98], while others suggested decreased 
DHT binding capacity of the AR in genital skin 
fibroblasts of patients with hypospadias [34, 99]. 
Although not all studies confirmed these results 
[100–103], evidence that a defect in AR or 
SRD5A2 may cause or be a risk factor for hypo-
spadias is compelling.

11.5  Other Genes

Not only steroidogenesis but also the balance 
between androgens and estrogens appears to be 
important in the development of the male exter-
nal genitalia. The estrogen receptors ESR1 and 
ESR2 are expressed in the developing human 
male GT [14], and mRNA expression levels seem 
to be decreased in foreskin of hypospadias 
patients compared to controls [95]. Although no 
mutations were found in ESR1 or ESR2, associa-
tions have been reported between hypospadias 
and several polymorphisms in the genes encod-
ing these receptors (Table 11.1), and evidence for 
these genes to play a role in hypospadias devel-
opment is quite strong.

Other genes for which evidence is quite strong 
are activating transcription factor 3 (ATF3), 
mastermind- like domain containing 1 (MAMLD1), 
and diacylglycerol kinase κ (DGKK). ATF3 is an 
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estrogen-responsive gene showing strong upregu-
lation in hypospadias [72, 104–107], and several 
studies found mutations in this gene in hypospa-
dias patients or polymorphisms in this gene to be 
associated with hypospadias (Table  11.1). 
MAMLD1, previously known as CXorf6, contains 
the NR5A1 target sequence [108] and mutations, 
and polymorphisms in MAMLD1 were found in 
patients with hypospadias (Table  11.1). Ogata 
et  al., concluded that MAMLD1 mutations exert 
their effect primarily via compromised testoster-
one production around the critical period for sex 
development [109], and Ratan et al., found lower 
testosterone levels than the mean for their age in 
80% of subjects carrying a polymorphism in 
MAMLD1 [77]. DGKK was identified as a major 
risk gene for hypospadias in a genome-wide asso-
ciation study [80], a result that was confirmed by 
several other studies (Table 11.1). A study in mice 
revealed that differentiated GT epithelial cells are 
DGKK positive, while undifferentiated preputial 
lamina epithelial cells are DGKK negative, sug-
gesting that DGKK is a marker or mediator of 
squamous cell differentiation [110].

11.6  Common Clinical Conditions 
with Gene Defects

11.6.1  46,XX Disorder of Sex 
Development (DSD)

The most frequent example of DSD in the 46,XX 
group is congenital adrenal hyperplasia (CAH), 
mostly resulting from a deficit of 21-hydoxylase 
which causes an abnormal growth of the GT and 
an inappropriate opening of the vagina into the 
posterior wall of the urethra.

It is important to realize that pubertal and 
post-pubertal women (46,XX) with CAH develop 
their GT if they are not compliant to their hor-
monal substitutive treatment. This shows that GT 
target tissues remain responsive to steroids until 
the organ reaches an ultimate size.

In western world, most patients with CAH are 
raised as female but severely virilized CAH in 
male-dominant societies or late diagnosis may 
lead to a male assignment [111].

11.6.2  46,XY DSD

Mutations in genes implied in testosterone  
biosynthesis (such as 3-beta-hydroxysteroid-
dehydrogenase, 17-beta-hydroxysteroid-deshy-
drogenase and 17-alpha hydroxylase) can lead to 
testosterone defects which may present as DSD.

11.6.3  The Dysgenetic Gonad

The dysgenetic gonad and more specifically the 
dysgenetic testis is characterized by insufficient 
production of testosterone and anti-Müllerian 
hormone (AMH). Although some etiologies are 
well identified, the histological definition of the 
gonadal dysgenesis remains unclear [112] as well 
as the possible underlying genetic anomalies. It is 
commonly associated with insufficient develop-
ment of the GT, impaired testicular descent, and 
persistence of Müllerian structures. It is most 
likely that gonadal dysgenesis is a dynamic pro-
cess leading to a progressive loss of testicular 
functions. The major concern about dysgenetic or 
underdeveloped gonads is the development of 
cancers from immature germinal cells [113].

11.6.4  Partial and Complete 
Androgen Insensitivity 
Syndromes

5α-Reductase deficiency is an autosomal reces-
sive syndrome. It is a rare disorder in western 
countries but frequent in the Dominican Republic, 
New Guinea, and Gaza strip due to high consan-
guinity [114]. These 46,XY patients present with 
quite feminine genitalia at birth which will get 
virilized after puberty if the testes are left in 
place. Some newborn babies may present with a 
slightly more developed hypospadiac micropenis 
which may grow with topical dihydrotestoster-
one. These patients represent one of the most dif-
ficult situations where gender assignment is an 
issue as well as the fate of the testes.

Partial and complete androgen insensitivity 
syndromes (PAIS/CAIS) are related to impaired 
androgen receptors. CAIS does not raise any gen-
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der issue as these individuals have normal female 
external genitalia and will be raised as females 
with hormonal substitution from puberty onward. 
Partial androgen insensitivity syndrome used to 
raise difficult discussions in terms of gender 
assignment although most of them are nowadays 
raised as males [115].
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