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Genes Involved

in the Embryology
of the Male External
Genitalia

11.1

Development of the male external genitalia can
be divided in three stages:

¢ The indifferent stage.
e The early patterning stage.
e The masculinization stage.

11.1.1 Indifferent Stage

Early development of the external genitalia is
similar for males and females. The embryonic
cloaca, the far end of the hindgut, is separated
from the amniotic cavity by the cloacal mem-
brane. Early in the fifth week of development, a
swelling develops on both sides of this membrane,
the cloacal folds, which meet in the midline ante-
rior to the cloacal membrane, forming the genital
tubercle [1]. At the same time, the genital ridges,
the precursors of the gonads, develop. Studies in
mice showed that this process requires Wilms
tumor 1 (Wtl) activity, which activates splicing
factor 1 (Sf1) [2], thus preventing degeneration of
the developing gonads [3]. During the seventh
week of human development, the urorectal sep-
tum fuses with the cloacal membrane, dividing
the cloaca into the primitive urogenital sinus and
the rectum and dividing the cloacal membrane
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into the urogenital and the anal membrane. The
swellings next to the urogenital membrane are
then called the urogenital folds, and a new pair of
swellings, the labioscrotal swellings, appears on
either side of these folds. In addition, the urogeni-
tal membrane breaks down [1].

11.1.2 Early Patterning

Early patterning of the genital tubercle (GT) is
androgen-independent. The distal urethral plate
epithelium is the signaling center regulating GT
outgrowth [4]. Fibroblast growth factor proteins
(FGF) play a growth-promoting role in this out-
growth [5], whereas bone morphogenetic pro-
teins (BMP) stimulate apoptosis [6, 7]. Sonic
hedgehog (SHH) modulates the balance between
proliferation and apoptosis by regulating the
expression of the genes encoding these and
many other proteins [8]. This way, SHH regu-
lates the initiation of GT outgrowth [4].
Immunohistochemical staining of human fetal
penises showed expression of SHH, its receptor,
and several of its downstream genes around the
time of urethral closure [9].

11.1.3 Masculinization

Subsequent masculinization relies on hormones
produced by the testes. Expression of the sex-
determining region Y gene (SRY) induces a cas-
cade of gene interactions, involving SRY-box 9
(SOX9) [1], resulting in differentiation of the
gonads into the testes [10]. SRY leads to the dif-
ferentiation of Sertoli cells [1], which secrete
anti-Miillerian hormone. Anti-Miillerian hor-
mone causes regression of the Miillerian ducts
that would otherwise form part of the female
genital structures [1]. Human chorionic gonado-
tropin (hCG), produced by the placenta, controls
fetal Leydig cell growth and stimulates fetal tes-
ticular steroidogenesis, the generation of steroids
from cholesterol [11]. The enzymatic steps in ste-
roidogenesis, mainly taking place in the Leydig
cell, are well documented, and expression of key
genes in this pathway is dependent on expression

of NR5A1 (Fig. 11.1) [13]. Testosterone leaves
the Leydig cell and is converted into dihydrotes-
tosterone (DHT) by steroid-5-alpha-reductase
(SRD5A). Testosterone promotes formation of
the internal reproductive structures from the
Wolffian ducts, whereas DHT induces develop-
ment of the external genitalia [1], both through
their effects on the androgen receptor (AR).
Expression of estrogen receptors (ESR) in male
genital tissue during development suggests that
the balance between androgens and estrogens is
important as well [14].

11.2 Genes Implicated
in the Etiology of Isolated
Hypospadias

All genes implicated in one of the three stages
mentioned above could play a role in the devel-
opment of hypospadias. Therefore, much of the
genetic research on hypospadias has been focused
on these genes.

11.3 Study Types

Different types of studies have been performed to
examine whether specific genes have an effect on
the occurrence of hypospadias. One example are
the mutation analyses, for which researchers
sequence candidate genes in hypospadias patients
and healthy controls. These studies typically
included tens to sometimes a little over a hundred
hypospadias patients and healthy controls.
Sequencing allows complete coverage of the
gene, identifying all genetic variants present in
that gene. With this type of studies, researchers
were aiming to identify the causal variant for
hypospadias in part of their patients. Although
several studies identified new and unknown
mutations in hypospadias patients that were not
present in the healthy controls, it remains unclear
whether these mutations truly have functional
consequences. Only few studies reported conser-
vation and function of the region in which the
mutation is located or predicted a potential influ-
ence of the mutation on protein function using
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Fig. 11.1 Steroidogenesis in the mitochondrium (top)
and smooth endoplasmic reticulum (bottom) of the fetal
Leydig cell. Adapted from van der Zanden et al., 2012
[12] (from van der Zanden, L.EM. and van Rooij,

bioinformatics. Even if the mutations found are
truly causal, they only explain the occurrence of
hypospadias in a small part of the patients, and
the majority of mutations were found only once
and were identified in patients with posterior or
penile hypospadias.

Another type of study that has been used to
examine whether specific genes have an effect on
the occurrence of hypospadias is the association
study. In this type of study, known polymorphisms
are genotyped in hypospadias patients and healthy
controls. Polymorphisms are common genetic
variants that occur with a frequency of at least
1%. Due to the haplotype block structure of the
human genome, genotyping a specific set of poly-
morphisms in a gene covers much more of the
variation in that gene. Thereby, polymorphisms
function as markers for more rare variants with
functional consequences. In association studies,
typically hundreds to sometimes a thousand hypo-

[LA.L.M.: “Aetiology of hypospadias: a systematic review
of genes and environment,” Human Reproduction Update,
2012, Vol. 18, Issue 3, by permission of Oxford University
Press)

spadias patients and healthy controls have been
genotyped for polymorphisms in candidate genes.
If a polymorphism occurs more frequently in the
patients compared to the controls, this means that
there is an association and the variant may be a
marker for a causal variant that increases hypo-
spadias risk. However, due to the large amount of
polymorphisms examined, the risk of false-posi-
tive results is high. Therefore, replication of
results is a major issue in association studies,
especially in the genome-wide association studies
that aim to cover the whole genome by genotyp-
ing hundreds of thousands of polymorphisms.

11.4 Study Results

Table 11.1 shows the candidate genes that were
screened for mutations or associations in groups
of hypospadias patients and healthy controls.
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Table 11.1 Result of genetic association studies and mutation studies screening candidate genes in groups of patients
with hypospadias and healthy controls. Genes that were only investigated once and did not show mutations or associa-
tions in that study are not shown

Mutation studies that Association studies that | Mutation studies that did | Association studies that
found mutations found associations not find mutations did not find associations
Indifferent stage
WT1 Wang et al. [15], Carmichael et al. [17] Nordenskjold et al.
Diposarosa et al. [16] [18], Kon et al. [19],
Zhang et al. [20]
WTAP Utsch et al. [21] Carmichael et al. [17]
Early patterning
SHH Carmichael et al. [17] Zhang et al. [20]
FGF8 Beleza-Meireles et al. Beleza-Meireles et al. | Kon et al. [19], Zhang Carmichael et al. [17]
[22] [22] et al. [20]
FGF10 Carmichael et al. [17] Beleza-Meireles et al.
[22], Zhang et al. [20]
FGFR2 Beleza-Meireles et al. Beleza-Meireles et al. | Kon et al. [19], Zhang Carmichael et al. [17]
[22] [22] et al. [20]
BMP4 Chen et al. [23], Zhang Kon et al. [19] Carmichael et al. [17]
et al. [20]
BMP7 Chen et al. [23], Bouty | Carmichael et al. [17] Beleza-Meireles et al.
et al. [24] [22], Kon et al. [19],
Zhang et al. [20]
HOXA4 Chen et al. [23] Geller et al. [25] Kon et al. [19], Zhang Carmichael et al. [17],
et al. [20] Kojima et al. [26],
Chen et al. [27]
HOXB6 Chen et al. [23], Kon et Zhang et al. [20] Carmichael et al. [17]
al. [19]
HOXAI3 Utsch et al. [21], Zhang | Carmichael et al. [17]
et al. [20]
HOXDI13 | Zhang etal. [20] Carmichael et al. [17]
GLII Carmichael et al. [17]
GLI2 Carmichael et al. [17]
GLI3 Zhang et al. [20] Carmichael et al. [17]
ZFPM?2 Zhang et al. [20]
CDH7 Zhang et al. [20]
Masculinization
SRY Wang et al. [15], Zhang | Carmichael et al. [17]
et al. [20]
SOX9 Wang et al. [15], Zhang
et al. [20]
NR5AI Kohler et al. [28], Kalfa et al. [32], Kon et | Adamovic et al. [30]
Allali et al. [29], al. [19], Zhang et al.
Adamovic et al. [30], [20]
Laan et al. [31]
AR Hiort et al. [33], Alléra | Lim et al. [40], Aschim | Muroya et al. [46], Muroya et al. [46],
et al. [34], Sutherland et al. [41], Radpour et | Radpour et al. [42], Vottero et al. [47],
et al. [35], al. [42], Parada- Kalfa et al. [32] Silva et al. [48]
Nordenskjold et al. Bustamante et al. [43],
[18], Wang et al. [15], Adamovic and
Thai et al. [36], Nordenskjold [44],
Borhani et al. [37], Kon | Adamovic et al. [45]
et al. [19], Yuan et al.
[38], Zhang et al. [20],
Chen et al. [39]
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Table 11.1 (continued)

Mutation studies that Association studies that | Mutation studies that did | Association studies that
found mutations found associations not find mutations did not find associations
FKBP4 Beleza-Meireles et al. Beleza-Meireles et al.
[49], Zhang et al. [20] [49]
CYPIAI Kurahashi et al. [50], Kon et al. [19], Zhang Yadav et al. [53]
Carmichael et al. [51], |etal. [20]
Mao et al. [52]
CYPIA2 Qin et al. [54]
CYP3A4 Carmichael et al. [51] Qin et al. [54]
CYPIIAI Zhang et al. [20] Carmichael et al. [51]
CYPI7A1 Qin et al. [54], Mao et Samtani et al. [55],
al. [52] Yadav et al. [56],
Carmichael et al. [51]
CYPI9A1 Qin et al. [54],
Carmichael et al. [51]
HSD3B1 Chen et al. [39] Carmichael et al. [51]
HSD3B2 Codner et al. [57], Kon Zhang et al. [20] Carmichael et al. [51]
etal. [19]
HSDI7B3 Sata et al. [58], Thai et al. [36], Kon et
Carmichael et al. [51] al. [19], Yuan et al.
[38], Zhang et al. [20]
SRD5A1 Tria et al. [59] Carmichael et al. [51]
SRD5A2 Silver and Russell [60], | Silver and Russell Nordenskjold et al. van der Zanden et al.
Wang et al. [15], Thai [60], Wang et al. [15], | [18], Kalfa et al. [32] [63], Adamovic et al.
et al. [36], Kon et al. Thai et al. [36], Sata et [45]
[19], Rahimi et al. [61], | al. [58], Samtani et al.
Yuan et al. [38], Zhang | [55], Carmichael et al.
et al. [20] [51], Samtani et al.
[62], Rahimi et al. [61]
STAR Zhang et al. [20] Carmichael et al. [51]
STARD3 Carmichael et al. [51]
STS Carmichael et al. [51]
Other genes
ESRI ‘Watanabe et al. [64], Beleza-Meireles et al. Beleza-Meireles et al.
van der Zanden et al. [68], Kon et al. [19], [68]
[63], Tang et al. [65] Zhang et al. [20]
Choudhry et al. [66]
Ban et al. [67]
ESR2 Beleza-Meireles et al. | Beleza-Meireles et al. Aschim et al. [70]
[68], Beleza-Meireles [68], Kon et al. [19],
et al. [69], Ban et al. Zhang et al. [20]
[67], Choudhry et al.
[66], van der Zanden
et al. [63]
ATF3 Beleza-Meireles et al. Beleza-Meireles et al. | Kon et al. [19], Zhang
[71], Kalfa et al. [72] [71], van der Zanden et al. [20]
et al. [63]
MAMLD] | Fukami et al. [73], Chen et al. [75], Kalfa | Kalfa et al. [78], Kon et |Liuetal. [79]
Kalfa et al. [74], Chen | etal. [78], Ratanetal. |al.[19], Zhang et al.
et al. [75], Kalfa et al. [77] [20]
[32], Igarashi et al.
[76], Ratan et al. [77]

(continued)
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Table 11.1 (continued)

Mutation studies that
found mutations

Association studies that
found associations

Mutation studies that did
not find mutations

Association studies that
did not find associations

DGKK van der Zanden et al. Kon et al. [19], Zhang Kojima et al. [26],
[80], Carmichael et al. | et al. [20] Richard et al. [85]
[81], Geller et al. [25],
Ma et al. [82],
Hozyasz et al. [83],
Xie et al. [84], Chen et
al. [27]
TGFBR2 Han et al. [86]
CTGF Kon et al. [19], Zhang
et al. [20]
BNC2 Bhoj et al. [87], Kon et Zhang et al. [20]
al. [19]
MID1 Zhang et al. [88] Zhang et al. [88] Kon et al. [19], Zhang
et al. [20]
INSL3 El Houate et al. [89],
Zhang et al. [20]
GSTM 1 Yadav et al. [53] Kon et al. [19], Zhang Kurahashi et al. [50]
et al. [20]
GSTT1 Yadav et al. [53] Kon et al. [19] Kurahashi et al. [50]
ARNT?2 Qin et al. [54]
NRII2 Qin et al. [54]
AKRIC2 Soderhall et al. [90], Mares er al. [91]
Zhang et al [20] Mares
etal. [91]
AKRIC3 Soderhall et al. [90] Mares et al. [91] Soderhall et al. [90],
Mares et al. [91]
AKRIC4 Soderhall et al. [90], Soderhall et al. [90],
Zhang et al. [20], Mares et al. [91]
Mares et al. [91]
KLF6 Soderhall et al. [82] Soderhall et al. [90]
RYRI Zhang et al. [92]
PKDCC Geller et al. [25] Kojima et al. [26],
Chen et al. [27]
HAAO Geller et al. [25] Kojima et al. [26],
Chen et al. [27]
DNAHG6 Geller et al. [25] Kojima et al. [26],
Chen et al. [27]
EEFSEC Geller et al. [25] Kojima et al. [26],
Chen et al. [27]
PDGFC Geller et al. [25] Kojima et al. [26],
Chen et al. [27]
DAAM?2 Geller et al. [25] Kojima et al. [26],
Chen et al. [27]
TAXIBPI1 Geller et al. [25] Kojima et al. [26],
Chen et al. [27]
EYAI Geller et al. [25] Kojima et al. [26],
Chen et al. [27]
CCDC26 Geller et al. [25] Kojima et al. [26],
Chen et al. [27]
KCNMA Geller et al. [25] Kojima et al. [26],

Chen et al. [27]
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Table 11.1 (continued)

Mutation studies that Association studies that | Mutation studies that did | Association studies that
found mutations found associations not find mutations did not find associations
GREM1 Geller et al. [25] Kojima et al. [26],
Chen et al. [27]
IRXS5 Geller et al. [25] Kojima et al. [26],
Chen et al. [27]
IRX6 Geller et al. [25] Kojima et al. [26],
Chen et al. [27]
ZFHX3 Geller et al. [25] Kojima et al. [26],
Chen et al. [27]
EYAI Geller et al. [25] Kojima et al. [26]
EXOC3 Geller et al. [25]
PROKR?2 Zhang et al. [20]
TRIM17 Zhang et al. [20]
SLC25A5 | Chen et al. [27]
SP1 Chen et al. [27]

Genes that were only investigated once and did
not show mutations or associations in that study
are not shown. The table shows that only few
studies focused on genes involved in the indiffer-
ent and early patterning stage. Although some
mutations and associations were found in these
genes, there is no gene that shows clear evidence
of being involved in hypospadias etiology.
Research on genes involved in the masculin-
ization stage has been much more extensive.
Notably, although expression of the SRY gene,
located on the Y chromosome, is crucial for devel-
opment of the testis from the indifferent gonad
([10, 93]), there is not much evidence that this
gene plays a role in the development of hypospa-
dias. Research was especially focused on AR and
SRD5A2. SRD5A2 converts testosterone to the
more potent androgen DHT, and both testosterone
and DHT exert their effect through the AR. The
AR is expressed in the developing human penis
and urethra, and SRD5A2 is expressed during
male genital development around the ventral part
of the remodeling urethra [94]. Multiple studies
found mutations and associations with polymor-
phisms in these genes (Table 11.1). In addition,
there are other studies that indicated the involve-
ment of the AR in hypospadias etiology. For
example, some studies indicated different expres-
sion levels in patients compared to controls [39,

47, 48, 95-98], while others suggested decreased
DHT binding capacity of the AR in genital skin
fibroblasts of patients with hypospadias [34, 99].
Although not all studies confirmed these results
[100-103], evidence that a defect in AR or
SRDS5A?2 may cause or be a risk factor for hypo-
spadias is compelling.

11.5 Other Genes

Not only steroidogenesis but also the balance
between androgens and estrogens appears to be
important in the development of the male exter-
nal genitalia. The estrogen receptors ESRI and
ESR2 are expressed in the developing human
male GT [14], and mRNA expression levels seem
to be decreased in foreskin of hypospadias
patients compared to controls [95]. Although no
mutations were found in ESRI or ESR2, associa-
tions have been reported between hypospadias
and several polymorphisms in the genes encod-
ing these receptors (Table 11.1), and evidence for
these genes to play a role in hypospadias devel-
opment is quite strong.

Other genes for which evidence is quite strong
are activating transcription factor 3 (ATF3),
mastermind-like domain containing 1 (MAMLD]),
and diacylglycerol kinase k (DGKK). ATF3 is an
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estrogen-responsive gene showing strong upregu-
lation in hypospadias [72, 104-107], and several
studies found mutations in this gene in hypospa-
dias patients or polymorphisms in this gene to be
associated with hypospadias (Table 11.1).
MAMLD]1, previously known as CXorf6, contains
the NR5A1 target sequence [108] and mutations,
and polymorphisms in MAMLDI were found in
patients with hypospadias (Table 11.1). Ogata
et al., concluded that MAMLD] mutations exert
their effect primarily via compromised testoster-
one production around the critical period for sex
development [109], and Ratan et al., found lower
testosterone levels than the mean for their age in
80% of subjects carrying a polymorphism in
MAMLDI [77]. DGKK was identified as a major
risk gene for hypospadias in a genome-wide asso-
ciation study [80], a result that was confirmed by
several other studies (Table 11.1). A study in mice
revealed that differentiated GT epithelial cells are
DGKK positive, while undifferentiated preputial
lamina epithelial cells are DGKK negative, sug-
gesting that DGKK is a marker or mediator of
squamous cell differentiation [110].

11.6 Common Clinical Conditions
with Gene Defects

11.6.1 46,XX Disorder of Sex
Development (DSD)

The most frequent example of DSD in the 46,XX
group is congenital adrenal hyperplasia (CAH),
mostly resulting from a deficit of 21-hydoxylase
which causes an abnormal growth of the GT and
an inappropriate opening of the vagina into the
posterior wall of the urethra.

It is important to realize that pubertal and
post-pubertal women (46,XX) with CAH develop
their GT if they are not compliant to their hor-
monal substitutive treatment. This shows that GT
target tissues remain responsive to steroids until
the organ reaches an ultimate size.

In western world, most patients with CAH are
raised as female but severely virilized CAH in
male-dominant societies or late diagnosis may
lead to a male assignment [111].

11.6.2 46,XY DSD

Mutations in genes implied in testosterone
biosynthesis (such as 3-beta-hydroxysteroid-
dehydrogenase, 17-beta-hydroxysteroid-deshy-
drogenase and 17-alpha hydroxylase) can lead to
testosterone defects which may present as DSD.

11.6.3 The Dysgenetic Gonad

The dysgenetic gonad and more specifically the
dysgenetic testis is characterized by insufficient
production of testosterone and anti-Miillerian
hormone (AMH). Although some etiologies are
well identified, the histological definition of the
gonadal dysgenesis remains unclear [112] as well
as the possible underlying genetic anomalies. It is
commonly associated with insufficient develop-
ment of the GT, impaired testicular descent, and
persistence of Miillerian structures. It is most
likely that gonadal dysgenesis is a dynamic pro-
cess leading to a progressive loss of testicular
functions. The major concern about dysgenetic or
underdeveloped gonads is the development of
cancers from immature germinal cells [113].

11.6.4 Partial and Complete
Androgen Insensitivity
Syndromes

Sa-Reductase deficiency is an autosomal reces-
sive syndrome. It is a rare disorder in western
countries but frequent in the Dominican Republic,
New Guinea, and Gaza strip due to high consan-
guinity [114]. These 46,XY patients present with
quite feminine genitalia at birth which will get
virilized after puberty if the testes are left in
place. Some newborn babies may present with a
slightly more developed hypospadiac micropenis
which may grow with topical dihydrotestoster-
one. These patients represent one of the most dif-
ficult situations where gender assignment is an
issue as well as the fate of the testes.

Partial and complete androgen insensitivity
syndromes (PAIS/CAIS) are related to impaired
androgen receptors. CAIS does not raise any gen-
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der issue as these individuals have normal female
external genitalia and will be raised as females
with hormonal substitution from puberty onward.
Partial androgen insensitivity syndrome used to
raise difficult discussions in terms of gender
assignment although most of them are nowadays
raised as males [115].
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