
 123

LN
BI

P
43

8

6th International Conference, LASD 2022
Virtual Event, January 22, 2022
Proceedings

Lean and Agile
Software Development

Adam Przybyłek
Aleksander Jarzębowicz
Ivan Luković
Yen Ying Ng (Eds.)

Lecture Notes
in Business Information Processing 438

Series Editors

Wil van der Aalst
RWTH Aachen University, Aachen, Germany

John Mylopoulos
University of Trento, Trento, Italy

Sudha Ram
University of Arizona, Tucson, AZ, USA

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0002-0955-6940
https://orcid.org/0000-0002-8698-3292
https://orcid.org/0000-0001-6053-1311
https://orcid.org/0000-0003-3303-2896

More information about this series at https://link.springer.com/bookseries/7911

https://springerlink.bibliotecabuap.elogim.com/bookseries/7911

Adam Przybyłek · Aleksander Jarzębowicz ·
Ivan Luković · Yen Ying Ng (Eds.)

Lean and Agile
Software Development
6th International Conference, LASD 2022
Virtual Event, January 22, 2022
Proceedings

Editors
Adam Przybyłek
Gdańsk University of Technology
Gdańsk, Poland

Ivan Luković
University of Belgrade
Belgrade, Serbia

Aleksander Jarzębowicz
Gdańsk University of Technology
Gdańsk, Poland

Yen Ying Ng
Nicolaus Copernicus University
Toruń, Poland

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-030-94237-3 ISBN 978-3-030-94238-0 (eBook)
https://doi.org/10.1007/978-3-030-94238-0

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8231-709X
https://orcid.org/0000-0003-1319-488X
https://orcid.org/0000-0003-3181-4210
https://orcid.org/0000-0001-5388-2025
https://doi.org/10.1007/978-3-030-94238-0

Preface

In 2020, the world changed. In just a fewmonths, COVID-19 transformed our lives on an
unprecedented scale, impacting individuals, communities, organizations, and countries.
The pandemic had an immediate effect on the software community. As omnipresent agile
methods emphasize the importance of collocation and face-to-face communication to
coordinate thework, the sudden transition to a remote virtual environment has challenged
the well-established approach to delivering product increments. Fortunately, the agile
mindset and principles have allowed agile teams to implement ad-hoc actions to smoothly
shift to a remote setting. Unfortunately, more than two years since COVID-19 broke out,
we are still in pandemic mode and experts predict that the virus will be a part of our daily
life. Therefore, the agile community is responsible for elaborating systematic solutions
and best practices for remote agile teams and reporting the lessons learned. In this
setting, the LASD conference series and the community feel particularly proud of their
contributions to research and practice investigating how to stay agile while working
remotely.

This volume contains the papers presented at LASD 2022, the 6th International
Conference on Lean and Agile Software Development, held online on 22 January 2022.
As everyone involved in LASD 2022 worked voluntarily, the conference was fully free
of charge. LASD 2022 received 29 submissions. After a rigorous review process, which
included at least three reviews per submission, nine high-quality full papers, one short
paper, and one position paper were selected. The accepted papers were presented to
a well-focused audience, thus the discussion provided the authors with new ideas and
directions for further research. Topics discussed in this volume range from teams under
COVID-19 through agile testing to agile effort estimation and an agile approach to
model-driven development.

Corresponding authors of all accepted papers received a complimentary one year
membership of Agile Alliance. Agile Alliance is a nonprofit global member organization
dedicated to promoting the concepts of agile software development as outlined in the
Agile Manifesto. With more than 75,000 members and subscribers around the globe,
Agile Alliance is driven by the principles of agile methodologies and the value delivered
to developers, business, and end users. Agile Alliance organizes and supports events to
bring the agile community together on an international scale.

The high quality of the LASD 2022 technical program was enhanced by two
keynote lectures delivered by outstanding guests: Markus Borg (“Agility in Software
2.0—Notebook Interfaces andMLOpswith Buttresses and Rebars”) and Raman Ramsin
(“Promises of Model-Driven Development in an Agile Context”).

Wewould like to express our gratitude to everyonewhomadeLASD2022 successful.
First of all, we thank all authors for their contributions, the members of the Program
Committees for taking the time and effort to provide insightful remarks, and both keynote
speakers for their impressive speeches. We are also deeply grateful to Mirjana Ivanović
and Marjan Mernik for the opportunity to publish an extended version of the best papers
in Computer Science and Information Systems (ComSIS) and the Journal of Computer

https://www.agilealliance.org/
http://www.comsis.org

vi Preface

Languages (COLA), respectively. Furthermore, we acknowledge Michał Jakubowicz
and Szymon Żebrowski for developing our conference website. Finally, we would like
to thank the team at Springer for making this volume possible.

We hope that you find this monograph useful for your professional and academic
activities, and we wish you a stimulating read. We also cordially invite you to visit our
conference website at https://lasd.pl, and to join us for the upcoming edition.

January 2022 Adam Przybyłek
Aleksander Jarzębowicz

Ivan Luković
Yen Ying Ng

https://www.journals.elsevier.com/journal-of-computer-languages
https://lasd.pl

Organization

Conference and Program Committee Chair

Adam Przybyłek Gdańsk University of Technology, Poland

Program Committee

Ibrahim Akman Atilim University, Turkey
Fernando Almeida University of Porto and INESC TEC, Portugal
Mohammad Alshayeb King Fahd University of Petroleum and

Minerals, Saudi Arabia
Alessandra Bagnato SOFTEAM R&D Department, France
Woubshet Behutiye University of Oulu, Finland
Mario Bernhart Vienna University of Technology, Austria
Vikram Bhadauria Texas A&M University-Texarkana, USA
Miklós Biró Software Competence Center Hagenberg and

Johannes Kepler University Linz, Austria
Jan Olaf Blech Aalto University, Finland
Markus Borg SICS Swedish ICT AB, Sweden
Alena Buchalcevova Prague University of Economics and

Business, Czech Republic
Jim Buchan Auckland University of Technology, New

Zealand
Luigi Buglione Engineering Ingegneria Informatica SpA,

Italy
Shariq Aziz Butt University of Lahore, Pakistan
Daniela Cruzes Norwegian University of Science and

Technology, Norway
Wiktor Bohdan Daszczuk Warsaw University of Technology, Poland
Igor Dejanović University of Novi Sad, Serbia
Anna Derezinska Warsaw University of Technology, Poland
Philipp Diebold Bagilstein GmbH, Germany
Arpita Dutta National University of Singapore, Singapore
Maria Jose Escalona Cuaresma Universidad de Sevilla, Spain
Imane Essebaa Hassan II University of Casablanca, Morocco
Fernando Marques Figueira Filho Universidade Federal do Rio Grande do

Norte, Brazil
Gabriel Alberto García-Mireles Universidad de Sonora, Mexico
Bartłomiej Gawin University of Gdańsk, Poland
Javad Ghofrani University of Lübeck, Germany
Krzysztof Goczyła Gdańsk University of Technology, Poland

viii Organization

Sangharatna Godboley NIT Rourkela, India
Javier Gonzalez Huerta Blekinge Institute of Technology, Sweden
Peggy Gregory University of Central Lancashire, UK
Ridewaan Hanslo Council for Scientific and Industrial

Research, South Africa
Sebastian Heil Chemnitz University of Technology, Germany
Andreas Hinderks University of Seville, Spain
Uwe Hohenstein Siemens AG, Germany
Philipp Hohl ZF Friedrichshafen AG, Germany
Marko Ikonen Projektivarikko Oy, Finland
Irum Inayat National University of Computer and

Emerging Sciences, Pakistan
Andrea Janes Free University of Bozen-Bolzano, Italy
Janne Järvinen F-Secure Corporation, Finland
Aleksander Jarzębowicz Gdańsk University of Technology, Poland
George Kakarontzas Aristotle University of Thessaloniki, Greece
Kalinka Kaloyanova Sofia University, Bulgaria
Georgia Kapitsaki University of Cyprus, Cyprus
Marija Katić Birkbeck, University of London, UK
Sylwia Kopczyńska Poznań University of Technology, Poland
Martin Kropp University of Applied Sciences and Arts

Northwestern Switzerland, Switzerland
Pasi Kuvaja University of Oulu, Finland
Grischa Liebel Reykjavik University, Iceland
Ivan Luković University of Belgrade, Serbia
Ilaria Lunesu Università degli Studi di Cagliari, Italy
Katarzyna Łukasiewicz Gdańsk University of Technology, Poland
Viljan Mahnič University of Ljubljana, Slovenia
George Mangalaraj Western Illinois University, USA
Bartosz Marcinkowski University of Gdańsk, Poland
Christoph Matthies Hasso Plattner Institute at the University of

Potsdam, Germany
Manuel Mazzara Innopolis University, Russia
Antoni-Lluís Mesquida Calafat University of the Balearic Islands, Spain
Jakub Miler Gdańsk University of Technology, Poland
Gloria Miller Maxmetrics, Germany
Sanjay Misra Covenant University, Nigeria
Durga Prasad Mohapatra NIT Rourkela, India
Miguel Ehecatl Morales Trujillo University of Canterbury, New Zealand
Richard Mordinyi Vienna University of Technology, Austria
Jürgen Münch Reutlingen University, Germany
Mirna Muñoz Centro de Investigación en Matemáticas,

Mexico
Karolina Muszyńska University of Szczecin, Poland
Rennie Naidoo University of Pretoria, South Africa
Yen Ying Ng Nicolaus Copernicus University, Poland

Organization ix

Arne Noyer Ostfalia University of Applied Sciences,
Germany

Hanna Oktaba National Autonomous University of Mexico,
Mexico

Tosin Daniel Oyetoyan Western Norway University of Applied
Sciences, Norway

Necmettin Özkan Kuveyt Türk Participation Bank, Turkey
Subhrakanta Panda Birla Institute of Technology and Science,

Pilani, India
Rui Humberto R. Pereira Instituto Politécnico do Porto, Portugal
Aneta Poniszewska-Maranda Lodz University of Technology, Poland
Alexander Poth Volkswagen AG, Germany
Michał Przybyłek University of Warsaw, Poland
Sandra Ramłrez Mora Universidad Nacional Autónoma de México,

Mexico
Raman Ramsin Sharif University of Technology, Iran
Andreas Riel Grenoble Alpes University, France
Sonja Ristić University of Novi Sad, Serbia
Bruno Rossi Masaryk University, Czech Republic
Zdenek Rybola Charles Technical University in Prague,

Czech Republic
Dina Salah Sadat Academy for Management Sciences,

Egypt
Mattia Salnitri University of Trento, Italy
Wylliams Barbosa Santos University of Pernambuco, Brazil
Eva-Maria Schön University of Seville, Spain
Jorge Sedeno University of Seville, Spain
Mali Senapathi Auckland University of Technology, New

Zealand
Álvaro Soria ISISTAN Research Institute, Argentina
Maria Spichkova RMIT University, Australia
Tor Stålhane Norwegian University of Science and

Technology, Norway
Christoph Johann Stettina Leiden University, The Netherlands
Ayca Tarhan Hacettepe University, Turkey
Adel Taweel Birzeit University, Palestine
Sven Theobald Fraunhofer IESE, Germany
Jörg Thomaschewski University of Applied Sciences Emden/Leer,

Germany
Carlos Torrecilla Salinas University of Seville, Spain
Michael Unterkalmsteiner Blekinge Institute of Technology, Sweden
Jan Werewka AGH University of Science and Technology,

Poland
Dominique Winter University of Applied Sciences Emden/Leer,

Germany

x Organization

Włodzimierz Wysocki West Pomeranian University of Technology,
Poland

Murat Yilmaz Çankaya University, Turkey
Abubakar Zakari Kano University of Science and Technology,

Nigeria

Industry Advisory Board

Eréndira Miriam Jiménez-Hernández Universidad Nacional Autónoma de México,
Mexico

Hanna Looks University of Seville and d.velop public sector
GmbH, Spain

Paweł Markowski CloudFerro, Poland
Michael Neumann Hochschule Hannover, Germany
Illia Shkroba Pivotal Poland, Poland

Promises of Model-Driven Development in an Agile
Context (Abstract of Keynote Talk)

Raman Ramsin

Department of Computer Engineering, Sharif University of Technology,
Azadi Avenue, Tehran, Iran
ramsin@sharif.edu

Abstract. Model-Driven Development (MDD) has always been
considered as a promisingmeans for automatic codegeneration.Although
MDD has come a long way in achieving its objectives, its potential has
yet to be fulfilled. Recent advances in low-code development have given
new hope to old MDD-inspired dreams; integrating MDD with agile
development is one of these old dreams. The MDD community has long
been striving to convince the agile community of the potential merits
of this integration. However, the general agile mindset tended to value
simplicity over rigor, and modeling seemed too rigorous to be useful and
affordable from an agile perspective.

As MDD approaches have evolved over the years, so have
agile methodologies: the model-phobia frequently seen in older agile
methodologies is no longer prevalent, and modeling activities have
become an essential part of newer agile processes. This seems to signify
an invaluable opportunity to reinvigorate the integration efforts. In this
talk, a brief overview will be provided of the recent developments in the
two fields, and the new opportunities for fusingMDD into agile processes
will be explored.

https://orcid.org/0000-0003-1996-9906

Contents

Keynote Paper

Agility in Software 2.0 – Notebook Interfaces and MLOps with Buttresses
and Rebars . 3
Markus Borg

Full Papers

The Integrated List of Agile Practices - A Tertiary Study . 19
Michael Neumann

Agile Teams Working from Home During the Covid-19 Pandemic:
A Literature Review on New Advantages and Challenges 38
Necmettin Ozkan, Oya Erdil, and Mehmet Şahin Gök

How a 4-Day Work Week and Remote Work Affect Agile Software
Development Teams . 61
Julia Topp, Jan Hendrik Hille, Michael Neumann, and David Mötefindt

Impact of Turkish National Culture on Agile Software Development
in Turkey . 78
Aysegul Gelmis, Necmettin Ozkan, Ali J. Ahmad, and Mehmet Guray Guler

Develop Sustainable Software with a Lean ISO 14001 Setup Facilitated
by the efiS® Framework . 96
Alexander Poth and Elisabeth Nunweiler

Modeling and Model Transformation as a Service: Towards an Agile
Approach to Model-Driven Development . 116
Adel Vahdati and Raman Ramsin

Effort Estimation in Agile Software Development: A Exploratory Study
of Practitioners’ Perspective . 136
R. C. Sandeep, Mary Sánchez-Gordón, Ricardo Colomo-Palacios,
and Monica Kristiansen

Towards Agile Mutation Testing Using Branch Coverage Based
Prioritization Technique . 150
Sangharatna Godboley and Durga Prasad Mohapatra

xiv Contents

Agility Based Coverage Improvement . 170
Swadhin Kumar Barisal, Arpita Dutta, Sangharatna Godboley,
Bibhudatta Sahoo, and Durga Prasad Mohapatra

Short Paper

A Complete Unit Test Framework for Agile Software Development 189
Arpita Dutta

Position Paper

Project Management Issues While Using Agile Methodology 201
Shariq Aziz Butt, G. Piñeres-Espitia, Paola Ariza-Colpas,
and Muhammad Imran Tariq

Author Index . 215

Keynote Paper

Agility in Software 2.0 – Notebook
Interfaces and MLOps with Buttresses

and Rebars

Markus Borg1,2(B)

1 RISE Research Institutes of Sweden, Lund, Sweden
markus.borg@ri.se

2 Department of Computer Science, Lund University, Lund, Sweden

Abstract. Artificial intelligence through machine learning is increas-
ingly used in the digital society. Solutions based on machine learning
bring both great opportunities, thus coined “Software 2.0,” but also
great challenges for the engineering community to tackle. Due to the
experimental approach used by data scientists when developing machine
learning models, agility is an essential characteristic. In this keynote
address, we discuss two contemporary development phenomena that are
fundamental in machine learning development, i.e., notebook interfaces
and MLOps. First, we present a solution that can remedy some of the
intrinsic weaknesses of working in notebooks by supporting easy transi-
tions to integrated development environments. Second, we propose rein-
forced engineering of AI systems by introducing metaphorical buttresses
and rebars in the MLOps context. Machine learning-based solutions are
dynamic in nature, and we argue that reinforced continuous engineering
is required to quality assure the trustworthy AI systems of tomorrow.

1 Introduction

No one has missed the AI surge in the last decade. There is an ever-increasing
number of AI applications available as enterprises across domains seek to har-
ness the promises of AI technology. Enabled by the growing availability of data,
most of the AI success stories in recent years originate in solutions dominated
by Machine Learning (ML) [1]. Where human programmers previously had to
express all logic in source code, ML models can now be trained on huge sets of
annotated data – for certain tasks, this works tremendously well. Andrej Karpa-
thy, AI Director at Tesla, somewhat cheekily refers to development according to
the ML paradigm as “Software 2.0”1. For many applications seeking mapping
from input to output, it is easier to collect and annotate high-quality data than
to program a mapping function in code explicitly.

Agile software development has become the norm in the software engineering
industry. Flexibly adapting to change has proven to be a recipe to ripe some of
the benefits of software – significant changes can often occur at any time, both
1 https://bit.ly/3dKeUEH.

c© Springer Nature Switzerland AG 2022
A. Przyby�lek et al. (Eds.): LASD 2022, LNBIP 438, pp. 3–16, 2022.
https://doi.org/10.1007/978-3-030-94238-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94238-0_1&domain=pdf
https://bit.ly/3dKeUEH
https://doi.org/10.1007/978-3-030-94238-0_1

4 M. Borg

during a development project and post-release. Quickly adapting to shifting
customer needs and technology changes is often vital to survival in a competitive
market. In this light, the concept of DevOps has emerged as an approach to
minimize time to market while maintaining quality [2]. While agile development
is particularly suitable for customer-oriented development in the Internet era,
it is also increasingly used in embedded systems development of more critical
nature [3] with adaptations such as SafeScrum [4]. Moreover, while agile software
development is flexible, we argue that ML development iterates even faster – and
thus necessitates “agility on steroids.”

Data scientists often conduct the highly iterative development of ML mod-
els. Data scientists, representing a new type of software professionals, often do
not have the software engineering training of conventional software develop-
ers [5]. This observation is analogous to what has been reported for developers
of scientific computing in the past, e.g., regarding their familiarity with agile
practices [6]. Instead of prioritizing the crafts of software engineering and com-
puter science, many data scientists focus on mastering the art of taming data
into shapes that are suitable for model training – typically using domain knowl-
edge to hunt quantitative accuracy targets for a specific application. The ML
development process is experimental in nature and involves iterating between
several intertwined activities, e.g., data collection, data preprocessing, feature
engineering, model selection, model evaluation, and hyperparameter tuning. An
unfortunate characteristic of ML development is that nothing can be considered
in isolation. A foundational ML paper by Google researchers described this as
the CACE principle “Changing Anything Changes Everything” [7]. When devel-
oping ML models in Software 2.0, no data science activities are ever independent.

In this keynote address, we will discuss two phenomena that have emerged
to meet the characteristics of ML development. First, Notebook interfaces to
meet the data scientists’ needs to move swiftly. Unfortunately, the step from pro-
totyping in Notebook interfaces to a mature ML solution is often considerable –
and cumbersome for many data scientists. In Sect. 2, we will present a solution by
Jakobsson and Henriksson that bridges the gap between the data scientists’ pre-
ferred notebook interfaces and standard development in Integrated Development
Environments (IDE). Second, analogous to DevOps in conventional agile soft-
ware development, in Sect. 3, we will look at how MLOps has emerged to close
the gap between ML development and ML operations. More than just an agility
concept, we claim that it is required to meet the expectations on the trustwor-
thy AI of the future – illustrated in the light of the recently proposed Artificial
Intelligence Act in the European Union. We refer to our concept of reinforcing
the development and operations of AI systems, afflicted by the CACE principle,
using two metaphors from construction engineering: buttresses and rebars.

2 Connecting Notebook Interfaces and IDEs

Many data scientists are not trained software engineers and thus might not
be fully aware of available best practices related to various software engineer-
ing activities [5]. Moreover, even with awareness of software engineering best

Agility in Software 2.0 5

practices, data science introduces new challenges throughout the engineering
lifecycle [8,9] – from requirements engineering [10] to operations [7]. Due to
the intrinsically experimental nature of data science, practitioners seek devel-
opment environments that allow maximum agility, i.e., high-speed development
iterations.

The go-to solution for many data scientists is to work iteratively in cloud-
based notebook interfaces. While this allows rapid experimentation, it does not
easily allow the application of the various tools available in a modern IDE [11].
The first part of this keynote address presents a solution developed as part of a
MSc thesis project by Jakobsson and Henriksson at Backtick Technologies [12]
that enables data scientists to easily move between notebook interfaces and an
IDE thanks to a networked file system. The idea is to let data scientists work
in their favorite editor and use all the tools available for local development
while still being able to use the cloud-based notebook interface for data explo-
ration – and reaping its benefits of easy access to distributed cloud computing.
Jakobsson and Henriksson integrated and evaluated the solution as part of Cow-
ait Notebooks, an experimental cloud notebook solution developed by Backtick
Technologies. Cowait2 is an open-source framework for creating containerized
distributed applications with asynchronous Python.

2.1 Agility Supported by Notebook Interfaces

A substantial part of today’s data science revolves around notebook interfaces,
also known as computational notebooks. Notebook interfaces are typically cloud-
based and consist of environments with interactive code interpreters accessible
from web browsers that allow raöid, iterative development. The notebooks them-
selves usually run on a remote machine or a computer cluster, allowing the user
easy access to compute resources available in data centers. While the notebook
interfaces gradually mature, i.e., more features become available, the environ-
ments are still far from as capable as the IDEs software developers run locally.
Consequently, the support for version control software, static analysis, linting,
and other widely used development tools is limited in notebook interfaces [11].

The implementation of a notebook interface differs from a conventional IDE.
A notebook runs an interpreter in the background that preserves the state for the
duration of a programming session. A user observes a notebook as a sequence
of cells that are either textual (allowing data scientists to document the pro-
cess) or containing code. These two different types of cells are interwoven in
the notebook. Notebook interfaces usually excel at presenting plots and tables
that support data exploration. A code cell contains one or more statements and
can be executed independently from any other code cell. Users can execute code
cells in any order, but the cells all mutate the shared state of the background
interpreter. This freedom of execution order greatly supports the agility of data
science as users can re-run portions of a program while keeping other parts of
the previously generated state. While this enables fast iterations toward a useful

2 https://cowait.io.

https://cowait.io

6 M. Borg

solution, it also makes it difficult to trace the path of execution that led to a
specific result. Even worse, subsequent executions of the notebook may yield
different results.

The concept of computational notebooks was envisioned by Knuth already in
1984 [13]. Knuth proposed the literate programming paradigm and showed how
the idea could support program comprehension by mixing snippets of source
code and natural language explanations of its embedded logic. As elaborated in
Knuth’s seminal book on the topic [14], the key point is that literate program-
ming explicitly shifts who is the most important reader of the programming
artifact. In literate programming, source code is primarily written for humans
instead of computers – and the artifact can be seen as a piece of literature. Many
developers of scientific computing follow this paradigm to develop maintainable
software artifacts [15].

A more general version of literate programming is literate computing, where
the source code cells and natural language explanations are accompanied by
visual content such as tables, graphs, and images. Today’s widely used notebook
interfaces, such as the popular Jupyter Notebook3 and Databrick’s Collabora-
tive Notebook4, are examples of literate computing. For a recent overview of
the notebook landscape, we refer the curious reader to an article by Vognstrup
Fog and Nylandsted Klokmose [16]. Their summary presents both a historical
perspective and a discussion of design decisions for future notebook interfaces.

Notebook interfaces have certainly evolved substantially since Knuth first
envisioned them. However, there are still certain impediments for data scientists
working in notebooks. Chattopadhyay et al. analyzed contemporary issues with
notebook interfaces and reported nine pain points [11]. According to the authors,
the most pressing pain points for developers of notebook interfaces to tackle are
1) code refactoring, 2) deployment to production, 3) exploring notebook history,
and 4) managing long-running tasks. Notebook interfaces constitute a highly
active research topic, and researchers have proposed several solutions to address
their limitations [17–19]. However, while notebook interfaces are a prominent
medium for software development, there is still a substantial need for research
and development [20].

This talk will introduce a solution proposal by Jakobsson and Henriksson that
bridges the benefits of notebook interfaces and local IDEs. Lau et al. examined 60
different notebook interfaces and categorized them according to 10 dimensions of
analysis: 1) data sources, 2) editor style, 3) programming language, 4) versioning,
5) collaboration, 6) execution order, 7) execution liveness, 8) execution environ-
ment, 9) cell outputs, and 10) notebook outputs. In the MSc thesis project by
Jakobsson and Henriksson, the authors focused on the dimensions of execution
environment and data sources for Cowait Notebooks. Their solution allows Cow-
ait Notebooks to execute code in a remote multi-process execution environment
using local files as data sources. This solution contrasts with Jupyter Notebook
for which both code execution and data is local. The solution is also different

3 https://jupyter.org.
4 https://databricks.com/product/collaborative-notebooks.

https://jupyter.org
https://databricks.com/product/collaborative-notebooks

Agility in Software 2.0 7

from Databrick’s Collaborative Notebook, where code is executed in a remote
multi-process execution environment, but the data sources cannot be local. In
the next section, we present the open-source Cowait framework.

2.2 Cowait – A Framework for Simplified Container Orchestration

Cowait is a framework that simplifies the execution of Python code on the con-
tainer orchestration system Kubernetes. The two main constituents of Cowait are
1) a workflow engine built on top of Docker and Kubernetes and 2) a build sys-
tem to easily package source code into containers. Together, the workflow engine
and the build system form an abstraction of containers and container hosts that
helps developers leverage the power of containerization through Docker and clus-
ter deployment using Kubernetes without knowing all technical details. Back-
tick Technologies designed Cowait to hide the intrinsic complexity of Docker
and Kubernetes behind simple concepts that are familiar to general software
developers. Cowait is developed under an Apache License and the source code
is available on GitHub5.

Cowait provides four key features with a focus on user-friendliness, i.e., Cow-
ait. . .

1. . . . helps the development of distributed workflows on your local machine with
minimal setup.

2. . . . simplifies dependency management for Python projects.
3. . . . allows developers to unit test their workflow tasks.
4. . . . lowers the bar for users to deploy solutions on Kubernetes clusters.

In line with other workflow engines, Cowait organizes code into tasks. A task
is essentially a function that can accept input arguments and return values. As for
functions in general, a task can invoke other tasks—with one key difference: a call
to invoke another task will be intercepted by the Cowait runtime environment
and subsequently executed in a separate container. Cowait can also direct the
execution of this separate container to a particular machine. The fundamental
differentiator offered by Cowait is that tasks can interface directly with the
underlying cluster orchestrator. In practice, this means that tasks can start other
tasks without going through a central scheduler service. Instead, tasks create
other tasks on demand, and they communicate with their parent tasks using
web sockets. Further details are available in the Cowait Documentation6.

The task management system in Cowait relies on containers and thus sup-
ports the execution of arbitrary software. Thanks to this flexibility, Cowait can
execute notebook interfaces. In their MSc thesis project, Jakobsson and Henriks-
son demonstrate the execution of the open-source JupyterLab notebook interface
in a Cowait solution – we refer to this as running a Cowait Notebook. JupyterLab
is a popular notebook interface that is particularly suitable for this demonstra-
tion since it is implemented in Python. Once the JupyterLab task is started in a
5 https://github.com/backtick-se/cowait.
6 https://cowait.io/docs/.

https://github.com/backtick-se/cowait
https://cowait.io/docs/

8 M. Borg

cluster, it automatically gets a public URL that the users can connect to. Cowait
Notebooks allow data scientists to host notebook interfaces in any Kubernetes
cluster with minimal setup. Executing Cowait Notebooks within a Cowait task
lets the notebook access Cowait’s underlying task scheduler and allow sub-tasks
to be launched directly from the notebook cells – data scientists can thus easily
execute background tasks on the cluster. In the next section, we present Jakob-
sson and Henriksson’s solution to allow access to local files – and thus enabling
work with local IDEs.

2.3 Local Files and Cowait Notebooks Executing on Clusters

Jakobsson and Henriksson developed a proof-of-concept implementation of a
general solution to file sharing between a data scientist’s local computer and
software running on a remote cluster. The key enabler is a custom networked
file system implemented using File System in Userspace (FUSE)7. FUSE is an
interface for userspace programs to export a file system to the Linux kernel. To
make the solution compatible with as many different data science applications
as possible, the network file system was implemented as a custom storage driver
for Kubernetes. Kubernetes is the most popular cluster orchestration solution,
available as a managed service from all major cloud providers. Furthermore,
Kubernetes is an open-source solution that users can also deploy on-premise.
Practically, Jakobsson and Henriksson ensured compatibility with Kubernetes by
implementing the Container Storage Interface, an open standard for developing
new Kubernetes storage options8.

The goal of the MSc thesis project was to design a user-friendly, reliable,
and widely compatible solution to file sharing for data scientists. The aim was
to provide seamless access to files residing on a data scientist’s local computer
for other data scientists accessing the local files through cloud-based notebook
interfaces executing on Kubernetes clusters. With such a solution in place, data
scientists could collaborate online using the notebook interfaces they prefer while
allowing state-of-the-art software engineering tools to operate in IDEs on local
machines.

To evaluate the proof-of-concept, Jakobsson and Henriksson conducted two
separate studies. First, a quantitative study was carried out to verify the solu-
tion’s performance in light of requirements set by prior user experience research
on human response times [21, p. 135]. The authors studied the performance as
different numbers of files, of different sizes, where accessed under different net-
work conditions. While details are available in the MSc thesis [12], the general
finding is that the solution satisfied the requirement of file access within 1 s for
reasonable file sizes and realistic network latency. We consider this a necessary
but not sufficient requirement for the novel solution.

7 File System in Userspace, https://github.com/libfuse/libfuse.
8 https://kubernetes-csi.github.io/docs/.

https://github.com/libfuse/libfuse
https://kubernetes-csi.github.io/docs/

Agility in Software 2.0 9

Second, Jakobsson and Henriksson conducted a qualitative study to collect
deep insights into the solution’s utility. The authors recruited a mix of data
scientists and software developers (with substantial ML experience) to perform
a carefully designed programming task under a think-aloud protocol [22]. The
purpose was to collect feedback on whether the novel file sharing solution could
improve the overall experience of working with cloud-based notebook interfaces.
The feedback displayed mixed impressions. Data scientists who were comfortable
using managed cloud solutions expressed hesitation to use such a system due
to reduced ease-of-use and potential collaboration issues. The group that was
the most positive were developers with a software engineering background, who
were excited to be able to use familiar tooling for local files. Despite the mixed
opinions, we still perceive the proof-of-concept as promising – but more work is
needed to bridge notebook interfaces and local IDEs.

3 MLOps – A Key Enabler for Agility in Software 2.0

Many organizations report challenges in turning an ML proof-of-concept into
a production-quality AI system [23]. The experimental nature of ML devel-
opment limits qualities such as reproducibility, testability, traceability, and
explainability—which are needed when putting a trustworthy product or service
on the market. On top of this, an AI system must be maintained until the prod-
uct or service reaches its end-of-life. This holistic lifecycle perspective, i.e., what
follows post-release, is often missing when novice data science teams develop AI
proofs-of-concept in the sandbox. An organization must continuously monitor the
ML models in operation and, in many cases, evolve the models according to feed-
back from the production environment – where phenomena such as distributional
shifts can be game-changers [7]. Without designing for the operations phase and
ensuring that ML model changes easily can be pushed to production, it will be
tough to reach sustainably value-creating AI solutions. This attractive state is
sometimes referred to as Operational AI [24]. In the next section, we will share
our view on how the concept of MLOps can help organizations reach this state.

3.1 Continuous Engineering in the AI Era

In software development, continuous software engineering and DevOps emerged
to reduce the lead time and remove the barriers between development, testing,
and operations [2]. Workflow automation in pipelines is fundamental, as it enables
approaches such as 1) continuous integration (integration of code changes followed
by test automation), 2) continuous delivery (building software for an internal
test environment), and 3) continuous deployment (delivery of software to actual
users) [25]. Depending on the application, organizations can also add staging pro-
cesses when human validation is needed. Thanks to the automation, development
qualities such as traceability come at a substantially lower cost compared to a
manual workflow [26]. DevOps has inspired a similar mindset within ML devel-
opment in the form of MLOps, i.e., the standardization and streamlining of ML

10 M. Borg

lifecycle management [27] – which is a recommended approach to tackle continu-
ous engineering in Software 2.0 [28].

Just like DevOps is more than a set of tools, MLOps can be seen as a mind-
set on the highest level. As an engineering discipline, MLOps is a set of prac-
tices that combines ML, DevOps, and Data Engineering. Organizations adopt-
ing MLOps hope to deploy and maintain ML systems in production reliably
and efficiently. Going beyond technology, MLOps involves embracing a culture
with corresponding processes that an organization must adapt for the specific
application domain. MLOps has emerged from the Big Tech Internet companies;
thus, customization is required to fit smaller development organizations. Extrap-
olating from DevOps in conventional software engineering [2,26], MLOps relies
on pipeline automation to remove the barriers between data processing, model
training, model testing, and model deployment.

MLOps is not yet well-researched from an academic perspective. The primary
reason is that MLOps is a production concept, i.e., the phenomenon must be
studied in the field rather than in university labs. However, this does not mean
that MLOps should not be targeted by academic research. On the contrary, it
is critically important that software and systems engineering researchers initiate
industrial collaborations to allow empirical studies of what works and what does
not when developing and evolving AI systems. As always in software engineering
research, we have to identify the most important variation points needed to provide
accurate guidance given specific application contexts. Just like there are uncount-
ably many ways to implement pipeline automation – the ML tools market is boom-
ing – there is not a one-size-fits-all way to adopt MLOps in an organization.

3.2 Reinforced AI Systems Using Buttresses and Rebars

Just as agile development enters regulated domains [3], Software 2.0 is gradually
entering critical applications [29]. Examples include automotive software [30]
and software in healthcare [31]. From a quality assurance perspective, AI sys-
tems using ML constitute a paradigm shift compared to conventional software
systems. A contemporary deep neural network might be composed of hundreds
of millions of parameter weights – such an artifact is neither applicable to
code reviews nor standard code coverage testing. Development organizations
have learned how to develop trustworthy code-based software systems through
decades of software engineering experience. This collected experience has suc-
cessfully been captured in different industry standards. Unfortunately, many best
practices are less effective when developing AI systems. Bosch et al. and others
argue that software and systems engineering must evolve to enable efficient and
effective development of trustworthy AI systems [23]. One response to this call
is that new standards are under development in various domains to complement
existing alternatives for high-assurance systems [32].

Due to the growing reliance on AI systems, the European Union (EU) AI
strategy stresses the importance of Trustworthy AI. EU defines such systems as
lawful, ethical, and robust [33]. Unfortunately, we know that existing software
engineering approaches such as requirements traceability [34] and verification &

Agility in Software 2.0 11

validation [29] are less effective at demonstrating system trustworthiness when
functionality depends on ML models. Due to its experimental nature, data sci-
ence makes it hard to trace design decisions after-the-fact and the resulting ML
models become less reproducible [11]. Moreover, the internals of ML models are
notoriously difficult to interpret [35], and AI systems are difficult to test [43,44].

Not only must developers of critical AI systems comply with emerging indus-
try standards, but novel AI regulations are also expected in the EU. In April
2021, the European Commission proposed an ambitious Artificial Intelligence
Act (AIA) [36]. AIA is a new legal framework with dual ambitions for turning
Europe into the global hub for trustworthy AI. First, AIA aims to guarantee the
safety and fundamental rights of EU citizens when interacting with high-risk AI
systems. Second, AIA seeks to strengthen AI innovation by providing legal sta-
bility and instilling public trust in the technology. Many voices have been raised
about the proposed legislation, in which especially the broad definition of AI
has been criticized. However, all signs point to increased regulation of AI in the
EU, in line with the now established General Data Protection Regulation [37] –
including substantial fines defined in relation to annual global turnover.

ML is an increasingly important AI technology in the digitalization of society
that receives substantial attention in the AIA. According to the proposal, any
providers of high-risk solutions using ML must demonstrate AIA conformance to
an independent national authority prior to deployment on the EU internal mar-
ket. Demonstrating this compliance will be very costly – and how to effectively
(and efficiently!) do it remains an important open research question.

We are currently exploring the topic of built-in trustworthiness through a
metaphor of reinforced engineering: buttresses and rebars. Our fundamental posi-
tion is that organizations must tackle quality assurance from two directions.
Requirements engineering and verification & validation shall work together like
two bookends supporting the AI system, including its development and opera-
tions, from either end. Figure 1 illustrates how the primary reinforcement origi-
nates in buttressing the development of the AI system with requirements engi-
neering (to the left) and verification & validation (to the right). The metaphor,
inspired by construction engineering, further borrows the concept of rebars, i.e.,
internal structures to strengthen and aid the AI system. In our metaphor, the
rebars are realized in the form of so-called automation pipelines for data, train-
ing, and deployment, respectively. Pipeline automation allows continuous engi-
neering throughout the lifecycle, i.e., data management, training, deployment,
and monitoring in an MLOps context. Pipeline automation enables flexibly
adding automated quality assurance approaches as pipe segments, e.g., Grad-
CAM heatmaps for explainability [38], originating in the requirements engineer-
ing and verification & validation buttresses. The envisioned reinforcement allows
organizations to continuously steer the development and operations toward a
trustworthy AI system—in the context of highly agile data science, the CACE
principle, and the ever-present risks of distributional shifts.

Numerous studies report that requirements engineering is the foundation
of high-quality software systems. However, the academic community has only
recently fully embraced the idea of tailored requirements engineering for AI

12 M. Borg

Fig. 1. Metaphorical buttresses and rebars. Robust requirements engineering and ver-
ification & validation support the engineering of an ever-changing AI system. Pipeline
automation in an MLOps context constitutes the rebars that sustain trustworthiness
by strengthening the AI system despite the dynamics involved.

systems. We argue that the particular characteristics of ML development in
data science necessitate an evolution of requirements engineering processes and
practices [10]. New methods are needed when development transitions to the
generation of rules based on training data and specific fitness functions. Based
on a 2020 Dagstuhl seminar, Kästner stressed requirements engineering as a
particular ML challenge, Google researchers express it as underspecification [39],
and several papers have been recently published by the requirements engineering
research community [40–42].

Academic research on verification & validation tailored for AI systems has
received a head start compared to requirements engineering for AI. New papers
continuously appear, and secondary studies on AI testing [43,44] and AI ver-
ification [45] reveal hundreds of publications. As automation is close at hand
for verification & validation solutions, the primary purpose of the pipelines in
the metaphor is to stress that they shall reach all the way to the requirements
engineering buttress. Aligning requirements engineering with verification & val-
idation can have numerous benefits in software engineering [46] – and even more
so, we argue, in AI engineering. Our planned next steps include exploring AIA
conformant high-risk computer vision systems with industry partners reinforced
by buttresses and rebars. Our ambition is to combine automated verification
& validation with an integrated requirements engineering approach [47] in the
continuous engineering of MLOps. Finally, we are considering introducing yet
another metaphor from construction engineering, i.e., virtual plumblines as pro-
posed by Cleland-Huang et al. to maintain critical system quantities [48]. We
posit that reinforcement and alignment will be two key essential concepts in
future AI engineering, supported by a high level of automation to allow agile
development of Software 2.0.

Agility in Software 2.0 13

4 Conclusion

Whether we endorse the term Software 2.0 or not, AI engineering inevitably
brings novel challenges. The experimental nature of how data scientists perform
ML development means that the work must be agile. However, this agility can
be supported in various ways. In this keynote address, we discussed two con-
temporary phenomena in data science and ML. First, we presented notebook
interfaces, weaknesses, and a solution proposal to lower the bar for them to co-
exist with modern IDEs. Second, we shared our perspective on MLOps and our
ongoing work on providing reinforced engineering of AI systems in this context.
Agility and continuous engineering are needed in AI engineering, as AI systems
are ever-changing and often operate in dynamic environments. Finally, the EU
AI Act further exacerbates the need for reinforced engineering and alignment
between requirements engineering and verification & validation. As a guiding
light toward this goal, we introduced our vision of metaphorical buttresses and
rebars.

Acknowledgements. Martin Jakobsson and Johan Henriksson are the co-creators of
the solution presented in Sect. 2 and deserve all credit for this work. Our thanks go to
Backtick Technologies for hosting the MSc thesis project and Dr. Niklas Fors, Dept. of
Computer Science, Lund University for acting as the examiner. This initiative received
financial support through the AIQ Meta-Testbed project funded by Kompetensfonden
at Campus Helsingborg, Lund University, Sweden and two internal RISE initiatives,
i.e., “SODA - Software & Data Intensive Applications” and “MLOps by RISE.”

References

1. Giray, G.: A software engineering perspective on engineering machine learning
systems: state of the art and challenges. J. Syst. Softw. 180, 111031 (2021)

2. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Softw. 33(3),
94–100 (2016)

3. Diebold, P., Theobald, S.: How is agile development currently being used in regu-
lated embedded domains? J. Softw. Evol. Process 30(8), e1935 (2018)

4. Hanssen, G.K., St̊alhane, T., Myklebust, T.: SafeScrum R©-Agile Development of
Safety-Critical Software. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-99334-8

5. Kim, M., Zimmermann, T., DeLine, R., Begel, A.: The emerging role of data
scientists on software development teams. In: Proceedings of the 38th International
Conference on Software Engineering, pp. 96–107 (2016)

6. Sletholt, M.T., Hannay, J.E., Pfahl, D., Langtangen, H.P.: What do we know about
scientific software development’s agile practices? Comput. Sci. Eng. 14(2), 24–37
(2011)

7. Sculley, D., et al.: Hidden technical debt in machine learning systems. In: Pro-
ceedings of the 28th International Conference on Neural Information Processing
Systems, pp. 2503–2511 (2015)

8. Amershi, S., et al.: Software engineering for machine learning: a case study. In:
Proceedings of the 41st International Conference on Software Engineering, pp.
291–300 (2019)

https://doi.org/10.1007/978-3-319-99334-8
https://doi.org/10.1007/978-3-319-99334-8

14 M. Borg

9. Wan, Z., Xia, X., Lo, D., Murphy, G.C.: How does machine learning change software
development practices? IEEE Trans. Software Eng. 47(9), 1857–1871 (2021)

10. Vogelsang, A., Borg, M.: Requirements engineering for machine learning: perspec-
tives from data scientists. In: Proceedings of the 27th International Requirements
Engineering Conference Workshops, pp. 245–251 (2019)

11. Chattopadhyay, S., Prasad, I., Henley, A.Z., Sarma, A., Barik, T.: What’s wrong
with computational notebooks? Pain points, needs, and design opportunities. In:
Human Factors in Computing Systems, pp. 1–12 (2020)

12. Jakobsson, M., Henriksson, J.: Sharing local files with Kubernetes clusters.
MSc thesis, Lund University (2021). http://lup.lub.lu.se/student-papers/record/
9066685/file/9066686.pdf

13. Knuth, D.E.: Literate programming. Comput. J. 27(2), 97–111 (1984)
14. Knuth, D.E.: Literate Programming. Center for the Study of Language and Infor-

mation, Stanford, US (1992)
15. Hannay, J.E., MacLeod, C., Singer, J., Langtangen, H.P., Pfahl, D., Wilson, G.:

How do scientists develop and use scientific software? In: Proceedings of the ICSE
Workshop on Software Engineering for Computational Science and Engineering,
pp. 1–8. IEEE (2009)

16. Vognstrup Fog, B., Nylandsted Klokmose, C.: Mapping the landscape of literate
computing. In: Proceedings of the 30th Annual Workshop of the Psychology of
Programming Interest Group (2019)

17. Kery, M.B., John, B.E., O’Flaherty, P., Horvath, A., Myers, B.A.: Towards effective
foraging by data scientists to find past analysis choices. In: Human Factors in
Computing Systems, pp. 1–13 (2019)

18. Kery, M.B., Myers, B.A.: Interactions for untangling messy history in a compu-
tational notebook. In: Proceedings of the IEEE Symposium on Visual Languages
and Human-Centric Computing, pp. 147–155 (2018)

19. Head, A., Hohman, F., Barik, T., Drucker, S.M., DeLine, R.: Managing messes
in computational notebooks. In: Human Factors in Computing Systems, pp. 1–12
(2019)

20. Singer, J.: Notes on notebooks: is Jupyter the bringer of jollity? In: Proceedings
of the ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, pp. 180–186 (2020)

21. Nielsen, J.: Usability Engineering. Morgan Kaufmann Publishers, Burlington
(1993)

22. Kuusela, H., Paul, P.: A comparison of concurrent and retrospective verbal protocol
analysis. Am. J. Psychol. 113(3), 387–404 (2000)

23. Bosch, J., Holmström Olsson, H., Crnkovic, I.: Engineering AI systems: a research
agenda. In: Artificial Intelligence Paradigms for Smart Cyber-Physical Systems,
pp. 1–19. IGI Global (2021)

24. Tapia, P., Palacios, E., Noël, L., et al.: Implementing Operational AI in telecom
environments. Tupl White Paper 7 (2018)

25. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda.
J. Syst. Softw. 123, 176–189 (2017)

26. Jabbari, R., Ali, N., Petersen, K., Tanveer, B.: Towards a benefits dependency
network for DevOps based on a systematic literature review. J. Softw. Evol. Process
30(11), e1957 (2018)

27. Treveil, M., et al.: Introducing MLOps. O’Reilly Media Inc., Sebastopol (2020)
28. Hummer, W., et al.: ModelOps: cloud-based lifecycle management for reliable and

trusted AI. In: Proceedings of the International Conference on Cloud Engineering,
pp. 113–120 (2019)

http://lup.lub.lu.se/student-papers/record/9066685/file/9066686.pdf
http://lup.lub.lu.se/student-papers/record/9066685/file/9066686.pdf

Agility in Software 2.0 15

29. Borg, M., et al.: Safely entering the deep: a review of verification and validation
for machine learning and a challenge elicitation in the automotive industry. J.
Automot. Softw. Eng. 1(1), 1–19 (2019)

30. Falcini, F., Lami, G., Costanza, A.M.: Deep learning in automotive software. IEEE
Softw. 34(3), 56–63 (2017)

31. Jiang, F., et al.: Artificial intelligence in healthcare: past, present and future. Stroke
Vasc. Neurol. 2(4), 230–243 (2017)

32. Vidot, G., Gabreau, C., Ober, I., Ober, I.: Certification of embedded systems based
on machine learning: a survey. arXiv preprint arXiv:2106.07221 (2021)

33. High-Level Expert Group on Artificial Intelligence: Ethics guidelines for trust-
worthy artificial intelligence. Technical report, European Commission, Brussels,
Belgium (2019)

34. Borg, M., Englund, C., Duran, B.: Traceability and deep learning-safety-critical
systems with traces ending in deep neural networks. In: Proceedings of the Grand
Challenges of Traceability: The Next Ten Years, pp. 48–49 (2017)

35. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining
explanations: an overview of interpretability of machine learning. In: Proceedings
of the 5th International Conference on Data Science and Advanced Analytics, pp.
80–89 (2018)

36. European Commission: Proposal for a Regulation of the European Parliament
and of the Council laying down harmonised rules on artificial intelligence (Artifi-
cial Intelligence Act) and amending certain union legislative acts, 21 April 2021.
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX

37. European Commission: Regulation (EU) 2016/679 of the European Parliament and
of the Council on the protection of natural persons with regard to the processing
of personal data and on the free movement of such data, and repealing Directive
95/46/ec (General Data Protection Regulation). Off. J. Eur. Union 119, 1–88
(2016)

38. Borg, M., Jabangwe, R., Åberg, S., Ekblom, A., Hedlund, L., Lidfeldt, A.: Test
automation with Grad-CAM heatmaps - a future pipe segment in MLOps for vision
AI? In: Proceedings of the 14th International Conference on Software Testing,
Verification and Validation Workshops, pp. 175–181 (2021)

39. D’Amour, A., et al.: Underspecification presents challenges for credibility in mod-
ern machine learning. arXiv preprint arXiv:2011.03395 (2020)

40. Ahmad, K., Bano, M., Abdelrazek, M., Arora, C., Grundy, J.: What’s up with
requirements engineering for artificial intelligence systems? In: Proceedings of the
29th International Requirements Engineering Conference, pp. 1–12 (2021)

41. Habibullah, K.M., Horkoff, J.: Non-functional requirements for machine learning:
understanding current use and challenges in industry. In: Proceedings of the 29th
International Requirements Engineering Conference, pp. 13–23 (2021)

42. Siebert, J., et al.: Construction of a quality model for machine learning systems.
Softw. Qual. J., 1–29 (2021)

43. Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine learning testing: survey, land-
scapes and horizons. IEEE Trans. Softw. Eng. (2020)

44. Riccio, V., Jahangirova, G., Stocco, A., Humbatova, N., Weiss, M., Tonella, P.:
Testing machine learning based systems: a systematic mapping. Empir. Softw.
Eng. 25(6), 5193–5254 (2020)

45. Xiang, W., et al.: Verification for machine learning, autonomy, and neural networks
survey. arXiv preprint arXiv:1810.01989 (2018)

http://arxiv.org/abs/2106.07221
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX
http://arxiv.org/abs/2011.03395
http://arxiv.org/abs/1810.01989

16 M. Borg

46. Bjarnason, E., et al.: Challenges and practices in aligning requirements with veri-
fication and validation: a case study of six companies. Empir. Softw. Eng. 19(6),
1809–1855 (2014)

47. Bjarnason, E.: Integrated Requirements Engineering - Understanding and Bridging
Gaps in Software Development. Lund University, Sweden (2013). https://lucris.lub.
lu.se/ws/portalfiles/portal/3427902/4117182.pdf

48. Cleland-Huang, J., Marrero, W., Berenbach, B.: Goal-centric traceability: using
virtual plumblines to maintain critical systemic qualities. IEEE Trans. Software
Eng. 34(5), 685–699 (2008)

https://lucris.lub.lu.se/ws/portalfiles/portal/3427902/4117182.pdf
https://lucris.lub.lu.se/ws/portalfiles/portal/3427902/4117182.pdf

Full Papers

The Integrated List of Agile Practices - A
Tertiary Study

Michael Neumann(B)

Hochschule Hannover, Ricklinger Stadtweg 120, 30459 Hannover, Germany
michael.neumann@hs-hannover.de

Abstract. Context: Companies adapt agile methods, practices or arti-
facts for their use in practice since more than two decades. This adap-
tions result in a wide variety of described agile practices. For instance,
the Agile Alliance lists 75 different practices in its Agile Glossary. This
situation may lead to misunderstandings, as agile practices with simi-
lar names can be interpreted and used differently. Objective: This paper
synthesize an integrated list of agile practices, both from primary and
secondary sources. Method: We performed a tertiary study to identify
existing overviews and lists of agile practices in the literature. We iden-
tified 876 studies, of which 37 were included. Results: The results of our
paper show that certain agile practices are listed and used more often in
existing studies. Our integrated list of agile practices comprises 38 entries
structured in five categories. Conclusion: The high number of agile prac-
tices and thus, the wide variety increased steadily over the past decades
due to the adaption of agile methods. Based on our findings, we present
a comprehensive overview of agile practices. The research community
benefits from our integrated list of agile practices as a potential basis
for future research. Also, practitioners benefit from our findings, as the
structured overview of agile practices provides the opportunity to select
or adapt practices for their specific needs.

Keywords: Agile practices · Agile methods · Agile software
development · Tertiary study

1 Introduction

The use of agile methods in software development has grown steadily over the
past two decades [51]. More and more companies, regardless of their size or
industrial sector, are using agile approaches. As a consequence, agile approaches
are used in diverse settings. It follows that the use of agile methods and practices
deviates from one another, which leads to several adaptions [38].

Various authors describe that agile methods such as Scrum or extreme pro-
gramming (XP) are usually not fully adapted and used in companies (e.g.,
[12,52]). This statement follows Ken Schwaber, co-author of the Scrum Guide
[45]. He assumed that 75% of all companies do not use Scrum as described in
the Scrum Guide, but in an adapted approach [43]. According to Abrahmsson
c© Springer Nature Switzerland AG 2022
A. Przyby�lek et al. (Eds.): LASD 2022, LNBIP 438, pp. 19–37, 2022.
https://doi.org/10.1007/978-3-030-94238-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94238-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-94238-0_2

20 M. Neumann

[1] the adaptation of agile methods and practices is often argued with the com-
plexity of the agile transition. Stray et al. point to organizational aspects when
introducing and adapting agile roles, artifacts, and practices [48]. This results
in a high number of agile practices with many variants used in practice and
described in literature. The Scrum and XP guidelines [8,45] describe 12 differ-
ent practices, each. Furthermore, the Agile Alliance lists 75 different practices
in its Agile Glossary [3]. Due to the combined use of agile practices of different
agile methods such as Scrum, and increasingly on Lean approaches like Kanban,
steadily new variants of agile practices are developed and used.

This situation leads to the challenge of getting an overview of the agile prac-
tices used in diverse settings. In the past, secondary studies such as systematic
mapping studies and systematic literature reviews were carried out in order to
ascertain the current state of research regarding agile practices in different con-
texts. These contexts include, for example, the affiliation of agile practices to
methods and processes [52], the use in different project-related contexts [12] or
in global software development [21,22]. Due to their different research contexts
and focus, the listed agile practices in these studies differ from one another.
However, we did not find an integrated list of agile practices, which aims to pro-
vide a comprehensive overview of well-known agile practices described in recent
literature and/or used in practice. This leads us to our two research questions:

RQ 1: Which agile practices are described and/or listed in the literature?
RQ 2: How can we synthesize the listed agile practices related to their
characteristics/purpose?

This paper is structured as follows: First, we describe the background and
related work of the study in Sect. 2. We explain the selected research approach
in Sect. 3. An overview of the agile practices found in the literature is given in
Sect. 4. We present our approach for synthesizing the extracted agile practices
from the literature and as the result our integrated list of agile practices in Sect. 5.
Before the paper closes with a conclusion in Sect. 7, we discuss the limitations
of our study in Sect. 6.

2 Background and Related Work

Today, agile methods are well-known approaches in software development [51].
The idea of iterative and incremental approaches goes back to the 1950s [32]. In
the past decades, agile methods are often understood as a reaction on plan-driven
approaches like the waterfall model. For instance, this is argued due to their aim
of fast time response on changes during the project period and their iterative
structure [52]. According to Abrahamsson [2] agile methods are incremental,
adaptable and cooperative approaches.

Another aspect concerning agile methods is the value-based work and the
strong focus on social aspects like collaboration and interaction. The agile man-
ifesto defines a set of four value-pairs and twelve principles [9]. In addition,
further values and principles are defined in guidelines for agile methods like the

The Integrated List of Agile Practices - A Tertiary Study 21

Scrum Guide for Scrum [45]. Also, other elements of agile methods like artifacts,
roles and practices are described in these guidelines. Agile methods like Scrum
or XP were created with the purpose to provide specific approaches for an agile
transition and usage in software development. We know from the literature [29]
and practice [51] that the adaption of agile practices (e.g., the combination of
several agile practices from different methods) is the normal case.

In order to find the related work of our study, we searched for surveys and
systematic mapping studies or literature reviews (SLR) dealing with agile prac-
tices and, if available, provide a list of agile practices.

Several authors deal with agile practices in different contexts. Diebold and
Dahlem present a systematic map of agile practices in practice [12]. The authors
focus on empirical studies dealing with the use of agile practice in software devel-
opment projects. Also they present an overall usage of agile practices in software
development projects. The used list of agile practices consists of 18 entries.

Jalali and Wohlin investigate the use of agile practices in the field of global
software engineering [21,22]. Their studies focus on the use of 26 different agile
practices in the several distribution types. Also, Camara et al. dealing with a
similar topic in their systematic literature review on agile global software devel-
opment [11]. They identified 48 different agile practices in use in that context.

The authors [11,12,21,22] also found, that agile practice were adapted and
thus, customized agile methods were applied. Other studies only addressed sub-
problems. For instance, Albuquerque et al. deal with agile requirements engineer-
ing [4]. The authors considered 14 different agile practices in their mapping study.
Sandstø and Reme-Ness investigating in their systematic literature review the
relation of agile practices and their impact on project success [44]. The authors
identified 12 agile practices and describe their impact on specific conditions for
project success, such as communication or motivation of the team members.

However, to the best of our knowledge we did not find any study aiming
to synthesize the variety of agile practices and provide an integrated overview
of agile practices. Thus, we decided to conduct a tertiary study, which takes
the findings from the recent literature into account. We present our research
approach in the next section.

3 Research Method

According to Petersen et al. [42] systematic mapping studies are used to ascer-
tain the current state of research in a field of interest in Software Engineering.
The motivation of this study is to provide an overview of agile practices used
and described in the literature and, based on this, to create a synthesized list of
agile practices. From our point of view, the approach of a systematic mapping
study is suitable for this purpose. Nonetheless, we have also used methods of the
SLR guidelines of Kitchenham and Charters for conducting systematic litera-
ture reviews [24]. This combined approach (for conducting systematic literature
reviews and systematic mapping studies) has already been chosen by several
authors in the past (e.g., [12,26]). To increase the traceability and transparency
of our systematic mapping study, this approach appears to be useful.

22 M. Neumann

As recommended by Kitchenham and Charters [24], we developed and used
a protocol to document our study. The protocol contains the relevant infor-
mation of the study including the research goal and questions, search strategy,
study selection procedure and data extraction. We describe our approach in the
following subsections based on the protocol.

3.1 Search Strategy

We selected Scopus for applying our literature search. We decided to use Scopus
as the library lists various publishers (such as SpringerLink, ACM, or Wiley).
Besides, other authors have used Scopus for conducting systematic literature
reviews and systematic mapping studies (e.g., [23,48]).

In a first step for developing the search string, we derived keywords and
grouped them based on our first research questions. Next, we connected the
keyword groups with a Boolean operator and defined specific keywords for the
related keyword group: <Agile practice> AND <Agile software development>

Using our initial search string, we carried out test runs in Scopus and Google
Scholar. During the test runs, we skimmed the results (title, keywords, abstract)
and optimized the search string based on the findings, for example, whether
keywords were missing. After several iterations, we defined our final search string,
which we used for the search in Scopus:
((“agile practice*”) AND (“agile” OR “agile software development” OR “agile
method” OR “agile methods” OR “agile methodologies” OR “agile methodology”
OR “lean software development”))

The final search run was performed in June 2021 with an activated year
range filter set to “since 2010”. We argue the choice of a selected time range
filter as our study aims to create an integrated list of agile practices based on the
recent literature, including the actual state of usage of agile practices. The result
set contained 876 potentially relevant studies. We used the Scopus interface to
export the meta data of the studies and imported them to our data extraction
file, which we created with Microsoft Excel.

3.2 Study Selection

In order to be able to perform the study selection it is recommended by Kitchen-
ham and Charters [24] to define inclusion and exclusion criteria. We defined three
inclusion and eight exclusion criteria (see Table 1). The inclusion criteria IC1 was
implicitly obtained by the activated search filter on year range setting when con-
ducting the search in Scopus. Besides the structural exclusion criteria EC1 to
EC4, we defined five content related exclusion criteria (EC5 to EC9).

We used the structural exclusion criteria EC1 to EC4 for an initial selection
of the primary studies. During this check we excluded nine studies: Five, because
of gray literature (EC1) and four, because the studies were not written in English
(EC3).

The Integrated List of Agile Practices - A Tertiary Study 23

Table 1. Study selection criteria

Category Criterion

Inclusion IC1: Studies published between 2010 and 2021

IC2: Studies written in English

IC3: Studies published in the field of agile software development

Exclusion EC1: Gray literature (e.g., technical or experience reports)

EC2: Contributions with less than three pages

EC3: Studies not written in English

EC4: Studies not peer-reviewed

EC5: Studies not dealing with a list of specific agile practices

EC6: Studies focus on educational contexts (e.g., agile methods in
higher educational)

EC7: Studies dealing with agile methods without a connection to
software development

EC8: Studies dealing with software development and related topics
without a connection on agile software development and agile practices
in particular

Based on the result set of 867 studies we performed a four stage study selec-
tion procedure1 (see Fig. 1). In the first step, we screened title and keywords
of the respective study and excluded 525 studies. While reading the abstract in
the second step, we excluded 144 studies. In the third step, reading the intro-
duction and conclusion, we excluded 55 studies. During the fourth step, reading
the whole content of the paper, we excluded 106 studies. The high number of
removed studies in this step are due to the fact that any borderline cases left in
the previous steps. The final result set contains 37 studies, which we used for
data extraction.

Most of the studies (757) were excluded because they are not dealing with
a list of specific agile practices (EC5). Also, we excluded 49 studies, because
they are focusing on educational contexts (EC6). For instance, the adaption
of agile methods in higher education. Further 16 studies were excluded due to
their missing connection to software development (EC7). Five studies were not
dealing with agile methods in software development (EC8). Only three studies
were duplicates.

1 The protocol of our selection procedure is available at: https://sync.academiccloud.
de/index.php/s/1nNipuDD655EJKF.

https://sync.academiccloud.de/index.php/s/1nNipuDD655EJKF
https://sync.academiccloud.de/index.php/s/1nNipuDD655EJKF

24 M. Neumann

Fig. 1. Results of the study selection process

3.3 Data Extraction

We read each paper of our result set of 37 studies completely in order to be able
to extract the relevant information from the studies. We documented the data
extraction in a Microsoft Excel file. The file contains general information like
author/s or title of the study and specific data such as the research focus and
method or the agile practices described in the study (see Table 2).

Table 2. Structure of the data extraction sheet

Attribute Information

Author General information

Title General information

Year General information

DOI General information

Document type Conference paper or journal article

Research focus Is the study focusing on practical aspects (like projects) or theoretical
contributions (like descriptive models)

Research method The research approach used in the paper (e.g., quantitative survey,
case study, ...)

Agile practices The list of the agile practices described, named or used in the study

The Integrated List of Agile Practices - A Tertiary Study 25

The general information (author/s, title, year, DOI and document type) were
extracted automatically based on the Scopus export file. The author checked the
content of each attribute manually. In some cases the document type used to be
corrected manually. The specific data (research focus, method and agile prac-
tices) were extracted manually for each paper. We extracted the agile practices
in the form of lists, because in all studies several agile practices were named or
used.

4 Results of the Literature Review

4.1 Overview of the Studies

Before we discuss the results of the study and answer the research questions in
the following subsection and Sect. 5, we give a structural overview of the studies.

The document type information had to be adjusted manually for the respec-
tive studies, as Scopus does not export this information correctly in some cases.
The studies are published as conference papers (27) and articles in journals (12).
Figure 2 visualizes the distribution of the number of studies per year of publi-
cation. While only eight studies on this topic were published in the first five
years of observation from 2010 to 2015, 29 studies have been published since
2016. Of these 29 studies, 24 studies have also been published since 2018, with
only the first six months of 2021 being considered. Although a decrease can be
determined in 2020 with only four publications, we have noticed an increased
interest in the topic of agile practices.

There are several research methods used in the included studies. Eight studies
use secondary research methods like systematic literature reviews (5) and sys-
tematic maps (3). The majority of the reported studies result from surveys (15).
Also mixed approaches (8) and case studies (6) are often used by the authors.

Fig. 2. Overview of the studies per publication year

26 M. Neumann

4.2 The Current State of Agile Practices

Based on the discussion in this subsection we answer our first research question,
RQ 1: Which agile practices are described and/or listed in the literature?

First and foremost, our extracted data show a high variety and number of
agile practices in use. In total, the 37 studies list 944 agile practices. The count of
listed agile practices in the included studies range from 4 [41] to 93 agile practices
[6]. Almost half of the studies (17) list between 20 and 40 agile practices (see
Fig. 3).

The agile practices listed in the studies are related to several characteristics.
For example, various practices with a technical characteristic are used (such
as refactoring or continuous integration). Also we found agile practices with an
organizational characteristic like the office structure or energized work. However,
it is not surprising that we found also collaborative focused practices such as
daily stand up, planning, review or retrospective meetings. Interestingly, several
studies describe/use/list these agile practices related to agile methods, especially
Scrum and XP.

The high variety of agile practices used in the literature is related to the
research method and focus of the respective studies. The majority of the studies
point to practical phenomena under study. Only one paper describes an overview
of agile practices and methods [52]. We also analyzed the research focus. Here
we found, that most of the studies (30) dealing with the usage of agile practices.
Four studies each deal with the topics of adapting and adopting agile practices.

Fig. 3. Count of listed agile practices per study

The Integrated List of Agile Practices - A Tertiary Study 27

Although we identified a high variety of agile practices, we found several
redundancies (same agile practice listed at least two times in different studies)
of the listed agile practices in the included studies. Also, we identified that similar
agile practices are listed, described or used under different names. Our handling
with the redundancies in order to create a synthesized list of agile practices is
described in the next Sect. 5.

5 The Integrated List of Agile Practices

5.1 Synthesizing Agile Practices

We answering our second research question in this subsection: RQ 2: How can
we synthesize the listed agile practices related to their characteristics/purpose?

We used the extracted data from the 37 studies as the basis for the procedure
of synthesizing the lists of agile practices. For the synthesis, we created a new
Microsoft Excel sheet and listed the agile practices of the 37 studies per column.
We have also transferred the extracted information from the respective studies
such as the title, author/s and year to the new Microsoft Excel sheet to ensure
that the relevant information from the respective study to the list of agile practice
is documented2. As mentioned in Sect. 4, we identified various redundancies and
found that the level of detail of the listed practices is different. This situation
leads us to the following procedure:

First Step: Identify and Remove the Redundancies. We removed any agile prac-
tice redundancies, we could find. An agile practice was marked as redundant
when it is listed in at least two different studies. We also removed agile practices,
if they did differ in name, but had essentially the same meaning. An example
for this is the Daily meeting, which is named and described as Standup Meeting
[21,22,52], Daily discussion [12] and Stand Up [30]. Based on our findings we
identified that the practices in some studies are on a more detailed level (e.g.
according to Arcos-Medina [6]). The list of agile practices without any redun-
dancies is the basis for the following steps.

Second Step: Synthesize Agile Practices on an Abstract Level. We screened the
result list from step one in order to analyze the differences concerning the level
of detail of the agile practices. We found, that the level of detail of the listed
agile practices is heterogeneous. As a result, we identified that the majority of
agile practices is from a more detailed level. Thus, we decided to cluster the agile
practices possible to a more abstract. The decision to cluster agile practices on an
abstract level of detail was made, when we identified specific practices with the
same purpose. Also, we mapped agile techniques (such as estimation techniques)

2 The protocol of our synthesizing procedure is available at: https://sync.
academiccloud.de/index.php/s/0YpKzzP56QBgmxU.

https://sync.academiccloud.de/index.php/s/0YpKzzP56QBgmxU
https://sync.academiccloud.de/index.php/s/0YpKzzP56QBgmxU

28 M. Neumann

to the agile practice on a more abstract level. This led to a more homogeneous
level of detail across all agile practices on our list and provides clarity.

For instance, we mapped testing practices from a more detailed level
described in various studies (e.g., Test driven development, acceptance tests,
automated testing or unit testing from Jalai and Wohlin [22]) to the agile prac-
tice Agile Testing in our list. We give another example with the agile practice
Planning Game. Here, we mapped specific estimation techniques such as Plan-
ning Poker (e.g., from Williams [52]) and practices listed as Planning Game
(e.g., from Caires [10]).

Figure 4 shows the number of the mapped (redundant, similar in terms of
different names or level of detail) practices per synthesized agile practices in all
included studies.

The most mappings were conducted related to the agile practices Agile Test-
ing, Tracking progress and Continuous integration and builds. We identified more
than 50 redundant or similar listed practices of these three agile practices, each.
The high count of mapped practices to the synthesized agile practice Agile Test-
ing is due to the several testing practices (e.g., Acceptance Test, Test Driven
Development and Unit Testing), methods and approaches listed in the included
studies.

Third Step: Managing Borderline Cases. We identified borderline cases during
the step-by-step check of the redundancies (see step one) and the synthesizing on
an abstract level (see step two). Some studies have listed practices that we did
not classify as agile practices. For instance, Küpper et al. [31] list roles of agile
methods such as Scrum Master or Product Owner. Also, agile methods such as
SAFe [28] or Kanban [27] are listed in several studies. In addition, methods and
practices such as coaching [11] are described in the studies, which have non-
related characteristics. We have marked these practices as borderline cases and
checked them individually in this third step. During this check, we identified and
documented a mapping to a few practices in our list (e.g., co-located team). In
most cases, however, we have not added the borderline cases to our list of agile
practices and not assigned them to practices that have already been listed.

5.2 Introducing the Integrated List of Agile Practices

Before we introduce the integrated list of agile practices, we describe its structure
and explain how we categorized the synthesized agile practices.

As explained in Sects. 2 and 4, the characteristics and purposes of agile prac-
tices differ from one another. In order to increase the clarity of our list of agile
practices, we decided to categorize the agile practices. The categorization is
based on the characteristics of the respective agile practices. In order to identify
possible categories, we analyzed our list of agile practices entry per entry. We
verified the agile practices characteristics mainly based on the guidelines from

The Integrated List of Agile Practices - A Tertiary Study 29

Fig. 4. Overview of the total count of mapped agile practice per synthesized practice

the well-known approaches Scrum [45] and XP [8]. Also, we used the glossary
of agile practices from the Agile Alliance [3]. However, some agile practices may
relate to more than one category. This lay in the specific implementation of the
respective agile practice. For example, a definition of done relates to a require-
ments characteristic, but also may be associated with a collaborative aspect as
it is usually defined by the team. In order to follow our purpose to provide
an integrate list of agile practices, we set the main characteristic described in
the literature in focus. To minimize the risk of bias, we decided to conduct the
categorization in three iterations. The first iteration of the categorization was
conducted by the first author. In the second iteration two other researchers from
the group did the categorization by themselves. In the following, we compared
our results and discussed the very few mismatches we identified. In the final
third iteration, we went through our categorization with four experts from the
agile community and discussed the categorization for each agile practice. Below,
we describe the five categories and provide examples. The distribution of the
listed agile practices to the categories is presented in Fig. 5.

30 M. Neumann

Fig. 5. Distribution of clustered agile practices per category

As agile methods focusing on social facets like communication, it is not sur-
prising, that we found several agile practices related to the characteristic of
collaboration. In this category we assigned all agile practices concerning this
characteristic. For example, agile practices within the team is collaborate closely
together like in retrospective meetings. Furthermore, we found agile practices,
which supports the collaboration. An example for this is the co-located team
practice. In total, we added eleven agile practices to this category.

We also found several agile practices with technical characteristics in our
list. As technical associated agile practices are described for XP [8], we assumed
to find those in the literature. Examples for agile practices mapped to this cate-
gory are coding standards, continuous integration and collective code ownership.
Totally, 12 agile practices were mapped to the technical category.

Some agile practices concerning to an organizational characteristic. In this
category, we clustered team-oriented agile practices like self-organization as well
as other types of practices such as the office structure. Five agile practices are
added to this category.

Another facet of characteristics is related to a more processual background.
This characteristic comes with agile practices as iteration based process. We
added three practices this category.

Finally, we created the requirements category. In this category, we clustered
all agile practices, which are related to any kind of requirements facets. These are,
for example, using and maintaining a backlog as well as more detailed practices like
the definition of ready or user stories. We added six agile practices to this category.

The result of the synthesizing and categorizing process is the integrated list of
agile practices. The list comprises 38 agile practices structured in five categories.
We present the integrated list of agile practices in Table 3.

The Integrated List of Agile Practices - A Tertiary Study 31

Table 3. The integrated list of agile practices

Category Agile practice (References)

Technical Agile testing [6,7,10–12,16,18–22,25,27,28,30,31,33,35–41,46,47,49,50,52,53]

Code review [6,11,28,31,38,49]

Coding standards [6,7,10,11,19–22,27,28,30,31,33–39,46,49,50]

Collective code ownership [6,7,10,11,16,20,25,27,28,30,34–40,46,47,49,52]

Continuous integration

[6,7,10–13,16–22,25,27,28,30,31,33–40,44,46,47,49,50,52,53]

DevOps [28]

Prototyping and spike solutions [4,28,31,35,36,38,46,47,49,53]

Refactoring [6,7,10–12,16,19–22,25,27,30,31,33–39,41,46,47,49,50,52,53]

Simple design [6,7,10,11,19,20,25,31,34–36,39,46,47,50]

Small and frequent releases

[6,7,11,12,14–17,19,25,27,30,35–37,40,44,46,47,50,52,53]

Software configuration management [6,25,30,36,47]

Zero technical depts [6]

Collaboration Agile estimation [4,11,13,15,16,19,20,25,28,33–38,47,49]

Customer integration

[6,10–12,18,20–22,27,28,30,31,34–36,38,39,44,46,49,50,53]

Co-located team [31]

Communication [4,6,11,12,22,30,35,36,39,50,53]

Daily standup meetings

[6,7,10–22,25,27,28,30,31,34–39,41,44,46,47,49,50,52,53]

Pair programming

[6,7,10,11,16,19–22,25,27,28,30,31,33–35,37–40,44,46,47,49,50,52,53]

Planning game [7,10,11,21,22,25,30,37,39,46,52]

Release planning [38,49,53]

Retrospective/Learning loop

[4,6,7,10–22,25,27,28,30,31,33–40,44,46,49,50,52]

Review meeting [4,6,10–14,16,17,19–22,30,31,33,36–38,46,49,50,52]

Scrum of scrums [11,13,16,20,25,38,49]

Process Iteration based process

[6,10,11,13,15,18–22,25,28,30,31,34–37,39,40,44,46,47,50,52,53]

Limit WIP [19,38,49]

Tracking progress

[6,7,11–13,15–17,19–22,25,27,28,30,31,34–39,44,46,47,49,50,52]

Requirements Behaviour driven development [16,25,27,33,37,47]

Definition of done [14,15,19,25,31,36,38,49]

Definition of ready [6,25,28,31,36,49]

Documentation [11,13,17,19,21,30,31,36,38,44,47,49,53]

Metaphor/Vision [6,11,12,17,19,20,22,30,31,39,46,50]

User stories [6,11,13,19–22,25,27,30,31,36,38,46,47,49,52,53]

Using and maintaining a backlog

[4,6,7,10–12,14–17,19–22,25,31,34–38,44,46,47,49,50,52,53]

Organizational Empowered and self-organizing team

[6,11,12,17,19,25,30,31,37,39,40,44,46,47,52,53]

Energized work [6,10,11,19,20,25,30,31,34,36,46,47,50,52,53]

Knowledge sharing [12,30]

Office structure [10,21,25,27,30,34,36,37,46,47,50,52]

Time boxing [6,12,36,39,47]

32 M. Neumann

6 Limitations

Although we performed our study based on the guidelines by Petersen [42] and
according to Kitchenham and Charters [24], some limitations apply. A major
challenge in systematic literature research is ensuring the completeness of the
result set. To minimize the risk of omitting potentially relevant studies, we per-
formed our test search runs in Scopus and Google Scholar. The search results
showed high redundancies. Furthermore, several studies has proven the oppor-
tunity to work with Scopus as a single database for secondary studies (e.g.,
[5,23,48]). However, there is a possibility that we did not find all relevant stud-
ies due to the search being carried out in one database.

In addition, a limitation occurs due to the limited quality assurance of other
researchers. The first author carried out the literature research, selection and
data extraction by himself without systematic and iterative quality assurance
measures by a second author. Therefore the potential risk arises that possible
errors have been made while performing the literature search, e.g., optimizing
the search string or selecting the studies due to bias. Similar limitations exist
concerning the synthesizing procedure of the agile practices while creating the
synthesized list of agile practices. We minimized these risks by performing cross-
checks of our results by experts from the agile community and researchers from
another research group.

Another limitation relates to the selection of studies. We have defined various
inclusion criteria, which have implicitly limited the result set. This concerns, for
example, the limitation relating to the publication year. We have only consid-
ered results that were published since 2010. Even if our study shows that high
redundancies in the naming of agile practices were already identified in the 37
included studies, it is conceivable that potentially relevant studies have already
been published before. Furthermore, we have defined various exclusion criteria
in order to be able to carry out and document the selection systematically and
comprehensibly. It is also conceivable that we have excluded studies (e.g., due
to non-English language) that are potentially relevant to the exclusion criteria.

7 Conclusion and Future Work

This tertiary study was conducted with the purpose to create an integrated list
of agile practices based on the literature to provide a comprehensive overview
of agile practices. We analyzed 37 primary and secondary studies on detail in
order to get an understanding of which agile practices are listed and/or used
in the current state of research. We identified a high variety of agile practices
related to the level of detail, which concerns due to the specific context of the
respective studies. Furthermore, we found that various agile practices are listed
redundantly in the included papers.

In order to provide an integrated list of agile practices we decided to synthe-
size the agile practices extracted from the studies of our result set. The synthesize
process consists of three steps. First, we removed the redundancies of the listed

The Integrated List of Agile Practices - A Tertiary Study 33

agile practices. The result of this first step was the basis for the upcoming pro-
cedure. Second, we analyzed the level of detail of the listed agile practices. We
found that several agile practices are of a high level of detail while others are
more abstract. To increase the clarity and simplicity we decided to cluster the
agile practices to a more abstract level of detail wherever possible. Finally, we
managed the borderline cases in the third step of our synthesizing procedure.

After the synthesizing of the agile practices we structured our list of agile
practices. The basis structure are five categories, which we identified by analyzing
the 38 agile practices on detail. We implemented quality assurance measures for
the categorization of the agile practices with the support of other researchers
and practitioners from the agile community. The result of the two approaches is
the integrated list of agile practices, which consists of 38 entries.

The findings of our study contributes to both, the research and practitioners
community. For other researchers the integrated list of agile practices provides
a comprehensive overview of agile practices used based on recent findings pre-
sented in the literature. The list of agile practices also contribute to a better
understanding of the high variety of agile practices in practice, as almost of
the included studies focus on practical phenomena under study. Thus, other
researchers, which are dealing with agile practices may compare their findings
with our integrated list of agile practices.

We will use the integrated list of agile practices as a basis for our future
work. In the next step, we aim to create a documentation of each agile practice.
This documentation will provide more detailed information of the specific agile
practices related to the purpose, their specific relation to agile method/s, a
description and conceivable constraints. We also want to analyze to what extent
the agile practices are related to one another to identify useful combinations of
agile practices or even constraints.

References

1. Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J.: New directions on agile
methods: a comparative analysis. In: ICSE 2003, pp. 244–254. Institute of Electrical
and Electronics Engineers, Los Alamitos (2003). https://doi.org/10.1109/ICSE.
2003.1201204

2. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development
methods: review and analysis (478), 7–94 (2002)

3. Agile Alliance: Agile glossary and terminology (2015). https://www.agilealliance.
org/agile101/agile-glossary/

4. Albuquerque, D., et al.: Defining agile requirements change management: a map-
ping study. In: Proceedings of the ACM Symposium on Applied Computing, pp.
1421–1424 (2020). https://doi.org/10.1145/3341105.3374095

5. Alsaqaf, W., Daneva, M., Wieringa, R.: Quality requirements in large-scale dis-
tributed agile projects – a systematic literature review. In: Grünbacher, P., Perini,
A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp. 219–234. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-54045-0 17

https://doi.org/10.1109/ICSE.2003.1201204
https://doi.org/10.1109/ICSE.2003.1201204
https://www.agilealliance.org/agile101/agile-glossary/
https://www.agilealliance.org/agile101/agile-glossary/
https://doi.org/10.1145/3341105.3374095
https://doi.org/10.1007/978-3-319-54045-0_17

34 M. Neumann

6. Arcos-Medina, G., Mauricio, D.: Identifying factors influencing on agile practices
for software development. J. Inf. Organ. Sci. 44(1), 1–31 (2020). https://doi.org/
10.31341/jios.44.1.1

7. Bastarrica, M., Espinoza, G., Maŕın, J.: Implementing agile practices: the expe-
rience of TSoL. In: International Symposium on Empirical Software Engineering
and Measurement (2018). https://doi.org/10.1145/3239235.3268918

8. Beck, K.: Extreme Programming Explained: Embrace Change, 5th print edn.
Addison-Wesley, Boston (2000)

9. Beck, K., et al.: Agile manifesto (2019). https://agilemanifesto.org/
10. Caires, V., Rios, N., Holvitie, J., Leppänen, V., De Mendonça Neto, M., Sṕınola,

R.: Investigating the effects of agile practices and processes on technical debt-the
viewpoint of the Brazilian software industry. In: Proceedings of the International
Conference on Software Engineering and Knowledge Engineering, SEKE. vol. 2018-
July, pp. 506–511 (2018). https://doi.org/10.18293/SEKE2018-131

11. Camara, R., Alves, A., Monte, I., Marinho, M.: Agile global software development:
a systematic literature review. In: Proceedings of the 34th Brazilian Symposium on
Software Engineering, pp. 31–40 (2020). https://doi.org/10.1145/3422392.3422411

12. Diebold, P., Dahlem, M.: Agile practices in practice: a mapping study. In: Pro-
ceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering (2014). https://doi.org/10.1145/2601248.2601254

13. Diebold, P., Mayer, U.: On the usage and benefits of agile methods & practices:
a case study at Bosch chassis systems control. In: Proceedings of the 18th Inter-
national Conference on Agile Software Development, vol. 283, pp. 243–250 (2017).
https://doi.org/10.1007/978-3-319-57633-6 16

14. Diebold, P., Theobald, S., Wahl, J., Rausch, Y.: Stepwise transition to agile: from
three agile practices to Kanban adaptation. J. Softw. Evol. Process 31(5) (2019).
https://doi.org/10.1002/smr.2167

15. Diebold, P., Zehler, T., Richter, D.: How do agile practices support automotive
spice compliance? In: Proceedings of the 2017 International Conference on Software
and System Process, vol. Part F128767, pp. 80–84 (2017). https://doi.org/10.1145/
3084100.3084108

16. Diel, E., Bergmann, M., Marczak, S., Luciano, E.: What is agile, which practices are
used, and which skills are necessary according to Brazilian professionals: findings of
an initial survey. In: Proceedings of the 6th Brazilian Workshop on Agile Methods,
pp. 18–24 (2017). https://doi.org/10.1109/WBMA.2015.10

17. Gabriel, S., Niewoehner, N., Asmar, L., Kühn, A., Dumitrescu, R.: Integration of
agile practices in the product development process of intelligent technical systems.
In: Procedia CIRP, vol. 100, pp. 427–432 (2021). https://doi.org/10.1016/j.procir.
2021.05.099

18. Gren, L., Knauss, A., Stettina, C.: Non-technical individual skills are weakly con-
nected to the maturity of agile practices. Inf. Softw. Technol. 99, 11–20 (2018).
https://doi.org/10.1016/j.infsof.2018.02.006

19. Heredia, A., Garcia-Guzman, J., Amescua-Seco, A., Velasco-Diego, M.: Agile prac-
tices adapted to mass-market application development. J. Softw. Evol. Process
26(9), 818–828 (2014). https://doi.org/10.1002/smr.1671

20. Jain, R., Suman, U.: Effectiveness of agile practices in global software development.
Int. J. Grid Distrib. Comput. 9(10), 231–248 (2016). https://doi.org/10.14257/
ijgdc.2016.9.10.21

21. Jalali, S., Wohlin, C.: Global software engineering and agile practices: a systematic
review. J. Softw. Evol. Process 24(6), 643–659 (2012). https://doi.org/10.1002/
smr.561

https://doi.org/10.31341/jios.44.1.1
https://doi.org/10.31341/jios.44.1.1
https://doi.org/10.1145/3239235.3268918
https://agilemanifesto.org/
https://doi.org/10.18293/SEKE2018-131
https://doi.org/10.1145/3422392.3422411
https://doi.org/10.1145/2601248.2601254
https://doi.org/10.1007/978-3-319-57633-6_16
https://doi.org/10.1002/smr.2167
https://doi.org/10.1145/3084100.3084108
https://doi.org/10.1145/3084100.3084108
https://doi.org/10.1109/WBMA.2015.10
https://doi.org/10.1016/j.procir.2021.05.099
https://doi.org/10.1016/j.procir.2021.05.099
https://doi.org/10.1016/j.infsof.2018.02.006
https://doi.org/10.1002/smr.1671
https://doi.org/10.14257/ijgdc.2016.9.10.21
https://doi.org/10.14257/ijgdc.2016.9.10.21
https://doi.org/10.1002/smr.561
https://doi.org/10.1002/smr.561

The Integrated List of Agile Practices - A Tertiary Study 35

22. Jalali, S., Wohlin, C.: Agile practices in global software engineering: a systematic
map. In: 5th IEEE International Conference on Global Software Engineering, pp.
45–54. IEEE, Piscataway (2010). https://doi.org/10.1109/ICGSE.2010.14

23. Jarz ↪ebowicz, A., Weichbroth, P.: A systematic literature review on implementing
non-functional requirements in agile software development: issues and facilitating
practices. In: Przyby�lek, A., Miler, J., Poth, A., Riel, A. (eds.) LASD 2021. LNBIP,
vol. 408, pp. 91–110. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
67084-9 6

24. Kitchenham, B., Charters S.: Guidelines for performing systematic literature
reviews in software engineering (2007)

25. Klotins, E., et al.: Use of agile practices in start-up companies. E-Inform. Softw.
Eng. J. 15(1), 47–64 (2021). https://doi.org/10.37190/E-INF210104

26. Koskinen, M., Mikkonen, T., Abrahamsson, P.: Containers in software devel-
opment: a systematic mapping study. In: Franch, X., Männistö, T., Mart́ınez-
Fernández, S. (eds.) PROFES 2019. LNCS, vol. 11915, pp. 176–191. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-35333-9 13

27. Kropp, M., Meier, A., Biddle, R.: Agile practices, collaboration and experience.
In: Abrahamsson, P., Jedlitschka, A., Nguyen Duc, A., Felderer, M., Amasaki,
S., Mikkonen, T. (eds.) PROFES 2016. LNCS, vol. 10027, pp. 416–431. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-49094-6 28

28. Kuhrmann, M., et al.: Hybrid software development approaches in practice: a Euro-
pean perspective. IEEE Softw. 36(4), 20–31 (2019). https://doi.org/10.1109/MS.
2018.110161245

29. Kuhrmann, M., et al.: Hybrid software and system development in practice: water-
fall, scrum, and beyond. In: Bendraou, R., Raffo, D., LiGuo, H., Maggi, F.M. (eds.)
Proceedings of the 2017 International Conference on Software and System Process,
pp. 30–39. ACM, New York (2017). https://doi.org/10.1145/3084100.3084104

30. Kurapati, N., Manyam, V.S.C., Petersen, K.: Agile software development prac-
tice adoption survey. In: Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111, pp. 16–30.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30350-0 2

31. Küpper, S., Pfahl, D., Jürisoo, K., Diebold, P., Münch, J., Kuhrmann, M.: How has
SPI changed in times of agile development? Results from a multi-method study. J.
Softw. Evol. Process 31(11) (2019). https://doi.org/10.1002/smr.2182

32. Larman, C., Basili, V.R.: Iterative and incremental developments. A brief history.
Computer 36(6), 47–56 (2003). https://doi.org/10.1109/MC.2003.1204375

33. Lautert, T., Neto, A.G.S.S., Kozievitch, N.P.: A survey on agile practices and
challenges of a global software development team. In: Meirelles, P., Nelson, M.A.,
Rocha, C. (eds.) WBMA 2019. CCIS, vol. 1106, pp. 128–143. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-36701-5 11

34. Licorish, S., et al.: Adoption and suitability of software development methods and
practices. In: Proceedings of the 23rd Asia-Pacific Software Engineering Confer-
ence, vol. 0, pp. 369–372 (2016). https://doi.org/10.1109/APSEC.2016.062

35. Mamoghli, S., Cassivi, L.: Agile ERP implementation: the case of a SME. In: Pro-
ceedings of the 21st International Conference on Enterprise Information Systems,
vol. 2, pp. 188–196 (2019). https://doi.org/10.5220/0007700501880196

36. Myklebust, T., Lyngby, N., St̊alhane, T.: Agile practices when developing safety
systems. In: Proceedings of the 14th Probabilistic Safety Assessment and Manage-
ment Conference (2018)

https://doi.org/10.1109/ICGSE.2010.14
https://doi.org/10.1007/978-3-030-67084-9_6
https://doi.org/10.1007/978-3-030-67084-9_6
https://doi.org/10.37190/E-INF210104
https://doi.org/10.1007/978-3-030-35333-9_13
https://doi.org/10.1007/978-3-319-49094-6_28
https://doi.org/10.1109/MS.2018.110161245
https://doi.org/10.1109/MS.2018.110161245
https://doi.org/10.1145/3084100.3084104
https://doi.org/10.1007/978-3-642-30350-0_2
https://doi.org/10.1002/smr.2182
https://doi.org/10.1109/MC.2003.1204375
https://doi.org/10.1007/978-3-030-36701-5_11
https://doi.org/10.1109/APSEC.2016.062
https://doi.org/10.5220/0007700501880196

36 M. Neumann

37. Neto, F., De Oliveira Rodrigues, B., De Souza França, R., Ziviani, F., Parreiras, F.:
Impact of agile practices adoption on organizational learning: a survey in Brazil.
In: Proceedings of the 31st International Conference on Software Engineering and
Knowledge Engineering, vol. 2019-July, pp. 583–588 (2019). https://doi.org/10.
18293/SEKE2019-059

38. Noll, J., Beecham, S.: How agile is hybrid agile? An analysis of the HELENA
data. In: Franch, X., Männistö, T., Mart́ınez-Fernández, S. (eds.) PROFES 2019.
LNCS, vol. 11915, pp. 341–349. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-35333-9 25

39. Nurdiani, I., Börstler, J., Fricker, S., Petersen, K.: Usage, retention, and abandon-
ment of agile practices: a survey and interviews results. E-Inform. Softw. Eng. J.
13, 7–35 (2019). https://doi.org/10.5277/e-Inf190101

40. Paez, N., Fontdevila, D., Gainey, F., Oliveros, A.: Technical and organizational
agile practices: a Latin-American survey. In: Proceedings of the 19th International
Conference on Agile Software Development, vol. 314, pp. 146–159 (2018). https://
doi.org/10.1007/978-3-319-91602-6 10

41. Pantiuchina, J., Mondini, M., Khanna, D., Wang, X., Abrahamsson, P.: Are soft-
ware startups applying agile practices? The state of the practice from a large survey.
In: Proceedings of the 18th International Conference on Agile Software Develop-
ment, vol. 283, pp. 167–183 (2017). https://doi.org/10.1007/978-3-319-57633-6 11

42. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in
software engineering. In: 12th International Conference on Evaluation and Assess-
ment in Software Engineering, EASE 2008 (2008). https://doi.org/10.14236/ewic/
ease2008.8

43. Salo, O., Abrahamsson, P.: Agile methods in European embedded software devel-
opment organisations: a survey on the actual use and usefulness of extreme pro-
gramming and scrum. IET Softw. 2, 58–64 (2008)

44. Sandstø, R., Reme-Ness, C.: Agile practices and impacts on project success. J.
Eng. Proj. Prod. Manage. 11(3), 255–262 (2021). https://doi.org/10.2478/jeppm-
2021-0024

45. Schwaber, K., Sutherland, J.: The scrum guide (2020). https://www.scrumguides.
org/scrum-guide.html

46. Sletholt, M., Hannay, J., Pfahl, D., Benestad, H., Langtangen, H.: A literature
review of agile practices and their effects in scientific software development. In:
Proceedings of the 33rd International Conference on Software Engineering, pp.
1–9 (2011). https://doi.org/10.1145/1985782.1985784

47. Souza, R., Silva, F., Rocha, L., Machado, I.: Investigating agile practices in software
startups. In: Proceedings of the 33rd Brazilian Symposium on Software Engineer-
ing, pp. 317–321 (2019). https://doi.org/10.1145/3350768.3350786

48. Stray, V., Memon, B., Paruch, L.: A systematic literature review on agile coaching
and the role of the agile coach. In: Morisio, M., Torchiano, M., Jedlitschka, A. (eds.)
PROFES 2020. LNCS, vol. 12562, pp. 3–19. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-64148-1 1

49. Sánchez-Gordón, M., Colomo-Palacios, R., Sánchez, A., Sanchez-Gordon, S.: Inte-
grating approaches in software development: a case analysis in a small software
company. In: Yilmaz, M., Niemann, J., Clarke, P., Messnarz, R. (eds.) EuroSPI
2020. CCIS, vol. 1251, pp. 95–106. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56441-4 7

50. Tolfo, C., Wazlawick, R., Ferreira, M., Forcellini, F.: Agile practices and the pro-
motion of entrepreneurial skills in software development. J. Softw. Evol. Process
30(9) (2018). https://doi.org/10.1002/smr.1945

https://doi.org/10.18293/SEKE2019-059
https://doi.org/10.18293/SEKE2019-059
https://doi.org/10.1007/978-3-030-35333-9_25
https://doi.org/10.1007/978-3-030-35333-9_25
https://doi.org/10.5277/e-Inf190101
https://doi.org/10.1007/978-3-319-91602-6_10
https://doi.org/10.1007/978-3-319-91602-6_10
https://doi.org/10.1007/978-3-319-57633-6_11
https://doi.org/10.14236/ewic/ease2008.8
https://doi.org/10.14236/ewic/ease2008.8
https://doi.org/10.2478/jeppm-2021-0024
https://doi.org/10.2478/jeppm-2021-0024
https://www.scrumguides.org/scrum-guide.html
https://www.scrumguides.org/scrum-guide.html
https://doi.org/10.1145/1985782.1985784
https://doi.org/10.1145/3350768.3350786
https://doi.org/10.1007/978-3-030-64148-1_1
https://doi.org/10.1007/978-3-030-64148-1_1
https://doi.org/10.1007/978-3-030-56441-4_7
https://doi.org/10.1007/978-3-030-56441-4_7
https://doi.org/10.1002/smr.1945

The Integrated List of Agile Practices - A Tertiary Study 37

51. VersionOne, CollabNet: 15th annual state of agile survey report (2021). https://
www.stateofagile.com/

52. Williams, L.: Agile software development methodologies and practices. In:
Zelkowitz, M. (ed.) Advances in Computers, vol. 80, pp. 1–44. Academic Press,
London (2010). https://doi.org/10.1016/S0065-2458(10)80001-4

53. Yang, C., Liang, P., Avgeriou, P.: Integrating agile practices into architectural
assumption management: an industrial survey. In: Proceedings of the 23rd Eval-
uation and Assessment on Software Engineering Conference, pp. 156–165 (2019).
https://doi.org/10.1145/3319008.3319027

https://www.stateofagile.com/
https://www.stateofagile.com/
https://doi.org/10.1016/S0065-2458(10)80001-4
https://doi.org/10.1145/3319008.3319027

Agile Teams Working from Home During
the Covid-19 Pandemic: A Literature Review

on New Advantages and Challenges

Necmettin Ozkan1,2(B), Oya Erdil2, and Mehmet Şahin Gök2

1 Kuveyt Türk Participation Bank, Kocaeli, Turkey
necmettin.ozkan@kuveytturk.com.tr

2 Department of Business, Gebze Technical University, Kocaeli, Turkey
{erdil,sahingok}@gtu.edu.tr

Abstract. Whilst co-location is the common and preferred kind and key standard
for self-organizing agile teams, this option is not always possible for some orga-
nizations that have to lead to the distribution of teams and/or individuals in one
or another form, especially because of Sars-Cov-2 pandemic (Covid-19) today.
The pandemic has forced a shift to virtual working for many organizations, which
makes it necessary to investigate its possible effects on the self-organizing agile
teams. In this manner, this study aims to investigate emergent challenges and
advantages arising from working at home for self-organizing agile teams where
every team member works from home with the impact of the Covid-19 pandemic
by systemically reviewing the literature. Finally, all the findings, derived from the
literature, were discussed from coordination, collaboration and communication,
agile practices, agility, emotions and feelings, leadership, productivity, and quality
aspects. The results demonstrate that along with some specific challenges for the
agile teams during the pandemic, there are several advantages of working at home
for them.

Keywords: Agile · Scrum · Software development · Sars-Cov-2 pandemic ·
Covid-19 · Advantages · Disadvantages · Challenges ·WFH ·Working from
home

1 Introduction

Agile software development (ASD) has generated interest due to the increasing demands
from varying kinds of organizations [1]. It highlights the importance of a people-
oriented approach to software development [2]. Flourished by the proper people-
oriented approaches, well-functioning teams that are advised to work collocated are
acknowledged as a key success factor for ASD [3]. Co-location allows frequent in-
person contacts, builds trust quickly, simplifies problem solving, encourages instant
communication, and enables fast-paced decision-making [4].

From the standpoint of locational distances, whilst co-location is the common and
key standard for self-organizing agile teams [5, 6], this option is not always possible for

© Springer Nature Switzerland AG 2022
A. Przybyłek et al. (Eds.): LASD 2022, LNBIP 438, pp. 38–60, 2022.
https://doi.org/10.1007/978-3-030-94238-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94238-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-94238-0_3

Agile Teams Working from Home During the Covid-19 Pandemic 39

some organizations that have to lead to the distribution of teams and/or individuals in
one or another form. At this point, the distribution comes in three main veins: geograph-
ically distributed teams, dispersed individuals in a particular team, and hybrid teams
[6]. In hybrid teams, a part of team members works from office and the rest of them
from home. Mostly seen in the off-shoring and global software development forms, geo-
graphically distributed teams are common for many years [8]. While the teams are split
into different geographic locations, individuals in the sub-teams are usually co-located.
The geographically distributed software development is mainly in relation to the global
software development where software development projects are implemented with inter-
national cooperation [7]. The individually dispersed teams differently address the case
where each individual in the team is located in different places so each individual is
on his own [6]. While geographically distributed teams are fully distributed in multiple
geographic locations, times or organizations, in the case of individually dispersed indi-
viduals, a particular team’s individuals are distributed across multiple locations, such as
homes in the pandemic. Geographically distributed, hybrid and individually dispersed
teams differ in terms of challenges they have. Since the basic work unit in agile software
organizations is the team rather than the individual [36], preserving the nature of the
team from distance (e.g. homes) confronts us as a new challenge for the individually
dispersed teams.

The case of individually dispersed teams has become common nowadays for many
organizations, especially because of Sars-Cov-2 pandemic (Covid-19) and the shift to
virtual working from homes. This working model has brought several challenges and
complexity for agile teams [9] who have a heavy focus on in person interactions [10].
Moreover, Comella-Dorda et al. [12] claim that agile teams, earlier confirmed to be effec-
tive with remote working, can be inefficient when working fully remotely. Therefore, it
becomes necessary to investigate this new form’s possible effects on the self-organizing
agile teams to give them insights in particular for this pandemic period and in general for
the future. From this unique model of working, important lessons can be learned about
both software development and agile software development. While some challenges
related to co-located and distributed remote teams have been explored in prior literature,
the context of individually dispersed agile teams has a unique nature exhibiting new
challenges [7, 13] and little is known about challenges resulting from and experienced
by the self-organizing teams working from home [14].

In this manner, this study aims to investigate the emergent key concerns arising from
individually dispersed self-organizing agile teamsworking fromhomewithin the context
of Covid-19 pandemic by using Systematic Literature Review (SLR). In this regard, we
identified one of the Research Questions 1 (RQ1) as below. Apart from identifying the
challenges, it would be interesting whether working from home enhances some of agile
teams’ abilities. For this purpose, this aspect is looked at in the RQ2.

RQ1: What new challenges have agile team members working from home faced during
the pandemic?
RQ2: What kind of new advantages do agile team members working from home have
during the pandemic?

40 N. Ozkan et al.

The remaining of this paper is organized as follows: Sect. 2 summarizes the applied
research method in this study. Section 3 delivers related works. Section 4 presents the
results based on the applied method. Section 5 discusses the results and Sect. 6 states
the limitations of the study and directions for future works.

2 Research Method

The aim of this study is to review the status of current challenges and advantages for the
self-organizing agile teamsworking from home, in particular by concentrating on studies
providing any kind of comparisons between the pre- and pandemic era. This study has
been undertaken based on the SLR guideline proposed by Kitchenham et al. [15], with
some deviations from its original protocol. As one of the deviations, we did not purposely
apply any quality assessment to the papers identified since the topic is relatively new
and the literature naturally has a scarce of resources. In this case, publications with a
high-quality level and those with a relatively low level of quality were included and
evaluated together. We have decided on this way in order to make the scope as wide as
possible for this subject that has a lack of resources, at the expense of compromising the
quality of our study in terms of the included papers.

Having a lack of resources on this subject also shaped our selection of the libraries
to conduct the review. The initial searches were done in Scopus, IEEE, and ACMDigital
Library with the search strings elaborated below. Then, it is realized that the results
obtained from them are not sufficient to go further as seen in Table 1 at #4, 5 and 6
yielding 5, 0 and 0 related results respectively. One of the reasons for this may be that
the literature on this subject is not very extensive yet. Then, we considered including
Google Scholar that covers more resources such as master theses that can be helpful for
our study, but, not transformed into a peer-reviewed publication yet. Then, we decided
to use Google Scholar as the main library for further searches since it already indexes
well-known digital libraries and more and, thus, provides the most extensive source
for such a new topic. Even so, a cross-checking was conducted with the five results
from Scopus as it is another extensive source of academic papers to cross-check our
search results coverage in Google Scholar. It was seen that all results are covered by
Google Scholar searches. When it comes to the year range and publication types, all the
searches included the peer-reviewed and supervised resources for the years of 2020 and
afterwards.

In designing the search strings, we aimed to reach a comprehensive and also rea-
sonable list to investigate the result set by using not a single but multiple search string.
Regarding the structural body of the search strings, we identified and merged two sub-
strings representing the two parts in our scope. Our scope includes the keywords specific
to our target domain (software development) and those representing the pandemic side
of the strings.

To identify the appropriate and effective keywords for both sides of the strings, the
search process was operated iteratively. In the first iteration, to determine the appropriate
keywords, a preliminary searchwas conducted inGoogleScholarwith theword including
“agility” (#1 in Table 1). 46 results were examined both in terms of the effectiveness
of the search key and relatedness of the results. We realized that most of the studies

Agile Teams Working from Home During the Covid-19 Pandemic 41

including the “agility” word in their titles belong to other domains (such as health,
logistics, strategic agility, and marketing agility) and we found that all of them are out of
our scope by applying our standard paper selection method described in our study. Then,
we decided to exclude the “agility” keyword from our further searches to narrow the
results down to the relevant scope. For the part representing the Agile domain, “(“agile
teams” OR “agile team”)” in full text search and “(scrumOR agile ORXPORKanban)”
in title search in Google Scholar were formed. The side representing the pandemic part
was formed as “(covid OR sars OR pandemic OR corona OR coronavirus OR lockdown
OR outbreak)” after some pilot iterative searches are done in Google Scholar. Regarding
the working from home, the “home” keyword was a good candidate to include in this
string yet this adding brought many irrelevant results, which renders the manual review
almost unreasonable.

Regarding the search locations, we anticipated and were largely satisfied with the
effectiveness of searching in the titles after realizing that almost all results returning from
#2 search in Google Scholar include the keywords we identified in their titles; that is the
corresponding authors locate the relevant terms (agile or the specific agile method name
and the pandemic specific word(s) in their paper titles). Moreover, we realized that all
results from the Scopus search were covered by our former search in Google Scholar, #3.
After all, Table 1 summarizes the reviews conducted with the aforementioned keywords.

Based on the scope and context of our study, for the selection of the papers, the fol-
lowing propositions of inclusion criteria (IC) and exclusion criteria (EC) were specified
and applied to the search process.

IC1: Papers investigating effects of the pandemic on the agile software development.
IC2: Papers on working from home rather than the conventional global software
development or hybrid teams.
IC3: Peer-reviewed and supervised academic works including conference, workshop,
proceedings, journal papers, thesis, etc.
EC1: Papers not available in English.
EC2: Papers published in non-peer-reviewed or non-supervised academic sources such
as web pages and books.
EC3: Papers not accessible by the authors.
EC4: Papers investigating effects of being agile to cope with issues specific to the
pandemic.
EC5: Papers investigating effects of the pandemic on the software development in general
without any explicit relation to the agile software development.

After defining the keywords, libraries, IC, and EC, the full searches were conducted
by the first author between 13.09 and 16.09.2021 to identify the relevant studies by
applying the detailed inclusion and exclusion criteria to the papers. In this process, total
number of 1004 of works were obtained from the search results as seen in Table 1. After
removing the duplicate records, the list included 964 distinct records. All papers were
examined through their titles and, where necessary, abstracts in order to identify whether
they are in our scope. If even the abstracts were not sufficient to decide to include or
exclude the papers, then, a scanning through the full texts of the papers was done for
those that were further included or excluded. 883 papers were investigated only through

42 N. Ozkan et al.

their titles, 37 of the them through their titles and abstracts and 44 of them through their
titles, abstracts and full texts.

Excluded 9 studies are within the scope of our study, but they were ignored, as they
are not peer-reviewed (yet) coming fromGoogle Scholar, in relevant EC2. The exclusion
was applied for 2 papers regarding EC3 because the papers’ full texts were not accessible
by the authors. We applied EC1 to specify the papers not available in English either by
filtering via the relevant features of libraries allowing eliminating non-English studies
forehand or via the manual investigations. 12 papers were manually excluded as they
have an abstract in English but have a non-English full text. EC4 and EC5 are about the
content details of the papers, then, they were applied during the meta-data or the full
text investigation stages, yielding 925 papers’ exclusion. After all, 16 distinct studies
were identified as relevant and listed in Table 2 in the order of identification time. In the
further examinations of all identified studies, the relevant contents were extracted from
the studies and grouped under some main customized items by the first author based on
their contents. This grouping was elaborated further in this study.

Table 1. Search details

Library Place Search string Number of
results

Number of
relevant
results

1 *Google
Scholar

Title (agility) AND (covid OR
sars OR pandemic OR
corona OR coronavirus OR
outbreak OR lockdown)

46 0

2 Google
Scholar

Full text (“agile teams” OR “agile
team”) AND (covid OR sars
OR pandemic OR corona
OR coronavirus OR
outbreak OR lockdown)

791 14

3 *Google
Scholar

Title (scrum OR agile OR XP OR
Kanban) AND (covid OR
sars OR pandemic OR
corona OR coronavirus OR
outbreak OR lockdown)

91 14

4 Scopus Meta-data (agile AND software AND
(covid OR sars OR
pandemic OR corona OR
coronavirus OR lockdown
OR outbreak))

55 5

5 IEEE
Xplore

Meta-data 16 0

6 ACM Meta-data 5 0

Total 1004 (964 in
distinct)

33 (16 in
distinct)

*Google Scholar does not provide searching in metadata except specific to title

Agile Teams Working from Home During the Covid-19 Pandemic 43

3 Related Works

Several studies and SLRs are available for the software development during the pan-
demic. For instance, Nolan et al. [16] covered the learning from working at home during
the pandemic in their SLR. Several other studies such as Rehberg, et al. [17] discuss
the advantages of applying agile approaches to better deal with issues in the pandemic.
As mentioned before, these two types of scope were ignored in our study; our study
rather focuses on the effects of the pandemic on agile teams rather than the effects of the
pandemic on the software development in general or on agile capabilities to deal with
pandemic specific issues.

When it comes to our scope, there are several studies identified as relevant as listed
in Table 2; yet none of them is an SLR study like ours. Since these studies have already
been included in our study with details, it was not preferred to mention them in detail
in this section. Our list includes only the academic literature, however, we encountered
some grey literature as related works, such as [12] and [13]. In the study [12], the authors
provide their ideas about how to ensure that agile teams are effective where Covid-19
has forced them to work remotely. Study [13] gives personal ideas about the challenges
of agile software development from home along with the practical examples and what
will probably happen to agile software development teams when the crisis is over.

The included studies and excluded grey literature analyze the pandemic through
challenges, new practices, tools, and possible solutions in the agile teams’ context. Our
study differs from the existing literature in some aspects. Firstly, it reviews and combines
other studies’ findings and as far as we know, it is the first in this regard. Secondly, it
also differentiates and compares working from home and normal work, which has not
been clearly expressed in other studies.

4 Results

As seen in Table 2, five of the studies are published in a conference proceeding. Four
papers out of these five papers were presented in one of the leading Agile conferences,
LASD (International Conference on Lean and Agile Software Development). A con-
siderable number of the remaining papers, nine of them, are master theses, indicating
a positive reflection of academia to the subject. The remaining two papers are journal
articles.Whenwe look at the geographical distribution, we see that Northern and Central
Europe surface. In terms of the time distribution, it is seen that the times near the end of
the university semesters are dominant.

Table 2. Results from the literature review

Paper code Reference Type Method Date (of
Publication)

Country
conducted

P1 [18] Conference Survey with
250+ people

January 2021 Pakistan

P2 [19] Journal Survey with 171
people

June 2021 Germany

(continued)

44 N. Ozkan et al.

Table 2. (continued)

Paper code Reference Type Method Date (of
Publication)

Country
conducted

P3 [20] Conference Panel September
2020

–

P4 [21] Master thesis Survey with 17
people + 2
semi-structured
interviews

June 2020 Sweden

P5 [22] Journal Action research July 2020 Brazil

P6 [23] Master thesis Interview with 8
people

May 2021 Finland

P7 [24] Master thesis Survey with 96
people + 7
semi-structured
interviews

June 2021 Sweden

P8 [25] Master thesis Interview with
13 participants

May 2021 Sweden

P9 [9] Conference
paper

Case study - one
team

January 2021 Ireland

P10 [26] Master thesis Multinational
company case
study with
interview of 10
people

June 2020 Switzerland,
France,
Romania

P11 [27] Master thesis Survey with 114
people

June 2021 Canada, Estonia,
India, Ireland,
United States of
America

P12 [28] Master
Thesis

Survey with 67
people + A
census study
with 105
employees

February
2021

Finland

P13 [29] Master thesis Interview with 9
people

May 2021 Iceland

P14 [30] Master thesis Interview with
19 people

July 2021 Belgium

P15 [7] Conference Case studies January 2021 Germany

P16 [31] Conference Survey with 120
people

January 2021 Poland

Agile Teams Working from Home During the Covid-19 Pandemic 45

Topics of challenges and advantages of the agile teams during the pandemic that
were extracted from the identified studies were classified by the first author based on
the aspects as seen in Table 3. Coordination, Collaboration, and Communication aspects
among the distributed individuals were obvious enough to point out in the contents
of the papers. Productivity and Quality items have also taken their place as one of
the compelling topics of the pandemic period. In some papers, it was also discussed
how agile practices were affected and performed during the pandemic period. Apart
from the practices, some agile values and principles about transparency, flexibility, and
self-organization were included by some identified works. Even though the Leadership,
Coherence, and Feeling of the team members are relevant to agile values and principles,
we handled them separately since they have a considerably high number of items. At
the end of all these, as a result, changes in Agility degree in the organizations have also
been the subject of research.

Along with these dimension items, the table presents the information about how
many times each item was addressed by which study. Accordingly, it is seen that the
most intensively discussed dimension is about Coordination, Collaboration, and Com-
munication (it accounts for more than one-third of all items). It is noted that in this
dimension, there are challenges and a considerable number of advantages as well. The
secondplace is about thefindings on the effects ofworking fromhomeonAgile Practices.
The table shows that working from home produces the most disadvantage at Leadership
and Coherence aspects. The item with a relatively high advantage is about the increase
in Agility. Apart from the dimensions, the study P8 numerically contributes at most to
the all list.

Table 3. Number of advantages and challenges per each paper

Aspects Effect P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 Total Total
by
aspect

Coordination,
collaboration
and
communication

Negative 2 2 2 3 1 11 9 3 2 2 1 3 3 2 46 70

Positive 2 2 8 1 1 2 2 2 3 1 24

Agile practice Negative 1 1 2 2 3 3 1 1 1 15 25

Positive 2 3 1 2 2 10

Feeling Negative 1 1 1 5 3 2 2 2 2 1 20 24

Positive 1 1 1 1 4

Productivity Negative 5 1 1 1 1 2 1 1 13 22

Positive 2 1 1 3 1 1 9

Leadership Negative 1 1 1 5 1 1 1 11 12

Positive 1 1

Agility Negative 1 1 9

Positive 2 1 1 1 1 2 8

Coherence Negative 1 2 2 2 1 1 9 9

Positive 0

(continued)

46 N. Ozkan et al.

Table 3. (continued)

Aspects Effect P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 Total Total
by
aspect

Quality Negative 0 1

Positive 1 1

Total Negative 9 1 6 3 5 5 22 20 8 4 6 7 7 7 5 115 -

Positive 2 2 2 6 11 2 2 4 8 4 8 6 57 -

Grand
total

9 3 8 5 5 5 28 31 8 6 8 11 15 11 13 6 172 -

Tables 4 and 5 illustrate the disadvantage and advantage of the content items extracted
from the papers, mapped for each paper and grouped by each identified aspect. In this
table, under each content item, it is seen which studies include the content items and by
how many studies each item was included. The top item about challenges shows that in
spite of the technological advancements, lack of face-to-face communication is a clear
challenge that conflicts directly with one of the agile principles; “the most efficient and
effective method of conveying information to and within a development team is face-
to-face conversation”. In a similar vein, integration, coordination and involvement of
stakeholders, forming effective new teams and onboarding staff become more difficult
in remote working from homes because of more difficult, less or slower communication
capabilities the teams have. This leads to decrease of productivity especially because of
fewer interactions with others. Among other items, building work-life balance surfaces
as one of the most mentioned issues of the agile teams.

Table 4. Map of disadvantage of items per each paper

Negative content item Frequency Citing paper(s)

Coordination, collaboration and communication

Lack of face-to-face communications to
experience the social aspect

9 P1, P3, P5, P7, P9, P10, P12, P13, P15

More difficult, less and slower
communication

6 P6, P7, P8, P10, P13, P14

Integration, coordination, and
involvement of stakeholders are more
difficult

5 P1, P8, P9, P13, P15

Lack of constant communication 3 P4, P7, P8

Misunderstandings in communications 3 P5, P7, P8

Plethora of interruption 3 P7, P8, P9

Less spontaneous informal
communication among team members

2 P7, P11

Making voice heard 2 P7, P8

(continued)

Agile Teams Working from Home During the Covid-19 Pandemic 47

Table 4. (continued)

Negative content item Frequency Citing paper(s)

A need for communicating more with
fewer abilities, increased number of
meetings and less effective meetings

2 P8, P14

Dealing with problems on their own
instead of doing together

1 P8

Unable to cheer up each other when
mentally down

1 P11

Suffering from interpersonal friction 1 P3

Trouble with expressing themselves 1 P4

Establishment of tools to support
working

1 P5

Lack of visibility 1 P8

A distance created with the transversal
roles such as the Product Owner or
Scrum Master

1 P14

Easier to deviate from unwritten rules 1 P7

A reluctance to bring up sensitive
conversations digitally

1 P7

A fear of leaving digital traces when
writing down certain things

1 P7

A decrease in knowing the extent of the
team members’ working

1 P7

Productivity

Productivity decreased because of fewer
interactions with others, low working
hours of developers or no work pressure
on them

6 P1, P2, P4, P7, P10, P12

Teams suffered from interpersonal
friction are exacerbated

1 P3

Motivation and efficiency affected
negatively

1 P10

Delay in the project delivery time 1 P1

Not applied sprint meetings 1 P1

Stress and emotional and mental
instability affecting productivity

1 P1

Work pressure and home life leading to a
conflict and resulting in less productive
teams

1 P1

(continued)

48 N. Ozkan et al.

Table 4. (continued)

Negative content item Frequency Citing paper(s)

Decreased productivity [with no
specified reason]

1 P13

Agile practice

Agile work practices getting harder to
perform due to the virtuality of meetings
and interactions

2 P3, P7

Hardship in knowledge management 2 P5, P7

Challenge of establishing a new way of
working with digital tools

2 P8, P15

Cyclical Agile nature of the team moved
to pure execution and mechanical
version of Scrum

2 P6, P9

Higher reliance on documentation, tools,
processes, and more structured work

1 P6

Scrum meetings taking much
unnecessary time

1 P8

No longer “touch” hardware products 1 P8

Difficult to stay within tighter time-box 1 P9

For sprint planning, engagement
remaining for a shorter period of time

1 P9

Increased number of meetings 1 P14

Meetings can continue longer without
being decided beforehand

1 P13

Feeling

Damaged work-life balance 5 P3, P9, P11, P12, P14

Loneliness and feeling forgotten 3 P8, P12, P13

Decreased motivation 2 P7, P8

Decrease in team morale 2 P7, P13

Fatigue 2 P7, P9

Decreased ergonomics and comfort 1 P5

Easiness of disturbance 1 P8

Not using skills to full extend 1 P11

Less ambition and work satisfaction 1 P1

Decrease in breaks 1 P7

Changes on feelings and personalities
like being more introverted at long term

1 P7

(continued)

Agile Teams Working from Home During the Covid-19 Pandemic 49

Table 4. (continued)

Negative content item Frequency Citing paper(s)

Agility

Less effective agility 1 P1

Leadership

Forming effective new teams and
onboarding staff

5 P3, P6, P8, P12, P15

Having trouble with keeping track of
people and how they feel

3 P7, P8, P14

The leadership affected since the
workload increased

1 P8

Mental breakdowns 1 P8

Increased workload since the team’s
wellbeing getting worse

1 P8

Coherence

Integrating new employees 3 P6, P7, P14

Affinity, togetherness 2 P12, P15

Team spirit 1 P11

Less communication resulted in more
conflicts and less trust

1 P11

Feeling of disconnected 1 P12

More difficulties in creating personal
relationships

1 P7

In terms of advantages, increased efficiency of meetings, fewer interruptions and
increased productivity and flexibility are prominent.

Table 5. Map of advantage items to each paper

Positive content item Number of frequency Citing paper(s)

Coordination, collaboration and communication

Fewer interruptions and more status updates with
the present status in the communication tools

5 P3, P7, P8, P10, P15

Saved time from commuting 3 P7, P8, P12,

Meetings start on time and run more efficiently
and more effectively

3 P3, P13, P14

Increased frequency of communication 2 P11, P16

(continued)

50 N. Ozkan et al.

Table 5. (continued)

Positive content item Number of frequency Citing paper(s)

More factual and precise, objective and efficient
communication and collaboration

2 P13, P15

Easier communication 1 P8

Increased and faster interaction with customers 1 P8

Ability to speak naturally in front of a big group
of people

1 P8

Became good at respecting who is talking 1 P8

Follow-up communication; written
communication within teams is stored and visible

1 P8

The documentation clearer and more structured 1 P8

Employees preferring virtual communication
and cooperation

1 P12

Able to do several things at the same time for
less interesting meetings

1 P14

Teams forced to adopt more state-of-the-art
communication practices

1 P15

Productivity

Increased productivity [with no specified reason] 4 P7, P13, P15, P16

Productivity improved due to less distractions
from coworkers

2 P4, P13

Improved speed of achieving work goals 1 P11

Productivity improved due to the reduced
amount of tension the employees feel

1 P4

A longer workday from home 1 P13

Agile Practice

Saved time for Scrum meetings 3 P13, P14, P16

Scrum meetings getting more goal-oriented,
factual, and more efficient

3 P7, P13, P15

Agile approach becoming more transparent 2 P7, P15

Increased accountability 1 P16

Easier time planning for sprints 1 P13

Feeling

A better “we” feeling by connecting different
geographical locations

1 P8

Improved work-life balance 1 P12

(continued)

Agile Teams Working from Home During the Covid-19 Pandemic 51

Table 5. (continued)

Positive content item Number of frequency Citing paper(s)

Trust and flexibility in the company 1 P14

Increased accountability 1 P16

Agility

Increase in flexibility 4 P2, P7, P10, P12

Increase in perceived agility 2 P2, P8

Better self-organization 1 P15

Increased transparency 1 P15

Leadership

Leaders better at realizing if someone has
something to do

1 P8

Quality

More automation 1 P16

5 Discussion

Unlike co-located or distributed teams, being distributed on an individual basis rather
than on a team basis opens door to new challenges. Since the basic work unit in agile
software organizations is the team rather than the individual [36], preserving the nature of
the team during working from distance (e.g. homes) confronts us as a new challenge for
dispersed teams. In addition to these challenges, it has been seen that the items on the right
of the agilemanifesto, whose contribution to agility has not been investigated sufficiently
by the agile communities until this catastrophic change brought by the pandemic, can
also support agility when the circumstances demand it. In history, such catastrophic
changes are few, even fewer in the information technology era, and can be considered
as the first instance in the age of agile software development. From a wider perspective,
such changes provide lessons not only for the pandemic but also for the post-pandemic
time. In this sense, in the following, the implications for this review study are presented.

5.1 Implications for Agile Practitioners

Among the challenges of working remotely from home, we have seen that the com-
munication dimension has a considerable place during the pandemic as it was before
the pandemic. Communication, which plays a key role in many issues, is prominent
especially in the context of Agile. Korkala [32] highlights the project failures in agile
teams because of the poor communication that can be also the root cause of other prob-
lems within the teams. Within this scope, individuals’ ability to express themselves,
understand each other correctly, coach people, communicate without loss of emotions
and feelings, conflict resolutions, and a desire for having intensive human contact can
be counted. It is expected that the first challenge faced by teams accustomed to close
working with high interactions is about communication and its related aspects.

52 N. Ozkan et al.

Even though many tools support the interactions efficiently, they are still not as
effective as a face-to-face conversation [20]. Non-verbal communication carries a lot
more information like facial expressions, gestures, posture, proximity, tone of voice,
pitch, etc. in comparison to verbal communication [33]. However, a big part of non-
verbal communication is lost in the virtual teams’ processes [34], like happened across
the (members of) teams. During the working from home, without adequate capabilities
that the traditional face-to-face teams have, contact is prone to be harder, kept at a
minimum and more formal. Along with these shortcomings, working from home may
also open the door to other problems such as a quality decrease in software products. As
Agile requires intensive coordination, collaboration, and a coordination-based approach
extending to the broad parties including clients and end-users, the regular and continuous
involvement of them in the cycles in the development activities can have problems. The
lack of communication within team members may also lead to misunderstandings that
deteriorate the team’s coherence. Because of the lack of sensing, the social fabric of the
team may be in danger, making communication more difficult, less and slower.

Agile teams prefer constant and spontaneous communication and make voices heard
to facilitate an agile and transparent way for their information to flow across and inside
the teams. These abilities decrease during the pandemic since to convey the information
in the (even increased number of) meetings or online during the pandemic seems inef-
fective to provide these abilities. As a side effect of these decreased abilities, agile teams
lose the feel of togetherness, and start to behave introvertedly and individually. There
are several instances of that such as, dealing with problems on their own, being unable to
cheer up each other, suffering from interpersonal friction, having trouble with express-
ing themselves, having a distance occurred with the transversal roles, deviations from
unwritten rules, and decreases in knowing the extent of the team members’ working.

During the pandemic, after dealing with the challenges of the establishment of digi-
tal tools to support working and finding state-of-the-art communication practices, agile
teams need less effort to communicate. For instance, they can save time from commut-
ing to come together, ignore irrelevant subjects easily, and present their status in the
communication tools. This easiness in communication brings increased frequency and
equality of communication and collaboration. Online meetings can start on time and run
more efficiently and more effectively and support more factual and precise, objective
and efficient communication and collaboration of group members and customers. With
digitalization, the documentation becomes clearer and more structured.

Some issues for coordination, collaboration, and communication have both positive
and negative sides. For instance, the form of interruptions only changes in the manner
of interrupting during the pandemic; having interruptions physically at the office turns
into digital interruptions during the pandemic.While digital tools and documentation are
effective for having a corporate memory, they are not preferred for discussing sensitive
issues by some agile teams because of the fear of leaving digital traces.

In a similar vein, the productivity aspect has positive and negative effects during the
pandemic. Productivity decreases because of ignored and not applied agile practices,
fewer interactions, less direct contact of people, less motivation, more interpersonal fric-
tion and more stress and emotional and mental instability emerged in home-life during

Agile Teams Working from Home During the Covid-19 Pandemic 53

the pandemic. Meanwhile, we see positive reflections of improvements in communi-
cation dimensions, including fewer distractions and commuting effort, and improved
speed of information, on productivity. The number of studies stating that productivity
increases during the pandemic without providing a clear reason is also noteworthy.

Agile work practices get harder to perform during the pandemic due to the virtuality
ofmeetings and interactions. It is possible to say that relativelymore abstract phenomena
like knowledge management, engagement, and the spirit of agility are also negatively
affected by the pandemic. Agile teams are prone to pose a pure mechanical execution
under the constraints of the pandemic, layingmore on the doing rather than being (agile),
on documentation, tools, processes, and more structured work. The state of being inef-
fective under this condition is tried to compensated with having more meeting durations,
taking much unnecessary time, and posing difficulties to stay within time-boxes.

On the other hand, Agile practices benefit from the pandemic conditions in terms of
especially efficiency and effectiveness aspects. Agile teams save time from the (unnec-
essary parts of) rituals and focus on the main issues in the meetings by getting more
goal-oriented, factual, efficient, and transparent. In this case, it is possible to say that
Agile practices are under a conflicting influence during the pandemic.

Study [12] suggests modifying Scrum ceremonies as appropriate rather than sticking
to a guide. They also stress the need for a different approach of processes [due to the
decrease in ability in tacit knowledge] to produce a so-called single source of truth as the
memory of the teams and organizations. In parallel to this suggestion, the teams should
come with some out-of-box set-up for Scrum to meet the challenges of implementing
Scrum specific activities during working from home. The teams also are expected to
recalibrate their agile processes in their remote environments. Adaptation of Agile work
practices, which is encountered as one of the challenges during the pandemic period, can
be considered in this context. Although some studies state that implementations of these
practices still exist as usual [31], there are cases of changes in the way these practices
are performed by the agile teams [12]. These deviations may lead to inconsistent work
practices observed in the agile teams.

A similar recalibration is required to strike a work-life balance for the individuals,
especially after the intense involvement of life dynamics into every possible moment
of working hours during the pandemic. In general, well-being and emotions of agile
teams working at home have been negatively affected by the conditions of working
from home, especially in terms of work-life balance with the new blurred boundaries
of the business and life, feeling loneliness, decreased motivation and morale and more
fatigue. Qualitatively speaking, all these effects regarding the Feeling aspect are strong
enough to have severe negative impacts on teams in the long run. For the later stages
of the pandemic or any form of working from home, the long-term impacts of these
deep-seated effects on the Feelings of the teams should be thoroughly investigated.
Besides, during working from home, with the possibilities of digitalization, agile teams
in different geographical locations experience a better feeling of connectivity. In general,
there are some studies assert that the teams can have an improved work-life balance and
increased accountability.

54 N. Ozkan et al.

For the Agility aspect, there are conflicting results of the studies. The majority of
the results state positive impacts on agility as a result of increased flexibility, self-
organization, and transparency. There are more negative effects than positive effects
regarding leadership during the pandemic as it requires intensive communication with
people, especially with newcomers. Like negative effects on the individuals in the agile
teams, we see a similar case for the coherence within the individuals and their rela-
tionships. This situation can be attributed to the weakening of invisible ties across the
individuals during working from home. Like the Feeling aspect of the individuals, the
issues about the Coherence aspect can have unexpected and severe damages on the teams
in the long run.

The more usage of digitalization, documentation, tools, and processes, play more
crucial roles during the pandemic. In ourwork results, it is clearly seen that digitalization,
documentation, and tools provide many benefits and directly affect the flexibility and
agility of the teams. These artifacts stand on the right side, which is the less preferred
side of the Agile Manifesto, can open a door for us to reconsider discovering more
balanced ways with the right side. Even though the Agile Manifesto suggests to value
individuals and interactions over processes and tools, we have seen how processes and
especially tools support agility to be sustainable and interactions in a more efficient,
faster, convenient, and, in other words, agile way. As stated by the study [7] “business
people and developers [can] work together daily throughout the project” with the support
of the digitalization tools.

It was stated by some studies that digitalization, compared to physical boards,
enhances visual capabilities, and facilitates feedback channels and clarifications, result-
ing in more factual and precise, objective and efficient communication and collabo-
ration, increased transparency and involvements of partners. Making meetings more
goal-oriented, factual, and more efficient in this way raises doubt on the correctness
of the following principle of the manifesto; “the most efficient and effective method of
conveying information to and within a development team is face-to-face conversation”.
In the same vein, more documentation is needed in remote working to foster organiza-
tional memory. The fact that the pandemic has emphasized the need of having a proper
enterprise memory, which is also valid in the form of close working, can be considered
as a belated awareness of the Agile committee.

Within the online environment, the “frequent” meetings resulting from rituals of
Scrum can be more casual and easier for the teams. As a reflection of this enhanced
capability, it can become easier to establish closer contact with business units while the
frequent meetings could be more difficult in an office environment hardly supporting
these capabilities.Moreover, the extra exhaustion resulting frombeing in the office, com-
bined with the high efforts for the frequent meetings of Scrum, appears as an additional
challenge.

There may appear a loss of energy and motivation during working from home result-
ing in a decrease in the team’s coherence. Easy and asynchronous communication causes
more interruptions during working at home. Asynchronous and easily initiated digital
communication in the pandemic may lead teams to more multitasking and distractions
and less opportunity for focus. Especially in review and retrospectivemeetings of Scrum,
which require intense human contacts [38], the online environments in this regard can

Agile Teams Working from Home During the Covid-19 Pandemic 55

reduce the impact on people compared to physical environments. However, the business
units can involve more in the meetings with the support of the convenience of digital
platforms.

A decrease in the “real” contact and connection capabilities within teams and team
members during the pandemic may put a distance within people and, thus, may threaten
trust in remote work. In this regard, a possible decrease in the capabilities of improve-
ments, leadership, team cohesion and feeling of isolation, loneliness, low motivation,
and disconnectedness are relevant. In the case of virtually working individuals, Sen [37]
states that in communication, when body language, subtle tones, and facial gestures are
not added to the spoken word, misinterpretations and misunderstandings and individ-
ual interpretations may create situations where each team member unknowingly “does
his/her own thing” rather than following the team’s agenda. That study adds the lack of
relationship and trust, isolation, loneliness, and the feeling of disconnectedness that may
erode energy and lessen commitment to the team. It is important to underline that it is
possible for teams experiencing isolation, loneliness, and disconnectedness because of
specialist culture, and cross-functionality after a while in the pandemic. Similarly, for
the teams with high autonomy but low maturity or living in their early stages, control
and balance issues may take part in organizations’ management agenda.

Mancl and Fraser [20] foresee that many people appreciate working at home. Our
study also exhibits several advantages and also several challenges of working at home.
In particular, for the challenges, there can also be some other issues for the teams that
have not raised in pandemic yet. In addition, the expectation that the pandemic will be
temporary may have kept some organizations away from some long-term actions. After
all, all these identified and further challenges may imply that self-organizing teams in
Agile should re-invent some code of life that can be naturally very complex for the
formation of remote working in the pandemic.

The results relating to the Coordination, Collaboration and Communication, Feel-
ing, Productivity, Leadership, Coherence, and Quality aspects might also help non-agile
teams with their working from home, since many aspects are transferable also to tradi-
tional processes. Putting Productivity and Quality aside since these two are more about
the generic results, rest of these common themes emerged in agile teams experienced
as deeper issues compared with the classical software development teams. The unique
characteristic of agile teams in software development requires to deal with these encoun-
tered challenges to maintain a sustainable agile culture, as they need these capabilities
more than the traditional teams. Additionally, in contexts where there is a problem about
team cohesion within agile teammembers and/or agile teams, having estrangement from
the central authority and different perceptions of authority by the teams may be a more
possible and crucial problem compared to classical teams, because of the agile teams’
self-organizing characteristics. In self-organizing agile teams, rather than applying a cen-
tralized decision structure, the structure of decentralized decision is applied where team
members make independent decisions. It maymake interactive decision-making process
through dispersed team members problematic that may cause different perceptions of
authority by the teams.

Geographically distributed and individually dispersed teams share common issues
around virtually working. Like geographically distributed teams, individually dispersed

56 N. Ozkan et al.

teams operate in virtual environments leading to concerning virtual communication and
collaboration [7], lack of face-to-face direct, synchronous and non-verbal communica-
tion, difficulties in building andmaintaining trust, different perceptions of authority, lack
of mechanisms for creating shared understanding, misunderstandings, inconsistent work
practices, reduced cooperation and coordination, and control, knowledge management
and leadership challenges that need to be overcome [35, 37]. Like in individually dis-
persed teams, the absence of togetherness and team cohesion, accompanied by common
view of goals, and feeling of isolation, loneliness, low motivation and disconnectedness
are also issues of the geographically distributed teams [35, 37]. Differently, study [35]
reports the specialist culture problem for geographically distributed teams that has not
been encountered in the studies for individually dispersed teams, yet.

5.2 Implications for Researchers

The research community is paying great attention to issues related to self-organizing
teams in software development [35]. As a result, we have seen that considerable effort
has been paid to identify the problems faced by co-located agile teams. There are also
secondary studies that combine primary studies on this subject. It is possible to say that
the subject is beyond the identification of the problems, rather at the stage of handling
the issues of the teams working co-located. A similar result can be obtained for the teams
that work in a classically distributed way. The relative saturation of the publications in
these two fields is remarkable.

Although it is known that some cases exist for traditional teams, we have come across
rare cases of agile teams working as individually dispersed teams before the pandemic,
which is not surprising because of the agile teams’ inclination to and need for working
in co-location. When we look at the pandemic period, we can say that some earlier
studies have just started to emerge. Specifically speaking, considering the year 2020 and
2021, publications at the LASD (International Conference on Lean and Agile Software
Development) conference, which is specific to the field of Agile and the venue including
the most papers in this scope, are remarkable in the number of the academic publications
on this subject.

Co-location for agile teams allows frequent in-person contact, encourages instant
communication, quickly builds trust, simplifies problem solving, and enables fast-paced
decision-making [12]. Therefore, by considering the benefits gained from (co-located)
agile teams, working from home in the pandemic that should come with a considerable
shift in multiple facets needs further studies. Alternatively, the need for studies that
will guide practitioners about the hybrid model, which includes the advantages of both
working types, is increasing.

Although it is possible to say that the belief that the pandemic will not last long is
prevalent, examining the effect of such a catastrophic change on agile teams will provide
useful insights. It is a suggestion to academy to focus more on agile teams during the
pandemic period. In this regard, our scope of the literature review was extended with so
called grey literature, a non-peer-reviewed but supervised academic theses. Considering
the relatively long durations of the publishing processes, it would be appropriate to say
that this preference to expand the sources studied to find a sufficient number of papers
strengthens our study conducted at this particular time. In addition, the fact that all of

Agile Teams Working from Home During the Covid-19 Pandemic 57

the studies from this particular branch are empirical studies has reduced our worry about
their reliability.

6 Conclusion, Limitations and Future Work

This paper presents a systematic literature review to evaluate the effects of the Covid-
19 pandemic on the agile software development teams. Two research questions were
proposed: what new challenges the team members have faced and which advantages
have occurred. Our study focuses on a timely new topic relevant for today and provides
further insights into the post-pandemic time. It focuses on an important topic which
is likely to play a greater role in the future after the pandemic. This topic has practical
relevance since it affectsmost of the teams that had to change theirway ofworking during
the pandemic. Team members’ distribution was already relevant and not sufficiently
researched ahead of the pandemic, and also in the post-pandemic time, many teams are
likely to keep a more flexible and remote way of working.

The study reveals that working from home during the pandemic poses some chal-
lenges and advantages. The challenges stress the importance of face-to-face communi-
cation that is vital especially for the agile teams. The newly learned advantages imply
that we can lead to revising the understanding and value of the underestimated classi-
cal artifacts such as (digital) tools to communicate not effectively but efficiently and
processes to connect dispersed members.

Our study contains all the hereditary limits and threats to the validity of a review study.
Thus, the procedures used in our study have limitations in several ways. Only a single
researcher extracted the data from the studies and this poses a threat to reliability. Also,
we may have missed some relevant studies, as we did not include all possible variations
of keywords since it is not practically possible to cover them all. In addition, we did not
include all possible libraries. In particular, we may have missed the studies published
in not-peer-reviewed sources. To mitigate the risk of this issue, we have used not an
equivalent but multiple search string to cover a more comprehensive area. In addition,
we have searched in the most appropriate databases such as Scopus and Google Scholar,
in terms of their coverages.

For the quality of the selected papers, due to the relatively low number of relevant
studies, we did not want to set a threshold value as it reduces the number of studies any
further. Therefore, it may become an issue when including studies that were not very
systematic. For instance, even though the data in some particular studies are insufficient,
we included them. However, we have seen that the studies of low quality with insufficient
data have a minor part of the whole. Some papers such as P1, P5, P6, and P9 seem to
focus on negative aspects and P16 seem to focus on advantages. However, we are not sure
if the involved people were asked neutrally about their work in these studies. Therefore,
the studies may include a bias in this regard and this bias inherently transfers to our
work.

We have not seen a study among the existing works that makes a review on this
subject. This study aims to fill this gap, for now. We are planning to repeat this study
in the future to reach more better results. As a possible avenue for further studies, we
plan to conduct a quantitative study to investigate the difference between on-site and

58 N. Ozkan et al.

working from home challenges. Working from home during the pandemic is not equals
to dispersedly remoteworking during “normal times”. Similar research can be conducted
for dispersedly remote working during normal times and hybrid working (partially on-
site and partially dispersedly working). The challenges specific to the pandemic imply
that organizations should address issues and accordingly provide more flexible work
environments for working at home, and that can be a subject for further studies in
this area. Some adequate agile responses to such extreme crises can be located from
technology startups, providing another further study for researchers to transfer those
abilities to conventional organizations.

References

1. Madsen, D.Ø.: The evolutionary trajectory of the Agile concept viewed from a management
fashion perspective. Soc. Sci. 9(5), 69 (2020)

2. Fowler, M., Highsmith, J.: The agile manifesto. Softw. Dev. 9(8), 28–35 (2001)
3. Gren, L., Torkar, R., Feldt, R.: Group development and group maturity when building agile

teams: a qualitative and quantitative investigation at eight large companies. J. Syst. Softw.
124, 104–119 (2017)

4. Brosseau, D., Ebrahim, S., Handscomb, C., Thaker, S.: The journey to an agile organization.
McKinsey.com, May 2019

5. Moe, N.B., Dingsøyr, T., Dybå, T.: A teamwork model for understanding an agile team: a
case study of a Scrum project. Inf. Softw. Technol. 52(5), 480–491 (2010)

6. Sharp, H., Barroca, L., Deshpande, A., Gregory, P., Taylor, K.: Remote working in an Agile
team (2016)

7. Neumann, M., Bogdanov, Y., Lier, M., Baumann, L.: The Sars-Cov-2 pandemic and agile
methodologies in software development: a multiple case study in Germany. In: Przybyłek,
A., Miler, J., Poth, A., Riel, A. (eds.) LASD 2021. LNBIP, vol. 408, pp. 40–58. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-67084-9_3

8. Vallon, R., Dräger, C., Zapletal, A., Grechenig T.: Adapting to changes in a project’s DNA: a
descriptive case study on the effects of transforming agile single-site to distributed software
development. In: Agile Conference, pp. 52–60 (2014)

9. Griffin, L.: Implementing lean principles in scrum to adapt to remote work in a Covid-19
impacted software team. In: Przybyłek, A., Miler, J., Poth, A., Riel, A. (eds.) LASD 2021.
LNBIP, vol. 408, pp. 177–184. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
67084-9_11

10. Herbsleb, J.D.: An empirical study of speed and communication in globally distributed soft-
ware development. IEEE Trans. Software Eng. 29(6), 481–494 (2003). https://doi.org/10.
1109/TSE.2003.1205177

11. Przybyłek, A., Albecka, M., Springer, O., Kowalski, W.: Game-based Sprint retrospectives:
multiple action research. Empir. Softw. Eng. 27(1), 1–56 (2021). https://doi.org/10.1007/s10
664-021-10043-z

12. Comella-Dorda, S., Garg, L., Thareja, S., Vasquez-McCall, B.: Revisiting agile teams after an
abrupt shift to remote (2020). https://www.mckinsey.com/southern-us/~/media/McKinsey/
Business%20Functions/Organization/Our%20Insights/Revisiting%20agile%20teams%20a
fter%20an%20abrupt%20shift%20to%20remote/Revisiting-agile-teams-after-an-abrupt-
shift-to-remote.pdf

13. Kude, T.: Agile software development teams during and after Covid-19 (2020). https://kno
wledge.essec.edu/en/innovation/agile-software-development-during-after-COVID19.html

https://doi.org/10.1007/978-3-030-67084-9_3
https://doi.org/10.1007/978-3-030-67084-9_11
https://doi.org/10.1109/TSE.2003.1205177
https://doi.org/10.1007/s10664-021-10043-z
https://www.mckinsey.com/southern-us/~/media/McKinsey/Business%2520Functions/Organization/Our%2520Insights/Revisiting%2520agile%2520teams%2520after%2520an%2520abrupt%2520shift%2520to%2520remote/Revisiting-agile-teams-after-an-abrupt-shift-to-remote.pdf
https://knowledge.essec.edu/en/innovation/agile-software-development-during-after-COVID19.html

Agile Teams Working from Home During the Covid-19 Pandemic 59

14. Cucolas, A.A., Russo, D.: The impact of working from home on the success of scrum projects:
a multi-method study, Computing Research Repository (CoRR), July 2021 (2021)

15. Kitchenham, B., Brereton, O.P., Budgen, D.: Systematic literature reviews in software
engineering–a systematic literature review. Inf. Softw. Technol 51, 7–15 (2009)

16. Nolan, A., et al.: To work from home (WFH) or not to work from home? Lessons learned by
software engineers during the COVID-19 pandemic. In: Yilmaz, M., Clarke, P., Messnarz, R.,
Reiner, M. (eds.) EuroSPI 2021. CCIS, vol. 1442, pp. 14–33. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-85521-5_2

17. Rehberg, B., Danoesastro, M., Kaul, S., Stutts, L.: How to remain remotely agile through
COVID-19. Boston Consulting Group (2020)

18. Butt, S.A., Misra, S., Anjum, M.W., Hassan, S.A.: Agile project development issues during
COVID-19. In: Przybyłek, A., Miler, J., Poth, A., Riel, A. (eds.) LASD 2021. LNBIP, vol.
408, pp. 59–70. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67084-9_4

19. Schmidtner,M., Doering, C., Timinger, H.: Agileworking duringCOVID-19 pandemic. IEEE
Eng. Manage. Rev. 49(2), 18–32 (2021)

20. Mancl, D., Fraser, S.D.: COVID-19’s influence on the future of agile. In: Paasivaara, M.,
Kruchten, P. (eds.) Agile Processes in Software Engineering and Extreme Programming –
Workshops, XP 2020. LNBIP, vol. 396, pp. 309–316. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-58858-8_32

21. Christoffersson, E., Djup, P.: How Covid-19 and working from home have affected agile
software development. Master thesis (2021)

22. da Camara, R., Marinho, M., Sampaio, S., Cadete, S.: How do agile software startups deal
with uncertainties by Covid-19 pandemic? Int. J. Softw. Eng. Appl. (IJSEA) 11, 4 (2020)

23. Salnikov, N.: How software development methodologies affect dynamic capabilities under
extreme contexts: a COVID-19 study on agile and waterfall methodologies. Master thesis
(2021)

24. Ågren, P., Knoph, E.: COVID-19’s impact on agile software development. Master thesis
(2021)

25. Karlsson, A., Skötte, P.: Impact of Covid-19 on agile teams in small and medium-sized
software companies. Master thesis (2021)

26. Badiale,M.E.: The dynamics of communication in global virtual software development teams:
a case study in the agile context during the Covid-19 pandemic. Master thesis (2020)

27. Jose, J.: The effect of pandemic related restrictions on agile team productivity in software
industry. Master thesis (2021)

28. Saarenoksa, M.: The impact of flexible working on productivity and job satisfaction: case
future of work in agile R&D. Master thesis (2021)

29. Valgeirsdóttir, H.: The scrum master’s responsibilities in distributed work. Master thesis
(2021)

30. Palumbo, G.: The impacts of the Covid-19 crisis on teams working with agile methods in the
IT sector. Master thesis (2021)

31. Marek, K., Wińska, E., Dąbrowski, W.: The state of agile software development teams during
the Covid-19 pandemic. In: Przybyłek, A., Miler, J., Poth, A., Riel, A. (eds.) LASD 2021.
LNBIP, vol. 408, pp. 24–39. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-670
84-9_2

32. Korkala, M.: Waste identification as the means for improving communication in globally
distributed agile software development. J. Syst. Softw. 95(C), 122–140 (2014). https://doi.
org/10.1016/j.jss.2014.03.080

33. Mehrabian, A.: Nonverbal communication. In: Nebraska Symposium on Motivation. Univer-
sity of Nebraska Press (1971)

34. Ivetic, P.: Holding the house of cards together: possible pitfalls with self-organizing teams in
organizations. Econophys. Sociophys. Multidisc. Sci. J. (ESMSJ), 51–57 (2017)

https://doi.org/10.1007/978-3-030-85521-5_2
https://doi.org/10.1007/978-3-030-67084-9_4
https://doi.org/10.1007/978-3-030-58858-8_32
https://doi.org/10.1007/978-3-030-67084-9_2
https://doi.org/10.1016/j.jss.2014.03.080

60 N. Ozkan et al.

35. Kaur, H., Haddad, H.M.: Distributed agile development: a survey of challenges and solu-
tions. In: Proceedings of the International Conference on Software Engineering Research and
Practice (SERP) (2015)

36. Moe, N.B., Dingsøyr, T., Dybå, T.: Overcoming barriers to self-management in software
teams. IEEE Softw. 26(6), 20–26 (2009)

37. Sen, S.: Globally dispersed project teams: interaction space management. Doctoral disserta-
tion, Massachusetts Institute of Technology (2001)

How a 4-Day Work Week and Remote
Work Affect Agile Software

Development Teams

Julia Topp1(B), Jan Hendrik Hille1, Michael Neumann1(B),
and David Mötefindt2

1 Hochschule Hannover - University of Applied Sciences and Arts,
Ricklinger Stadtweg 120, 30459 Hannover, Germany

{julia.topp,jan-hendrik.hille}@stud.hs-hannover.de,
michael.neumann@hs-hannover.de

2 Agile Move, Ackerstr. 16, 30851 Langenhagen, Germany
info@agile-move.de

Abstract. Context: Agile software development (ASD) sets social
aspects like communication and collaboration in focus. Thus, one may
assume that the specific work organization of companies impacts the work
of ASD teams. A major change in work organization is the switch to
a 4-day work week, which some companies investigated in experiments.
Also, recent studies show that ASD teams are affected by the switch to
remote work since the Covid 19 pandemic outbreak in 2020. Objective:
Our study presents empirical findings on the effects on ASD teams oper-
ating remote in a 4-day work week organization. Method: We performed a
qualitative single case study and conducted seven semi-structured inter-
views, observed 14 agile practices and screened eight project documents
and protocols of agile practices.Results: We found, that the teams adapted
the agile method in use due to the change to a 4-day work week environ-
ment and the switch to remote work. The productivity of the two ASD
teams did not decrease. Although the stress level of the ASD team member
increased due to the 4-day work week, we found that the job satisfaction of
the individual ASD team members is affected positively. Finally, we point
to affects on social facets of the ASD teams. Conclusion: The research
community benefits from our results as the current state of research deal-
ing with the effects of a 4-day work week on ASD teams is limited. Also,
our findings provide several practical implications for ASD teams working
remote in a 4-day work week.

Keywords: Agile methods · Agile software development · Remote
work · 4-day work week · Alternative work schedule · Covid 19

1 Introduction

In the last two decades, agile approaches became state-of-the-art in the area of
software development [27]. The agile manifesto was developed 20 years ago in
c© Springer Nature Switzerland AG 2022
A. Przyby�lek et al. (Eds.): LASD 2022, LNBIP 438, pp. 61–77, 2022.
https://doi.org/10.1007/978-3-030-94238-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94238-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-94238-0_4

62 J. Topp et al.

order to provide a common understanding of values and principles [5]. Agile meth-
ods are characterized by an intensified involvement of stakeholders and many
interactions among the team members [1]. This focus on collaboration and com-
munication is manifested by agile practices [29], which are described in the guide-
lines of well-known agile methods like Scrum [25] or Extreme Programming [4].

Alternative work schedules and the 4-day work week in particular is a topic
of interest in research and practice, which goes back to the 1970s [13]. Though
the concept of a 4-day work week is not established in practice, several com-
panies [7] and public administrations [28] implemented experiments and pilots
to test the effects of a compressed work week. Several studies present empiri-
cal findings concerning the effects of a compressed work week (e.g., [8,10]). For
instance, Facer and Wadsworth [12] investigate the effects of a compressed work
week schedule on facets like the employee satisfaction and the work-life balance.
They emphasize that the productivity of the employees is positively influenced.
Further, they did not find a significant change concerning job satisfaction or
work-life balance. One can assume, that a switch to a compressed 4-day work
week may affects the work of agile software development teams due to the high
relevance of social aspects of agile methods, as described above.

Another facet related to alternative work forms and work organization types
can be observed by the effects of the Covid 19 pandemic and the switch to remote
work [19]. As remote work seems to be a suitable solution to keep companies in
business and their employees safe, many companies worldwide sent their employ-
ees to work from home. Several studies describe the switch to remote work as a
challenge for agile software development teams, as it affects teams collaboration,
communication, productivity (e.g., [6,21,24]) and performance (e.g., [16,18,20]).
The switch to remote work also lead to a adaption of agile practices and roles in
use [9]. For instance, the methodological implementation of agile practices like
estimation techniques or retrospective and review meetings are affected by the
virtualization of the collaboration [18,20]. Schmidtner et al. [24] emphasize the
effects on future work in agile software development. They point to the expecta-
tion of agile software development team members and experts that the remote
work and use of tools will increase.

In this study, related questions concerning a 4-day work week and the switch
to remote work are addressed to teams of a global company using agile methods
in their software development departments. A pilot of a 4-day work week was
introduced at the beginning of 2021. Our key objective of the study is the inves-
tigation and analysis of the effects on agile software development teams working
in a 4-day work week and a remote working environment. Thus, we defined the
following research questions:

RQ 1: Does the 4-day work week affect the use of agile methods? If so, how do
teams adapt to the new circumstances?

RQ 2: Do the 4-day work week and remote work affect the productivity of agile
software development teams?

RQ 3: Do the 4-day work week and remote work affect the job satisfaction and
stress level of agile software development team members?

How a 4-Day Work Week and Remote Work Affect ASD Teams 63

RQ 4: How does the 4-day work week combined with remote work due to the
Covid 19 pandemic affect the social culture of agile software development
teams?

This paper is structured as follows: In Sect. 2, we provide an overview of
the related work. We explain the selected research design in Sect. 3. We present
the results of the paper at hand in Sect. 4 and present our findings based on
the research questions in the Subsects. 4.1, 4.2, 4.3 and 4.4. The discussion of
our results and practical implications are presented in Sect. 5. We describe the
Threads to Validity in Sect. 6 before the paper closes with a summary in Sect. 7.

2 Related Work

In order to identify related work, we searched for studies and surveys, which are
dealing with topics close to our context. In this section, we present an overview
of the related work. We start with the recent studies dealing with the effects of
the remote work during Covid 19 and close the section with the related work on
4-day work week.

The effects of the switch to remote work before the Covid 19 pandemic on
agile software development teams have been barely investigated in recent years.
However, against the backdrop of the Covid 19 pandemic, the topic gained in
importance. As a result, several studies have been published dealing with the
influences of the switch to remote work during the pandemic, the accompanying
changes in agile software development team work organization, and the chal-
lenges of the new circumstances [19].

Various studies dealing with the influence on productivity and performance
of agile software development teams during Covid 19. However, the results pre-
sented in the recent studies show differences. Butt et al. [6] investigated the
positive and negative effects on agile software development teams during the
pandemic in early 2021 by setting productivity in focus. The authors found that
the productivity of agile software development teams decreased due to a minor
coordination in the teams. Russo et al. [23] present in their study a correlation
between the well-being and productivity. They point to the increased well-being
of team members during the pandemic. In contrast, Ralph et al. [21], which are
also dealing with the correlation of well-being and productivity, found that the
productivity of agile software development teams decreased during the Covid 19
pandemic. The finding of a decreased productivity is also presented by Schmidt-
ner et al. [24].

Neumann et al. [18] investigated the effects on the performance of agile soft-
ware development teams during the Covid 19 pandemic. They found that the
perceived performance of German agile software development teams did not
decrease due to the switch to remote work. The authors emphasize the positive
influence of an increased transparency of the development process and the agile
artifacts in use. Another qualitative study presented by O Connor et al. [20]
shows a positive effect on the performance of agile software development teams.

64 J. Topp et al.

Furthermore, Marek et al. [16] do not find significant changes concerning the
performance of agile software development teams in their survey results.

Various studies show, that agile software development teams are able to
rapidly react to the new circumstances due to the switch to remote work. The
adaptions mainly occurred by the virtualization of agile practices. DaCamara
et al. [9] and Neumann et al. [18] found, that the specific method of used agile
practices is affected. For example, they point to the use of tools like Retrium for
retrospective meetings or the digitization of Kanban and Sprint Boards using
Miro. Also specific techniques according to the effort estimation in planning
meetings changed. Smite et al. [26] investigated the effects of remote work on
the agile practice pair programming. The authors found that the use of pair
programming decreased during Covid 19. They argue this with the increased
effort of conducting the agile practice and a faster fatigue of the involved team
members.

Another facet presented in several studies is the impact on social aspects,
especially the communication and collaboration when using agile methods.
Marek et al. [16] analyzed the impact of the switch to remote work on agile soft-
ware development teams. The authors emphasize communication as an effect
that has a positive impact on the work of agile software development teams
through the stable productivity. In contrast, several authors describe a rather
negative influence on communication and collaboration (e.g., [18,23]). Neumann
et al. [18] referring to the challenge of intercollegiate communication and thus, a
decreased social exchange between the team members. Also, DaCamara et al. [9]
and O Connor et al. [20] describe similar negative effects on the social aspects
of agile software development teams. Griffin [14] describes that the risk of dis-
tractions during remote work is increased.

To the best of our best knowledge, we found no peer reviewed studies in
similar research context related to agile software development and the 4-day
work week. Thus, we decided to search for literature dealing with the 4-day
work week related to software development. Alfares [2] presents a model for
scheduling a 4-day work week, which aims to optimize the work organization
and decrease the cost (and number) of employees. Also, we found grey literature
related to our study. For instance, two white papers describe that a 4-day work
week increases employee productivity as well as work motivation and satisfac-
tion [3,15]. This results especially from the flexibility between the professional
activity and the private environment. Furthermore, several articles discussing a
experiment, which was performed by Microsoft (e.g., [7,11]).

3 Research Approach

3.1 Research Design

We selected a case study approach and conducted the study based on the guide-
lines from Runeson and Höst [22]. We chose the exploratory research approach
and argue our choice with the limited published research in the field. From our

How a 4-Day Work Week and Remote Work Affect ASD Teams 65

point of view, it is important to gain a deep understanding of how the agile soft-
ware development teams react to the new situation working in a remote setting
in a 4-day work week organization environment. Thus, we decided to select a
qualitative research approach according to the guidelines from Yin [30], Runeson
and Hoest [22].

Our research design is mainly organized in three steps. We present the
research design in Fig. 1. First, we searched for existing literature in order to
be able to identify the relevant influencing factors related to our topics 4-day
work week and remote work during the Covid 19 pandemic. Based on these
influencing factors we defined our research questions, which we present in the
introduction. The research questions are the structural basis for our data col-
lection methods. In a second step, we used the research questions to prepare
the data collection, which we describe in detail in Subsect. 3.3. Based on the
influencing factors and our research questions, we structured the data analysis
(see Subsect. 3.4).

Fig. 1. Research design

3.2 Research Context

We conducted our study at the company Pritchett Inc. (anonymized). The
Pritchett Inc. is an online marketing company and operates worldwide. Approx-
imately 1000 employees working for the company.

As our study deals with agile software development, we focus on the soft-
ware development departments of the company. Pritchett Inc. owns five software
development departments in four countries (Germany, Poland, United Kingdom
and United States of America). We performed the study in one software devel-
opment department in Germany and conducted the data collection in two agile
software development teams: Manny and Mitchell (both also anonymized).

Pritchett Inc. sent their employees worldwide to work from home caused by
the Covid 19 pandemic in March 2020 and closed the offices for onsite work par-
tially related to the Covid 19 situation in the country or region. The switch to

66 J. Topp et al.

remote work were new for most of the employees at the German software devel-
opment departments, as it was totally common to work onsite in the offices.
However, the switch to remote work was supported by several tools, which were
already in use by the teams. The agile software development teams under study
used Microsoft Teams and Slack, also before the switch to remote work, because
stakeholder and product owners are working from other departments, also from
other countries. Actually, the company is organized by a work where ever, when-
ever you want principle. The employees can decide by themselves, if they want
to work from home or be onsite in the office. This also applies to Pritchett Inc.
departments in other cities or countries the employees want to go and work
remotely.

In summer 2020, Pritchett Inc. started an experiment of a compressed work
week. For the second half of 2020 the company switched to a 4.5-day work week.
This experiment was adapted in January 2021, as Prittecht Inc. announced the
switch to a 4-day work week, which means one off day per week by non-effects
of the salary. For the support of this major organizational change, the company
provided several guidelines to the employees concerning aspects on vacation or
illness. The employees have the opportunity to define one off day per week. The
off day can vary from week to week. Also, the Pritchett Inc. management made
clear, that the 4-day work week still has the status of an experiment. Today, this
status is still active.

3.3 Data Collection

As described above, we selected a qualitative research approach. We conducted
the data collection in three ways in both agile software development teams
between March and May 2021: Semi-structured interviews with agile software
development team members, observations of agile practices and team meetings
and screening of documents from the software development teams and Prittchet
Inc.

We conducted the semi-structured interviews in English based on a pre-
pared interview guideline (see Appendix A). The interview guide consists of
four phases: Information phase, warm-up and introduction phase, main phase
and closing phase. In the information phase the interviewee get an introduc-
tion of the interviewer, a clarification of the objectives of the study based on
prepared text phrases and organizational aspects, like asking the agreement of
audio recording. The warm-up and introduction phase aims to collect specific
information of the interviewee. For instance, what is the current role in the team.
The main phase is organized based on the four research questions. In the closing
phase we ask the interviewee for further questions or any aspects the person
wants to add. The interview closes with thanks for participating.

In total, we conducted seven interviews. An overview of the interviewees
concerning their roles, teams and experiences is presented in Table 1. We selected
the interviewees based on two criteria. First, the interviewee should be working
at Pritchett Inc. at least since 2019. Second, we wanted to interview at least two
members of each team. Every interview was conducted by an interviewer and at

How a 4-Day Work Week and Remote Work Affect ASD Teams 67

least one other researcher, which protocols the interview. Also, we were able to
record the audio of the interviews by the consent of the interviewees. Later, we
created transcripts of each interview. We conducted all interviews with activated
cameras on both sides: The interviewer and the interviewee. The interviews took
an average of around 40 min.

Table 1. Profiles of the interviewees

ID Current role Team Years of experience
in ASD

P01 Scrum Master Both teams 12

P02 Lead Engineer Mitchell 5

P03 Lead Engineer Manny 13

P04 Software Engineer Mitchell 1.5

P05 Software Engineer Mitchell 4

P06 Software Developer Mitchell 12

P07 Software Developer Manny 11.5

The collected data through observation of agile practices and team meetings
was documented in a standardized protocol (see Appendix B). We conducted 14
observations in total. An overview of the observations is given in Table 2. Every
meeting was held virtually using Microsoft Teams. The observation was planned
in collaboration with the Lead Engineers of the teams. Two researchers observed
the agile practices meetings and documented their notes in the above mentioned
protocol. After the observation the researchers cross-checked the collected data.
The observed Sprint Plannings consists of the agile practices planning, retro-
spective and review meetings. The Sprint Planning 2 is used for the creation of
work items related to the specific backlog items.

The third data source are several documents created by the agile software
development teams and the Prittchet Inc. company. In total, we screened eight
documents. Three of these documents are provided by Pritchett Inc.: Guide-
line for organization requirements related to the 4-day work week, guideline for
requirements concerning the work wherever/whenever principle and an employee
survey. The survey aims to gain an understanding of “drivers” (aspects) like the
well-being, workload, management support or job satisfaction of the employees.

The survey data was filtered to the department under study. The team related
documents we screened are: Two team radar protocols from retrospective meet-
ings, team internal guidelines concerning meeting organization and remote work.
Finally, we checked the performance analysis data from the teams, which are
exported from the task management system Jira.

68 J. Topp et al.

Table 2. Overview of the observations

ID Meeting/Agile practice Team Nr. of participants

B01 Coffee break Both teams 7

B02 Sprint planning Mitchell 9

B03 Sprint planning 2 Mitchell 4

B04 Sprint planning Manny 10

B05 Sprint planning 2 Manny 5

B06 Monthly department meeting Both teams 20

B07 Daily stand up Manny 3

B08 Daily stand up Mitchell 5

B09 Coffee break Both teams 5

B10 Sprint planning Mitchell 10

B11 Sprint planning 2 Mitchell 5

B12 Sprint Planning Manny 8

B13 Daily stand up Manny 10

B14 Daily stand up Mitchell 10

3.4 Data Analysis

As shown in Fig. 1, our data analysis was done in three steps. First, we created
an Excel file and used the research questions and identified influencing factors
from the literature as a structural basis. In a second step we transferred our col-
lected data to the structured Excel file. Based on the structured data in the Excel
file we coded our data into 25 codes and eight categories. This coding was ini-
tially done close to our collected data and refined by cross check iterations from
the researchers. Third, we used the structured (coded and categorized) content
to analyze, which information is more or less relevant for our study results. This
was mainly done by content triangulation using a virtual whiteboard in Miro. We
checked individually, which information can be found how often in the structured
data content per data collection method and discussed our results in the researcher
group. The more often information was identified, the relevance of the finding
increases. Finally, the analyzed content provides us the possibility to evaluate the
information ordered by their relevance according to the research questions.

4 Results

4.1 RQ 1: Effects on the Agile Method in Use

Due to the introduction of the 4-day work week, the agile method used has been
adapted, because less time with a constant workload resulted in a tighter sched-
ule. This adjustment was reflected in the statements made during the interviews.
These revealed that the length of the sprints was reduced from two to one week

How a 4-Day Work Week and Remote Work Affect ASD Teams 69

(P01–P07), as P01 described: “We also did sprint time boxing and shortened our
sprints from two weeks to one week.” As a consequence of the shortened sprint
length, agile practices related to the sprint change (sprint n → sprint n+1) were
adapted. The affected agile practices are the planning, review and retrospective
meetings. All of these agile practices were shortened in time (P01, P05). Several
interviewees mentioned, that all non-urgent meetings were marked as optional
as an additional adaption (P01, P02, P04, P06). For instance, P02 said: “In the
past we had more spontaneous meetings that were not well prepared because we
immediately go to a meeting room when a topic was coming up. Now when a
topic is raising up we discuss if the meeting is needed.” Non-urgent meetings are
all those meetings, that do not actively contribute to the productive progress
of a project. In addition to the statements of the interviewees, the observations
confirmed these results (B01–B14).

4.2 RQ 2: Effects on the Productivity

With regard to the productivity of the agile software development teams, the
effects of remote work and the 4-day work week in relation to professional com-
munication, effectiveness and stress were examined. We found that professional
communication had become more efficient. All interviewees indicated that meet-
ings are more coordinated and focused. Almost half of all interviewees declared
that the number of meetings were decreasing and were taking less time (P01,
P04, P07). The Scrum Master (P01) explains: “The number and the duration
of meetings changed. So we also reduce the time for meetings as well where it
was possible” In addition, fewer private conversations and interruptions are tak-
ing place in meetings (P01–P04), as P03 describes: “The meetings in remote
work are much more focused. There is less small talk and not that many inter-
ruptions during the meeting for example that someone needs a break or comes
late. It’s easier to deal with meeting series” The other interviewees noted that
the number of meetings had not changed (P02, P05, P06). The different state-
ments are probably affected due to the roles of the team members, as lead roles
generally attend more meetings. Furthermore, discussions arising in meetings
were overly technical (P01, P03, P04): “Communication is way more efficient
communication and on point. In the office there were more small talks an per-
sonal conversations at the beginning and in the end of a meeting. Now we have
nearly only work-related discussions in the online meetings.” (P01) Nine out of
14 observed meetings showed that work-related communication was mostly not
interrupted by private conversations (B03, B04, B06, B07, B08, B11, B12, B13,
B14). Since the beginning of 2021, one project team has set meeting guidelines
in their Confluence space. They not only contain a code of conduct but also
rules for meeting organization, participation, and documentation. This provides
a better structured communication in meetings. In both agile software develop-
ment teams, staff absence days are tabulated in Confluence in relation to the
4-day week to ensure better coordination for meetings.

Similarly, we found that work had become more efficient since the switch to
remote work. Six out of seven interviewees reported the same amount of work

70 J. Topp et al.

(P01, P02, P06, P07) or more work (P03, P04) in the same amount of time
since the introduction of remote work. One Engineer describes: “Reducing one
day per week, its obvious that this will produce overtime. But I have to mention
that the company is still working 5 days a week, just the employees are working
4 days a week. So I just work further when I know I have my day off tomor-
row.”(P04) This was argued by the agile software development team members
due to concentrated a focused manner while working from home, because there
are no decreased disruptive factors such as loudness, small talks with colleagues
or other interruptions (P01–P07 and B01, B03-B09, B11, B12–B14): “Before we
had a big office space where it was sometimes very loud and even if colleagues
pass by we just have a short conversation what was kind of interrupting you.”
(P01). The working time on the four working days had basically increased (P01,
P03–P06), as an engineer states (P06): “Yes, [I work more overtime] because we
have our goals in the sprint planning. And if we see that the time is running
out, we do some overtime to get these tasks finished.” However, this could be
attributed more to the project-related time pressure in the individual projects
than to the 4-day work week or remote work (P05–P07). The statements from
the interviews were also reflected in retrospective meetings. We verified retro-
spective protocols and found that since the deployment switch of remote work
the workload increased temporarily but not continuously. In addition, the veloc-
ity report and the log of the solved tickets show a positive increase in the velocity
and solved tickets in the time of the changeover to remote work and the 4-day
work week. This strengthens our findings about the increase of efficiency.

4.3 RQ 3: Effects on the Job Satisfaction and Stress Level

Effects on the Job Satisfaction: The 4-day work week and remote work have a
positive effect on the work of the agile software development teams by increasing
job satisfaction: “Definitely [I like working from home]. I feel more productive.
To go to office is more for socializing, team-building and workshops. Currently I
think it’s the best way how we could work in the future.” (P02) The quieter work-
ing place and flexible work scheduling enable a more productive work environ-
ment (P01–P03, P05–P07). Likewise, the elimination of commuting (P03–P06)
and a better work-life balance (P06, P05) lead all respondents to be satisfied
with remote work (P01–P07). The observations and document review confirm
this by noting a calm work atmosphere without any interruptions in 11 out of
14 observed meetings (B01, B03–B14), as well as an upward trend in the “Sat-
isfaction” section of the team radar since the introduction of remote work.

In addition, the introduction of remote work leads to an increase in work
motivation among the employees (P01-P05, P07). Only one respondent noted
that his work motivation dependents on the project (P06), the engineer describes:
“It always depends for me on the project, not on the remote work. For 4-day-
work week the motivation is higher, because at the moment it’s a test phase
so we need to be successful with that so we can continue. I think that’s what
motivates everyone.” The section “Accomplishment” in the employee survey
reflects the statements of the interviewees. Since the introduction of remote

How a 4-Day Work Week and Remote Work Affect ASD Teams 71

work, satisfaction with work performance has increased. Besides, the sufficient
provision of work equipment also contributes to employee satisfaction (P01–P07),
as P03 explains: “We all have Notebooks from [Pritchett Inc.] and we are allowed
to collect some hardware from the office.” Due to defined guidelines in advance,
the procurement of equipment for remote work is determined. These guidelines
enable employees to obtain additional equipment at company’s expense. This
option was taken up by some respondents, for example, to get a better keyboard
or a screen with a higher resolution (P02, P05). In addition to remote work,
the 4-day week also leads to job satisfaction among employees because they feel
happier, more balanced, and more satisfied (P01–P07). One lead engineer (P02)
states: “I think the biggest change is that everyone is really happy with it. You
see it in terms that everybody is motivated. Everyone seems very satisfied. The
4 day week is a real life changer.” Reasons for this are the individually usable
day off once a week, which offers more relaxation (P02, P04), the more flexible
work schedule (P01–P06) and the additional time with the family (P01, P03).
The Section “Engagement” and “Workload” in the employee survey reinforced
these statements, because firstly, the employee satisfaction has steadily increased
since the introduction of remote work and secondly, a further increase is visible
since the 4-day work week. Furthermore, employees do not perceive any negative
impact on their workload, but rather draw positive effects from the introduction
of remote work and the 4-day work week.

Effects on the Stress Level of Agile Software Development Team Members: Due
to the 4-day work week, the work-related stress of the employees had increased
(P02, P04, P06, P07): “Sometimes it’s a bit more stressful than before. On some
days the organization of tasks is harder because certain people may not be in office
at that day because of 4-day work week. So, we need to organize more, that results
in a bit more stress.”(P06) According to the interviewees, this is related to the
compressed workdays (P03, P06, P07) and the frequent context changes (P03,
P07). However, for agile software development team members, an additional
day off as well as the elimination of commuting time seem to be more important
benefits (P01–P05, P07), as Engineer P04 states: “I would say because of one day
more, its more flexibility and its relaxing my week more. I can plan this day as I
want, so that’s improving my private life.” Although work stress had increased,
this did not lead to more intercollegiate conflicts (P02–P04, P06, P07) in the
teams. This statement is also confirmed by the aspect “Peer Relationship” in
the employee survey, in which the relationship between colleagues was examined.
Here, there are no changes compared to the time before remote work. Despite
the increased work-related stress, remote work and the 4-day work week leads
to less stress in private everyday life due to more flexible leisure time and the
elimination of commuting (P01–P06): “I am less stressed. Right now, I have no
way to the office and back home. So, there I have no stress to get the train. I
have a better work life balance right now and I am more flexible.” (P05)

72 J. Topp et al.

4.4 RQ 4: Effects on the Social Culture

The 4-day work week has an impact on the social culture in the agile software
development teams due to the compressed working schedule. This results mainly
in a low willingness to participate in meetings with social context (B01, B09).
Interviewees perceive these meetings as an interruption of active participation
in the team (P01, P02, P05–P07). Engineer P07 states: “For these meetings, it’s
always the same people who are participating in these kinds of meetings. Often,
I don’t participate either because in Pair-Sessions we just keep working instead
of taking part because we have no time for this.” Some would replace them by
the continued work as soon as there were time constraints (P01, P05, P07),
the Scrum Master describes: “The acceptance of the personal online events is
very rare because you skip these meetings instant when there is much work pres-
sure due to the tight schedule. But some colleagues are taking these meetings
every time. Some never come.” The observations of meetings with a social focus
confirm the interviewees’ statements (B01, B09). Another effect on the social
culture in the teams is caused by the more professional working environment
mentioned by the interviewees (P02, P03, P05, P06). Reasons for this change
were a propagated focus on work issues (P03) and a stronger separation of work
environment and lunch break due to remote work (P06). In addition to the
statements from the interviewees, the observed meetings also show a focused
and goal-oriented execution. Furthermore, an efficient time management with
adherence to time frames and no interruptions were observed (B03, B04, B06–
B08, B11–B14). Besides, a low proportion of social communication in comparison
to the total communication during these meetings was observed (B02, B04, B05,
B08–B10). Despite the effects already mentioned, some interviewees assessed
the relationship with their team members as unchanged (P02, P05–P07) or only
slightly worse (P01, P02, P04). This estimation was also confirmed by inter-
nal documentation concerning the team member satisfaction, where no negative
change in the relationships between team members can be seen.

5 Discussion and Practical Implications

Based on the results of our study, we discuss the findings with the aim to provide
practical implications.

First and foremost, our results show a higher level of the perceived work-
related stress due to the tighter schedule. The facet of increased stress in agile
software development teams is also shown by other studies (e.g., [17]). However,
an increased stress level by the development team members may occur due to
other aspects like the project situation or is only temporarily due to the new sit-
uation and decreases if new routines had been established. Also, this aspect may
affected by the switch to remote work of the agile software development teams
(e.g., [6]) even though the teams under study switched to remote work due to the
Covid 19 pandemic in March 2020. We recommend questioning time boxes, such
as meeting duration or sprint lengths, and experiment with shortening the time
available in order to increase efficiency within the time boxes. Lean principles

How a 4-Day Work Week and Remote Work Affect ASD Teams 73

can be used to identify waste in all aspects of agile software development. This
aspect should improve the performance especially due to the tighter time boxes of
correlated agile practices like planning, review or retrospective meeting. We also
assume that the tighter iteration time and more often performed the respective
meetings lead to an increased optimization of work processes and organization.
The focus of the actual prioritized requirements should also be increased, which
seems to be helpful in the Covid 19 pandemic time as it provides the opportunity
to react more quickly to changed circumstances. However, it should be taken into
account that the work-related stress level of the team members may increase.
Thus, we recommend coaching roles to focus on the social facets, especially the
well-being and stress level of the team members to avoid negative effects.

Related to the introduction of a compressed work schedule we recommend
a smooth switch to a 4-day work week. The switch to a 4.5-day work week for
the first months seems to be a good approach, as it provides the opportunity for
the agile software development teams to react to the new circumstances and test
potential constraints of the work organization. The subsequent change to a 4-day
work week seems to be easier for the teams as they are used to react to a com-
pressed working schedule. Further, we point to several constraints concerning the
4-day work week. From our point of view, the maturity of the agile software devel-
opment teams should be of importance as the team members have experience
with relevant characteristics of agile methods especially the self-organization or
Kaizen approach. Thus, they are able to react to new circumstances quickly and
find solutions for related challenges. Teams without such an experience should
be facilitated by supporting roles like agile coaches or scrum masters. It seems
to be quite obvious that a compressed working schedule may not be useful for
other business fields, e.g., the manufacturing industry, as the work processes
are already optimized on a high level and the increase of efficiency should be
quite low. We also point to other potential constraints like the organizational
culture, which may effect the ability of the agile software development teams to
experiment new approaches and optimize continuously one’s own approach.

6 Threats to Validity

It is important to take several limitation into account when conducting case
studies with a qualitative research method [22].

Construct Validity: In this study, we considered the 4-day work week and remote
work together, as both work organization types were used simultaneously at
the time of the research. The design of our interview guideline counteract this
aspect, as we designed the questions specifically to the two work organization
types (remote work and 4-day work week). The interviews took an average of
around 40 min. This length can be tiring for the interviewees and may lead to
shorter answers towards the end of the interview than at the beginning. To
counteract this effect, we conducted all interviews during regular working hours
and pointed out that a time buffer of at least 10 min should be planned for the

74 J. Topp et al.

next scheduled appointment. Another aspect is the risk of not identifying all
of the relevant literature, as we used recent studies to identify the influencing
factors. Thus, we searched for related literature in several digital libraries and
refined our search rings in iterative search runs.

Internal Validity: Although a thorough analysis of recent literature was the basis
for developing our interview guideline and observation protocol, some internal
validity threats need to be taken into account. In order to avoid bias, we took
several measures. First, the interview guideline consists of non-leading questions.
Also, the interviews were designed as semi-structured. Thus, we were able to go
in-depth in those directions the interviewee aims for. The interviewers did not
personally know the interviewees. All interviews were conducted by at least two
researchers. We also recorded every interview and created transcripts later. As
a further measure, the researchers verified the transcripts from the recording,
before we analyzed the data on detail.

Furthermore, we used several triangulation types to strengthen the validity
of our results as recommended by Runeson and Hoest [22] and Yin [30]. We
used different data collection types and sources. This triangulation helped us to
optimize the consistency of our findings.

External Validity: It is worth to mention, that the external validity could be
higher with integrating more cases considered in Prittchet Inc. and in other
companies, industries or countries. Further, the phenomena under study should
affect other departments (e.g., marketing or human resources). Thus, a further
analysis of non agile software development teams may be interesting, as the
switch to the 4-day work week and remote work affects the other departments.

7 Conclusion and Future Work

This study presents our findings on the effects of a 4-day work week and the
remote work of agile software development teams. In this section we summarize
the results and provide ideas for future work.

In summary, the 4-day work week and remote work have various positive
influences on the agile software development teams under study. First, the intro-
duction of the two work organization models leads to an increased job satisfac-
tion and productivity. However, we also found that the stress level of the team
members increased.

Second, the shortened work week and the resulting tighter schedule primar-
ily affect the social exchange within the agile software development teams. In
addition, the 4-day work week leads to adaptions of the agile method in use.
Both, the sprint length and several agile practices such as planning, review and
retrospective meetings were adapted in particular concerning their length due
to the compressed working time of the team members. Due to the compressing
of the working time and the adaption of agile practices, the communication and
execution of the agile practices is straight forward and become more formal.

How a 4-Day Work Week and Remote Work Affect ASD Teams 75

We confirm effects of the remote work presented by recent studies, such as the
reduced social interaction among the team members.

The 4-day work week and remote work seem to represent a flexible working
model for the future to enable a better work-life balance and generally increase
the job satisfaction and motivation of employees. To counteract the observed
negative effects of the reduction of social communication, we recommend to
implement regular workshops and events organized in onsite settings.

In the context of this study, the 4-day work week and remote work were con-
sidered together, as both work organization models were used simultaneously at
the time of our data collection. Future research could investigate which effects
can be attributed to the 4-day work week or remote work in detail. This will
gain a deeper understanding of these two work organization models and, where
appropriate, provide new application scenarios and opportunities for organizing
remote working agile software development teams. In addition, we recommend
to transfer the research context to other settings to compare the two work orga-
nization models depending on aspects like the industry or company size.

Appendix A

The interview guideline is available at the academic cloud: Download Link

Appendix B

The observation protocol is available at the academic cloud: Download Link

References

1. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development
methods: Rev. Anal. 478, 7–94 (2002)

2. Alfares, H.K.: Flexible 4-day workweek scheduling with weekend work frequency
constraints. Comput. Ind. Eng. 44(3), 325–338 (2003). https://doi.org/10.1016/
S0360-8352(02)00192-4

3. Andrews, J.: A 4-day working week? [white paper] (2016). https://bakerstuart.
com/wp-content/uploads/2016/01/White-paper-Four-Day-working-week.pdf

4. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley,
Boston, 5. print edn. (2000)

5. Beck, K., et al.: Agile manifesto (2001). https://agilemanifesto.org/
6. Butt, S.A., Misra, S., Anjum, M.W., Hassan, S.A.: Agile project development issues

during COVID-19. In: Przyby�lek, A., Miler, J., Poth, A., Riel, A. (eds.) LASD 2021.
LNBIP, vol. 408, pp. 59–70. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-67084-9 4

7. Chappell, B.: 4-day workweek boosted workers’ productivity by 40%, microsoft
japan say (2019). https://www.npr.org/2019/11/04/776163853/microsoft-japan-
says-4-day-workweek-boosted-workers-productivity-by-40

8. Chow, I.H., Chew, I.K.: The effect of alternative work schedules on employee per-
formance. Int. J. Empoly. Stud. 14, 105–130 (2006)

https://sync.academiccloud.de/index.php/s/Yql0cy8EJcQSyRd
https://sync.academiccloud.de/index.php/s/uvOAI5PQgbLslF8
https://doi.org/10.1016/S0360-8352(02)00192-4
https://doi.org/10.1016/S0360-8352(02)00192-4
https://bakerstuart.com/wp-content/uploads/2016/01/White-paper-Four-Day-working-week.pdf
https://bakerstuart.com/wp-content/uploads/2016/01/White-paper-Four-Day-working-week.pdf
https://agilemanifesto.org/
https://doi.org/10.1007/978-3-030-67084-9_4
https://doi.org/10.1007/978-3-030-67084-9_4
https://www.npr.org/2019/11/04/776163853/microsoft-japan-says-4-day-workweek-boosted-workers-productivity-by-40
https://www.npr.org/2019/11/04/776163853/microsoft-japan-says-4-day-workweek-boosted-workers-productivity-by-40

76 J. Topp et al.

9. Da Camara, R., Marinho, M., Sampaio, S., Cadete, S.: How do agile software
startups deal with uncertainties by Covid-19 pandemic? Int. J. Softw. Eng. Appl.
11(4), 15–34 (2020). https://doi.org/10.5121/ijsea.2020.11402

10. Dunham, R.B., Pierce, J.L., Castaneda, M.B.: Alternative work schedules: two field
quasi-experiments. Person. Psychol. 40, 215–242 (1987). https://doi.org/10.1111/
j.1744-6570.1987.tb00602.x

11. Eadicicco, L.: Microsoft experimented with a 4-day workweek, and productivity
jumped by 40% (2019). https://www.businessinsider.com/microsoft-4-day-work-
week-boosts-productivity-2019-11

12. Facer, R.L., Wadsworth, L.: Alternative work schedules and work-family balance:
a research note. Rev. Public Person. Adm. 28, 166–177 (2008). https://doi.org/
10.1177/0734371X08315138

13. Goodale, J.G., Aagaard, A.K.: Factors relating to varying reactions to the 4-day
workweek. J. Appl. Psychol. 60, 33–38 (1975). https://doi.org/10.1037/h0076345

14. Griffin, L.: Implementing lean principles in scrum to adapt to remote work in a
Covid-19 impacted software team. In: Przyby�lek, A., Miler, J., Poth, A., Riel, A.
(eds.) LASD 2021. LNBIP, vol. 408, pp. 177–184. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-67084-9 11

15. Guardian, P., Barnes, C., of Technology, A.U., of Auckland, U., Watts, M.E.R.:
The four-day week: guidelines for an outcome-based trial: raising productivity and
engagement [white paper] (2019). http://hdl.voced.edu.au/10707/501849

16. Marek, K., Winska, E., Dabrowski, W.: The state of agile software development
teams during the Covid-19 pandemic. In: Przybyek, A., Miler, J., Poth, A., Riel,
A. (eds.) LASD 2021. LNBIP, vol. 408, pp. 24–39. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-67084-9 2

17. Meier, A., Kropp, M., Anslow, C., Biddle, R.: Stress in agile software development:
practices and outcomes. In: Proceedings of the 19th International Conference on
Agile Processes in Software Engineering and Extreme Programming. (XP) p. 259
(2018)

18. Neumann, M., Bogdanov, Y., Lier, M., Baumann, L.: The Sars-Cov-2 pandemic and
agile methodologies in software development: a multiple case study in Germany.
In: Przyby�lek, A., Miler, J., Poth, A., Riel, A. (eds.) LASD 2021. LNBIP, vol. 408,
pp. 40–58. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67084-9 3

19. Nolan, A., White, R., Soomro, M., Dopamu, B.C., Yilmaz, M., Solan, D., Clarke, P.:
To work from home (WFH) or not to work from home? lessons learned by software
engineers during the covid-19 pandemic. In: Yilmaz, M., Clarke, P., Messnarz, R.,
Reiner, M. (eds.) Systems, Software and Services Process Improvement, pp. 14–33.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-56441-4

20. O Connor, M., Conboy, K., Dennehy, D.: Covid-19 affected remote workers: a tem-
poral analysis of information system development during the pandemic. J. Decis.
Syst. (2021). https://doi.org/10.1080/12460125.2020.1861772

21. Ralph, P., et al.: Pandemic programming: How Covid-19 affects software developers
and how their organizations can help. Emp. Softw. Eng. 1–35 (2020). https://doi.
org/10.1007/s10664-020-09875-y

22. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Emp. Softw Eng. 14(2), 131–164 (2009). https://doi.org/
10.1007/s10664-008-9102-8

23. Russo, D., Hanel, P., Altnickel, S., van Berkel, N.: Predictors of well-being and
productivity among software professionals during the Covid-19 pandemic: a longi-
tudinal study. Emp. Softw. Engi. 26, 1382–3256 (2021)

https://doi.org/10.5121/ijsea.2020.11402
https://doi.org/10.1111/j.1744-6570.1987.tb00602.x
https://doi.org/10.1111/j.1744-6570.1987.tb00602.x
https://www.businessinsider.com/microsoft-4-day-work-week-boosts-productivity-2019-11
https://www.businessinsider.com/microsoft-4-day-work-week-boosts-productivity-2019-11
https://doi.org/10.1177/0734371X08315138
https://doi.org/10.1177/0734371X08315138
https://doi.org/10.1037/h0076345
https://doi.org/10.1007/978-3-030-67084-9_11
https://doi.org/10.1007/978-3-030-67084-9_11
http://hdl.voced.edu.au/10707/501849
https://doi.org/10.1007/978-3-030-67084-9_2
https://doi.org/10.1007/978-3-030-67084-9_2
https://doi.org/10.1007/978-3-030-67084-9_3
https://doi.org/10.1007/978-3-030-56441-4
https://doi.org/10.1080/12460125.2020.1861772
https://doi.org/10.1007/s10664-020-09875-y
https://doi.org/10.1007/s10664-020-09875-y
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8

How a 4-Day Work Week and Remote Work Affect ASD Teams 77

24. Schmidtner, M., Doering, C., Timinger, H.: Agile working during Covid-19
pandemic. IEEE Eng. Manag. Rev. (2021). https://doi.org/10.1109/EMR.2021.
3069940

25. Schwaber, K., Sutherland, J.: The scrum guide (2020). https://www.scrumguides.
org/scrum-guide.html

26. Smite, D., Mikalsen, M., Moe, N.B., Stray, V., Klotins, E.: From collaboration to
solitude and back: remote pair programming during COVID-19. In: Gregory, P.,
Lassenius, C., Wang, X., Kruchten, P. (eds.) XP 2021. LNBIP, vol. 419, pp. 3–18.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78098-2 1

27. VersionOne, Collabnet: 15th annual state of agile survey report (2021). https://
www.stateofagile.com/

28. Wadsworth, L., Facer, R.L.: Work-family balance and alternative work sched-
ules: exploring the impact of 4-day workweeks on state employees. Public Person.
Manag. 45, 382–404 (2016). https://doi.org/10.1177/0091026016678856

29. Williams, L.: Agile software development methodologies and practices. In: van
Zelkowitz, M. (ed.) Advances in Computers, vol. 80, pp. 1–44. Academic Press,
London (2010). https://doi.org/10.1016/S0065-2458(10)80001-4

30. Yin, R.K.: Case Study Research: Design and Methods, Applied Social Research
Methods Series, 4th edn., vol. 5. Sage, Los Angeles (2009)

https://doi.org/10.1109/EMR.2021.3069940
https://doi.org/10.1109/EMR.2021.3069940
https://www.scrumguides.org/scrum-guide.html
https://www.scrumguides.org/scrum-guide.html
https://doi.org/10.1007/978-3-030-78098-2_1
https://www.stateofagile.com/
https://www.stateofagile.com/
https://doi.org/10.1177/0091026016678856
https://doi.org/10.1016/S0065-2458(10)80001-4

Impact of Turkish National Culture on Agile
Software Development in Turkey

Aysegul Gelmis1, Necmettin Ozkan2(B), Ali J. Ahmad3, and Mehmet Guray Guler4

1 Turkcell Technology, İstanbul, Turkey
aysegul.gelmis@turkcell.com.tr

2 Information Technologies Research and Development Center, Kuveyt Turk Participation
Bank, Kocaeli, Turkey

necmettin.ozkan@kuveytturk.com.tr
3 University of Warwick, Coventry, UK
ali.ahmad@warwick.ac.uk

4 Yildiz Technical University, Istanbul, Turkey
mgguler@yildiz.edu.tr

Abstract. The effect of national culture in the software development especially
in Agile Software Development industry has a considerable place since national
culture affects and shapes organizations and individuals. Our study examines the
impact of Turkish national culture on Agile software transformations and devel-
opments in Turkey, as the first instance in/for Turkey scope, to the best of our
knowledge. We conducted semi-structured interviews with fourteen experts in
prominent nine companies from three major industries including TechFin, Avia-
tion, and Telecommunication. In the study, motivations of organizations for trans-
forming Agile, challenges with transitioning to Agile, Agile culture specific to
Turkey and preferences on Agile frameworks in Turkey were investigated. The
results were discussed along with their implications for Agile in Turkey by con-
sidering Hofstede’s model which is designed to investigate country-level cultural
traits. Our results are largely parallel with the existing knowledge of Hofstede
Insights specific to Turkish culture, yet we additionally present the impacts of this
national culture of Turkey on the country’s Agile Software Development. Conse-
quently, it was observed that the national cultural background has a considerable
effect on the Turkish Agile software development domain. We have witnessed
some similar effects in the Eastern culture as well. By providing the country’s
cultural patterns through a localized lens, the study may contribute to those who
may have a practical interest to Turkish in terms of which potential challenges
they need to be prepared for once they move into the adoption of agile work-
ing in/with this country and more generally in/with the countries with which has
similar cultures as in the Eastern civilizations. Our study also comes with global
insights to the other countries in terms of understanding the use of agile methods
and practices in companies located outside of the early adopters of agile methods.

Keywords: Agile software development · Agility · Scrum · Kanban · Culture ·
Nation · Hofstede 6D model

© Springer Nature Switzerland AG 2022
A. Przybyłek et al. (Eds.): LASD 2022, LNBIP 438, pp. 78–95, 2022.
https://doi.org/10.1007/978-3-030-94238-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94238-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-94238-0_5

Impact of Turkish National Culture 79

1 Introduction

The social aspect of Agile Software Development (shortly Agile) is a critical factor to
consider for successful Agile implementations [1]. Culture, as one of the prominent
social human aspects, is a keystone in Agile since agility requires proper changes in
individual, team, and corporate culture. For instance, a successful cultural transforma-
tion is regarded as a very revealing litmus test to differentiate “being agile” from “doing
agile”. However, the cultural background of Agile is generally a neglected aspect by
researchers [2]. Among the cultural dimensions, national culture has a special place
even though it is relatively difficult to shape compared to other scales (individual, team
and corporate). National culture can have a significant effect on the organizational cul-
ture and determine many facets including preferred leadership styles, decision-making,
perceptions of authorities, formalization level, communication and interaction manners,
business etiquette and motivation [3].

Despite its significance, national culture perspective has limited space in the current
academic literature; rather the focus is on the cultural impact of organization, team and
project contexts on Agile implementations [2, 4]. The most apparent area where national
culture variations are investigated is in global/offshore software development, especially
in the contexts of intercontinental software development. For example, cultural transi-
tions between Eastern and Western countries manifest and even appear as a challenge to
be managed. Many of the companies report challenges rooted in the cultural differences
when introducing Agile in projects involving offshore engineers [5].

National cultural studies are (and should) not limited to this scopeonly; every country,
whether involved in offshore development or not, has its own culture, and its culture
considerably shapes its Agile patterns. However, recently, the national culture studies
do not go much beyond the global/offshore software development boundaries in the
literature.

Turkey has its own culture, like others, that could pose either benefits or challenges
to its growing software development industry using more and more Agile approaches
nowadays [6]. It has also a unique national culture lying between East andWest in terms
of geographical, cultural, and sociological aspects. However, there is a lack of resources
about the Turkey’s cultural impacts on Agile in the country’s software development
industry. This gap calls for an important research topic to study. In our study we focus
on the impact of the Turkey’s national culture on Agile context by providing cross-
sectoral interview data to understand whether there is a sector depended effect or not.
Specifically, we identified the research objectives (ROs) as follows:

• RO1: Motivations of organizations for transforming Agile in Turkey
• RO2: Challenges with transitioning to Agile in Turkey
• RO3: Agile culture specific to Turkey
• RO4: Preference on Agile frameworks in Turkey

The rest of this paper is organized as follows: Sect. 2 delivers the background for
Hofstede’s model [7] (a model designed to investigate country-level cultural traits) we
used for analyzing Turkish culture, along with its implications for Agile in general. The
Sect. 3 presents the scope of previous research confronting national cultures with Agile

80 A. Gelmis et al.

context. Section 4 depicts the research methodology adopted. Section 5 delivers results
and Sect. 6 evaluates results with the consideration of the model. Finally, Sect. 7 depicts
conclusion, limitations, and future work.

2 Background

Even though its validity has been criticized in some research (e.g. as listed by [8]),
regarding the culture at national level, 6-D (six dimensions) Model of Hofstede [7]
provides one of the most comprehensive studies and mostly cited model in Information
Systems research [2, 9]. Additionally, based on this model, by using primary research
data from more than a hundred thousand questionnaires conducted in a multinational
company’s (IBM) subsidiaries in more than 60 countries, Hofstede Insights [10] exhibits
deeper insights about the nation’s cultural characteristics through the lens of 6-DModel.
The dimensions are namely Power Distance, Individualism, Masculinity, Uncertainty
Avoidance, Long Term Orientation, and Indulgence. The succeeding parts convey their
descriptions, Turkey’s scores, and implications of the scores from thewebsite ofHofstede
Insights [10].

Power Distance is defined as “the extent to which the less powerful members of
institutions and organizationswithin a country expect and accept that power is distributed
unequally”. Turkey scores high (66) on this dimension, characterizing the Turkish style:
“dependent, hierarchical, superiors often inaccessible and the ideal boss is a father figure.
Power is centralized and managers rely on their bosses and on rules. Employees expect
to be told what to do. Control is expected and attitude towards managers is formal.
Communication is indirect and the information flow is selective.”

Individualism is “the degree of interdependence a society maintains among its mem-
bers. It has to do with whether people’s self-image is defined in terms of “I” or “We”.
In Individualist societies people are supposed to look after themselves and their direct
family only. In Collectivist societies, people belong to ‘in groups’ that take care of them
in exchange for loyalty”. Turkey has a score of 37 referring a collectivistic society. This
means that “communication and feedback is indirect, and the harmony of the group has
to be maintained, open conflicts are avoided. The relationship has a moral base, and this
always has priority over task fulfillment.”

Masculinity with high scores indicates, “The society will be driven by competition,
achievement and success, with success being defined by the winner/best in field. A low
score (Feminine) means that the dominant values in society are caring for others and
quality of life…The fundamental issue here is what motivates people, wanting to be the
best (Masculine) or liking what you do (Feminine).” Turkey has the score of 45 and is
on the Feminine side. This indicates, “The softer aspects of culture such as leveling with
others, consensus, sympathy for the underdog is valued and encouraged. Conflicts are
avoided in private and work life and consensus at the end is important.”

The dimension Uncertainty Avoidance expresses “the degree to which the members
of a society feel uncomfortable with uncertainty and ambiguity: should we try to control
the future or just let it happen?” Turkey scores 85, high Uncertainty Avoidance, on this
dimension. It means, “There is a huge need for laws and rules. To minimize anxiety,
people make use of a lot of rituals.”

Impact of Turkish National Culture 81

Long Term Orientation dimension describes, “How every society has to maintain
some links with its own past while dealing with the challenges of the present and future,
and societies, priorities these two existential goals differently. A culture scoring high
takes a more pragmatic approach.” With the intermediate score of 46, no dominant
cultural preference can be inferred for Turkey in this dimension.

Indulgence dimension is defined as “the extent to which people try to control their
desires and impulses, based on theway theywere raised.With an intermediate score of 49
for Turkey, no dominant cultural characteristic to this dimension cannot be determined.

When explored Turkish culture along with other world culture examples in Hofstede
Insights [10], Turkey exhibits a similar picture with Eastern centuries such as China,
India, Japan, SouthKorea in termsof highPowerDistance andCollectivist characteristics
as seen in Fig. 1. In the Western countries, these two dimensions are the opposite. The
rest of the dimensions does not pose such a clear distinction between Turkey andWestern
or Eastern countries.

*The website allows comparing four counties at once

Fig. 1. Comparison of Hofstede insights dimensions of some Eeastern (Source: [10]). *The
website allows comparing four counties at once

Regarding the impacts of these cultural dimensions on Agile, the literature has
almost a clear consensus on the negative effect of high Power Distance, especially
on empowerment, self-organization and collaborative management capabilities of the
teams. Although, low Uncertainty Avoidance supports agility with embracing change in
general and agility allows low Uncertainty Avoidance, Agile principles and frameworks
such as Scrum (a “process framework”) includes discipline, “regular intervals”, fixed
durations, determined roles, and planning rituals as the signs of high Uncertainty Avoid-
ance. However, these aspects refer to the discipline side of Agile, rather than agility side
of it. Therefore, we may consider low Uncertainty Avoidance largely supports agility.

82 A. Gelmis et al.

While high Individualism has positive effects on Agile with direct communication, col-
lectivist societies are, on the other hand, good at having team spirit and harmony that
agility requires, which makes to identify if the Agile values favor individualistic or col-
lective traits more difficult. This case at least requires a balance between these two edges
for the proper agility.

Group interaction, face-to-face communication, collaboration, flexibility and look-
ing for consensus, as feminine values on one side, having clear and tangible goals, being
determined and result oriented, as masculine attributes on the other side, advance agility,
which makes to draw a clear conclusion on the relationship between Agile and Mas-
culinity hard. Agile calls for Long Term Orientation with customer collaboration rather
than negotiating single contract, product development (supported by product roadmaps,
product-based teams rather than temporary project-based teams), long-term relation-
ships, “sustainable development” and “a constant pace indefinitely”. On the other hand,
delivery of working software frequently, early and continuously, with a preference to
the shorter time scale imply Short Term Orientation. People in restraint societies hold
the perception of out of own control where freedom of speech is not a common practice,
which is against to agile values, while indulgent societies feel personal life control that
supports agility.

3 Related Work

Thenational cultures and cultural differences have been studied in-depth by several social
scientists [5], including investigations on influences by a particular cultural background
to some aspects of software engineering. For instance, study [20] explores the impact of
power distance’s cultural aspects on requirement engineering activities by conducting
interviews with software engineer practitioners from Saudi Arabia and Australia and
using Hofstede’s cultural model. Specific to the Agile context, there are some studies
such as study [5] reporting results about cultural barriers impeding agile ways of work-
ing in distributed teams from an empirical study of a Swedish company working with
offshore engineers from an outsourcing vendor in India. Such challenges are not limited
to the countries of Western and Eastern cultures; Moe et al. [11] stated that during an
onboarding process, the most important success factor is finding Portuguese developers
that matched the culture of the existing Norwegian Agile teams.

The study [4], including the model we used in our research, focuses on analyzing and
understanding the relationships between Agile and national culture values with respect
to the Eastern and Western worlds (through Chinese, Indian and Finnish samples). It
provides recommendations to help people understand what is needed to consider if they
want to use Agile with culturally diverse teams. Briefly, the study puts forward that
Agile seems to favor low Power Distance, high Individualism, high Masculinity, and
low Uncertainty Avoidance.

Ayed et al. [2] gathered data about practices, challenges and impediments encoun-
tered by software development teams from interviews of 19 practitioners and two Agile
events in three countries (Belgium, Malaysia, and Singapore). The results of the anal-
ysis were discussed using the Hofstede Model for the national cultures comparison
and relevant hypotheses were developed. Their study reports positive impacts of high

Impact of Turkish National Culture 83

Power Distance on commitment and management buy-in and its negative impact on
team empowerment, transparency, customer involvement and process improvement.
They state negative impacts of high Uncertainty Avoidance on commitment to (new)
practices, team multidisciplinary and its positive impacts on management buy-in. Long
Term Orientation has positive impact on commitment to (new) practices, team multidis-
ciplinary, process improvement and management buy-in. They also state positive impact
of high Indulgence on team transparency and team motivation.

Qiao’s study [12], develops hypotheses between collectivist Chinese culture and
Agile practices with data collected by four expert interviews in China. The study found
high Power Distance has a conflict with Agile implementation and low-Uncertainty
Avoidance, Collectivism, Masculinity, and Long-term Orientation are beneficial for
Agile implementation.

Ramesh et al. [13] examine the relationship of Eastern cultural phenomena with
Agile methods using multisite case study from China, India, and South Korea instances.
The study mainly approaches to the subject from individualistic-collectivistic spec-
trum describing how the Eastern collectivist culture responses in complementary and
conflicting ways with Agile methods.

Regarding the multicultural software development concerns, Sutharshan and Maj
[9] analyzed the Agile principles (defined by Agile Manifesto) for cross-cultural fac-
tors. They come up with Agile specific cultural attributes relevant to multicultural con-
cerns connected to Hofstede’s cultural dimensions. Furthermore, they categorize the
culture and Agile specific attributes into different groups based on Hofstede’s cultural
dimensions. In this study, the authors present this matching based mainly on their own
views.

In the research study, Veerla and Subrahmanyam [8] studied the impact of national
culture dimensions proposed by the Hofstede’s model on Agile team behavioral char-
acteristics especially from autonomy, shared leadership, redundancy, learning and team
orientation aspects. They conducted a literature review to know the relationship between
the Agile team behavior characteristics and cultural dimensions demonstrated by India
and a web survey from 33 people. They aimed to find out whether Indian employees
demonstrate the necessary behavior which is required for the effective functioning of
Agile team or not.

Agilemethods have spread to almost all countries in theworld includingTurkey, even
to fromwhich its original cultural backgrounds differ. In this regard, study [16] states that
Agile works best in democratic type of organizations represented by the cultural scripts
of Nordic and Anglo-Saxon countries where Agile methods like Scrum were originated
from. Values in the manifesto and Scrum represent underlying national values of the
authors, who are from Anglo-Saxon culture, which poses low Power Distance, high
Individualism, and low Uncertainty Avoidance [4]. Moreover, Palokangas [4] explicitly
states, “The rest of the world is more about high Power Distance and collective cultures,
making adoption of these values harder for them.” Turkish culture is somewhere in
the middle of the West and East, and this cultural background affects the selection
of particular Agile frameworks. We can regard Turkish culture as mostly an Eastern
culture.On the other hand,Agile andScrumare originated fromWestern-centered places,
whichmakes its healthful implementations harder (for Turkey), as aforementioned by the

84 A. Gelmis et al.

studies above.Meanwhile, as study [5] puts forward, there is an interest in understanding
the use of agilemethods andpractices in companies outside the locations of early adopters
of agile methods.

Particularly, Agile experiences in Turkey are slightly new and visible after 2010
for the Turkish software development industry [14]. Besides, there are limited research
about the understanding of Agile development in Turkish software development indus-
try. Study [21] aims to get an understanding into the cross-factor correlation of various
software engineering practices versus practitioner demographics including their com-
panies and projects. To achieve this objective, they used the data from Turkey with a
survey from 202 participated software engineers’ practitioners. They found that usage
of waterfall is low among participants employed by small-sized companies whereas
Agile/Lean development is relatively popular among this class of participants. However,
Agile/Lean development is not popular in the military and defense sector; its usage is
the least by the participants employed by those companies. Practitioners employed by
smaller companies favor Agile more than waterfall-like development that is popular
in large companies. Agile and Lean development is the most popular among partici-
pants developing software for engineering/manufacturing, IT and telecommunication
and health sectors. Study [22] aims to have a high-level view on type of software engi-
neering practices in the Turkish software industry by using the survey data [apparently
the same one] covering 202 participated software engineering practitioners in Turkey. In
their study, most followed software development methods are waterfall life cycle, incre-
mental development, and Agile/Lean development with adoption rates of 53%, 38%
and 34% respectively. Their analyses on responses for development related practices
revealed that pair programming, which is a highly praised popular practice within Agile
methods, is not performed as frequently in Turkey. Among the participants, 13% of them
did not report documenting the software requirements at all, which took attention of the
authors for a further investigation. Although the reason for this case is not fully known
in the study, one of the possible reasons was mentioned as Agile methods, addition to the
other possible reasons including low quality awareness, emergence or something else.

There are already some other studies on Agile using data from organizations in
Turkey, however, none of them includes any explicit link from their results to Turkish
culture. We have not found any study because of our narrative literature review to search
possible related studies focusing on the national culture aspects of Agile in Turkey
(Our search utilized keywords such as “agile turkey” in prominent databases including
IEE Xplore, ACM, Web of Science, Scopus and Science Direct within their metadata).
Therefore, as far as we know, our study is the first one focusing on the national culture
aspects of Agile in Turkey.

4 Research Methodology

For this paper, semi-structured interview method suites best since it is a qualitative and
exploratory method, because questions asked during the interviews allowed exploring
the ROs and the flow of the conversations and the order of questions were flexible to get
more deep insights and obtain reliable and valid data at the same time. The first author
of this paper thus prepared open-ended “how”, “why” questions and/or topics for the
discussions followed-up during the interviews.

Impact of Turkish National Culture 85

Fourteen interviews from three major industries including TechFin (Technology -
Finance), Aviation, and Telecommunication and nine companies were conducted to
collect data to analyze. All the participants were selected from people who are currently
operating in the industry, experienced in Agile and performing different roles, experts,
managers, consultants and academician. Five of the participants were from Telecommu-
nication, four of them were from TechFin, three of them were from Aviation and two of
them were from consultancy. Three of the interviewees had also academic background
and they have published some academic research about Agile. In the TechFin industry,
different types of banking including regular banking, Islamic banking and the banking
for clearing, settlement and custody services were covered. In the Aviation industry,
in addition to the flag-carrier company, a low-cost example was also covered. In the
Telecommunication industry, three major players of the Turkey industry were selected.
The average years of experience of the participants regarding Agile is 5.8. Generally,
the participants have experience with Scrum and Kanban, but some of them use tailored
or scaled frameworks. List of interviewees and the general information about them are
presented in Table 1.

Table 1. List of interviewees

Interviewee ID Sector Role Total agile
experience year

INT-1 Consultancy Consultant/expert/Academician 5

INT-2 TechFin CTO 1,5

INT-3 Telecommunication Agile coach 5

INT-4 Telecommunication Agile coach 4

INT-5 Aviation Manager 4,5

INT-6 Aviation Scrum master/Senior analyst 7

INT-7 TechFin Expert/Academician 7

INT-8 Consultancy IT & Project governance
Consultant/Agile Coach/Founder

7

INT-9 TechFin Software engineer 1,5

INT-10 TechFin IT Architect 6

INT-11 Aviation Product owner 6

INT-12 Telecommunication IT Director 15

INT-13 Telecommunication Manager 9

INT-14 Telecommunication Manager/Academician 4

The interviewswere conducted by the first author of this paper. The guiding questions
asked to initiate the conversations are as follows; how is Turkish software development
industry affected by Agile? How do you decide using Agile, what were the motivations
for transformation? What challenges have you faced during the transition? What do

86 A. Gelmis et al.

you think about the Agile penetration in Turkey? What kind of frameworks are more
useful for Turkish software industry? In terms of culture, geography, economical aspects
etc., how is your experience specified for Turkish industry? Do you think Agile is used
effectively in Turkey?

Prior to the interviews, the research questions were reviewed with an expert for the
reliability of the research, and the ROs and questions were shared with the participants
for their initial investigation. At the beginning of the interviews, confirmations were
received from the participants to make sure the questions were understood.

For the interviews, face-to-face communicationwas preferred. Because of theCovid-
19 pandemic, the interviewswere conducted via video communication tools. Only one of
the interviewee preferred e-mailing. All interviews were conducted in Turkish language
and recorded with the consent of the interviewees. The interviews were carried out in
a quiet place to endure recording quality. The average duration of the interviews is 33
min. The records were transcribed by an external resource to Turkish and translated into
English by the same person. In the texts, participant and company names were expressed
as codes, not in their real names. The translated texts were checked by the first author
of this paper and shared with the interviewees to check against possible errors. Then,
necessary corrections were made.

Due to the manual operations and interpretations, subjective opinions could bias our
data. To minimize the bias, all transcript content was reviewed by the first and second
authors for the extracted data and a consensus between them was reached. In doing so, a
line-by-line reading of the English text was made to identify the relevant statements. The
identified statements were agreed by the first and second author in terms of the relevance
to the ROs. These statements were then grouped into the main themes under the ROs.
Then, the results were used for discussions in this paper by consideringHofstede’smodel
and other studies’ findings.

In this research, the questions were determined aligning with the key points we have
witnessed in the literature. Furthermore, the participants were all relevant individuals
who have aworking experiencewithAgile. Hence, all these dynamics provide to keep the
validity high. To reduce possible biases, it is ensured that the three roles of interviewing,
transcription and examining the texts were separate to different people. In contrast, both
transcription and examinations results were reviewed by the researcher who conducted
the interviews. In addition, the reviews of the interviewees also reduced possible errors.

5 Results

5.1 Motivations for Transforming Agile (RO1)

There are common motivation factors apparent in the literature and indicated by the
interviewees for Agile transformations in their companies as well such as efficiency,
productivity, performance, human friendly working environment, transparency, enhanc-
ing trust, frequent delivery, collaboration, alignment, high motivation, producing value
and minimum viable product and getting quick feedback. Furthermore, the researchers
explored that one of the main motivations for many of the organizations is keeping up
with the popular trends and fashions in the business world, the idea of “everyone is
doing it, so we have to do so”. Many of the interviewees underlined the business fashion

Impact of Turkish National Culture 87

motivation for the Turkey case. For instance, it is expressed as, “Generally, the first view
is that everyone became Agile, and I laid behind. What am I going to do?” [INT-1].
[INT-12] mentioned, “There are fashions in the business world. There are those who fol-
low this fashion wind.” [INT-12] also counted cutting cost by eliminating middle level
management as the motivation for some organizations.

In terms of getting benefits from Agile, it is expected that the benefits will emerge
hopefully and quickly. [INT-1] states: “We [Turkish people] expect that we should earn
a lot of money as quickly as possible, we should earn the most and we love this. I think
the same logic appears for the agility in Turkey. Let us make teams in organizations
Agile. Suddenly, we will have perfect teams, profitability will increase, and we will earn
money. It will not happen, of course.” As a statement expressed by some interviewees,
this desire may also be the underlying reason for the “quick” transformations directly
applying (a) certain method(s) instead of starting with rationale and the essence of the
mindset. In addition, [INT-7] stressed some personal interests expected from the Agile
transformation by stating that “[Agile] penetration is high [in Turkey] but there is a
lot of market and some PR (public relations) stuff here. We like PR too. There is also a
personal benefit. Perhaps personal benefits may be ahead of corporate benefits. Because
there is a serious community [in Agile] and when it supports you, you shine suddenly.
You used to be a developer and [then suddenly] you become a master.”

According to INT-2 and INT-4, Agile is demanded by employees to acquire one
of the popular trends and to establish more human-friendly working environments: “It
[Agile] is an opportunity for development and attraction for digital talents” [INT-2]. “In
terms of employees, it [Agile] is a more human-friendly working environment” [INT-4].

INT-1, INT-8, INT-9, and INT-13 mentioned the motivations of productivity and
speed aspects. Conversely, INT-12 stated that there is an illusion in this regard because
Agile does not mean being fast. Agile means “changing direction very fast” as illustrated
in the quotes: “But such big companies say, of course, let’s be Agile. Why? Let us be
quick too… We use Agile and fast in the same sense. Agile is a bit of the opposite. It
means changing the direction very fast” [INT-12]. As a result, a disagreement emerged
among the interviewees on this matter.

5.2 Challenges of Transitioning to Agile (RO2)

It is explored that one of the main and common challenges with transitioning to Agile
is shifting the mindset from command-and-control style to leadership style, which, as
stated by [INT-1], requires “a crucial challenge”. However, participants highlighted
that it is hard to accept this paradigm shift and this subject brings some difficulties in
Turkey. [INT-2] especially states, “This [management] level needs to transform and
change yet the resistance shown by top-level managers is biggest challenge”. [INT-
12] expressed the need of the self-managing flourished by leaving some rooms for the
decision-making to the teams by the management levels. Generally, managers could not
accept their authority being questioned, do not give self-management opportunity to the
teams’ and still ask the details of the works such as story points or end date of the tasks.
In this regard, as mentioned by [INT-1], “We are trying to act hierarchically because all
organizations are in hierarchical structures like there is a chain of command”. Apart

88 A. Gelmis et al.

from the outside effects, the teams may have clusters, classifications, or a secret rank
inside the teams [INT-1].

[INT-1] and [INT-7] expressed that the transformation should spread from bottom-
up because it is important to be accepted by the employees. Another point is that the
transformation should be managed by internal teams that serve the organization, stated
as, “We have decided to launch an Agile office that serves the organization without any
external support and make Agile live in our own culture. I think it was the right decision
so that we could make some work about Agile peculiar to Turkey, Turkish culture, and
companies” [INT-1]. Besides, [INT-3] expressed that just converting the teams was not
enough, to transform effectively; organizations needed to change, transform, and even
invest in the organization culture, strategy, and many things.

Open culture is another challenge for Turkish culture. For instance, it is stated by
[INT-1] as “We love illustrating the project as if it is successful and get used to hide the
failure. … It is hard to talk about the faults or problems transparently…building trust
environment and providing psychological safety are hard issues for Turkish culture and
it affects sharing faults, lesson learned etc.… You can also think that other people will
take my idea and realize it if I tell them”. [INT-14] also added that some IT teams hesitate
to share knowledge with the business teams to prevent revealing their weak sides.

5.3 Agile Culture in Turkey (RO3)

In terms of the relationship between Turkish culture and the practices of Agile, there
are some implications about the cultural background of Turkey that might affect the
understanding and practicing of Agile. Participants mentioned that Turkish culture is
human and family-oriented, quick, adaptive, emotional, action-oriented. They prefer to
do, to share, to chat together as a team. In addition, it was stated that Turkish people
prefer individual interactions like in a conversation during drinking tea together, to
follow adaptive plans, but not prefer to documentation, processes, and tools. [INT-12]
affirmed, “The Turkish people are not actually in the classical project management
culture. In terms of planning etc., we say that our crisis management is better in our
nature because we can constantly re-prioritize somethings. We have such flexibility. We
are not a nation that likes to make such a long-term plan and stick to it. Cultural and
socioeconomic background do not allow it too much”.

Turkish culture is somewhere in themiddle; the culture is very hierarchical, but on the
other hand, it is also in a place requiring acting very quickly and to change the direction
very fast [INT-12]. The Turkish hierarchy is not too strict and extreme, like Japanese or
Indian culture. Because of these cultural aspects, participants stated that Turkish people
are very suitable for Agile who like conversations, which supports the value on the left-
hand side of the manifesto [INT-7], “teamwork, to do something together, to achieve, to
produce output, to bond, to talk, to chat and to be together” [INT-13].

Agile generally advises flatter organizations in which all the members can express
their opinions easily. However, hierarchy, adherence to titles and promotions and misun-
derstanding of leadership style were mentioned as the main issues for Turkish culture.
For instance, [INT-2] stated, “Agile leadership is an important issue because it will be
very difficult to leave the hierarchy in management”. Interviewees stated that agility does
not put such meaning to the roles, but Turkish people are stuck in the titles. The culture

Impact of Turkish National Culture 89

has created this perception and people trying to find a safe place in the organization not
to lose their position. Interviewees generally stated that in Turkish culture, organizations
are still hierarchical, and most of the managers is worried about losing their authori-
ties. They also stated that people want the titles to feel important. Moreover, [INT-11]
expressed that in Turkish culture, people also care about the titles and positions because
the flat structure does not allow a similar motivation. Then, they try to apply the existing
agility with a hierarchical structure, [INT-3] and organizations try to findworkarounds to
keep titles inside or around the Agile teams in Turkey, as stated by [INT-5] and [INT-8].

Agile promotes learning from the failures and sharing feedbacks with all the partici-
pants clearly. However, it was mentioned or accepted by almost all participants; Turkish
people could not give or receive feedback sufficiently, with direct communication and
share their faults transparently. This hierarchal and leadership style lead to not sharing
the failures or shortcomings, giving, and receiving feedbacks, making criticism, and
revealing improvement points and to lack of trust.

[INT-4] stated that the underlying reason behind this feedback issue in the society
could be the fear of losing jobs. Social security or economic conditions are not as good
as the many other countries where Agile emerged. Naturally, people do not want to risk
themselves. Unless this trusted environment is provided to them, they cannot be clear
enough. In addition, [INT-4] mentioned that experimentation or failure culture is not
common. People do not have such a space right now in Turkish culture but it will change
in the future. Another point participants highlighted is that older generations are having
trouble, but the new generation is moving away from Turkish culture in this regard; they
are more direct, and they can say what they want easily effecting this hindrance inside
the culture positively.

Regarding adherence to titles andpositions andparadigmshift ofmanagers to leaders,
[INT-12] highlighted that this management and hierarchical perception will change in
the future with Z generation. Since they are open, the culture they are exposed to is a bit
more global and they will not actually accept those hierarchical structures easily. It was
also mentioned that the flat structure is not easy to establish but once people get used
to it, they do not want to turn back to the old hierarchical structures. Especially young
generations will like it very much because of the given responsibilities.

The participants stated that there is still a need to improve the experience and under-
standing of the agile mindset. For instance, [INT-2] states, “I see…in the market that
there are teams saying they are Agile but working like Waterfall”. [INT-7] stated, “The
places that sell the mindset are still very rare”. In the same vein, [INT-2] expressed that
“It [Agile] is used effectively in some examples that I have seen, but I observed that it
is not used effectively in most of them…We [Turkish industry] still need to move on. If
we think this in terms of the journey of maturity, we are still in between doing Agile
and being Agile and, we are trying to pass to the being side” [INT-1]. [INT-3] stated
that compared to Europe, Turkey has made a great advancement in terms of agility in
this journey because the people in Turkey needed and need to solve more challenging
issues and learn from them. Most of the participants expressed that it is better to convey
the rationale and benefits of the implemented practices specially to penetrate the Agile
methods and mindset successfully.

90 A. Gelmis et al.

5.4 Preference on Agile Frameworks (RO4)

Almost all the participants use Scrum or Kanban as an Agile framework and very few of
themuse some tailored frameworks suited for company dynamics. [INT-2] expressed that
it is more appropriate for each company to use a framework that blends its own culture
with global Agile frameworks, bringing together the world best practices with organiza-
tion’s unique culture. Some of them stated that both Scrum and Kanban are suitable for
Turkish culture. Some others highlighted that starting an Agile transformation by using
Kanban instead of Scrum could be beneficial because the Kanban rules are very simple
and easy to implement and it does not touch the titles or positions of the people, requiring
low “patience point”. For instance, sharing the similar idea with [INT-14], [INT-4] men-
tioned, “Kanban might be better…but for companies with patience…because Kanban
involves not touching roles”. [INT-13] expressed that the collectivist attribute of Turkish
people fits well with the Scrum’s team sprint and its intense communications channels,
and it is supported by them.

Even though we live in a global world, [INT-7] stressed that it may not be that
easy to get out of the cultural identities that the frameworks bear, especially “rigid”,
“aggressive” and “materialized” characteristic of Scrum, expressed as “the West have
packed it [Agile] very well. They have catholicized [it] with Scrum… It [Scrum] has a
rigid structure. For instance, if you exceed 15min, you sin, and if you come to themeeting
late, you throw money to confess…It [Scrum] will come here and destroy whatever. I will
establish something here…and if we look at the marketing side, there is materialism,
serious capitalism. This can work in the capital world, but it does not fit us…I think
we should have a bit of patience, a little wait, and a respect for people. This is also in
Lean and Kanban”. However, [INT-8] thinks that because of the Turkey’s perspective,
Scrum frameworkmeets the expectations, culture’s needs, and the way of doing business
because of its being rules specific, adequate, simple, and providing enough space tomove
freely. As a result, within the scope of appropriate frame preferences, different views by
the interviewees have been put forward.

6 Discussion

In this research, somemotivations of organizations for transforming to Agile were deter-
mined as business alignment, providing human-friendly and enjoyable working environ-
ment, managing with short iterations, increasing speed, transparency, efficiency, collab-
oration, and communication, reducing bureaucratic processes, time-to-market time, and
establishing a flatter organizational structure. These motivation factors are also common
in the literature. Interestingly, the transition to Agile with the motivation of business
fashion, PR or attracting people are relatively new factors, partially mentioned by Mad-
sen [15] recently. Agile is a buzzword and some late adaptor companies can understand
Agile as a “business fashion”. These companies are generally starting Agile because of
its popularity. However, this may lead to a possible underestimating and misunderstand-
ing of the agile mindset and principles. Moreover, this may become a deeper issue for
the Turkish software development industry if Agile in the country will become a short-
term, temporary trend yet already embedded in the organizations’ processes, structures,
and cultures. If the sustainability of Agile applications is desired, more work should be

Impact of Turkish National Culture 91

done to improve the understanding of agile mindset for Turkish software development
industry.

When it comes to speed and productivity as the motivators, they are not addressed
in the Agile Manifesto, but many of the practitioners accept these aspects as the moti-
vation factors. There can be a misunderstanding about the frequent delivery and speed
in the industry, which may cause wrong expectations from Agile. Agile does not mean
being very fast or cost-effective rather means changing directions and adopting the new
situations very fast.

It is explored that Agile is suitable for the Turkish culture with its some advantageous
characteristics such as ability to constantly re-prioritize things and flexibility. Agile
approaches suggest talking about the failures or problems transparently. One of the
basic principles of it is to express the faults clearly, to give clear feedback. However, in
Turkish culture, there are some challenges about open culture and bureaucracy; it is hard
to talk about the faults or problems. This condition affects building the trust and open
environment, providing psychological safety, and diminishing the effectiveness of Agile
practices. It is also explored that in the next years, with involving of the Z generation
and new ways of working, the effects of the cultural background of the country may
considerably change.

Agile promotes flatter organizations in which each team member acting as a leader
in the organization, but it is explored that in Turkish culture, organizations largely have
a hierarchical top-down structure. Agile adaptation to this culture may be challenging.
Turkish people are very committed to the roles in the organizations and care about the
titles and organizational hierarchy. Moreover, the management level is still following
the old-style way of management and many of them is worried about losing their author-
ities. This hierarchical organization and the culture also influence giving and receiving
feedback. Thus, the organizational cultures should be further adapted to the new style
of leadership in Agile.

It seems that there is a inconsistency in Turkey between the organizational pre-
conditions for Agile and the prevalent bureaucracy and hierarchical power distance
features of Turkish corporations. However, despite this problem, Agile still appears to
be delivering results because its inherent flexibility to adjust to potentially any organiza-
tional context. Even so, there should be extra effort to building new flatter organizational
structures that support agility. Additionally, there is a need to study the Agile perspective
of Human Resource Management including titles and positions and paradigm shift of
managers to leaders. Especially younger generations have a potential to change this per-
ception about hierarchy and leadership style. In the future, Z generation may influence
the perception about the management and hierarchy, because they are coming from open
culture exposing similar cultural background and they will not acknowledge hierarchical
structures easily.

Because of popularity, Agile is remaining on the many of the organizations’ agenda
in Turkey but the mindset is not understood fully. Considering the cultural background
of Turkey, it is explored that one of the main challenges is shifting the mindset from
management level to leadership level. As pointed out by some interviewees, there could
be fear, resistance, or uncertainty at the early stages. Participants mentioned that explain-
ing the details of the transformation process openly, becoming clearer, having effective

92 A. Gelmis et al.

change management, participation of high-level management, training, coaching, con-
sultancy, more appropriate office designs and being strong and determined are the key
points for overcoming the challenges in this regard. If the organizations understand the
importance of transition and accept its benefits with the help of management support and
collaboration, the transition could be easier and more effective. Agile transformations
can be challenging for organizations in Turkey, especially when implemented by Scrum
with its disrupting the current structure of the organizations. Thus, such hesitations by
the adopters may be since Scrum comes with a radical, not evolutionary, but revolution-
ary approach and destroys especially what Turkish nation regard important, titles. Thus,
some extra actions could be taken to reduce the impact of the transformation challenges
emerging from Scrum during the transitions in addition to the other actions.

The findings in this study may be replicable in the Turkish context. Particularly for
culturally homogeneous onshore teams when scaling to the global level, the findings are
expected to be similar to the nations with similar cultural textures. In line with our find-
ings, previous studies (such as study [2, 4] and [19]) also report that communication is not
always as open as expected in Asian Agile teams. They are reluctant to discuss negative
and hard issues, exposing problems, warning about non-feasible deadlines, providing
transparency, proposing alternatives to perceived directives from superior employees and
try to ensure themselves against to the cases unfortunately happen. They hugely suffer
from the lack of team empowerment as a critical issue. According to a study conducted in
India, Jain, and Varma [17] stated that Indian teams generally do not have empowerment
to make decisions. Cultures with high Power Distance prefer having strict division of
roles and responsibilities [4] like in Turkey. Ayed et al., (2017) report that Malaysian and
Singapore Agile teams feel less freedom to decide about their ways of working (because
of high Power Distance) and do not realize self-learning. Šmite et al. [5] state that India
and neighboring countries reveals impeding behaviors in terms of Agile likely caused by
the hierarchical culture of the organizations and related management behavior. Thus, it
is not surprising that study [2, 4] and [12] report that Agile teams in the Asian countries
suffer from high Power Distance and Uncertainty Avoidance as in Turkey. Similarly,
as Asian countries, Turkey has high Power Distance, and Uncertainty Avoidance. Our
results indicate that high Power Distance and Uncertainty Avoidance in Turkey result
in negative impacts on factors such as team empowerment, feedback loops, securely
failing, transparency, and process improvement.

Our study findings are largely in line with what Hofstede Insights [10] reports for
Turkey; Turkish nation are dependent on superiors, hierarchical and centralized in terms
of power. Superiors are tied to their position of authority. Control is in place and infor-
mation flow is selective. As a collectivistic society, communication is indirect and the
harmony of the teams and issue about others are cared about. Open conflicts are avoided,
and feedbacks are indirect. They consider softer aspects, consensus, and sympathy. They
need for laws and rules (provided by a higher authority) and feel anxious, especially about
their future because of socio-economic matters.

In our research, we found that interviewees mentioned some feminine attributes in
organizations including human-friendly working environments, face-to-face communi-
cation, flexibility, being quick, adaptive, and emotional. These features make Turkish
people somehow action-oriented. As a collectivist national they like to do something,

Impact of Turkish National Culture 93

share and chat together and teamwork. Owing to lack of building trust, transparent and
psychologically safe environment, they do not have an open, feedback and sharing cul-
ture. They pretend to be successful and hide their failures. In this regard, lack of social
security and socioeconomic conditions can lead to maintain their “hardly-won” posi-
tions. As a result, even though workers demand their voice heard from bottom-up to top
levels, more transparency and less bureaucratic work, they still practice command and
control style leadership in hierarchical structures. The managers keep their authority and
titles and ask the teams about the details of the works.

As a sigh of Short-TermOrientation, Turkish people tend to keep up with the popular
trends, fashions and quick wins like productivity and speed for their organizations, even
for their personal interests. This case is a relationship also realized by Barnett and Sung
[18]. Because of this, they may regard converting only teams to Agile almost enough to
transform effectively without a proper agile mindset. They are also not a nation that like
making long-term plans and not stick to documentation, processes, and tools.

Our study is also consistent with the Annual Agility Reports by Agile Turkey (one of
the non-profit organizations of Turkey) conducted in different years ranging from 2012
to 2021. According to the 14th Annual State of Agile Report [6], one of top challenges of
starting or expanding Agile in the organizations are the difficulty of changing the organi-
zational culture and resistance to change, which is a common issue especially in cultures
with high Power Distance score. In the report, organizational resistance is the most com-
mon barrier for moving and scaling Agile. Besides, insufficient management support
and sponsorship, inconsistent process and practices across teams are top challenges. In
addition to that, teamwork, cross-functionality, and transparency are counted among the
top improvement points in the reports, which are also issues mentioned frequently in
our study.

7 Conclusion, Limitations and Further Research

In this research, we analyzed the impact of Turkish national culture on how the Agile
practices are applied in Turkey through the lens of Hofstede’s Model [7] and Hofstede’s
Insights [10]. The aim of this study is to understand the experience of Agile in Turkish
software development industry with cultural, social, and economic effects. To achieve
this objective, an exploratory and qualitative research design was used. Although our
results are parallel with the existing knowledge, they also present partially different
outputs.

The social aspect of Agile Software Development plays a critical role in Agile imple-
mentations [1, 23]. Since Agile basically offers a people-oriented approach, we initially
assumed that the human and culture factorwould have an impact on theAgile experiences
in the/any country. The main motivation to conduct this study is the lack of sufficient
research on the use of Agile in Turkey considering the national cultural aspects. In order
to investigate whether there is a sector effect, interviewees were selected from different
sectors. As a result of the study, it was observed that the national cultural background
has a considerable effect on the Turkish Agile software development domain. We have
witnessed the similar effects in the Eastern culture as well. While the Agile experiences
were related to the business dynamics, our results disclosed that the sectoral differences
did not create a major effect on the results.

94 A. Gelmis et al.

This study has several contributions. It sheds light on the country’s cultural patterns
through a localized lens. Another one is to give ideas about the topic to countries with
similar cultures. The study makes a significant contribution that may be of practical
interest to Turkish and more generally Asian enterprises in terms of which potential
challenges they need to be prepared for once theymove into the adoption of agileworking
culture. Moreover, we hope that the study provides insights to other countries working
with Turkey in terms of national culture and its reflection on the agility context. The
study not only comes with contextualized and localized new insights but also provides
global insights to the other countries in this regard and in terms of understanding the
use of agile methods and practices in companies located outside the locations of early
adopters of agile methods.

Like any other study, this research has several limitations. It is limited to three indus-
tries and nine companies in the Turkish software development industry to represent and
look for common patterns. Thus, this research does not claim that its findings are uni-
versal, because its access to appropriate resources was limited to those participants that
voluntarily had attended to interviews. Even so, with approaches that are more system-
atic and increasing number of inputs in the future, outcomes that are more objective can
be guaranteed.

The outputs could also change because the characteristics could differ from industry
to industry or fromone organization to another. Like any study addressing culture-related
aspects, we are unavoidably prone to stereotype the cultural traits through individuals’
findings. Also, the sole reliance on the Hofstede’ model provides some limitations to
the study.

This research presents opportunities for further research. It might be worthwhile
considering using the same set of questions in different firm contexts with a quantitative
approach. Apart from and addition to a single national aspect, it can be possible to
provide a larger view on the impact of intercultural challenges on the adoption of agile
practices. Effects of entering Z generation to the work-life can be analyzed more deeply.
Moreover, there are limited research about the management fashion issue. Therefore,
this could be important to understand the future of Agile.

Although these preliminary findings in our research simplify such a complex domain
such as by focusing mainly on the national culture, rather than individual or organiza-
tional culture or the projects’ constraints, which calls for more validation, they pro-
vide a good entry point for researchers and practitioners. The study should motivate
researchers for further research on Agile teams to discover any fine-tuning potential of
Agile implementation considering a nation’s cultural characteristics.

References

1. Patanakul, P., Rufo-McCarron, R.: Transitioning to agile software development: lessons
learned from a government-contracted program. J. High Technol. Managem. Res. 29(2),
181–192 (2018)

2. Ayed, H., Vanderose, B., Habra, N.: Agile cultural challenges in Europe and Asia:
insights from practitioners. In: 2017 IEEE/ACM 39th International Conference on Software
Engineering: SoftwareEngineering in PracticeTrack (ICSE-SEIP), pp. 153–162, IEEE (2017)

Impact of Turkish National Culture 95

3. Hofstede, G., Hofstede, G.J., Minkov, M.: Cultures and Organizations. McGraw-Hill
Education, New York (2010)

4. Palokangas, J.: Agile around the world-how agile values are interpreted in national cultures?
Master’s thesis (2013)

5. Šmite, D., Gonzalez-Huerta, J., Moe, N.B.: “When in Rome, do as the Romans do”: cultural
barriers to being agile in distributed teams. In: Stray, V., Hoda, R., Paasivaara, M., Kruchten,
P. (eds.) XP 2020. LNBIP, vol. 383, pp. 145–161. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-49392-9_10

6. https://www.agileturkey.org/raporlar/
7. Hofstede, G.: Dimensionalizing cultures: the Hofstede model in context. Psychol. Cult. 2(1),

(2011)
8. Veerla, V., Subrahmanyam, M.: Influence of cultural dimensions on Agile team behavioral

characteristics. Master’s thesis (2011)
9. Sutharshan, A.,Maj, S.P.: EnhancingAgilemethods formulti-cultural software project teams.

Mod. Appl. Sci. 5(1), 12 (2011)
10. Hofstede Insights (2021). https://www.hofstede-insights.com/
11. Moe, N.B., Stray, V., Goplen,M.R.: Studying onboarding in distributed software teams: a case

study and guidelines. In: Evaluation and Assessment in Software Engineering, Trondheim,
Norway. ACM, New York (2020)

12. Qiao, X.: Analysing the impact of Chinese cultural factors on agile software development.
Master’s thesis (2018)

13. Ramesh, B., Cao, L., Kim, J., Mohan, K., James, T.L.: Conflicts and complements between
eastern cultures and agilemethods: an empirical investigation. Eur. J. Inf. Syst. 26(2), 206–235
(2017)

14. Altunel, H.: Journey to the agile methodologies. PMI TR 4, 16–18 (2015)
15. Madsen, D.O.: The evolutionary trajectory of the agile concept viewed from a management

fashion perspective. Soc. Sci. 9(5) (2020)
16. Siakas, K.V., Siakas, E.: The agile professional culture: a source of agile quality. Softw.

Process. Improv. Pract. 12(6), 597–610 (2007)
17. Jain, D., Varma, T.: The state of agile transformation in the Indian subcontinent. In: Agile

2019 Conference (2019)
18. Barnett, G.A., Sung, E.: Culture and the structure of the international hyperlink network. J.

Comput.-Mediat. Commun. 11, 217–238 (2005)
19. Lee, S., Yong, H.S.: Distributed agile: project management in a global environment. Empir.

Softw. Eng. 15, 204–217 (2010)
20. Alsanoosy, T., Spichkova, M., Harland, J.: The influence of power distance on requirements

engineering activities. Procedia Comput. Sci. 159, 2394–2403 (2019)
21. Garousi, V., Coşkunçay, A., Demirörs, O., Yazici, A.: Cross-factor analysis of software engi-

neering practices versus practitioner demographics: an exploratory study in Turkey. J. Syst.
Softw. 111, 49–73 (2016)

22. Garousi, V., Coşkunçay, A., Betin-Can, A., Demirörs, O.: A survey of software engineering
practices in Turkey. J. Syst. Softw. 108, 148–177 (2015)

23. Przybyłek, A., Albecka, M., Springer, O., Kowalski, W.: Game-based sprint retrospectives:
multiple action research. Empir. Softw. Eng. 27(1), 1–56 (2021). https://doi.org/10.1007/s10
664-021-10043-z

https://doi.org/10.1007/978-3-030-49392-9_10
https://www.agileturkey.org/raporlar/
https://www.hofstede-insights.com/
https://doi.org/10.1007/s10664-021-10043-z

Develop Sustainable Software with a Lean ISO
14001 Setup Facilitated by the efiS® Framework

Alexander Poth(B) and Elisabeth Nunweiler

Volkswagen AG, Berliner Ring 2, 38436 Wolfsburg, Germany
{alexander.poth,elisabeth.nunweiler}@volkswagen.de

Abstract. This article suggests the design and application of a systematic app-
roach to establish the ISO 14001 in the context of software systems. It covers the
different phases of the software life-cycle with focus on sustainability. For each
phase, it proposes principles and methods for specific software product instantia-
tions of the ISO 14001. The presented approach is embeddedable into the efiS®
framework - the agile framework for lean enterprises - as Level of Done (LoD)
layer building block to scale the approach. The possibility of rigorous refine-
ment of the enterprise sustainability goals to the specific software for products
and services helps to find adequate trade-offs during development and delivery.
Additionally, the approach can be used to establish a sustainability governance for
IT and software based products and services. Furthermore, an instantiation as an
example of the proposed approach on a hybrid-cloud service of the Volkswagen
Group IT is presented.

Keywords: Sustainability engineering · Quality management · Agile
framework · ISO 14001 Environmental Management System

1 Motivation and Context

To address global warming driven by humans, all goods like products and services have
to be aligned with the sustainability goals of the United Nations (UN) [1]. The alignment
optimizes the consumption footprints and contributes to worthy life on earth now and in
future for the generations to come. To support the UN sustainability goals and objectives,
many companies like the Volkswagen AG have environmental policies [2] and environ-
mental policy statements [3] and missions [4]. An option to address responsibility about
ecological impact of products and service can be part of the governance model of the
companies and is often established with the Environmental Management System (EMS)
defined by the ISO 14001:2015 [5]. The purpose of ISO 14001 is to provide a framework
for the protection of the environment and to respond to its changing conditions. The suc-
cess of the EMS depends on all levels and functions of an organization and addresses the
whole life-cycle of a product or service that the organization may control or influence.
This life-cycle may include the aspects of software and its development. Nowadays IT
services gaining more and more importance in product development and services, thus
the aspect cannot be neglected within the life cycle thinking. However, as a generic

© Springer Nature Switzerland AG 2022
A. Przybyłek et al. (Eds.): LASD 2022, LNBIP 438, pp. 96–115, 2022.
https://doi.org/10.1007/978-3-030-94238-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94238-0_6&domain=pdf
http://orcid.org/0000-0002-2868-5633
https://doi.org/10.1007/978-3-030-94238-0_6

Develop Sustainable Software with a Lean ISO 14001 97

EMS approach, the ISO 14001 defines a general set of requirements, but does not offer
detailed information or support for domain or technology-specific instantiation – like
for software. This paper will take a deeper look on the adaption of the requirements of
ISO 14001 into the software development process and into the agile way of working in
the field of IT development.

In Organizations within large enterprises, agile and lean working can be fostered by
the efiS® framework. With a focus on the integration of processes, and the scaling of
knowledge, the framework is designed to systematically address typical large enterprise
challenges such as governance of regulation requirements. ISO 14001 standard includes
requirements for EMS. The efiS® framework building block to instantiate systematic
regulation and standard requirements is Level of Done (LoD). This work will investigate
how to structure ISO 14001 requirements to include these requirements into a LoD and
as such in the efiS® framework [37].

Overall, this work proposes an approach for a rigorous refinement from the UN sus-
tainability and specific environmental enterprise goals via the effected business domains
with their dedicated products and services down to software, which is part of their deliv-
eries for customers and users. This refinement is made with an end-to-end view of the
software life-cycle to address development and usage. To establish a holistic sustain-
ability view, not only energy consumption of the running software is in scope. This view
addresses resource allocations for hardware and engineers etc. around the product and
services, too.

The research questions are (RQ1) how to derive a lean ISO 14001 aligned EMS
for IT products and services? and (RQ2) how to integrate EMS and further aspects of
sustainability into autonomous agile teams?

2 Literature Overview on Sustainable Software Systems

In [6], the discussion about CO2 in the context of computation is imitated by watching
the electrical power consumption. In [7], the sustainability goals are mapped to software
sustainability. The GREENSOFT model proposed in [8] a structuring into Life Cycle of
Software Products, Sustainability Criteria and Metrics, Procedure Models and Recom-
mendations and Tools. A sustainable software life-cycle thinking is proposed in [9] to
ensure an end-to-end evaluation of sustainability aspects. To measure sustainability in
software, the work of [10] suggest a set of sustainable software performance metrics.
In [11], a set of Green Performance Indicators (GPI) is defined. In [12], GPI for high
and low level are distinguished from the organizational level down via the applications
resource consumption to the compute node. In [13], the power consumption correla-
tion with the design is demonstrated. In [14], the link from the software to real world
impact initiated by software during the usage is made – this will become more and more
important with the growing IoT.

In [15], software sustainability is distinguished into social, economic and environ-
mental sustainability – the last is defined as Software Greenability and refines the ISO
25010 [16] quality characteristics. The sustainable software quality framework of [17]
distinguish social, environmental, technical and economic sustainability this is derived
from the approach of [18] with the additional dimension individual. GreenRM is a

98 A. Poth and E. Nunweiler

reference model proposed by [19] for sustainable software development oriented on
the SPICE (ISO 15504) Process Assessment Model (PAM) based on a set of prac-
tices. In [20], methods of conventional and sustainable software development phases are
compared and sustainable benefits are derived.

For sustainable architecture design decisions, [21] suggests decision map mapping
with focus on immediate, enabling and systemic impacts. In [22], the Principle, Ratio-
nal, Strategies and Measure (PRSM) approach is suggested for mapping sustainability
aspects.

Sustainable software is characterized in [23] by measures of extensibility, interop-
erability, maintainability, portability, reusability, scalability and usability. In [24] the
interaction of aspects of software quality and sustainability are identified – mostly on
an energy efficiency focus.

To establish more energy efficient hardware different initiatives exists over decades
like the “green star” symbol. For data center infrastructures, [25, 25] propose energy-
proportional computing to realize higher power efficiency in a larger range of load.

The topic sustainable software development is addressed outside academic research
with practical guides and tutorials of different companies like Microsoft [27], VMware
[28] or SAP [29] and personal initiatives like [30].

To summarize, software sustainability aligned with [31] Green Software is distin-
guished between green IN software and green BY software. The green IN can refined
more into aspects like software engineering or governance. Inadequate handling of sus-
tainability aspects leads to sustainability debts [32] in the software and the derived
products and services. Many of the named new methods and techniques demonstrate
how to support sustainability in the development of software. Nevertheless, the software
engineering body of knowledge (SWEBOK) [33] is a widespread and prevailing, generic
approach and will be focused in the following to align the sustainability aspects of this
domain.

However, no systematic approach for an ISO 14001 aligned software system life-
cycle management is identified during the literature analysis. This gap can be closed by
combining existing approaches, patterns etc. or developing new artifacts to closing gaps.

3 The Design of the Level of Done (LoD) Layer ISO 14001

The development of the proposed approach is based on Design Science Research (DSR)
[34] and Action Research (AR) [35], which is slowly gaining prominence in software
engineering research [36], for a rigor and practice relevance. The three DSR cycles are
handled as follows: the relevance cycle derived the requirements of the global demand
for a more sustainable economy (Sect. 1), the design cycle is handled in Sect. 3 and 4,
the rigor cycle is handled in Sect. 2 which influenced the design and the final outcome is
a Self-Service Kit (SSK) [55] as knowledge sharing artifact for the Group IT. However,
agile working with AR leads to iterations for improvements in the design cycle driven
by the observations and feedbacks. The objective is to design an approach to integrate
global e.g. UN and enterprise sustainability goals into the product or service specific sus-
tainability framework. The efiS® framework [37] – an agile framework which addresses
quality and compliance - can be used to facilitate and establish a lean governance and

Develop Sustainable Software with a Lean ISO 14001 99

compliance setup on product or service level with LoD layers [38]. The LoD layers are
useful to offer agile teams the relevant regulations and standard requirements of their
product or service domain. Each standard or regulations is described in an individual
LoD layer. This work develops the ISO 14001 LoD layer for a specific use case in
the IT domain. An important aspect of the LoD approach is that “raw” information is
delivered to the teams and this ensures that no additional interpretation makes it difficult
to establish lean value streams. However, everything needed to stay compliant in the
domain and product or service context is part of the LoD layer. By adequate fulfilling of
all relevant LoD layers the product or service reaches compliance and can be delivered
to customers. The amount of levels is defined by the amount of handovers needed to
be ready to deliver. Primarily, the demanded handovers is defined by the organizational
structure. Furthermore, handovers can be required by regulation or standards e.g. for
independent checks. All relevant requirements of standards and regulations are assigned
to the latest level possible – motivated by the agile and lean principle to make decisions
as late as possible.

The investigated setting of the ISO 14001 aligned EMS refinement is defined by:

– The IT/software organization is part of an enterprise with an established ISO 14001
aligned EMS.

– The IT/software organization is supported by an enterprise purchase organization
which established supply chain management procedures.

– The software development and operation is independent from the IT infrastructure
(data center etc.) delivery and support. Software teams do not “organize” hardware
etc. they “use” what is deployed.

– The IT/software organization is driven by customers’ demands form e.g. business
departments.

The requirements presented by the chapters of ISO 14001 are identified as compli-
ance aspects for EMS that need to be mapped to the identified levels. The ISO 14001
standard requires three levels for our example with the customer- (user-)driven IT orga-
nization. The review of the requirements with all stakeholders leads to a handover of the
refined and reviewed requirements to the IT organization. Leadership commitment (ISO
14001, Chapter 5.1) and internal audits (ISO 14001, Chapter 9.2) are needed for strategic
and independent approval. All other external/independent reviews could be modeled as
handover, however, not all outcomes have to be independently reviewed in this case.
Therefore, the explicit formal modeling of an additional level is not useful (as long as
each level models handovers). This makes it possible to have the option to realize all
relevant ISO 14001 aspects in three LoD levels: customer level, IT/software develop-
ment/deliver level, and approval level. The requirement to understand the context of the
organization (ISO 14001, Chapter 4.1) is assigned to the first level for the handover. As
the cyclic checks by the authorities (ISO 14001, Chapter 4.3) and the audit (ISO 14001,
Chapter 9.2) are the approval reviews in the third level. However, management review
(ISO 14001, Chapter 9.3) is not assigned as approval, because the core mindset is to
adjust and improve the EMS. All other identified aspects are mapped to the second level
for the IT development, operating and/or service delivery. Table 1 presents an LoD layer
for the ISO 14001 that has been established according to the logic explained above. Each

100 A. Poth and E. Nunweiler

line of the table addresses a topic. Some pillars have to handle more topics than others.
By the usage of the LoD layer ISO 14001 in the context of an agile setup like with the
efiS® framework this enables autonomous teams to integrate sustainability directly into
their value stream.

Table 1. Example of an efiS® framework LoD layer ISO 14001.

Customer level IT/software development/delivery level Approval level

Identify
requirements and
(derive)
compliance
obligations (4.2)

Context
Understand the needs and expectations of interested
parties. Identify requirements and (derive) compliance
obligations (4.2)
Determine the scope of the EMS with is boundaries and
authorities (4.3) and document the determinations (4.4)

Authorities are committed
to their (control) duties
(4.3)

Leadership
Leadership and commitment is established for
effectiveness of the EMS and its organizational and
business process integration to ensure the intended
outcomes and continuous improvement (5.1)
Establish, implement and maintain the environmental
policy aligned with the EMS scope. The policy is
documented, communicated and available (5.2)
The responsibilities and authorities for relevant roles are
assigned and established to ensure that the EMS
conforms to requirements and standards as well for
EMS performance reporting (5.3)

Planning
Planning includes the handling of requirements and
obligations as well as risks and opportunities to prevent
undesired effects and ensure the intended outcomes of
the EMS. The needed EMS processes and the identified
risks and opportunities are documented (6.1.1)
Determine the environmental aspects of activities and
their products/services which are controlled and
influenced in a life-cycle perspective. Document the
aspects with their determination criteria and
communicate them (6.1.2)
Determine the compliance obligations from the
environmental aspects and document them (6.1.3)
The organization plans actions to address significant
environmental aspects, compliance obligations, for the
risks and opportunities and the needed processes of the
EMS (6.1.4)
Environmental objective are established, maintained and
documented for significant environmental aspects and
associated compliance obligations with the risks and
opportunities (6.2.1)
Planning actions to achieve environmental objectives,
were possible integrated into the organizational
processes or value streams. Actions are defined by what,
who, when and how achievement is measured (6.2.2)

(continued)

Develop Sustainable Software with a Lean ISO 14001 101

Table 1. (continued)

Customer level IT/software development/delivery level Approval level

Support
The organization determines and provides the needed
resources for the EMS (7.1)
Necessary competences for environmental performance
and fulfillment of the compliance obligations are
determined. Were need trainings etc. are associated.
Competency evidences are documented (7.2)
The organization ensures that persons doing work under
awareness of the environmental policy, the significant
environmental aspects, their contribution to the EMS
and the impact of non-compliance by non-conforming
with the EMS (7.3)
The organization establishes relevant internal and
external communication about the EMS addressing
what, when, whom and how to communicate and
document it (7.4.1)
The organization internal (7.4.2) and external (7.4.3)
communication about relevant EMS information is
established
The documentation is aligned with the ISO 14001
demands (as mentioned in this LoD layer explicit) and
the internal necessary for an effective EMS (7.5.1)
The document creation and update includes appropriate
identification and description, format, media and
review/approval information (7.5.2)
Documented information for the EMS and the ISO
14001 is controlled for suitable use, adequately
protected and version controlled within a document
life-cycle. This includes external origins documents, too
(7.5.3)

Operation
Establish, implement, control and maintain processes to
meet the EMS requirements and the planned actions (see
6) with established operating criteria and its controls.
Identify unintended chances/side-effects and mitigate
them. The EMS shall control/influence outsourced
processes were possible. With a life cycle perspective:
- ensure that environmental requirements are addressed
in each product or service life cycle
- supply chain (e.g. contractors, procurement) related
relevant environmental requirements are determined and
communicated
- consider to provide information about relevant
environmental impact of transportation, use, end-of-life
treatment and final disposal
Maintain documentation about carried out the processes
as planned (8.1)
Prepare for emergency response by prepare responds
plans to mitigate environmental impacts, act according
on demand, take actions to prevent or mitigate the
consequences of potential environmental impacts.
Periodical test the planned actions, where practicable.
Periodically update the planes especially with learning.
Inform and train relevant parties and related workforce.
Maintain documentation about carried out the processes
as planned (8.2)

(continued)

102 A. Poth and E. Nunweiler

Table 1. (continued)

Customer level IT/software development/delivery level Approval level

Performance evaluation
The organization determines needs for monitoring and
measures; their methods to ensure valid results;
indicators and criteria to evaluate the environmental
performance. Determine when and how often the
analysis and evaluation took place. If needed, take
action and maintain the understanding of its compliance
state. The organization shall calibrate or verify the
evaluation equipment. The organization evaluate its
EMS performance and effectiveness. The organization
communicates relevant environmental performance
information internally and externally as defined in the
communication process or required by obligations.
Maintain evidence documentation about the
performance evaluation (9.1)
The management reviews the EMS in planned intervals,
to ensure suitability, adequacy and effectiveness
The review considers: status of actions from previous
reviews, changes in the setup and environment of the
EMS, the environmental objectives, the environmental
performance especially non-conformance aspects,
resource adequateness, and improvement potentials.
Retain documentation about the reviews and their
results with focus on conclusions about suitability,
adequateness and effectivity of the EMS; improvement
decisions; needed actions to fit objectives; opportunities
to improve the EMS; and implications to the strategy of
the organization (9.3)

Internal audits are
established, implemented
and maintained which
includes the frequency,
methods, responsibilities
and reporting of the audits.
Audits are defined by scope
and conducted by objective
and impartiality auditors.
The Results reported to the
relevant management.
Retain documentation
about the audits and their
results (9.2)

Improvement
Determine improvement opportunities for the EMS and
implement them (10.1)
React on non-conformities by taking corrective actions;
deal with consequences and mitigate environmental
impacts. Evaluate actions to avoid nonconformity in the
future (determine root-cause and identify other similar
potential occurrences). Implement needed corrective
actions and review their effectiveness. If necessary,
make changes to the EMS. Retain documentation about
evidences about the nature of the non-compliance and
the subsequent actions and its results (10.2)
To enhance the environmental performance the
organization continuously improves the EMS about
suitability, adequateness and effectiveness (10.3)

Develop Sustainable Software with a Lean ISO 14001 103

4 Leveraging Sustainable Software Systems and Services

To instantiate the LoD layer ISO 14001 in the context of software engineering possible
content has to be identified. This chapter derives this software engineering related con-
tent. In organizations, the products and services typically can be aligned with an existing
sustainability narrative [48] of the enterprise and aligned with the UN sustainability
goals. The IT domain specific refinement of these goals can be oriented and structured
on quality standards like the ISO 25010 or the SWEBOK [33]. Sustainability of software
can be reduced to an end to end resource efficiency during the product and service life-
cycle. Resources are the allocated human resources for the development, maintenance
and operation of the software and the consumed energy of hardware and infrastruc-
ture to run the software deployments’ workload. This leads in the deductive view to
the consumption of deployed resources (like the engineers and hardware/infrastructure)
life-cycle as a kind of related foot-print to the direct resource allocation time. For the
allocated engineers it is the way they work (like online or on-site with related travel
aspects etc.) and for the infrastructures their “foot-print”-part (facility construction sup-
plement etc.) for the software workload deployment consumption. However, not all
aspects are managed by the software life-cycle. It is not always possible to deploy in the
greenest facility (data center [39]) available – and if, this will swamp out other software
deployments to less green facilities. To act responsibly as long as not all resources are
completely green, it is a replacement issue which can only be globally optimized by
tuning software to the smallest foot-print possible during its life-cycle. Depending on
the deployment facilities, a more or less big supplement factor to the runtime consumed
energy is added to address the real physical conditions.

The proposed approach addresses all four sustainability dimensions [17]:

(i) Social sustainability is addresses by the adequate engineering allocation.
(ii) Technical sustainability is addressed with an efficiency focused and maintenance

friendly software architecture and design. This addresses the sustainability benefits
of long time usage of a software from the

(iii) environmental sustainability and
(iv) economical sustainability view, too.

For software interacting with users, they are part of the UX design which contributes
primarily to the economical sustainability – happy users come back and make revenue.

Simplification: Sustainability of software can be reduced to an end-to-end resource
efficiency during its life-cycle. Resources are the allocated human resources for the
development and operations of the software and the consumed energy to run the software
deployments. The long usage of IT systems and software typically is a business goal. This
business goal supports the goal to have a long life-cycle to amortize the high investments
of the initial development. Life-cycle “stretching” directly supports sustainability, too.
Figure 1 shows that hardware and software sustainability optimize the same resources
and can bemanagedmostly independent without negative side-effects as long as both are
optimizing the same sustainability goals about resource efficiency – primarily energy
and “engineers”. Sustainability debts are a specific sub-category of the well-known
technical debts [40] of software and IT systems. Debts are making the future life-cycle

104 A. Poth and E. Nunweiler

more difficult and expensive – debts making a product or service older from a life-cycle
perspective.

Fig. 1. Strategic sustainability refinement of IT comes to correlated optimizations.

To ensure that IT sustainability is holistically addressed around the definition of a
structured software life-cycle, the SWEBOK can be used by mapping the aspects and
their contributions or support together. In the following tenknowledge areas ofSWEBOK
within the field of software engineering are identified for the mapping of sustainability
aspects and supports. As a generic collection this mapping can be used in a wide range
of software engineering driven product and service setups. Table 2 presents the related
building blocks for IT sustainability.

To summarize Table 2, the presented detailed analysis can be used to offer some
technology and IT expert principles and patterns to deliver aligned with the strategic
sustainability refinement of Fig. 1. In Fig. 2, these derived generic principles for soft-
ware engineering are presented. The figure shows the software engineering relevant
aspects, oriented on the life-cycle from raw material (IT infrastructure and its facilities),
development, production, transportation and disposal. Transportation of data is impor-
tant, the typical movement of IT infrastructure into the data center and its disposal can
be neglect in mostly all cases.

For software engineers, the build time definitions are pivotal. The entire ecological
footprint of any deployment significantly depends on included libraries and packages
(reuse). The intelligent design of data structures for the specific use-case defines how
many data has to be moved and transformed. The implemented algorithms are crucial
for runtime and data movements during the workload handling. To react smoothly to
workload changes, the dynamic scaling of the deployment is needed. To serve the users
reliably, an intelligent resilience approach has to be built in. During runtime, the basic
decision is to select the facility with the most efficient overall-package because often
the change to other cooling, IT infrastructure or energy providers is not possible from

Develop Sustainable Software with a Lean ISO 14001 105

the enterprise devops team view. Sometimes life-cycle aspects of some infrastructure
components are manageable e.g. the leasing time selection. Mostly the optimization
within the constraints is possible by e.g. selection of the right CPU type for the workload
or active data management e.g. with clean-up policies and procedures to reduce the data
foot-prints. The human behavior also impacts the sustainability of the software: e.g.,
there are legions of IT consultants flying in every week to build and run software. Find
ways to reduce this secondary negative foot-print. Also, handovers coming typically
with an overhead of inefficiency. To have a sustainable engineering develop adequate
skilled teams around the software’s life-cycle.

Table 2. The IT sustainability aspects oriented on SWEBOK.

SWEBOK IT sustainability aspect/building block Supports

SW requirements Emergent properties: allocate sustainability goals at least for
technical property of the software
Requirements negotiation: negotiate the value and if needed
the related investment into technical sustainability goals
with the business stakeholders

Environmental,
economic, technical

SW design Design principles: establish software sustainability
principles as first-class principles
Error and exception handling: important for an efficient
runtime support during the life-cycle
Fault tolerance: avoid fault tolerance with additional
resource allocation like (hot-)standby deployments;
establish other techniques for fault tolerance like active
pools of serving instance (e.g. clusters for serverless
functions)
Security: design the software for easy and fast security
updates and fixing
UI design: think in an holistic user experience to foster easy
to use during the entire life-cycle
Quality attributes: establish software sustainability
attributes as first class attributes

Environmental,
technical, social,
economical

SW construction Minimize complexity: select and build simple algorithms and
data structures; keep communication simple
Constructing for verification: reduces the effort and amount
for safeguarding releases and deployments
Construction technologies: select technologies which are
fostering efficiency and a long life-cycle of the software like
API, platforms and middleware components
Language: select an adequate language for an efficient
implementation
Construction for re-use: to enlarge the life-cycle of at least
components establish a re-use strategy were possible and
adequate

Environmental,
economic, technical

(continued)

106 A. Poth and E. Nunweiler

Table 2. (continued)

SWEBOK IT sustainability aspect/building block Supports

SW testing Test technique: establish test automation to validate all test
objectives and goals over the life-cycle with an efficient
procedure; avoid not needed test-runs; consider to run a test
environment only if it is needed for testing (deployment
foot-print);

Environmental,
technical

SW maintenance Evolution of SW: to enlarge the life-cycle of the software
keep it updated and “fresh” from the technical and user
perspective
Proactive and reactive maintenance: optimize changes
(content, frequency) on the software with focus on resource
efficiency
Limited understanding: establish a life-cycle devops team
were possible and keep software simple and intuitive to
avoid resource intensive “re-engineering”
Testing: establish an efficient testing procedure to minimize
test environment uptime and optimize the amount of
test-runs needed to safeguard the software
Maintainability: keep sustainability debts small
Outsourcing: ensure that the supply chain applies at least the
same high sustainability standards and objective that
in-house
Unique or supporting activities: design for reducing support
efforts were possible
Retirement/migration: realize second life and reuse of at
least components were possible

Environmental,
economic, technical

SW configuration
management

Building and release management: find an adequate balance
of build and release efforts to value and risks of late large
releases

Environmental,
economical

SW engineering Life-cycle: focus on life-cycle sustainability instead of local
optimizations
Behavioral and structural modeling: make sustainability
aspects of the software to a first class citizen during
modeling
Group dynamics: use group dynamics to push sustainability
goals were possible
Cost-effectiveness analysis: consider sustainability debts in
the cost analysis; keep life-cycle cost in scope
Good enough principle: keep focus on value and efficiency
to avoid over-engineering
Trade-offs: keep software sustainability in every trade-off
analysis

Environmental

(continued)

Develop Sustainable Software with a Lean ISO 14001 107

Table 2. (continued)

SWEBOK IT sustainability aspect/building block Supports

SW quality SW quality requirements: ensure that software sustainability
is part of the elicitation of quality requirements (keep in
mind, sustainability is not explicit part of the ISO 25010
software quality characteristics like functional suitability,
performance efficiency, portability or usability)
Verification and validation: ensure that sustainability
requirements and goals are validated like all other
requirements

Environmental,
technical

Eng. foundations Reliability: find ways to be reliable without the
default-pattern with additional “hot-standby” deployments

Environmental

Comp. foundation Algorithms and complexity: prefer RAM rather than CPU
usage during algorithm design were possible
Data structure: keep data structures small, but prefer RAM
rather than CPU usage during data structure design were
possible when focusing on run-time aspects
Systems engineering: avoid movement and transformation
of data were possible
CPU: energy consumption correlates with amount of
instructions; were possible focus is power efficiency per
instruction which is depending on the processor model and
its architecture [41–43] (rough approx. 10-20W/core TPD
[44, 44])
Memory: energy consumption is “static”; approx. 2W/GB
[46]
I/O: in general energy consumption correlates with the
amount I/O data – e.g. disk I/O often is routed via networks
DB: in general energy consumption correlates with the
amount transferred data, but differs from types of DB
Networking: energy consumption correlates with the
amount of data (bytes) and the distance (km); compress data
were possible and route with less “hubs”

Environmental,
technical

Fig. 2. Generic principles and patterns for a sustainable SW engineering life-cycle.

108 A. Poth and E. Nunweiler

5 Instantiation, Evaluation and Improvement

In practice the outcome of Sect. 3 – the LoD layer ISO 14001 – and the outcome
of Sect. 4 – the sustainable software engineering approach – have to be combined to
demonstrate the effect on the specific product or service setup. In the following chapter,
this combination is exemplified by a case study that also shows how to integrate EMS
and further aspects of sustainability into autonomous agile teams.

To instantiate the LoD layer ISO 14001 in the context of a specific product or service,
the build and delivery team has to find adequate selections of the proposed principles and
patterns. These selections have to be instantiated to the specific product or servicewith its
workload demanded by the users. During iterations in the agile way of working, the EMS
with its related sustainability aspects and its instantiationwill be optimized to better fit the
demands. To give an idea how thisworks in practice, an example on from theVolkswagen
Group IT Testing as a Service (TaaS) [47] is presented. The intention of TaaS is to reduce
the large amount of Test-Runtime execution (T-Rex) environments. In the past, mostly
all product and service teams deployed and maintained their T-Rex environments. This
often allocates 24 * 7 resources of IT infrastructure. Furthermore, the right sizing was
difficult for the teams which often lead to over-provisioning and unnecessary waste
of resources. TaaS offers T-Rex on demand right-sized for the specific test workload.
This business model by design leads to a more sustainable software development, but
this is no excuse to not continuously optimize the service to improve its foot-print and
efficiency for a more sustainable service delivery. Some core architecture requirements
and building blocks like the hybrid-cloud capability and cluster based will have impact
to the sustainability options.

The Volkswagen AG has instantiated and deployed in the context of the Vision
goTOzero and be A leading Automotive Software Company [48] a set of prioritized
UN SDGs—more specifically the goals 7, 8, 9, 11, 12 and 13—and the derived focus
areas decarbonization, circular economy, responsibility in supply chains and business,
workforce transformation. Based on these strategic sustainability goals, the primary
focus on IT sustainability should be to reduce the CO2 foot-print of its services, however
also optimize the other focused SDGswhere ever possible, too. These are the compliance
obligations for the TaaS EMS instantiation. This is the “input” for the LoD layer ISO
14001 and the selection of the proposed SWEBOK mapped “sustainability potentials”.

The refinement of the LoD layer ISO 14001 for the TaaS delivery team setup includes
the application of the ProductQuality Risk (PQR) approach [49] to identify potential sus-
tainability risks with the pre-mortem based on the PESTLE (political, economic, social,
technology, legal and environmental) mindset which includes environmental aspects,
too. The PQR approach is based on Design Thinking. To ideate about the risks holisti-
cally, the aspects of PESTLE are reflected. The efiS® framework empowerment pillar
with the building blocks aTWQ [50] and TTM [38] facilitates to develop the needed skill
set and team maturity to ensure that the team setup is adequate for a sustainable service
delivery, which seizes opportunities and mitigates risks adequately by keeping a focus
on continuous improvement and support the planned actions within their day-by-day
operations and development tasks.

Develop Sustainable Software with a Lean ISO 14001 109

For TaaS, the resource efficiency goal influences at built time following architecture
and design decisions based on the following principles which are part of the planning
of new features and capabilities during the cyclic refinement sessions:

– Use micro-services for workload specific fine-grained scaling

o Package service in containers to optimize utilization of hardware instances

• Is a base for choosing RAM-optimized instance for deployments

p Keep container sizes small to run more deployments on hardware instance

• Consider all container layers starting on e.g. Alpine Linux

q Focus on direct data streaming without unnecessary proxies/hubs

• Avoid overheads like e.g. istio as long as possible

– Avoid large and long-distance data movements

o Co-locate micro-services on nodes and availability zone were possible

• Work with for example with node affinities by keeping resilience
• Reduce redundancy based on (hot) standby infrastructure

p Avoid storage of data were possible and delete them as soon as possible

• Stay state-less were possible
• Apply policies e.g. on object storage to delete data rigor

q Avoid transfer of data with local caching at least in the cluster

• Establish caching strategies addressing typical user workloads

– Keep services simple

o Optimize the usage of libraries

• Technology selection e.g. Quarkus framework

p Optimize runtime setting

• optimize the runtime and their settings e.g. JVM GC

q Focus on simple and clean code implementations

110 A. Poth and E. Nunweiler

• Optimize algorithms for maintenance and (CPU) foot-print

r Stay with a small active selected set of technologies were possible

• Select e.g. one programming language like Java

s Build on the shoulders of others

• Select and build on open software were useful
• Select open interfaces and standards for portability and reuse

The focus on these sustainability driven principles helps the TaaS team to keep
the technology and human resource allocation small. By avoiding cloud provider spe-
cific proprietary interfaces TaaS runs in different deployments e.g. legal entities and on
different cloud providers – reuse enabled by portability of the software.

Operationalization of sustainability decisions for features and capabilities is realized
via their belonging stories and tasks. The evaluation is realized by the acceptance criteria
of the stories and in the show and tell sessions. The show and tell sessions combined with
the retrospectives are leading to strategic continuous improvement of the sustainability
of the deployed service. As sustainability performance indicator the degree of optimiza-
tion of the deployment foot-print is used. This is a useful metric because it includes also
uptimes of secondary deployments like test environments for development and mainte-
nance. Furthermore, it is relative to the past and fosters continuous improvement. About
the engineering resources the focus is to reduce operating efforts by smart build time
decisions. However the word smart is key, because not all potential possible actions are
really sustainable - also in a life-cycle view the amortization of the initial resource invest
will not reached. This leads often to trade-off decisions during story refinements.

Over the last years the energy efficiency of TaaS was improved continuously with
“foot-print self-benchmarking” – only in the last 12 months we optimized the service
delivery efficiency with right-sizing of the infrastructure to the current workload profile,
selection of energy optimized compute instances and an optimized caching strategy in
a 2-digit percentage value. This shows, that in the fast-changing IT world technology
driven opportunities to optimize sustainability are always emerging, too.

The team realized that especially infrastructure is a constraint set for software engi-
neers and pre-defined by the purchased products and services. Only in the pre-defined
option set the team can select to optimize the foot-print. However, the Volkswagen AG
supplier management acts strategic aligned with the sustainability goals [51], too.

The instantiation of the ISO 14001 aspects are a facilitation for the European Green
Deal and theEUTaxonomyRegulation [52] ambitions. The sustainability actions derived
from the LoD layer ISO 14001 instantiation directly can mapped to the six objectives
of the Taxonomy to indicate that the product or service is a sustainable investment. This
can be realized by mapping of indicating sustainability goals and their action to at least
one of the 6 objectives and indicating that no other objectives are “harmed” by carry out
the service with social and governance standards in the context of the evaluated TaaS
setup.

Develop Sustainable Software with a Lean ISO 14001 111

6 Discussion and Limitations

The proposed approach is holistic, because it starts from the global sustainability goals
of the UN and can be refined down to individual software products and services within
the setting of an organization.With it lean and agile approach based on efiS® framework
building blocks it can be adopted directly into the value streams of the delivery teams.
It fosters self-determination aligned with [53] competency, autonomy and relatedness.
It helps the value stream team to develop knowledge and competencies about sustain-
able software engineering the LoD layer and the refinement to the software engineering
life-cycle. It fosters autonomy with the LoD approach and its shared-responsibly con-
cept by design. The relatedness is given by the specific product or service focus on
which the sustainability aspects are applied. This also offers an additional relatedness
dimension in cross-functional sustainability communities of large enterprises etc. The
aspect of being part of a global sustainability community also can give purpose and
motivation to involved people [54]. The proposed sustainability software engineering
approach supports all key indicators needed to foster intrinsic motivation of the involved
employees.

A limitation is that the (autonomous agile) teams have to identify which of the
SWEBOK mapped sustainability options are the right in the context of the enterprise
sustainability strategy or environmental policy and the specific software for the product
or service. However, in most practical cases software engineers should be able to make
this transfer step with the proposed facilitation.

A further limitation of the biased example evaluation is the instantiation on a modern
Group IT service, because it does not cover legacy aspects of software. Sure, legacy
software will have more sustainability debts which have to be handled as constraints,
but all upcoming maintenance tasks can be aligned with the presented approach. The
sustainability debts are a dedicated topicwhich has to be addressed actively by the devops
team to realize improvements over the rest of the life-cycle. Additionally, the biased
example is based on the Volkswagen AG sustainability goals and it is not demonstrated
that the refinement from all other software companies sustainability goals is possible.
However, Volkswagen is not an exclusive software company – it is a mobility company –
and this indicates that in most cases the application should be possible.

7 Conclusion and Outlook

To establish systematic sustainability optimization in the software life-cycle alignedwith
global and enterprise goals and strategies is possible also in lean and agile setups. The
generic efiS® framework offers all building blocks to instantiate a ISO 14001 aligned
EMS refinement for IT in general and especially for software product teams.

The key contributions to practice can be summarized by the following aspects:

– presents an approach guided with the LoD layer ISO 14001 to refine global and
enterprise sustainability goals to individual software products and services (RQ1)

– transparency and democratization of ISO 14001 requirements for an EMS to software
engineers in autonomous agile teams (RQ2)

112 A. Poth and E. Nunweiler

– identified generic software sustainability patterns mapped to the SWEBOK for
operative instantiation during the software life-cycle (RQ2)

– presents an example of the application of the LoD layer ISO 14001 instantiation and
the SWEBOK mapped sustainability patterns in real life enterprise service delivery
context in an autonomous agile team setup (RQ1)(RQ2)

– An open point in the EU Taxonomy Regulation [56] for software is addressed and a
practical solution is proposed with “foot-print self-benchmarking” (RQ2)

The key contributions to theory can be summarized by the following aspects:
– presents the gap of the current research from an EMS view down to specific software
products and services (motivates RQ1)

– propose a lean instantiation approachof product specific ISO14001 refinements (RQ1)
– identified that most for technical sustainable of software is realized during build
time; runtime mostly focus on leveling the sustainability benefits – autonomous agile
development teams keep the key to sustainable deliverables (RQ2)

– identified generic view for direct and indirect objective of sustainable software engi-
neering: optimize the deployment package; add deployment environment factor and
optimize this objectives within autonomous agile teams (RQ2)

– identified that intelligent employment of engineering contributes to the sustainability
life-cycle which can be realized in autonomous agile teams (RQ2)

The overall conclusion is, that with the systematic application of the proposed app-
roach it is possible to instantiate enterprise sustainability policies and goals to software
driven IT products and services in autonomous agile teams.

A possible future research task is to generalize the LoD layer ISO 14001 to apply
it beyond this example in the entire Group IT. Spread the proposed approach to other
Group IT teams and create SSKs [55] about “hot topics” for software sustainability
enhancements. Make a formal mapping of the software sustainability principles and
patterns to the ISO 25010 for a refinement applicable also during quality planning and
management. Furthermore, the investigation of low-level optimizations based on com-
piler flags is needed to see what sustainability improvements are possible with current
options. On the highest level investigation can look at the product and service portfolio
management and budget allocation – is sustainability selling more when it is driven by
an EU Taxonomy mapping and is allocated preferred with money?

References

1. Sustainability Goals of the United Nations. https://sdgs.un.org/goals
2. Volkswagen AG environmental compliance. https://www.volkswagenag.com/en/sustainab

ility/environment/environmental-compliance.html
3. Volkswagen AG sustainability strategy. https://www.volkswagenag.com/en/sustainability/

environment.html
4. Volkswagen AG sustainability mission. https://www.volkswagenag.com/presence/nachhalti

gkeit/documents/Mission_Statement_Environment_2019-06-20_en_final_hoch.pdf
5. ISO 14001:2015. https://www.iso.org/iso-14001-environmental-management.html
6. Kelly, C., Mangina, E., Ruzelli, A.: Putting a CO 2 figure on a piece of computation. In:

11th International Conference on Electrical Power Quality and Utilisation, pp. 1–7. IEEE, 17
October 2011

https://sdgs.un.org/goals
https://www.volkswagenag.com/en/sustainability/environment/environmental-compliance.html
https://www.volkswagenag.com/en/sustainability/environment.html
https://www.volkswagenag.com/presence/nachhaltigkeit/documents/Mission_Statement_Environment_2019-06-20_en_final_hoch.pdf
https://www.iso.org/iso-14001-environmental-management.html

Develop Sustainable Software with a Lean ISO 14001 113

7. García-Mireles, G.A.,Moraga,M.Á., García, F., Calero, C., Piattini, M.: Interactions between
environmental sustainability goals and software product quality: a mapping study. Inf. Softw.
Technol. 95, 108–129 (2018)

8. Naumann, S., Dick,M.,Kern, E., Johann, T.: The greensoftmodel: a referencemodel for green
and sustainable software and its engineering. Sustain. Comput. Inform. Syst. 1(4), 294–304
(2011)

9. Johann, T., Dick, M., Kern, E., Naumann, S.: Sustainable development, sustainable soft-
ware, and sustainable software engineering: an integrated approach. In: 2011 International
Symposium on Humanities, Science and Engineering Research, pp. 34–39. IEEE, June 2011

10. Albertao, F., Xiao, J., Tian, C., Lu, Y., Zhang, K.Q., Liu, C.: Measuring the sustainability
performance of software projects. In: 2010 IEEE 7th International Conference on E-Business
Engineering, pp. 369–373. IEEE, November 2010

11. Mahmoud, S.S., Ahmad, I.: Green performance indicators for energy aware it systems: survey
and assessment. J. Green Eng. 3(1), 33–69 (2012)

12. Kipp, A., Jiang, T., Fugini, M., Salomie, I.: Layered green performance indicators. Futur.
Gener. Comput. Syst. 28(2), 478–489 (2012)

13. Sahin, C., Cayci, F., Clause, J., Kiamilev, F., Pollock, L., Winbladh, K.: Towards power
reduction through improved software design. In: 2012 IEEE Energytech, pp. 1–6. IEEE, May
2012

14. Sierszecki, K., Mikkonen, T., Steffens, M., Fogdal, T., Savolainen, J.: Green software:
greening what and how much? IEEE Softw. 31(3), 64–68 (2014)

15. Calero, C., Moraga, M.A., Bertoa, M.F., Duboc, L.: Quality in use and software greenability.
In: Proceedings of CEUR Workshop, pp. 28–36 (2014)

16. ISO/IEC 25010:2011. https://www.iso.org/standard/35733.html
17. Lago, P., Koçak, S.A., Crnkovic, I., Penzenstadler, B.: Framing sustainability as a property

of software quality. Commun. ACM 58(10), 70–78 (2015)
18. Penzenstadler, B., Femmer, H.: A generic model for sustainability with process-and product-

specific instances. In: International Workshop on Green in Software Engineering and Green
by Software Engineering at AOSD (2013)

19. Thiry, M., Frez, L., Zoucas, A.: GreenRM: reference model for sustainable software
development. In: SEKE, pp. 39–42 (2014)

20. Agarwal, S., Nath, A., Chowdhury, D.: Sustainable approaches and good practices in green
software engineering. Int. J. Res. Rev. Comput. Sci. 3(1), 1425 (2012)

21. Lago, P.: Architecture design decision maps for software sustainability. In: 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in Society
(ICSE-SEIS), pp. 61–64. IEEE (2019)

22. Gupta, S., Lago, P., Donker, R.: A framework of software architecture principles for
sustainability-driven design and measurement. In: 2021 IEEE 18th International Conference
on Software Architecture Companion, pp. 31–37. IEEE (2021)

23. Venters, C., et al.: The blindmen and the elephant: towards an empirical evaluation framework
for software sustainability. J.OpenRes. Softw. 2(1), e8, 1–6 (2014). http://dx.doi.org/10.5334/
jors.ao

24. Venters, C.C., et al.: Software sustainability: the modern tower of babel. In: CEURWorkshop
Proceedings, vol. 1216, pp. 7–12 (2014)

25. Barroso, L.A., Hölzle, U.: The case for energy-proportional computing. Computer 40(12),
33–37 (2007)

26. Barroso, L.A., Clidaras, J., Hölzle, U.: The datacenter as a computer: an introduction to the
design of warehouse-scale machines. Synth. Lect. Comput. Archit. 8(3), 1–154 (2013)

27. Microsoft Sustainability Engineering. https://docs.microsoft.com/en-us/learn/modules/sustai
nable-software-engineering-overview/

https://www.iso.org/standard/35733.html
http://dx.doi.org/10.5334/jors.ao
https://docs.microsoft.com/en-us/learn/modules/sustainable-software-engineering-overview/

114 A. Poth and E. Nunweiler

28. VMware sustainability approach. https://www.heise.de/hintergrund/Sustainability-im-Sof
tware-Engineering-Teil-1-ein-Aufruf-6011723.html?seite=all

29. SAP sustainability approach. https://www.heise.de/developer/artikel/Sustainable-Progra
mming-Softwarecode-ohne-Stromfresser-4197828.html?seite=all

30. Sustainability approach. https://principles.green/
31. Calero, C., Piattini, M.: Puzzling out software sustainability. Sustain. Comput. Inform. Syst.

16, 117–124 (2017)
32. Betz, S., et al.: Sustainability debt: a metaphor to support sustainability design decisions

(2015)
33. SWEBOK. https://ieeecs-media.computer.org/media/education/swebok/swebok-v3.pdf
34. Hevner, A.R.: A three cycle view of design science research. Scand. J. Inf. Syst. 19(2), 4

(2007)
35. Avison, D.E., Lau, F., Myers, M.D., Nielsen, P.A.: Action research. Commun. ACM 42(1),

94–97 (1999)
36. Przybyłek, A., Albecka, M., Springer, O., Kowalski, W.: Game-based Sprint retrospectives:

multiple action research. Empir. Softw. Eng. 27(1), 1–56 (2021). https://doi.org/10.1007/s10
664-021-10043-z

37. Poth,A.,Kottke,M.,Riel,A.:Orchestrating agile IT qualitymanagement for complex solution
development through topic-specific partnerships in large enterprises – an example on the EFIS
framework. In: Yilmaz, M., Clarke, P., Messnarz, R., Reiner, M. (eds.) EuroSPI 2021. CCIS,
vol. 1442, pp. 88–104. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85521-5_7

38. Poth, A., Kottke, M., Middelhauve, K., Mahr, T., Riel, A.: Lean integration of IT security
and data privacy governance aspects into product development in agile organizations. J. Univ.
Comput. Sci. 27(8), 868–893 (2021)

39. Data Center Efficiency. https://e3p.jrc.ec.europa.eu/publications/2021-best-practice-guidel
ines-eu-code-conduct-data-centre-energy-efficiency

40. Kruchten, P., Nord, R.L., Ozkaya, I.: Technical debt: from metaphor to theory and practice.
IEEE Softw. 29(6), 18–21 (2012)

41. AMD. https://www.amd.com/system/files/documents/The-Energy-Efficient-AMD-EPYC-
Design.pdf

42. Analysis. https://www.servethehome.com/amd-epyc-7002-series-rome-delivers-a-knockout/
amd-epyc-7002-power-consumption/

43. Benchmarking. https://www.phoronix.com/scan.php?page=article&item=linux55-xeon-
epyc&num=9

44. Intel Xeon 36. https://www.intel.de/content/www/de/de/products/sku/215276/intel-xeon-
gold-6342-processor-36m-cache-2-80-ghz/specifications.html

45. Intel Xeon 18. https://www.intel.de/content/www/de/de/products/sku/215273/intel-xeon-
gold-6334-processor-18m-cache-3-60-ghz/specifications.html

46. https://www.servethehome.com/ddr4-dimms-system-power-consumption-tested/
47. Poth, A., Urban, H., Riel, A.: Make product and service requirements shippable - from the

cloud service vision to a continuous value streamwhich satisfies current and future user needs.
Springer (2022, in print)

48. VolkswagenAG report. https://www.volkswagenag.com/presence/nachhaltigkeit/documents/
sustainability-report/2020/Nonfinancial_Report_2020_e.pdf

49. Poth, A., Riel, A.: Quality requirements elicitation by ideation of product quality risks with
design thinking. In: 2020 IEEE 28th International Requirements Engineering Conference
(RE), pp. 238–249. IEEE, August 2020

50. Poth, A., Kottke, M., Riel, A.: Evaluation of agile team work quality. In: Paasivaara, M.,
Kruchten, P. (eds.) XP 2020. LNBIP, vol. 396, pp. 101–110. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58858-8_11

https://www.heise.de/hintergrund/Sustainability-im-Software-Engineering-Teil-1-ein-Aufruf-6011723.html%3Fseite%3Dall
https://www.heise.de/developer/artikel/Sustainable-Programming-Softwarecode-ohne-Stromfresser-4197828.html%3Fseite%3Dall
https://principles.green/
https://ieeecs-media.computer.org/media/education/swebok/swebok-v3.pdf
https://doi.org/10.1007/s10664-021-10043-z
https://doi.org/10.1007/978-3-030-85521-5_7
https://e3p.jrc.ec.europa.eu/publications/2021-best-practice-guidelines-eu-code-conduct-data-centre-energy-efficiency
https://www.amd.com/system/files/documents/The-Energy-Efficient-AMD-EPYC-Design.pdf
https://www.servethehome.com/amd-epyc-7002-series-rome-delivers-a-knockout/amd-epyc-7002-power-consumption/
https://www.phoronix.com/scan.php%3Fpage%3Darticle%26item%3Dlinux55-xeon-epyc%26num%3D9
https://www.intel.de/content/www/de/de/products/sku/215276/intel-xeon-gold-6342-processor-36m-cache-2-80-ghz/specifications.html
https://www.intel.de/content/www/de/de/products/sku/215273/intel-xeon-gold-6334-processor-18m-cache-3-60-ghz/specifications.html
https://www.servethehome.com/ddr4-dimms-system-power-consumption-tested/
https://www.volkswagenag.com/presence/nachhaltigkeit/documents/sustainability-report/2020/Nonfinancial_Report_2020_e.pdf
https://doi.org/10.1007/978-3-030-58858-8_11

Develop Sustainable Software with a Lean ISO 14001 115

51. Volkswagen AG rating. https://www.vwgroupsupply.com/one-kbp-pub/en/kbp_public/inf
ormation/nachhaltigkeit_neu_pub_2019/sustainability_rating__s_rating_2/sustainability_
rating__s_rating_3.html

52. EU Taxonomy. https://ec.europa.eu/info/business-economy-euro/banking-and-finance/sustai
nable-finance/eu-taxonomy-sustainable-activities_en

53. Ryan, R.M., Deci, E.L.: Self-determination theory and the facilitation of intrinsic motivation,
social development, and well-being. Am. Psychol. 55(1), 68 (2000)

54. Harackiewicz, J.M., Sansone, C.: Goals and intrinsic motivation: you can get there from here.
Adv. Motiv. Achiev. 7, 21–49 (1991)

55. Poth, A., Kottke, M., Riel, A.: Scaling agile on large enterprise level with self-service kits to
support autonomous teams. In: 2020 15th Conference on Computer Science and Information
Systems (FedCSIS), pp. 731–737. IEEE, September 2020

56. page 362 “the software gap.” https://ec.europa.eu/info/sites/default/files/business_eco
nomy_euro/banking_and_finance/documents/200309-sustainable-finance-teg-final-report-
taxonomy-annexes_en.pdf#page356

https://www.vwgroupsupply.com/one-kbp-pub/en/kbp_public/information/nachhaltigkeit_neu_pub_2019/sustainability_rating__s_rating_2/sustainability_rating__s_rating_3.html
https://ec.europa.eu/info/business-economy-euro/banking-and-finance/sustainable-finance/eu-taxonomy-sustainable-activities_en
https://ec.europa.eu/info/sites/default/files/business_economy_euro/banking_and_finance/documents/200309-sustainable-finance-teg-final-report-taxonomy-annexes_en.pdf%23page356

Modeling and Model Transformation
as a Service: Towards an Agile Approach

to Model-Driven Development

Adel Vahdati and Raman Ramsin(B)

Department of Computer Engineering, Sharif University of Technology, Azadi Avenue,
Tehran, Iran

vahdati@ce.sharif.edu, ramsin@sharif.edu

Abstract. Scalability has always been a challenge in software development, and
agile methods have faced their own ordeal in this regard. The classic solution is
to use modeling to manage the complexities of the system while facilitating intra-
team and inter-team communication; however, agile methods tend to shy away
from modeling to avoid its adverse effect on productivity. Model-driven devel-
opment (MDD) has shown great potential for automatic code generation, thereby
enhancing productivity, but the agile community seems unconvinced that this gain
in productivity justifies the extra effort required for modeling. The challenge that
the MDD community faces today is to incorporate MDD in agile development
methodologies in such a way that agility is tangibly and convincingly preserved.
In this paper, we address this challenge by using a service-oriented approach to
modeling and model transformation that pays special attention to abiding by agile
values and principles.

Keywords: Model-Driven Development · Agile methods · Service-oriented
architecture

1 Introduction

In Model-Driven Development (MDD), models play the primary role throughout the
process of software development [1]. One of the motivations for using this approach is
to automatically create the product frommodels of the system. In model-driven develop-
ment, the problem domain is described in terms of models at high levels of abstraction.
By executing a chain of model-to-model transformations, the details of the solution
domain are gradually added, thus producing refined models of the system. The process
culminates in generation of code by using model-to-text transformation.

Agile methods are widely used in the software industry. Although they strive to
expedite software development and delivery as much as possible, they also pay special
attention to enhancing flexibility in order to respond to change in a timely manner [2].
Agile methodologies are lightweight and tend to shy away frommodeling, as executable
code is considered the main measure of progress; however, they all incorporate a highly-
disciplined and well-defined process [1].

© Springer Nature Switzerland AG 2022
A. Przybyłek et al. (Eds.): LASD 2022, LNBIP 438, pp. 116–135, 2022.
https://doi.org/10.1007/978-3-030-94238-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94238-0_7&domain=pdf
http://orcid.org/0000-0003-1996-9906
https://doi.org/10.1007/978-3-030-94238-0_7

Modeling and Model Transformation as a Service 117

It might seem that agile development and model-driven development are poles
apart. Agile methods are lightweight, fast, responsive and adaptable, while model-driven
approaches are heavyweight and require early investment in modeling [3]. Agile meth-
ods focus more on the process and methodological aspects of software development,
while model-driven approaches rely on architectural aspects and separation of concerns
[4]. Nevertheless, it has been observed that by combining these two approaches, we
can take advantage of the strengths of both and cover some of their weaknesses [3].
The goal of both approaches is to manage complexity: model-driven methods reduce
accidental complexity by separating design concerns from implementation details [5];
agile methods manage complexity by creating product increments in short iterations and
receiving early and fast feedback [6]. Both approaches also try to accelerate develop-
ment and enhance response to change: agile methods move in this direction by early
and continuous delivery of products in short iterations [4]; MDD achieves this goal by
raising the level of automation in code generation [2].

There are several reasons for integrating agilemethods andmodel-driven approaches,
including [6]: improving agility and minimizing unnecessary tasks, increasing collab-
oration, enhancing requirements analysis, reducing risks by receiving early feedback,
accelerating response to change, increasing the level of automation, managing complex-
ity and building the models in an iterative-incremental fashion, and better understanding
of the problem domain [6]. Some very influential agile methods started as model-phobic
frameworks; however, it has since been realized that all of them can make use of mod-
eling in some way [7]. One of the potential solutions is Agile Modeling (AM), which
provides a means for adding modeling to agile methods without compromising agility
[7]. The most important issue in agile MDD is to determine which agile practices, under
what circumstances, and how, should be used in MDD [8]. In AM, models are created
just in time and just enough for the specific purpose intended [9]. Despite its merits,
AM’s applicability to MDD should be further explored.

We propose a new agile approach to MDD by using service-oriented concepts. The
purpose of this approach is to facilitate participation and collaboration in the modeling
process and to improve scalability in terms of model size and the number of modelers
involved in the modeling process. To this aim, we introduce the idea of “multilevel
modeling as a service” and “model transformation as a service”, and propose a new
model-driven architecture. For modeling at different levels of abstraction, we propose
the concept-based abstract syntax, which allows the description of the problem domain
and the solution domain from structural, functional and behavioral perspectives.

The rest of this paper is structured as follows: Sect. 2 provides an overview of the
previous works related to this research; Sect. 3 presents the problems currently afflicting
agile software development and MDD, and the potential opportunities that will arise
as a result of their integration; Sect. 4 describes different approaches for complexity
management in modeling processes based on model decomposition; Sect. 5 describes
our proposed approach for modeling and model transformation as a service; and Sect. 6
presents the conclusion and explains the next steps in this research.

118 A. Vahdati and R. Ramsin

2 Related Works

Agile development and MDD are both mature domains, and numerous efforts have been
made over the years to integrate them. The works mentioned here are meant to provide
a brief overview of the related literature.

Matinnejad [1] has evaluated a number of Agile Model-Driven Development
(AMDD) methods as to their agility and MDD support. Essebaa and Chantit [4] have
proposed a method for combining MDA and agile methods, and have examined how
agile methods can benefit from MDA. Alfraihi and Lano [6, 12] have investigated the
motivations and challenges of integrating agile development and MDD; lack of a well-
defined process and tool support, and the steep learning curves involved, are recognized
as the key challenges. Alfraihi and Lano [12] have also conducted a systematic literature
review to examine the practices used in agile MDD. To facilitate sprint management
in Scrum, Chantit and Essebaa [10] have combined Model-Driven Engineering (MDE)
andModel-Based Testing (MBT) to produce a customized V-development life cycle that
is integrated into Scrum. Bernaschina [11] has proposed an agile framework for rapid
prototyping of model transformations. Asadi and Ramsin [13] have evaluated several
MDA-based methods according to general, MDA-related, and tool-related criteria.

3 Integrating Model-Driven and Agile Development Approaches

A prerequisite for integrating agile and MDD methods into agile MDD processes is to
be familiar with the strengths and weaknesses of these two areas. Also, the nature of
the problems targeted by agile MDD is another issue that should be considered. In this
section, we separately examine the deficiencies of agile development and MDD and
investigate the challenges and opportunities facing the integration of these two areas.

3.1 Agile Development Challenges

Agile methods have come a long way as to their support for scalability, but scalability
is still a serious problem, especially in large and complex projects involving distributed
teams [14]. Over-reliance on face-to-face conversation as the sole means for conveying
and information, and avoidance of modeling at all costs, can be detrimental to scalability.
This poses a challenge to coordination and communication in distributed teams; lack of
trust, common ground, language and knowledge base make it difficult for distributed
teams to work together and develop a large and complex system [15].

Another problem with agile methods is their attitude towards architecture [2]. Agile
approaches are risk-driven rather than architecture-driven, and even though modern,
more mature agile methods such as Disciplined Agile Delivery (DAD) [9] pay special
attention to architecture, most methods see the main goal as mitigating the risks rather
than providing a reliable high-level structure that addresses the quality attributes. As
a result, modeling and refining the architecture is not focused upon sufficiently, which
in turn adversely affects scalability: it is difficult to assess the effects of architecturally
significant design decisions on quality attributes; software evolution is difficult and
tedious because the code is the only available means for learning and knowledge sharing;
and there will be a steep learning curve for newcomers to the team.

Modeling and Model Transformation as a Service 119

3.2 MDD Challenges

MDD requires early planning, investment and design [3]. Typically, model-driven
methodologies have heavyweight processes that have a negative effect on agility. Mod-
eling large and complex systems in an iterative-incremental fashion, and collaboration
among teammates during modeling activities in large distributed teams, are other chal-
lenges of MDD. The strongest motivation for using MDD is the continuous evolution
of software technologies. In MDD, code can be (semi)automatically generated through
a series of model transformations [16], but the main problem with this approach is that
we need to prepare and take the initial steps before starting the development process [2].
This early investment can add value when the assets produced during these steps can be
reused frequently. Therefore, production of reusable artifacts and responding to changes
by demand is one of the challenges of MDD [2].

The model-driven architecture (MDA), which has become quite popular in MDD,
is a good example of a multi-layered architecture. The three modeling levels of MDA
(Computation-Independent Model or CIM, Platform-Independent Model or PIM, and
Platform-Specific Model or PSM) enhance reusability through abstraction [16]. For
instance, in PIMmodels, application specifications are platform-independent and ignore
implementation technology issues. Therefore, it is possible to reuse these models for
different implementation technologies [16].

Research in the field of MDA has focused more on the PIM and PSM levels, and
little work has been done on CIM level models. UML, as a popular modeling language,
is not suitable for displaying models at higher levels of abstraction such as CIM. Using
domain-specific languages (DSL) can improve the expressiveness of the language for
displaying models of a particular application domain [16], but in current MDE practices,
the process of building DSLs is done on an ad-hoc basis [17].

3.3 Opportunities and Challenges of Integrating Agile and MDD Approaches

Models, as a common language and basis, facilitate communication and interaction
between different teams and improve the scalability of agile methods [14]. Model-
phobia in some prominent agile methods poses challenges to maintenance, evolution
and change tracking. MDD strives to improve productivity by automatically generating
code from models, and to provide sufficient detail to assist the maintenance phase by
creatingmodels at various abstraction levels. However,MDD is not inherently agile [18].
Therefore, we need to adhere to agile values and use best practices in agile modeling,
along with the lessons learnt from hands-on experience and practical expertise in the
field, in order to achieve effective agile modeling of software systems [19].

In AgileMDD, instead of modeling the whole system at once, models evolve contin-
uously according to user demands [19]. Agile modeling is done gradually and in small
steps, and instead of creating a large and complex model, several models are created and
used in parallel. In modeling, unnecessary details are avoided and the focus is on the
required aspects. During the modeling process, users are actively involved and simple
tools are used to produce the models [6]. By storing artifacts in shared repositories and
applying collaborative modeling techniques, communication and interaction between
stakeholders is improved and existing artifacts can be reused [20].

120 A. Vahdati and R. Ramsin

One of the gaps in agile methods is the role of architecture in software solutions [14],
which is well covered by the use of MDD. Typically, the technologies that are supposed
to support a business change faster than the business itself [21].MDD facilitates software
evolution by separating the problem domain from the solution domain. By establishing
a mapping between the problem domain and the solution domain, if the problem domain
models change, these modifications are propagated to solution domain models through
the model transformations and mapping between the two levels, but if the solution
domain changes (by adopting a new technology or platform) we only need to modify
the mapping (transformations) and the changes will not be propagated to the problem
domain models [2].

Despite the opportunities available, integrating agile and model-driven approaches
poses its own issues and problems. Most of the proposed methods lack a systematic
and well-defined process, and teams usually proceed on an ad-hoc basis based on their
experiences [6, 12]. Lack of appropriate tools to take advantage of Agile MDD and
the steep learning curve that developers have to face are other problems hindering the
integration of these two areas [6]. For example, CI/CD tools are key enablers of agile
methodologies, and version control systems play an important role in this pipeline.
Current version control systems manage and track changes and resolve conflicts at the
code level. Therefore, they can only identify and resolve conflicts at the syntax level,
and semantic conflicts caused by changes in modeling artifacts cannot be detected by
these tools [20]. This is an interesting research topic, but it will not be addressed in this
paper.

The agile approach prioritizes people and their interactions over processes and tools.
However, having the right tools to facilitate the use of agile MDD plays an important
role in fast product delivery and response to change. In addition to supporting modeling
and testing, these tools should also support change and configuration management [6].

4 Complexity Management in Modeling

Software systems are complex in nature, and many are distributed as well. Different
teams can be involved in the system development process, but the members of these
teams are not necessarily co-located. The key question is how to manage the modeling
complexity of the problemdomain and improve collaboration in themodeling process. In
MDD, the metamodel is first defined by identifying the domain concepts, which are then
instantiated to yield the model elements. Accordingly, the model must conform to the
syntactic rules and constraints defined in the metamodel. We use model decomposition
for managing complexity in modeling processes, and propose three approaches based
on the meta-level to which decomposition is applied. As shown in Fig. 1, each approach
has its own benefits and liabilities when used in an agile MDD context.

In the first approach, a metamodel is defined for the entire domain and the problem
domain is described in the formof a singlemodel. The second approach, similar to thefirst
approach, uses a single metamodel to define the concepts and rules of domain-specific
modeling language, but manages model complexity by domain decomposition, breaking
up the problem domain model into multiple partial models. The partial models describe
different parts of the problem domain, but their modeling language is the same, and an

Modeling and Model Transformation as a Service 121

overall model of the problem domain is obtainable by integrating these partial models. In
the third approach, breaking up the problem domain takes place at both metamodel and
model levels. Therefore, in order to describe the same aspect in different parts (contexts)
of the problem, the context-specific metamodel of each part is first defined, and the
problem domain is then described from that perspective with the help of models that
conform to context-specific aspect-related metamodels.

Fig. 1. Three approaches to metamodeling and modeling

4.1 First Approach

This approach is suitable for describing simple problems, but faces serious challenges
for large and complex systems. From a scalability point of view, we encounter a large and
complexmetamodel that contains all the domain concepts and syntactic rules. Validation
and maintenance are difficult as it is not possible to get early feedback from the user
before defining a heavyweight metamodel. Reusability of the modeling artifacts is also
low, as for each aspect, different contexts of the system are described in the form of a
single model by using a single modeling language (single metamodel).

This approach lacks agility, and makes iterative-incremental modeling impossible.
If the metamodel is modified, these changes should be reflected to a large and complex
model, which makes it difficult to keep the model and the metamodel compatible. From
the perspective of cooperation and collaborative modeling, this approach also faces
various issues. Collaborative modeling requires breaking up the modeling tasks, but this
approach lacks a clear strategy for this purpose.

It should be noted that in general, cooperation of team members in the modeling
process can be done either synchronously or asynchronously. In synchronous collabora-
tion, all members work on a single shared model, and if a part of the model is modified
by a team member, the changes are communicated synchronously to all the members
involved in the modeling process. This method usually uses locking mechanisms to
maintain consistency. Each modeler must lock the model before making any changes,
which interferes with the design process. Locking the elements of a large model and
managing and releasing locks is an important problem of this method.

In asynchronous collaboration, each team member has a copy of the remote model
and modifies the local version of the model, using version control systems to apply
changes to the remote version of the model. Merging the local changes with the remote
model is handled automatically in the absence of conflict, otherwise the conflicts must be
resolved manually. Pulling all the elements of a large model from the remote repository
and storing them locally is not efficient in terms of resource consumption.

122 A. Vahdati and R. Ramsin

4.2 Second Approach

The second approach uses a multitude of models to describe the problem domain.
By identifying different areas (subdomains) of the problem domain, it is possible to
describe each context consistently and unambiguously. In this approach, the same lan-
guage (metamodel) is used for describing a specific aspect in different contexts of the
problem domain. However, each context (subdomain) can have its ownmodel andmodel
repository, so in asynchronous collaborative modeling, it is not necessary to load all the
specifications of the problem domain, but each team can load, describe and modify the
specifications of the areas assigned to it as modeling tasks. Thus, subdomains can be
the basis for division of modeling activities and task assignment among different teams.
However, the operational cost of maintaining multiple repositories and the interdepen-
dencies between different subdomains, and integrating them to produce an overall view
of the system, is the price that should be paid for reducing complexity, and improving
scalability and collaboration.

Reusability at the metamodel level is similar to the first approach. However, if
the problem domain is decomposed into cohesive parts with minimal interdependen-
cies, the reusability of partial models will be improved. In this approach, we need to
define a heavyweight metamodel before starting the modeling process of different sub-
domains. Also, making a change in the metamodel can affect the models of multiple
subdomains. As a result, iterative-incremental development of models and metamodels
becomes challenging and, from this perspective, lacks the necessary agility.

4.3 Third Approach

The third approach manages complexity at both the metamodel and model levels. To
describe a specific aspect in different contexts (parts) of the problem domain, the model-
ing language (abstract syntax) appropriate for each context is created as ametamodel, and
the problem domain is then described from that perspective (aspect) by using context-
specific languages. In this approach, separation of concerns helps manage complexity.
Also, instead of defining a large and complex metamodel for each aspect that con-
siders all context-related concerns and details, several lightweight and context-specific
metamodels are developed to describe the different contexts of the problem from that
perspective by using different modeling languages (metamodels).

This improves the reusability andmaintainability of the metamodel and related mod-
els: if one metamodel changes, we only need to maintain the compatibility of its corre-
sponding models. It also allows for gradual and evolutionary modeling and contributes
to the agility of the modeling process. By assigning the tasks related to the modeling and
metamodeling of each context to a team, different teams can concurrently collaborate in
the modeling process, thus enhancing collaborative modeling.

In this approach, the overall view of the problem domain from a specific perspective
(aspect) is generated by integrating the partial models of different contexts of the prob-
lem domain, and model transformations play a key role in this regard. The complexity of
integration is the cost that should be paid to improve cooperation, scalability and mutual
independence of teams as to the modeling process. Identifying and distinguishing the
different contexts of the problem domain can be challenging: if the logical boundaries

Modeling and Model Transformation as a Service 123

between the different contexts of the problem are not well identified, integration will
become difficult. There are several strategies for decomposing the metamodel. A coarse-
grained metamodel can be decomposed by considering the following goals: increase the
cohesion of fine-grained metamodels, form autonomous teams, and improve participa-
tion and cooperation in the modeling process. The Bounded Context pattern [22] can
be used as a guideline and mechanism to decompose metamodels with respect to these
goals.

Specialized fields usually have their own language and literature, which can be the
basis for decomposing a coarse-grained metamodel into several fine-grained domain-
specificmetamodels, thus producing cohesivemetamodel andmodels. The independence
of teams in developing different parts of the software systemmaybe the basis for deciding
how to break up the metamodel. Reducing inter-team dependencies allows different
teams to work in parallel. This improves agility and cooperation in modeling activities.
In co-located teams, it is thus possible to exchange information effectively, build trust
and promote collaboration. As a rule of thumb, the Bounded Context pattern can be
used as a guideline and starting point for decomposing a coarse-grained metamodel.
Later on, two context-specific metamodels can be merged and assigned to a single team
according to other concerns and criteria, including: reducing inter-team dependencies,
saving on integration/operational costs, and reducing the collaboration costs resulting
from geographical distribution of the teams. All of these benefitsmake the third approach
a wise choice for agile MDD.

5 Modeling as a Service and Model Transformation as a Service

As seen in the previous section, the third approach to management of modeling com-
plexity improves agility and collaboration in the modeling process. However, the main
challenge in this approach is to integrate partial models and provide a high-level view.
Although partialmodels of different contexts describe the problemdomain from the same
aspect (e.g., the structural aspect), these models are heterogeneous because each partial
model conforms to a different metamodel. Therefore, in order to achieve an overall view
of the system from a specific aspect, we need to integrate these heterogeneous partial
models. To address this problem, we must first determine the types of relationships that
exist among the partial models.

5.1 Types of Relationships Between Models

Metamodel/model decomposition should be such that different contexts have the least
interdependence. However, in practice, these contexts are not isolated from each other.
For example, a model of infrastructure services can be shared and used by other contexts.
But at times, the same service is remodeled to enhance team independence and strengthen
control over service specification. Inspired by [22], we have identified four categories
for classifying the natures and types of relationships between models: separate context,
shared context, duplicate context, and conformist context.

Separate Context. The simplest situation is when two partial models have nothing to
do with each other and do not need the information of the other model to describe their

124 A. Vahdati and R. Ramsin

own domain. Under such circumstances, changes in each of these partial models are not
disseminated to the other, and their integration would not provide more information than
the pre-integration information.

Shared Context. In this case, part of the information is shared by two partial models
and has the same specifications. Describing this shared context requires collaborative
modeling (synchronous or asynchronous), and coordination between the teams respon-
sible for each of the partial models. If all of these partial models are stored in a central
repository, we will need access control mechanisms so that members of different teams
can only access the shared part. However, if each team has its own repository, storing the
shared context specifications in a separate, shared repository facilitates access control
management and collaboration among team members. However, in this case, each team
would need to manage two repositories (one private and one shared), and would also
have to integrate the model specifications stored therein. In the Shared Context category,
reusing models and avoiding redundancy is the main concern.

Duplicate Context. In this case, some of the information is shared by two partial mod-
els, but the burden of coordination and collaborative modeling between the two teams
is such that sharing and collaborating in the modeling process (for sake of reuse) costs
more than redefining and describing the shared context by each team. In this case, hav-
ing autonomous teams has a higher priority than reusing artifacts. Although teams can
still exchange information through Agile practices such as Scrum-of-Scrums, each team
produces its own specifications for the shared context. The price that is paid for this level
of flexibility is the possibility of creating semantic inconsistencies.

Conformist Context. In this case, one of the partial models (a downstream model)
depends on the information of another model (an upstream model) and these models
are defined and maintained by two different teams (supplier and consumer). The sup-
plier has complete independence of action in making design decisions, but the design
decisions made by the consumer must be aligned with and conform to the upstream
model. Therefore, tracking changes in the upstream model and disseminating it to the
downstream model is the responsibility of the consumer. For example, in MDA, CIM
models provide information for PIM models, and the relationships between them are
conformist. The driving forces behind the CIM models are the rules and constraints that
govern the business domain, and PIM models are required to comply with these rules
and restrictions, and the design models at the PIM level are in line with the business
domain models at the CIM level.

5.2 Loosely Modeled Relationships

As the type and nature of the relationships among the partial models becomes clear, an
important question that arises is how the relationships should be modeled in order to
facilitate the integration process. Adherence to the two fundamental principles of “high
cohesion” and “low coupling” seems to be a suitable strategy. Metamodel decomposi-
tion (through the third approach) should first be applied to maximize the cohesion of
the conforming model, and in contrast, the relationships between concepts in different

Modeling and Model Transformation as a Service 125

models should be loosely modeled in order to minimize coupling. Loosely modeled
relationships between two models, or between their elements, promotes inter-team and
intra-team collaboration.

Traditional modeling approaches model the relationships among the elements in
a tightly coupled manner. Suppose a team of designers intend to model the structural
aspects of a system in collaboration with each other in the form of class diagrams.
Suppose that there are two classes called Order and Customer in this model, which are
identified by two members of the team. There is an Association relationship between
Order and Customer, but the Association relationship between them cannot be defined
before defining the classes themselves. This will tie the design steps of the two team
members together because modeling the relationship between the two elements is highly
dependent on the presence of both at the moment of relationship definition.

A model can describe a situation, but to do so in the realm of modeling, we should
not have to realize all aspects of the constituent elements of that situation. Designers
usually model the system from the perspective of an outside observer, while the problem
space can be viewed from the perspective of each of its constituent elements. In the
previous example, Order describes the situation from its perspective as being related
to the Customer, but the presence or absence of the Customer element at the moment
of describing this situation does not change the reality of the problem; this is only a
technical concern to consistently define the model.

Therefore, relationships should be modeled asynchronously and loosely. The cost of
this approach is that the model may sometimes be inconsistent, but this type of inconsis-
tency can be resolved by completing the modeling process. In the long run, it seems that
improving flexibility, enhancing participation and collaboration, reducing dependency
and increasing scalability outweigh the temporary inconsistency of the domain model.
In this regard, we have introduced the idea of modeling and model transformation as a
service in which the problem domain is described in terms of different domain concepts,
each concept being embodied in the form of a service. This service makes it possible
to define a concept from different perspectives. Each concept can be described from
three perspectives: structural, functional and behavioral. It also provides essential func-
tionalities required to query the structural, functional, and behavioral specifications of a
concept.

The structural dimension expresses the characteristics and relationships of that con-
cept with other concepts. The functional dimension focuses on the functionalities that a
concept can provide. The behavioral dimension describes how this concept interacts with
other concepts to fulfill its role. The behavioral specification of a concept is described
from two perspectives: the responsibilities that the outside observer owes to that concept
and the facts about that concept that the outside observer may be interested in knowing.
This observer can be another domain concept, or the system as a whole.

In this approach, instead of modeling the problem domain only from the designer’s
point of view, we describe it from the perspective of each concept in the different con-
texts that make up the domain. The justifications behind this strategy are: information
hiding, reducing unnecessary coupling, managing complexity through domain decom-
position, and improving collaboration in the modeling process. For example, if Order
has a unidirectional relationship with Customer, from Order’s point of view, there is

126 A. Vahdati and R. Ramsin

a specific relationship with a concept called Customer, but Customer does not need to
know anything about this relationship in the customer management context. In other
words, Customer does not even know that a concept called Order is present in the
problem domain because describing the problem domain from a customer management
perspective does not require any such knowledge. In addition, Order does not need
to know about all the customer-related attributes defined in the customer management
context (e.g., date of birth). The loose connection between Order and Customer can be
realized by using an event-driven architecture. Order states that it has a specific rela-
tionship (with certain name and attributes) with Customer. From an event-driven point
of view, it can be interpreted that Order is interested in being informed when Customer
is modeled, or if it already exists in the scope of the problem domain. When Customer is
described in the problem domain, it announces the fact of being existent in the form of
a published event. Using the Publisher/Subscriber pattern, it will be possible to model
the relationships between two concepts in a loose manner.

This allows for asynchronous modeling, which improves participation and collabo-
ration of team members in the modeling process. On the other hand, problem domain
decomposition and describing it from the perspective of each domain concept allows
complexity management at fine-grained levels. It is the modeler’s responsibility to pro-
vide a macro view through the integration of these micro views. Since each domain
concept is realized in the form of a self-contained service, it will be possible to provide
a high-level view through the integration of services.

By identifying the subdomains, it is possible to model the system in the form of a
hierarchical structure from coarse-grained to fine-grained. The problem domain resides
at the highest level and consists of one or more subdomains, each of which contains
relevant domain concepts. Each subdomain can be considered as a composite service
that acts as a wrapper and includes services corresponding to domain concepts.

In other words, a subdomain provides access to these services from the outside world
indirectly and is responsible for maintaining the consistency and transactional integrity
of its internal concepts. The problem domain acts as a facade over the entire system
and ensures consistency and transactional integrity at the system level. This hierarchical
structure makes it possible to discover concepts (services) and resolve the relationships
between them, similar to what happens in a DNS. The whole process can be done
asynchronously by exchanging messages and using the publisher/subscriber pattern.

5.3 Model-Driven Development by Using Service-Oriented Paradigm

MDA is the main architecture adopted in MDD endeavors [23], and several methodolo-
gies have been proposed in its support [13]. MDA follows a layered structure (Fig. 2)
while our proposed model-driven architecture has an onion structure (Fig. 3).

In current model-driven practices, modelers have focused on design models and
usually start their work from the beginning by creating PIM-level models, completely
ignoring the CIM-level. Lack of modeling at the CIM level can lead to various problems.
Firstly, design models are affected by design decisions and solution issues, so they are
less reusable than CIM-level analysis models; secondly, design models are not under-
standable by the end user, and domain experts cannot validate them; and thirdly, there is
a semantic gap between the abstract high-level concepts used by domain experts and the

Modeling and Model Transformation as a Service 127

abstract concepts used by modelers and designers, which is a major source of accidental
complexity [20, 24]. Due to changes in requirements, bridging the gap manually is not
cost-effective in terms of time and effort [24]. Lack of analysis models at the CIM level
prevents the automatic production of PIM models based on CIM models. As a result, it
is not possible to automatically publish changes in the requirements and analysis models
to the design models.

In our proposed architecture, the problem domain is first described in terms of con-
cepts and their interrelationships, and CIM-level models are defined. In line with the
idea of “concept as a service”, domain concepts are described from structural, func-
tional and behavioral perspectives. A simplified version of the proposed abstract syntax
(metamodel) for describing each domain concept is shown in Fig. 4.

Examining a concept from a structural perspective determines what properties that
concept has and how it relates to other concepts in the problem domain. Examining
a concept from a functional perspective aims to identify the functionalities that it can
provide. Concepts in the real world usually need to interact and use the services provided
by other concepts to fulfill their roles and tasks. In the behavioral dimension of a concept,
the element of time and the sequence of interactions and communications between
concepts play a key role. The behavioral specification of a concept expresses the dynamic
aspect of that concept, while the structural and functional specifications describe its static
aspects.

During the modeling process, the problem domain metamodel is first described
by identifying the domain concepts, properties, and the relationships between them in
a textual form based on the proposed abstract syntax. This metamodel includes the
concepts, domains, and domain concepts of the problem domain. Then, by creating new
instances of the domain concepts, domain objects are created to form the domain model.

Fig. 2. OMG model-driven architecture Fig. 3. Proposed model-driven architecture

One of the problemswith conventional modeling approaches is that existing facilities
for defining metamodels cannot be used at the model level as well. So if we need a new
type, we have to define it explicitly at the metamodel level. To overcome this drawback,
the notion of multilevel modeling was proposed, which allows in-depth definition of a
language in more than two levels [25]. Two techniques have been proposed to extend the
standard modeling approach: potency-based multilevel modeling [25] and Orthogonal
Classification Architectures (OCA) [26, 27].

Potency-based multilevel modeling allows the domain to be described at multiple
levels. In this method, the elements in the model have two facets at the same time: type
and instance. For this reason, elements are called ‘Clabjects’, a combination of Class

128 A. Vahdati and R. Ramsin

Fig. 4. Describing a concept from three perspectives

and Object that exhibits the characteristics of both. In OCA [26], two orthogonal typing
systems are proposed, one based on ontology and the other based on linguistics [27].

In our “multilevel modeling as a service” idea, we extend OCA by adding a third
dimension: relational. From an ontological perspective, the elements of the model are
logically described as defined in the ontology hierarchy. From a linguistic point of view,
the physical dimension of the elements is discussed, which refers to the concepts and
structures that are necessary to construct and represent that element in models. The
relational dimension focuses on the relationship between two elements of two different
models. This dimension is embodied in our proposed solution in the form of an onion
architecture: PIM-to-CIM relation, PSM-to-PIM relation, and Code-to-PSM relation.

In Fig. 5, an example of multilevel modeling from ontological (O0, O1, and O2) and
linguistic (L0, L1 and L2) dimensions is shown. By analyzing the problem domain and
exploring the subdomains (“Domain”s) and concepts, domain concepts are first con-
structed (“DomainConcept”s). Then, by creating new instances of the domain concepts,
domain objects (“DomainObject”s) are created that actually form the domain model. A
DomainObject has two facets: it is an instance of its ontological upper level Domain-
Concept (e.g., in Fig. 5: Film is an instance of Product), and it can be considered as
a template for instantiation of its ontological lower level, and thus play the role of a
DomainConcept for the level below (e.g., in Fig. 5: Film is a type for StarWars).

Figure 6(b) shows the relational dimension of the proposed multilevel modeling
approach. PIM-to-CIM, PSM-to-PIM and Code-to-PSM relations are loosely modeled.
In line with the ideas of “modeling as a service” and “concept as a service”, each layer
provides access to its model elements and their descriptions to its higher layer, through
services corresponding to these elements. Therefore, the loosely modeled relationship
between the elements of each layer with its lower layer elements can be resolved using
service discovery, service call, and the publisher/subscriber pattern.

In our approach (Fig. 6(b)), CIM-level models are created with three objectives:

1. Improve reusability by creating analysis models.
2. Improve understandability: Models at the CIM level are more understandable to the

enduser anddomain experts, and in linewith agile values, increase their collaboration
and participation in the modeling and validation process.

Modeling and Model Transformation as a Service 129

3. Enable (semi)automated generation of PIM-level models by integrating CIM-level
models with the design decisions and concerns described at the PIM level, without
polluting CIM-level models with solution domain issues and implementation details.

To promote the participation and cooperation of domain experts and the development
team in themodeling process, a common language is required. To this aim,we have intro-
duced a method called CRAC (standing for “Concept-Responsibilities-Asynchronous
Collaboration”), which aims to explore the problem space and reach a common lan-
guage (Ubiquitous Language [22]) between domain experts and the development team.
We will further explain this method in the next section. The CRAC analysis model thus
produced is transformed into a concept-based model and a set of corresponding struc-
tural, functional and behavioral aspects, which constitute the CIM-level models and are
represented in the form of self-contained and self-descriptive services at the CIM level.
PIM-level services can obtain the specifications of a concept from different perspectives
by calling specific concept-related services at the CIM level.

Fig. 5. An example of multilevel modeling from linguistic and ontological perspectives

Next, we enter the realm of the solution domain. To do this, we need to describe
design details and solution concerns. However, these specifications do not directly apply
to CIM-level models, but are rather expressed using the specific language of the PIM
layer (Design-level DomainConcepts). If the partial models described at the PIM level
require the specifications of CIM-level concepts, they refer to the concepts and models
described at the CIM level (via the relational dimension of the proposed multilevel
modeling approach) without the need to redefine this information at the PIM level.
Integrating design details at the PIM level with the specifications of CIM-level concepts
is done automatically using the built-in or user-defined model transformation services.

The idea of “model transformation as a service” is based on an event-driven architec-
ture that allows reactive model transformations. In other words, model transformations

130 A. Vahdati and R. Ramsin

Fig. 6. Traditional MDA vs. proposed MDA approach

Modeling and Model Transformation as a Service 131

can be performed not only at the user’s request, but also in response to the creation or
modification of domain objects. One of the main components of a model transformation
is the source model. When a model transformation service is defined, it declares that
it is interested in receiving events related to the domain objects that correspond to its
source model (Fig. 7 – A.3: Subscribe to the event based on source model). By creating
or modifying a domain object, a relevant event is published (Fig. 7 – B.3: Publish an
event) and delivered to the model transformation services that subscribe to the event
(Fig. 7 – C.1: Handle the event). Upon receiving this event, the model transformation
service initiates the process of de-serializing the event and extracting the domain object
identifier, retrieving domain object specifications from corresponding services (Fig. 7
– C.2), performing transformation steps (Fig. 7 – C.3), and creating one or more target
domain objects conforming to the destination model (Fig. 7 – C.4).

Fig. 7. High-level architecture of reactive model transformation.

In current model-driven practices (Fig. 6(a)), CIM-level model elements are tagged
to provide design details that are not present in the CIM-level models, and model trans-
formations use these annotations to conduct transformation steps and produce PIM-
level models. This approach contaminates the analysis model with design concerns and
reduces its readability and expressiveness. If design decisions change, we will need to
re-annotate the analysis model. While in our proposed approach, CIM models remain
intact and are not corrupted by solution domain issues. Rather, these details are described
separately using PIM-level domain concepts, and are automatically combined with CIM

132 A. Vahdati and R. Ramsin

models to generate PIM models. The same scenario exists between the Code, PSM, and
PIM layer models, as shown in Fig. 6(b).

5.4 CRAC Method

In this method, we first identify the concepts of the problem domain. Each concept plays
a role in the problem space, and other concepts in this context have expectations of it
that can be interpreted and expressed in terms of its responsibilities. A concept’s respon-
sibilities can be “accomplished” or “failed”, and it is possible to deduce a set of facts
or events that explain this situation. For example, when a responsibility is successfully
performed, it can be inferred that the pre-conditions and post-conditions associated with
that responsibility have been met.

Concepts can also be interested in a set of facts and events in order to fulfill their
responsibilities. They can also react to an event when being informed about a fact.
This information is described in the form of a model consisting of these elements:
Concepts, Commands that are executed by a concept, Events that are published as a
result of command executions, Events that a concept is interested to know about it, and
Commands that are executed in reaction to the events of interest. For each concept, these
four pieces of information can be inserted on both sides of a card called a CRAC card
(Commands, Publish Event, Interested in Event, and Call for Action columns).

In order to improve collaboration between domain experts and the development team,
a Google Spreadsheet can be used to describe and access this information simultane-
ously. Figure 8 and Fig. 9 show the partial analysis model of an online food ordering
system produced by the CRAC method. The system must be able to receive orders
(‘CreateOrder’). If an order is submitted successfully, the ‘OrderCreated’ event will be
published. ‘Restaurant’ is interested in ‘OrderCreated’ events. When this event occurs,
it asks the kitchen to issue a ticket (‘CreateTicket’) for the order; the kitchen can accept
this order and issue a receipt (‘TicketCreated’), or not issue it due to running out of
food (‘TicketCreationFailed’). The identity of the owner of the order should be verified
when the order is created; customer identity may be approved (‘CustomerVerified’) or
rejected (‘CustomerVerificationFailed’). When the customer is verified and the order
receipt is issued by the restaurant, the customer’s credit card should be checked; at
this stage, the card may be approved (‘CreditCardAuthorized’) or rejected (‘CreditCar-
dAuthorizationFailed’). ‘Order’ is interested in these events to confirm or reject the
order: if the ‘CreditCardAuthorized’ event occurs, ‘Order’ invokes the ‘ApproveOrder’
command and the ‘OrderApproved’ event is published as a result; otherwise, it invokes
‘RejectOrder’ and the ‘OrderRejected’ event is published.

Similarly, ‘Restaurant’ needs to know if the order is approved or not: if the order
is approved, ‘Restaurant’ approves the issued receipt by invoking the ‘ApproveTicket’
command, which will result in the publication of the ‘TicketApproved’ event; but if the
order is rejected, ‘Restaurant’ rejects the ticket by invoking the ‘RejectTicket’ command,
and ‘TicketRejected’ will be published as a result. Other requirements of the online food
delivery system can be analyzed andmodeled in the same fashion, but this is not our goal
in this paper. As shown in this example, the CRACmethod can help better understand the
problem domain and express business rules and processes through a chain of commands
and events. This modeling approach is understandable to domain experts and end users,

Modeling and Model Transformation as a Service 133

Fig. 8. CRAC analysis model of an online food ordering system

and the terms used for naming the concepts, commands, and events are parts of a language
that is common among the development team(s), domain experts and end users.

Fig. 9. Analysis model: CRAC cards

6 Conclusion and Future Work

Our preliminary analysis of the proposed approach shows that the idea of modeling and
model transformation as a service is in line with the values, principles and best practices
of agilemodeling. Describing the problem domain in terms of concepts andmodeling the
relationships among these concepts in a loose manner facilitates collaboration through-
out the modeling process and improves scalability in terms of the number of modelers

134 A. Vahdati and R. Ramsin

involved. Model decomposition enhances complexity management and addresses scala-
bility challenges in terms of artifact size. It also allows for iterative-incremental model-
ing and can enhance agility due to loosely-modeled relationships, the onion architecture,
multilevel modeling as a service, and reactive model transformation.

The proposed CRAC method fosters mutual and shared understanding between
domain experts and development team members, and facilitates collaboration and user
involvement in the modeling process at the CIM level. The tool used for modeling at
this level is simple and understandable to non-technical users.

In our proposed approach, production of high-level models from lower-level mod-
els enhances the reusability of modeling artifacts. Therefore, at each level of model-
ing, one can focus only on the specific concerns of that level. Realizing the idea of
“model transformation as a service” in the form of an event-driven architecture makes
it possible to automatically propagate the changes occurring in lower-level models to
higher-level ones. Moreover, by integrating and composing fine-grained model transfor-
mation services, it is possible to execute reactive model transformations concurrently or
as chains.

Applying a service-oriented approach in modeling and model transformation allows
for the use of different patterns and architecture styles such as the microservice archi-
tecture. Examining the two areas of service-orientation and modeling, and establishing
a semantic correspondence between the issues and challenges of these two fields will be
one of our future research activities. This will help us apply the patterns and techniques
used in the service-oriented paradigm to solve the problems and challenges of model-
driven development. Providing a model-driven development platform (MDDPlatform)
by using the service-oriented approach has also been planned as a future activity. The
goal of MDDPlatformwould be to support all the functionalities required to fully realize
the ideas of modeling and model transformation as a service.

References

1. Matinnejad, R.: Agilemodel driven development: an intelligent compromise. In: International
SERA Conference, pp. 197–202 (2011)

2. Wegener, H.: Agility in model-driven software development? Implications for organization,
process, and architecture. In: OOPSLA Workshop on Generative Techniques in the Context
of Model Driven Architecture, vol. 23 (2002)

3. Whittle, J.: Agile versus MDE - friend or foe? In: Workshop on ExtremeModeling, vol. 1089
(2013)

4. Essebaa, I., Chantit, S.: Model driven architecture and agile methodologies: reflexion and dis-
cussion of their combination. In: Federated Conference onComputer Science and Information
Systems, pp. 939–948 (2018)

5. Mahé, V., Combemale, B., Cadavid, J.: Crossing model driven engineering and agility. In:
Workshop on Model-Driven Tool and Process Integration (2010)

6. Alfraihi, H., Lano, K.: Practical aspects of the integration of agile development and model-
driven development: an exploratory study. In: Flexible MDEWorkshop, pp. 399–404 (2017)

7. Ambler, S.W.: Agile modeling: a brief overview. In: Workshop of the pUMLGroup, pp. 7–11
(2001). https://dl.gi.de/20.500.12116/30849

8. Zhang, Y., Patel, S.: Agile model-driven development in practice. IEEE Softw. 28(2), 84–91
(2011)

https://dl.gi.de/20.500.12116/30849

Modeling and Model Transformation as a Service 135

9. Ambler, S.W., Lines, M.: Choose your WoW: a disciplined agile delivery handbook for
optimizing your way of working. Project Management Institute (2020)

10. Chantit, S., Essebaa, I.: Towards an automatic model-based Scrum methodology. Procedia
Comput. Sci. 184, 797–802 (2021)

11. Bernaschina, C.: ALMOsT.js: an agile model to model and model to text transformation
framework. In: Cabot, J., De Virgilio, R., Torlone, R. (eds.) ICWE 2017. LNCS, vol. 10360,
pp. 79–97. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60131-1_5

12. Alfraihi, H., Lano, K.C.: The integration of agile development andmodel driven development:
a systematic literature review. In: International Conference onModel-Driven Engineering and
Software Development, pp. 451–458 (2017)

13. Asadi, M., Ramsin, R.: MDA-based methodologies: an analytical survey. In: Schieferdecker,
I., Hartman,A. (eds.) ECMDA-FA2008. LNCS, vol. 5095, pp. 419–431. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69100-6_30

14. Mognon, F., C. Stadzisz, P.: Modeling in agile software development: a systematic literature
review. In: Silva da Silva, T., Estácio, B., Kroll, J., Mantovani Fontana, R. (eds.) WBMA
2016. CCIS, vol. 680, pp. 50–59. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
55907-0_5

15. Jolak, R., Wortmann, A., Chaudron, M., Rumpe, B.: Does distance still matter? Revisiting
collaborative distributed software design. IEEE Softw. 35(6), 40–47 (2018)

16. Sebastián, G., Gallud, J.A., Tesoriero, R.: Code generation using model driven architecture:
a systematic mapping study. J. Comput. Lang. 56, 100935 (2020)

17. Kolovos, D., et al.: MONDO: scalable modelling and model management on the cloud. In:
CEUR Workshop, pp. 44–53 (2015)

18. da Silva, E., Maciel, R., Magalhães, A.: Integrating model-driven development practices
into agile process: analyzing and evaluating software evolution aspects. In: International
Conference on Enterprise Information Systems, pp. 101–110 (2020)

19. Schonbock, J., Etzlstorfer, J., Kapsammer, E., Kusel, A., Retschitzegger, W., Schwinger, W.:
Model-driven co-evolution for agile development. In: Hawaii International Conference on
System Sciences, pp. 5094–5103 (2015)

20. Alam, O., Corley, J., Masson, C., Syriani, E.: Challenges for reuse in collaborative modeling
environments. In: MODELS Workshops, pp. 277–283 (2018)

21. Uhl, A.: MDA is ready for prime time. IEEE Softw. 20(5), 70–72 (2003)
22. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-

Wesley Longman, Boston (2003)
23. da Silva,A.R.:Model-driven engineering: a survey supported by the unified conceptualmodel.

Comput. Lang. Syst. Struct. 43, 139–155 (2015)
24. Combemale, B., Deantoni, J., Baudry, B., France, R., Jézéquel, J.-M., Gray, J.: Globalizing

modeling languages. Computer 47, 68–71 (2014)
25. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: Gogolla, M., Kobryn,

C. (eds.) UML 2001. LNCS, vol. 2185, pp. 19–33. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-45441-1_3

26. Atkinson, C., Kennel, B., Goß, B.: The level-agnostic modeling language. In: Malloy, B.,
Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 266–275. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19440-5_16

27. De Lara, J., Guerra, E., Cuadrado, J.S.: When and how to use multilevel modelling. ACM
Trans. Softw. Eng. Methodol. 24(2), 1–46 (2014)

https://doi.org/10.1007/978-3-319-60131-1_5
https://doi.org/10.1007/978-3-540-69100-6_30
https://doi.org/10.1007/978-3-319-55907-0_5
https://doi.org/10.1007/3-540-45441-1_3
https://doi.org/10.1007/978-3-642-19440-5_16

Effort Estimation in Agile Software
Development: A Exploratory Study

of Practitioners’ Perspective

R. C. Sandeep, Mary Sánchez-Gordón(B) , Ricardo Colomo-Palacios ,
and Monica Kristiansen

Østfold University College, Halden, Norway
{sandeep.rc,mary.sanchez-gordon,ricardo.colomo-palacios,

monica.kristiansen}@hiof.no

Abstract. Software is increasingly important for our society. However, software
industry presents flaws to meet market demands in a faster and reliable way. Agile
methods are a way to tackle this problem. However, this approach also poses
several challenges, including effort estimation as one of them. In this scenario,
#NoEstimates and #NoProject movements emerged as another way to solve esti-
mation issues. In this new scenario, this study aims to provide further empirical
evidence on agile effort estimation techniques in practice. To do so, an online
survey was designed based on a literature review. Researchers gathered 53 valid
questionnaires from agile practitioners. Result shows the importance of hybrid
software development approaches and mixed effort estimation techniques. How-
ever, it is important to note that Story Points and Fibonacci series are often used
as well. Moreover, the most perceived benefit of estimation in agile contexts is to
drive the team to complete the project successfully.Complexity and uncertainty are
perceived as key factors in estimation accuracy. Finally, further research should
be conducted to gain a better understanding of #NoEstimates and #NoProject
movements.

Keywords: Effort estimation · Agile software development · Distributed
software development

1 Introduction

Software industry is playing a significant role in fulfilling the increasing demand and
extensive use of software in our society [1]. Despite that, software projects are chal-
lenged in aspects like cost, quality, time, or expected returns on investment [2]. In this
scenario, software development needs careful examination, understanding, support, and
improvement [3].

Estimation in software projects contains the assessment of the effort, size, staffing,
schedule (time), and cost involved in creating a unit of the software product [4]. Estima-
tion is one of the main concerns for the software development industry [5], playing an
important role in software development [6] supporting key software process decisions,

© Springer Nature Switzerland AG 2022
A. Przybyłek et al. (Eds.): LASD 2022, LNBIP 438, pp. 136–149, 2022.
https://doi.org/10.1007/978-3-030-94238-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94238-0_8&domain=pdf
http://orcid.org/0000-0002-5102-1122
http://orcid.org/0000-0002-1555-9726
https://doi.org/10.1007/978-3-030-94238-0_8

Effort Estimation in Agile Software Development 137

such as feasibility analysis, resource allocation, risk mitigation, and project planning
[7]. However, there is even difficulty in assessing the accuracy of different approaches
to effort estimation [8]. Although estimation accuracy directly influences the utility of
the estimation results, different software management decisions may require different
degrees of accuracy [7]. While, according to [9], effort estimation is not critical for
constructing a project’s scheduling and planning, it is important to facilitate understand-
ing. Also, software practitioners require effective effort estimation models to facilitate
project planning [10] as well as to create baseline budgets and schedules [11].

In particular, effort estimation in agile software development (ASD) is challeng-
ing as the requirements are constantly evolving and they are developed as the project
progresses [12]. As a consequence, effort estimations in such environments need to be
progressively adjusted for every sprint [4] to ensure delivery in required times [12].
Although different estimation techniques exist in ASD and it was reported as an active
research area, accuracy was also reported as a clear gap in this field [13].

In 2014, Usman et al. [13] conducted a systematic literature review on effort estima-
tion in ASD. As a result, 25 primary studies were identified. The four main findings are:
i) subjective estimation methods like expert judgment, planning poker, use case points
estimation method are often used for agile estimation; ii) Use Case Points (UCP) and
Story Points (SP) are the most often used size metrics; iii) Mean Magnitude of Relative
Error (MMRE) and Magnitude of Relative Error (MRE) is the frequently used accuracy
metrics in ASD, and iv) Team skills, prior experience, and task size are included as the
3 fundamental cost drivers in ASD.

In 2015, a survey on the state of the practice [14] collected data from 16 different
countries and 60 agile practitioners that were involved in the effort estimation. The find-
ings revealed that planning poker (63%) was the most used effort estimation technique
followed by, analogy (47%) and expert judgment (38%). In 2016, Tanveer et al. [15]
carried out a study to understand the accuracy of the estimation process by examining
three agile teams that worked on different web applications. The authors conclude that
developers’ knowledge, experience, and complexity affect it. The same year, a compar-
ative analysis study on effort estimation practice in ASD was carried out by Usman and
Britto [16]. In this study, they compared two co-located and globally distributed teams
to identify the similarities and differences of effort estimation practice. The result shows
that planning poker and story points are the most reported effort estimation technique
and size metric for both teams. More recently, Fernández-Diego et al. [10] updated pre-
vious works from Usman et al. [13]. In the last years, several intelligent approaches
based have also impacted the ASD effort estimation, e.g. [17–20].

According to Duarte [21], in software projects, it is hard to estimate unknown
parts. As a response to this challenge, #NoEstimates and #NoProjects movements have
emerged. #NoEstimates started back in 2012 promoted by Woody Zuill as a Twitter
trend. In this movement, it is claimed to stop estimating backlog because accurate esti-
mation is not possible, and estimations put useless pressure on teams. As a result of
this, estimation is seen as waste. #NoProjects concept started back in 2005 [22] and
stands for modern management methods to offer proven techniques and tools that go
beyond “meeting requirements”. These approaches are normally based on continuous
value. Both movements are related, #NoEstimate removes the justification of estimation

138 R. C. Sandeep et al.

and helps the organization focus on value delivery first [21] whereas #NoProjects is an
agile approach towards continuous and market-validated value delivery [22].

In this scenario, despite those previous studies provide valuable insights into effort
estimation in ASD, to the best of our knowledge, there is little empirical evidence about
the benefits and inaccuracies of effort estimation techniques in actual practice and the
impact of #NoEstimates and #NoProjects movements in the software arena. Therefore,
this study aims to provide further empirical evidence on agile effort estimation techniques
in practice.

The remaining of the paper is structured as follows. Section 2 presents the research
method adopted describing formulated research questions. The results of this study
are presented in Sect. 3. Section 4 contains the limitations of the study. Finally, some
conclusions and future work are given in Sect. 5.

2 Research Method

2.1 Research Questions

The main objective of this study is to better understand the state of the practice on
effort estimation in ASD including benefits and challenges. Based on that, four research
questions were formulated:

RQ1: What are the effort estimation techniques used in ASD?
RQ2: What are the benefits of estimation techniques in ASD?
RQ3: What are the reasons for inaccurate estimations in ASD?
RQ4: What is the repercussion of #NoEstimates and #NoProjects in ASD?

2.2 Survey Design

Survey research is one possible design choice for quantitative research. Survey research
produces quantitative data about trends, attitudes, or opinions among the population
under study [23]. There are different approaches for data collection in a survey, such as
personal interviews, telephone interviews, direct observation, or self-administered ques-
tionnaires [24]. In the study presented in this paper, a draft questionnaire was designed
considering the guidelines for software engineering proposed by Molléri et al. [25]. The
two first authors developed an initial version in the English language that is informed
by previous literature, e.g. [5, 12, 13, 26]. Then, the other authors reviewed it for valid-
ity checking. To obtain as many responses as possible, and to not distract participants
unnecessarily, it was decided to keep the number of questions to a minimum.

In this study, an online web-based questionnaire tool (Google forms) was used for
data collection. The questionnaire contained sections on software development projects
as well as demographic information. Questions were presented to subjects with multiple
response options. The frequency of use software development approaches (see Fig. 1)
and estimation techniques (see Fig. 2) was reported by using a five-point scale Never
Use (1); Rarely Use (2); Sometimes (3);Often (4); and Always (5). In addition, the option
I do not know (0) was included.

Effort Estimation in Agile Software Development 139

The questionnaire also asks subjects for a set of perceived benefits (see Table 2) and
20 reasons for the inaccuracy (see Table 3). These reasons/factors were grouped into 5
major categories: Requirement Related Issue (RrI), Project Management Related Issue
(PMrI), Team Related Issue (TrI), Over-Optimism (Oo), and Others. The respondents’
agreement regarding benefits and inaccuracies was reported using a five-point scale with
the following values: Strongly Disagree (1); Disagree (2); Neutral (3); Agree (4); and
Strongly Agree (5). Additionally, the option I do not know (0) was included.Moreover, an
additional open question encouraging participants to voice other options was included in
each category. Authors also provided a text box at the end to gather any further comments
or suggestions from participants.

To get an understanding of the impact caused by #NoEstimates and #NoProjects
and their potential benefits and challenges, two types of questions were formulated: one
closed-ended question (5-point scale) and one open-ended question. The 5-point scale
was: I’ve never heard of it (0); I’ve HEARD of it and Not interested (1); I’ve HEARD
of it and WOULD like to learn it (2); I’ve USED it before, and would NOT use it again
(3); I’ve USED it before, and would use it again (4).

Survey Execution and Sampling Strategy. Participants were identified among the
networks of researchers. An e-mail was sent out to contacts detailing the purpose of
the study and inviting software practitioners to participate. Authors underlined that the
questionnaire was anonymous. The period to answer the questionnaire was about two
weeks starting from the 24th of June 2019 to the 8th of July 2019 and one email reminder
invitation was sent out after one week of the survey being open. In consequence, recruit-
ing participants was based on availability − a convenience sampling. Despite the draw-
backs and bias in such a sample, it does not mean that is inappropriate. Indeed, such a
sampling method is reported as the dominant survey approach in software engineering
[27, 28].

Data Analysis and Synthesis Approach. As mentioned before, the survey primarily
contained questions with predefined lists from which participants could choose a value
(e.g., job role, gender, and ASD approach), or code simple data such as integers or
strings (e.g., country and years of experience). After reviewing the raw data, 53 out
of 62 questionnaires were considered valid. These respondents provided relevant and
reliable answers since they were involved in the effort estimation process. In this phase,
anonymous IDs were assigned to the respondents and their data records, i.e., we used
the “Pi” format [P1 to P62].

To investigate benefits and accuracy challenges in ASD estimation as well as sta-
tistical differences between years of experience, the data was analyzed using statistical
tests chosen based on certain pre-conditions. In addition, “I do not Know-0” answers are
excluded from the analysis. For all reported statistical tests, we used a significance level
of 0.05. Before the actual test, we tested each skill for normality with the Shapiro-Wilk
test. The results of the tests of normality indicated that our sample was not normally dis-
tributed. Therefore,weused a non-parametric statistical test calledWilcoxon signed-rank
test. Results were analyzed using SPSS.

140 R. C. Sandeep et al.

3 Results

In this section, first, an overview of the study population is presented then the results of
the survey answer the research questions.

Study Population. A total of 53 valid responses were collected from seven countries,
however, almost 70% of them come from Nepal (22, 41.5%) and Norway (15, 28.3%).
Most of the responses were male participants (83%) while females made up 15% (8),
and one participant preferred not to say (2%). Regarding years of experience, most of
the respondents have more than 3 years of agile experience (33, 62.3%), whereas 32.1%
(17) have 1–3 years and 5.7% (3) have less than a year.Most of the respondents also were
software developers (31, 58.5%). 50.9% (27) of respondents work in a team size of 6–10
people while 41.5% (22) are in teams of 1–5 people. The project length was reported
longer than 1 year by most of the respondents (77.4%, 41). The business domain most
reported was e-commerce (56.6%, 30).

Fig. 1. Frequency and combinations of software development approaches

Figure 1 shows the frequency and combinations of software development approaches.
Although Scrum and Kanban are the most frequently practiced approaches in ASD, it is
worth noting thatmany combinations of them are reported, e.g.,DevOps and Scrum (DS,
7) or DevOps, XP, Kanban, and Scrum (DXKS, 14) or all of them along withWaterfall

Effort Estimation in Agile Software Development 141

(DXKS, 11). This result is aligned with a large previous survey, namely HELENA [29]
in which mixed approaches were reported as commonly used.

Finally, the perceived importance of the estimation process by most respondents
(75.8%, 43) was that estimation is very important in ASD whereas 7 perceived it as
important and only 3 were neutral. Moreover, participants who reported that they were
not involved in estimation processes, perceived it as very important (4) and important
(5).

RQ1: What are the effort estimation techniques used in ASD?
The descriptive analysis of seven effort estimation techniques reported in this study is
shown in Fig. 2.

Fig. 2. Descriptive statistical results of the effort estimation techniques

In this study, we included Bucket system, Dot Voting, Expert estimation, Planning
Poker, Team estimation game, Swimlane sizing, Use case point. According to [30],
Planning Poker is an estimation technique similar to the Team estimation game so we
considered each technique separately. Moreover, Story points were included in the group

142 R. C. Sandeep et al.

of effort estimation techniques, although, Story points are a unit of measurement used
to represent an estimate of the entire effort necessary to completely perform a piece
of software work. It was decided because Story points are usually expressed either
in numbers that follow the Fibonacci series, t-shirt sizes, or even dog sizes that were
included as measurement units.

As we expected, more than 90% of the respondents reported that “Often/Always
use” Story points while Planning Poker and Expert Estimation Method were the most
common estimation techniques. Story point has the highest mean value (4.52) followed
by Planning Poker (3.00) and Expert Estimation Method (2.73). However, it is worth
noting that one respondent stated—using the open question—that “the organization uses
COCOMO for estimation”.

Based on the mean values of the measurement units, the Fibonacci Sequence was
preferred (4.42) followed by Ideal days (2.52) and T-shirt size/Dog size (1.51).

Table 1. Overview of estimation techniques by software development approaches

N
A
S
D Sw

im
la

ne

Si
zi

ng

B
uc

ke
t

S y
st

em

D
ot

V
ot

in
g

T
ea

m
E

st
i-

m
at

io
n

G
am

e

U
se

 C
as

e
Po

in
t

E
xp

er
t

E
st

im
at

io
n

P
la

nn
in

g
P

ok
er

St
or

y
P

oi
nt

F
re

qu
en

cy

%

1 K 1 1 0.5%
1 KSW 1 1 0.5%

1 D 1 1 0.5%
1 KS 1 1 2 1.1%
1 DXS 1 1 2 1.1%
1 SW 1 1 1 3 1.6%
1 XKSW 1 1 1 1 4 2.1%
3 S 1 1 2 2 3 9 4.8%

3 DKS 1 1 1 1 2 3 9 4.8%
4 DKSW 1 2 1 2 4 2 2 14 7.4%
7 DS 1 1 3 6 7 18 9.6%
4 DXSW 2 2 3 4 3 3 4 21 11.2%

11 DXKSW 3 2 5 4 4 7 9 11 45 23.9%
14 DXKS 3 4 4 4 4 12 13 14 58 30.9%

53 Frequency 7 10 14 17 19 33 39 49 188 100%

% 3.7% 5.3% 7.4% 9.0% 10.1% 17.6% 20.7% 26.1% 100%

Table 1 shows the frequency of the use of estimation techniques by software develop-
ment approaches. The first column contains the frequency (#) followed by the (14) com-
binations of software development approaches (see Table 1), estimation techniques—
Swimlane sizing (SS), Bucket System (BS), Dot voting (DV), Team estimation game
(TEG), Use case point (UCP), Expert Estimation (EE), Planning Poker (PP), and Story
point (SP)—, and finally Total and Percentage (%).

Effort Estimation in Agile Software Development 143

As it was expected, Story point (26.1%) is the most used estimation technique as
it has the highest percentage of usage followed by Planning Poker (20.7%), Expert
Estimation (17.6%), and Use Case Point (10.1%). These findings are in line with the
previous studies [14, 16, 31] that mentioned Story point as the most frequently used
size metrics. On the other hand, the large survey—1319 full responses—carried out by
VersionOne [32] reveals that 61% of respondents chose Planning poker/team estimation
as agile techniques that their companies use. In addition, the findings also reveal that not
only hybrid software development approaches are used but also mixed effort estimation
techniques.

RQ2: What are the benefits of estimation techniques in ASD?
The six categories of perceived benefits are shown in Table 2. More than 75% (41)
respondents “agree/strongly agree” with them. Moreover, “To gain accuracy” is the
only benefit in which 20% are neutral responses followed by “To create transparency”
(13.2%) and “Helps to identify important issues earlier” (9.4%).

Table 2. Descriptive statistical results of the estimation benefits

Less than
3 years

More than
3 years

Total

Benefits n Mean
Std.
Dev.

n Mean
Std.
Dev.

n
Mea

n
Std.
Dev.

1
Drive the team to

complete the project

successfully

20 4.35 0.67 33 4.39 0.70 53 4.38 0.69

2
Identify the resources

and project scope*
20 4.50 0.61 33 4.27 0.63 53 4.36 0.62

3
Helps to identify im-

portant issues earlier*
20 4.30 0.73 33 4.09 0.88 53 4.17 0.83

4
Monitors project pro-

gress
20 4.20 0.62 33 4.27 0.67 53 4.25 0.65

5 To create transparency 20 4.20 0.70 33 4.21 0.65 53 4.21 0.66

6 To gain accuracy 20 3.90 0.85 33 4.18 0.73 53 4.08 0.78

Based on the highest mean value, the most perceived benefit is to Drive the team
to complete the project successfully (4.38) followed by identifying the resources and
project scope (4.36) and Monitors project progress (4.25). Thus, effort estimation is
one of the essential factors of the software development process since it drives the team
to complete the project successfully [33]. For two benefits—Identify the resources and
project scope and Help to identify important issues earlier, less experienced respondents
reached a higher agreement than more experienced ones (marked as *in Table 1, higher
mean values are bolded).

On the other hand, it would be interesting to explore if there is a significant differ-
ence between the answers based on the experience of the respondents. To do so, the

144 R. C. Sandeep et al.

respondents were grouped into two categories “less than 3 years of experience” (n =
20) and “more than 3 years of experience” (n = 33). We tested the null hypotheses
H0: µBx(<3 years) = µBx(3 years+) using Wilcoxon signed-rank test. We used that
non-parametric statistical test method because it does not require the data sets to fol-
low a normal distribution. The results show that there is no significant difference in
the respondents’ perceived value of the benefits based on their experience. Although the
practitioners in this study rated benefits in a similarly positive way, it is worth noting that
13% of respondents from the 2019 VersionOne survey [32] pointed out that estimation
accuracy is one measure of success.

RQ3: What are the reasons for inaccurate estimations in ASDSD?
To get insights about the inaccuracy in the estimation, 20 potential factors/reasons were
analyzed. These factors were grouped into 5 major categories: Requirement Related
Issue (RrI), Project Management Related Issue (PMrI), Team Related Issue (TrI), Over-
Optimism (Oo), and Others. Table 3 shows the lists of the descriptive statistical results
of each factor.

Table 3 also shows that less experienced respondents reached a higher agreement
than more experienced ones for 3 out of 20 factors—Unstructured group estimation
process, Distributed team, and Knowledge sharing problem in team (marked as *). The
descriptive statistical analysis result shows that most reported inaccurate estimates based
on themean values are twoComplexity and Uncertainty (4.25) andMissing and changing
requirements (4.06). Both are in category RrI. The higher mean values in the other
categories are Knowledge sharing problem in the team TrI (3.96), Considering best case
scenario OO (3.96), Ignoring Testing Effort Others (3.94), and Poor change control
PMrI (3.86).

On the other hand, one can see differences in the hindering factors influencing accu-
racy based on the experience of the respondents. In consequence, we tested the null
hypotheses H0:µAx(<3 years)=µAx(3 years+) using aWilcoxon signed-rank test. The
results show that there are two significant differences:

– Poor user stories (U = 199.5, p = 0.02)
– Poor change control (U = 191.00, p = 0.045)

RQ4: What is the repercussion of #NoEstimates and #NoProjects in ASD?
The result shows that around 85% of the respondents (45 and 47) have never heard of
#NoEstimate and #NoProject. Moreover, three respondents claim that they “have heard
of it and are not interested” in both movements. While less than 10% heard of it and
wanted to know about #NoEstimate (5) and only one of them about #NoProject. Despite
that fact, 3 participants provided valid answers related to the benefits of #NoEstimate—
1. Faster, 2. Overshadow Project Scope, and 3. Provide a clear timeline for delivery—.
However, no valid responses were received for #NoProject.

The aforementioned reveals the scarce impact of these movements on the effort
estimations among the respondents in this study. Although, a previous study [34] about
“agile uncertainty assessment for benefit points and story points” highlights that “the
#NoEstimates movement is gaining attention of agile practitioners”, our findings rather

Effort Estimation in Agile Software Development 145

Table 3. Descriptive statistical results of the inaccurate estimates

 Less than
3 years

More than
3 years

Total

Inaccurate n Mean
Std.
Dev.

n Mean
Std.
Dev.

n Mean
Std.
Dev.

R
rI

Complexity and
Uncertainty

19 4.16 0.76 33 4.30 0.68 52 4.25 .71

Missing and chang-
ing requirements

19 3.84 1.12 33 4.18 0.77 52 4.06 .92

Overlooking non-
functional require-
ments

17 3.88 0.86 33 4.06 0.83 50 4.00 .83

Poor user stories 19 3.53 1.17 33 4.24 0.79 52 3.98 1.00

P
M

rI

Poor change control 19 3.58 0.90 31 4.03 0.66 50 3.86 0.78
Scope creep 19 3.58 1.07 30 3.93 0.83 49 3.80 0.93
Scrum Master not
guiding the team

20 3.20 1.06 33 3.76 1.09 53 3.55 1.10

Unstructured group
estimation process*

20 3.85 0.99 32 3.69 1.09 52 3.75 1.05

T
rI

Distributed teams* 19 3.42 0.90 33 2.88 1.22 52 3.08 1.13
Dominant Personali-
ties

20 3.35 0.93 33 3.48 0.94 53 3.43 0.93

Inexperience 20 3.50 1.10 33 3.82 1.07 53 3.70 1.08
Knowledge sharing
problem in team*

20 4.00 1.03 33 3.94 0.97 53 3.96 0.98

Pressure of timeline 20 3.55 1.05 33 3.79 0.93 53 3.70 0.97
Unskilled team
members

20 3.90 0.72 33 3.97 0.98 53 3.94 0.89

O
O

Considering best
case scenario

20 3.90 0.72 32 4.00 0.80 53 3.96 0.76

Purposely underesti-

mating to obtain work
20 3.50 1.15 32 3.56 1.01 52 3.54 1.06

O
th

er
s

Hardware 20 3.30 1.03 33 3.33 0.96 53 3.32 0.98

Ignoring testing
effort

20 3.65 1.09 33 4.12 0.74 53 3.94 0.91

Insufficient customer

involvement during

estimation process

20 3.15 1.09 33 3.67 0.96 53 3.47 1.03

Lack of formal esti-
mation process

20 3.35 1.09 33 3.88 0.93 53 3.68 1.01

146 R. C. Sandeep et al.

point out little attention. The authors also mention that it could not offer enough benefit-
over-cost optimization in the context of large agile projects however our findings neither
support nor deny such a claim.

4 Limitations

In this study, authors followed the survey guidelines for software engineering proposed
by Molléri et al. [25]. However, this study still has some limitations:

The researchers’ bias is always a threat. To reduce that bias, the survey questionnaire
was iteratively designed and updated by the authors based on the results of the literature
review, and its completeness and readability were validated by one senior researcher.
However, further research should make clear that story points are a unit of measurement
and includeman-hours asmeasurement units, as well. In this sense, it is worth noting that
Fibonacci numbers are just numbers so that they can refer to ideal days or man-hours.

Irrelevant respondents could introduce a systematic error or bias in the study results.
To reduce that threat some steps were taken. Firstly, respondents were assured of their
anonymity to avoid evaluation apprehension. Secondly, it was explicitly stated in the
survey introduction that only practitioners with experience in ASD should participate.

Additionally, respondents were asked about their experience in ASD and effort esti-
mation to ensure that all respondents were agile practitioners and active participants in
the effort estimation process. Although 62 agile practitioners were involved in this study,
53 of them reported work experience on effort estimation. Therefore, only 53 were valid
answers that could provide relevant and reliable insights on this area. Thirdly, some
respondents might have misinterpreted the questionnaire, or they could be confused.
To ensure the correct understanding of the questionnaire, 2 rounds of pilot testing were
done. Moreover, althoughmultiple options were added to the questionnaire, respondents
might not get the answer they want. To reduce this threat, “Other” option was included
at the end of all the questions.

The sample is small, which limits the generalization of the results, and a large part of
the sample coming from Nepal, meaning that it is not representing a generic population.
Although we believe that such a sample is quite heterogeneous in terms of experience,
job role, and country, the sample size should be expanded to a larger group to increase
the generalizability of the results. The statistical significance is threatened by the small
sample size. Finally, it is worth noting that the “I do not Know-0” answers are excluded
from the analysis.

5 Conclusion and Future Work

This paper presents the findings of our exploratory study that aims to identify agile
effort estimation techniques in practice including their benefits and challenges related
to inaccuracy. To identify the effort estimation techniques a previous literature review
was carried out. Based on those results, a questionnaire was designed to get the answers
to our research questions. Most of the questions were formulated using a six-point scale
however the questions were divided into both open and closed-ended. It means that
our survey was intentionally designed to explore effort estimation in agile contexts.

Effort Estimation in Agile Software Development 147

Therefore, a subjective evaluation made by the respondents based on a predefined list of
options and agile artifacts such as user stories were considered.

After inviting agile practitioners, 62 answers were collected but only 53 were valid
since those practitioners were involved in the effort estimation process. The most used
effort estimation technique based on the higher value mean is Planning Poker (3.00)
along with Story Point (4.52). In this context, the most frequently used measurement
unit also is the Fibonacci series (4.42). In addition, most of the respondents agree that
Drive the team to complete the project successfully (4.38) was the top perceived benefit.

Regarding the reasons for inaccuracy, 20 factors were grouped into five categories.
By each category, the factorsmost agreedwereComplexity and Uncertainty “RrI” (4.25),
Knowledge sharing problem in the team “TrI” (3.96), Considering best case scenario
“OO” (3.96), Ignoring Testing Effort “Others” (3.94), and Poor change control “PMrI”
(3.86). The respondents were also grouped into two categories “less than 3 years of
experience” (n= 20) and “more than 3 years of experience” (n= 33) to identify if there
are significant differences.

A richer investigation of agile artifacts to estimate effort accurately should be con-
ducted. The most obvious opportunity for further research in the context of this study
is to collect more responses. Moreover, although #NoEstimate and #NoProject are pro-
moted as practitioners’ movements, more than 84% of the respondents did not know
about it, so further research is also needed to better understand the principles behind
those movements and their impact in practice.

References

1. Stankovic, D., Nikolic, V., Djordjevic, M., Cao, D.-B.: A survey study of critical success
factors in agile software projects in former Yugoslavia IT companies. J. Syst. Softw. 86,
1663–1678 (2013). https://doi.org/10.1016/j.jss.2013.02.027

2. Kulathunga, D., Ratiyala, S.D.: Key success factors of scrum software development
methodology in Sri Lanka. Am. Sci. Res. J. Eng. Technol. Sci. (ASRJETS) 45, 234–252
(2018)

3. Fuggetta, A., Di Nitto, E.: Software process. In: Proceedings of the on Future of Software
Engineering, pp. 1–12. ACM (2014)

4. Jorgensen, M., Shepperd, M.: A systematic review of software development cost estimation
studies. IEEETrans. Softw. Eng. 33, 33–53 (2007). https://doi.org/10.1109/TSE.2007.256943

5. Popli, R., Chauhan, N.: Agile estimation using people and project related factors. In: 2014
International Conference on Computing for Sustainable Global Development (INDIACom),
pp. 564–569 (2014)

6. Usman, M., Mendes, E., Weidt, F., Britto, R.: Effort estimation in agile software develop-
ment: a systematic literature review. In: Proceedings of the 10th International Conference on
Predictive Models in Software Engineering, Turin, Italy, pp. 82–91. ACM (2014)

7. Qi, K., Boehm, B.W.: Process-driven incremental effort estimation. In: 2019 IEEE/ACM
International Conference on Software and System Processes (ICSSP), pp. 165–174 (2019)

8. Sommerville, I.: Software Engineering, 9th edn. Addison-Wesley, Boston (2010)
9. Altaleb, A., Altherwi, M., Gravell, A.: A pair estimation technique of effort estimation in

mobile app development for agile process: case study. In: Proceedings of the 2020 The 3rd
International Conference on Information Science and System, pp. 29–37. Association for
Computing Machinery, New York (2020)

https://doi.org/10.1016/j.jss.2013.02.027
https://doi.org/10.1109/TSE.2007.256943

148 R. C. Sandeep et al.

10. Fernández-Diego, M., Méndez, E.R., González-Ladrón-De-Guevara, F., et al.: An update on
effort estimation in agile software development: a systematic literature review. IEEE Access
8, 166768–166800 (2020). https://doi.org/10.1109/ACCESS.2020.3021664

11. Rosa, W., Clark, B.K., Madachy, R., Boehm, B.: Empirical effort and schedule estimation
models for agile processes in the US DoD. IEEE Trans. Softw. Eng. 1 (2021). https://doi.org/
10.1109/TSE.2021.3080666

12. Tanveer, B., Guzmán, L., Engel, U.M.: Effort estimation in agile software development: case
study and improvement framework. J. Softw. Evol. Process 29, e1862 (2017). https://doi.org/
10.1002/smr.1862

13. Usman, M., Mendes, E., Weidt, F., Britto, R.: Effort estimation in agile software develop-
ment: a systematic literature review. In: Proceedings of the 10th International Conference on
Predictive Models in Software Engineering, pp. 82–91. ACM, New York (2014)

14. Usman,M.,Mendes, E., Börstler, J.: Effort estimation in agile software development: a survey
on the state of the practice. In: Proceedings of the 19th International Conference on Evaluation
and Assessment in Software Engineering, p. 12. ACM (2015)

15. Tanveer, B., Guzmán, L., Engel, U.M.: Understanding and improving effort estimation in
agile software development: an industrial case study. In: Proceedings of the International
Conference on Software and Systems Process, pp. 41–50. ACM (2016)

16. Usman, M., Britto, R.: Effort estimation in co-located and globally distributed agile software
development: a comparative study. In: 2016 Joint Conference of the International Workshop
on SoftwareMeasurement and the International Conference on Software Process and Product
Measurement (IWSM-MENSURA), pp. 219–224. IEEE (2016)

17. Arora, M., Sharma, A., Katoch, S., et al.: A state of the art regressor model’s comparison
for effort estimation of agile software. In: 2021 2nd International Conference on Intelligent
Engineering and Management (ICIEM), pp. 211–215 (2021)

18. Sinha, R.R., Gora, R.K.: Software effort estimation using machine learning techniques. In:
Goar, V., Kuri, M., Kumar, R., Senjyu, T. (eds.) Advances in Information Communication
Technology and Computing. LNNS, vol. 135, pp. 65–79. Springer, Singapore (2021). https://
doi.org/10.1007/978-981-15-5421-6_8

19. Weflen, E., MacKenzie, C.A., Rivero, I.V.: An influence diagram approach to automating
lead time estimation in Agile Kanban project management. Expert Syst. Appl. 187, 115866
(2022). https://doi.org/10.1016/j.eswa.2021.115866

20. Ramessur, M.A., Nagowah, S.D.: A predictive model to estimate effort in a sprint using
machine learning techniques. Int. J. Inf. Technol. 13(3), 1101–1110 (2021). https://doi.org/
10.1007/s41870-021-00669-z

21. Duarte, V.: NoEstimates: How To Measure Project Progress Without Estimat-
ing (2015). https://www.amazon.com/NoEstimates-Measure-Project-Progress-Estimating-
ebook/dp/B01FWMSBBK. Accessed 25 Feb 2019

22. Leybourn, E., Hastie, S.: # noprojects: A Culture of Continuous Value. Lulu.com (2018)
23. Creswell, J.W.: Research Design: Qualitative, Quantitative, andMixedMethods Approaches,

3rd edn. Sage Publications, Thousand Oaks (2009)
24. Scheaffer, R.L., Mendenhall, W., Ott, L.: Elementary Survey Sampling, 4th edn. PMS-KENT

Publishing Company, Boston (1990)
25. Molléri, J.S., Petersen, K., Mendes, E.: Survey guidelines in software engineering: an anno-

tated review. In: Proceedings of the 10th ESEM 2016, pp. 58:1–58:6. ACM, New York
(2016)

26. Usman, M., Börstler, J., Petersen, K.: An effort estimation taxonomy for agile software devel-
opment. Int. J. Softw. Eng. Knowl. Eng. 27, 641–674 (2017). https://doi.org/10.1142/S02181
94017500243

https://doi.org/10.1109/ACCESS.2020.3021664
https://doi.org/10.1109/TSE.2021.3080666
https://doi.org/10.1002/smr.1862
https://doi.org/10.1007/978-981-15-5421-6_8
https://doi.org/10.1016/j.eswa.2021.115866
https://doi.org/10.1007/s41870-021-00669-z
https://www.amazon.com/NoEstimates-Measure-Project-Progress-Estimating-ebook/dp/B01FWMSBBK
https://doi.org/10.1142/S0218194017500243

Effort Estimation in Agile Software Development 149

27. Sánchez-Gordón, M.-L., O’Connor, R.V.: Understanding the gap between software process
practices and actual practice in very small companies. Softw. Qual. J. 24(3), 549–570 (2015).
https://doi.org/10.1007/s11219-015-9282-6

28. Sjoeberg, D.I.K., Hannay, J.E., Hansen, O., et al.: A survey of controlled experiments in
software engineering. IEEE Trans. Softw. Eng. 31, 733–753 (2005). https://doi.org/10.1109/
TSE.2005.97

29. Kuhrmann, M., Tell, P., Klünder, J., et al.: HELENA Stage 2 Results (2018)
30. Dalton, J.: Team estimation game. In: Dalton, J. (ed.) Great Big Agile: An OS for Agile

Leaders, pp. 255–257. Apress, Berkeley (2019)
31. Pozenel, M., Hovelja, T.: A comparison of the planning poker and team estimation game: a

case study in software development capstoneproject course. Int. J. Eng. Educ. 35, 195–208
(2019)

32. VersionOne: 13th Annual State of Agile Report (2019). https://explore.versionone.com/state-
of-agile/13th-annual-state-of-agile-report

33. Schweighofer, T., Kline, A., Pavlic, L., Hericko, M.: How is effort estimated in agile software
development projects? In: SQAMIA, pp. 73–80 (2016)

34. Hannay, J.E., Benestad, H.C., Strand, K.: Agile uncertainty assessment for benefit points and
story points. IEEE Softw. 36, 50–62 (2018)

https://doi.org/10.1007/s11219-015-9282-6
https://doi.org/10.1109/TSE.2005.97
https://explore.versionone.com/state-of-agile/13th-annual-state-of-agile-report

Towards Agile Mutation Testing Using
Branch Coverage Based Prioritization

Technique

Sangharatna Godboley1(B) and Durga Prasad Mohapatra2

1 National Institute of Technology Warangal, Warangal, India
sanghu@nitw.ac.in

2 National Institute of Technology Rourkela, Rourkela, India
durga@nitrkl.ac.in

Abstract. The agile model is the present reality for any software devel-
opment process. Its main objective is to produce good quality software in
optimal time. Programmers do unit testing to ensure that the software
unit or module they are developing should be bug-free and check that the
module is doing what it is supposed to do. On the other hand mutation
testing is an important technique to show that the quality of test cases is
good. But, industrial practitioners do not follow it in practice because of
the computational expenses and huge amount of effort required. In this
paper, we introduce a technique to make mutation testing faster, so that
the continuous integration (CI) which is the main process of agile can
be performed. This way we are towards achieving principles of agile test-
ing. We compute Line and Branch Coverages for a program and utilize
them in mutation testing. Using Line coverage information we eliminate
the Dead Mutants upfront. Next, using Branch coverage information we
set the priority by assigning a rank to each test case and running on
reachable mutants. In this paper, we have obtained better results for
45 out of 60 Programs i.e. 75%. Experimentally, we show that our
proposed prioritization approach consumes approx. 1036 s less mutation
testing time as compared to the baseline (without prioritization). Since
we perform mutation testing in less time to achieve agility, we call this
technique Agile Mutation Testing.

Keywords: Agile mutation testing · Prioritization · Line coverage ·
Branch coverage

1 Introduction

Information Technology (IT) industry experienced several innovative techniques
and practices in the last few years at different levels. It ranges from different
development phases to complete projects, also from testing to verification of
products. A good number of studies have been conducted to investigate the
impact of using agile principles in the testing process. At present, agile based
software development is the reality [3].
c© Springer Nature Switzerland AG 2022
A. Przyby�lek et al. (Eds.): LASD 2022, LNBIP 438, pp. 150–169, 2022.
https://doi.org/10.1007/978-3-030-94238-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94238-0_9&domain=pdf
http://orcid.org/0000-0002-6169-6334
http://orcid.org/0000-0002-4824-7091
https://doi.org/10.1007/978-3-030-94238-0_9

Towards Agile Mutation Testing 151

Traditionally Software Testing is considered to be the expensive and crucial
phase of Software Development Life Cycle (SDLC). Fundamentally, software
testing identifies the bugs present in the program [27]. Software testing doesn’t
guarantee a 100% bug free software, but it helps find the defects which can cause
failure of the software system [13–17].

Using fault-based testing approach, we can populate test cases that identi-
fies the recurring bugs [1]. These are faults which are repeatedly committed by
different programmers while developing a software. This testing technique deals
with problems in the absence of pre-specified faults (artificial faults created for
analysis). Fault injection or Error seeding [28] and mutation testing [60] are two
different types of fault-based testing techniques. Basically, mutation testing is a
unit-testing approach to compute the quality and efficiency of the targeted test
cases [9,10].

In 1978, DeMillo et al. [5] proposed mutation testing. Later, several researches
were done by different researchers. Walsh [59] showed that mutation testing
is more powerful and effective than branch coverage and statement coverage
based testing techniques [27]. Offutt et al. [32] and Frankl et al. [12] concluded
that mutation testing is better than data-flow based testing. Offutt et al. [34]
presented that mutation testing is useful in accessing and comparing new testing
techniques.

At present time, there is a need of mutation analysis within the computer
science community and majorly in industries. Mutation testing is a well-known
but costly approach for determining test adequacy. The logic behind the app-
roach is to generate mutants, which are small syntactic variants of the program
under test, and then to measure for a given set of test cases, how many mutants
they kill. The effectiveness of mutation testing in computing the quality of test
cases relies on the ability to apply it using a large number of mutants. However,
running many tests against many mutants is time consuming. Another issue
with mutation testing, obstructing its industrial adoption, is the information
overload that follows from running a mutation analysis. A poor developer might
end up with 1000 s of individual results to assess. Mutation testing often does
not provide actionable results.

The Continuous Integration (CI) is an important approach for the Agile
process. It is the process of developing software iteratively with small chunks
of program being integrated into the main program body repeatedly following
all the phases. In this process Software Requirements are divided into tasks and
assigned to team members. The programmers work on code and tests the logic of
the feature on this system via Unit testing. The program is updated in repository
(mostly in cloud) empowered with a Version Control System. This process starts
with several tests that can be either automated or manual. These tests target
to check the functionalities of software every time new module is added via
Integration Testing. Integration Testing checks that new code does not break
existing features. The code is certified as ready for deployment once all tests
pass. Here, the frequency of testing gets increases, also we have to maintain the
quality of test cases to check newly implemented modules. So, faster approach

152 S. Godboley and D. P. Mohapatra

of mutation testing will be beneficial to quickly check the quality of test cases
so that the product release can be deployed with lesser time. Hence, in this
paper we propose a technique to reduce mutation testing time using test case
prioritization technique.

In the literature, we have observed that there are approx. ten agile princi-
ples1 such as Provide continuous feedback, Deliver value to the customer, Enable
face-to-face communication, Have the courage Keep it simple, Practice continu-
ous improvement, Respond to change, Self-organize, Focus on people, and Enjoy.
Among these principles, our propose technique closely adheres to Provide con-
tinuous feedback, Practice continuous improvement, and Respond to change.

In this paper, we propose a mechanism to reduce the time cost of mutation
analysis, which also adheres to agile testing principles. The idea is to priori-
tize the test cases based on the branch coverage. This prioritization technique
sorts the test cases according to the branch coverage contributed for the original
program.

The rest of the paper is organized as follows. Section 2 discusses certain basic
concepts. Section 3 explains our proposed approach. Section 4 presents the exper-
imental results. Comparison with Related work is presented in Sect. 5. Section 6
concludes the paper.

2 Basic Concepts

In this section, we discuss a few basic concepts which are important to under-
stand our proposed approach.

Mutation Testing : In this technique, the program under test is mutated to
check whether the designed test suite is able to expose the induced faults or not.
The main objective of mutation testing is to assess the quality of the test suite.
In order to kill a mutant, a test input must satisfy the following three criteria
[6,31,64]:

1. Reachability : A Mutant m is similar to the program P except the mutated
statement s. Hence, if the statement s is not covered by a test case tc (tc
∈ TestSuite), then the execution of mutant program m with test case tc
will generate the same output as that of the program P. For any tc (tc ∈
TestSuite), if s is not executed by tc, then it is guaranteed that tc will not
be able to kill mutant m.

2. Necessity : To kill a mutant m, the test case tc (tc ∈ TestSuite) must reflect
difference in the internal states of m and P immediately after the invocation
of statement s. It is because, all the other instructions present in m and P
are exactly the same. Otherwise, there will be no difference in the states
of remaining statements in P and m during their executions, and both the
programs will result in the same output at the end of program execution.

1 https://enlabsoftware.com/agile-management/agile-testing-principles-for-tester-an
d-agile-software-development-team.html.

https://enlabsoftware.com/agile-management/agile-testing-principles-for-tester-and-agile-software-development-team.html
https://enlabsoftware.com/agile-management/agile-testing-principles-for-tester-and-agile-software-development-team.html

Towards Agile Mutation Testing 153

3. Sufficiency : To kill a mutant m, the test case tc (tc ∈ TestSuite) must
generate different outputs for the mutant m and the original program P.
Different internal states result by satisfying the necessity criterion but the
change must be propagated through the program’s execution to the final
state and yield different output.

It is stated that a test case tc strongly kills a mutant m, only if tc satisfies the
reachability, necessity, and sufficiency criteria for mutation testing. The muta-
tion ratio (MR) metric for program P with test suite T is calculated using Eq. 1.

MR =
|mt| ∗ 100

|MT | (1)

where, mt and MT are two sets. mt contains the killed mutants and MT keeps
the total mutants generated for the program P.

Killed Mutants: Mutants for which any of the test case from the complete
test suite gives different result from the original program is known as the “killed”
mutants [24,25].

Alive Mutants: Mutants for which all the test cases present in the given
test suite generate same output as the original program, are known as “alive”
mutants [24,25].

Line coverage : Line coverage is a basic and simple metric which determines
whether a line of program or code is reachable and executed or not. The number
of executed lines divided by the total number of lines is the Line Coverage of a
program as shown in Eq. 2.

LineCoverage =
No. of Executed Statements

Total No. of Statements
(2)

Branch coverage : The portion of independent code pieces that were exe-
cuted is referred to as branch coverage [18]. The term “independent code pieces”
refers to segments of code that have no branches leading into or out of them.
To cover all branches of the control flow graph, the branch coverage method is
implemented. At least, it covers all possible outcomes (true and false) once of
each decision point condition. The branch coverage is a white box testing tech-
nique which guarantees that each decision point’s branches are all tested and is
shown in Eq. 3.

BranchCoverage =
No. of Executed Branches

Total No. of Branches
(3)

154 S. Godboley and D. P. Mohapatra

3 Proposed Approach

In this section, we discuss about the traditional approach2 and our proposed
approach i.e. use of prioritization to achieve the agility for measuring mutation
score, which means the continuous integration would be faster.

Mutator

M2M1 M3 Mm

TC
Generator

T2T1 T3 Tn

Gcov

Lines
Covered

Dead
Mutants

Eliminator

RM2RM1 RM3 RMm

Compare
OTi = RM*Ti

Mutation Score

Fig. 1. Framework for traditional approach

Figure 1 shows the framework for traditional approach. Firstly, a C-Program
is supplied into a TC Generator component to produce test cases (T1, T2,
T3, and Tn). For this paper, we have considered C Bounded Model Checker
(CBMC)3 to generate the test cases for input C-Program. Next, these test cases
are replayed with C-Program using Gcov4 tool to produce the lines covered. On
the other hand, the C-Program is supplied into Mutator component to produce
mutants (M1, M2, M3, and Mm). In the literature survey, we have observed that
there are more than 22 fault classes. But, to show our idea of this paper we have
selected five fault classes, and we assume that it is enough for a good observation.
Since, researchers have realized that a large set of mutation operators may cause
to generate too many mutants. The large number of mutants may exhaust time
or space resources without providing comparable benefits. Therefore, researchers

2 Here, traditional approach represents the automated technique without manual inter-
vention.

3 https://www.cprover.org/cbmc/.
4 https://gcc.gnu.org/onlinedocs/gcc/Gcov-Intro.html#Gcov-Intro.

https://www.cprover.org/cbmc/
https://gcc.gnu.org/onlinedocs/gcc/Gcov-Intro.html#Gcov-Intro

Towards Agile Mutation Testing 155

start to find subsets of mutation operators that can achieve approximately the
same effectiveness in indicating the quality of test inputs. Offutt et al. [32,33]
found the five mutation operators are approximately as effective as all the 22
mutation operators of Mothra [4], a mutation-testing tool.

It might be the situation that some of the mutants are non-reachable. So,
trying to kill these mutants will be waste of efforts. Hence, as they are not
reachable and will be alive by the test cases, if executed, so we can eliminate
them from the set of mutants. The Dead Mutants Eliminator component in Fig. 1
takes a set of mutants (M1, M2, M3, and Mm) along with the lines covered as
inputs and produces a set of reachable mutants (RM1, RM2, RM3, and RMm).

Next, Compare component takes the set of test cases (T1, T2, T3, and Tn)5

along with the C-Program and a set of reachable mutants (RM1, RM2, RM3, and
RMm). Here, using the test cases we get the outputs for original and mutated
versions of the C-Program. Table 1 shows the full comparison of the test cases
running over reachable mutants. In Table 1, each row shows different mutants
and each column shows different test cases. Each cell represents the comparison
process of the outputs for original and the specific mutant when running with
particular test case. It is to be noted that the mutation process will kill the
mutants by executing test case if the outputs are found to be different for original
and mutated versions. Finally, mutation score can be computed using the killed
and alive mutants results produced by Compare component as shown in Fig. 1.

Table 1. Full comparison of all test cases (in the order they have been generated) with
all reachable mutants. Notations: OTi shows the output for original program with ith test
case. RM∗Ti shows the output for all mutants (1st to mth mutant) with ith test case.

OT1 = RM1T1 OT2 = RM1T2 OT3 = RM1T3 . . . OTn = RM1Tn

OT1 = RM2T1 OT2 = RM2T2 OT3 = RM2T3 . . . OTn = RM2Tn

OT1 = RM3T1 OT2 = RM3T2 OT3 = RM3T3 . . . OTn = RM3Tn

.

OT1 = RMmT1 OT2 = RMmT2 OT3 = RMmT3 . . . OTn = RMmTn

Table 2. Full comparison of all prioritized test cases with all reachable mutants. Nota-
tions: OPTi shows the output for original program with ith prioritized test case. RM∗PTi

shows the output for all mutants (1st to mth mutant) with ith prioritized test case.

OPT1 = RM1PT1 OPT2 = RM1PT2 OPT3 = RM1PT3 . . . OPTn = RM1PTn

OPT1 = RM2PT1 OPT2 = RM2PT2 OPT3 = RM2PT3 . . . OPTn = RM2PTn

OPT1 = RM3PT1 OPT2 = RM3PT2 OPT3 = RM3PT3 . . . OPTn = RM3PTn

.

OPT1 = RMmPT1 OPT2 = RMmPT2 OPT3 = RMmPT3 . . . OPTn = RMmPTn

5 Order of the test cases is ordered as they have been generated from TC Generator.

156 S. Godboley and D. P. Mohapatra

Mutator

M2M1 M3 Mm

TC
Generator

T2T1 T3 Tn

Gcov

Lines
Covered

Dead
Mutants

Eliminator

RM2RM1 RM3 RMm

Gcov

BC2BC1 BC3 BCn

Reverse
Sorter

[BCmax , Ti]

[BCmax-1 , Ti+1]

[BCmax-2 , Ti+2]

[BCmax-n , Tn]

Test Case
Ranker

PT2PT1 PT3 PTn

Compare
OPTi = RM*PTi

Mutation Score

Prioritizer

Fig. 2. Framework for our proposed approach

Figure 2 shows the framework for our proposed approach. It is to be noted
that the functionalities of TC Generator, Gcov, Mutator, and Dead Mutants
Eliminator are same as explained above for the traditional approach. In this
framework, we introduce a component named Prioritizer which takes a C-
Program and a set of test cases (T1, T2, T3, and Tn) as input and produces
a set of prioritized test cases (PT1, PT2, PT3, and PTn) as output. As shown
in Fig. 2, Prioritizer uses Gcov tool to compute Branch Coverages (BC1, BC2,
BC3, and BCn) for the corresponding test cases (T1, T2, T3, and Tn). The
component Reverse Sorter re-arranges the order of Branch Coverages with their
respective test cases based on the maximum value. We use the order [BCmax,
Ti], [BCmax−1, Ti+1], [BCmax−2, Ti+2], and [BCmax−n, Tn]6.

Next, the Test Case Ranker component takes the ordered array, and allocates
a rank to each test case. Finally, Prioritizer produces the order of test cases from
maximum to minimum branch coverages and as call them prioritized test cases
(PT1, PT2, PT3, and PTn).

Table 2 shows the full comparison of the prioritized test cases running over
reachable mutants. In Table 2, each row shows different mutants and each column
shows prioritized test cases. Each cell represents the comparison process of the

6 BCmax−1 decreasing with 1 is just to show that we take the lesser value, but in real
execution the actual branch coverage value will be considered.

Towards Agile Mutation Testing 157

outputs for original and the specific mutant when running with the ranked test
case. It is to be noted that the mutation process will kill the mutants by executing
any test case if the outputs are found different for original and mutated version.
Finally, the mutation score can be computed using the killed and alive mutants
produced by Compare2 component as shown in Fig. 2.

4 Experimental Results

In this section, we discuss the setup, benchmark tested, result evaluation in
detail, and inference of proposed approach.

4.1 The Set Up

We used an Intel Core i7-9700 CPU @ 3.00 GHz × 8 Linux box (64-bit Ubuntu
16.04) with 64 GB RAM. All the input programs considered for our study are
written in ANSI-C format. We consider CBMC [2] as test case generator. The
baseline we consider is the mutation analysis without prioritization to show the
effectiveness.

4.2 Benchmarks Tested

Reactive systems appear everywhere, e.g. as Web services, decision support sys-
tems, or logical controllers. The testing techniques are diverse due to their com-
plex structure. Rigorous Examination of Reactive Systems (RERS) programs are
automatically synthesized to exhibit chosen properties, and then enhanced to
include dedicated dimensions of difficulty, ranging from conceptual complexity of
the properties such as reachability, full safety, liveness etc. over size of the reactive
systems (a few hundred lines to millions of them), to exploited language features
(arrays, arithmetic at index pointer, and parallel message passing). We have con-
sidered the RERS programs that replicate the real-world applications from Avion-
ics, Banking, Medical and Railways etc. [49]. They are from RERS challenge com-
petition in years 2012 [39], 2013 [40–43], 2014 [44], 2016 [45], 2017 [46–48], 2018
[50,51], 2019 [52], and 2020 [53]. These programs are from the small and mod-
erate size group and easy to hard categories. The codes contain a lot of Boolean
expressions, plain assignments, arithmetic operations, and data structures.

4.3 Result Evaluation

Table 3 shows the detailed result analysis of our experimental study for traditional
and proposed approaches. Columns 1 and 2 show the Sl. No. and name of program
respectively, as described in Sect. 4.2. It is to be noted that each program is suffixed
with *-B1 or *-B2 which signify the loop bound considered in program because all
were unbounded originally. We considered a set of 30 C-Programs with 2 different
loop bounds which makes the structure and characteristics different. So, 30 X 2
= 60 programs we tested in this paper. Column 3 (#TC) shows the total number

158 S. Godboley and D. P. Mohapatra

Table 3. Experimental Results for traditional and our proposed approaches. Note:
#TC is Total test cases generated, LC is Line Coverage, BC is Branch Coverage

Sl. No Program #TC LC BC #Total #Alive #Killed Mutation Traditional Proposed

Mutants Mutants Mutants Score% Time (Sec) Time (Sec)

1 PS-P10-L-T-R16-B1 6 8.08 8.19 926 616 310 33% 94.40 93.97
2 PS-P10-L-T-R16-B2 10 15.87 19.51 1972 1151 821 41% 217.71 213.03
3 PS-P2-L-T-R16-B1 11 6.98 7.54 926 617 309 33% 105.51 110.06
4 PS-P2-L-T-R16-B2 13 12.61 14.28 1628 956 672 41% 194.28 192.79
5 PS-P3-L-R16-B1 11 3.40 4.10 993 815 178 17% 179.10 173.98
6 PS-P3-L-R16-B2 14 5.14 6.59 1524 1132 392 25% 281.25 279.90
7 PS-P3-L-R18-B1 19 2.10 3.41 1181 762 419 35% 382.32 370.83
8 PS-P3-L-R18-B2 21 5.20 9.38 3151 1977 1174 37% 1041.80 1018.34
9 PS-P3-L-T-R19-B1 11 7.18 9.00 910 557 353 38% 106.96 103.93
10 PS-P3-L-T-R19-B2 19 18.71 23.69 2306 1251 1055 45% 297.02 289.14
11 PS-P3-L-T-R20-B1 7 6.29 5.66 340 162 178 52% 28.61 28.55
12 PS-P3-L-T-R20-B2 27 16.83 16.57 905 297 608 67% 103.33 96.83
13 PS-P3-T-R17-B1 11 2.81 4.39 1350 992 358 26% 358.83 357.29
14 PS-P3-T-R17-B2 15 5.65 7.89 2508 1609 899 35% 679.25 645.90
15 PS-P55-GB-R13-B1 7 13.27 9.09 984 619 365 37% 119.72 120.35
16 PS-P55-GB-R13-B2 34 34.47 27.65 2075 858 1217 58% 341.81 360.99
17 PS-P56-GB-R13-B1 5 10.88 8.20 1641 1268 373 22% 242.92 238.20
18 PS-P56-GB-R13-B2 17 21.14 16.92 2976 1967 1009 33% 543.49 545.00
19 PS-P57-GB-R13-B1 41 14.35 8.98 1477 1051 426 28% 303.09 323.21
20 PS-P57-GB-R13-B2 217 43.73 32.01 3787 2173 1614 42% 2497.78 2449.10
21 PS-P7-L-T-R16-B1 6 10.96 10.68 736 446 290 39% 59.95 58.88
22 PS-P7-L-T-R16-B2 9 21.24 25.44 1582 882 700 44% 140.23 134.64
23 PS-P8-L-T-R16-B1 6 7.62 8.37 802 555 247 30% 58.90 57.98
24 PS-P8-L-T-R16-B2 10 12.54 15.36 1159 659 500 43% 89.94 92.72
25 PS-P9-L-T-R16-B1 5 5.58 7.66 1288 1014 274 21% 170.16 176.41
26 PS-P9-L-T-R16-B2 12 9.81 12.67 1925 1260 665 34% 278.10 270.28
27 PS-Prob1-IO-R14-B1 7 26.20 22.31 872 513 359 41% 81.60 89.85
28 PS-Prob1-IO-R14-B2 47 83.86 71.16 1996 662 1334 66% 380.91 356.83
29 PS-Prob16-R12-B1 7 33.30 24.35 10326 9686 640 6% 1593.43 1552.47
30 PS-Prob16-R12-B2 23 35.29 37.52 10442 9360 1082 10% 1825.43 1828.04
31 PS-Prob2-IO-R14-B1 6 14.87 12.82 2468 2034 434 17% 405.05 400.03
32 PS-Prob2-IO-R14-B2 20 27.47 26.44 4361 3070 1291 29% 1051.82 964.58
33 PS-Prob3-IO-R14-B1 22 18.16 15.16 2051 1660 391 19% 371.90 350.03
34 PS-Prob3-IO-R14-B2 192 58.00 56.46 5710 3563 2147 37% 3793.54 3487.52
35 PS-Prob3-LTL-DS-SEQ-B1 11 6.87 9.00 910 561 349 38% 108.76 108.53
36 PS-Prob3-LTL-DS-SEQ-B2 18 18.44 23.69 2306 1241 1065 46% 340.52 310.52
37 PS-Vp1-B1 7 11.55 9.39 1072 657 415 38% 118.74 117.28
38 PS-Vp1-B2 28 24.89 19.55 1754 773 981 55% 264.80 262.62
39 PS-Vp2-B1 7 13.05 9.04 2175 1737 438 20% 340.82 344.72
40 PS-Vp2-B2 39 37.56 30.31 5264 3504 1760 33% 1418.10 1396.41
41 PS-Vp3-B1 26 11.50 8.49 1629 1142 487 29% 294.57 305.00
42 PS-Vp3-B2 172 38.02 30.53 4773 2820 1953 40% 2438.46 2392.75
43 PS-Wtest10-B1 6 38.29 34.07 1118 935 183 16% 73.55 75.59
44 PS-Wtest10-B2 21 45.00 53.23 1119 789 330 29% 137.60 131.83
45 PS-Wtest11-B1 6 43.13 37.63 3814 3383 431 11% 287.85 282.93
46 PS-Wtest11-B2 13 47.95 59.30 3918 3102 816 20% 521.22 485.36
47 PS-Wtest12-B1 7 34.01 28.36 7036 6356 680 9% 907.71 850.00
48 PS-Wtest12-B2 36 45.01 61.70 7471 5480 1991 26% 1656.76 1616.84
49 PS-Wtest22-B1 6 5.21 5.85 899 699 200 22% 94.98 94.06
50 PS-Wtest22-B2 7 9.08 12.80 1556 1038 518 33% 173.66 164.96
51 PS-Wtest23-B1 11 2.91 4.37 1350 992 358 26% 339.47 344.48
52 PS-Wtest23-B2 13 5.77 7.88 2508 1618 890 35% 742.69 761.84
53 PS-Wtest31-B1 11 4.96 6.13 194 93 101 52% 15.57 15.21
54 PS-Wtest31-B2 12 6.90 8.43 260 81 179 68% 19.53 19.53
55 PS-Wtest7-B1 7 38.31 36.47 4538 4076 462 10% 467.73 449.25
56 PS-Wtest7-B2 12 40.50 40.37 4550 3944 606 13% 505.09 486.04
57 PS-Wtest8-B1 7 30.21 25.09 14712 14068 644 4% 2634.35 2659.80
58 PS-Wtest8-B2 15 32.13 32.11 14877 13801 1076 7% 3268.40 3067.94
59 PS-Wtest9-B1 7 39.80 30.98 1215 1021 194 15% 92.08 86.24
60 PS-Wtest9-B2 7 39.80 30.98 1215 1021 194 15% 116.98 103.15

Towards Agile Mutation Testing 159

of test cases generated by CBMC. It ranges from 5 to 217 also shown in Fig. 3a.
Except 3 programs all others programs have less than 50 test cases. Column 4 (LC)
shows the Line Coverage information. It ranges from 2.1% to 83.86%, also shown
in Fig. 3b. Except 2 programs, all the programs have less than 50% Line Coverage.
Column 5 (BC) shows the Branch Coverage information. It ranges from 3.41%
to 71.16%, also shown in Fig. 3c. Except 5 programs, all the other programs have
less than 50% Branch Coverage.

Columns 6 to 9 in Table 3 show the information about the mutation analysis.
Column 6 (#Total Mutants) shows the total number of reachable mutants after
eliminating the dead mutants from the original set of mutants. It ranges from
194 to 14877 mutants. Column 7 (#Alive Mutants) shows the total number
of survived or alive mutants which could not found with entire set of test cases
exhausted. It ranges from 81 to 14068 mutants. Column 8 (#Killed Mutants)
shows the total number of killed mutants which got detected/found with at least
a test case from the entire set of test cases. It ranges from 101 to 1953 mutants.
Column 9 (#Mutation Score) shows the ratio of killed and total mutants. It
ranges from 4% to 68% also shown in Fig. 3d. Except 7 programs, all the
programs have less than 50% Mutation score.

Program

Te
st

 C
as

es

0

50

100

150

200

250

10 20 30 40 50 60

(a) Test Cases generated

Program

Li
ne

 C
ov

er
ag

e

0

25

50

75

100

10 20 30 40 50 60

(b) Line Coverage

Program

B
ra

nc
h

C
ov

er
ag

e

0

20

40

60

80

10 20 30 40 50 60

(c) Branch Coverage

Program

M
ut

at
io

n
Sc

or
e

0

20

40

60

80

10 20 30 40 50 60

(d) Mutation Score

Fig. 3. Statistics of experimental results

Next, we explain the main contribution of this paper i.e. minimising the time
cost to show the agility in mutation testing. Column 10 and Column 11 in Table 3
show the mutation testing time for Traditional and Proposed approaches in sec-
onds. The time cost varies from 15.57 to 3793.54 s for Traditional approach.

160 S. Godboley and D. P. Mohapatra

Table 4. Five classes of mutants considered in experimental analysis. Note: To show
killed mutants we have use prefix #K* and for total mutants prefixed with #T*.
LOF is Logical Operator Fault, AOF is Arithmetic Operator Fault, ROF is Relational
Operator Fault, CNF is Conditional Negation Fault, PNF is Predicate Negation Fault.

Sl. No. Program #KLOF/

#TLOF

#KAOF/

#TAOF

#KROF/

#TROF

#KCNF/

#TCNF

#KPNF/

#TPNF

#Killed/

#Total

1 PS-P10-L-T-R16-B1 54/115 0/84 177/580 62/130 17/17 310/926

2 PS-P10-L-T-R16-B2 116/247 53/176 458/1240 162/277 32/32 821/1972

3 PS-P2-L-T-R16-B1 31/117 0/72 196/590 66/131 16/16 309/926

4 PS-P2-L-T-R16-B2 82/193 16/224 408/970 141/216 25/25 672/1628

5 PS-P3-L-R16-B1 23/120 1/116 99/605 38/135 17/17 178/993

6 PS-P3-L-R16-B2 27/173 50/264 213/870 79/194 23/23 392/1524

7 PS-P3-L-R18-B1 57/143 0/136 258/725 86/159 18/18 419/1181

8 PS-P3-L-R18-B2 179/385 79/352 646/1935 222/431 48/48 1174/3151

9 PS-P3-L-T-R19-B1 41/114 0/68 221/580 73/130 18/18 353/910

10 PS-P3-L-T-R19-B2 131/274 49/300 619/1380 216/312 40/40 1055/2306

11 PS-P3-L-T-R20-B1 19/30 0/92 99/150 40/48 20/20 178/340

12 PS-P3-L-T-R20-B2 61/96 43/136 332/485 125/141 47/47 608/905

13 PS-P3-T-R17-B1 73/153 4/232 193/770 66/173 22/22 358/1350

14 PS-P3-T-R17-B2 122/267 134/560 452/1345 155/300 36/36 899/2508

15 PS-P55-GB-R13-B1 168/397 0/0 28/30 88/476 81/81 365/984

16 PS-P55-GB-R13-B2 506/824 0/0 141/145 428/964 142/142 1217/2075

17 PS-P56-GB-R13-B1 158/405 0/168 54/505 81/483 80/80 373/1641

18 PS-P56-GB-R13-B2 350/642 41/612 242/860 265/751 111/111 1009/2976

19 PS-P57-GB-R13-B1 178/412 0/68 79/425 88/491 81/81 426/1477

20 PS-P57-GB-R13-B2 591/922 28/628 356/1015 488/1071 151/151 1614/3787

21 PS-P7-L-T-R16-B1 28/93 0/56 185/470 64/104 13/13 290/736

22 PS-P7-L-T-R16-B2 70/193 18/180 433/970 155/215 24/24 700/1582

23 PS-P8-L-T-R16-B1 55/109 0/0 129/550 45/125 18/18 247/802

24 PS-P8-L-T-R16-B2 101/158 0/0 277/795 97/181 25/25 500/1159

25 PS-P9-L-T-R16-B1 48/147 0/220 154/740 54/163 18/18 274/1288

26 PS-P9-L-T-R16-B2 95/199 91/472 337/1005 116/223 26/26 665/1925

27 PS-Prob1-IO-R14-B1 170/345 0/0 29/30 83/420 77/77 359/872

28 PS-Prob1-IO-R14-B2 488/758 0/0 196/210 514/892 136/136 1334/1996

29 PS-Prob16-R12-B1 181/1953 0/64 79/5705 54/2278 326/326 640/10326

30 PS-Prob16-R12-B2 359/1953 19/180 214/5705 164/2278 326/326 1082/10442

31 PS-Prob2-IO-R14-B1 130/370 13/432 124/1140 88/447 79/79 434/2468

32 PS-Prob2-IO-R14-B2 296/611 128/1072 471/1855 289/716 107/107 1291/4361

33 PS-Prob3-IO-R14-B1 123/334 2/368 99/865 91/408 76/76 391/2051

34 PS-Prob3-IO-R14-B2 448/799 213/1828 787/2020 566/930 133/133 2147/5710

35 PS-Prob3-LTL-DS-SEQ-B1 42/115 0/68 217/580 73/130 17/17 349/910

36 PS-Prob3-LTL-DS-SEQ-B2 132/275 49/300 629/1380 216/312 39/39 1065/2306

37 PS-Vp1-B1 196/437 0/0 28/30 106/520 85/85 415/1072

38 PS-Vp1-B2 430/696 0/0 114/120 315/816 122/122 981/1754

39 PS-Vp2-B1 141/415 9/204 117/985 92/492 79/79 438/2175

40 PS-Vp2-B2 529/943 80/1208 514/1880 491/1087 146/146 1760/5264

41 PS-Vp3-B1 174/432 0/152 80/455 153/510 80/80 487/1629

42 PS-Vp3-B2 679/1049 56/1028 440/1325 616/1209 162/162 1953/4773

43 PS-Wtest10-B1 0/0 0/0 0/0 46/981 137/137 183/1118

44 PS-Wtest10-B2 0/0 0/0 0/0 192/981 138/138 330/1119

45 PS-Wtest11-B1 175/809 0/68 66/1855 53/945 137/137 431/3814

46 PS-Wtest11-B2 311/809 12/172 198/1855 158/945 137/137 816/3918

(continued)

Towards Agile Mutation Testing 161

Table 4. (continued)

Sl. No. Program #KLOF/

#TLOF

#KAOF/

#TAOF

#KROF/

#TROF

#KCNF/

#TCNF

#KPNF/

#TPNF

#Killed/

#Total

47 PS-Wtest12-B1 330/1449 2/84 106/3690 59/1630 183/183 680/7036

48 PS-Wtest12-B2 735/1449 46/516 649/3690 375/1630 186/186 1991/7471

49 PS-Wtest22-B1 37/114 0/64 109/575 37/129 17/17 200/899

50 PS-Wtest22-B2 75/186 27/196 289/940 102/209 25/25 518/1556

51 PS-Wtest23-B1 73/153 4/232 193/770 66/173 22/22 358/1350

52 PS-Wtest23-B2 122/267 134/560 443/1345 155/300 36/36 890/2508

53 PS-Wtest31-B1 12/22 0/12 54/110 20/35 15/15 101/194

54 PS-Wtest31-B2 25/30 3/12 96/150 35/48 20/20 179/260

55 PS-Wtest7-B1 161/951 0/0 68/2285 57/1126 176/176 462/4538

56 PS-Wtest7-B2 205/951 0/12 130/2285 95/1126 176/176 606/4550

57 PS-Wtest8-B1 160/2059 0/128 126/9875 62/2354 296/296 644/14712

58 PS-Wtest8-B2 284/2059 29/292 317/9875 149/2354 297/297 1076/14877

59 PS-Wtest9-B1 0/0 0/0 8/10 56/1075 130/130 194/1215

60 PS-Wtest9-B2 0/0 0/0 8/10 56/1075 130/130 194/1215

Programs

M
ut

at
io

n
Ti

m
e

(S
ec

)

0

50

100

150

200
Traditional Proposed

Time (< 200 Sec)

(a) Mutation Time (< 200 sec)

Programs

M
ut

at
io

n
Ti

m
e

(S
ec

)

200

250

300

350

400 Traditional Proposed
Time (200 to 400 Sec)

(b) Mutation Time (200 to 400 sec)

Programs

M
ut

at
io

n
Ti

m
e

(S
ec

)

400

600

800

1000

1200
Traditional Proposed

Time (400 to 1200 Sec)

(c) Mutation Time (400 to 1200 sec)

Programs

M
ut

at
io

n
Ti

m
e

(S
ec

)

1500

2000

2500

3000

3500

4000
Traditional Proposed

Time (1200 to 4000 Sec)

(d) Mutation Time (1200 to 4000 sec)

Fig. 4. Mutation testing time analysis for traditional and proposed approaches. The
programs have been sorted as per the time of traditional technique (min to max)

Similarly, time cost varies from 15.21 to 3487.52 s for Proposed approach. The
green color cells in Table 3 highlights the better performance by either Tradi-
tional or Proposed approach. From the results, it is observed that Traditional
approach performs better in 15 out of 60 programs. Similarly, our proposed

162 S. Godboley and D. P. Mohapatra

approach performs better in 44 out of 60 programs. There was only 1 program
for which both the approaches have equal time cost, it is highlighted with blue
colored cell. Figure 4 shows the Mutation Testing time analysis for Traditional
and Proposed Approaches. We categorise the time results in four groups for bet-
ter presentation. Group1 shows the mutation time for the programs having the
time less than 200 s as shown in Fig. 4a. Group2 shows the mutation time for
the programs having the time 200 s to 400 s as shown in Fig. 4b. Group3 shows
the mutation time for the programs having the time from 400 s to 1200 s as
shown in Fig. 4c. Group4 shows the mutation time for the programs having the
time from 1200 s to 4000 s as shown in Fig. 4d.

Now, let us understand why our proposed approach has no better perfor-
mance on 15 programs as compared to traditional approach. Firstly, the total
number of test cases are very less to show a time difference between both the
approaches, that is why some times our proposed approach is winning or loosing
with marginal time difference. Secondly, the tie between test cases due to having
equal branch coverage makes our approach inefficient. Also, we have noticed a
trend from our experimental results shown in Table 3 that the traditional app-
roach has better results if the program is with loop bound 1 (suffixed with *-B1).
There are total 10 out of 15 such programs. This shows that if the program
structure is small, the code coverage and test cases are less, so the execution time
comparison for the programs is not significant. This is a fact because our pro-
posed approach avoids executing test cases which saves our time cost and hence
our proposed approach is faster. If the test cases are more and avoiding these
cases will be more then our proposed approach will have better performance
as compared to the traditional approach. To avoid the rest of the test cases to
execute, the particular test case candidate should have highest code coverage so
that maximum number of mutants can be killed.

Table 4 shows the details of mutation analysis. In our experiment we consider
5 classes of mutants. Columns 1 and 2 show the Sl. No. and name of program
respectively. Columns 3 to 7 show the information of killed mutants prefixed
with #K* and total mutants prefixed with #T*. Column 3 shows the informa-
tion of Logical Operator Fault (LOF) (#KLOF/#TLOF). Column 4 shows the
information of Arithmetic Operator Fault (AOF) (#KAOF/#TAOF). Column 5
shows the information of Relational Operator Fault (ROF) (#KROF/#TROF).
Column 6 shows the information of Conditional Negation Fault (CNF)
(#KCNF/#TCNF). Column 7 shows the information of Predicate Negation
Fault (PNF) (#KPNF/#TPNF). Column 8 shows the information of killed and
total mutants processed (#Killed/#Total). The #Killed mutants can be com-
puted by using Eq. 4. and #Total mutants can be computed by using Eq. 5.

#Killed = #KLOF + #KAOF + #KROF + #KCNF + #KPNF (4)

#Total = #TLOF + #TAOF + #TROF + #TCNF + #TPNF (5)

Towards Agile Mutation Testing 163

Table 5. Summary of experimental results

Aggr.
TC

Avg.
LC

Avg.
BC

Aggr.-
TMutants

Aggr.-
Alive

Aggr.-
Killed

Avg.
Score

Aggr.-Time
Traditional

Aggr.-Time
Proposed

1400 21.51% 20.76% 171511 131126 40385 31.51% 35800.13 34764.54

4.4 Inference

In this section, we discuss about the inferences drawn from the experimental
results. Table 5 shows the summary of experimental results. In total we tested
60 programs and generated 1400 test cases. From 60 programs, we got 21.51%
Line Coverage and 20.76% Branch Coverage7. There were a total number of
171511 reachable mutants, out of which 40385 have been killed and the rest
131126 were alive or survived. So, from 60 programs on average we obtained
31.51% mutation score. Now, total time consumed by traditional approach was
35800.13 s, however our proposed approach consumed 34764.54 s. In total we
saved 1035.59 s using our proposed agile mutation testing approach.

Table 6 shows the summary of mutant classes considered in this paper. There
were total 29721 LOF type mutants out of which 10587 were killed, score
achieved is 35.62%. There were total 14468 AOF type mutants out of which
1433 were killed, score achieved is 9.90%. There were total 83340 ROF type
mutants out of which 13784 were killed, score achieved is 16.54%. There were
total 38585 CNF type mutants out of which 9184 were killed, score achieved
is 23.80%. There were total 5397 CNF type mutants out of which 5397 were
killed, score achieved is 100.00%. Finally, total mutants were 171511 and got
40385 killed, final score we achieved is 23.55%. We can observe that, there is
a full score for PNF type mutants, it means the set of test cases is of very good
quality. Secondly, LOF, ROF, CNF have some scores but not significant. The
reason being that the test cases generated from CBMC was using the Condition
Coverage criterion, if we use more stronger criterion such as Modified Condi-
tion/Decision Coverage (MC/DC) or Multiple Condition Coverage (MCC) then
the test cases will be capable of killing these types of mutants effectively. Also,
AOF type mutants has poor performance in our experiment which can be recov-
ered with the test cases generated by Fuzzing approach. Fuzzing has been proven
as a most popular dynamic test case generation technique to find the exploitable
bugs which lead to crashes. We plan to add Fuzzing as our test case generator
component, so that we can observe improvements in mutation scores. Overall,
here we present the quality of test cases using agile mutation testing.

7 For more clarity it is to be noted that these values are for both traditional and our
proposed approaches. So improvement for our proposed work is not due to uncovered
elements of the programs rather dependent on ordering of test cases so that high
ranked test case can kill the mutant and most of the mutants can be avoided.

164 S. Godboley and D. P. Mohapatra

Table 6. Summary of mutants classes

Types LOF AOF ROF CNF PNF #Total

#Killed 10587 1433 13784 9184 5397 40385

#Total 29721 14468 83340 38585 5397 171511

Scores 35.62% 9.90% 16.54% 23.80% 100.00% 23.55%

5 Comparison to Related Work

DeMillo et al. [5] proposed mutation testing for revealing the bugs/faults in the
software. Traditional mutation testing was expensive and non-scalable. A bet-
ter version of mutation testing was proposed [22] and called as Weak Mutation
Testing. Original mutation testing is also known as Strong Mutation Testing.
It is recommended to use this version which is practical for test suite quality.
Papadakis et al. [36] proposed a technique to populate the test cases as per the
mutation specifications. They have combined mutation schemata with dynamic
symbolic execution to produce quality test cases. They also minimize the over-
head of mutation testing. They have used strong mutation [5] and weak mutation
[30]. Zang et al. [63] presented few techniques to minimise the cost of mutation
testing. They have used prioritizing and test case reduction techniques to more
quickly find the mutants. They have shown the effective and efficient technique
by experiment. In this paper, we consider weak mutation testing type. We first
generate the test cases from CBMC which is a verifer and then apply dead
mutants elimination and prioritization techniques using coverage information to
make the technique efficient.

Ayari et al. [1] used ant colony optimization (ACO) [8] based evolution-
ary approach for mutation-based test case generation. They introduced a fitness
function to evaluate the closeness of a test case to kill any specific mutant. Exper-
iments show that the proposed ACO based test generation method is effective
than other searching strategies such as random, hill climbing [20], and genetic
algorithm [21]. In this paper, we have not used any learning algorithm rather
computed the branch coverage for each test case and sorted them in max to min
order. We have shown that this approach is beneficial.

Mutation testing is a popular technique for test case generation and bug
prediction, but it is rarely used for fault localization [26,35]. It was believed that
mutation is very expensive and difficult to scale. However, mutation testing has
a strong capability to replicate real-world bugs. Now-a-days, several open-source
mutation testing tools such as MILU [29], PIT [38], Javalanche [23] are available.
Also, the computational capability of computers has increased phenomenally. In
this paper, we have developed our own mutator with five fault types.

Zhang et al. [64] proposed a test generation technique using dynamic symbolic
execution (DSE) [19,55] for effective mutation testing. They named their app-
roach and tool as PexMutator. PexMutator transforms the input program into
a meta program which contains mutant killing constraints. The instrumented

Towards Agile Mutation Testing 165

meta program is supplied to the dynamic symbolic executor engine Pex [57] to
generate test cases. Experimental results show that PexMutator generated test
cases can kill 80% more mutants for five different subject programs undertaken
for the study. In this paper, we have considered CBMC as test case generator
but in future we plan to extend this work using DSEs.

Parsai [37] shows the techniques for mutation testing from theory to prac-
tice. Software industries still use simple coverage metrics to assess the quality of
their tests. Literature in academic has done a good progress in mutation testing
to assess and improve the quality of software tests. After several efforts in this
domain it is not yet widely adopted in industry. Parsai [37] identifies three main
problems: the performance overhead, lack of domain knowledge in tool providers,
and lack of tool support. Parsai [37] addresses these three problems and shows
that it is practical to abide the process of mutation testing based on industrial
needs. Vercammen et al. [58] proposed an approach based on fine-grained trace-
ability links at method level (named focal methods). This technique reduces the
execution time of mutation testing and verifies the quality of the test cases for
each individual method, instead of the usually verified overall test suite quality.
In this paper, we also focus of reducing mutation testing time by ordering the
test cases.

Testura [56] is an open source tool available that support mutation testing
in a Continuous Integration (CI) context. This is a mutation testing tool/visual
studio extension for C# that verifies the quality of unit tests by injecting different
mutations in production code and then checks whether unit tests catch them or
not. Our work is mostly align with this work because our work also abide the
agile principles.

Yang et al. [61] reported survey on code-coverage based testing tools. They
have included 17 different tools and compared them based on their functional-
ities such as coverage criteria, code coverage measurement, and reporting and
automation. They observed that each tool has its pros and cons based on its
domain of application. In this paper, we have used CBMC for test case genera-
tion and Gcov to compute the line and branch coverage. We have developed our
in house mutator which is currently supporting 5 classes of faults.

Zhang et al. [62] introduced unified models for test case prioritization. These
subsume the total and additional strategies as extreme cases. Their approach
contains a spectrum of strategies between the two strategies. In this paper, we
have not considered any unified models but we ordered the test cases based on
the ranking given to each test case.

Rothermel et al. [11,54] proposed test case prioritization techniques viz. based
on the number of code elements they covered and the number of additional
elements they covered. Do et al. [7] showed an analysis to compare the traditional
test case prioritization techniques by simulating real faults to show the usability
of mutation faults. In this paper, we have also used the code element such as
covered branches. In future we plan to do more study on other code coverage
criteria to improve the mutation testing time.

166 S. Godboley and D. P. Mohapatra

6 Conclusion

Agility in software development phase is an essential requirement. Agility
improves the development process with respect to the quality and time cost.
Mutation testing is a proven power full technique to show the quality of test
cases. But due to it’s expensive process makes this technique non-popular. We
propose a technique towards agile mutation testing by branch coverage based
prioritization. In this paper, we experimented 60 programs and considered 5
types of fault classes. Our results are promising and showed that 45 out of
60 Programs i.e. 75% have better performance for the proposed approach as
compared to the traditional approach. Also, we saved approx. 1036 s time using
our proposed approach.

In future, we will consider other stronger coverage criteria to produce more
meaningful test cases to analyse the mutation testing. Also, we try to club more
test case generators to focus on all aspects of mutation testing. We target to
propose new prioritization algorithm using other code elements so that we can
improvise the time efficiency.

References

1. Ayari, K., Bouktif, S., Antoniol, G.: Automatic mutation test input data generation
via ant colony. In: Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation, pp. 1074–1081 (2007)

2. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

3. Crispin, L., Gregory, J.: Agile Testing: A Practical Guide for Testers and Agile
Teams. Addison-Wesley Professional, 1 edn (2009)

4. DeMillo, R., Martin, R.: The mothra software testing environment user’s manual.
Software Engineering Research Center, Tech. Rep (1987)

5. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for
the practicing programmer. Computer 11(4), 34–41 (1978)

6. DeMillo, R.A., Offutt, A.J.: Constraint-based automatic test data generation.
IEEE Trans. Softw. Eng. 17(9), 900–910 (1991)

7. Do, H., Rothermel, G.: On the use of mutation faults in empirical assessments of
test case prioritization techniques. IEEE Trans. Softw. Eng. 32(9), 733–752 (2006).
https://doi.org/10.1109/TSE.2006.92

8. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput.
Intell. Mag. 1(4), 28–39 (2006)

9. Dutta, A., Godboley, S.: MSFL: a model for fault localization using mutation-
spectra technique. In: Przyby�lek, A., Miler, J., Poth, A., Riel, A. (eds.) LASD
2021. LNBIP, vol. 408, pp. 156–173. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-67084-9 10

10. Dutta, A., Srivastava, S.S., Godboley, S., Mohapatra, D.P.: Combi-FL: Neural
network and SBFL based fault localization using mutation analysis. J. Comput.
Lang. 66, 101064 (2021)

11. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Test case prioritization: a family
of empirical studies. IEEE Trans. Softw. Eng. 28(2), 159–182 (2002)

https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1109/TSE.2006.92
https://doi.org/10.1007/978-3-030-67084-9_10
https://doi.org/10.1007/978-3-030-67084-9_10

Towards Agile Mutation Testing 167

12. Frankl, P.G., Weiss, S.N., Hu, C.: All-uses vs mutation testing: an experimental
comparison of effectiveness. J. Syst. Softw. 38(3), 235–253 (1997)

13. Godboley, S., Dutta, A., Mohapatra, D.P., Das, A., Mall, R.: Making a concolic
tester achieve increased MC/DC. Innovations Syst. Softw. Eng. 12(4), 319–332
(2016)

14. Godboley, S., Dutta, A., Mohapatra, D.P., Mall, R.: J3 model: a novel frame-
work for improved modified condition/decision coverage analysis. Comput. Stand.
Interfaces 50, 1–17 (2017)

15. Godboley, S., Dutta, A., Mohapatra, D.P., Mall, R.: Gecojap: a novel source-code
preprocessing technique to improve code coverage. Comput. Stand. Interfaces 55,
27–46 (2018)

16. Godboley, S., Dutta, A., Mohapatra, D.P., Mall, R.: Scaling modified condition/de-
cision coverage using distributed concolic testing for java programs. Comput.
Stand. Interfaces 59, 61–86 (2018)

17. Godboley, S., Mohapatra, D.P., Das, A., Mall, R.: An improved distributed concolic
testing approach. Softw. Pract. Exp. 47(2), 311–342 (2017)

18. Godboley, S., Sahani, A., Mohapatra, D.P.: ABCE: a novel framework for improved
branch coverage analysis. Proc. Comput. Sci. 62, 266–273 (2015). https://doi.org/
10.1016/j.procs.2015.08.449

19. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing.
In: Proceedings of the 2005 ACM SIGPLAN conference on Programming language
design and implementation, pp. 213–223 (2005)

20. Greiner, R.: PALO: a probabilistic hill-climbing algorithm. Artif. Intell. 84(1–2),
177–208 (1996)

21. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE
Trans. Evol. Comput. 3(4), 287–297 (1999)

22. Howden, W.E.: Weak mutation testing and completeness of test sets. IEEE Trans.
Softw. Eng. 4, 371–379 (1982)

23. Javalanche: (2012). http://www.javalanche.org/
24. Kaminski, G., Ammann, P., Offutt, J.: Better predicate testing. In: Proceedings of

the 6th International Workshop on Automation of Software Test, pp. 57–63 (2011)
25. Kaminski, G., Ammann, P., Offutt, J.: Improving logic-based testing. J. Syst.

Softw. 86(8), 2002–2012 (2013)
26. Li, X., Li, W., Zhang, Y., Zhang, L.: Deepfl: Integrating multiple fault diagnosis

dimensions for deep fault localization. In: Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 169–180 (2019)

27. Mall, R.: Fundamentals of Software Engineering. PHI Learning Pvt Ltd, New Delhi
(2018)

28. Meek, B., Siu, K.: The effectiveness of error seeding. ACM Sigplan Not. 24(6),
81–89 (1989)

29. MILU: (2018). https://github.com/yuejia/Milu
30. Offutt, A.J., Lee, S.D.: How strong is weak mutation? In: Proceedings of the sym-

posium on Testing, analysis, and verification, pp. 200–213 (1991)
31. Offutt, A.J., Pan, J.: Automatically detecting equivalent mutants and infeasible

paths. Softw. Testing, Verification Reliab. 7(3), 165–192 (1997)
32. Offutt, A.J., Pan, J., Tewary, K., Zhang, T.: An experimental evaluation of data

flow and mutation testing. Softw. Pract. Exp. 26(2), 165–176 (1996)
33. Offutt, A.J., Rothermel, G., Zapf, C.: An experimental evaluation of selective muta-

tion. In: Proceedings of 1993 15th international conference on software engineering,
pp. 100–107. IEEE (1993)

https://doi.org/10.1016/j.procs.2015.08.449
https://doi.org/10.1016/j.procs.2015.08.449
http://www.javalanche.org/
https://github.com/yuejia/Milu

168 S. Godboley and D. P. Mohapatra

34. Offutt A.J., Untch R.H.: Mutation 2000: uniting the orthogonal. In: Wong, W.E.,
(eds) Mutation Testing for the New Century. The Springer International Series on
Advances in Database Systems, vol. 24. Springer, Boston (2001)

35. Papadakis, M., Le Traon, Y.: Metallaxis-FL: mutation-based fault localization.
Softw. Testing Verifi. Reliab. 25(5–7), 605–628 (2015)

36. Papadakis, M., Malevris, N.: Automatic mutation test case generation via dynamic
symbolic execution. In: 2010 IEEE 21st International Symposium on Software Reli-
ability Engineering, pp. 121–130. IEEE (2010)

37. Parsai, A.: Mutation testing: from theory to practice. Ph.D. thesis, University of
Antwerp (2019)

38. PIT (2020). https://pitest.org/
39. RERS12 (2012). http://rers-challenge.org/2012/
40. Regular extrapolation of reactive systems (rers-2013): Problem28 (2013), http://

rers-challenge.org/2013ase/problems/challengeProblems/White/Problem28/
Problem28.c

41. Regular extrapolation of reactive systems (rers-2013): Problem29 (2013), http://
rers-challenge.org/2013ase/problems/challengeProblems/White/Problem29/
Problem29.c

42. Regular extrapolation of reactive systems (rers-2013): Problem30 (2013). http://
rers-challenge.org/2013ase/problems/challengeProblems/White/Problem30/
Problem30.c

43. Regular extrapolation of reactive systems (rers-2013): Problem32 (2013). http://
rers-challenge.org/2013ase/problems/challengeProblems/White/Problem28/
Problem32.c

44. RERS14 (2014). http://rers-challenge.org/2014/
45. RERS16 (2016). http://rers-challenge.org/2016/
46. Rigorous examination of reactive systems (rers-2017): Sequential ltl problems

(2017). http://www.rers-challenge.org/2017/index.php?page=ltlProblems
47. Rigorous examination of reactive systems (rers-2017): Sequential reachability prob-

lems (2017). http://www.rers-challenge.org/2017/index.php?page=reachProblems
48. Rigorous examination of reactive systems (rers-2017): Sequential training

problems for rers 2017 (2017). http://www.rers-challenge.org/2017/index.php?
page=trainingphase

49. RERS (2018). http://rers-challenge.org/
50. RERS18 (2018). http://rers-challenge.org/2018/
51. Rigorous examination of reactive systems (rers-2018): Sequential training

problems for rers 2018 (2018). http://www.rers-challenge.org/2018/index.php?
page=trainingphase

52. RERS19: Sequential Reachability Problems (2019). http://rers-challenge.org/
2019/index.php?page=reachProblems

53. RERS20: Sequential Reachability Problems (2020). http://rers-challenge.org/
2020/index.php?page=reachProblems

54. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing test cases for
regression testing. IEEE Trans. Softw. Eng. 27(10), 929–948 (2001)

55. Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for c. ACM
SIGSOFT Softw. Eng. Not. 30(5), 263–272 (2005)

56. Testura.mutation (2021). https://github.com/Testura/Testura.Mutation
57. Tillmann, N., de Halleux, J.: Pex–White box test generation for .NET. In: Beckert,

B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79124-9 10

https://pitest.org/
http://rers-challenge.org/2012/
http://rers-challenge.org/2013ase/problems/challengeProblems/White/Problem28/Problem28.c
http://rers-challenge.org/2013ase/problems/challengeProblems/White/Problem28/Problem28.c
http://rers-challenge.org/2013ase/problems/challengeProblems/White/Problem28/Problem28.c
http://rers-challenge.org/2013ase/problems/challengeProblems/White/Problem29/Problem29.c
http://rers-challenge.org/2013ase/problems/challengeProblems/White/Problem29/Problem29.c
http://rers-challenge.org/2013ase/problems/challengeProblems/White/Problem29/Problem29.c
http://rers-challenge.org/2013ase/problems/challengeProblems/White/Problem30/Problem30.c
http://rers-challenge.org/2013ase/problems/challengeProblems/White/Problem30/Problem30.c
http://rers-challenge.org/2013ase/problems/challengeProblems/White/Problem30/Problem30.c
http://rers-challenge.org/2013ase/problems/challengeProblems/White/Problem28/Problem32.c
http://rers-challenge.org/2013ase/problems/challengeProblems/White/Problem28/Problem32.c
http://rers-challenge.org/2013ase/problems/challengeProblems/White/Problem28/Problem32.c
http://rers-challenge.org/2014/
http://rers-challenge.org/2016/
http://www.rers-challenge.org/2017/index.php?page=ltlProblems
http://www.rers-challenge.org/2017/index.php?page=reachProblems
http://www.rers-challenge.org/2017/index.php?page=trainingphase
http://www.rers-challenge.org/2017/index.php?page=trainingphase
http://rers-challenge.org/
http://rers-challenge.org/2018/
http://www.rers-challenge.org/2018/index.php?page=trainingphase
http://www.rers-challenge.org/2018/index.php?page=trainingphase
http://rers-challenge.org/2019/index.php?page=reachProblems
http://rers-challenge.org/2019/index.php?page=reachProblems
http://rers-challenge.org/2020/index.php?page=reachProblems
http://rers-challenge.org/2020/index.php?page=reachProblems
https://github.com/Testura/Testura.Mutation
https://doi.org/10.1007/978-3-540-79124-9_10

Towards Agile Mutation Testing 169

58. Vercammen, S., Ghafari, M., Demeyer, S., Borg, M.: Goal-oriented mutation test-
ing with focal methods. In: Proceedings of the 9th ACM SIGSOFT International
Workshop on Automating TEST Case Design, Selection, and Evaluation, pp. 23–30
(2018)

59. Walsh, P.J.: A measure of test case completeness (software, engineering) (1985)
60. Woodward, M., Halewood, K.: From weak to strong, dead or alive? an analysis of

some mutation testing issues. In: Workshop on software testing, verification, and
analysis, pp. 152–153. IEEE Computer Society (1988)

61. Yang, Q., Li, J.J., Weiss, D.M.: A survey of coverage-based testing tools. Comput.
J. 52(5), 589–597 (2007). https://doi.org/10.1093/comjnl/bxm021

62. Zhang, L., Hao, D., Zhang, L., Rothermel, G., Mei, H.: Bridging the gap between
the total and additional test-case prioritization strategies. In: 2013 35th Interna-
tional Conference on Software Engineering (ICSE), pp. 192–201 (2013). https://
doi.org/10.1109/ICSE.2013.6606565

63. Zhang, L., Marinov, D., Khurshid, S.: Faster mutation testing inspired by test pri-
oritization and reduction. In: Proceedings of the 2013 International Symposium
on Software Testing and Analysis, p. 235–245. ISSTA 2013, Association for Com-
puting Machinery, New York, NY, USA (2013). https://doi.org/10.1145/2483760.
2483782

64. Zhang, L., Xie, T., Zhang, L., Tillmann, N., De Halleux, J., Mei, H.: Test generation
via dynamic symbolic execution for mutation testing. In: 2010 IEEE International
Conference on Software Maintenance, pp. 1–10. IEEE (2010)

https://doi.org/10.1093/comjnl/bxm021
https://doi.org/10.1109/ICSE.2013.6606565
https://doi.org/10.1109/ICSE.2013.6606565
https://doi.org/10.1145/2483760.2483782
https://doi.org/10.1145/2483760.2483782

Agility Based Coverage Improvement

Swadhin Kumar Barisal1,2(B), Arpita Dutta3, Sangharatna Godboley4,
Bibhudatta Sahoo1, and Durga Prasad Mohapatra1

1 National Institute of Technology, Rourkela, India
{bdsahu,durga}@nitrkl.ac.in

2 Siksha ‘O’ Anusandhan deemed tobe University, Bhubaneswar, India
swadhinbarisal@soa.ac.in

3 National University of Singapore, Singapore, Singapore
4 National Institute of Technology Warangal, Warangal, India

sanghu@nitw.ac.in

Abstract. Recent source code transformation techniques are adopted
for coverage-driven testing to ensure software quality. However, due to
the limitations present in constraint solvers of concolic testing, they lag to
meet desired satisfaction level for testing safety avionics softwares. Par-
ticularly, they have the limitation of generating required number of qual-
itative test cases. So, we propose an agile-based automated test case aug-
mentation technique that flips concolic based test cases that are obtained
through source code transformation techniques to achieve high “Modi-
fied Condition/Decision Coverage” (MC/DC) score. This work has four
technical contributions. The first contribution is code instrumentation of
the input program to make it tool supportive. The second contribution is
to propose a technique that can generate new effective test cases through
agile process by augmenting concolic test cases. The third contribution
is to propose a minimizer that can remove redundant and infeasible test
cases. The fourth contribution is to propose a framework for MC/DC
computation. To validate the proposed technique, it is experimented on
two recent source code transformation techniques such as JPCT and
JEXNCT and achieved 16.69% and 19.47% increase on MC/DC score
respectively than existing technique using some benchmark input Java
programs.

Keywords: Agile testing · Source code transformation · Concolic
testing · MC/DC · BVA

1 Introduction

Automated testing approach speeds up testing process as compared to manual
testing for generating test cases [3]. This automated testing approach uses test-
ing tools to generate test cases. Concolic testing or dynamic symbolic execution
technique generates the test cases automatically. Thus, it reduces the effort of
generating test cases manually. In this regard, concolic testing is increasingly

c© Springer Nature Switzerland AG 2022
A. Przyby�lek et al. (Eds.): LASD 2022, LNBIP 438, pp. 170–186, 2022.
https://doi.org/10.1007/978-3-030-94238-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94238-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-94238-0_10

Agility Based Coverage Improvement 171

used by the research community. Concolic testing is a testing technique that is
designed to test on self guided inputs, with symbolic execution [20]. It executes
program variables as symbolic variables. The software under test (SUT) is exe-
cuted concretely with test inputs to obtain the execution trace. The execution
trace is then fed to a Symbolic Execution Engine (SEE) for symbolic execution.
The SEE re-executes the concrete trace symbolically. A constraint solver can
find suitable concrete values to complete the execution traces.

Testing automation is a critical technique in software development under
this environment, and several software development methodologies emphasise
its importance. It is, for example, regarded as the cornerstone of agile testing,
and its long-term benefits in a software project can be seen even with a small
initial investment. Agile techniques stand out because they can quickly adapt to
changes in the original objectives and prioritise functional development through
executable code rather than voluminous written documentation [5]. Instead than
following rigid strategies and contract negotiations, they collaborate with the
customer.

The standard DO-178C/ED-12C, for Airborne Systems is the international
standard jointly published by the RTCA and EUROCAE [17]. This new stan-
dard approves all commercial software-based aerospace systems such as the “Fed-
eral Aviation Administration” (FAA, USA) and the “European Aviation Safety
Agency” (EASA).

Test-driven development (TDD) is a agile-based software development pro-
cess. The software requirements are being converted to test cases before software
developed. It repeatedly tests the software against all these test cases. Here,
JUnit is used as a Java TDD unit test framework.

Source code transformation technique is used to automate code refactoring.
This deals with computing source code metrics and transforms a code segment
to another form of the same code. It targets to catch bugs and faults in the soft-
ware. Some of the code transformation techniques such as BCT (Boolean Code
Transformer) [6], JPCT (Java Program Code Transformer) [7] and JEXNCT
(Java Ex-NOR Code Transformer) [7,8] are commonly used for achieving high
code coverage.

JPCT [7] is a source code transformation technique that transforms the given
input Java program into a equivalent version without changing syntax and mean-
ing. It tries to explore additional paths, due to which the code coverage increases.
JPCT inserts additional conditional code blocks. These code blocks are rule
based statements generated against each predicates present in the input pro-
gram. These extra code blocks facilitates the concolic tester to generate new test
data. These new test data help to visit maximum number of possible nodes and
edges of execution tree. Thus, it covers more number of branches that leads to
explore more paths too. As many paths are traversed means that new test data
help us to toggle individual clauses independently. Therefore, more number of
independent clause gives us an opportunity to achieve high MC/DC.

JEXNCT [7,8] uses a source code transformation technique. Here, the code
transformation is nothing but one kind of code instrumentation of the input Java
program. It adds extra conditional code blocks. These conditional code blocks

172 S. K. Barisal et al.

try to explore new paths by generating new test data. This leads us to achieve
better coverage.

JEXNCT uses the concept of Boolean expression derivative method. It uses
Exclusive-NOR logic operation to evaluate the predicate under test. In fact,
JEXNCT adds empty nested if-else conditional code blocks to original program
against each predicate. It is to note that transformed program is semantically
same with respect to original program. The added code blocks are removed to
regain the original code.

XCT technique uses the Boolean derivative method [15]. Here, boolean means
that it uses Ex−OR logic to determine the independent conditions (ICs). Addi-
tional conditional code blocks are inserted just above the identified predicate
of the original program. The objective is to generate more test data without
changing the semantics of the original program. This process helps us to achieve
high MC/DC.

Boundary value analysis (BVA) is a testing technique to generate test data.
BVA testing is used in black-box testing and mostly used in cases where tester
deals with a large volume of test cases. It is used to generate test cases for the
test variables based on their domain values as shown in Fig. 1. This is a very
useful technique to mutate test cases to generate a new set of test data.

Fig. 1. Working of BVA

This technique motivated us to accelerate code coverage by combining both
kind of generated test cases. For example, let us consider that a program has a
condition (mark > 50). This condition carries a single variable named mark. Use
of BVA generates new test cases (49, 50, 51) these additional test cases help to
increase code coverage.

This motivates us to set our objectives to target some existing code transfor-
mation techniques and accelerate their performance in terms of code coverage.
In particular, this work targets JPCT and JEXNCT code transformation tech-
niques to accelerate their performance, that is the cases where they fail to achieve
good MC/DC score.

MC/DC percentage is calculated using test cases generated by any of the
mentioned code transformation approaches. Using these obtained test cases and
predicates from the input program, we compute boolean truth table. This table

Agility Based Coverage Improvement 173

helps us to determine independent conditions (ICs). Using ICs and total number
of conditions, MC/DC percentage is computed using Eq. 1.

MC/DC% =
#Total ICs

#Total Conditions
(1)

The remaining sections of this paper are structured as follows. Section 2 high-
lights some of the existing literature related to code coverage, concolic testing and
MC/DC. Section 3 discusses the problem description. Section 4 presents imple-
mentation details and obtained results. Section 5 does a comparative study with
the performance of existing code transformation techniques. Section 6 summaries
the conclusion and future insights on the context of improving code coverage
score.

2 Literature Review

Bokil et al. [3] developed a tool called AutoGen, which generated test data.
AutoGen was developed using C Language. This tool helped to reduce one third
execution time over manual execution time. They used DART and CUTE for
testing. They used a program analysis methodology with algorithmic advance-
ment, increased computational power and constraints solver technology.

Qu and Robinson [19] compared many existing concolic testing tools and
highlighted their advantages as well as limitations. On the other hand, DART
(Directed Automated Random Testing) finds standard bugs from the program
under test. Likewise, SAGE (Scalable Automated, Guided Execution) is designed
using DART. The jCUTE (Java Concolic Unit Testing Engine), CUTE (Concolic
Unit Testing Engine) and CREST are concolic testing tools. CUTE and CREST
are mainly designed for C programs while jCUTE is for programs written in
Java. The KLEE, EXE (Execution generated Executions) and RWSET (Read
Write SET) belongs to the different family of concolic testing tools designed for
C programs. The RWSET tracks the memory location which is either read or
written and indicates the pruned redundant execution paths.

Ammann et al. [1] proposed a method for the generation of the test-suite
which can give clause the ability to toggle the predicate’s result. Particularly,
they used the Exclusive OR logic for the calculation of these conditions. But,
the process was not completely automated.

Mjeda et al. [16] had proposed a testing tool named CMT model. For the
development of the CMT model, they used tools like Simulink, Stateflow and
MATLAB. They evaluated the MC/DC score for the programs fed by the user.
Jones et al. [13] proposed a technique for reducing the test cases count and
also prioritizing so that their importance can be observed. They had developed
their prototype tools using C++ language. They have processed C program to
compute MC/DC score.

Woodward et al. [24] proposed a relationship that exists between two cover-
age criteria such as ‘MC/DC’ and ‘all Jump to Jump paths (JJ-paths)’. These
criteria are based on the concept of comparatively sophisticated control flow.

174 S. K. Barisal et al.

However, it was marked by them that the ‘MC/DC’ and ‘all JJ-paths’ are gen-
erally incomparable. But, it is seen that for few programs, that are written under
specific constraints, the ‘all JJ-path’ criteria incorporates ‘MC/DC’ criteria.

Fig. 2. Proposed model diagram

3 Proposed Approach

This section describes the proposed problem and its representation. The problem
is to increase MC/DC score using agility based testing. The proposed idea is
represented in the form of block diagram as shown in Fig. 2.

3.1 Setup

This work is implemented on win64 bit machine with core i5 processor and 4 GB
RAM. jCUTE tool is used to carry out concolic testing with random search
up to 1000 iterations. All the user defined algorithms are implemented using
Java language.

3.2 Detail Description

The proposed approach is mainly consist of six modules that are implemented by
us. The first module is code transformer that translates the input Java pro-
gram into its another form without changing its behaviour. The second module is
code instrumenter that adds the required add-on to this Java code such that it
can be taken as input for jCUTE. Then, jCUTE executes the instrumented code
to generate concolic based test cases (TS1). Subsequently, these test cases are
used by the MC/DC Calculator module to compute MC/DC score (MC/DC1%).
Our third important module named Test case Augmenter is used to toggle
these test cases in an iterative way using agile approach so as to find new sets
of feasible test cases and combines all these test cases to form TS2. Now, TS2 is

Agility Based Coverage Improvement 175

used by the fourth module called minimizer to remove infeasible and redundant
test cases and produces TS3. TS3 is used by the fifth module named MC/DC
calculator to find MC/DC2%.

1 void weight(int p, int q, int r){

2 if((p>30) && ((q<40) || (r<50)))

3 {

4 Do something;

5 }

6 else

7 {

8 Do otherwise;

9 }

10 }

Listing 1.1. Sample Program

In this work, we have experimented on two existing code transformation tech-
niques namely JPCT and JEXNCT. Both these techniques were used increase
MC/DC score. But, they could not meet the satisfaction level of testers. There-
fore, we apply a greedy algorithm named TCs Augmenter to toggle the generated
test cases.

Consider a sample java program as shown in Listing 1.1. To this additional
conditional statements are inserted to form a JPCT transformed program, as
presented in Listing 1.2.

1 void weight(int p, int q, int r){

2 if((p>30))

3 {

4 if((q<40)){}

5 else{}

6 }

7 else{}

8 if((p>30))

9 {

10 if((r<50)){}

11 else{}

12 }

13 else{}

14 if((p>30) && ((q<40) || (r<50)))

15 {

16 Do something;

17 }

18 else

19 {

20 Do otherwise;

21 }

22 }

Listing 1.2. JPCT transformed Program

176 S. K. Barisal et al.

Algorithm 1. JPCT: //Code transformation for Java Programs
Require: Java Program (J) //Input program
Ensure: (J′) //Transformed program
1: for each instruction s ∈ J do
2: if && or ||or unary ! found in s then
3: Predicate List ← s
4: end if
5: end for
6: for each obtained predicate p do
7: Generate equivalent SOP form
8: Generate Minterm(SOP)
9: Minimization using QM

10: List code ← Additional if-else statements of Minterm(SOP)
11: J′ ← List code
12: end for
13: return(Transformed program (J′))

Algorithm 1 identifies the predicates and generates SOPs against each pedi-
cate. SOP is then converted into their Minterms for each identified predicates.
Then SOP is further simplified using Quine McCluskey technique. This proce-
dure collects all additional conditional statements inserted into original program
and returns as the final transformed program. Here, it is to note that, these con-
ditional code blocks do not the program behaviour. Rather, the main objective
of these code blocks is to produce new test cases for exploring the new paths.

The second code transformer is JEXNCT. It has two modules: first one is
Identification of predicates and second one is Code bolck generator.
First module identifies all predicates with boolean logical operator. It uses
Exclusive-Nor operation on each predicate to generate code blocks that leads
to produce a transformed program. For the considered sample program, its cor-
responding JEXNCT transformed code is shown in Listing 1.3.

1 void testLogical(bool p, bool q, bool r)

2 {

3 if(!(q<40) && !(r<50))

4 {

5 if(p>30){}

6 elseif (!(p>30)){}

7 }

8 if(!(p>30) || (r<50))

9 {

10 if(q){}

11 elseif (!(q<40)){}

12 }

13 if(!(p>30) || (q<40))

14 {

15 if((r<50)){}

16 elseif (!(r<50)){}

Agility Based Coverage Improvement 177

17 }

18 if((p>30) &&((q<40) ||(r<50)))

19 {

20 do;

21 }

22 else

23 {

24 otherwise;

25 }

26 }

Listing 1.3. JEXNCT Transformed Program

Algorithm 2. JEXNCT
Require: M // Input program
Ensure: M ′ // Transformed program
1: for read input statement of M do
2: if && or || found then
3: Make a P list ← statement //
4: end ifelse
5: end for
6: for each predicate p ∈ P list do
7: Code list = Produce XNOR code block
8: M ′ = Insert Code list to M
9: end for

10: return (M ′) // transformed program

Algorithm 2 represents step wise description of JEXNCT. It takes M as
input i.e. original program. and produces M ′ as the output i.e. the transformed
code. Lines 1 to 5 are used to find predicates. Here, each statement of the input
program is checked to filter the available predicates. and added to P list. Lines
6 to 10 represents the transformed program using X-NOR operation.

TCs Augmenter (TCA) module plays a key role in this work. The obtained
test cases from jCUTE fail to achieve target level of coverage that may due to
some limitations of constraint solver of symbolic execution. Some conditions of a
predicate found that they are unable to toggle the outcome a that predicate. So
to achieve this, TCA checks the boundary values of a variable within its domain
and produces new test cases. These new test cases help to achieve more coverage.

These conditions are passed through TCs Augmenter to find the possibility
of new feasible test cases. The generated new set test cases checked further for
theit feasibility and effectiveness. Then, it results in an increase in the MC/DC
percentage. Finally, the new test set is inserted to original test suite (TS1). The
updated test suite becomes (TS2).

Algorithm 3 presents step wise description of the pseudocode of test case
augmenter module. It takes the original test cases as input and produces a test

178 S. K. Barisal et al.

Algorithm 3. TCs Augmenter (TCA)
Require: TS1 //Original test cases
Ensure: TS2
1: for each Clause ∈ PredicateP do
2: if Not contributing towards MC/DC then
3: Compute boundary values of the operand //
4: end if // else do nothing
5: end for
6: TS2 ← TS1
7: for each new test generated do
8: if feasible to add then
9: Append to TS2

10: end if
11: end for
12: return (TS2) // added new test cases

Algorithm 4. TCs Minimizer
Require: Test cases (TS2)
Ensure: TS3
1: for each predicate p ∈ PUT do
2: Initialize T= Extended Truth table for predicate p
3: for each Condition C ∈ P do
4: for each testcase tc ∈ TS2 do
5: Initialize truthVal = “”
6: for each clause c ∈ C do
7: truthVal += Evaluate truthValue for c
8: Insert truthVal in truthVector
9: end for

10: end for
11: for each testcase do
12: if truthVector of tc == truthVector of t

′
c and tc != t

′
c then

13: Remove non contributing tc
14: end if
15: end for
16: end for
17: Reduced TestSet = add minimized test cases for P
18: TS3= TS3 ∪ ReducedTestSet
19: end for
20: return(TS3) // MinimizedTestCases

suite that contains original test cases with additional new test cases. Steps 1 to
5 find the variables that do not contribute towards forming MC/DC pair. Steps
6 to 11 are used to generate additional test cases and append to original test
suite (TS1). Step 12 returns the updated test suite (TS2).

Agility Based Coverage Improvement 179

Algorithm 5. MC/DC Calculator
Require: TS Original test cases and TS3
Ensure: MC/DC% MC/DC1% and MC/DC2%
1: Prepare boolean truth table using TS
2: for each test case from input TS do
3: if found as IC then
4: Add to IC List
5: else

Add to C list
6: end if
7: end for
8: Total ICs=IC List
9: Total Conditions=C list

10: Compute MC/DC score using Eq. 1.
11: return MC/DC%

TCs Minimizer module demons traits the process of test case minimization.
The updated test suite (TS2) is minimized by removing test cases that are not
feasible and redundant.

Fig. 3. Increase in MC/DC for JPCT and JPCT+TCA

It is note that, non contributing test cases refers to the test cases that do not
form a MC/DC pair. Such test cases should be removed from TS2. On the other
hand, a redundant test case is nothing but a test case that gives a truth value
for the clauses and for the same clause with same truth value we encounter a
different test case. So, redundant test cases are of no use and should be removed
from TS2. Both these steps are followed to make TS3.

Algorithm 4 demonstrates the step wise description of test case minimizer
module. Steps 1 to 10 select each test case from TS2 and fired at each clause of
a predicate. Here, it evaluates truth value of each clause and also prepares the
whole truth table. Then steps 11 to 16 are used to check whether each is capable
enough to toggle the net outcome of a predicate. If it toggles the predicate’s
output the it is treated as a IC. If any test case is found non contributing then
that test case is removed. This process is repeated until it processes all test cases
of TS2 to finalize TS3.

180 S. K. Barisal et al.

Table 1. Characteristics of Test programs

Program

no.

Program name SLOC No. of

functions

Predicates Clauses IC

Orig

IC

JPCT

IC

JEXNCT

1 SwitchTest1 75 2 2 6 2 2 4

2 Largest Number 34 1 3 6 4 4 6

Bank 65 2 4 12 9 10 10

4 WBS 273 1 4 8 0 0 1

5 Conditio0lDemo1 41 1 6 16 12 14 14

6 Bubblesort 122 3 7 14 2 3 2

7 InsertionSort 142 3 7 14 3 3 4

8 AssetTest2 72 1 7 21 16 18 18

9 StringBuffer2 520 8 7 14 7 9 9

10 Math Cal 141 3 7 14 0 0 3

11 WildLife2 174 3 13 41 5 5 6

12 MarketSales2 321 3 24 55 14 18 15

13 Problem2 RERS2015 737 3 26 148 34 41 68

14 Problem5RV 2014 917 9 42 153 47 96 98

15 Problem4 RERS2017 644 9 74 242 149 209 205

16 Problem1-RERS2013 940 2 77 466 90 CTF 298

17 Problem12 RER2016 687 11 79 274 85 207 211

18 Problem3-RERS2016 1051 13 91 511 163 CTF 372

19 Problem5-RERS2015 803 3 104 240 34 209 211

20 Problem11-RERS2019 855 35 127 453 265 446 442

Table 2. MC/DC computation for JPCT and JEXNCT

Program name MC/DC

Orig

MC/DC

JPCT

MC/DC

JEXNCT

MCDC

JPCT+TCA

MCDC

JEXNCT+TCA

INC

JPCT

INC

JEXNCT

SwitchTest1 33.33 33.33 66.66 76.19 76.19 42.86 9.53

Largest Number 66.66 66.66 66.66 83.33 66.66 16.67 0

Bank 33.33 83.33 83.33 83.33 83.33 0 0

WBS 0 0 12.5 12.5 25 12.5 12.5

Conditio0lDemo1 75 85.71 85.71 90.9 90.9 5.19 5.19

Bubblesort 14.28 21.42 14.28 33.33 54.65 11.91 40.37

InsertionSort 21.42 21.42 28.57 45.95 63.33 24.53 34.76

AssetTest2 66.66 76.19 76.19 85.71 85.71 9.52 9.52

StringBuffer2 50 64.28 64.28 64.28 71.42 0 7.14

Math Cal 0 0 21.42 21.42 22.97 21.42 1.55

WildLife2 12.19 12.19 14.63 14.16 21.95 1.97 7.32

MarketSales2 25.45 32.72 27.27 33.33 42.85 0.61 15.58

Problem2 RERS2015 22.97 22.29 17.56 50 64.28 27.71 46.72

Problem5RV 2014 30.72 62.74 64.05 64.05 65.36 1.31 1.31

Problem4 RERS2017 61.57 61.57 38.84 86.64 87.6 25.07 48.76

Problem1-RERS2013 19.31 CTF 63.94 CTF 64.8 0 0.86

Problem12 RER2016 31.02 44.89 35.77 76.19 79.56 31.3 43.79

Problem3-RERS2016 31.9 CTF 72.79 CTF 73.19 0 0.4

Problem5-RERS2015 14.16 20 22.08 87.08 87.08 67.08 65

Problem11-

RERS2019

58.49 63.35 59.16 97.57 98.45 34.22 39.29

CTF: Code Transformation Failed

Agility Based Coverage Improvement 181

Fig. 4. Increase in MC/DC for JEXNCT and JEXNCT+TCA

MC/DC calculator is the fourth contribution of this work that computes
MC/DC percentage. Algorithm 5 demonstrates step wise description of MC/DC
calculator module. Steps 1 is used to prepare boolean truth table using input
test cases and predicate from the original program. Steps 2 to 7 are used find
out number of independent conditions and total number of conditions present
in the input program. Steps 8 to 10 are used to store number of independent
conditions, total conditions and computes MC/DC%. Finally, Step 11 returns
MC/DC score.

4 Implementation

This section analyzes the obtained results. Here, twenty benchmark Java pro-
grams are experimented using this approach. These programs are of various size
and complexity that validates our approach. The program complexity refers to
number of conditions in that program. These programs are collected from var-
ious sources. First twelve Programs (Sl. No. 1–12) are taken from Github1 and
programming sites2. For example, “String buffers” program is used by the com-
piler to implement the binary “*” string concatenation operator. The rest eight
programs (Sl. No. 13–20) are taken from Rigorous Examination of Reactive Sys-
tems (RERS) challenge TOOLympics event [2013–2019]3. These RERS programs
contain large number of complex predicates with 6 to 511 clauses in total that
create complex execution trees during execution. These programs are targeted
for reachability, full safety, and liveliness problems of the reactive systems.

During execution of list of input programs, several parameters are evaluated
through our experiment that are shown in Table 1. Specifically, we obtained the
parameter values such as number of functions executed, number of predicates
found, total number of clauses found in each program. This table also shows
the number of independent clauses (ICs) obtained during execution of original,
JPCT and JEXNCT version of each input program.

1 https://github.com/osl/jCUTE/tree/master/src/tests.
2 http://www.programmingsimplified.com/java-stheproposedce-codes.
3 http://rers-challenge.org/.

https://github.com/osl/jCUTE/tree/master/src/tests
http://www.programmingsimplified.com/java-sthe proposedce-codes
http://rers-challenge.org/

182 S. K. Barisal et al.

Table 1 shows that for Problem11-RERS2019 program, maximum of 511
clauses are executed that in turn produces 265, 446 and 442 number of ICs for
original, JPCT version and JEXNCT version program respectively. So, from this
we infer that if there is increase in ICs then it must increase MC/DC score too.

Table 2 shows the obtained MC/DC score for each input program. This table
shows two scenarios like first scenario, we compute the MC/DC score for original,
JPCT and JEXNCT without using TCs Augmenter. In second scenario, MC/DC
score is computed for the same input programs using the test suite generated
by TCs Augmenter. The difference in MC/DC score between these two scenario
validates the increase in MC/DC for each input program. For JPCT, there is a
minimum of zero up to a maximum of 67.08% increase of MC/DC score, which is
shown in Fig. 3. Here, zero percentage increase indicates that JPCT+BVA could
not generate effective test case for that particular program as in case of Bank
program. Similarly, for JEXNCT, there is a minimum of zero up to a maximum
of 48.76% increase of MC/DC score, which is shown in Fig. 4. Both JPCT and
JEXNCT achieved 16.69% and 19.47% average increase in MC/DC%. In Fig. 3,
we can see that there is an average increment of 16.69% in MC/DC score for
20 programs considered for our study. Also, we can infer from Fig. 4, that there
is an average increment of 19.47% in MC/DC score for 20 programs considered
for our study. For all the 20 programs, either the MC/DC score is going up or is
equal to previous one. The result of the 20 programs justify the effectivity of our
technique in achieving a higher MC/DC score. To further justify our proposed
approach, below we discuss some proposed research questions.

RQ: Why does source code transformation techniques help increase MC/DC
score?

Justification: Source code transformation technique converts the input pro-
gram into a different version without changing semantics. It is to note that,
existing limitations of constraint solvers leads to less code coverage. So, we use
TCA with code transformation technique that generates new set of test cases
to improve MC/DC. Code transformation inserts additional conditional code
blocks. These extra code blocks support the concolic tester to explore more
nodes and edges in execution tree. Since more paths are covered, so coverage
increases. This justifies that more number of effective test cases are generated.
Hence, we can achieve high MC/DC.

RQ: How does TCs Augmenter help increase MC/DC score?

Justification: Tcs Augmenter uses the concept of BVA, where it toggles the
given test data to generate new sets of test data. These test data are treated as
additional test cases.

Agility Based Coverage Improvement 183

Table 3. Comparison with state-of-the-art works

Sl. no Authors

name

Testing

type

Testing

tool

Code

transformer

Coverage

analyzer

Input

type

Output

type

1 Das et al.

[6]

Concolic

testing,

MC/DC

CREST BCT CA C Program MC/DC%

-

2 Godboley

et al. [7]

Concolic

testing

MC/DC

jCUTE JPCT JCA Java Improved

MC/DC

3 Godboley

et al. [8]

Concolic

testing

MC/DC

jCUTE JEXNCT JCA Java Improved

MC/DC

4 Harman

et al. [10]

Evolutionary

testing

Evolutionary

tester

TeTra - Evolutionary

testing

Improved test

data generation

5 Harman

et al. [11]

Search based

testing

Search based

testing tool

TeTra Coverage

module

Open

problems

Improved

coverages

6 Jiang

et al. [12]

Regression

Testing

RETORT - - Old model

graph

New model

graph

7 Majumdar

et al. [20]

Hybrid

concolic

testing

CUTE - - C Editor Test cases

8 Tiwari

et al. [21]

Concolic

MC/DC

Test Cases

Generator

Leveling,

CDG module

Coverage

module

C Program MC/DC

9 Wegener

et al. [22]

Structural

testing

Evolutionary

Test Tester

- - C Program Code coverage

10 Proposed

approach

Concolic

testing

MC/DC

jCUTE JPCT,

JEXNCT,

BVA

MC/DC

Calculator

Java Improved

MC/DC

5 Comparison Study

Harman et al. [11] proposed a code-to-code transformation technique termed as
testability transformation. Their objective is to improve the quality of the test
data generation technique for the original program provided by the user. They
had defined an algorithm for flag removal which identify their technique which
illustrated that their algorithm improved the test data performance [23,25]. The
testability transformation plays a significant role in improving the test generation
process. They [11] had applied testability transformation on evolutionary testing.
After concluding the experiment, they [11] had concluded that, it was really
difficult to generate test data for MC/DC testing.

Pandita et al. [18] proposed a code instrumentation algorithm for logical
coverage criteria. They automated the boundary value and applied symbolic
execution. They used symbolic execution and an automated boundary value.
For symbolic testing, PEX was used. An algorithm was proposed by them which
will accomplish the test-generation process for branch or block coverage criterion.
The test input generated by them achieved a higher Line Coverage (LC) as well
as Boundary Value Coverage (BVC). Upon evaluating the five subject programs,
they observed that there is 26% maximum (21.5% average) increment in LC
and 0.5% maximum (23% average) increment in BVC of the considered subject
programs. But, they had not evaluated MC/DC percentage using the concolic
testing.

184 S. K. Barisal et al.

Harman [9] proposed an approach of testability transformation for effective
for search-based test case generation. This technique helps to attain high code-
coverage. He has also suggested few interesting and challenging open problems
on which testability transformation could be applied and effective solutions can
be thought off. Some of the problems are related with mutation testing, excep-
tion raising, state variable problems, temporal testing, mutation testing, stress
testing, subsumption relation, dynamic symbolic execution, and directed ran-
dom testing. He had also mentioned in this article that researchers and software
industries are interested in concolic testing recently.

Das et al. [6] proposed a novel source-code augmentation technique for
MC/DC specific test data generation. It is based on Boolean condition mapping
and their simplification using K-map . They have implemented their approach
for C-programs.

Tiwari et al. [21] proposed two techniques viz. levelling module and CDG
module to convert an original C program to generate useful test cases. They
generated test cases using their developed tool called concolic testing by extend-
ing a module called coverage module, which measured MC/DC percentage for a
C program. They compared their strategies with “DFS”, “CFG” etc.

Baluda et al. [2] reported an approach to improve code-coverage for input
programs. They have illustrated the effectiveness of their technique over a set
of experimental data with a ARC-B tool. They have introduced an abstrac-
tion refinement and coarsing (ARC), which combines the automatic test data
generation and feasibility analysis to obtain high code coverage. Coarsing tech-
nique improves the scalability of the analysis by dynamically balancing memory
requirements and precision. On the other hand, in our proposed approach, we
extended concolic testing to obtain MC/DC specific test case to attain high
MC/DC percentage.

Majumdar et al. [20] proposed a Hybrid Concolic testing technique. They have
developed a tool called CUTE. They have used C language to generate test cases
for an editor written in C language. Burnim et al. [4] proposed Heuristic Con-
colic testing. They have used CREST tool as concolic tester to generate test cases.
Finally, they have measured branch coverage percentage. In our proposed app-
roach, we improved Java distributed concolic testing to achieve higher MC/DC
for a multithreaded Java program. In our experimental study, we have considered
distributed environment and multithreaded concept to achieve higher MC/DC.

Kim et al. [14] developed a tool and named it SCORE. SCORE generates
branch coverage targeted test cases in distributed environment for the procedural
programs. On the other hand, we have targeted for MC/DC specific test data
generation. We have used jCUTE concolic tester to generate the test cases.

Harman et al. [10] had done a survey of existing work and written a section
focusing on the introductory part of testability transformation. They had intro-
duced two novel code-transformation techniques called Fine-Grain transforma-
tion technique and Coarse-Grain transformation technique [11].

The above literature work are summarised in Table 3 for a quick observation
and comparison. The basic thing is to note that every work is trying to increase

Agility Based Coverage Improvement 185

code coverage score using different approach. Thus, our work keeps a quality
space in the ongoing research trend.

6 Conclusion and Future Work

This paper demonstrates a MC/DC test case generation using agile process
that increases MC/DC score. Being a coverage metric, achieving high MC/DC
score assures safety crticality nature in Avionics software. High MC/DC score
is achieved by toggling the test case values that are obtained through different
code transformation techniques. We have also minimize the obtained test suite
to reduce the overhead of unwanted test cases. We have evaluated our proposed
approach over twenty open-source Java programs. Our experimental results show
16.69% and 19.47% improvement in the obtained MC/DC% over existing code
transformation techniques JPCT and JEXNCT respectively.

In future, we plan to extend our approach in distributed environment to
speed-up the test generation process using agile computing such that we can
minimize execution time. Distributed environment can be setup in star topol-
ogy with master-slave framework. The master will instrument the program and
distribute to slaves (clients) to perform symbolic execution to generate non-
redundant test cases. More number of test cases can be generated with lesser
time and the higher code coverage can be achieved. Here, time is an agile factor
that can be focused to achieve the agility. We also experiment on the multi-
threaded program for analyzing execution time. Further, we prioritize the test
cases to guide the tester for effective and efficient test case selection.

References

1. Ammann, P., Offutt, J., Huang. H.: Coverage criteria for logical expressions. In:
14th International Symposium on Softare Reliability Engineering, 2003. ISSRE
2003, pp. 99–107. IEEE (2003)

2. Baluda, M., Braione, P., Denaro, G., Pezzè, M.: Enhancing structural software
coverage by incrementally computing branch executability. Softw. Qual. J. 19(4),
725–751 (2011)

3. Bokil, P., Darke, P., Shrotri, U., Venkatesh, R.: Automatic test data generation
for C programs. In: 2009 Third IEEE International Conference on Secure Software
Integration and Reliability Improvement, pp. 359–368. IEEE (2009)

4. Burnim, J., Sen, J.: Heuristics for scalable dynamic test generation. In: 2008 23rd
IEEE/ACM International Conference on Automated Software Engineering, pp.
443–446. IEEE (2008)

5. Collins, E., Dias-Neto, A., de Lucena Jr., V.F.: Strategies for agile software test-
ing automation: an industrial experience. In: 2012 IEEE 36th Annual Computer
Software and Applications Conference Workshops, pp. 440–445. IEEE (2012)

6. Das, A., Mall, R.: Automatic generation of MC/DC test data. Int. J. Softw. Eng.
2(1) (2013)

7. Godboley, S., Dutta, A., Mohapatra, D.P., Mall, D.: J3 model: a novel framework
for improved modified condition/decision coverage analysis. Comput. Stand. Interf.
50, 1–17 (2017)

186 S. K. Barisal et al.

8. Godboley, S., Dutta, A., Mohapatra, D.P., Mall, R.: GECOJAP: a novel source-
code preprocessing technique to improve code coverage. Comput. Stand. Interf. 55,
27–46 (2018)

9. Harman, M.: Open problems in testability transformation. In: 2008 IEEE Interna-
tional Conference on Software Testing Verification and Validation Workshop, pp.
196–209. IEEE (2008)

10. Harman, M., et al.: Testability transformation – program transformation to
improve testability. In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) Formal
Methods and Testing. LNCS, vol. 4949, pp. 320–344. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78917-8 11

11. Harman, M., Lin, H., Hierons, R., Wegener, J., Sthamer, H., Baresel, A., Roper,
M.: Testability transformation. IEEE Transa. Softw. Eng. 30(1), 3–16 (2004)

12. Jiang, B., et al.: Assuring the model evolution of protocol software specifications
by regression testing process improvement. Softw. Pract. Exp. 41(10), 1073–1103
(2011)

13. Jones,J.A., Harrold. M.J.: Test-suite reduction and prioritization for modified con-
dition/decision coverage. IEEE Trans. Softw. Eng. 29(3), 195–209 (2003)

14. Kim,Y., Kim, M.: Score: a scalable concolic testing tool for reliable embedded
software. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Egineering, pp. 420–423 (2011)

15. Richard Kuhn, D.: Fault classes and error detection capability of specification-
based testing. ACM Trans. Softw. Eng. Methodol. (TOSEM) 8(4), 411–424 (1999)

16. Mjeda, A., Hinchey, H.: Ctmcontrol: addressing the MC/DC objective for safety-
critical automotive software (2013)

17. Nordhoff, S.: Do-178c/ed-12c. SQS Software Quality Systems, Cologne, Germany,
Undated. White Paper 24 (2012). http://www.sqs.com/us/ download/DO-178C
ED-12C.pdf

18. Pandita, R., Xie, T., Tillmann, N., De Halleux. J.: Guided test generation for cov-
erage criteria. In: 2010 IEEE International Conference on Software Maintenance,
pp. 1–10. IEEE (2010)

19. Qu, X., Robinson, B.: A case study of concolic testing tools and their limitations.
In: 2011 International Symposium on Empirical Software Engineering and Mea-
surement, pp. 117–126. IEEE (2011)

20. Sen, K., Agha, G.: A race-detection and flipping algorithm for automated testing
of multi-threaded programs. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS,
vol. 4383, pp. 166–182. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-70889-6 13

21. Tiwari, S.: Automatic Generation of Testcases for High MCDC Coverage. M. Tech
Thesis, IIT Kanpur (2014)

22. Wegener, J., Baresel, A., Sthamer, H.: Evolutionary test environment for automatic
structural testing. Inf. Softw. Technol. 43(14), 841–854 (2001)

23. Williams, N., Marre, B., Mouy, P., Roger, M.: PathCrawler: automatic generation
of path tests by combining static and dynamic analysis. In: Dal Cin, M., Kaâniche,
M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 281–292. Springer,
Heidelberg (2005). https://doi.org/10.1007/11408901 21

24. Woodward, M.R., Hennell, M.A.: On the relationship between two control-flow
coverage criteria: all IJ-paths and MCDC. Inf. Softw. Technol. 48(7), 433–440
(2006)

25. Yoo, S., Harman, M.: Pareto efficient multi-objective test case selection. In: Pro-
ceedings of the 2007 International Symposium on Software Testing and Analysis,
pp. 140–150 (2007)

https://doi.org/10.1007/978-3-540-78917-8_11
http://www.sqs.com/us/_download/DO-178C_ED-12C.pdf
http://www.sqs.com/us/_download/DO-178C_ED-12C.pdf
https://doi.org/10.1007/978-3-540-70889-6_13
https://doi.org/10.1007/978-3-540-70889-6_13
https://doi.org/10.1007/11408901_21

Short Paper

A Complete Unit Test Framework
for Agile Software Development

Arpita Dutta(B)

National University of Singapore, Singapore, Singapore
arpita@comp.nus.edu.sg

Abstract. Testing is an inevitable part of software development. Agile
software development model follows a quick build, test, fix, and deliver
methodology. In agile framework, testing is considered as a light-weight
task as compare to the plan-driven methodologies where testing is
exhaustively performed. To bridge the gap between traditional and agile
testing frameworks, we propose a Blue-Box testing (BBT) technique.
BBT includes both white-box and black-box test cases to generate a
robust test suite which ensures the maximum coverage. Code coverage
is one of the best metrics to determine the quality of a software system.
In the article, we use Modified Condition/Decision Coverage (MC/DC)
for evaluation of test cases and programs undertaken. Our experimental
results show, on an average, 22.79% better code coverage is obtained as
compare to other considered white-box and black-box testing techniques
using our BBT method.

Keywords: Agile testing · MC/DC · Pairwise testing · Concolic
execution

1 Introduction

In recent times, almost all the software development companies follow agile
methodology. Major benefit of agile is its quick delivery and continuous com-
munication with the costumers [10]. In agile, each and every stakeholder of the
software have a constant look on the software development process and can give
his feedback at any point of time. Agile follows an incremental delivery approach.
However, to ensure the credibility of any software, quality measurement is a piv-
otal task. Software testing is one of the best methods to measure the quality of
a software. But, due to the demand of quick delivery in agile framework, testing
is not done as exhaustively as it is done in any traditional software development
method [19]. Since, developer himself has to play the role of tester, it may pos-
sible that he may miss a good number of quality test cases when verifying the
software. It ultimately leads to undetected bugs in the delivered software which
can cause failure in the later stages [3].

Exhaustive software testing ensures reachability of different program ele-
ments such as branch, statements, predicates etc. It also provides indication of
the dead codes residing in the program. Software testing techniques are broadly
c© Springer Nature Switzerland AG 2022
A. Przyby�lek et al. (Eds.): LASD 2022, LNBIP 438, pp. 189–197, 2022.
https://doi.org/10.1007/978-3-030-94238-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94238-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-94238-0_11

190 A. Dutta

classified into two categories viz., white-box testing [10] and black-box testing.
In white-box testing, we have knowledge of the internal structure of the program
whereas in black-box testing, only the system functionality is known. Also, there
is a mid-way technique available, known as grey-box testing. In grey box testing,
partial knowledge of the internal structure of the code is available to the tester.

As per the requirement of agile development, both tester and customer col-
laboratively tests the software. In this scenario, the developer team has the
knowledge of the internal structure of the system. On the other hand, customers
provide the test cases based on the functional knowledge/requirements of the
software. Therefore, to take the best of this situation, we propose a new testing
methodology called Blue-Box testing (BBT). In BBT, we generate white-box
test cases using the most effective test generation technique called Concolic test-
ing by the help of developer team. In addition to this, black-box test cases are
created by the customers. We use pairwise testing technique on the black-box
test cases to generate all possible 2-way combinations of the input values in a
minimalist way. Finally, we combine both the white-box and 2-way combined
black-box test cases to generate another test suite which helps to thoroughly
test the complete software. At present, we consider only the unit testing of a
system, however other testing techniques (integration, performance, interface,
stress, etc.) are also equally important. But the other testing phases will be less
error prone if the unit testing is carried in a fair manner. We use Modified Con-
dition/ Decision Coverage (MC/DC) testing to measure the quality of test cases.
MC/DC is the second strongest coverage criterion [7]. It requires (n+1) number
of test cases to test a predicate of size n. We have not considered the strongest
coverage criterion Multiple Condition Coverage (MCC) as it require 2n number
of test cases for a predicate of size n. In practical usage, exponential number of
test cases are not suggestible to use for testing any system [5,6].

Rest of the article is organized as follows. Few basic concepts are discussed in
Sect. 2 to understand the proposed approach. In Sect. 3, we present the related
literature. Proposed method with example is discussed in Sect. 4. Experimental
setup and obtained results are presented in Sect. 5. We finally conclude this
article in Sect. 6 with some future insights.

2 Basic Concepts

In this section, we discuss few important concepts which helps to understand
our proposed technique.

Concolic Testing [15,16]: It is a combination of symbolic as well as concrete
execution to generate the test inputs which covers all possible paths present
in a program execution tree. Symbolic execution treats the program variables
as symbolic variables and with the help of constraint solvers generate different
input values. Concrete execution uses concrete input values while executing the
program under test.

A Complete Unit Test Framework for Agile Software Development 191

Pairwise Testing [2,17]: It is a type of combinatorial testing and also known
as 2-way testing. It creates all possible combinations of input values for each pair
of variables present in the input space in a minimalist manner. For example, we
have a system with 3 variables, say, A, B, and C. The values for these variables
are {0,1}. The possible test cases generated using pairwise testing is {0,0,0},
{0,1,0}, {1,0,0}, and {1,1,1}.

Modified Condition/Decision Coverage (MC/DC) [7,11]: It is a predicate
based testing technique and is considered as the second strongest coverage crite-
rion. It aims to satisfy the following four norms in order to obtain 100% MC/DC
coverage.

1. All the exit and entry points must be covered at least once.
2. Every condition must satisfy all the possible outcomes.
3. Every decision must satisfy all the possible outcomes.
4. Every condition present in the decision independently affect the final outcome

of the decision.

We compute the MC/DC% of a predicate using Eq. 1.

MC/DC% =
Number of independently affecting conditions

Total number of Conditions
∗ 100 (1)

3 Literature Review

Tripathi et al. [18] reported the challenges and important factors which are crit-
ical in agile testing. Basically, agile testing practices are light-weight as compare
to the exhaustive testing practices performed in the traditional software develop-
ment. Authors have suggested to establish good communication among develop-
ers, testers and the customers. Early report of any flaw or bug is recommended.
Since, agile focuses on early delivery of software, there must be automation of
testing activity. Automated testing practices are important for improving the
regression testing results and efficiency. It is the quite important because agile
follows the policy of incremental release.

Virtanen [21] presented a brief review on the available automation models
used in agile testing. He classified the models based on the domains of software
application. They are frequently used in safety-critical applications, customer
facing, open-source development, and acceptance testing. Among these four, the
first two domains are mostly used. The commonly used test automation models
are Chameleon model, and behavior-driven automation framework [9]. He also
found that earlier when the 50–60% of total software development effort goes to
the testing process is reduced to 25% in agile methodology. Some of the available
agile software testing tools are CI, Apache Maven, Travis Cruise Control, Robot
Framework, Perforce, Git, Subversion, Hudson CI, JMeter, CDash, TestLink,
Mantis Bug Tracker, CMake and Doxygen [1].

In the earlier days, random testing was quite popular. But due to increase in
size and complexity of software systems, bug remains undetected. To handle this

192 A. Dutta

issue, symbolic testing was proposed. However, very often when the constraints
are complex, the solver simply returns the false positives. Therefore to mitigate
these issues, concolic testing came into force which combines the positives of
both concrete random and symbolic executions. Some of the available concolic
testing tools are jCUTE, Score, LCT etc. [15,16].

Hayrust et al. [7] was the first to introduce the concept of MC/DC testing. It
is a predicate based testing and mandatory for the safety-critical systems. Dif-
ferent variations of MC/DC testing are available such as unique-clause MC/DC
testing, masking MC/DC etc. Several code transformation techniques are devel-
oped to achieve high MC/DC coverage [5,6].

Pairwise Testing [2,17] is an economical way to check all possible combina-
tions of a set of variables. In this technique a set of test cases is generated that
covers all combinations of the selected test data values for each pair of variables.
This is also referred as all-pairs testing and 2-way testing. It can be extended to
all-triples (3-way) or all-quadruples (4-way) testing, but the size of the higher
order test sets grows very rapidly.

The Pairwise Independent Combinatorial Testing tool (PICT) [12] help to
efficiently design test cases and test configurations for software systems. With
PICT, we can generate tests that are more effective than manually generated
tests and also the creation time is in fractions as compared to the time required
by hands-on test case design. PICT generates a compact set of parameter value
choices that represent the test cases we should use to get comprehensive combi-
natorial coverage of the input parameters.

Vilkomir et al. [20] reported the MC/DC coverage of combinatorial test cases.
Later, Dutta et al. [4] used concolic test cases to generate effective pairwise test
suite. Also, they have calculated the MC/DC coverage of the improved test
suite. Dutta et al.[4] have not taken separately generated Black-Box test alike in
our proposed approach. Table 1 show the comparison of different related work.
Columns 3–5 show the techniques considered in the proposed approaches.

Table 1. Comparison of related work

S. No. Authors White-box testing Black-box testing MC/DC

1 Bach et al. [2] No Yes No

2 Godboley et al. [5] Yes No Yes

3 Godboley et al. [6] Yes No Yes

4 Vilkomir et al. [20] Yes No Yes

5 Dutta et al. [4] Yes Yes Yes

6 Proposed work Yes Yes Yes

A Complete Unit Test Framework for Agile Software Development 193

4 Proposed Approach: Blue-Box Testing (BBT)

In this section, we first discuss our proposed framework in detail. Subsequently,
we understand the working of Blue-Box Testing (BBT) using a sample program.

4.1 Framework

Java
Program

jCUTE
TS1

TS2
PICT

TS3

Test Suite
Combiner TS4

MC/DC
Calculator MC/DC%

Blue-Box Testing

Fig. 1. Complete framework of Blue-Box Testing (BBT)

Figure 1 shows the flow diagram of proposed Blue-Box Testing (BBT) approach.
The input to this framework is a Java program to test and a set of black-
box test cases written by the customer based on the functional requirements of
the software. The output is the MC/DC% of the input Java program. We first
supply the Java program to a concolic tester jCUTE (Java Concolic Unit Testing
Engine) to generate the white-box test cases. The test suite generated by jCUTE
is marked as TS1 in the Fig. 1. On the other hand, the black-box test cases are
given by the customers or can be by developers which are created based on the
functional knowledge of the system is marked as TS2. We supply the black-box
test suite TS2 to PICT (Pairwise Independent Combinatorial Tool) to create
possible 2-way combinations of variable values and create another test suite
called TS3. Subsequently, these two test suites (TS1 and TS3) are imparted to
the Test Suite Combiner (TSC) module. TSC combines both the test suites and
generates a more effective and efficient test suite called TS4 using the input test
suites. Test Suite Combiner basically integrates both the input test suites. The
input Java program along with the test suite TS4 is supplied to the MC/DC
calculator. The MC/DC calculator first detects the predicated present in the
program and then creates a extended truth table (ETT) for each predicate. The
ETT is completed by the run-time execution information of test cases. It finally
computes the MC/DC percentage of the program using the Eq. 1.

In our proposed framework, we have combined both the black-box and white-
box test cases. Also, the black-box test cases are strengthen using pairwise testing
technique. This approach includes inputs from all the stakeholders of the software
under test. Because of all these reasons, we termed Blue-Box testing is framework
for the complete unit agile testing. The proposed model is also used for large and

194 A. Dutta

complex system since it considers both the Black-Box and White-Box test cases.
However, the Black-box test cases are required to be created more cautiously.
The time cost of proposed technique depends on the execution time of White-
Box test case generator jCUTE as well as the manual creation time of Black-Box
test cases along with PICT.

4.2 Working Example

In this section, we understand the proposed method using a working example.
The sample program with one decision and five conditions is shown in Listing

1.1. After supplying the sample program to jCUTE, the generated test suite
TS1 contains the test cases shown in Listing 1.2. Using only TS1, we achieved
MC/DC% as 60. The black box test suite is given in Listing 1.3. Using TS2,
the obtained MC/DC% is 40. However, the test suite TS2 is imparted on PICT
and useful test case (shown in Listing 1.4) is generated which helps to prove the
clause (m < 25) as independent clause. After combining all the test cases the
MC/DC percentage obtained for this program is 100%.

1 void prog(int a, int b, int c, int d, int m){

2 if((((a<10) || ((b>20)) && ((c!=5) ||(d >=100))) && (m<25)

)

3 {

4 True Block;

5 }

6 else

7 {

8 False Block;

9 }

10 }

Listing 1.1. Sample Program

1 TC1: a=9, b=10, c=4, d=99, m=24

2 TC2: a=11, b=10, c=4, d=99, m=24

3 TC3: a=11, b=21, c=4, d=99, m=24

4 TC4: a=11, b=21, c=5, d=99, m=24

Listing 1.2. TS1: Test Cases generated from jCUTE

1 TC1’: a=20, b=25, c=5, d=90, m=22

2 TC2’: a=30, b=25, c=4, d=95, m=10

3 TC3’: a=40, b=25, c=6, d=100, m=15

Listing 1.3. TS2: Black Box Test cases

1 TC1’’: a=40, b=25, c=6, d=100, m=22

Listing 1.4. TS3: Black Box Test case obtained on passing TS2 to PICT

A Complete Unit Test Framework for Agile Software Development 195

5 Experimental Study

In this section, we first discuss the used experimental setup. Subsequently, we
present the characteristics of programs used and obtained results. We also discuss
the threats to the validity of the obtained results from our proposed approach.

5.1 Used Setup

All the experiments are performed on 16 GB of RAM, Intel (R) Core(TM) i7
CPU 650 @ 3.20 GHz 3.19 GHz, and 64 bit operating system. Input programs
are written in Java [13,14]. jCUTE [8] and PICT [12] are open source tools.
We have developed MC/DC calculator to compute the MC/DC percentage. The
MC/DC calculator is written in Java.

5.2 Obtained Results

We have evaluated our approach over six open source programs taken from dif-
ferent repositories [13,14]. Table 2, Columns 3–5 show the characteristics of the
programs used in terms of LOC, Conditions and Decisions respectively. Columns
MC/DC1, MC/DC2, and MC/DC3 show the MC/DC percentage obtained
using TS1, TS2 and TS4 respectively. The last two columns of the table, Diff1
and Diff2, show the improvement obtained over the white-box and black-box
test cases on using our proposed blue-box testing technique respectively. Diff1
and Diff2 are calculated using Eqs. 2 and 3. Average MC/DC1, MC/DC2, and
MC/DC3 are 67.71%, 55.27% and 84.28% respectively. Using BBT method, we
have obtained 16.57% and 29.01% improvement over white-box and black-box
testing methods.

Diff1 = MC/DC3 − MC/DC1 (2)

Diff2 = MC/DC3 − MC/DC2 (3)

Table 2. Obtained results

S. No. Program LOC Condition Decision MC/DC1 MC/DC2 MC/DC3 Diff1 Diff2

1 BSTree 307 13 3 76.92 61.54 92.31 15.38 30.77

2 Dsort1 136 20 2 80.00 35.00 90.00 10.00 55.00

3 BubbleSort 142 14 7 78.57 85.71 100.00 21.43 14.29

4 AssertTest1 75 7 3 57.14 42.86 71.43 14.29 28.57

5 Demo 76 8 3 62.50 62.50 87.50 25.00 25.00

6 Problem11-
RERS2019

3214 450 126 51.11 44.00 64.44 13.33 20.44

196 A. Dutta

5.3 Discussion

From the obtained experimental results, it can be observed that both the white-
box and black-box test cases alone are not sufficient enough to prove each of
the conditions present in a predicate as independent. On the other hand, the
combined set of both the test suites are comparatively much better than the
individual test suites. The combined test suite proved almost all the conditions
present in the program as independent. Columns 6, 7, and 8 of Table 2 are directly
proportional to the number of independent conditions proved using TS1, TS2,
and TS4 respectively. Hence, it can be concluded that the BBT approach is
better than the individual base techniques used.

5.4 Threats to the Validity

In this section, we discuss some of the important threats to the validity of
obtained results.

1. We have experimented over limited set of programs. It is possible that our
approach may not work equally well on another programs. However, to mit-
igate this threat, we have considered programs from different domains with
different characteristics.

2. For MC/DC computation, a program must contain at least one predicate
(decision) with minimum two conditions.

3. For better evaluation of proposed method, other methods such as fault based
testing can be considered.

6 Conclusion

Testing is one of the most important phase of software development life cycle.
With day-by-day increasing software size and complexity, it is quite important
to give large attention to the testing phase. However, due to the quick delivery
approach of agile software development makes the task of software testing a bit
shallower. Therefore, to mitigate this gap and to strengthen the task of testing,
we proposed to combine two different domains to software testing viz., white-box
testing and black-box testing in order to generate more effective test cases. Our
proposed testing technique is termed as blue-box testing. Experimental results
show that on an average blue-box testing is 22.79% more effective than the other
considered test case generation techniques.

In future, we plan to verify the effectiveness of BBT using mutation testing.
We also extend this approach by adding other test generation techniques such
as integration, performance, interface, stress, etc.

References

1. Agile Testing Tools (2021). https://www.ntaskmanager.com/blog/best-agile-
testing-tools/. Accessed Oct 2021

https://www.ntaskmanager.com/blog/best-agile-testing-tools/
https://www.ntaskmanager.com/blog/best-agile-testing-tools/

A Complete Unit Test Framework for Agile Software Development 197

2. Bach, J., Schroeder, P.J.: Pairwise testing: a best practice that isn’t. In: Proceed-
ings of 22nd Pacific Northwest Software Quality Conference, pp. 180–196. Citeseer
(2004)

3. Baumgartner, M., Klonk, M., Mastnak, C., Pichler, H., Seidl, R., Tanczos, S.: Agile:
a cultural change. In: Agile Testing, pp. 1–15. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-73209-7 1

4. Dutta, A., Kumar, S., Godboley, S.: Enhancing test cases generated by concolic
testing. In: Proceedings of the 12th Innovations on Software Engineering Confer-
ence (formerly known as India Software Engineering Conference), pp. 1–11 (2019)

5. Godboley, S., Dutta, A., Mohapatra, D.P., Mall, R.: J3 model: a novel frame-
work for improved modified condition/decision coverage analysis. Comput. Stand.
Interfaces 50, 1–17 (2017)

6. Godboley, S., Dutta, A., Mohapatra, D.P., Mall, R.: Gecojap: a novel source-code
preprocessing technique to improve code coverage. Comput. Stand. Interfaces 55,
27–46 (2018)

7. Hayhurst, K.J.: A Practical Tutorial on Modified Condition/Decision Coverage.
DIANE Publishing, Collingdale (2001)

8. jCUTE (2005). https://osl.cs.illinois.edu/software/jcute/. Accessed Oct 2021
9. Kulkarni, V., et al.: Regression test optimization and automation in agile frame-

work: a review. Turkish J. Comput. Math. Educ. (TURCOMAT) 12(12), 2852–
2856 (2021)

10. Mall, R.: Fundamentals of Software Engineering. PHI Learning Pvt. Ltd., Delhi
(2018)

11. Pandita, R., Xie, T., Tillmann, N., De Halleux, J.: Guided test generation for cov-
erage criteria. In: 2010 IEEE International Conference on Software Maintenance,
pp. 1–10. IEEE (2010)

12. PICT (2021). https://github.com/microsoft/pict.git. Accessed Oct 2021
13. Programs (2005). https://github.com/osl/jcute/tree/master/src/tests. Accessed

Oct 2021
14. RERSPrograms (2019). http://www.rers-challenge.org/2019/. Accessed Oct 2021
15. Sen, K., Agha, G.: CUTE and jCUTE: concolic unit testing and explicit path

model-checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963 38

16. Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for c. ACM
SIGSOFT Softw. Eng. Not. 30(5), 263–272 (2005)

17. Tai, K.-C., Lei, Yu.: A test generation strategy for pairwise testing. IEEE Trans.
Softw. Eng. 28(1), 109–111 (2002)

18. Tripathi, V., Goyal, A.K.: Agile testing challenges and critical success factors. Int.
J. Comput. Sci. Eng. Technol. 1 (5), 5(06), 632–638 (2014)

19. van Driel, W.D., Bikker, J.W., Tijink, M., Di Bucchianico, A.: Software reliability
for agile testing. Mathematics 8(5), 791 (2020)

20. Vilkomir, S., Baptista, J., Das, G.: Using mc/dc as a black-box testing technique.
In: 2017 IEEE 28th Annual Software Technology Conference (STC), pp. 1–7. IEEE
(2017)

21. Virtanen, T.: Literature review of test automation models in agile testing (2018)

https://doi.org/10.1007/978-3-030-73209-7_1
https://doi.org/10.1007/978-3-030-73209-7_1
https://osl.cs.illinois.edu/software/jcute/
https://github.com/microsoft/pict.git
https://github.com/osl/jcute/tree/master/src/tests
http://www.rers-challenge.org/2019/
https://doi.org/10.1007/11817963_38

Position Paper

Project Management Issues While Using Agile
Methodology

Shariq Aziz Butt1(B) , G. Piñeres-Espitia2, Paola Ariza-Colpas2,
and Muhammad Imran Tariq3

1 Department of Computer Science and Information Technology, The University of Lahore,
Lahore, Pakistan

2 Universidad De la Costa, CUC Barranquilla, Barranquilla, Colombia
{gpineres1,pariza1}@cuc.edu.co

3 Superior University, Lahore, Pakistan

Abstract. Software engineering has many software development life cycle
(SDLC) models to develop a software application and the latest SDLC models
have been provided by agile methods. The agile methodology has been introduced
due to some existing lacks in software development. Now agile methodology is
used to overcome these deficiencies and improve software development. The use
of the agile methodology is increased within software industries due to its dis-
tinctive features such as enabling change requests from the client at any stage of
a project, client satisfaction, iterative development, and client-developer interac-
tion. Another reason for agile adoption is the methods that are being used for agile
software development. These methods include Scrum, Feature drive development,
Extreme programming, and Dynamic system development methods. However, the
agile methodology has some issues for project development and management. In
this study, we discuss all these issues which are related to agile methods and indi-
viduals (i.e. team and developer). Further, we suggest the possible improvements
that need to be introduced in the agilemethodology.Webelieve such improvements
is to make the agile methodology more productive for development environments.

Keywords: Agile methodology · Software development ·Methods of agile ·
Challenges

1 Introduction

Software Engineering has principles, SDLC models, and systematic techniques that are
used to develop software applications. The agile model was introduced with a complete
manifesto in 2001 to overcome some deficiencies from productive software development
[1]. Now the agile model is the trendiest and mainly in use model in Software Develop-
ment. The reason for the popularity of agile is distinctive features such as enabling change
requests from the client at any stage of a project, client satisfaction, iterative develop-
ment, and client-developer interaction [2]. Another reason is agile’s methods such as
Scrum, Feature driven development (FDD), Extreme programming (XP), Dynamic sys-
tem development Method (DSDM) [3, 4]. All of them have been presented within the

© Springer Nature Switzerland AG 2022
A. Przybyłek et al. (Eds.): LASD 2022, LNBIP 438, pp. 201–214, 2022.
https://doi.org/10.1007/978-3-030-94238-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94238-0_12&domain=pdf
http://orcid.org/0000-0002-5820-4028
https://doi.org/10.1007/978-3-030-94238-0_12

202 S. Aziz Butt et al.

umbrella of agile and are investigated in this paper. They have added more productive
value to agile development by their characteristics as mentioned in the Table 2 and 3.

Agile also facilitates the client to prioritize the user stories and can give change
requests at any level of the project [3]. Agile methods are productive for small-scale
projects, small-size teams, requirements welcomed, and group effort estimation for
example a planning poker technique [9]. In the agile methodology, the project man-
ager leads estimates the project effort with teamwork [39]. In the estimation, the team
assesses the complexity of the user stories.

Agile’s most distinctive features and individuals associated properties are productive
for agile software development. These individual properties include the developer’s
capabilities, understanding of user stories, and code writing skills [5]. Although the
specifics of all these methods have the same purpose of allowing teams to adjust to
changes relatively.Because accommodating changes later throughout the project is costly
[6].

Instead of wide use for software development agile methodology still has some
limitations that make it less productive due to agile’s methods capabilities [3, 7]. This
study is identifying the risks associated with each agile’s method, as well as with an
individual, which are a key part of software project management [8]. Moreover, agile
methods usually do not cover some areas of projectmanagement like budget and schedule
management [10]. Agile methodology is also not pertinently productive for large-scale
projects [11]. Therefore, there is a need to make some improvements and introduce new
features in agile methodology to support its use for large-scale projects. Some of such
features in agile methodology includes SAFe (Scaled Agile Framework), SoS (Scrum of
Scrums), LeSS (LargeScaleScrum),DAD(DisciplinedAgileDelivery),RAGE(Recipes
for Agile Governance in the Enterprise) [40].

1.1 Problem Statement

Agile is the most used model for software development, but still has some issues that
directly impact its proficient productivity. The main issues with the development are due
to methods used in agile software development [14]. One of the most valuable features
is a change request from the client because the client is the owner of the product backlog
[15]. In agile development due to small iteration development when any change comes
from a client that is not listed initially in product backlog then might increase the cost of
a project. Nevertheless, the cost is fixed at the start of the project by the team effort esti-
mation i.e. a cost has decided with the client after the team effort assessment for a project
[16]. Normally changes suggested by the client are due to market revolutions [7, 16].

Another limitation with the agile methods is its application only for small-scale
projects and for small development teams [4, 11]. Agile also should be applicable for
all sizes of projects, large-scale organizations, and large teams. It is because of agile’s
methods that make it not applicable for the large-scale organization.

Moreover, the agile methodology also has some flaws with respect to individuals i.e.
developer and team. All these make agile less productive for efficient software devel-
opment. Therefore, the agile methodology needs some improvements in its methods to
become suitable for all types of projects and needs to introduce a cost estimation process
with some new team-based estimation procedure to make accurate estimation [9–11].

Project Management Issues While Using Agile Methodology 203

1.2 Objectives of Study

This study is to highlights the main issues that directly affect the productivity of agile
methodology. Such issues are related to shortcomings in the agile methods and con-
straints of individuals for proficient software development in agile. On other hand, the
effort estimation in agile is also a challenge. The study also suggests some parameters
that need to include in the effort estimation technique for an agile estimate. After such
improvements, agile will be applicable for all sizes of projects. We can implement these
contributions on real projects in the software development industries.

1.3 Significance of the Study

The significance of the study is to improve agile software development for all scales of
projects and scenarios. Suggested changes would be useful for the professionals, who
are using the agile methodology in their software industries, research scholars who want
to contribute scientific methods in the agile methodology. The suggested improvements
will enhance agile software development in all diverse areas of development. The project
management in agile software development will get a new positive direction.

2 Methodology

We have adopted the methodology for conducting the study and reviewing the related
studies of agile software development. For the completion of the study, we have followed
an agile development score rating methodology. It contributes to evaluating the depth
and accuracy of agile project management specifications, as well as providing a roadmap
for experts in identifying flaws in agile development [14].

In Fig. 1 we have defined the steps that followed for literature gathering [15, 16].
In the methodology steps, we defined the necessity of and purpose of study that we
mentioned in Sects. 2, 3, and 4. In this section, we clearly explained the study objectives
and significance. The second step is defining research questions that illustrate the overall
picture of the study. We have developed two research questions that relate to finding
the issues with the agile software development and division of these issues according
to agile’s methods and individuals (developer, team/s). These research questions are
mentioned as follows:

RQ1: What are the shortcomings in agile development with respect to agile methods
and individuals?
RQ2: How such issues are affecting productive agile software development?

The third step is the searching of literature related to agile software development and
agile’s methods and issues with them. This step further is divided into sub-steps such as:

2.1 Search Strategy

A search query is used to do systematic searches across the digital libraries including
Google Scholar, IEEE, Science Direct, ACM, Springer, Hindawi, MDPI, Sage, and
Hindawi [14, 16]. All reputed data search bases are used for the collection of related
works.

204 S. Aziz Butt et al.

2.2 Search Strings

We used different search strings to find the agile software development papers within the
domain. These strings are (“AgileMethodology”OR “Agile SoftwareDevelopment” OR
“Software Development Issues”) AND (“Large Development Team in Agile” OR “Agile
Project Management”) AND (“Factors in Agile Issues” OR “Agile methods positively
affects” OR “Issues with key Methods”) AND (“Individual Practices” OR “Issues”).

The fourth step is application inclusion and exclusion criteria on the searched papers.
We used inclusion and exclusion criteria to select studies published and eliminate irrel-
evant publications. The paper had to match the keywords in the title with the keywords
of the study to be considered for inclusion. The first process is to examine the title of
every publication and determine if it met the inclusion/exclusion parameters. If the topic
of the publication corresponded to key terms within the study objectives, the abstract
is examined to check significance using the inclusion parameters. In contrast, we used
exclusion criteria when the search strings outcomes did not meet simply a little with the
primary terms in our study topic. We have gathered the papers between the years 2014
and 2021, we looked for agile project development and management. Related a total of
60 papers are obtained from the databases described above, and 50 are chosen based on
respective titles. The 44 papers that are chosen are then filtered further depending on
abstract and keyword, relevancy, getting 39 publications [14, 16].

The fifth and last step is the data extraction strategy, in which after the inter-rater
reliability test, there is no conflict after extracting data. Date of study, the title of pub-
lication, databases, procedures, strategy applied within the paper for research are all
gathered from each scientific publication. We used the reliability test to find the weigh-
tage of some topics as mentioned in the Table 1. As stated in the Table 1 represents
the topic priority, represents the topic ranking, and represents the weight for every
topic [14]. Here the weights are assigned based on the ranks to get a relative magnitude.
To rank the validated elements, results of the survey were considered which gave the
priority percentage of each element based on its importance in a scope definition.

Fig. 1. Methodology steps

Project Management Issues While Using Agile Methodology 205

Table 1. Weightage, raking, and priority of agile studies [14].

Topics

T1. Agile methodology survey 2.01 11 2.10

T2. Agile methods surveys 2.91 12 4.02

T3. Agile review studies 3.18 13 5.12

T4. Agile and project management literature 2.14 14 7.52

T5. Agile methods applications 3.20 17 10.72

T6. Agile development limitations 3.78 22 15.30

T7. Agile project management limitations 3.75 25 21.20

T8. Agile methods flaws 3.46 24 21.00

T9. Agile issues with individual 4.42 27 22.10

3 Literature Review

Agile is awell-regardedSDLCdevelopment approach and is becomingmorewell-known
and widely used in software industries. The enhancement in agile development becomes
well-known. It the adopted in the software houses due to its distinctive features that
make agile more productive for efficient software development. Among other SDLC
models, the agile method is the most in use model for development due to its unique
methods and features [7, 8]. The agile methods include the (i) Scrum: is a much-known
approach in agile software development. It enables the product development in sprints
and establishes a concept of daily meeting with the team to project updates. (ii) DSDM:
is an agile’s project delivery process that works with rapid application development
concepts and prioritizes the user stories based on user feedback (iii) FDD: is an iterative
development process in agile software development and (IV) XP: is an agile process
as it takes the development at an extreme level. It is used for small teams and small-
sized projects to produce high-quality software products. The agile unique features
include client satisfaction, change requests from the client at a time during the project
development, user stories prioritized by the client, iterative development. Instead of so
much fame and unique features, agile software development still has some issues that
are discussed in the next section.

3.1 Factorization of Issues with Agile’s Methods

3.1.1 Scrum Iterations Issues
The agile model eliminates many issues from the software development at that time
and allows the change request at any time and any level of the project. Scrum teams
work in sprints which divide the project into small iterations. These sprints are easy to
manage and the software project easily developed. These sprints send to the client to get
his feedback. When there is no change request then the next sprints start and otherwise

206 S. Aziz Butt et al.

changes merge with the next iterations. To accommodate the change request is the main
in a scrum within the agile model. Ultimately such changes increase the cost and time
of the project [14, 15].

Other issues in the scrum are related to the team is daily based meetings for project
updates. However, the daily meetings have limitations because not all the developers
support the meeting and mostly are non-responsive to meetings. Due to this forced
meeting and part of the agile development does not meet the requirements [16].

3.1.2 Extreme Programming (XP) Iterations Issues
eXtreme Programming (XP) has the ultimate objective of completing the project at hand.
Exploration, Planning, Iterations to Release, Productionizing, and Maintenance are the
5 phases of the XP product lifecycle. Instead of so much use XP still has some issues
that directly impact agile software development. Firstly, XP is not applicable for large-
scale projects because it takes development to an extreme level. The reason is that XP
does not measure the code for quality and complexity that cause code defects at the
initial level. XP is also not feasible for global software development, due to different
geographical locations [16, 18]. XP also supports the less documentation that causes
defects in documentation, identical defects may arise in the future [36].

3.1.3 DSDM Issues
As agile welcomes the changes at any stage of the project then always the requirements
fluctuates while development. Thus in the DSDM primary issue is requirements are not
fixed and always add to the product backlog. Due to these continuous adding of new
requirements/user stories project’s cost and time increased. Cause of direct involvement
of client throughout the agile development [7, 19]. Such issues are making the DSDM
less productive for agile development.

3.1.4 FDD
Using the FDD in agile development main issue is less documentation. Secondly, it
results in a high level of dependence on a single person. TheChief Programmer serves as a
coordinator, main designer, and instructor, among other things. Multiple responsibilities
in a large project is a problem since it raises the risks of human error. In addition
to the aforementioned drawbacks, the structure of this approach is unlike other agile
methodology, sprints are not very well described within the process. These are project-
specific and adapted to the project’s needs. As a result, there is no standardized process
for iterations [20, 21].

3.2 Factorization of issues with Individuals

3.2.1 People
A software project might include a wide spectrum of individuals, including developers,
testers, and project managers, to mention a few. The final product is frequently required
by a client or end-user. Top executives (companymanagers and development department

Project Management Issues While Using Agile Methodology 207

Table 2. Comparison of Agile methods.

Characteristics XP Scrum FDD DSDM References

Methodology for
development

Incremental
Improvements are
a type of
modification

Incremental
Iteration

Iterative Incremental 3, 4, 5

The time between
iterations is
required

One to six weeks Two to four weeks Two days to two
weeks

Depending on the
method belong to
the family

6, 7, 8, 9

Project team Fewer than 20
individu-als of
team/s

All sizes (concept
of scrums)

Many people are
members of
multiple teams

All sizes are
available based on
the methodology
of the family

9, 10, 11, 13

Collaboration
inside the team

Regular meetings
of team members

Regular meetings
of team members

Depends on
documentation

Face to face
Informal

11, 14, 15, 17, 38

The scope of the
project

Small projects Various types of
projects

Projects that are
more difficult to
complete

Projects of all
kinds based on the
methodology,
could be a member
of a family

18, 20

Participation of
customers

Involvement of
customers

The responsibility
to the Product
Owner is
performed by the
client

Customer
generated reports

Customers will
benefit from
incremental
updates

19, 21, 23

Project
documentation

Minimum
documentation

Less
documentation

Documentation’s
Significance

Simple Basic
documentation

22, 24

Skills Refactoring, user
stories DD

Scrum master, for
example plan-

Diagrams of
UML

Family’s adaptive
methodology

25, 26, 28

Table 3. Summary of agile methods features

Condition XP Scrum FDD DSDM

Small team/s Yes Yes No Unclear

Requirements that are very changeable Yes Yes Yes Unclear

Teams that are dispersed No Yes Yes No

High ceremony culture No No Unclear Unclear

Systems with a high severity No Unclear Unclear Yes

Multiple customers/stakeholders No Yes Unclear Unclear

heads) are particularly concerned with costs, investment returns, and human resources.
In agile development, every one of these has a responsibility [21].

3.2.2 Developers
The developers are maybe the most affected by agile processes. Agile methodologies
rely on good programmers who are skilled, experienced, and willing to interact with

208 S. Aziz Butt et al.

clients productively. Developers have to be willing to work as part of a team, be capable
to deal with frequent change, and also be innovative in their problem-solving abilities.
Agile processes seem to be very flexible approaches that do not require developers to
adopt rigorous standards and practices. But it is a problem for a software house as some
programmers may not be able to work in an agile environment. In an agile context, the
“5” rank of developer shown in the Table 4 would be challenged. “Hand-holding” takes
resources even for “4” programmers. As a result, the agile development team’s base is
made up of the top 3 ranks. Rank “1” programmers may or may not be required for
any projects, depending on how rare it seems. Agile Approaches may be challenging
to implement within a typically staffed software house due to the high degree of skill
required. Highly talented professionals are consistently in demand, and developing a
long-term human development approach may be challenging without integrating 4 rank
programmers. Long-term projects provide a considerable risk for Agile Methodologies
for several reasons [22, 24, 26].

Table 4. Features of developers

Rank Features

1 Abilities to develop solutions under bizarre circumstances

2 Capable of changing solutions to meet a new, yet previously encountered circumstance

3 programmer capable of implementing functionality, estimating effort, and refactoring
code

4 Capable of implementing basic functionality, running tests, and completing tasks

5 Reluctant or unable to collaborate in a team environment

3.2.3 Project Leaders
Project managers and team leads are the two most important Project Leader responsibil-
ities throughout software development. As leadership under such an agile methodology
varies from previous approaches, it has its own set of difficulties. This difference is
well defined as controlling process resources and leadership effectiveness. A leadership
strategy is particularly efficient when agile teams include skilled professionals with sig-
nificant responsibilities. Team leaders should be willing to provide team members the
freedom to take initiative. Rather than using the central command, collaboration is used
as amethod of leadership. For some, it will be a psychological adjustment, since theywill
have to share decision-making power. A team leader’s responsibility is to make it easier
for the team to make decisions. On the other hand, project managers are responsible
for monitoring performance and approving business decisions within agile approaches.
Project managers must make a more significant adjustment [22, 23].

The attention is on reacting to changes rather than adhering to a strict schedule. It is
a problem because they are typically looked upon to provide updates about the project’s
progress. In addition, project managers play a considerably more active role. In scrum,
the projectmanagement interacts with the team every day and supervises the daily scrum.

Project Management Issues While Using Agile Methodology 209

For the agile team, regular team member gatherings are the standard procedure. Rather
than emphasizing defining the milestones and contracts, project managers are much
more engaged in building and maintaining customer relationships.

3.2.4 Customers
Agile methodologies have a much greater effect on customers as compared to traditional
methods. Clients are involved from the beginning of the project, participating with defin-
ing the requirements and contract responsibilities, and at the ending, and acceptability
testing under relatively traditional techniques. However, under agile methodologies,
clients are engaged even more frequently and have more control over user stories [24].

Clients might be unwilling to participate in software development. Clients may be
unfamiliar with startups because the market is still to be determined. When using an
agile methodology, the presence of client representatives should be considered. In agile
clients should be decided to commit, skilled, cooperative, representative, and empow-
ered through the development. They should be aware of the requirements for end-users.
Furthermore, as decisions regarding which functionality will be included in which
releases should be decided, the representative should have the ability to do so. Agile
Approaches may not be applicable including all sizes and types of projects because a
client representative might not have been available [28].

3.2.5 Team
The team is important to effectiveness in agile processes because they rely significantly
on interaction and coordination. A sole skilled developer, who can’t work well together,
and a client who doesn’t interact with the team all have the potential to undermine a
team’s feasibility and effectiveness. The chemistry of the team poses a substantial risk
for agile development. Another important human aspect to consider within an agile team
is turnover. High turnover in a project might result in the loss of key skills if there is
no formal documentation. Although code inspections and having developers alternate
working on various functional areas can help prevent this, losing the main member of a
team can be catastrophic. When determining whether the team is suitable for the agile
approach, the project leader should consider this situation. Recognizing that one of the
main principles of XP is to keep current knowledge through keeping skilled staff [25,
26, 29].

4 Findings and Suggestive Measures

This section of the study is covering the findings of the research and suggestive measures
that can overcome issues in the agile software development and project management
mentioned in the Table 5.

210 S. Aziz Butt et al.

Table 5. Findings of study.

Contents Research findings Recommendation Impact of recommendations

Scrum Daily meetings
agitate the
developers because
they are responsible
to update them
about their tasks in
front of all others

Split the meetings into
different sessions rather
than arrange them on daily
basis
The meeting can also be
done in the digital
environment means online

It will remove issues from the
scrum and make the developer
and teams more comfortable
to update. On other hand, it
will enhance trust among
them. It will reduce pressure
from developers to work
productively

DSDM Requirements are
not fixed and also
not pertinent for
distributed team/s

Defined all the
requirements clearly at the
initial stage of a project
and reduce the level of
control of the client on the
product backlog but did not
remove controlcompletely.
Thus, whenever the client
gives a change request then
the team or chief developer
should examine whether
do able to or not

Define the project core
parameters at the initial stage
of a project and fix them to
not extend it
Digital processes in agile
software development will
enhance the development and
team coordination

FDD The main issue is
less documentation
and highly rely on
the chief developer
for requirement
specification and
effort estimation

Increase the
documentation and make
all the specifications
clearly defined in the
document. Establish a
team effort estimation
mechanism rather than
support the time chief
programmer or team lead
as in planning poker
technique as example

Proper documentation will
stop the frequent change from
the client because when you
defined all the specifications
then ultimately the project
will develop as per the
requirements. In case the
client suggested more
additional changes than before
welcome changes should be
validated with the document.
Team/s or developer/s
individual suggestions about
the effort estimation will
reduce the dependency on the
team lead. Additionally, it will
reduce the biased nature of
estimation in a team

(continued)

Project Management Issues While Using Agile Methodology 211

Table 5. (continued)

Contents Research findings Recommendation Impact of recommendations

XP Some issues are
similar with the
FDD like
documentation but
another issue is not
applicable for large
projects

Need to increase the team
size

Increase the team size and
then split the team into 2 parts
as per their expertise. Because
2 small groups of the same
team will work more
productively

Developers Developer
expertise for a user
story

Always give a user story to
develop who has the
expertise for it

It will directly impact on
accurate estimation of user
stories. It will also eliminate
the biased nature of effort
estimation from agile. Thus,
the estimation technique
should be more predictive
based and should estimate the
user stories by the individual
developer rather than follow
the process as example
planning poker. Estimation by
the Indi dual as per their skills
and knowledge, team leaders
can have the most accurate
judgments about the efforts of
each developer for the
particular user story. This
would make the estimation
accurate and safe from biased
estimation

Client Control on the
product backlog

Document the
requirements and then
overcome the control of
the client on the product
backlog

When reducing the control of
client from product backlog
but supporting client
satisfaction, then it will
control the changes from the
client. Sometimes a client is
also ambiguous related to the
user stories

Team/s Team’s abilities As we stated that select
developers as per the user
story and expertise. Thus,
the select team as per their
previous project’s history
and working skills

Selection of team will
improve the productivity
much more because in the
agile team needs to arrange
daily meetings, work pressure,
and client changes so the team
abilities for the current project

212 S. Aziz Butt et al.

5 Conclusion

Software engineering has a lot of models to develop software projects. All models
have some flaws and to overcome these from the efficient software development agile
models were introduced. Agile methods are more viable for adoption in the software
industry. The agile main goal and feature are to support the client who can send a
change request at any time and any level of the project. On the other hand, it is a
limitation in the agile model. Another limitation in investigated agile methods is that
they are applicable for only small-scale projects and do not give fruitful results when use
for large-scale projects. We have studied all the factors as categorization for the agile
software project’s development and management. We have done extensive study on both
factors agile’s methods and developer, and client, etc. We found that both factors need
major improvements to make it more proficient for development. Such improvements
precisely regarding the developers, large projects, daily meetings, and client direct much
involvement throughout the project. The study’s findings and suggestive measures are
pertinent for the followers of the agile methodology. These are providing new directions
for agile practitioners to amend the agile and introduce some new features. Researchers
can improve agile methodology by following the listed suggestions and making the agile
method an advanced version for future use.

References

1. Steghöfer, J.P., Knauss, E., Alégroth, E., Hammouda, I., Burden, H., Ericsson, M.: Teaching
agile-addressing the conflict between project delivery and application of agile methods. In:
2016 IEEE/ACM38th International Conference on Software Engineering Companion (ICSE-
C), pp. 303–312. IEEE, May 2016

2. Noteboom, C., Ofori, M., Sutrave, K., El-Gayar, O.: Agile project management: a systematic
literature review of adoption drivers and critical success factors. In: Proceedings of the 54th
Hawaii International Conference on System Sciences, p. 6775, January 2021

3. Trier, K.K., Treffers, T.: Agile Project Management in Creative Industries: a systematic lit-
erature review and future research directions. In: 2021 IEEE Technology & Engineering
Management Conference-Europe (TEMSCON-EUR), pp. 1–8. IEEE, May 2021

4. Khalid, A., Butt, S.A., Jamal, T., Gochhait, S.: Agile scrum issues at large-scale distributed
projects: scrum project development at large. Int. J. Softw. Innov. (IJSI) 8(2), 85–94 (2020)

5. Vishnubhotla, S.D.,Mendes, E., Lundberg, L.: An insight into the capabilities of professionals
and teams in agile software development: a systematic literature review. In: Proceedings of
the 2018 7th International Conference on Software and Computer Applications, pp. 10–19,
February 2018

6. Martin, A., Anslow, C., Johnson, D.: Teaching agile methods to software engineering profes-
sionals: 10 years, 1000 release plans. In: Baumeister, H., Lichter, H., Riebisch, M. (eds.) XP
2017. LNBIP, vol. 283, pp. 151–166. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-57633-6_10

7. Al-Saqqa, S., Sawalha, S., AbdelNabi, H.: Agile software development: methodologies and
trends. Int. J. Interac. Mobile Technol. 14(11), 246 (2020)

8. Fuchs, C.: Adapting (to) agile methods: exploring the interplay of agile methods and
organizational features (2019)

https://doi.org/10.1007/978-3-319-57633-6_10

Project Management Issues While Using Agile Methodology 213

9. Gandomani, T.J., Faraji, H., Radnejad,M.: Planning poker in cost estimation in agilemethods:
averaging vs. consensus. In: 2019 5th Conference on Knowledge-Based Engineering and
Innovation (KBEI), pp. 066–071. IEEE, February 2019

10. Noll, J., Beecham, S.: How agile is hybrid agile?An analysis of the helena data. In: Franch, X.,
Männistö, T., Martínez-Fernández, S. (eds.) PROFES 2019. LNCS, vol. 11915, pp. 341–349.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35333-9_25

11. Wińska, E., Dąbrowski, W.: Software development artifacts in large agile organizations: a
comparison of scaling agile methods. In: Poniszewska-Marańda, A., Kryvinska, N., Jarząbek,
S., Madeyski, L. (eds.) Data-Centric Business and Applications. LNDECT, vol. 40, pp. 101–
116. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34706-2_6

12. Tessem, B.: The customer effect in agile system development projects. a process-tracing case
study. Procedia Comput. Sci. 121, 244–251 (2017)

13. Dingsøyr, T., Falessi, D., Power, K.: Agile development at scale: the next frontier. IEEESoftw.
36(2), 30–38 (2019)

14. Amjad, S., et al.: Calculating completeness of agile scope in scaled agile development. IEEE
Access 6, 5822–5847 (2017)

15. Ruk, S.A., Khan, M.F., Khan, S.G., Zia, S.M.: A survey on adopting agile software develop-
ment: issues & its impact on software quality. In: 2019 IEEE 6th International Conference on
Engineering Technologies and Applied Sciences (ICETAS), pp. 1–5. IEEE, December 2019

16. Abdalhamid, S., Mishra, A.: Adopting of agile methods in software development organiza-
tions: systematic mapping. TEM J. 6(4), 817 (2017)

17. Schuh, G., Prote, J.P., Gützlaff, A., Ays, J., Donner, A.: Fixed cost management as an enabler
for agile manufacturing networks. Procedia Manuf. 39, 625–634 (2019)

18. Raza, S., Waheed, U.: Managing change in agile software development a comparative study.
In: 2018 IEEE 21st InternationalMulti-Topic Conference (INMIC), pp. 1–8. IEEE,November
2018

19. Goel, S., et al.: Resilient and agile engineering solutions to address societal challenges such
as coronavirus pandemic. Mater. Today Chem. 17, 100300 (2020)

20. Gablas, B., Ruzicky, E., Ondrouchova, M.: The change in management style during then
course of a project from the classical to the agile approach. J. Competitiveness 10(4), 38–53
(2018)

21. Ratner, B.: The correlation coefficient: definition, DM Stat-1 Articles, vol. 11a (2007)
22. Kuusinen, K., et al.: A large agile organization on its journey towards DevOps. In: 2018

44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA),
pp. 60–63. IEEE, August 2018

23. Anwer, F., Aftab, S., Waheed, U., Muhammad, S.S.: Agile software development models
TDD, FDD, DSDM, and crystal methods: a survey. Int. J. Multi-Disc. Sci. Eng. 8(2), 1–10
(2017)

24. Przybyłek, A., Zakrzewski, M.: Adopting collaborative games into agile requirements
engineering (2018)

25. Kumar, R., Singh, K., Jain, S.K.: Agile manufacturing: a literature review and Pareto analysis.
Int. J. Qual. Reliab. Manage. 37(2), 207–222 (2019)

26. Patel, A., et al.: A comparative study of agile, component-based, aspect-oriented and mashup
software development methods. Tehnicki Vjesnik 19(1), 175–189 (2012)

27. de la Barra, C., Crawford, B., Soto, R., Misra, S., Monfroy, E.: Agile software development:
it is about knowledge management and creativity. In: Murgante, B., et al. (eds.) ICCSA 2013.
LNCS, vol. 7973, pp. 98–113. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39646-5_8

https://doi.org/10.1007/978-3-030-35333-9_25
https://doi.org/10.1007/978-3-030-34706-2_6
https://doi.org/10.1007/978-3-642-39646-5_8

214 S. Aziz Butt et al.

28. Pham, Q., Nguyen, A.V., Misra, S.: Apply agile method for improving the efficiency of
software development project at VNG company. In: Murgante, B., et al. (eds.) ICCSA 2013.
LNCS, vol. 7972, pp. 427–442. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39643-4_31

29. Mundra,A.,Misra, S.,Dhawale, C.A.: Practical scrum-scrum team:way to produce successful
and quality software. In: 2013 13th International Conference on Computational Science and
Its Applications, pp. 119–123. IEEE, June 2013

30. Correia, A., Gonçalves, A., Misra, S.: Integrating the scrum framework and lean six sigma.
In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11623, pp. 136–149. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-24308-1_12

31. Habib, B., Romli, R.: A systematicmapping study on issues and importance of documentation
in agile. In: 2021 IEEE 12th International Conference on Software Engineering and Service
Science (ICSESS), pp. 198–202. IEEE, August 2021

32. Fernández-Sanz, L., Gómez-Pérez, J., Diez-Folledo, T.I., Misra, S.: Researching human and
organizational factors impact for decisions on software quality. In: Proceedings of the11th
International Conference on Software Engineering and Applications, pp. 283–289 (2016)

33. Khan, R.A., et al.: Practices of motivators in adopting agile software development at large
scale development team from management perspective. Electronics 10, 2341 (2021). https://
doi.org/10.3390/electronics10192341

34. Niederman, F., Lechler, T., Petit, Y.: A research agenda for extending agile practices in
software development and additional task domains. Project Manage. J. 49(6), 3–17 (2018)

35. Usman, M., Mendes, E., Weidt, F., Britto, R.: Effort estimation in agile software develop-
ment: a systematic literature review. In: Proceedings of the 10th International Conference on
Predictive Models in Software Engineering, pp. 82–91, September 2014

36. Szewc, A., Karovič, V., Veselý, P.: The documentation in the project of software creation.
In: Kryvinska, N., Poniszewska-Marańda, A. (eds.) Developments in Information & Knowl-
edge Management for Business Applications. SSDC, vol. 377, pp. 361–441. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-77916-0_14

37. Przybyłek, A., Albecka, M., Springer, O., Kowalski, W.: Game-based Sprint retrospectives:
multiple action research. Empir. Softw. Eng. 27(1), 1–56 (2021). https://doi.org/10.1007/s10
664-021-10043-z

38. Jones, A., Thoma, V.: Determinants for successful agile collaboration between UX designers
and software developers in a complex organisation. Int. J. Hum.-Comput. Interac. 35(20),
1914–1935 (2019)

39. Weflen, E., MacKenzie, C.A., Rivero, I.V.: An influence diagram approach to automating lead
time estimation in Agile Kanban project management. Expert Sys. Appl. 187, 115866 (2022)

40. Kalenda, M., Hyna, P., Rossi, B.: Scaling agile in large organizations: practices, challenges,
and success factors. J. Softw. Evol. Process 30(10), e1954 (2018)

https://doi.org/10.1007/978-3-642-39643-4_31
https://doi.org/10.1007/978-3-030-24308-1_12
https://doi.org/10.3390/electronics10192341
https://doi.org/10.1007/978-3-030-77916-0_14
https://doi.org/10.1007/s10664-021-10043-z

Author Index

Ahmad, Ali J. 78
Ariza-Colpas, Paola 201
Aziz Butt, Shariq 201

Barisal, Swadhin Kumar 170
Borg, Markus 3

Colomo-Palacios, Ricardo 136

Dutta, Arpita 170, 189

Erdil, Oya 38

Gelmis, Aysegul 78
Godboley, Sangharatna 150, 170
Gök, Mehmet Şahin 38
Guler, Mehmet Guray 78

Hille, Jan Hendrik 61

Kristiansen, Monica 136

Mohapatra, Durga Prasad 150, 170
Mötefindt, David 61

Neumann, Michael 19, 61
Nunweiler, Elisabeth 96

Ozkan, Necmettin 38, 78

Piñeres-Espitia, G. 201
Poth, Alexander 96

Ramsin, Raman 116

Sahoo, Bibhudatta 170
Sánchez-Gordón, Mary 136
Sandeep, R. C. 136

Tariq, Muhammad Imran 201
Topp, Julia 61

Vahdati, Adel 116

	 Preface
	 Organization
	 Promises of Model-Driven Development in an Agile Context (Abstract of Keynote Talk)
	 Contents
	Keynote Paper
	Agility in Software 2.0 – Notebook Interfaces and MLOps with Buttresses and Rebars
	1 Introduction
	2 Connecting Notebook Interfaces and IDEs
	2.1 Agility Supported by Notebook Interfaces
	2.2 Cowait – A Framework for Simplified Container Orchestration
	2.3 Local Files and Cowait Notebooks Executing on Clusters

	3 MLOps – A Key Enabler for Agility in Software 2.0
	3.1 Continuous Engineering in the AI Era
	3.2 Reinforced AI Systems Using Buttresses and Rebars

	4 Conclusion
	References

	Full Papers
	The Integrated List of Agile Practices - A Tertiary Study
	1 Introduction
	2 Background and Related Work
	3 Research Method
	3.1 Search Strategy
	3.2 Study Selection
	3.3 Data Extraction

	4 Results of the Literature Review
	4.1 Overview of the Studies
	4.2 The Current State of Agile Practices

	5 The Integrated List of Agile Practices
	5.1 Synthesizing Agile Practices
	5.2 Introducing the Integrated List of Agile Practices

	6 Limitations
	7 Conclusion and Future Work
	References

	Agile Teams Working from Home During the Covid-19 Pandemic: A Literature Review on New Advantages and Challenges
	1 Introduction
	2 Research Method
	3 Related Works
	4 Results
	5 Discussion
	5.1 Implications for Agile Practitioners
	5.2 Implications for Researchers

	6 Conclusion, Limitations and Future Work
	References

	How a 4-Day Work Week and Remote Work Affect Agile Software Development Teams
	1 Introduction
	2 Related Work
	3 Research Approach
	3.1 Research Design
	3.2 Research Context
	3.3 Data Collection
	3.4 Data Analysis

	4 Results
	4.1 RQ 1: Effects on the Agile Method in Use
	4.2 RQ 2: Effects on the Productivity
	4.3 RQ 3: Effects on the Job Satisfaction and Stress Level
	4.4 RQ 4: Effects on the Social Culture

	5 Discussion and Practical Implications
	6 Threats to Validity
	7 Conclusion and Future Work
	References

	Impact of Turkish National Culture on Agile Software Development in Turkey
	1 Introduction
	2 Background
	3 Related Work
	4 Research Methodology
	5 Results
	5.1 Motivations for Transforming Agile (RO1)
	5.2 Challenges of Transitioning to Agile (RO2)
	5.3 Agile Culture in Turkey (RO3)
	5.4 Preference on Agile Frameworks (RO4)

	6 Discussion
	7 Conclusion, Limitations and Further Research
	References

	Develop Sustainable Software with a Lean ISO 14001 Setup Facilitated by the efiS® Framework
	1 Motivation and Context
	2 Literature Overview on Sustainable Software Systems
	3 The Design of the Level of Done (LoD) Layer ISO 14001
	4 Leveraging Sustainable Software Systems and Services
	5 Instantiation, Evaluation and Improvement
	6 Discussion and Limitations
	7 Conclusion and Outlook
	References

	Modeling and Model Transformation as a Service: Towards an Agile Approach to Model-Driven Development
	1 Introduction
	2 Related Works
	3 Integrating Model-Driven and Agile Development Approaches
	3.1 Agile Development Challenges
	3.2 MDD Challenges
	3.3 Opportunities and Challenges of Integrating Agile and MDD Approaches

	4 Complexity Management in Modeling
	4.1 First Approach
	4.2 Second Approach
	4.3 Third Approach

	5 Modeling as a Service and Model Transformation as a Service
	5.1 Types of Relationships Between Models
	5.2 Loosely Modeled Relationships
	5.3 Model-Driven Development by Using Service-Oriented Paradigm
	5.4 CRAC Method

	6 Conclusion and Future Work
	References

	Effort Estimation in Agile Software Development: A Exploratory Study of Practitioners’ Perspective
	1 Introduction
	2 Research Method
	2.1 Research Questions
	2.2 Survey Design

	3 Results
	4 Limitations
	5 Conclusion and Future Work
	References

	Towards Agile Mutation Testing Using Branch Coverage Based Prioritization Technique
	1 Introduction
	2 Basic Concepts
	3 Proposed Approach
	4 Experimental Results
	4.1 The Set Up
	4.2 Benchmarks Tested
	4.3 Result Evaluation
	4.4 Inference

	5 Comparison to Related Work
	6 Conclusion
	References

	Agility Based Coverage Improvement
	1 Introduction
	2 Literature Review
	3 Proposed Approach
	3.1 Setup
	3.2 Detail Description

	4 Implementation
	5 Comparison Study
	6 Conclusion and Future Work
	References

	Short Paper
	A Complete Unit Test Framework for Agile Software Development
	1 Introduction
	2 Basic Concepts
	3 Literature Review
	4 Proposed Approach: Blue-Box Testing (BBT)
	4.1 Framework
	4.2 Working Example

	5 Experimental Study
	5.1 Used Setup
	5.2 Obtained Results
	5.3 Discussion
	5.4 Threats to the Validity

	6 Conclusion
	References

	Position Paper
	Project Management Issues While Using Agile Methodology
	1 Introduction
	1.1 Problem Statement
	1.2 Objectives of Study
	1.3 Significance of the Study

	2 Methodology
	2.1 Search Strategy
	2.2 Search Strings

	3 Literature Review
	3.1 Factorization of Issues with Agile’s Methods
	3.2 Factorization of issues with Individuals

	4 Findings and Suggestive Measures
	5 Conclusion
	References

	Author Index

