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Preface

This book compiles the best papers submitted to the Eighth International Conference on
Metaheuristics andNature InspiredComputing (META2021).META2021 took place in
Marrakech, Morocco, from October 27 to 30, in a hybrid onsite/online mode. The main
objective of META 2021 was building an atmosphere for the exchange of knowledge on
the topic of evolutionary computation and nature inspired computing, where researchers
in the field from all over the world could present their recent works and discuss themwith
other colleagues. META is a biannual conference that has been organized in Morocco
since 2014, with the objective of establishing bridges between developing countries in
Africa and developed countries from all over the world. Particularly, META aims at
attracting influential researchers worldwide in the fields of metaheuristics and nature
inspired computing for complex problems optimization.

Three categories of papers were considered in META 2021, namely work-in-
progress and position papers, high impact journal publications (in the shape of an
extended abstract), or regular papers with novel contents and important contributions.
The conference received a total of 53 papers, which were evaluated using a blind review
process.

Thirty five papers were presented during the META 2021 edition, which were
arranged into five sessions, including one large session with video presentations and four
sessions with both onsite and online presentations and audiences. The sessions covered
topics such as the design of novel optimization tools, the synergies between optimization
methods and learning techniques, and applications of such tools to real-world complex
problems.

A selection of the best 16 regular papers is published in this book, representing a
30.19% acceptance rate for all submitted papers. The papers were selected according to
the scores received in the blind review process. We hope that you enjoy reading them
and find inspiration for future research.

October 2021 Bernabé Dorronsoro
Farouk Yalaoui
El-Ghazali Talbi
Grégoire Danoy
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A Large Neighborhood Search
for a Cooperative Optimization Approach
to Distribute Service Points in Mobility

Applications

Thomas Jatschka1(B), Tobias Rodemann2, and Günther R. Raidl1

1 Institute of Logic and Computation, TU Wien, Vienna, Austria
{tjatschk,raidl}@ac.tuwien.ac.at

2 Honda Research Institute Europe, Offenbach, Germany
tobias.rodemann@honda-ri.de

Abstract. We present a large neighborhood search (LNS) as optimiza-
tion core for a cooperative optimization approach (COA) to optimize loca-
tions of service points for mobility applications. COA is an iterative inter-
active algorithm in which potential customers can express preferences dur-
ing the optimization. A machine learning component processes the feed-
back obtained from the customers. The learned information is then used
in an optimization component to generate an optimized solution. The LNS
replaces a mixed integer linear program (MILP) that has been used as opti-
mization core so far. A particular challenge for developing the LNS is that
a fast way for evaluating the non-trivial objective function for candidate
solutions is needed. To this end, we propose an evaluation graph, mak-
ing an efficient incremental calculation of the objective value of a modi-
fied solution possible. We evaluate the LNS on artificial instances as well
as instances derived from real-world data and compare its performance to
the previously developed MILP. Results show that the LNS as optimiza-
tion core scales significantly better to larger instances while still being able
to obtain solutions close to optimality.

1 Introduction

The traditional approach for solving service point placement problems, such as
distributing charging stations for electric vehicles or vehicle sharing stations in a
geographic area, essentially is to first estimate the demand that may be fulfilled
at potential locations and then to select actual locations either manually or by
some computational optimization. However, estimating the customer demand
that may be fulfilled by certain stations is an intricate task in which erroneous
assumptions may result in heavy economic losses for the service point provider.
Also, estimating demand upfront requires specific data which can be challenging
and/or expensive to collect. As an alternative approach, in [1] we introduced a

Thomas Jatschka acknowledges the financial support from Honda Research Institute
Europe.

c© Springer Nature Switzerland AG 2022
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cooperative optimization approach (COA) for optimizing the locations of service
points in mobility applications. In contrast to the traditional approach, COA is
an iterative interactive algorithm that solves the demand data acquisition and
optimization in a single process by allowing customers to express their prefer-
ences intertwined with the optimization. A machine learning component pro-
cesses the feedback obtained from the customers and provides a surrogate objec-
tive function. This surrogate objective is then used in an optimization component
to generate an optimized solution. This solution is then a basis for further inter-
action with the users to obtain more relevant knowledge, and the whole process
is repeated until some stopping criterion is met. So far, COA uses a mixed integer
linear program (MILP) in the optimization core for determining solutions [2] or,
in a former version [3], basic metaheuristic approaches that treated the problem
as black box model and hence do not make significant use of structural prop-
erties of the problem. For an exact optimization core, the generated solutions
are optimal w.r.t. to the so far known information derived from the customer
feedback. However, this optimality comes at the cost of large computation times,
especially for large-scale instances with thousands of customers and hundreds of
potential service point locations. In contrast, a heuristic optimization core may
feature better scalability towards larger instances. To this end we present here a
large neighborhood search (LNS) that can reduce computation times by orders
of magnitudes with only small losses in final solution quality. Due to the nature
of the non-trivial objective function of our service point distribution problem,
an efficient way for evaluating said objective is necessary to make this speedup
possible. Therefore, our LNS features a data structure, referred to as evalua-
tion graph for modeling the evaluation of solutions. We show how the evaluation
graph can be used to efficiently keep track of small changes in the solution, such
as opening or closing a service point. Based on this evaluation graph, the LNS
is able to quickly repair partially destroyed solutions in a promising heuristic
way. We evaluate the LNS on artificial instances as well as instances derived
from real-world data and compare its performance to the previously developed
MILP-based approach.

In the next section we review related work. Section 3 formally defines the
General Service Point Distribution Problem (GSPDP), as it is referred to, while
an overview on the COA framework is given in Sect. 4. Our main contribution,
the LNS with its evaluation graph, is presented in Sect. 5. Section 6 explains the
benchmark scenarios, and Sect. 7 discusses experimental results. Finally, Sect. 8
concludes this article and gives an outlook on future work.

2 Related Work

The basic concept of COA was presented in [1]. In interactive optimization algo-
rithms, such as COA, humans are used to (partially) evaluate the quality of
solutions and to guide the optimization process. For a survey on interactive
optimization, see [4]. Interactive algorithms are often combined with surrogate-
based approaches [5,6], in which a machine learning model is trained to evaluate
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intermediate solutions approximately in order to reduce user interactions and
to avoid user fatigue [7]. In contrast to COA, most approaches from literature
only allow a single user to interact with the algorithm, e.g., [8,9]. Hence, in [10]
COA’s surrogate function is based on a matrix factorization model [11], a pop-
ular collaborative filtering technique [12] in which unknown ratings of items are
derived from users with similar preferences.

In [3] two heuristic black box optimization approaches were suggested for
COA to generate new candidate solutions w.r.t. to the current surrogate model:
a variable neighborhood search as well as a population-based iterated greedy
approach. In [2] COA was substantially extended to also be applicable in use
cases where the satisfaction of demands relies on the existence of two or more
suitably located service stations, such as car and bike sharing systems.

More generally, there exists a vast amount of literature regarding the location
planning of service points for mobility applications, see, e.g., [13] for electric
vehicle charging stations or [14] for stations of a bike sharing system. However, to
the best of our knowledge no further work on interactive optimization approaches
for location planning in mobility applications exists.

3 The General Service Point Distribution Problem

In this section we give a formal description of the Generalized Service Point
Distribution Problem (GSPDP) introduced in [2], which is the problem to be
solved at the core of COA and for which we will then propose the LNS. Service
points may be set up at a subset of locations V = {1, . . . , n}. Establishing a
service point at a location v ∈ V is associated with costs zfixv ≥ 0 and the
total setup costs of all stations must not exceed a maximum budget B > 0.
Additionally, the expected costs for maintaining this service point over a defined
time are zvarv ≥ 0. Given a set of users U , each user u ∈ U has a certain set
of use cases Cu, such as going to work, visiting a recreational facility, or going
shopping.

Each user’s use case c ∈ Cu is associated with a demand Du,c > 0 expressing
how often the use case is expected to happen within some defined time period.
The demand of each use case may possibly be satisfied by subsets of service points
to different degrees, depending on the concrete application and the customer’s
preferences. Hence, we associate each use case c of a user u with a set of Service
Point Requirements (SPR) Ru,c with which a user can express the dependency
on multiple service points to fulfill the needs of the use case. For example, for the
use case of visiting a fitness center using a bike sharing system, one SPR may
represent the need of a rental station close to home or work and a second SPR a
rental station close to some fitness center. We denote the set of all different SPRs
over all use cases of a user u by Ru =

⋃
c∈Cu

Ru,c. Moreover, let R =
⋃

u∈U Ru

be the set of all SPRs over all users.
For now, let us further assume we know values wr,v ∈ [0, 1] indicating the

suitability of a service point at location v ∈ V to satisfy the needs of user u ∈ U
concerning SPR r ∈ Ru,c in the use case c ∈ Cu. A value of wr,v = 1 represents
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perfect suitability while a value of zero means that location v is unsuitable;
values in between indicate partial suitability. For each unit of satisfied customer
demand a prize q > 0 is earned.

A solution to the GSPDP is a subset of locations X ⊆ V indicating where
service points are to be set up. It is feasible if its total fixed costs do not exceed
the maximum budget B, i.e.,

zfix(X) =
∑

v∈X

zfixv ≤ B. (1)

The objective function of the GSPDP is to maximize

f(X) = q ·
∑

u∈U

∑

c∈Cu

Du,c · min
r∈Ru,c

(

max
v∈X

wr,v

)

−
∑

v∈X

zvarv . (2)

In the first term, the obtained prize for the expected total satisfied demand is
determined by considering for each user u, each use case c, and each SPR r a
most suitable location v ∈ V at which a service point is to be opened. Over all
SPRs of a use case, the minimum of the obtained suitability values is taken. The
second term of the objective function represents the total maintenance costs for
the service stations. In [2] we have shown that the GSPDP is NP-hard.

By linearizing the objective function, the GSPDP can be modeled by the
following MILP.

max q ·
∑

u∈U

∑

c∈Cu

Du,c yu,c −
∑

v∈V

zvarv xv (3)

∑

v∈V

or,v ≤ 1 ∀r ∈ R (4)

or,v ≤ xv ∀v ∈ V, r ∈ R (5)

yu,c ≤
∑

v∈V

wr,v · or,v ∀u ∈ U, c ∈ Cu, r ∈ Ru,c (6)

∑

v∈V

zfixv xv ≤ B (7)

xv ∈ {0, 1} ∀v ∈ V (8)
0 ≤ yu,c ≤ 1 ∀u ∈ U, c ∈ Cu (9)
0 ≤ or,v ≤ 1 ∀r ∈ R, v ∈ V (10)

Binary variables xv indicate whether or not a service point is deployed at location
v ∈ V . Continuous variables or,v are used to indicate the actually used location
v ∈ V for each SPR r ∈ R; these variables will automatically become integer.
The degree to which a use case c ∈ Cu of a user u ∈ U can be satisfied is
expressed by continuous variables yu,c. The objective value is calculated in (3).
Inequalities (4) ensure that at most one location with the highest suitability
value is selected for each SPR. Inequalities (5) and (6) ensure that use cases
are only satisfied if there are suitable locations with opened service points for
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each SPR of the respective use case. Inequalities (6) additionally determine the
degree to which a use case is satisfied. Last but not least, Inequality (7) ensures
that the budget is not exceeded.

4 Cooperative Optimization Algorithm

A crucial aspect of COA’s general approach is that the suitability values wr,v

are not explicitly known a priori. A complete direct questioning would not only
be extremely time consuming but users would easily be overwhelmed by the
large number of possibilities, resulting in incorrect information. For example,
users easily tend to only rate their preferred options as suitable and might not
consider certain alternatives as also feasible although they actually might be on
second thought when no other options are available.

Hence, interaction with users needs to be kept to a minimum and should be
done wisely to extract as much meaningful information as possible. Therefore,
COA does not ask a user to directly provide best suited station locations for the
SPRs but creates meaningful location scenarios, i.e., subsets of locations, and
asks the users to evaluate these. More specifically, a user u returns as evaluation
of a location scenario S w.r.t. one of the user’s SPRs r ∈ Ru a best suited
location vr,S ∈ S and the corresponding suitability value w(r, vr,S) > 0 or the
information that none of the locations of the scenario S is suitable. We assume
here that the suitability of a location w.r.t. an SPR can be specified on a five
valued scale.

The COA framework consists of a Feedback Component (FC), an Evalua-
tion Component (EC), an Optimization Component (OC), and a Solution Man-
agement Component (SMC). Figure 1 illustrates the fundamental principle and
communication between these components. During an initialization phase, the
FC first asks each user u ∈ U to specify her or his use cases Cu with their
associated SPRs Ru,c, as well as corresponding demands Du,c, c ∈ Cu. Then,
the FC is responsible for generating individual location scenarios for each user
which are presented to the user in order to obtain her/his feedback.

The obtained feedback is processed in the EC. A crucial assumption we
exploit is that in a large user base some users typically have similar preferences
about the locations of service points w.r.t. to some of their use cases. Hence,
by identifying these similarities and learning from them, the EC maintains and
continuously updates a surrogate suitability function w̃Θ(r, v) approximating the
real and partially unknown suitability values wr,v of service point locations v ∈ V
w.r.t. SPR r ∈ R without interacting with the respective user. Based on this
surrogate function, the EC also provides the surrogate objective function

f̃Θ(X) = q ·
∑

u∈U

∑

c∈Cu

Du,c · min
r∈Ru,c

(

max
v∈X

w̃Θ(r, v)
)

−
∑

v∈X

zvarv (11)

with which a candidate solution X can be approximately evaluated.
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Fig. 1. Components of COA and their interaction.

A call of the OC is supposed to determine an optimal or close-to-optimal
solution to the problem with respect to the EC’s current surrogate objective
function f̃Θ. In [2] this is achieved by solving the MILP (3)–(10) in which the
suitability values are approximated by the surrogate suitability function w̃Θ.

The SMC stores and manages information on all generated solutions as well
as suitability values obtained by the FC.

The whole process is repeated until some termination criterion is reached.
In the end, COA returns a solution X̃∗ with the highest surrogate objective
value of all of the so far generated solutions. For more details, in particular
on how meaningful solution scenarios are derived in the FC and how a matrix
factorization is utilized to determine the approximated values w̃Θ(r, v) in the
EC, we refer the interested reader to [2].

5 Large Neighborhood Search

We now propose a large neighborhood search (LNS) as a faster replacement for
the original MILP-based optimization core in COA. The LNS follows the classical
scheme from [15]. The key idea of LNS is to not search neighborhoods in a naive
enumerative way but instead to identify via some problem-specific more effective
procedure either best or promising solutions within larger neighborhoods. To
this end, LNS frequently follows an iterative destroy and repair scheme: First, a
given solution is partially destroyed, typically by freeing a subset of the decision
variables and fixing the others to their current values. Afterwards this partial
solution is repaired by finding best or at least promising values for the freed
variables. If the obtained solution is better than the previous one, it is accepted,
otherwise the previous solution is kept.
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In our LNS a solution to a GSPDP instance is destroyed in a uniform random
fashion by adding kdest new locations to the solution, where kdest is a parameter
that is varied.

To repair a solution X, we make use of a randomized greedy approach: Let
Δ(v,X) denote by how much the objective value of a solution X would decrease
when removing location v from X. Note that, it is discussed later how Δ(v,X)
can be efficiently calculated for all v ∈ X. In each iteration we first generate a
restricted candidate list of krep locations v ∈ V for which Δ(v,X) is lowest, i.e.,
the candidate list contains the locations that have the lowest impact on objective
value of X. Hereby, krep is another strategy parameter. Ties are broken randomly.
A location is then chosen uniformly at random from this restricted candidate
list and removed from X.

To construct an initial solution in the first iteration of COA, we also make
use of the repair heuristic, starting from X = V and then sequentially removing
locations from X for which Δ(v,X) is lowest until the solution becomes feasible,
i.e. krep = 1 for constructing an initial solution. In subsequent iterations of COA,
the LNS is warm-started with COA’s current best solution X̃∗.

Our LNS makes use of two destroy operators with kdest = 10 and kdest = 20,
respectively, and two repair operators with krep = 2 and krep = 4, respectively.
These settings have shown to yield a robust convergence behavior across the
kinds and sizes of instances in our benchmark sets. In each iteration a repair
and destroy operator is chosen uniformly at random. Moreover, each LNS run
terminates after 40 iterations without improvement.

A crucial aspect for developing an effective heuristic for solving the GSPDP
is that computing the surrogate objective value f̃Θ of a solution in a straight-
forward way from scratch is time consuming. Hence, in order to accelerate this
task we maintain for a GSPDP instance a directed graph G = (LL ∪ SL ∪
CL ∪ {lobj}, ALL ∪ ASL ∪ ACL) referred to as evaluation graph. This graph
represents the objective function calculation and stores intermediate results for
a current solution, allowing for an effective incremental update in case of changes
in the solution. The evaluation graph consists of four layers of nodes, which are
the location layer (LL), the SPR layer (SL), the use case layer (CL), and the
evaluation layer containing a single node lobj. The location layer contains n nodes
corresponding to the locations in V , i.e., LL = {lv | v ∈ V }. The use case layer
consists of one node for each use case Cu of each user u ∈ U , i.e., CL = {lc | c ∈
Cu, u ∈ U}, and the SPR layer contains one node for each SPR in ∈ Ru,c, for
each use case c ∈ Cu and user u ∈ U , i.e., SL = {lu,r | r ∈ Ru,c, c ∈ Cu, u ∈ U}.

There exists an arc in G from a node of the location layer lv to a node of
the SPR layer lu,r if w̃Θ(v, r) > 0, i.e., ALL = {(lv, lu,r) | lv ∈ LL, lu,r ∈
SL, w̃Θ(v, r) > 0}. A node of the SPR layer is connected to a node of the use
case layer if the corresponding SPR is an SPR of the corresponding use case,
i.e., ASL = {(lu,r, lc) | lu,r ∈ SL, lc ∈ CL, r ∈ Ru,c}. Finally, each node lc of
the use case layer is connected to lobj, i.e., ACL = {(lc, lobj) | lc ∈ CL}.

The location layer gets as input a binary vector (xv)v∈V with xv = 1 if
v ∈ X and xv = 0 otherwise, w.r.t. a solution X. Moreover, each node in G has
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an activation function α() that decides its output value which is propagated to
its successor nodes in the next layer as their input, i.e.,

αLL(lv,X) =

{
1 if v ∈ X

0 otherwise,
∀lv ∈ LL, (12)

αSL(lu,r,X) = max
(lv,lu,r)∈ALL

(αLL(lv,X) · w̃Θ(v, r)) ∀lu,r ∈ SL, (13)

αCL(lc,X) = min
(lu,r,lc)∈ASL

αSL(lu,r,X) ∀lc ∈ CL, (14)

αeval(lobj,X) =
∑

(lc,lobj)∈ACL

αSL(lc,X) −
∑

v∈X

zvarv . (15)

The evaluation graph stores all output of the activation functions from the last
evaluated solution and is therefore especially efficient for evaluating subsequent
solutions that only differ in a single location v ∈ V as not everything needs
to be calculated from scratch but just the modified value v w.r.t. the current
solution X needs to be propagated. Note that ALL needs to be updated in each
iteration of COA as the EC recalculates the surrogate suitability values w̃Θ in
each iteration with newly obtained user feedback.

Additionally, the evaluation graph also makes it possible to efficiently keep
track of how much each location v contributes to the objective value of a solution.
For this purpose, we introduce the following new notations. Let X be a current
solution and c ∈ Cu be a use case of a user u ∈ U that is satisfied (to some
degree) in X, i.e., for each r ∈ Ru,c there exists at least one location v ∈ X such
that w̃Θ(r, v) > 0. Let vmax(r,X) refer to a location in the solution for which
w̃Θ(r, vmax(r,X)) = maxv∈X w̃Θ(r, v). For the sake of readability we further
refer to w̃Θ(r, vmax(r,X)) as w̃max

Θ (r,X). Additionally, let w̃fallback
Θ (r,X) denote

the second highest suitability value for an SPR r w.r.t. to the locations in X,
i.e., w̃fallback

Θ (r,X) = max{w̃Θ(r, v) | v ∈ X \ {vmax(r,X)} ∪ {0}}. Note that
w̃fallback

Θ (r,X) is zero if X \ {vmax(r,X) is empty. Finally, let w̃min
Θ (u, c,X) =

minr∈Ru,c
w̃max

Θ (r,X).
From the definition of the surrogate objective function, it follows that the

degree to which a use case c is satisfied in a solution X is only determined by
the set of locations {vmax(r,X) | r ∈ Ru,c}. Hence, let Δ(u, c, v,X) denote by
how much the degree to which a use case c ∈ Cu of a user u ∈ U is satisfied
w.r.t. a solution X would decrease when removing v from X, i.e.,

Δ(u, c, r, X) =

{
q · Du,c · (w̃max

Θ (r, X) − w̃fallback
Θ (r, X)) w̃fallback

Θ (r, X) < w̃min
Θ (u, c, X)

0 otherwise

(16)
Δ(u, c, v, X) = max{Δ(u, c, r, X) | r ∈ Ru,c, v = vmax(r, X)} ∪ {0} (17)

Generally speaking, the removal of a location v from a solution X only has an
impact on a use case c ∈ Cu if it results in a change of w̃min

Θ (u, c,X). Additionally,
note that the GSPDP also allows cases in which one service point location can be
associated to multiple SPRs of the same use case. Such a case would for example
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correspond to situations in which a customer returns a vehicle at the same station
at which the vehicle was picked up. Therefore, the removal of a location from X
may affect a use case w.r.t. more than one of its SPRs. However, only the change
that affects w̃min

Θ (u, c,X) the most is relevant for calculating by how much the
degree to which a use case is satisfied changes.

Hence, the amount Δ(v,X) by how much the objective value of a solution
would decrease when removing location v from X is calculated as

Δ(v,X) = −zvarv +
∑

u∈U

∑

c∈Cu

Δ(u, c, v,X). (18)

Note that the time required for determining wmax, wfallback, and wmin is negligible
if the domain of the rating scale by which users can specify suitability values
is small. Moreover, Δ(v,X) does not need to be calculated from scratch every
time a location is added or removed from the solution. Let X ◦ {v} refer to
the modification of a solution, by either adding or removing a location v ⊆ V
to/from X. Then Δ(v′,X ◦ {v}) with v′ ∈ X can be determined from Δ(v′,X)
as follows:

Δ(v′,X ◦ {v}) = Δ(v′,X) −
∑

u∈U

∑

c∈Cu

Δ(u, c, v′,X) + Δ(u, c, v′,X ◦ {v}). (19)

Additionally, Δ(v,X) needs to be updated only w.r.t. use cases that are actually
affected by the modification of the solution, i.e., only if w̃max

Θ , w̃fallback
Θ , or w̃min

Θ

of a use case change. Finally, for each use case c ∈ Cu at most 2 · |Ru,c| locations
need to updated in the worst case.

6 Benchmark Scenarios

Benchmark scenarios for our experiments were generated as described in
detail in [2] and are available at https://www.ac.tuwien.ac.at/research/problem-
instances/#spdp.

The considered test instances are of two groups. One group of instances is
inspired by the location planning of car sharing systems and hence referred to
as CSS. Locations are randomly generated on a grid in the Euclidean plane.
The number of use cases for each user is chosen randomly, but each use case
always has two SPRs. To generate suitability values for locations w.r.t. SPRs,
ten attraction points are randomly placed on the grid, and each SPR is then
associated with a geographic location sampled from a normal distribution cen-
tered around a randomly chosen attraction point. The actual suitability value is
then calculated via a sigmoid function based on the distance between the SPR’s
geographic location and the respective service point location and afterwards per-
turbed by Gaussian noise. Six sets of 30 benchmark instances were generated for
CSS, considering different combinations of the number of potential service point
locations and the number of users.

The second group of instances is derived from real-world taxi trip data of
Manhattan and referred to as MAN. The underlying street network of the

https://www.ac.tuwien.ac.at/research/problem-instances/#spdp
https://www.ac.tuwien.ac.at/research/problem-instances/#spdp


12 T. Jatschka et al.

instances corresponds to the street network graph of Manhattan provided by
the Julia package LightOSM1. The Taxi trips have been extracted from the 2016
Yellow Taxi Trip Data2. For the generation of the instances all trips within the
ten taxi zones with the highest total number of pickups and drop-offs of cus-
tomers were considered, resulting in a total of approximately two million taxi
trips. The set of potential service point locations has been chosen randomly from
vertices of the street network that are located in the considered taxi zones. Each
use case of a user is associated with two SPRs representing the origin and desti-
nation of a trip chosen uniformly at random. Suitability values for locations w.r.t.
SPRs are again calculated via a sigmoid function based on the distance between
the SPR’s geographic location and the respective service point location. The
MAN benchmark group also consists of 30 instances in total with each instance
having 100 potential service point locations and 2000 users. Additionally, each
instance will be evaluated with different budget levels b [%] ∈ {30, 50, 70} such
that about b percent of the stations can be expected to be opened.

7 Computational Results

All test runs have been executed on an Intel Xeon E5-2640 v4 2.40GHz machine
in single-threaded mode. Gurobi 9.13 was used to solve the MILP models in the
OC. We compare our COA with the LNS, denoted in the following as COA[LNS],
to the COA from [2] that uses the MILP (3)–(10) as optimization core and
henceforth denoted as COA[MILP]. Since COA[LNS] always uses the current
best solution X̃∗ as initial solution, we also set X̃∗ as starting solution in the
MILP solver.

We present the results of COA by providing snapshots at different levels
of performed user interactions. In [2] we have argued that at most IUB

u =∑
r∈Ru

(|{v | w(r, v) > 0}| + 1) interactions per user are required to completely
derive all suitability values of user u ∈ U . Let Iu be the number of user inter-
actions of user u ∈ U performed within COA to generate some solution. Then,
I = 100% · (

∑
u∈U Iu/IUB

u )/m, refers to the relative average number of per-
formed user interactions relative to IUB

u over all users. Results are presented in
an aggregated way at various interaction levels ψ by selecting for each instance
the COA iteration at which I is largest but does not exceed ψ.

First, we provide some general information about the performance of
COA[LNS]. Table 1 shows for each instance group at different interaction levels
the average number of performed destroy and repair iterations niter, the average
time in seconds required for finding the best solution t∗[s], and the average total
time in seconds until the LNS terminated t[s].

We can see that the LNS terminates within 43 to 80 iterations on average and
usually terminates within three seconds for the CSS instances and within eight
1 https://github.com/DeloitteDigitalAPAC/LightOSM.jl.
2 https://data.cityofnewyork.us/Transportation/2016-Yellow-Taxi-Trip-Data/k67s-

dv2t.
3 https://www.gurobi.com/.

https://github.com/DeloitteDigitalAPAC/LightOSM.jl
https://data.cityofnewyork.us/Transportation/2016-Yellow-Taxi-Trip-Data/k67s-dv2t
https://data.cityofnewyork.us/Transportation/2016-Yellow-Taxi-Trip-Data/k67s-dv2t
https://www.gurobi.com/
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Table 1. Results of COA[LNS].

CSS

(n, m) (100, 500) (100, 1000) (200, 1000) (200, 2000) (300, 1500) (300, 3000)

ψ niter t∗[s] t[s] niter t∗[s] t[s] niter t∗[s] t[s] niter t∗[s] t[s] niter t∗[s] t[s] niter t∗[s] t[s]

40 50 0.21 0.87 62 0.96 2.08 60 0.21 0.61 76 1.37 2.31 59 0.35 0.66 75 1.32 1.99

50 51 0.27 1.09 67 1.18 2.82 67 0.48 1.05 68 1.03 2.42 65 0.50 0.94 71 1.32 2.34

60 46 0.22 1.17 58 1.09 3.09 58 0.41 1.17 59 1.01 2.74 66 0.61 1.19 65 1.47 2.96

70 47 0.25 1.39 53 0.79 3.09 50 0.30 1.27 58 1.18 3.07 64 0.56 1.22 64 1.45 3.27

80 45 0.18 1.51 48 0.44 2.78 45 0.16 1.16 50 0.59 2.80 56 0.47 1.33 59 1.14 2.98

90 43 0.10 1.48 44 0.25 2.64 45 0.17 1.19 49 0.60 2.73 46 0.22 1.17 44 0.43 2.51

MAN

b 30% 50% 70%

ψ niter t∗[s] t[s] niter t∗[s] t[s] niter t∗[s] t[s]

40 78 2.19 3.85 74 1.58 3.35 59 0.65 1.76

50 80 3.70 6.12 75 2.76 5.25 55 1.10 3.30

60 78 4.22 8.20 72 3.72 7.21 63 2.00 5.02

70 65 3.40 8.18 64 3.10 7.74 54 1.51 5.62

80 55 2.62 7.65 58 2.93 8.12 54 1.93 6.74

90 49 1.40 7.24 48 1.27 7.35 46 0.73 6.09

seconds for the MAN instances. While the total number of iterations is relatively
low, we later show in Table 2 that the solutions generated by the LNS are almost
optimal w.r.t. the presented instances. The number of iterations performed tends
to decrease as the number of performed user interactions increases while the
total runtime increases in each iteration for the MAN instance but stays almost
constant for the CSS instances. The decreasing number of iterations can be
explained by the LNS being warm-started with the so far best found solution X̃∗.
Moreover, as the number of user interactions increases, COA is able to identify
more locations relevant to the SPRs of the use cases of the users, resulting in a
higher number of arcs between the nodes in the service point layer and the nodes
in the SPR layer of the respective evaluation graph. Therefore, the number of
iterations until the LNS converges decreases while the time for performing one
iteration increases.

Next, we investigate COA runs in which we apply in each iteration both, the
LNS and the MILP, for solving the exact same GSPDP instances w.r.t. w̃Θ as well
as the initial solution X̃∗. The MILP solver is able to find optimal solution in all
cases, but at the expense of typically much longer running times. Note however
that only the solution generated by the LNS is further used for the next iteration
in COA. Table 2 shows the average percentage gaps between the objective values
of the best solutions found by the LNS and respective optimal solutions w.r.t.
f̃Θ, denoted by gapf̃Θ

[%], the average total running times in seconds of the LNS
t[s], the average times t◦M[s] needed by the MILP solver required for reaching
a solution with at most the same objective value as the solution obtained by
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Table 2. Times required by the LNS, times the MILP solver needed to obtain a
solution with at least the same quality as the solution of the LNS, as well as the
total time required by the MILP to find a proven optimal solution. Additionally, the
optimality gaps between the LNS solutions and respective optimal solutions are also
shown.

CSS

(100, 500) (200, 1000) (300, 1500)

ψ t[s] t◦
M[s] tM[s] gapf̃Θ

[%] t[s] t◦
M[s] tM[s] gapf̃Θ

[%] t[s] t◦
M[s] tM[s] gapf̃Θ

[%]

40 0.87 4.58 6.50 0.91 0.61 2.41 3.90 0.65 0.66 2.97 4.01 0.08

50 1.09 4.03 7.68 0.90 1.05 3.60 5.27 0.27 0.94 3.59 4.31 0.10

60 1.17 5.50 7.47 0.78 1.17 3.32 5.12 0.19 1.19 3.67 4.62 0.07

70 1.39 6.65 8.10 0.64 1.27 3.75 4.81 0.12 1.22 3.14 3.74 0.07

80 1.51 5.74 7.04 0.44 1.16 4.48 5.97 0.08 1.33 3.28 4.40 0.04

90 1.48 5.48 6.73 0.33 1.19 4.11 5.06 0.06 1.17 4.58 5.30 0.03

CSS

(100, 1000) (200, 2000) (300, 3000)

ψ t[s] t◦
M[s] tM[s] gapf̃Θ

[%] t[s] t◦
M[s] tM[s] gapf̃Θ

[%] t[s] t◦
M[s] tM[s] gapf̃Θ

[%]

40 2.08 21.87 37.42 2.15 2.31 32.79 92.15 1.24 1.99 26.04 85.61 0.81

50 2.82 28.03 50.51 1.97 2.42 37.61 90.11 1.07 2.34 39.84 101.52 0.57

60 3.09 35.60 59.04 1.45 2.74 36.47 126.67 0.89 2.96 38.34 130.05 0.47

70 3.09 42.95 67.34 1.74 3.07 40.48 111.96 0.84 3.27 43.41 136.93 0.36

80 2.78 43.57 69.94 1.83 2.80 40.98 120.07 0.90 2.98 43.78 137.76 0.37

90 2.64 40.09 74.98 1.37 2.73 41.33 123.32 0.78 2.51 63.56 149.78 0.37

MAN

30% 50% 70%

ψ t[s] t◦
M[s] tM[s] gapf̃Θ

[%] t[s] t◦
M[s] tM[s] gapf̃Θ

[%] t[s] t◦
M[s] tM[s] gapf̃Θ

[%]

40 3.85 67.21 326.46 2.15 3.35 17.24 53.54 0.87 1.76 6.36 10.71 0.21

50 6.12 80.31 328.53 1.36 5.25 16.76 95.43 0.59 3.30 10.20 15.29 0.11

60 8.20 131.28 368.28 1.19 7.21 24.36 89.15 0.43 5.02 14.59 21.54 0.07

70 8.18 140.34 375.46 1.06 7.74 24.86 108.59 0.35 5.62 13.22 21.73 0.06

80 7.65 160.13 414.39 1.12 8.12 27.70 108.01 0.34 6.74 18.00 24.43 0.05

90 7.24 154.44 411.55 1.29 7.35 43.43 102.70 0.27 6.09 13.03 17.46 0.03

the LNS, as well as the average total times tM[s] in seconds of the MILP solver
for determining a proven optimal solution. Bold values indicate best times w.r.t.
t, t◦M, and tM. First, we can see that the solutions generated by the LNS are
on average only about 1% worse than an optimal solution for most instance
groups. Next, the table shows that for CSS instances with a n/m ratio of 1/10,
the MILP solver needs significantly more time for finding good solutions. Note
that these instances have been designed in such a way that users behave less
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Table 3. Quality of solutions generated by COA[LNS] and COA[MILP].

CSS

(n,m) (100, 500) (100, 1000) (200, 1000) (200, 2000) (300, 1500) (300, 3000)

ψ gapL[%] gapM[%] gapL[%] gapM[%] gapL[%] gapM[%] gapL[%] gapM[%] gapL[%] gapM[%] gapL[%] gapM[%]

40 3.46 2.98 11.92 9.57 1.64 1.21 4.34 2.81 0.54 0.51 2.81 2.36

50 2.06 1.50 7.34 4.72 0.81 0.62 2.86 1.90 0.43 0.31 1.87 1.27

60 1.62 0.63 4.31 2.29 0.45 0.36 2.21 1.20 0.30 0.20 1.31 0.72

70 1.20 0.27 4.11 1.61 0.22 0.12 1.56 0.47 0.19 0.11 0.81 0.28

80 0.66 0.18 2.72 0.92 0.15 0.05 1.30 0.18 0.09 0.04 0.58 0.15

90 0.43 0.01 1.95 0.08 0.08 0.02 0.95 0.05 0.06 0.01 0.44 0.03

MAN

b 30% 50% 70%

ψ gapL[%] gapM[%] gapL[%] gapM[%] gapL[%] gapM[%]

40 8.61 3.46 3.58 3.46 1.32 3.46

50 5.14 1.88 2.19 1.88 0.77 1.88

60 3.32 1.14 1.41 1.14 0.46 1.14

70 2.53 0.63 0.86 0.63 0.25 0.63

80 2.03 0.26 0.54 0.26 0.12 0.26

90 1.77 0.10 0.33 0.10 0.05 0.10

similar resulting in more complex instances. Nonetheless, the LNS significantly
outperforms the MILP w.r.t. all instance groups. For all instance groups the
LNS requires significantly less time on average to terminate than the MILP
needs to reach a solution of the same quality as the solution obtained by the
LNS. Additionally, Table 2 especially highlights how much more time the MILP
requires for improving a solution at the same quality as the best found LNS
solution to a provable optimal solution. Moreover, further tests have shown that
most of the time the LNS is able to identify its best found solution while the
MILP solver has still not yet solved the root relaxation in the same amount of
time.

Finally, we want to compare independent COA[MILP] and COA[LNS] runs,
and thus the impact of the in general slightly worse intermediate solutions of
the LNS on the overall results of the two COA variants. For this purpose Table 3
shows for each interaction level the average optimality gaps between the best
found solution during the optimization to an optimal solution w.r.t. the original
objective f for COA[LNS] (gapL[%]) as well as COA[MILP] (gapM[%]).

The table shows that small differences in the solution quality w.r.t. f̃Θ trans-
late to slightly larger differences w.r.t. f . With the exception of the MAN
instance group with b[%] = 30, the solutions generated by COA[LNS] are usu-
ally at most 3% off from the values obtained by COA[MILP]. In most cases, the
average differences are around 1% or less. Hence, in general it can be concluded
that the LNS substantially outperforms the MILP in terms of computation time
while still being able to generate almost optimal solutions.
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8 Conclusion and Future Work

We presented a large neighborhood search (LNS) to be used as optimization
core in a cooperative optimization approach (COA) for the general service point
distribution problem (GSPDP) in mobility applications. While the LNS follows
the traditional destroy and repair principle, a major challenge was to (a) effec-
tively guide the repair heuristic to produce promising new solutions and to (b)
efficiently calculate the surrogate objective function for modified solutions in an
incremental way. Both was achieved by introducing the evaluation graph, which
stores relevant intermediate results allowing efficient updates when stations are
added to or removed from the current solution. In particular, the evaluation
graph provides an effective way to keep track of how much impact each location
in the solution has on its respective objective value. The efficient update pos-
sibility also allows to consider a larger amount of locations during the destroy
procedure. The performance of the LNS within COA was tested on artificial
instances as well as instances derived from real-world data and was compared
to the original COA with its MILP-based optimization core. Results show that
at the cost of a slight deterioration of usually not more than one percent in
the quality of the solutions, the LNS can outperform the MILP w.r.t. to com-
putation times by orders of magnitudes. In future work it seems promising to
also consider other metaheuristic approaches, such as an evolutionary algorithm
that uses the evaluation graph for efficiently recombining solutions. Moreover,
the GSPDP it is still a rather abstract problem formulation, and it would be
important to extend it as well as the solving approach to cover further relevant
practical aspects such as capacities of stations and time dependencies of users.
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Sta. Maŕıa Tonantzintla, 72840 Puebla, Mexico
{alvarolopez,grodrig,allopez}@inaoep.mx

Abstract. The influence maximization problem (IM) is an open prob-
lem in graph theory, and also is identified as a NP-hard, so there has
been a lot of developments in order to solve or approximate a solution.
In this paper, we present an approach for pointing to a solution of the IM
problem, by leveraging k-shell decomposition analysis, and combining it
with a Physarum-inspired model. Additionally, this procedure was tested
on five data-sets both synthetic and real, showing encouraging results.

Keywords: Physarym polycephalum · Influence maximization · Social
networks

1 Introduction

Social media is a global phenomenon that changed our lives forever, altering the
way we perceive the world and also has an important influence in our opinions,
ideas, and decisions. They are an important and fundamental way of expressing
ourselves to the world. For 2020, it is estimated that 3.8 billion of users worldwide
are using actively social media, that is the 84% of overall web population [1].

Studying social media is an important field of interest to researchers of various
areas such as sociology, psychology, mathematics and computer science. The
study of social media is important because this is an information goldmine for
advertisers and reaches a very wide audience, providing additionally a lot of
personal user data.

One successful strategy adopted for dissemination of information and prod-
ucts are the so-called influencers. They are Internet personalities, quite popular
with a lot of followers, and consequently called “opinion leaders”. The concept
of influencer is created around the idea of influential marketing, which identifies
people with a lot of influence over potential buyers, and all the marketing is
constructed around these influencers [2].

From a computer science viewpoint, the identification of influencers is an
instance of a bigger problem, called influence maximization on graphs (IM). This
problem is an open problem in graph theory [7], and is identified as a NP-hard
problem (a problem whose solution can not be computed with a polynomial-time
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algorithm), so there have been several proposals in this area, with new algorithms
and heuristics for approximating a solution [3]. Note that those proposals have
limitations, either with the size of the instances that they can solve or with the
graph topologies.

One of the newest and interesting approaches is that based on a biological being
and its behavior in the natural habitat. This organism is Physarum Polycephalum,
and scientists are interested on it because of its intelligent behavior, lack of a central
brain, and also given that can solve a maze to find food and nutrients [4]. Also, it
can optimize energy consumption when transfering nutrients in its body, so it can
solve problems like the optimal traffic network problem [5].

In this paper, we present an approach for solving the IM problem, by lever-
aging k-shell decomposition analysis, and combining it with a Physarum Poly-
cephalum model. The k−shell decomposition is an useful technique because it
performs an initial selection of nodes with a high degree (and potentially high
propagation ability), and then the Physarum Polycephalum model is employed
for evaluating nodes and determines which nodes are the most influential.

The contributions of this paper are: a new procedure for obtaining the influ-
ential nodes in a social network graph by using k−shell decomposition in con-
junction with a Physarum model. Additionally, this procedure is tested on both
synthetic and real data-sets. This is of importance as a part of an approach for
solving the IM problem using a bio-inspired algorithm.

This paper is organized as follows. Section 2 shows related work for both the
IM problem and developments with Physarum Polycephalum. In Sect. 3, we show
the theoretical basis of the IM problem, k−shell decomposition, the Physarum
model, and the degree index. The proposed method is shown and expanded on
Sect. 4. Section 5 details the data-sets, experiments and results of our approach.
Finally, Sect. 6 includes our conclusions and future work.

2 Related Work

When first computer networks were created, their high potential for commu-
nicating with people was perceived, since distance was no longer a limitation
for communicating with friends and relatives overseas. In particular, the mas-
sification of the Internet in 1995 [6] catalyzed the development of new online
platforms for communicating with friends, one of them was the social networks.

A social network service is an Internet platform, employed for creating net-
works or relationships among people with similar interests. In addition, such
platforms allow to create friend lists and meet new people. Examples of social
networks are Facebook, Twitter, QQ, or TikTok. A social network can be mod-
eled as a graph, since this is based on establishing relations among people, and
they, at the same time, can also have their own friends. So, we can build a huge
graph of people connected by their relationships. Each node is a person, and each
vertex represents a given relation (e.g. friendship, or con-generic) between two.
Open problems in social networks [7] are: community detection, recommendation
systems, trust prediction, opinion mining, and influence maximization.
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Influence maximization (IM) was formulated by Kempe et al. [3], as a combi-
natory optimization problem (i.e., we need to search a near object from a finite
object set), also proposing a greedy algorithm for solving it. This algorithm is
initialized with an empty seed set, and then searches for nodes that maximizes
influence. The downside of this algorithm is that on big graphs, computing time
grows fast, because of the number of calculations needed. Kempe et al. identified
two diffusion models: Independent Cascade (IC) and Lineal Threshold (LT) [8].

Leskovec et al. [9] proposed a new algorithm called Cost Effective Lazy For-
ward (CELF), and it promised faster speed (marginally) on solving the problem,
compared to the traditional greedy algorithm. This algorithm is based on the
modularity function of the diffusion model, so it can select nodes faster and more
precisely. Also, the algorithm can prevent unnecessary calculations for diffusion,
so is faster than the traditional greedy algorithm [10]. CELF also has its limi-
tations, so Goyal et al. [11] proposed an improvement called CELF++, showing
an increase of 35–55% of performance.

On other line, scientists have been trying to solve IM from an heuristic app-
roach with algorithms such as Local Directed Acyclic Graph (LDAG), proposed
by W. Chen et al. [12] This algorithm only works with LT diffusion model, but
the authors argue that an improvement in time is achieved, decreasing it from
hours to seconds (or from days to minutes).

Other important heuristic is PageRank, developed by Larry Page for the
Google search engine [13], adapted for the IM problem by Li Q et al. [14], calling
it Group-PageRank. This algorithm only works on graphs with IC diffusion
model. The original idea of PageRank is that each node of the graph is given a
score, according to a probability of being activated by a user on the web [10].

The Physarum Polycephalum approach is a recent development in bio-
inspired computation. Adamatzky et al. [16] proposed one of the earliest prob-
lems solved by this model, which was facing the optimization of traffic network.
But also Physarum Polycephalum model has been explored for solving other
problems such as solving mazes [17], the Steiner tree problem in networks [18],
the graph coloring problem [19], among other graph-related tasks [20].

As part of our bio-inspired optimization Physarum-based approach, there are
some related works, such as that proposed by Gao C. et al. [21], who developed
a new method for obtaining the centrality degree of a node, which is important
for establishing how likely a node is going to be influential in a social network.
This new centrality degree is called Physarum centrality, based on properties
of Physarum Polycephalum, and also is supported by k−shell decomposition for
identifying nodes. This algorithm works on weighted and unweighted networks.

3 Theoretical Framework

A social network is a structure formed with entities and a group of 2−way links
among them (for example, friendship or family relationships). A social network
can be modeled as a directed or undirected graph G, weighted or unweighted.
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3.1 Influence Maximization

An open and important problem in graph theory is influence maximization (IM)
[7]. This problem has been studied and showed to be NP-Hard [10], indicating
that is a problem that does not have a verification algorithm in polynomial time.

A social network is studied and represented as a graph G = (V,E), where
V is the set of nodes in G (e.g. users), E is the set of edges in G (the relation-
ships between the users). The aim is to find the set of users with the maximum
influence in G [10].

IM is an optimization problem, which consists in maximizing the spread of
information or influence in a social network graph. Formally speaking [10]:

Definition 1. Given a social graph G = (V,E) and a user set S ⊆ V , a diffu-
sion model M captures the stochastic process for S spreading information on G.
Influence spreading of S, denoted as σG,M (S), is the number of expected users
influenced by S.

Definition 2. Given a social graph G = (V,E), a diffusion model M and a pos-
itive integer k, influence maximization selects a set S∗ of k users of V as a seed
set for maximizing influence diffusion, such as S∗ = arg maxS⊆V ∧|S|≤k σG,M (S).

For the IM problem there are various diffusion models, but the most common
are Independent Cascade (IC) and Lineal Threshold (LT). The aim of these
models is to associate each user in G a status (i.e. active or inactive) and the
conditions of activating or infecting them. Independent Cascade (IC) states that
there is a probability of infection for each edge, namely Pij , where P is the
probability of i infecting j. Once j is infected, it can infect neighbours on the
next step, according to the probability assigned to next edge. Linear Threshold
(LT) is different, because each node is infected if neighbour nodes are infected
by reaching a threshold, according to their weights [22].

3.2 K-shell Decomposition

K-shell decomposition is a technique for decomposing and studying the structure
of large graphs. This method is also noted for showing the importance of certain
nodes in regards of their hierarchies.

The following concepts are basic for this decomposition, as given by [23].

Definition 3. The k-Core of a graph G is the maximal subgraph of G having
minimum degree at least k.

Definition 4. The k-Shell of a graph G is the set of all nodes belonging to the
k-Core of G but not to the (k+1)-Core.

The k−shell index of a node is denoted as Ks.
Kitsak et al. [24] proposed the use of k−shell decomposition as a means

for identifying node spreaders in a graph network. So, the higher the k−shell
index of a node, the more it can spread information in the network. The k−shell
decomposition works better on static networks, where topologies do not change
over time [23].
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3.3 Physarum Model

Our model for Physarum Polycephalum is based on the works of Z. Cai et al.
[5] and Gao C. [21]. This model simulates the foraging behavior of Physarum
Polycephalum. Its body is a single cell made up of interconnected tubes forming
networks, that can stretch from centimeters to meters, and can store and recover
information when searching for food. [15]. On laboratory experimental setups,
the model consists of a Petri dish, a map (usually made of agar), external food
sources (usually oat flakes) and a live Physarum [16].

Physarum Polycephalum consists of the following components [5]:

1. Plasmodium and Myxamoebas: The plasmodium is the moving part of
the organism, and the tentacle-shaped myxamoebas are the deformed part of
the plasmodium. They are used for foraging and consuming food and nutri-
ents, and expand and contract accordingly.

2. Nucleus: The nucleus is the central and critical part of the organism, which
moves and feeds around it.

3. Nutrients: They are the source of energy, and come from external food
sources.

These all parts work collaboratively in order to solve problems, and the solv-
ing process includes two stages: food searching, and feeding [5]. The first stage is
when the myxamoebas start growing around the nucleus in order to find external
food sources. The second stage is when the myxamoebas contract in order to
transport all the found nutrients in its body. In terms of optimization, these two
stages correspond to exploration and exploitation of the search space.

Multiple myxamoebas m grow around the nucleus, by expanding in multiple
directions [5]. This growth is constrained by the topology of its environment, and
in our case the topology of the social network graph, i.e. its adjacency matrix,
which is a time-varying structure, denoted as follows:

μ = [μij(t)]n×n (1)

where μij = 1 when there is a direct edge from node i to j, or μij = 0 otherwise.
Another important part of our model is the nutrient concentration matrix

on the edges, which is also a time-varying structure, and defined as [5]:

τ(t) = [τij(t)]n×n (2)

There are two operations related to nutrient consumption, namely the enhancing
operation (Δ > 0) and the decreasing operation (σ > 0). The first one is used
to simulate the nutrient transportation through the Physarum body, and the
latter is intended to simulate the nutrient consumption by other life activities
[5]. The nutrient concentration on each edge is updated at time t and m number
of myxamoebas, with the following formula:

τij(t) = τij(t − 1) +
m∑

k=1

μk
ij(t)Δ

k
ij(t) −

m∑

k=1

σk
ij (3)
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3.4 Node Selection by Propagation Capability

One detail to observe is that node selection is correlated with identifying the
importance of each node or edges on the social network graph. There are various
node indices for doing this selection, namely the degree of a node, the impor-
tance degree index, the closeness index, the betweenness degree index, and the
redundancy rate index, among others [22].

In our research, we employ the betweenness index, since this considers the
myxamoebas passing through node i and reaching outer nodes, and that is criti-
cal for information spreading. Betweenness measures the extent to which a node
lies in the path between others, so it can measure the influence a node has over
the spread of information through the network [28]. The betweenness index takes
into account the number of myxamoebas passing through node i, so the more of
them go by, the more important node i is.

Let λjk be the number of myxamoebas from node j to k passing through a
node i. The betweenness index Bti of a node i can be calculated as [26]:

Bti =
n∑

j=1

n∑

k=1

λjk (4)

In a social network with n nodes, at most n − 1 neighbor nodes can connect
to a node i, so the betweenness degree index of a node i is calculated by:

Bti =
Bti∑n
j=1 Btj

(5)

In consequence, the total betweenness index of all the myxamoebas can be
calculated by:

Btmi =
m∑

k=1

Bti (6)

4 Proposed Method

Our proposed method follows most of the steps proposed by Gao C. et al. [21], in
which they apply a Physarum model based on a Poisson equation, and after that,
they use k−shell decomposition for calculating the called Physarum Centrality.
However, we employ the method used by Z. Cai et al. [5], in which the most
important part of the model are the growth of the myxamoebas and the nutrient
consumption by the organism.

The first step is to initialize the procedure, having the social network graph
G = (N,E) as the only input parameter. So the adjacency matrix μ is defined
in this first step (see expression (1)). Then, thereafter there is a n × n matrix,
with n being the total number of nodes in the social network graph G.

The nutrient matrix concentration τ at starting time is a zero matrix of size
n × n (with n the total number of nodes in the social network graph G), since
at the start time there is no nutrient flowing through the body of the organism.
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The increment (Δ) and decrement (σ) parameters are also initialized, with
the constraints of Δ > 0, σ > 0, and following the rule of thumb Δ > σ, given
that the nutrients consumed should be higher than the nutrients consumed for
growing and foraging.

Once all the parameters are initialized, we proceed to compute the k−shell
decomposition on the social graph G, for obtaining the Ks value for each node.
This process basically consists on the following [25]:

def kShe l l (G) :
h = G. copy ( )
i t = 1
tmp = [ ]
buckets = [ ]
while ( 1 ) :

f l a g = kShe l l che ck (h , i t )
i f ( f l a g == 0 ) :

i t += 1
buckets . append (tmp)
tmp = [ ]

i f ( f l a g == 1 ) :
node se t = kShe l l f i n d nod e s (h , i t )
for each in node se t :

h . remove node ( each )
tmp . append ( each )

i f (h . number of nodes ( ) == 0 ) :
buckets . append (tmp)
break

return buckets

Once each node has its Ks value, the nodes with higher index value are
selected to function as nucleus and grow myxamoebas, so the next step is grow
the myxamoebas on the whole social network graph G. Each nucleus can grow m
number of myxamoebas on it, depending on the topology of the social network
graph G. This m number of myxamoebas for each nucleus can be determined as
follows:

m =

⎧
⎨

⎩

Ks, if Ks < 5⌈
Ks

2

⌉
, otherwise

(7)

where Ks is the k−shell decomposition index value of the selected node acting
as the nucleus. The idea is to explore as many connecting paths as possible when
the nodes are not highly connected but administer resources when the node is
heavily connected.
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For growing the myxamoebas, a recursive function is applied, with the fol-
lowing parameters: the adjacency list μ, the node acting as nucleus, the number
of m myxamoebas, and an array used for keeping track of the visited nodes. This
function is defined as follows:

def growMyxo(adjList , node , totalMyx , visited =[]):
neighbours = getNeighbours(node , adjList)
if (totalMyx >=len(neighbours )):

selected_nodes = neighbours
else:

selected_nodes = random.sample(neighbours , totalMyx)
for i in range(0,len(selected_nodes )):

if (not selected_nodes[i] in visited ):
visited.append(selected_nodes[i])
growMyxo(adjList , selected_nodes[i], totalMyx ,
visited)

return visited

This function returns all the visited nodes by the myxamoeba while searching
for food, and the nutrient matrix is updated according to the expression (3).

The feeding stage of the organism consists of a loop iterating over the m
myxamoebas while updating the nutrient concentration matrix with (3). The
more myxamoebas pass through a node, the higher concentration of nutrients
this will have, and that will be reflected on the nutrient matrix τ . After the
feeding stage, the betweenness degree index of each node of the myxamoebas
grown on the selected nucleus will be calculated using expression (5).

For output of the procedure, the total betweenness degree index for all the
nodes on the social network graph G is calculated by formula (6).

5 Experiments and Results

Five experiments were done in order to validate the proposed approach, using
two synthetic examples and three real data-sets from social network graphs.

For running the experiments, the number of myxamoebas assigned to each
social graph was defined by (7). For each data-set, the particular defined value
is detailed later on. The total number of iterations for the feeding stage was set
to 10. Since each myxamoeba grows differently in each run, the method was run
ten times, and then average and standard deviation were calculated.

5.1 Synthetic Data-Sets

The first synthetic graph is based on the graph used in [21] and this has 15 nodes
and 21 edges, with a density value of 0.2. The reported maximum degree of a
node is 6, shown in Fig. 2. For this graph, the m value was set to 3.

To illustrate the process of growing myxamoebas to explore the first graph,
Fig. 1 includes two examples of sub-graphs obtained when taking two different
nodes as nucleus.
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Fig. 1. Examples of growing myxamoebas on graph of Fig. 2. The graph on the left
had node 11 as nucleus, and the graph on the right took node 5 as nucleus.

The results of running our method on the first synthetic graph are shown on
Table 1. For comparison, we report also the Physarum centrality index (Ckp) as
described in [21]. The Top-4 nodes selected by the Physarum centrality are the
same as those selected by our method, showing that nodes 7, 11, 12 and 5 have
the potential of spreading the information the most in the social network graph.
Also the table shows that the nodes with the least propagation ability are again
the same (nodes 0, 1, 3 and 2).

Fig. 2. Network with 15 nodes and 21 edges. After k-shell decomposition (Ks = 3),
nodes 5, 7, 11 and 12 are selected

The second synthetic graph is based on the graph employed in [8], having
8 nodes and 20 edges, with a density value of 0.444. The reported maximum
degree of a node is 8, as shown in Fig. 3. For this second synthetic data-set, the
value of m was set to 2.
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Table 1. Selected nodes for graph shown in Fig. 2 ordered by betweenness degree index
(B.d.i.)

Node B.d.i. (avg.) Std deviation Ckp

5 0.350 0.018 0.265

7 0.350 0.018 0.113

11 0.350 0.018 0.182

12 0.350 0.018 0.093

8 0.347 0.018 0.052

9 0.347 0.018 0.031

10 0.340 0.019 0.038

13 0.320 0.017 0.064

14 0.310 0.023 0.011

6 0.241 0.029 0.024

4 0.196 0.029 0.084

0 0.177 0.026 0.011

1 0.133 0.026 0.011

3 0.114 0.024 0.011

2 0.077 0.035 0.011

The results of running our method on the second graph are shown in Table 2.
As we can notice, nodes 0 and 1 are reported as those having the best capability
to spread information, and they are also the nodes selected by the CELF algo-
rithm in [8]. The topology of this graph shows that nodes 0 and 1 are the best
spreaders, since this is pretty clear because they are in the center and have the
most outer connected nodes.

Fig. 3. Network with 8 nodes and 20 edges. During the k-shell decomposition, all nodes
(0, 1, 2, 3, 4, 5, 6, 7 and 8) are selected with Ks = 2
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Table 2. Selected nodes for graph shown in Fig. 3 sorted by degree index (B.d.i.)

Node B.d.i. (avg.) Std deviation

0 1.086 0.018

1 1.086 0.018

4 1.024 0.026

8 1.024 0.026

2 0.986 0.038

6 0.971 0.024

3 0.933 0.025

7 0.986 0.038

5 0.971 0.024

9 0.933 0.025

5.2 Real Data-Sets

The first real data-set is the Zachary’s karate club network of 1977, containing
the social ties between the members of a university karate club [27]. This graph
consists of 34 nodes, 78 edges and a density value of 0.139037. The reported
maximum degree of a node is 17. This graph is shown in Fig. 4. Using k-shell
decomposition nodes 1, 2, 3, 4, 8, 9, 14 31, 33 and 34 are selected with Ks = 3.
In consequence, the value for m was set to 3.

The Top-10 results for the karate club network are shown in Table 3, and
these are similar to those reported in [21]. They show that nodes 1, 34, 3, 33 and
14 (in bold in the table) have the greatest Physarum centrality index, while our
method shows the same nodes (except by node 14) in addition of nodes 2 and
4, are those with highest betweenness degree index.

Fig. 4. Zachary’s karate club social network graph.

The second real data-set is the bottlenose dolphins social network, containing
a list of links, where each link is a frequent association between dolphins [27].
This graph consists of 62 nodes, 159 edges and a density value of 0.0840825. The
reported maximum degree of a node is 12. This graph is shown in Fig. 5. After
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Table 3. Top-10 nodes for the karate club graph, sorted by betweenness degree index
(B.d.i.)

Node B.d.i. (avg.) Std deviation

34 0.403 0.012

33 0.403 0.015

2 0.403 0.012

3 0.403 0.012

4 0.403 0.015

1 0.403 0.006

28 0.389 0.029

24 0.389 0.030

26 0.374 0.017

32 0.374 0.034

k-shell decomposition, thirty six nodes were selected with Ks = 3 (i.e. nodes 1,
2, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 29, 30, 31, 34, 37, 38, 39,
41, 42, 43, 44, 46, 48, 51, 52, 53, 55, 58 and 60), so also for this graph the value
for m was set to 3.

This data-set, the dolphin social network graph, showed an interesting behav-
ior. The results of running our method on this graph are summarized in Table 4.
After growing the myxamoebas on all the thirty six nodes selected after the k-
shell decomposition, acting as nucleus and performing the feeding stage, the list
of possible influential nodes narrowed down to nodes 15, 21 and 46. An imple-
mentation of the CELF algorithm applied on this data-set, selected nodes 15
and 46.

Fig. 5. Bottlenose dolphins social network graph.

The third real dataset is the public figures network, gathered from Face-
book [27]. This graph consists of 11.6K nodes, 67K edges and a density value
of 0.00100253. The reported maximum degree of a node is 326. Using k-shell
decomposition, 170 nodes were selected with Ks = 41. In consequence, the value
for m was set to 22.
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Table 4. Top-10 nodes for the dolphin graph, sorted by betweenness degree index
(B.d.i.)

Node B.d.i. (avg.) Std deviation

15 0,719 0,001

21 0,719 0,001

46 0,719 0,001

38 0,718 0,004

30 0,714 0,003

34 0,713 0,007

43 0,712 0,006

48 0,712 0,008

41 0,711 0,008

39 0,711 0,010

The implementation of the CELF algorithm applied to this data-set, selected
191 nodes. Our method selected 2963 nodes as top ranked, with a recall of 122
(64%) of those selected by CELF. The range of standard deviation is between
0.006 and 0.000004. Among the 10 runs of our proposed algorithm, the ninth
showed the best behavior and the second showed the worst. It is important to
note that because of the non-deterministic nature of the approach, this might
vary over time.

5.3 Discussion

The experiments on synthetic data-sets allow to verify that the approach was
working adequately. The further validation on real data-sets led to similar results
as previously reported or as identified by a previous algorithm. In all the data-
sets, the standard deviation was relatively small, indicating that most of the
executions tend to converge to the same set of nodes.

The approach starts with a k-shell decomposition, which has a complexity
of O(n), with n the number of vertices of the social media graph. Overall the
proposed approach has a complexity of O(μn3), where μ is the total number of
grown myxamoebas, and n is again the number of vertices of the social media
graph. The adjacency matrix is of size n × n, i.e. a square matrix representing
the edges between all the n vertices.

Also, our algorithm has a straightforward implementation for the experi-
ments, so we employed big matrices for doing all the computation, and this
constrains the size of the data-sets. One improvement can be handling graphs as
linked lists, which would demand less memory and work with larger data-sets.

6 Conclusion and Future Work

In this paper, a method for obtaining the influential nodes in a social network
graph is proposed, by using k-shell decomposition and by simulating the behavior



A Physarum-Inspired Approach for Influence Maximization 31

of a Physarum Polycephalum. The growth of its myxamoebas and its nutrient
consumption are illustrated and used in our method, in order to filter which
nodes are the most influential. After simulating the food searching and feeding
stage, the method will help determine which nodes are the most influential in
the social network graph. For this, the betweenness degree index and the myx-
amoebas that pass through a particular node are considered. The experiments
showed that the approach was working well and reached similar results as those
reported in earlier works.

The proposed method has to be further tested on larger graphs, but since IM
is a NP-hard problem, we might need to recur to improved computing infras-
tructure, in order to operate on such graphs. Also a further complexity analysis
has to be done, in order to have a better idea of the efficiency and applicability
of the proposed method.
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{mohamed-amine.ouberkouk,jean-paul.boufflet,aziz.moukrim}@hds.utc.fr

Abstract. Every year, wildfires accentuated by global warming, cause
economic and ecological losses, and often, human casualties. Increasing
operating capacity of firefighter crews is of importance to better face the
forest fire period that yearly occurs. In this study, we investigate the real-
world firefighters timetabling problem (FFTP) of the INFOCA institu-
tion in Andalusia (Spain) with the aim of increasing operating capacity
while taking into account work regulation constraints. We propose an
Integer Linear Programming model and an Adaptive Iterative Destruc-
tion Construction Heuristic solution approache to address the problem.
We report on experiments performed on datasets generated using real-
world data of the INFOCA institution. The work was initiated as part
of the GEO-SAFE project (https://geosafe.lessonsonfire.eu/).

Keywords: Timetabling · Firefighters · ILP · Adaptive
destruction/contruction heuristic

1 Introduction

Timetabling problems [1,7,9] involve allocating resources within time slots con-
sidering a predefined planning horizon while respecting precedence, duration,
capacity, disjunctive and distribution (spacing, grouping) constraints. Staff plan-
ning aims at building timetables so that an organization can meet demands for
goods or services. For each staff member, working and rest days are scheduled
in a timetable while taking into account work regulation constraints and local
regulation constraints, if any.

The first works on personnel scheduling can be traced back to Edie’s work
on traffic delays at toll booths [5]. Since then, scheduling algorithms have been
applied in a lot of areas like transportation systems (airlines, railways), health-
care systems, emergency services (police, ambulances), call centers and other
services (hotels, restaurants, commercial stores).

Comprehensive literature reviews covering a wide area of problems with many
references on personnel scheduling can be found in [6,10]. The works are classified
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by type of problem, application area and solution method. As an example, the
nurse rostering [4] is a scheduling issue in health systems. The objective is to
build a daily schedule for nurses with the aim of obtaining a full timetable over
few weeks for the institution. The rosters should provide suitably qualified nurses
to cover the demand of working shifts arising from the numbers of patients in
the wards. The resulting schedule should comply with regulatory constraints
and should ensure that night and weekend shifts are fairly distributed while
accommodating nurse preferences.

Staff scheduling is known as crew scheduling in transportation systems areas
such as market/airlines, railways, mass transit and buses [2]. For these problems,
there are two common features. The first is that both temporal and spatial
constraints are involved. Each task is characterized by its starting time and
location, and, its ending time and location. The second is that all tasks to be
performed by employees are determined from a given timetable. The tasks are
determined following a decomposition of the different duties that the company
must ensure within a planning period. A task may be assuring a flight leg in
airlines or ensuring a trip between two segments in a train.

The firefighters problem that we address consists in providing the INFOCA’s
daily schedule within a fixed planning horizon for a number of firefighter crews.
Each firefighter is assigned to a crew for a year. These firefighters crews can be
assigned to several types of shifts such as helicopter work, night work, work on
demand (24 h on call). The planning period is the high-risk period from 1st June
to 15th October where wildfires yearly occur (forest fire period).

The objective is to build a schedule for every crew of firefighters, hence a
full timetable that covers all the forest fire period. The aim is to maximize
the overall operating capacity while respecting the minimum demands for each
shift, the regulatory constraints imposed by the institution as well as other soft
constraints of good practice in order to make the schedules adequate to the
preferences of the institution. The constraints of good practice relate to the
grouping of assignments of same shifts within consecutive days, the allocation
of compensations after rest days while maximizing of the number of operational
crews a day.

The application of various metaheuristics to employee scheduling problems is
presented in the reviews mentioned above. In this study, we choose to investigate
an algorithm mainly based on an Adaptive Iterative Destruction/Construction
Heuristic (AIDCH) [3]. An initial feasible solution that only complies with the
minimum demands is build first by applying a constructive heuristic. Then, the
AIDCH approach that we propose aims at increasing the overall operating capac-
ity by first partly destroying a solution, next it is completed by inserting as many
crews as possible, that can be easily done through a Destruction/Construction
Heuristic approach. While completing the solution to increase the overall opera-
tional capacity, we make work together adaptive diversification mechanisms and
parallel independent searches to avoid to be trapped in a local optimum.

In this paper we propose an Integer Linear Programming (ILP) formula-
tion together with an Adaptative Iterative Destruction Construction Heuristic
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(AIDCH) to address the firefighters timetabling problem (FFTP) of the INFOCA
institution. The ILP is designed for modeling purposes and with the aim of giv-
ing lower bounds useful for the tuning analysis of the AIDCH solution approach.
The Adaptive Iterative Destruction/Construction Heuristic is composed of an
adaptive diversification mechanism at the destruction phase followed by an adap-
tive construction phase, based on a Best Insertion Algorithm, which performs
parallel independent searches. The initial parameter values are adjusted by the
algorithm according to the solution progress throughout the resolution process.
The AIDCH is appropriate to generate solutions of good quality for the larger
instances. The remainder of the paper is organized as follows. Section 2 provides
a description of the FFTP, then the ILP formulation is presented in Sect. 3.
The proposed AIDCH solution approach is described in Sect. 3. Computational
experiments performed on a benchmark that we generated using real data of the
INFOCA firefighter institution are reported in Sect. 4. Conclusion and future
works are given in Sect. 5.

2 Problem Description

In this section we present a global overview of the real-world firefighter planning
problem that we address. We gives the set of daily working shifts to be consid-
ered, we introduce the hard constraints to be respected and the soft constraints
used to assess the quality of a solution.

The notations used for the types of shifts and their brief descriptions are the
following:

(T12) from 8 am to 4 pm at fire station, regular daily shift;
(T16) from 3 pm to 10 pm at fire station, regular daily shift;
(H) from 8 am to 4 pm at fire station, regular daily shift, assigned to a helicopter;
(N) from 10 pm to 8 am at fire station, regular night shift;
(G7) from 7 am to 3 pm at fire station, stand-by to face instantly any extra

urgent request;
(G24) 24 h guard, crew stay at home but may be mobilized to face any urgent

situation;
(A3) from 8 am to 6 pm at fire station (or elsewhere) for training purposes;
(R) rest day;
(C) additional compensation day granted when a number of hours have been

worked.

For the considered firefighters timetabling problem, the hard constraints
relating to work regulation and to local regulation of the INFOCA institution
are the following:

(H1) one shift a day: a firefighter crew can only be assigned to one shift a
day;

(H2) minimum demands: each daily shift has a minimum demand of fire-
fighter crews;
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(H3) forbidden shift successions: some shift assignments on consecutive days
are forbidden;

(H4) maximum workload: over the planning horizon, a maximum workload
for every crew should not be exceeded;

(H5) compensation: compensation days are granted according to the hours
worked, they should be used;

(H6) maximum consecutive working days: every firefighter crew have a
maximum number of consecutive working days.

Some consecutive shift assignment are forbidden for a crew (H3), for instance
a night shift ends at 8 am and cannot be followed by an helicopter shift which
begins at 8 am, this forbidden consecutive shift assignment is denoted as (N,H).

Soft constraints are constraints of good practice that should be satisfied
as best as possible. The violation of any soft constraint induces a penalty. A
weighted sum of the penalties measures the quality of the solution produced.
For the studied firefighters timetabling problem, the soft constraints are the
following:

(S1) shift grouping: assignments of a crew to the same shift should be grouped.
Each shift assignment change between two consecutive days is penalized;

(S2) same start time: start times should be the same whatever the working
shifts over consecutive working days. Each starting time change for working
shifts between two consecutive days is penalized;

(S3) compensation assignments: compensation day assignments should be
right after the rest days, the aim is to allow firefighters to have a short vacation
during the planning period. Each assignment of compensation not right after
rest days is penalized.

(S4) period fairness: for the sake of fairness the workload should be bal-
anced between the crews over the planning period. The unbalance of workload
between crews should be minimized;

(S5) preferences: each crew assignment to an undesired shift is penalized;
(S6) evenly balance extra daily shifts: assigning of extra crews to the dif-

ferent shifts should be balanced each day. The unbalance on extra assignment
to different shifts should be minimized each day.

Provided the minimum demand (H2) is respected, the idea beyond (S6) is to
ensure a balance between shift assignments. If we can assign three extra crews
for a day, we had better to assign a crew to three different shifts to balance
operating capacity rather than assigning the three crews to a same shift.

3 ILP Model for FFTP

In this section we present the ILP model for minimizing the criteria detailed in
Sect. 2. The ILP has a twofold objective, first a modeling purpose for investi-
gating the problem we face, second we aim at obtaining optimal values whether
possible for the smaller instances within a reasonable time limit (or lower/upper
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bounds). This allows to get reference values to make comparisons with the
AIDCH solution approach that we propose. We present data and parameters
prior to the decision variables, we then give the model.

The data and parameters are the following:

Days set of days of the planning period, a day d ∈ [1, · · · , ld], size nd;
Shifts set of types of shifts, a shift s ∈ {T12, T16, H, N, G7, G24, A3, R, C},

size ns;
Crews set of firefighter crews, size nc;
ld last day of the planning period;
F set of couples of forbidden consecutive shift assignment, e.g. (N,H) ∈ F ;
rs daily minimum demand for a working shift s ∈ {Shifts \ {R, C}};
ls duration of shift s (length in hours);
L maximum workload for any crew over the planning period;
ts start time of shift s;
woc operating capacity weight;
wsg shift grouping violation weight (S1);
wsst same start time change violation weight (S2)
wca compensation assignments violation weight (S3);
wp preferences violation weight (S5);
pcsd if crew c does not prefer to work on shift s on day d pcsd = wp, zero otherwise

(S5);
MAXd maximum number of consecutive work days for a crew (H6);
WHC number of worked hours giving a compensation day.

The primary boolean variables are Xcsd, if the crew c works on shift s in day
d then Xcsd = 1, zero otherwise. The secondary boolean variables used in the
model are the followings:

αcss′d = 1 if crew c works on shift s in day d and works on a different shift s′ in
day d + 1, zero otherwise;

βcss′d = 1 if crew c works on shift s in day d and works on a different shift s′ in
day d + 1 with ts �= ts′ , zero otherwise;

γcss′d = 1 if the crew c works on shift s in day d with s �=′ R′ and is assigned to
shift s′ =′ C ′ in day d + 1, zero otherwise.

αcss′d = 1 if a shift change violation occurs (S1, shift grouping), βcss′d = 1 if
a working time change violation occurs (S2, same start time) and γcss′d = 1 if a
compensation assignment violation occurs (S3, compensation assignment).

The integer variables used in the model are the followings:

λd daily difference between the maximum number of assignable crews (nc) and
those assigned;

δc total number of worked shifts for crew c over the planning period;
θc total working time of crew c over the planning period;

ρcd number of worked hours of crew c from the first day to day d;
φcc′ number of shift assignment difference between the crews c and c′ (S4);
ϕcc′ working time difference between the crews c and c′ (S4);
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ψss′ unbalance of assignments between the shifts s and s′ (S6).

The aim is to maximize operating capacity over the planning period while
minimizing the soft constraint violations. We propose the following ILP to
address this problem:

Min
woc ·

∑

d∈Days

λd (1a)

∑

c∈Crews

∑

s∈Shifts\{R, C}

∑

s′∈Shifts\{R, C}

∑

d∈Days

(wsg · αcss′d + wsst · βcss′d + wca · γcss′d)

(1b)
+

∑

c∈Crews

∑

c′∈Crews

(φcc′ + ϕcc′ ) (1c)

+
∑

c∈Crews

∑

s∈Shifts\{R, C}

∑

d∈Days

pcsd · Xcsd (1d)

∑

s∈Shifts\{R, C}

∑

s′∈S\{R, C}
ψss′ (1e)

Subject to:
∑

s∈Shifts

Xcsd = 1 ∀c ∈ Crews, ∀d ∈ Days (2)

∑

c∈Crews

Xcsd ≥ rs ∀d ∈ Days, ∀s ∈ {Shifts \ {R, C}} (3)

Xcsd + Xcs′(d+1) ≤ 1 ∀(s, s′) ∈ F, ∀c ∈ Crews, ∀d ∈ Days \ {ld} (4)
∑

s∈{Shifts\{R, C}}

∑

d∈Days

ls · Xcsd ≤ L ∀c ∈ Crews (5)

∑

s∈{Shifts\{R, C}}

∑

d′∈Days,d′≤d

ls · Xcsd = ρcd ∀c ∈ Crews, ∀d ∈ Days (6)

∑

d′∈Days,d′≤d

Xcsd ≤ ρcd

WHC
s = ’C’, ∀c ∈ Crews, ∀d ∈ Days (7)

∑

d∈Days

Xcsd =
⌊ ρc(ld)

WHC

⌋
+ 1 s = ’C’,∀c ∈ Crews (8)

∑

s∈{Shifts\{R, C}}

∑

d′≤(1+MAXd),(d+d′)≤ld

Xcsd ≤ MAXd ∀c ∈ Crews, ∀d ∈ Days

(9)∑

c∈Crews

∑

s∈{Shifts\{R, C}}
Xcsd = nc − λd ∀d ∈ Days (10)

Xcsd + Xcs′(d+1) ≤ 1 + αcss′d

{
∀s, s′ ∈ {Shifts \ {R, C}} , s �= s′

∀c ∈ Crews,∀d ∈ {Days \ {ld}} (11)
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Xcsd + Xcs′(d+1) ≤ 1 + βcss′d

{
∀s, s′ ∈ {Shifts \ {R, C}} , s �= s′, with ts �= ts′

∀c ∈ Crews, ∀d ∈ {Days \ {ld}}
(12)

Xcsd + Xcs′d+1 ≤ 1 + γ′
css′d

{
s ∈ {Shifts \ {R, C}} , s′ = ’C’
∀c ∈ Crews, ∀d ∈ {D \ {ld}} (13)

∑

s∈Shifts\{R, C}

∑

d∈Days

Xcsd = δc ∀c ∈ Crews (14)

∑

s∈Shifts\{R, C}

∑

d∈Days

ls · Xcsd = θc ∀c ∈ Crews (15)

δc − δc′ ≤ φcc′ ∀c, c′ ∈ Crews, c �= c′

(16)
θc − θc′ ≤ ϕcc′ ∀c, c′ ∈ Crews, c �= c′

(17)
(

∑

c∈Crews

Xcsd − rs

)
−

(
∑

c∈Crews

Xcs′d − rs′

)
≤ ψss′

{
∀s, s′ ∈ {Shifts \ {R, C}}
∀d ∈ Days

(18)
Xcsd, αcss′d, βcss′d, γcss′d ∈ {0, 1} (19)

δc, θc, ρcd, φcc′ , ϕcc′ , ψss′ ∈ N (20)

The five terms of the objective function aims at maximizing operating capac-
ity while minimizing the soft constraint violations. The first term (1a) aims at
maximizing operating capacity. The weighted sum (1b) assesses the (S1, shift
grouping), (S2, same start time) and (S3, compensation assignments) soft con-
straint violations. The period fairness (S4) soft constraint relates to the number
of shift assignment differences and to the working time differences between crews,
they are considered using the (1c) term. The preferences of the firefighters (S5)
are considered using the (1d) term. The evenly balance of extra daily shifts (S6)
is considered using the (1e) term.

The hard constraints one shift a day (H1) are enforced by Eq. (2). The
hard constraints minimum demands (H2) are enforced by Eq. (3). The hard
constraints forbidden shift successions (H3) are enforced by Eq. (4). The
hard constraints maximum workload (H4) are enforced by Eq. (5). The hard
constraints compensation (H5) are enforced by Eqs. (6)–(8). For a crew c and
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a day d, Eq. (6) count ρcd, the number of worked hours of crew c from the first
day of the planning period to day d, and links variables Xcsd and ρcd. For a
crew c and a day d, Eq. (7) forces the number of compensation days (s =′ C ′)
being assigned to be less or equal to (ρcd/WHC) since one compensation day is
granted when WHC worked hours are made. For a crew c, all the compensation
days must be assigned over the planning horizon (until d = ld), this is enforced
by Eq. (8). The hard constraints maximum consecutive working days (H6)
are enforced by Eq. (9). For a crew c and a day d, the crew is assigned to at
most MAXd consecutive working shifts (rest and compensation days are not to
be considered).

The daily differences between the maximum number of assignable crews (nc)
and those assigned are to be minimized to optimize the overall operating capac-
ity, the λd values are assessed by Eq. (10).

Consider a crew c, two days d and d + 1, if the crew is assigned to two
different shifts (s �= s′) a shift grouping (S1) soft constraint violation occurs
and Eq. (11) sets αcss′d = 1. Consider a crew c, two days d and d + 1, if the
crew is assigned to two different shifts (s �= s′) and the start times of these
shifts are different (ts �= ts′) a same start time (S2) soft constraint violation
occurs and Eq. (12) sets βcss′d = 1. Consider a crew c, two day d and d + 1,
if the crew is assigned to a working shift (s �= ’R’) on day d, and if this crew
is assigned to a compensation day (s′ = ’C’) on day d + 1 a compensation
assignment (S3) soft constraint violation occurs and Eq. (13) sets γcss′d = 1.
Every compensation day assignment will be right after a rest day (constraints
of good practice imposed by the institution).

Consider a crew c, Eq. (14) counts δc the total number of worked shifts
over the planning period and Eq. (15) counts θc the total working time over
the planning period. Hence, Eq. (16) gives φcc′ the number of shift assignment
differences. Given that φcc′ ∈ N, a negative difference involves φcc′ = 0, so for any
couple of crews only positive differences are counted. The same rationale applies
on Eq. (17) for ϕcc′ , the number of working time differences. These variables
φcc′ and ϕcc′ are used for the period fairness (S4) soft constraint violations
assessment.

We recall that preferences (S5) soft constraint violations are assessed by
Eq. (1d).

Consider a day d and two shifts s and s′, Eq. (18) aims at evenly bal-
ance extra daily shifts (S6). Minimum demands (H2) are enforced by Eq. (3),
assigning of extra crews to shifts should be balanced each day within the forest
fire period to increase operating capacity.

Equation (19) defines variables Xcsd, αcss′d, βcss′d and γcss′d as boolean.
Equation (20) defines variables δc, θc, ρcd, φcc′ , ϕcc′ and ψss′ as integers.
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4 Adaptive Iterative Destruction/Construction Heuristic

We propose an Adaptive Iterative Destruction/Construction Heuristic (AIDCH)
to compute solutions of good quality for larger instances of the FFTP. The Algo-
rithm 1 gives the global scheme of the AIDCH proposed approach. We use the
adaptive construction approach BuildFeasibleSchedule() to build an initial solu-
tion which respects the hard constraints. The initial solution complies with min-
imum demands (H2) but there is room for improvement in operating capacity.

Algorithm 1: General structure of AIDCH
Input : An instance of FFTP
Output : Sbest best solution found
Parameters: Dlimit limit for diversification degree, nc number of crews

ns number of type of shifts
Variables : iter number of iterations, MaxIter maximum iteration

Dmax diversification degree, Scur current solution
iter := 0
MaxIter := nc

Dmax := 3

Dlimit :=
⌈

nc
ns

⌉

Scur := BuildFeasibleSchedule()
Sbest := Scur

while iter < MaxIter do
k := rand(1,Dmax)
AdaptativeDestruction(Scur,k) /* adaptive diversification */
AdaptativeConstruction(Scur) /* insert as many crews as possible in Scur */
if Scur > Sbest then

Sbest := Scur

iter := 0
Dmax := 3

else
iter + +
Dmax := min(Dmax+1,Dlimit)

end

end

Provided a feasible solution, at each iteration, a part of the solution is
destroyed by removing at random a number k of crews, then it is completed
by inserting as many crews as possible in order to increase the operating capac-
ity (while respecting the hard constraints). At each overall iteration at most
Dmax crews are removed (k ≤ Dmax). Therefore, we define Dmax as the degree
of diversification. The Dmax value is initialized to 3, next incremented after each
non-improving overall iteration up to Dlimit. We set Dlimit = �nc/ns� which rep-
resents the average number of crews that can be assigned to shifts. Provided an
improvement is found, Dmax is reset to 3 to entirely explore the neighborhood of
the new solution. We perform an adaptive construction procedure to complete
the solution. This process is reiterated and it stops when MaxIter overall iter-
ations have been performed without improving the quality of the solution. We
set MaxIter = nc. The final result is the best solution found over all iterations.
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Algorithm 2: Best Insertion Algorithm
Input : Scur a partial solution

(α, β, γ, θ, ω, μ) parameter set
Output : Sbest best solution found
Variables : (d,s,c)∗ best triplet, success boolean
Sbest := Scur /* store reference solution for BIA */
success := true
while success do

(d,s,c)∗ := (∅, ∅, ∅)
foreach d ∈ Days do

foreach s ∈ Shifts do
foreach c ∈ Crews do

ComputeBIC(d,s,c)
UpdateBestTriplet (d,s,c)∗

end

end

end
success := Insert(Scur, (d,s,c)

∗) /* if no feasible insertion, Insert returns false
*/
/* Comparing Scur and Sbest, all terms of the objective function are assessed */
if Scur > Sbest then

Sbest := Scur

end

end

The proposed AIDCH algorithm makes use of an adaptive diversification
mechanism with the aim to escape from local optima. We explore the neigh-
borhood of the new solution as soon as an improvement is found. We explore
more distant zones by increasing Dmax whenever the search is trapped in a local
optimum.

The main component of the AIDCH heuristic is the AdaptativeConstruc-
tion(Scur) procedure, an adaptive construction heuristic based on a Best Inser-
tion Algorithm (BIA) shown in Algorithm 2. The BIA algorithm considers a
partial solution Scur, and tries to insert as many crews as possible in Scur, one
by one. At each iteration, the BIA assesses all feasible insertions that respect the
hard constraints and scores them according to a Best Insertion Criterion (BIC).
The best insertion is then performed and the quality of Scur is assessed consid-
ering all terms of the objective function (1a)–(1e). This process is iterated until
no more valid insertion is possible. The algorithm returns the updated Scur, the
best solution over all the BIA iterations.

To evaluate the insertion of a crew in the planning (day, shift), we propose
to compute the Best Insertion Criterion (BIC) as follows:

(SGα ∗ SST β ∗ CAγ ∗ PF θ ∗ Pω ∗ EBμ)

The aim is to minimize the soft constraints violation whether the insertion
is performed. In case a hard constraint is violated (e.g. maximum workload
(H4)), the BIC is set to +∞. The criterion is composed of 6 terms, one for each
soft constraints: SG is for the Shift Grouping (S1), SST is for the Same Start
Time (S2), CA is for the Compensation Assignments (S3), PF is for the Period
Fairness (S4), P is for the Preferences (S5) and EB is for Evenly Balance extra
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daily shifts (S6). The terms are weighted with parameters α, β, γ, θ, ω and μ in
order to control their relative importance.

At each iteration i of the AIDCH heuristic, AdaptativeConstruction(Scur)
works as follows. Four constructive heuristics launch separately BIA with differ-
ent values of the parameter set (α, β, γ, θ, ω, μ) on the current solution. During
each launch, α, β, γ, θ, ω and μ are chosen randomly in the 6 dimension space
having the center (αi−1, βi−1, γi−1, θi−1, ωi−1, μi−1) and the side length φ, where
αi−1, βi−1, γi−1, θi−1, ωi−1 and μi−1 are the best parameters obtained by the
method at previous iteration. All four BIA being applied, the parameter set that
produces the best solution is stored to be used in the next iteration.

Finally, the best solution obtained among the four methods is retained as
the current solution. This aims at performing parallel independent searches in
the solutions space and at choosing the best values of the parameters to better
explore the solutions space to speed-up the convergence of the AIDCH algorithm
toward a good solution.

5 Computational Experiments

In our experiments, our objectives were: (i) to show the adaptive construction
impact, by comparing φ together with the best parameter set that produces the
best solution at previous iteration to compute the next parameter set, versus
a fully randomized parameter set; (ii) to show the efficiency of the adaptive
destruction, impact of an adaptive Dmax for perturbations versus a constant
one; (iii) to compare performances between the ILP model and the AIDCH
approach within a 3600 s time limit.

Tests were done using C++ compiled with gcc version 7.5.0, using STL, using
a CPLEX 12.10 [8] solver with a single thread and the MipEmphasis parameter
set to feasibility, on a machine with an Intel(R) Xeon(R) X7542 CPU @ 2.6 GHz
and 64 GB of RAM.

Datasets Overview and Performance Metric
We tested the ILP and AIDCH approaches on a benchmark composed of 4
datasets, each having 7 instances, that we generated using real data of the
INFOCA firefighter institution. Datasets have been created to be of increas-
ing difficulty, the firsts of reasonable sizes given that the ILP may face difficulty
to get a solution within the time limit. The instances in datasets are ranged
according to the number of crews nc and to the total daily number of working
shifts demands (i.e.

∑
rs). So, instances are denoted as cXXrY Y (a/b), the (a/b)

notation is used whether nc and
∑

rs equals for two distinct instances which are
different in minimum demands distributions.

For each instance, the AIDCH algorithm is run 10 times. We recorded the
Relative Percentage Error, we defined as RPE = 100∗(Zbest −Zmax)/Zbest and
the Average Relative Percentage Error, we defined as ARPE = 100 ∗ (Zbest −
Zavg)/Zbest where Zmax is the best result obtained among the ten executions,
Zavg is the average result obtained among the ten runs and Zbest is the best
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solution found by the AIDCH approach for the according instance. The ARPE
criterion aims at investigating whether the AIDCH is stable over the runs.

To compare the solutions found by the AIDCH approach against the solutions
attained by the ILP approach, we define the Relative Percentage Gap as RPG =
100 ∗ (ZILP − Zmax)/ZILP where ZILP represents the solution value attained,
if any, by the ILP approach for an instance.

For our experiments using the ILP, we set woc to 2, wsg to 1, wsst to 1, wca

to 1 and wp to 2.

Impact of the Adaptive Construction Mechanism
We first carried out preliminary experiments to choose the best value of φ that is
necessary to show the impact of the adaptive construction mechanism, because
of lack of space those experiments are not reported here. According to these
experiments, the parameter value φ = 0.1 provides the best results considering
RPE.

Fig. 1. Adaptive construction impact Fig. 2. Adaptive destruction impact

The adaptive construction mechanism aims to guide the search by computing
at each time the best trade-off between the different terms of the BIC repre-
senting soft constraints violations. To show whether it is efficient, we conducted
experiments with the adaptive construction mechanism and without the adaptive
construction mechanism. In that latter case, the parameters of BIC are chosen
randomly in [0, 1] at each iteration. In these experiments, for each instance, the
algorithm is launched and we record the best solution for the first 15000 itera-
tions. We performed these tests using 2 instances chosen at random from each
dataset. We report in Fig. 1 the average of RPE values computed for the 8 chosen
instances against the number of iterations.

As it can be shown in Fig. 1, the adaptive construction mechanism permits to
converge faster toward good solutions rather than without adaptive construction
mechanism.

Impact of the Diversification Mechanism
To evaluate the effectiveness of the adaptive destruction, we tested a version of
AIDCH where the diversification degree Dmax is set to 3. As aforementioned,
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we record the best solution for the first 15000 iterations using this fixed value.
We proceed in the same way using the adaptive diversification mechanism that
makes use of Dmax to explore the neighborhood of the new solution as soon as
an improvement is found and also to explore more distant zones whenever the
search is trapped in a local optimum.

Figure 2 shows the average of RPE values recorded against the number of iter-
ations for these two versions. The adaptive diversification mechanism, achieved
using the management of Dmax, permits to converge faster toward good solutions
rather than without its use.

Based on these two graphs, we can easily notice that the average of RPE
values with the adaptive mechanisms is always below the average of RPE values
with the standard perturbation at each iteration, which shows the effectiveness
of our proposed technique.

Table 1. Performances of ILP and AIDCH approaches

Instance ILP t (s) gap AIDCH t (s) RPG ARPE Instance ILP t (s) gap AIDCH t (s) RPG ARPE

c18r09a 1325 1443 0 1325 341 0 0 c50r22a ns - nc 3765 741 nc 0.43

c18r10a 1359 1409 0 1359 352 0 0 c50r23a ns - nc 3783 754 nc 0.31

c18r10b 1344 1526 0 1344 348 0 0 c50r26a ns - nc 3799 759 nc 0.27

c18r11a 1378 1886 0 1378 372 0 0 c50r28a ns - nc 3823 783 nc 0.58

c18r11b 1420 2786 0 1420 401 0 0 c50r31a ns - nc 3947 849 nc 0.52

c18r12a 1422 2103 0 1422 391 0 0 c50r33a ns - nc 3931 817 nc 0.56

c18r12b 1440 2209 0 1440 413 0 0 c50r35a ns - nc 4097 831 nc 0.34

c30r15a 1767 - 0.74 1758 553 −0.51 0.1 c70r31a ns - nc 4913 943 nc 0.67

c30r16a 1801 - 1.18 1811 561 0.56 0.15 c70r33a ns - nc 4957 954 nc 0.71

c30r17a 1818 - 0.44 1860 582 2.31 0.22 c70r37a ns - nc 5102 995 nc 0.69

c30r18a 1834 - 0.11 1867 593 1.80 0.08 c70r40a ns - nc 5151 1034 nc 0.65

c30r19a 1889 - 0.48 1934 612 2.38 0.13 c70r44a ns - nc 5213 1067 nc 0.71

c30r20a 2144 - 12.9 1947 661 −9.19 0.26 c70r47a ns - nc 5557 1113 nc 0.83

c30r21a 1966 - 2.77 1936 657 −1.53 0.16 c70r50a ns - nc 5401 1158 nc 0.67

ILP Versus AIDCH
Table 1 compares the results obtained by the ILP solver against those obtained
by the AIDCH approach. In Table 1, ns stands for no solution, nc stands for not
calculable, and - shows that the 3600 s time limit has been attainted. For the
sake of compactness, datasets are grouped by two then tabulated side by side.
Column Instance gives the instance label. The next tree columns, ILP, t (s) and
gap show the performances of the ILP. They report the objective function value,
the computing time and the gap found by the CPLEX solver. Then, the next four
columns, AIDCH, t (s), RPG, and ARPE show the performances of the AIDCH
approach. They report the objective function value, the computing time, the gap
between the solutions found by the AIDCH approach and the solution provided
by the ILP solver and the average of RPEs over the 10 runs for an instance.

The ILP approach attains optimal solutions for all nc = 18 instances. It
faces difficulty for the second dataset having nc = 30, however feasible solutions
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are obtained within the 3600 s time limit. For the third and the fourth datasets
having nc = 50 and nc = 70, the ILP approach fails to find a feasible solution
within the time limit.

For the first dataset, the AIDCH approach succeeded in obtaining all the
optimal solutions found by the ILP approach. We also notice that all the ARPE
values are equal to 0: which means that the AIDCH approach was able to attain
the optimal solutions.

For the second dataset, the AIDCH approach attains solutions closed to or
better than the solutions obtained by the ILP approach within a 3600 s time
limit. For four instances the RPG values are between 0.56 and 2.38. For the
three other instances, the AIDCH approach obtains better solutions than the
ones provided by the ILP approach, with an RPG values from −0.51 up to −9.19.
ARPE values are less than 0.26 for all instances which shows the stability of our
proposed heuristic approach for this dataset.

For the third and the fourth datasets, the AIDCH approach was able to
find solutions in a reasonable time. The ARPE values are less than 0.83, the
proposed heuristic behaviour is stable over the last two datasets. Unfortunately,
the quality of the solutions found by the AIDCH approach cannot be assessed
since the ILP approach fails to provide solutions for these datasets within the
one hour time limit.

6 Conclusion and Future Work

We presented in this paper both an ILP model and a AIDCH heuristic to address
the real-worl firefighters timetabling problem (FFTP) of the INFOCA institu-
tion. The proposed approaches were tested over four datasets with different sizes
of increasing difficulty that we generated using real data from INFOCA. The ILP
approach obtained optimal or near optimal solutions for the first two datasets,
but it faced difficulty in obtaining feasible solutions for the larger instances of
the two other datasets. The AIDCH approach obtained good solutions for all the
instances of the first two datasets, those are either optimal or closed to the ones
obtained by the ILP approach. The proposed heuristic approach was able to find
feasible solutions for the larger instances within a reasonable computation time.
Future works aim at investigating a metaheuristic solution approach to improve
the quality of the solutions obtained over the datasets and aim at reducing the
computation time. We also plan to obtain lower bounds for the larger instances
for comparison purposes.
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1 Departamento de Ingenieŕıa Informática, Universidad de Santiago de Chile,
Santiago, Chile

{sergio.iturra,victor.parada}@usach.cl
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Abstract. Designing a heuristic algorithm to solve an optimization
problem can also be seen as an optimization problem. Such a problem
seeks to determine the best algorithm contained in the search space.
The objective function corresponds to the computational performance
of the algorithm measured in terms of computational time, complexity,
number of instructions or number of elementary operations. The auto-
matic design of algorithms has been explored for several combinatorial
optimization problems. In this work, we extend this exploration towards
the automatic design of metaheuristics to find solutions for the traveling
salesman problem. The process is carried out by genetic programming.
The resulting algorithms are combinations of well-known metaheuristics
and, in some cases, present better computational performance than the
existing algorithms for the set of selected test instances.

Keywords: Automatic generation of algorithm · Genetic
programming · Metaheuristics · Traveling salesman problem

1 Introduction

There is a family of optimization problems that come from various fields of
knowledge and are characterized by the tremendous computational difficulty
that arises when trying to determine an optimal solution. Such optimization
problems, which we call complex problems here, are considered difficult because
currently, a polynomial and exact algorithm that can solve all the instances of
a problem with computational efficiency is not known [15,25]. In this field, it is
accepted that an algorithm is efficient when it requires a number of steps that
grow polynomially with the input. A typical strategy for addressing complex
optimization problems is through mathematical programming, which considers
an objective function that corresponds to the criteria to be optimized and a set
of constraints that define the solution space that contains the optimal solution.
Integer programming algorithms utilize the enumeration of the solution space, a
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task that may require very high computational time or memory even when deal-
ing with small instances of the problem [6,32]. This challenge constitutes one of
the main fields of scientific research in the area of combinatorial optimization,
and it is a relentless search to improve existing techniques or to find new meth-
ods for addressing this situation. The motivation behind this search consists of
innumerable practical situations that occur in various areas of knowledge, such
as transport [39], health care [14], sports [41], production processes [34], and
logistics [40].

One of the most commonly used practical approaches for addressing the family
of complex optimization problems considers metaheuristics. A metaheuristic is a
method that describes a general procedure to effectively inspect the solution space
of an optimization problem and thus determine the best solution inspected [36].
In recent decades, this field has increased considerably because numerous meta-
heuristics have been generated, and a wide variety of problems have been studied
under this approach [11]. Although a metaheuristic does not guarantee the deter-
mination of the optimal solution, in practice, they are very effective because they
require a low computational time andprovide a solution close to the optimal, and in
many instances, they return the optimal solution. Such techniques have originated
analogizing with different phenomena in nature, such as the species evolution, par-
ticle swarms, bee and ant colonies, and pure substance cooling. In general, they can
be classified into single-solution search, population-based search, or hybrid meta-
heuristics [36]. Although their origins are varied, some characteristics are shared
by several metaheuristics: a) they carry out the search process by gradually visiting
solutions that belong to the problem-space, b) they work on a current solution or a
current set of solutions in every step, c) the problem optimization function inher-
ently guides the search process, d) they use exploration and exploitation strategies
and e) they partially store the search space.

Recent literature has shown the emergence of a wide variety of hybrid meta-
heuristics that have better computational performance than the same meta-
heuristics used individually [4,5,13,29,38]. Such hybrid algorithms arise when
considering the best components of metaheuristics and assembling them appro-
priately for the optimization problem at hand. The variety of works considers
hybridizations of metaheuristics, with other metaheuristics, constraint program-
ming, search tree techniques, and mathematical programming. However, the
main deficiency that arises in this field is the design step because it is difficult
to know in advance the appropriate combination for each optimization problem.
It is necessary to identify how many and what components can be integrated to
generate the hybrid algorithm that responds with good computational perfor-
mance for the specific optimization problem. A standard or practical guide that
facilitates the design task is not established in the literature. In practice, the
authors find the appropriate combination of components through computational
experiments and manually test some possibilities among the many possible com-
binations. Nor is there a standard method for carrying out experimentation, and
although today there is a technological advance that allows a large number of
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numerical tests, to the best of our knowledge, the automation of this process has
not been explored.

Another approach used to address complex optimization problems is the
automatic generation of an algorithm (AGA). The AGA automatically assem-
bles elementary components that potentially compose an algorithm for a given
optimization problem [7,8,31,33]. This task is possible because determining the
best algorithm for an optimization problem is also a master optimization prob-
lem. Consequently, the search for the best algorithm for a given problem reduces
to solving the master problem by some of the existing methods, which in practice
can be any of the current metaheuristics. The elementary components that can
be considered are diverse; they can be specific heuristics already existing for the
problem, the atomic parts of such heuristics, or exact algorithms of mathemati-
cal programming. Genetic programming (GP) is particularly appropriate for this
task because it artificially evolves populations of syntactic trees that represent
combinations of instructions, such as those that occur in an algorithm [27]. In
this way, several algorithmic combinations can be represented with syntax trees
and combined by evolutionary computing. This technique has allowed the gener-
ation of new algorithms for combinatorial optimization problems [3,9,19,26], a
fact that suggests that the same technique could automatically produce hybrid
metaheuristics. AGA is not only an automatic method for combining thousands
of components and exploring the space composed of all hybrid metaheuristics
but also determining the appropriate algorithm for each optimization problem,
thus providing an experimental standard for this field of knowledge.

In this work, we use AGA to generate single-solution hybrid metaheuris-
tic algorithms for the traveling salesman problem (TSP). The algorithms are
constructed through GP by evolving syntactic trees [1]. The components of syn-
tactic trees are functions and terminals, which are instructions typically used to
write pseudocode and primary components typically considered in the heuristic,
metaheuristic and exact methods. In addition, a set of instances is selected and
divided into two groups: the first group is used for the construction of meta-
heuristics, and the second group is used to evaluate the already constructed
hybrid metaheuristics.

In the following section, the literature review is presented. The procedures for
generating the metaheuristic algorithms are described in the third section. The
computational results of the generated algorithms are presented in the fourth
section. The conclusions of the study are presented in the last section.

2 Literature Review

Only recently have the first attempts to automatize the design of hybrid meta-
heuristics appeared. One of them is the novel approach by Hassan and Pillay
[12] that proposes a meta-GA to automate the hybridization of metaheuris-
tics. The authors consider the following algorithms: simulated annealing, tabu
search, iterated local search and memetic algorithm to solve the TSP. Addition-
ally, Hassan and Pillay [12,13] efficiently solved the aircraft landing problem and
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the two-dimensional bin packing problem using the same approach. Their auto-
mated designed hybrid metaheuristics showed better performance than individ-
ually used metaheuristics and manually created hybrid metaheuristics. Recently,
Tezel and Mert [37] propose a work that uses fuzzy logic and fuzzy systems to
create a cooperative scheme for the automatic selection of proper metaheuris-
tic algorithms and control searching process dynamically. Their approach was
tested on 0–1 knapsack problem, and the computational experiments showed to
be much more effective in searching the solution space, although, it did not dif-
fer from the other algorithms in terms of computing times. Although these first
attempts to automatize the process in the literature have generated promising
results, some drawbacks have been observed, such as depending on predefined
templates (structures), only selection automatically of sequences of metaheuris-
tics to use, and the resulting algorithms with their analysis are not shown. The
first implies that several successful combinations within the search space may
not be visited due to fixed structures. The second means that new automati-
cally generated algorithms are only sequences of metaheuristics that are run one
after another. Therefore, there is no hybridization among components of a meta-
heuristic with another metaheuristic completely different. The third means that
these new automatically generated algorithms are not available to the scientific
community in the field.

From the research line of automatic algorithm configuration [35], attempts
are also being made to generate hybrid metaheuristics using tools that are typ-
ically used in this area, such as IRACE [16]. Thus, in [17], instead of seek-
ing parameters, they sought metaheuristic components and tuned the param-
eters, all in a single process. The authors used a predefined framework, with
grammars for each metaheuristic to generate hybrid metaheuristics for three
combinatorial optimization problems. Other similar approaches were previously
carried out by Marmion et al. [21], who used tools to design stochastic local
searches automatically and non-hybrid metaheuristics as ACO algorithms [18].
Alfaro-Fernández et al. [2] generated hybrid metaheuristics following the pre-
vious methodology described for solving hybrid flowshop scheduling problems.
Their algorithms are competitive against state-of-the-art algorithms. Recently,
Pagnozzi and Stützle [22–24] proposed an automatic design system of stochas-
tic local search for permutation flowshop problem and other two variants that
consider additional constraints. The approach uses a configuration tool to com-
bine algorithmic components following a set of rules defined as a context-free
grammar. Their experiments show that the generated algorithms outperform
the state-of-the-art. However, these approaches from the configuration of algo-
rithm parameters have some limitations, such as the use of predefined templates
and grammars that limit the search space. The authors did not use a specific
search method for the new task of searching for potential new combinations, but
instead, they used IRACE, which is a specialized method for tuning parameters;
thus, they possibly failed to explore possible good combinations. Besides, some
approaches are limited to only some metaheuristics, missing the opportunity to
mix, for instance, metaheuristics based on a population of solutions with other
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single-solution-based. The same authors noted that these first approaches corre-
spond to proofs-of-concept [17]. Therefore, there many options for investigating
approaches to improve or create new and more appropriate approaches.

3 Procedure to Generate Metaheuristics

To find a solution for the metaproblem, a set of primary components must be
created. The first component is a container that stores both the feasible current
solution for the optimization problem and auxiliary solutions considered during
the search process. A second component is a set of functions and terminals to
compose the new algorithms to be produced. Such a set contains the typical com-
ponents of algorithms (functions) as well as tools that allow the construction of
a solution for the optimization problem (terminals). From the definition of these
elementary components, an initial population of syntax trees can be configured
that can evolve into a sequence of later populations using reproduction, crossover,
and mutation, which are the proper operators in evolutionary computing [10].
The initial population is generated by the ramped half and half mechanism con-
sisting of randomly generating half the population with full trees up to a default
depth and the other half, with partially full trees [28]. The fittest syntax trees are
randomly selected and reproduced into the new population. Furthermore, two
types of mutations are considered: “point mutation” and “shrink mutation”. In
the first mutation, a syntax tree node that is a function is replaced by another
function that uses the same number of parameters, while in the second, a func-
tion node is replaced by any of the functions that act directly on the container
where the current solutions are stored. The crossover between two syntax trees
is performed by replacing a node of the first syntax tree by a section of the
second. The fitness evaluation requires a set of adaptation instances that must
be adequately selected. In our case, due to the generated algorithms’ stochastic
nature, every instance is evaluated m times. The syntax trees finally produced
are decoded as algorithms and must also be evaluated externally so that a second
set of control instances is required. The set of instances of each type is divided
into two groups: the first is used to automatically construct metaheuristics, and
the second is used to evaluate the algorithms already built. This evolutionary
process is described for t generations in Fig. 1.

The set of functions contains the basic instructions present in any algorithm.
They are defined by means of the parameters P1 and P2, which are boolean
variables, so a “true” indicates that the parameter performed an action; other-
wise, it is “false”. Specifically, the main functions are For(k, P1, P2), which runs
the parameter P2, whereas P1 returns “true” and k is the parameter of maxi-
mum number of iterations; And(P1, P2) runs the parameter P1 and P2 returning
“true” if both returned values are also “true”; and IfThen(P1, P2) activates P2

when running P1 returns “true”.
The set of terminals is divided into two groups. The terminals are based on

metaheuristics and terminals that construct a TSP solution. The first terminals
contain components of three well-known metaheuristic algorithms: iterated local
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search (ILS), simulated annealing (SA) and variable neighborhood search (VNS)
[36]. These metaheuristics are decomposed in atomic parts, and 12 terminals are
obtained, such as terminals based on the computation of the temperature of SA,
acceptance criteria of an ILS or SA, and operations in the neighborhood of VNS.

t

· · ·

1, . . . m

. . . ,

. . . ,

. . . ,

Fig. 1. Process of automatic generation of algorithms.

The following terminals designed for the TSP are based on typical heuris-
tics for the problem and elementary operations to be executed on a solution
container:

– ShiftCity: randomly shifts a city of the current solution.
– SwapCities: randomly exchanges two cities of the current solution.
– BlockReverse: randomly reverses the order of the cities of the current solution.
– BlockRule: iteratively reverses randomly the order of the cities of the current

solution.
– SwapCitiesRule: iteratively exchanges randomly two cities of the current solu-

tion.
– 2-Opt: is an adaptation of a local search procedure for this problem known

as 2-opt.

Terminals return true if the action for which they are intended is executed and,
false otherwise.

The quality of an algorithm fa is measured by the relative error in the objec-
tive function for a set of instances used during the evolution. In addition, we
consider another measure which is the number of obtained solutions that hap-
pen to be optimal (also named hits). Let nl be the number of instances, zi the
value of the optimal solution of the instance i, and ui the obtained value of the
algorithm for instance i. α and β are values that belong to the interval [0, 1] and
are used to arbitrarily handle the weight of each term. Furthermore, let hiti be
equal to 1 if the optimal solution is found for the instance i. Then, the evaluation
function is represented in Eq. (1). The minimum value of fa is zero, which means
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that the algorithm solves all problem instances. We arbitrarily set α = 0.9 and
β = 0.1.

fa = α
1
nl

nl∑

i=1

|ui − zi|
zi

+ β
nl − ∑nl

i=1 hiti
nl

(1)

The evolutionary process is implemented in the ECJ 25, which is an evolu-
tionary computation library coded in Java [20]. The computational experiment
is performed on a Google Virtual Machine instance with 2.0 GHz (8 virtual pro-
cessors, Intel Skylake) and 7.0 GB of RAM. Genetic parameters involved in the
GP are population size, 100; number of generations, 30; probabilities: crossover,
0.85; mutation: 0.10; reproduction: 0.05, and the parameters k = 15 and m = 5.
The comparison (called testing) of the best-obtained algorithm is performed with
14 TSPLIB instances [30], with up to 101 cities, and in the evolution phase we
use three TSPLIB instances, with up to 58 cities.

4 Results

The best algorithm found finds near-optimal solutions for the 14 evaluation
instances. The algorithm was obtained after performing three runs with the same
parameter values, changing only the seed. Consequently, 3,000 combinations were
inspected. In turn, to evaluate the algorithm, ten runs were performed with
each instance, and the resulting values are presented in Table 1. The name of
the instance is described in the first column, the second column contains the
minimum relative error value with respect to the optimal solution, while in the
third column, the average relative error of all runs is presented. In the last
column, the average computational time of the algorithm with each instance is
reported.

The result suggests that it is feasible to combine different elementary compo-
nents of the various metaheuristics and assemble such components appropriately
to face the TSP. As t is observed in Table 1 in the ten instances, the optimal
solution was obtained in at least one of the ten runs for each instance. In the
ten runs, the optimal solution of the brazil58 instance was obtained. Note that
the average computational time was between 0.47 and 3.3 s.

The structure of one of the best generated algorithms corresponds to a vari-
ant of the ILS algorithm. Algorithm 1 has four stages. In the first stage (lines
10–15), the algorithm performs a local search, and in the second stage, it veri-
fies the acceptance or rejection of the solution found by a local search process
(lines 16–21). In the third stage, a perturbation is performed (line 22), and in
the fourth stage, the algorithm ends with a new local search (line 24–26). The
algorithm considers two stop criteria explicitly established in lines 27 and 29.
Line 27 establishes that if the first local search does not improve the current
solution, the algorithm stops. Line 29 stops the algorithm according to the num-
ber of iterations predefined as the instance size. The generated metaheuristic
differs from ILS in the order of the instructions. The algorithms also incorporate
elements of SA that do not contribute to the TSP solution; these are instructions
that work as bloating code that is common when using GP.



Automatic Generation of Metaheuristic Algorithms 55

Table 1. Performance of generated metaheuristic on 14 instances.

Instances Min (%) Avg (%) Avg time (Sec)

eil51 0.23 1.03 0.47

berlin52 0.00 3.48 0.50

brazil58 0.00 0.00 0.69

st70 0.00 1.10 1.21

eil76 0.00 1.21 1.53

pr76 0.00 0.37 1.48

rat99 0.00 1.73 3.44

kroA100 0.00 0.43 3.42

kroB100 0.00 1.01 3.78

kroC100 0.00 0.44 3.30

kroD100 0.07 1.24 3.34

kroE100 0.00 0.50 3.45

rd100 0.85 1.75 3.32

eil101 0.32 1.21 3.55

Average 0.11 1.11 2.39

Algorithm 1. Generated algorithm
1: function Function
2: if 2-opt() then
3: for 1 to k do
4: 2-opt();
5: 2-opt();
6: end for
7: end if
8: end function
9: repeat
10: γ ← false;
11: δ ← false;
12: for 1 to k and Function() = true do
13: γ ← true;
14: LinearCooling();
15: end for
16: if γ = true and 2-opt() then
17: for 1 to k and LogCooling() do
18: δ ← true;
19: Deterministic ChooseIfBetter();
20: end for
21: end if
22: if γ = true and δ = true and SwapCities() then
23: if 2-opt() then
24: Function();
25: end if
26: else
27: break;
28: end if
29: until iter = n
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The extension of AGA to automatically produce metaheuristics produced
similar results to those found when AGA was used to produce specific heuristics
for various optimization problems. New metaheuristics were produced, as com-
bination of the initially defined components of well-known metaheuristics. In
addition, such metaheuristics produce near-optimal solutions for at least a small
group of instances. It is clear that the scalability of this result requires more
extensive experimentation. Likewise, the generated algorithms must be properly
parameterized to obtain a better computational performance, a process that
could also be included automatically. An interesting consequence of the result
is that the automation process adopted significantly accelerates research in this
field. Many algorithmic combinations can be explored with low computational
effort; in fact, the reported experiment lasted 158 min.

5 Conclusions

This work described a process for the automatic design of metaheuristics for TSP.
The algorithms were produced by automatic generation of algorithms through
genetic programming from a set of elementary components. In particular, we
used terminals based on the metaheuristic algorithms ILS, SA, and VNS. The
resulting algorithms are combinations of existing metaheuristics, and the best
algorithm found is a variant of ILS. However, the generated metaheuristic pro-
vides good performance in terms of the solution quality in a very short compu-
tational time. Future research will focus on improving the performance of the
generated metaheuristics and combining the different components of the meta-
heuristics in a better way. Additional future research will focus on extending
the proposed method to other variants of the TSP or even other optimization
problems.
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Abstract. The path-relinking based strategies have proved to be very powerful
tool for designing the emergency service systems by deploying a given number
of service centers in a finite set of possible center locations. Nevertheless, if the
original approach to the emergency service system design is generalized to the
case, when more than one facility can be placed at the same possible center loca-
tion, the question emerges whether the generalized version of the path-relinking
method is able to keep its former efficiency. It must be taken into account that the
generalized path-relinking method performs its search in nodes of integer lattice
of an m-dimensional simplex instead of in a sub-set of unit hypercube vertices.
This generalization may considerably change characteristics of the path-relinking
based searching strategies. This contribution is devoted to studying and comparing
two original particle swarm strategies called the shrinking fence and spider search
strategies, which employ the generalized path-relinking method.

Keywords: Emergency medical service system · Heuristics · Generalized
path-relinking method · Discrete PSO strategies

1 Introduction

Applied Informatics belongs to one of the currently fastest developing scientific fields.
It deals with creation, collection, processing, storage, transformation, access and usage
of any kind of information in natural and artificial, general and special systems. Its
content aims at the properties and methods of information processing in terms of their
optimal availability and usability. It has purely scientific (theoretical) components that
examine the subject regardless of the application, and application (practical) components
that contribute to the development of services and products. In this paper, we focus on
applying the knowledge ofApplied Informatics and programming into the specific family
of Operations Research problems. We pay attention to the problem of designing and
optimizing a network of rescue service stations in a middle sized geographical region [1,
17, 19]. In other words presented research deals with certain type of location problems,
for which suitable heuristics are being developed and studied.

Generally, the locations problems may be divided into two independent groups –
they can be either continuous or discrete. When talking about finding the optimal service
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center deployment for EmergencyMedical Service (EMS), thenwe have to consider such
a fact, that the service centers cannot be located anywhere due to certain requirements
given by law. Therefore, the problem of finding the optimal locations of EMS stations is
usually formulated as median-type problem, which has been recently studied by many
researchers [2, 4, 5, 7, 13, 18].

The simplest median-based model is the weighted p-median problem with a wide
spectrum of applications. Since it belongs to well-known and commonly used optimiza-
tion models, several authors have analyzed the possibilities of its fast solving either by
exact or approximate and heuristic methods [1, 6, 14].

Under the assumption that the service is not possible to be provided to more than
one patient simultaneously by the same staff, the EMS systems operates as a queuing
system. Obviously, when life is directly endangered or health gets suddenly worse, the
rescue service is provided by such a facility, which is the nearest available one. From
this point of view, the concept of so-called generalized disutility can be used [10, 12,
15].

Furthermore, if we look at an existing EMS system, we can observe that there are
more than one facilities and staff located at some service center locations. Thus, we
should consider this feature when a mathematical model of the problem is being for-
mulated [8]. Of course, such an original model modification makes the problem more
complex and possible usage of common exact and heuristic approaches designed for the
median-type problems is questionable.

Within this paper, we study the path-relinking based strategies, which have proved
to be very powerful tool for designing the emergency service systems by deploying a
given number of service centers in a finite set of possible center locations. The main
goal of presented research consists in answering the question whether the generalized
version of the path-relinking method is able to keep its former efficiency. It must be
taken into account that the generalized path-relinking method performs its search in
nodes of integer lattice of an m-dimensional simplex instead of exploring a sub-set of
unit hypercube vertices. This generalization may considerably change characteristics of
the path-relinking based searching strategies. Therefore, we concentrate on two original
Particle Swarm Optimization (PSO) strategies called the shrinking fence and spider
search strategies, which employ the generalized path-relinking method [11, 16]. To
study suggested heuristic approaches, a computational study with real world middle-
sized problem instanceswas performed and the obtained results are reported in a separate
section.

2 Generalized p-facility Location Problem and Path-Relinking
Search

The generalized p-facility location problem is formulated as a task to deploy p facilities
in m network nodes so that the mean distance between a user and the nearest available
facility is minimal. It is assumed that the system of facilities services demands of n
users located also at nodes of the transportation network. A user j generates his demand
randomly with frequency bj. As the system processes the demands for service similarly
to a queuing system equipped with p service lines, a current demand is assigned to the
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nearest available facility, which need not be the closest one. For each user location, r
nearest facilities is taken into account for the demand satisfaction and a sequence q1, …,
qr probability values is considered, where qk is probability that the k-th nearest facility
to the user is the first available one. Unlike the previous approaches, here we admit that
more than one facility can be located in one node of the network. Assuming that dij
denotes the network distance between network nodes i and j the generalized p-facility
location problem can be described by the following integer programming model, in
which a series of integer location variables xi ∈ Z+ will be introduced for each i = 1, …,
m, to model the number of facilities located at the node i.. The value of variable yi gives
the number of facilities located at location i. In addition, a series of allocation variables
wijk ∈ {0, 1} will be introduced for i = 1, …, m, j = 1, …, n and k = 1, …, r, where
wijk = 1 if user demand emerged at j is assigned to a service node i for the k-th nearest
facility.

Minimize
n∑

j=1

bj

r∑

k=1

qk

m∑

i=1

dijwijk (1)

Subject to
m∑

i=1

xi = p (2)

m∑

i=1

wijk = 1 for j = 1, ..., m, k = 1, ..., r (3)

r∑

k=1

wijk ≤ xi for j = 1, ..., n, i = 1, ..., m (4)

xi ∈ Z+ for i = 1, ...,m (5)

wijk ∈ {0, 1} for i = 1, ..., m, j = 1, ..., n, k = 1, ..., r (6)

The formula (1) expresses the sum of mean distances from users’ locations to the
nearest available facility location. As the sequence of {qk} is decreasing, a demand of
a user’s location j is assigned to the nearest facility location i for k = 1. Similarly, the
demand will be assigned to the second nearest facility for the case k = 2, etc.

Constraint (2) determines the number of deployed facilities. Series of constraints (3)
ensures that demand at location j can be allocated to exactly one facility for the case k.
This means that the k-th nearest facility is the first available one. Series of constraints
(4) enables to assign a demand at user’s location j to a possible service node i at most xi
times.

The problem (1)–(6) is more complex than the case, when only one facility can be
located at a service node. The study reported in [8] has showed that computational time
necessary to solve the problem (1)–(6) to optimality using an IP-solver exceeded an
acceptable limit. This finding approves usage of a heuristic approaches to the problem
solution. We were inspired by discrete particle swarm optimization algorithms [3, 20],
which proved to be an efficient tool for this kind of p-location problem, but without the
possibility to place more than one facility at the same service node.
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The mentioned algorithms [11, 16] called the shrinking fence and the spider search
are based on systematic examination of a series of the shortest paths connecting pairs
of feasible hypercube vertices in a surface of the unit hypercube. To be able to use the
above mentioned searching strategies for heuristic solution of the problem (1)–(6), we
suggested a new version of the path-relinking method, which is able to examine the
shortest path between two nodes of a unit lattice of an m-dimensional simplex.

A feasible solution of (1)–(6) is described by anm-dimensional vector xwith integer
non-negative components, sum of which equals to p. The shortest path between two
feasible solutions has a length, which equals to Manhattan distance of the two vectors.
The suggested path-relinking method proceeds according to the following steps.

FacetPathRelinking(x, y)

0. Initialize xres = argmin{f (x), f (y)}.Define setsM+ andM– of component indices by
prescriptions M+ = {i = 1, . . . ,m : xi < yi} and M− = {i = 1, . . . ,m : xi > yi}.

1. If ρ(x, y) > 2 perform step 2, otherwise return xres and terminate.
2. Find [u, v] ∈ M+ × M− using the definition

[u, v] = argmin{f (exchange(x, i, j)) : [i, j] ∈ M+ × M−} and perform
operations

x = exchange(x, u, v)); if xu = yu; if xu = yu, then M+ = M+ − {u}; if xv =
yv then M− = M− − {v} xres = argmin{f (xres), f (x)}.

Having performed the above adjustments, exchange x with y and M+ with M–

and go to step 1.

Comments: In the above algorithm, ρ(x, y) denotes the Manhattan distance of x and
y defined by (7).

ρ(x, y) =
m∑

i=1

|xi − yi| (7)

The operation exchange(x, u, v) for u ∈ M+ and v ∈ M– issues the vector x, compo-
nents of which are defined by the following substitutions xi = xi for i = 1, …, m, i �= u,
i �= v and xu = xu + 1, xv = xv−1.

The value of function f (x) for a given x is computed according to (1)–(6) after fixing
the values of xi for i = 1, …, m.

The algorithm FacetPathRelinking(x, y) examines the shortest path connecting inte-
ger points x and y in an m-1 dimensional facet of simplex determined by (2) and (5).
The value ρ(x, y) is obviously even integer and every performance of the step 2 reduces
this distance by two. Thanks to the exchange x and y at the end of step 2, the algorithm
constructs and examines the path alternately from the both ends.

3 Particle Swarm Strategies Based on Path-Relinking Method

Principles of the further applied strategies were obtained from [11, 16] and adapted for
the search in the set of feasible solutions of the problem (1)–(6) using the above suggested
version of the path-relinking method. The both proposed algorithms start with an initial



Discrete PSO Strategies for Search in Unit Lattice 63

swarm S of input solutions-particles and use the path-relinking method as a function
FacetParthRelinking(x, y), which returns the best-found-solution in the examined path.

The shrinking fence algorithm imitates building and maintaining a fence, which
surrounds a herd of solutions. At the beginning, posts of the fence are represented by
known solutions of the initial set S. The order of posts in the fence is given by ordering
of the associated solutions according their objective function values. It is assumed that
the neighboring posts are connected by fence parts. During the optimization process,
the individual fence parts are examined, a new, better position of a post is found and the
new post replaces one of the neighboring posts. If one of the neighboring posts is closer
to the new one more than a given distance, then the unnecessary post is removed. The
best-found solution obtained by the inspections of fence parts is output of the algorithm.

The shrinking fence algorithm follows.

0. {Building up phase}
Order the solutions of input swarm S increasingly by their objective function

values. This way, create a sequence s0, …, s|S|−1. Initialize the best-found solution
xbest = s0 and the set of new posts S by empty set ∅.

1. {Maintenance phase}
For t = |S| − 1, . . . , 1, inspect the fence part connecting the posts st and st−1

and define the new post position xnew by xnew = FacetPathRelinking(st ,st−1). If
ρ
(
st, xnew

)
< dmin, then put S = S ∪ {xnew}. Replace the best-found solution by

xbest = argmin
{
f
(
xbest

)
, f (xnew)

}
.

Inspect the fence part connecting s0 and s||s|−1 by xnew = FacetPathRelink-
ing(s0,s||s|−1)

If ρ
(
s0, xnew

)
< dmin, then put S = S ∪ {xnew}. Replace the best-found solution by

xbest = argmin
{
f
(
xbest

)
, f (xnew)

}
.

{Improving process controlling}
If the termination condition is fulfilled, then terminate and return xbest. Otherwise,

update S = S, reorder the elements of S according to increasing objective function values
and put S = ∅. Go to step 1.

Comment: The termination condition consists of two clauses. The process is termi-
nated whenever the number of updates of the set S reaches the limit maxPop or if the
expended computational time exceeds the threshold maxTime.

The next presented heuristic called the spider search is evoked by spider’s web
creation, which starts with linking fixed points with a center of the web by spider’s thread
and subsequent linking of the neighboring fixed points. Then some inner web nodes are
established and the linking process to web center and then the mutual connections of the
neighboring web nodes continue up to the moment, when the web is dense enough.

0. Initialize the starting swarm by a set S and order the solutions increasingly according
to their objective function values into the sequence s0, . . . , s|S|−1 Initialize the best-
found solution xcenter = s0.

1. Process the swarm {s0, . . . , s|S|−1} and web center xcenter in the following way:
Update the web center by xcenter = argmin{f (FacetPathRelinking(

xcenter, st
)) :
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t = 1, . . . , |S| − 1} and insert the final xcenter into the new swarm. For t =
1, . . . , |S| − 1, determinex∗ = FacetPathRelinking

(
st, st−1

)
and if there is no iden-

tical solution, insert x* into the new swarm, otherwise skip the insertion. Finally
perform x∗ = FacetPathRelinking

(
s0, s|S|−1

)
and add x* to the new swarm.

2. If the termination condition is fulfilled, then the solving process finishes with the
output defined by the best-found solution. Otherwise reorder new swarm, determine
new web center xcenter and go to step 1.

Comment: The termination condition consists of two clauses. The process is termi-
nated whenever the number of the swarm updates reaches the limit maxPop or if the
expended computational time exceeds the threshold maxTime.

4 Computational Experiments

Themain goal of performed computational studywas to verify the efficiency of suggested
discrete PSO strategies for search in unit lattice of m-dimensional simplex. Note that
mentioned heuristics were originally developed and designed for a simple version of
the weighted p-median problem [11, 16]. Therefore, their quality characteristics may
change when the original model gets a more general form (1)–(6).

The numerical experiments reported in this paper were performed on a notebook
equipped with the Intel® Core™ i7 3610QM 2.3 GHz processor and 8 GB of memory.
The presented algorithms were implemented in the Java language making use of the
NetBeans IDE 8.2 environment.

As far as the problem instances used in this computational study are concerned, they
originate from real EMS system, which is operated in eight regions of Slovakia. The
problem instances were used also in our previous research activities, the results of which
are available in [9–11, 16] and in many others. The cardinalities of the set of possible
service center locations and the set of system users vary from 87 to 664 locations. The
organization of the Slovak self-governing regions is depicted in Fig. 1.

Fig. 1. Used benchmarks – self-governing regions of Slovakia.

The parameters of individual benchmarks are summarized in the following Table
1. in which also the exact solutions taken from another research [8] are reported. The
coefficients qk , k = 1, …, r for r = 3 stand for probabilities that the k-th nearest service
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center is the closest available one. The values of these coefficients were set so that q1 =
0,77063, q2 = 0,16476 and q3 = 1-q1-q2. These values were obtained from a simulation
model of existing EMS system in Slovakia published in [12].

The first four columns of Table 1 contain the basic characteristics of used problem
instances. Column denotations keep the same meaning as used in the model (1)–(6).
The last column of the table denoted byOptObjF is used to report the objective function
value of the exact optimal solution of themodel (1)–(6), whichwas computed in previous
research reported in [8].

Table 1. Basic benchmarks characteristics and the optimal objective function values

Region m N p OptObjF

BA 87 87 25 18450

BB 515 515 46 38008

KE 460 460 38 40711

NR 350 350 36 40987

PO 664 664 44 46884

TN 276 276 26 31260

TT 249 249 22 36401

ZA 315 315 36 36929

An individual experiment was organized so that both compared PSO strategies,
i.e. the shrinking fence and the spider search employing the generalized path-relinking
method were applied to obtain the result of the problem described by the mathematical
model (1)–(6). Since the optimal objective function value is available, the suggested
algorithms can be compared from the viewpoint of solution accuracy.

Before reporting the achieved results, it must be noted that the basic idea of both
solving approaches follows from the fact that the individual strategy starts from a set
of feasible solutions, which can be provided by so-called uniformly deployed set. This
set can be constructed independently on the solved instance. The process of a uniformly
deployed set construction is reported in [9] and its possible usage can be found for
example in [10, 11, 16]. The common property of a uniformly deployed set is that an
arbitrary permutation of the locations generates a new uniformly deployed set with the
same characteristics. We used this property to obtain ten different starting sets for each
self-governing region presented in Table 1 and the values plotted in further Table 2
were obtained by averaging ten problem instances. The original uniformly deployed
sets of zero-one solutions obtained from [9, 10] were adjusted by a greedy process to
include some initial solutions outside the unit m-dimensional hypercube. Both suggested
methods were run for stopping rule parameters maxPop = 8 and maxTime = 120 s.

The followingTable 2 contains the average results. The structure of the table is formed
by two parts – separate for each studied PSO strategy. For each heuristic approach we
report the objective function value ObjF and the computational time CT in seconds.
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Table 2. Comparison of discrete PSO strategies for the generalized weighted p-median problem
– average results of ten runs with different uniformly deployed sets of solutions

Region Shrinking fence Spider search

ObjF CT ObjF CT

BA 18751 1.12 18730 2.84

BB 39924 147.68 38094 211.21

KE 40711 92.46 40715 139.55

NR 41062 30.57 41062 58.59

PO 56416 124.73 47005 132.21

TN 31568 16.19 31540 37.28

TT 36768 10.44 36750 21.77

ZA 37030 27.81 37028 51.95

For completeness of reported results, we provide the readers with one additional
Table 3, which contains the detailed results for the self-governing region of Žilina. Table
3 has the same structure as the former Table 2.

Table 3. Comparison of discrete PSO strategies for the generalized weighted p-median problem
–results of ten runs with different uniformly deployed sets of solutions for the self-governing
region of Žilina

Run Shrinking fence Spider search

ObjF CT ObjF CT

1 36929 28.32 36929 51.68

2 36929 28.28 36929 53.34

3 36929 27.91 36929 51.86

4 37848 27.58 37828 52.78

5 36929 27.74 36929 51.25

6 36929 28.00 36929 53.00

7 36929 27.69 36929 50.36

8 36993 27.44 36993 52.35

9 36929 27.63 36929 51.46

10 36964 27.46 36964 51.37

All reported results indicate that the quality of obtained results is very satisfactory.
From the point of solution accuracy, the strategy of a spider search seems better, because
the average gap from the optimal objective function value achieves only the value of
0.54% while the first studied shrinking fence strategy brings worse results. As far as
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the computational time is concerned, both strategies can achieve the result in acceptably
short time and can be used to solve practical real world problems.

5 Conclusions

This contribution was focused on two strategies employing the path-relinking method.
The main research goal was aimed at the finding, whether the adjusted shrinking fence
and spider search strategies are able to prove the same efficiency as their simple original
versions when used for the p-location problem solution subject to the assumption that
more than one facility can be located at the same possible service center location.

Suggested methods are based on the path-relinking method and they make use of
previously developed search strategies. The novelty of presented original method exten-
sion consists in adjusting the heuristics for different space, in which the solutions are
being explored. It must be realized that the mathematical problem formulation, to which
the suggested heuristics were adjusted, makes use of the concept of generalized disutil-
ity, which assumes, that the service does not have to be provided by the nearest located
service center, because it may be temporarily unavailable. In such a case, the request for
rescue service is assigned to the nearest available center. The second modification of the
original model consists in significant variables definition scope extension. It means that
more than one facilities are allowed to be located in the same possible service center
locations. This way, the former binary decision variables change into integers, what can
make many available solving tool necessary to be adjusted or rebuilt.

The reported results of numerical experiments aimed at heuristic solving techniques
for the multiple p-facility location problems with the generalized objective function
show that the suggested strategies keep their useful features and both of them can be
used for effective solving middle-sized problem instances. The accuracy of the resulting
solution is satisfactory and the resulting system design can be obtained in acceptably
short computational time. Based on performed numerical experiments we can conclude
that we have constructed a very fast and effective heuristic approach to the generalized
p-location problems.

Future research in this scientific field could be concentrated on rules, which would
enable to reduce the starting set of p-location problem solutions and on developing other
search strategies, which could improve the studied characteristic of the heuristic solving
approach.
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Abstract. Most of the searching strategies based on path-relinking method usage
are restricted by a drawback of the method. The drawback of the original path-
relinking method consists in its way of processing the pair of input solutions.
The path-relinking method applied to zero-one programming problems examines
one of the shortest paths connecting the input solutions in the surface of a unit
hypercube. This characteristic does not enable to examine any feasible solutions
outside the sub-space determined by components, in which the input solutions dif-
fer. Within our research directed to heuristics for the public service system design
problems, we suggested a new type of the path-relinking method, which is able
to overcome the above-mentioned drawback. The novelty consists in determina-
tion of an infeasible solution of the p-location problem, which corresponds to a
hypercube vertex with more than p-components, and in projection of a starting
feasible solution in the set of the feasible solutions, which are the closest ones
to the infeasible solution. The suggested path-relinking projective method was
embedded into a simple one-to-all searching strategy and its efficiency dependent
on infeasibility level of the infeasible solution was studied.

Keywords: Location problems · Heuristics · Path-relinking method extension

1 Introduction

The existence of human society has been always associatedwith decisions.Makingmore
or less important decisions accompanies us in various areas of everyday life, although
many times we are not even aware of it. We often encounter the requirement to find the
optimal solution to a particular problem or to improve the current situation as much as
possible. Themain reasons for such rationalization include reducing costs and increasing
efficiency. Choosing the right alternative from all solutions is not easy and involves a
great deal of responsibility. The final decision may not affect only our personal lives,
but also the lives of a certain group of people or even the whole society [16]. Another
factor that needs to be taken into account when making a decision is the time aspect.
The consequences of a decision can be very long. In this paper, we focus only on a
strategic level of decision-making process. The time lag of strategic decisions is usually
in the order of several years. Most often, these are large-scale investment projects, such
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as the construction of new companies, the location of distribution centers, or the design
of various service systems. The research reported in this paper aims at applying the
knowledge of Applied Informatics and programming in the location science, mainly to
the healthcare segment [2, 4, 13].

The operation of the emergencymedical service is one of the basic services by which
the state protects its inhabitants and provides them with urgent care in critical situations
[13]. The main role of each manager responsible for the efficiency of the service is to
decide on the location of service centers.Centers,which canbe, for example,warehouses,
terminals, or specialized medical facilities, form the structure of the proposed system
[16]. This structure plays an essential role in the efficiency of the system performance.
Strategic decisions on the location of facilities so that the total costs are kept to be
minimal or the service accessibility for patients to be as high as possible, represent a
complex combinatorial problem, the solution of which can achieve significant savings
or improve the quality of the service provided. Since the resources, which are to be
located, are limited, the mathematical model used for the decision/making often follows
the weighted p-median problem formulation [1, 7, 14]. To make the model more general,
the concept of so-called generalized disutility has been introduced to consider also such
requirements, which allow providing the service to a patient from more than one nearest
located service centers. Even if this model extension makes the problem harder to be
solved, it enables us to apply its results into a wider range of systems [9, 11, 15].

Wide range of practical applications of the weighted p-median problem not only in
the medical sphere [13, 14, 16] has led to the creation of a large number of solving
approaches, which include exact as well as heuristic and metaheuristic methods [1, 5, 6,
11, 19, 20].

Exact algorithms are based mostly on the branch and bound method. Sometimes,
they may make use of the principles of duality. Their main disadvantage consists in their
capacity limitation caused by commonly available universal optimization environments,
to which the exact methods are embedded. Mentioned restriction does not usually allow
us to solve problems of practical and real world size. On the other hand, there is a
radial formulation of the problem [7, 14], which enables us to overcome this weakness.
Other approach consists in developing a special software tool. Therefore, many Opera-
tions Research scientists and other authors focus mainly on heuristic and metaheuristic
approaches [17, 18, 21].

Currently, the main attention is paid to various metaheuristic approaches, i.e. genetic
algorithms, scatter search, path-relinking method and many others, the aim of which can
be specified as a task of obtaining a good solution in acceptably short computational time.
In this paper we report our research, which was aimed at extending the path-relinking
method. This approach proved to be suitable mainly in the case of the generalized
weighted p-median problem, in which the demands for service are assumed to occur
randomly. It must be noted that the original path-relinking method inspects only the
shortest path between two solutions. The scientific effort reported in this paper was
aimed at suggesting such a version, which could project a starting solution into a feasible
solution, which is the closest one to a given vertex of a unit hypercube regardless of
its infeasibility. The suggested path-relinking projective method was embedded into a
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simple one-to-all search strategy and its efficiency depending on infeasibility level of
the infeasible solution was studied.

2 Path-Relinking Method and Its Applications

The original path-relinking method was suggested to enable heuristic solution of the
problems, which can be described by zero-one mathematical programming tools [8]. A
general zero-one programming problem can be formulated by (1).

min
{
f (x) : x ∈ X ⊆ {0, 1}m}

(1)

The idea of the method consists in searching one of the shortest paths connecting two
input feasible solutions – vertices of anm-dimensional hypercube and returning the best-
found-solution, which lies on the path. The hypercube vertices of the path correspond to
m-dimensional vectors, components of which take values of one or zero. The sequential
search along the shortest path is performed by amove from a currently occupied solution
to a neighboring one, which differs from the occupied solution only in a value of one
component. In addition, this component must belong to the set of components, which
take different values in the vectors describing the input solutions. The original path-
relinking method proceeds in accordance to the following algorithm applied to a pair x,
y of input solutions – m-dimensional zero-one vectors.

0. Define set D of components, in which x and y differ, i.e. D = {i= 1, …, m: xi �= yi}.
Initialize xbest by xbest = argmin{f (x), f (y)}.

1. If |D| > 1 go to 2, otherwise go to 3.
2. Determine d∈ D by d = argmin{f (inv(x, i)): i ∈D} and perform x = inv(x, d), D =

D – {d}. If x ∈ X then update xbest by xbest = argmin{f (xbest), f (x)}.
3. Return xbest and terminate.

Comment: The operation inv(x, i) performed with m-dimensional zero-one vector
x and subscript i from the domain 1, …, m returns vector x, components of which are
defined as follows xi = xi for i = 1, …, m, i �= d and xd = 1 – xd .

The cardinality |D| of the initial set D corresponds to the Hamming or Manhattan
distance of the input solutions x and y, and |D|-1 of inner vertices is the number of
inner vertices on the shortest path connecting the input solutions in the surface of the m-
dimensional unit hypercube. Efficiency of the path examination is obviously influenced
by the number of feasible solutions inspected during the examination.

If a kind of p-location problem is considered, e.g. the weighted p-median problem
or the emergency service system design problem with p service centers, then the set X
of all feasible solutions is defined by (2).

X =
{

x ∈ {0, 1}m :
m∑

i=1

xi = p

}

(2)

Applying the above original version of the path-relinking method to the p-location
problem, it can be found that at least every second vertex of the examined path will
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be inadmissible or infeasible solution. It means that the associated vector x will have
less or more than p non-zero components. That is why, a more efficient version of the
path-relinking method was suggested to solve problem (2). The new version avoids the
weird vertices of the hypercube and inspects only feasible solutions of (2).

This adjusted path-relinking mod performs according to the following scheme.

0. Define sets D and E of components, in which take the value of one only in one of
the input solutions x and y. D = {i= 1, …, m: xi = 1 and yi = 0} and E = {i= 1, …,
m: xi = 0 and yi = 1}. Initialize xbest by xbest = argmin{f (x), f (y)}.

1. If |D| > 1 go to 2, otherwise go to 3.
2. Determine d∈ D and e ∈ E by [d, e] = argmin{f (swap(x, i, j)): [i, j] ∈ D × E}

and perform x = swap(x, d, e)): D = D – {d}, E = E – {e}, and update xbest =
argmin{f (xbest), f (x)}. Go to 1.

3. Return xbest and terminate.

Comment: The operation swap(x, d, e) performed with m-dimensional zero-one
vector x and subscripts d and e from the domain 1, …, m, for which xd = 1 and xe = 0
returns vector x, components of which are defined as follows xi = xi for i = 1, …, m, i
�= d and i �= e. Furthermore xd = 0 and xe = 1.

The above-described path-relinking method proved to be an excellent tool when
embedded into a searching scheme of a discrete version of particle swarm optimization.
Nevertheless, the domain of examined solutions stays restricted by the initial deployment
of swarm particles and the system of shortest paths among them. To overcome this
disadvantage of the method, we suggested an extended version of the path-relinking
method described in the next section.

3 Concept of Projection and Path-Relinking Method Extension

The idea of extension is based on the m-dimensional unit hypercube geometry, where
the set of feasible solutions (2) corresponds to a sub-set of the hypercube vertices, which
lie in the intersection of the hypercube and a facet of the simplex determined by the
constraint in (2).

Let us consider a vertex v of the hypercube, which does not belong to set of feasible
solutions due to the number of its non-zero components exceeds the value of p. The vertex
v induces a set F(v) of feasible p-location problem solutions, which are the closest ones
to the vertex v in terms of Hamming distance. As the vertex v has q non-zero components
and q > p, the minimal Hamming distance equals to q–p.

Now, using the path-relinking principle, an input solution x will be projected to the
set F(v) and the best-found-solution of the shortest path from x and the set F(v) will
be an output of the procedure. Using the above introduced denotation, the extended
path relinking method can be described by the following algorithm, input of which is a
feasible solution x and an infeasible hypercube vertex v with q, q > p components.

ExtendedPathRelinking (x, v)

0. Define D = {i= 1, …, m: xi = 1 and vi = 0} and E = {i= 1, …, m: xi = 0 and vi =
1}. Initialize xbest by x.
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1. If |D| > 1 go to 2, otherwise return x and terminate.
2. Determine [d, e]∈D× E by [d, e]=argmin{f (swap(x, i, j)): [i, j]∈D× E} and update

x = swap(x, d, e)): D = D – {d}, E = E – {e}, and xbest = argmin{f (xbest), f (x)}.
Go to 1.

This extended path-relinking method can be employed in a simple version of a
discrete particle swarmoptimization algorithm [3, 21]with strategy one-to-all as follows.

Let x is a starting feasible solution of the solved p-location problem and V is a finite
set of hypercube vertices, where each of them has more than p non-zero components.
Then the searching strategy follows the next commands:

One-to-allSearch(x, V)
While V �= ∅ do: Withdraw a v from V, update V = V –{v} and x =

ExtendedPathRelinking(x, v). If V = ∅, then terminate the search and return x.

4 Numerical Experiments

To verify the extended path-relinking method, the medical emergency system design
instances were used as benchmarks. The problem is formulated as a task to choose
p centers out of the set of m possible center locations so that the objective function
f is minimal. The collection of p chosen center locations can be described by an m-
dimensional zero-one vector x ∈ X. Then, (3) can define the objective function f for the
above-described problem. The formula expresses sum of mean distances from a system
user j to the nearest available service center.

f (x) =
n∑

j=1

bj

r∑

k=1

qk min
k

{
dij : i = 1, ..., m, xi = 1

}
(3)

In the formulation (3), the operator mink{} returns the k-th minimal value of the set
{}. The function f is computed for n system users, where bj denotes a number of user’s
demands, which are located at j and must be serviced from the nearest available service
center. The time-distance between a user location j and a possible service center location
i is denoted by symbol dij. The coefficients qk , k = 1, …, r stand for probabilities that
the k-th nearest service center is the closest available one. This problem description
corresponds to the concept of emergency service system design, in which the system
operates as a queuing system with p service lines. The system is characterized by a
demand assignment strategy following the idea that a randomly emerged demand for
service is assigned to the nearest service center only if the center is not occupied by an
earlier demand. In the opposite case, the nearest non-occupied center provides the user
with service [9, 11, 15].

Computational study reported in this paper was performed on benchmarks derived
fromreal emergencymedical service system implemented in eight self-governing regions
of the Slovak Republic. These problem instances were used also in our previous research
published in [10, 11]. The individual instances are denoted by the names of capitals of
the particular regions, which are reported by abbreviations of the region denotations.
The list of instances consists of Bratislava (BA), Banská Bystrica (BB), Košice (KE),
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Nitra (NR), Prešov (PO), Trenčín (TN), Trnava (TT) and Žilina (ZA). The sizes of the
individual benchmarks arem and p introduced above. Mentioned basic characteristics of
all used benchmarks are reported in the left part of Table 1. The coefficients bj used in the
objective function (3) correspond to the number of inhabitants of individual communities
rounded up to hundreds. The coefficients qk for k = 1…3 of the generalized objective
function (3) were set according to [12] at the values: q1 = 0,77063, q2 = 0,16476 and q3
= 1-q1-q2. These values were obtained from a simulation model of existing emergency
medical system in Slovakia. The middle part of the table consists the objective function
value (3) of the optimal solution denoted by OptSol together with the computational
time in seconds denoted by CT [s], in which the optimal solution was obtained. The
right part of Table 1 is devoted to the characteristics of the uniformly deployed sets as
described in [10]. We report their cardinalities |S| and minimal Hamming distance h.
The uniformly deployed sets of solutions were used in the suggested solving heuristics
as a source of feasible solutions of the problem. The process of uniformly deployed set
construction and usage are reported in [10] and [11].

Table 1. Basic benchmarks characteristics, the optimal objective function values and uniformly
deployed sets sizes

Region m p Optimal solution Uniformly deployed set

OptSol CT [s] |S| h

BA 87 14 26650 0.35 23 2

BB 515 36 44752 10.57 172 3

KE 460 32 45588 7.58 60 2

NR 350 27 48940 19.21 83 2

PO 664 32 56704 76.53 232 2

TN 276 21 35275 4.04 137 2

TT 249 18 41338 2.79 212 2

ZA 315 29 42110 2.70 112 3

To construct the series V of the infeasible hypercube vertices for individual bench-
marks, we ordered the corresponding uniformly deployed set S of p-location solutions
according to objective function values. We used the best solution as the initial solution
x and then, we grouped the remaining solutions to disjoint pairs, triples and quadruples.
Each created group {xu: u = 1, …, t}of t solutions gave one vertex v, components of
which were determined according to vi = max{xiu: u = 1, …, t}. This way we solved
four cases, where the first one did not use the infeasible vertices, but feasible solutions of
S. The second case consisted of vertices obtained from pairs and thus |V | = |S|/2. In the
third and fourth case the infeasible vertices were constructed from triples and quadruples
respectively and cardinalities of V equaled to |S|/t for t = 3, 4.

The main goal of this computational study is to verify the impact of the cardinality of
V on the results measured by computational time in seconds and the solution accuracy.
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Since the optimal objective function values of all studied benchmarks are available and
published in [11], the quality of the resulting system design is here evaluated by gap,
which expresses a relative difference of the obtained objective function value from the
optimal one. Its value is reported in percentage, where the optimal objective function
value was taken as the base. Obviously, we provide also the computational time CT in
seconds.

To achieve the main goal of numerical experiments, a sufficient set of problems
and uniformly deployed sets of solutions must be considered. To make the comparison
relevant and robust enough, we followed from a very useful property of any uniformly
deployed set of solutions. The mentioned useful feature consists in the fact that any
arbitrary permutation ofm locations subscripts brings a newsetwith the sameparameters.
This way, we were able to obtain ten different sets for each problem instance. The results
are summarized in the following tables.

Table 2 contains the average results of ten instances solved for different uniformly
deployed sets of solutions for each self-governing region.

For completeness, let us add the information that the numerical experiments were
run on a PC equipped with the Intel® Core™ i7 3610QM 2.3 GHz processor and 8 GB
of RAM. The algorithms were implemented in the Java language making use of the
NetBeans IDE 8.2 environment.

Table 2. Average results of numerical experiments for the self-governing regions of Slovakia

Region |V| = |S| |V| = |S|/2 |V| = |S|/3 |V| = |S|/4

gap CT gap CT gap CT gap CT

BA 1.19 0.19 1.81 0.14 2.32 0.09 2.97 0.07

BB 0.30 24.15 0.35 24.60 0.36 21.36 0.30 18.37

KE 0.37 13.90 0.37 13.55 0.36 11.63 0.55 9.68

NR 0.18 6.60 1.52 6.18 0.30 5.27 1.67 4.29

PO 0.45 16.17 0.59 16.86 4.91 15.39 4.89 13.96

TN 1.38 2.54 1.51 2.37 1.71 2.10 1.99 1.77

TT 0.23 1.54 0.10 1.43 0.14 1.21 0.12 1.00

ZA 0.07 7.00 0.05 6.55 0.05 5.47 0.05 4.47

The following Table 3 contains the results of the best run out of ten computations for
each benchmark, in which the lowest value of the objective function (3) was achieved.
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Table 3. The best results of numerical experiments for the self-governing regions of Slovakia
(minimal objective function value of ten runs was taken into account)

Region |V| = |S| |V| = |S|/2 |V| = |S|/3 |V| = |S|/4

gap CT gap CT gap CT gap CT

BA 0.00 0.19 0.65 0.14 0.68 0.08 1.12 0.06

BB 0.00 24.85 0.00 26.37 0.00 22.71 0.00 18.80

KE 0.00 14.36 0.00 13.27 0.00 11.59 0.00 9.40

NR 0.05 6.56 0.09 6.20 0.05 5.31 0.62 4.32

PO 0.03 15.93 0.12 16.77 3.57 15.17 3.57 13.73

TN 0.00 2.40 0.14 2.30 0.54 1.96 0.51 1.66

TT 0.00 1.57 0.00 1.43 0.00 1.24 0.00 1.07

ZA 0.00 7.05 0.00 6.55 0.00 5.57 0.00 4.95

5 Conclusions

The main purpose of this paper was to provide the readers with an effective heuristic
method for solving middle and large instances of the weighted p-median problem, which
finds its application in many different areas including medical sphere and many other
subfields of location science. To make the solving approach applicable in a wider range,
developed algorithm is able to cope with generalized objective function. The generaliza-
tion consists in more service centers, which can provide the service to the system user
and not only the nearest located center needs to be considered.

Suggested method is based on the former path-relinking method. The drawback of
the original path-relinking method consists in its way of processing the pair of input
solutions. Mentioned weakness was overcome and the reported computational results
prove that most of the instances were solved either to optimality or the resulting solution
was very near to the optimal one. The novelty of presented original method extension
consists in determination of an infeasible solution of the p-location problem, which
corresponds to a hypercube vertex with more than p-components, and in projection of a
starting feasible solution in the set of the feasible solutions, which are the closest ones
to the infeasible solution.

Based on performed numerical experiments we can conclude that we have con-
structed a very fast and effective heuristic approach to the p-location problems.

Future research in this scientific field could be concentrated on rules, which would
enable to reduce the starting set of p-location problem solutions.
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12. Jankovič, P.: Calculating reduction coefficients for optimization of emergency service system
using microscopic simulation model. In: 17th International Symposium on Computational
Intelligence and Informatics, pp. 163–167 (2016)
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Abstract. Feasible solutions of the p-location problems can be rep-
resented by n-bit binary words with exactly p ones. A set of selected
solutions is called a t-uniformly deployed set, if the minimal Hamming
distance between each pair of solutions is at least 2p − 2t for a given
natural number t. The uniformly deployed sets can be used, due to their
diversity, as starting population in evolutionary algorithms for p-location
problems. In our contribution, we present a method for construction of
appropriate t-uniformly deployed sets. The origins of this method trace
back to the topological graph theory and we have adapted it to our
purpose.

Keywords: Location problem · Uniformly deployed set · Voltage
graph

1 Introduction

A lot of public service design problems are represented by weighted p-median
and p-center problems. It is known that these problems belong to the family
of hard computational problems [1]. Hence, various metaheuristics are used to
solve them [2]. An important class of metaheuristics are evolutionary algorithms.
These methods involve a set of starting feasible solutions. It is reasonable to
suppose in location problems that this set has high diversity. Since the feasible
solutions of p-location problems can be represented by n-bit binary words with
exactly p ones, the diversity of the solutions can be measured by the Hamming
distance [3]. A set of solutions with minimal Hamming distance 2p − 2t is called
a t-uniformly deployed set (t ∈ N is the maximum number of overlapping 1’s in
any two words).

Remark 1. We notice that the construction of the set, in which the Hamming
distance between each pair of solutions is exactly 2p − 2t, leads to the hard
combinatorials problems with no fast algorithms to solve them. For example, we
can point to the construction of difference sets or strongly regular graphs with
given parameters.
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In this paper, we introduce a fast algorithm for the construction of t-uniformly
deployed sets from voltage graphs (digraphs). The sets will be given by rows of
an adjacency matrix of a digraph derived from a voltage digraph.

2 Definitions

In this section, we provide some important definitions of notions that are used
later.

2.1 The p-Location Problem

The p-location problem is a task of locating p-centers at some of the n possible
locations from the set I. It can be defined by (1), where the decision variable yi

gets the value one if a center is located at i ∈ I and it gets zero otherwise.

min{f(y); yi ∈ {0, 1}, i ∈ I,
∑

i∈I

yi = p} (1)

Where f(y) is an appropriate objective function. It is known that only few
versions of f(y) lead to the problems solvable in polynomial time [4,5].

2.2 Hamming Distance

Let two n-bit binary words x = (x1, . . . , xn), y = (y1, . . . , yn) be given. The
Hamming distance of x and y is

H(x,y) =
n∑

i=1

|xi − yi|.

If the words x and y contain exactly p ones, then their Hamming distance is an
even number

H(x,y) ∈ {0, 2, 4, . . . , 2p}.

Let x and y represent two feasible solutions of the p-location problem and
H(x,y) = 2q (where q ≤ p). The expression

2p − 2q

2
= p − q = t

gives the number of locations contained in both solutions.

2.3 The t-Uniformly Deployed Sets

Let Ip be the set of all feasible solutions of a given p-location problem. Hence, Ip

contains all n-bits binary words with exactly p ones. The t-uniformly deployed
set is a subset S ⊆ Ip such that the inequality H(x,y) ≥ 2p − 2t holds for each
x,y ∈ S. It means that any two words x and y from S have at most t ones on
the same positions [6].
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2.4 Digraphs

For our needs, we use a more general definition of digraphs. A digraph D is a
pair (V,E), where V is a non-empty set of vertices, and E is a set of directed
edges. Every edge has exactly one starting vertex and one end vertex. Multiple
edges and loops are also allowed. We say that e1 and e2 are multiple edges, if
they have the same starting vertex and the same end vertex. We say that edge e
is a loop, if it starts and ends at the same vertex. A monopole is a digraph that
contains only one vertex, and all its edges are loops. Monopole with p edges is
denoted by Mp. The outdegree of vertex u is the number of edges, which start
at u. We say that vertex v is a successor of vertex u, if there is an edge from u
to v. The adjacency matrix of a digraph is a square matrix A = (ai,j)n×n such
that ai,j represents the number of edges from i to j.

2.5 Groups and Modular Arithmetic

A group (X, ∗) is a non-empty set X with binary operation ∗ defined on X such
that

1. ∀a, b ∈ X a ∗ b ∈ X,
2. ∀a, b, c ∈ X (a ∗ b) ∗ c = a ∗ (b ∗ c),
3. ∃e ∈ X such that ∀a ∈ X a ∗ e = a = e ∗ a,
4. ∀a ∈ X ∃a−1 ∈ X such that a ∗ a−1 = e = a−1 ∗ a.

For example, integers Z with operation + form the group (Z,+). In modular
arithmetic, there exists another important class of groups. The set of all remain-
ders of division by k is denoted by Zk. It means that

Zk = {0, 1, . . . , k−1}.

We can define addition ⊕k on Zk by the expression

a ⊕k b = mod(a + b, k)

where a, b ∈ Zk and mod(x, y) is the remainder after dividing x by y. It is
possible to show that (Zk,⊕k) is the group for any k ∈ N . Sometimes, we can
omit the operation and parentheses, and the group (X, ∗) can be denoted by X.

2.6 Voltage Digraphs

The construction of large graphs and digraphs from voltage graphs and digraphs
is a method that was invented in topological graph theory [7]. This method
was later used in the Degree/diameter problem [8–11]. Let a graph (digraph)
G = (V,E) and a group (X, ∗) be given. If every edge e ∈ E has assigned a value
α(e) ∈ X, then G is called voltage graph (digraph), and values α(e) on its edges
are called voltages.

We say that GX = (VX , EX) is a graph (digraph) derived from G, if
1) its vertex set contains all ordered pairs from V ×X, (where the vertex (u, i) ∈
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V × X is denoted by ui),
2) a pair of vertices ui, vj ∈ VX forms an edge from EX if and only if there is an
edge e ∈ E from u to v in G such that i ∗ α(e) = j.

Example 1. We can consider the voltage digraph G and the group Z3 in Fig. 1.
The derived digraph GZ3 can be seen in Fig. 2.

1

0

1
u v

Fig. 1. Voltage digraph G.

u0

u1

u2

v0

v1

v2

Fig. 2. Digraph derived from G.

3 The Construction of Uniformly Deployed Sets
from Voltage Digraphs

In [8], there is shown the construction of the Hoffmann-Singleton graph from a
voltage graph with two vertices and the group Z5 ×Z5. The Hoffmann-Singleton
graph contains 50 vertices, each vertex has degree seven, each pair of adjacent
vertices has no common neighbour, and each pair of non-adjacent vertices has
exactly one common neighbour. It follows from these facts that any two rows of
its matrix have the Hamming distance 12 or 14. Hence, the rows of this matrix
form the 1-uniformly deployed set for n = 50 candidates and p = 7 locations.
However, the Hoffmann-Singleton is a graph with many special properties. It is
a strongly regular graph, a Moore graph, and a triangle-free graph. It is known
that graphs with these properties occur rarely. This is the reason why we decided
to construct digraphs with less constraints by this method. It is possible to
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show that a t-uniformly deployed set (n, p and t are given) can be obtained
from adjacency matrix of a digraph on n vertices, in which every vertex has
outdegree p and each pair of vertices has at most t common successors. We denote
such digraphs by D(n, p,≤ t). In this paper, we study possible constructions of
D(n, p,≤ t) from monopoles Mp and groups Zn.

Example 2. We show the construction of 1-uniformly deployed set for n = 10
and p = 3 by this way. We start with monopole M3 and group Z10. Let the
vertex of M3 be denoted by v and edges e1, e2 and e3. We assign the following
voltages to these edges: e1 → 1, e2 → 2, and e3 → 5. The adjacency matrix of
the derived digraph is ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We can check that the rows of this matrix form the 1-uniformly deployed set.
All information about this digraph is in quintuple

(M3, Z10, 1, 2, 5).

In general, for Mp and Zn, let vi and vj be vertices with common successor vk.
It means that the edges

(vi, vk), (vj , vk) ∈ EZn
.

Hence, there exist voltages α, β ∈ Zn on edges of G such that i ⊕n α = k and
j ⊕n β = k. From these equations, we obtain

j = i ⊕n α ⊕n β,

where β is the inverse of β in Zn. The list of all such vertices vj , which have
common successors with a given vertex vi, can be obtained from the following
table. We will call this table a range matrix for (p + 2)-tuple

(Mp, Zn, α1, α2, . . . , αp).

⊕n α1 α2 . . . αp

α1 0 α1 ⊕n α2 . . . α1 ⊕n αp

α2 α2 ⊕n α1 0 . . . α2 ⊕n αp

...
...

...
. . .

...
αp αp ⊕n α1 αp ⊕n α2 . . . 0
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The number of occurrences of value γ ∈ Zn in the range matrix is the answer to
the question: how many common successors do the vertices vi and vi⊕γ have?

Example 3. The range matrix for (M3, Z10, 1, 2, 5) is

⊕10 9 8 5
1 0 9 6
2 1 0 7
5 4 3 0

Each value from Z10, except the zero, occurs in the range matrix at most once.
It means that a vertex vi has exactly one common successor with vertices vi⊕9,
vi⊕6, vi⊕1, vi⊕7, vi⊕4, vi⊕3, and no common successor with vertices vi⊕, vi⊕,
vi⊕, since the range matrix does not contain values 2, 5, and 8.

Example 4. A 1-uniformly deployed set for n = 80, p = 8 can be represented by
10-tuple

(M8, Z80, 1, 2, 4, 12, 21, 27, 34, 39).

The corresponding range matrix is

⊕80 79 78 76 68 59 53 46 41
1 0 79 77 69 60 54 47 42
2 1 0 78 70 61 55 48 43
4 3 2 0 72 63 57 50 45
12 11 10 8 0 71 65 58 53
21 20 19 17 9 0 74 67 62
27 26 25 23 15 6 0 73 68
34 33 32 30 22 13 7 0 75
39 38 37 35 27 18 12 5 0

Each value from Z80, except the zero, occurs in the range matrix at most once.
Hence, this 10-tuple represents a 1-uniformly deployed set.

4 How to Construct the Set of Voltages

The main computational problem is the construction of an appropriate set of
voltages. We present this problem for the Bratislava Region, where we have 87
candidates for emergency stations and we need to choose 14 locations. We have(
87
14

)
possibilities how to do it and we also have the same number of possibilities

for the set of voltages.
Hence, in this section, we present the algorithm for choosing the voltages to

obtain the derived digraph with parameters D(n, p,≤ t). We define for these
purposes an increasing sequence {ai}∞

i=1 of nonnegative integers. We will call it
a t-sequence and it can be stated recursively:
1. a1 = 0, a2 = 1.
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2. For k > 2, ak is the minimum value such that for all i ∈ {1, . . . , k − 1}, the
value ak − ai occurs between values aj − ai (where 1 ≤ i < j < k) at most
t− 1 times. The first q members of t-sequence can be computed by the following
algorithm:
Let a1 := 0; a2 := 1;
For k = 3, . . . , q

x := ak−1 + 1;
Ak := {aj − ai; 1 ≤ i < j < k};
While ak = 0

y := 1;
For i = 1, . . . , k − 1

If (x − ai) ∈ Ak at most t − 1 times
Then y := y·1;
Else y := y·0;

If y = 1 Then ak = x;
Else x := x + 1;

Where Ak is multiset. Examples of the first q = 15 members of t-sequences
for t = 1, 2, 3, 4 can be seen below:

t = 1 0, 1, 3, 7, 12, 20, 30, 44, 65, 80, 96, 122, 147, 181, 203
t = 2 0, 1, 2, 4, 7, 11, 16, 22, 30, 38, 48, 61, 73, 86, 103
t = 3 0, 1, 2, 3, 5, 8, 12, 16, 21, 27, 33, 40, 48, 57, 71
t = 4 0, 1, 2, 3, 4, 6, 9, 13, 17, 22, 27, 33, 39, 46, 53

If we want to construct a digraph D(n, p,≤ t) from monopole Mp, group Zn

and t-sequence for appropriate t, then we can use the following procedure:

1) If ap < n/2, then the voltages on edges are the members of t-sequence.
It follows from the properties of t-sequences that the digraph derived from
(Mp, Zn, a1, . . . , ap) is D(n, p,≤ t).
2) If ap−x < n/2, and ap−x+1 ≥ n/2 (for small x ∈ N , for example x ∈
{1, 2, 3, 4}), then the voltages are αi = ai for i = 1, 2, . . . , p − x.
For k ∈ {p−x+1, . . . , p}, αk ∈ {αk−1 +1, . . . , n−1} is the minimum value such
that for all i ∈ {1, . . . , k − 1}, the values αk ⊕n αl and αi ⊕n αk occurring in the
multiset

{αi ⊕n αj ;∀i, j such that 1 ≤ i, j ≤ k, i �= j}
at most t times.
3) If we still do not have p voltages, then we can increase t := t + 1 and repeat
step 2 to complete the set of voltages.

Example 5. A 4-uniformly deployed set for the Bratislava Region can be con-
structed from

(M14, Z87, 0, 1, 2, 3, 4, 6, 9, 13, 17, 22, 27, 33, 39, 46)

where all voltages are computed by previous procedure from 4-sequence.
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5 Limitations

What are the limits of parameters n, p, and t, when we construct t-uniformly
deployed sets from Mp and Zn? From the range matrix, we have inequality

p(p − 1) ≤ t(n − 1),

where p(p − 1) is the number of non-zero elements in a range matrix and n − 1
is the number of non-zero elements in Zn. From this inequality, we have some
upper and lower bounds for n, p, and t. Lower bounds for n computed from
inequality

p(p − 1)
t

+ 1 ≤ n

can be seen in table
p\t 1 2 3 4
10 91 46 31 24
20 381 191 128 96
30 871 436 291 219

Lower bounds for t computed from inequality

p(p − 1)
n − 1

≤ t

can be seen in table
p\n 100 200 300
10 1 1 1
20 4 2 2
30 9 5 3

From inequality
p2 − p − t(n − 1) ≤ 0,

we have interval

p ∈ 〈1 − √
1 + 4t(n − 1)

2
,
1 +

√
1 + 4t(n − 1)

2
〉

and some upper bounds for p can be found in table

n\t 1 2 3 4
100 10 14 17 20
200 14 20 24 28
300 17 24 30 35
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6 Computational Results

Colleagues J. Janacek and M. Kvet tested the efficiency of using the UDS in vari-
ous heuristics to solve the weighted p-median problem and its generalised version.
Their results can be found in [3,6,12,13]. We tested Swap and Path-relinking
heuristics for the weighted p-median problem in [14]. Some numerical results
(for generalised p-median problem) can be seen in the following table (taken
over from [15]), which shows the tests of the discrete self-organizing migrating
algorithm (DSOMA) with and without UDS extension. Benchmarks for the tests
are derived from the self-governing regions of Slovakia.

Regions n p OptSol DSOMAU TimeU [s] DSOMA Time[s]
BB 515 36 44752 44907 30.3 44923 30.1
KE 460 32 45588 45733 17.6 46099 17.5
NR 350 27 48940 48996 8.5 49986 8.3
PO 664 32 56704 56936 2.8 60476 20.5
TN 276 21 35275 35789 3.4 49260 3.2
TT 249 18 41338 41432 2.0 44090 2.0
ZA 315 29 42110 42140 8.7 42145 8.7

The columns of the table mean:
Regions - shortcuts of the self-governing regions of Slovakia (Bratislava region is
omitted),
n - the number of candidates for placing an emergency station,
p - the number of emergency stations that need to be located,
Opt Sol - optimal value of the objective function for the generalised weighted
p-median problem,
DSOMAU - values of the objective function obtained by DSOMA with UDS
extension,
DSOMA - values of the objective function obtained by basic version of DSOMA,
TimeU, Time - computation time.

7 Conclusions

In our contribution, we introduce the construction of t-uniformly deployed sets
from voltage graphs. We study possible constructions from monopoles with ele-
ments from Zn as voltages. We also derive some limitations for these classes of
graphs and groups. The constructions from more complicated voltage graphs and
groups will follow in our next paper. The effect of using t-uniformly deployed
sets in genetic algorithms is tested in [13,14], where the authors present its effi-
ciency on real data from regions of Slovakia. The solutions that can be obtained
by this method could have applications in real-life contexts, such as the location
of emergency stations within certain environs.
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Abstract. In a recent paper we introduced differentially private random
dictatorship as a private mechanism for social choice. Differentially pri-
vate mechanisms are evaluated in terms of their utility and information
loss. In the area of social choice it is not so straightforward to evaluate the
utility of a mechanism. It is therefore difficult to evaluate a differentially
private social choice mechanism. In this paper we propose to use a parti-
cle swarm optimization-like problem to evaluate our differentially private
social choice method. Standard particle swarm optimization (PSO) can
be seen in terms of a panopticon structure. That is, a structure in which
there is a central entity that knows all of all. In PSO, there is a particle
or agent that knows the best position achieved by any of the particles or
agents. We propose here PSO without panopticon as a way to avoid an
omniscient agent in the PSO system.

Then, we compare different social choice mechanisms for this PSO
without panopticon, and we show that differentially private random dic-
tatorship leads to good results.

1 Introduction

In our recent work [12], we studied random dictatorship [2,4] as a voting mech-
anism that satisfies differential privacy [3] under some conditions, and defined a
variation of this method that is differentially private.

In data privacy [5,11,13] data protection mechanisms are often evaluated in
terms of their utility. Data protection mechanisms based on secure multiparty
computation are known to be good with respect to utility as they provide loss-less
computation and do not make any perturbation on the output of the function.
In contrast, data protection mechanisms that follow differential privacy [3] or
k-anonymity [8] cause some information loss to the data or computation.

As a result of this, it is relevant to evaluate the utility of random dictatorship
and of its differentially private version.

Nevertheless, the evaluation of the utility of a votingmechanism is an ill-defined
problem. Voting mechanisms are usually evaluated in terms of their properties
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B. Dorronsoro et al. (Eds.): META 2021, CCIS 1541, pp. 93–105, 2022.
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based on individual preferences. Examples of properties include (see e.g. [1,2,9])
Condorcet conditions, the independence of irrelevant alternatives, etc. These con-
ditions are defined assuming that voters possess ordinal utility functions. That is,
voters have an order on the alternatives (e.g., prefer alternative a1 to alternative
a2). In contrast, it is not considered a numerical evaluation of each alternative (e.g.,
the utility of alternative a1 is 0.8 and the one of alternative a2 is 0.5).

It is known that a numerical utility model does not fit well with voting pro-
cedures. Observe that for any ordinal utility function (i.e., a1 is preferred to a2),
there are infinitely many (numerical) utility functions compatible with the ordi-
nal one. Moreover, if we consider (numerical) utility functions for each voter (i.e., a
numerical value for each alternative as ui(a1), ui(a2), . . . for voter i), the majority
rule does not necessarily maximize the total utility. That is, if we define the social
good of a selected alternative as the addition of voters’ utility for this alternative
(i.e.,

∑
i ui(a) for selected alternative a), majority voting does not necessarily lead

to the best option. The same applies to other social choice mechanisms.
In this paper we propose a federated learning [7] type of problem using particle

swarm optimisation (PSO) [6] to evaluate private social choice mechanisms (as the
one introduced in [12]). The goal is to find an optimal (aggregated) position that
is the best for a set of agents. The problem is formulated as a particle swarm opti-
misation (PSO) problem [6] in which there is no omniscient agent with knowledge
of the so-far best optimal position for all as it is the case for standard PSO. I.e., no
panopticon, as we say. The best optimal position is obtained through successive
voting in line with successive aggregations in federated learning.

The structure of this paper is as follows. In Sect. 2 we review probabilistic
social choice and a differentially private version of it. In Sect. 3 we review particle
swarm optimisation and introduce particle swarm optimisation without panop-
ticon. This later approach is to avoid the system of particles omniscient on the
best position of each particle. Section 4 discusses the evaluation of differentially
private social choice in terms of particle swarm optimisation. The paper finishes
with some conclusions and directions for future work.

2 Probabilistic Social Choice

Let I be a set of agents and A a set of alternatives. Let the goal be to select the
preferred alternative for the set of agents. That is, the alternative that most of
the agents prefer.

To formulate this problem we model agents preferences in terms of preference
relations on the set of alternatives. That is, for agent i, the preference relation
�i is defined in terms of subsets of A×A. In our context, we have only access to
the best preferred option of an agent i ∈ I and this is just its vote, an alternative
a ∈ A. So, for all a′, a �i a′ for this agent i ∈ I.

Plurality voting is to select the alternative that receives the most votes or
preferences. In contrast, uniform random dictatorship proceeds as follows.

Method 1. From [12]. This method selects an agent i in I according to a uni-
form distribution on I, and then uses �i to select the most prefered alternative
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Fig. 1. Bounds for the ε parameter (y axis) in differentially private random dictatorship
as defined in Method 2 using the results of Lemma 1 (read text). We have considered
the case of 4, 8, and 16 alternatives (left, middle, and right graphs) and the number of
agents ranging from 3 to 200 (x axis).

by agent i as outcome. That is, once i is selected from I, the method returns
a ∈ A such that a �i a′ for all a′ ∈ A.

This approach can be equivalently implemented considering all alternatives,
their frequency (votes), and then selecting one alternative using a probability
distribution proportional to the frequency.

We defined in [12] two differentially private versions of random dictatorship.
Their difference was on whether the voting was compulsory or optional. We give
below the definition where voting is not compulsory but optional.

Method 2. From [12], let A = {a1, . . . , am} be the set of alternatives. Let I be
the set of agents, and let �i be the corresponding preference relations for i ∈ I
on the alternatives A. Then, enlarge I with a set of agents I0 = {e1, . . . , em}
such that �i for i ∈ I0 has as its prefered alternative the ith alternative in A.

Then, apply uniform random dictatorship on I ∪ I0.

This voting procedure satisfies differential privacy for an appropriate param-
eter ε. The following lemma establishes bounds for the ε parameter.

Lemma 1. From [12], differentially private random dictatorship as defined in
Method 2 satisfies differential privacy for any

ε ≥ log
2|I ∪ I0|

|I ∪ I0| + 1
.

For a large number of agents, it is easy to see that we can compute a bound
for ε. That is, ε > log(2) = 0.6931. Naturally, the more alternatives we have,
the more agents we need to tend to this limit. Figure 1 represent the bound
in Lemma 1 for 4, 8 and 16 alternatives. As we will describe later, we use in
our experiments 8 alternatives. The corresponding figure shows the bound for a
number of agents between 3 and 200.

When we can ensure that there is at least an agent for each alternative, we
have bounds that do not depend on the alternative. Nevertheless, this is not
necessarily the case in our scenario. See [12] for details.
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3 Particle Swarm Optimisation Based Evaluation

As briefly mentioned in the introduction, we define the evaluation scenario in
terms of PSO [6]. We have a function f : Rn → R and we are interested in finding
its minimum. To do so, we have a set of S agents or particles. Each particle
i ∈ {1, . . . , S} has a position pi in the n dimensional space, and a velocity vi.

3.1 Standard Particle Swarm Optimisation

In a standard particle swarm optimisation solution, each particle records the
best position found so far. This is denoted by bi. In addition, we keep track of
the global best position found so far in the whole system. This is denoted by g.

The procedure iteratively computes a new position for each particle until a
certain termination criteria is met. In each iteration, the best position is updated
when necessary. More precisely, for the ith particle, we compute a new velocity:

vi = ωvi + φprp(bi − pi) + φgrg(g − pi) (1)

where ω is the inertia weight, φp and φg are acceleration coefficients one for the
best position of the particle and the other for the best global position; and where
rp and rg are random vectors following a uniform distribution in [0, 1].

Then, we update the position of the ith particle as follows:

pi = pi + vi.

When f(pi) < f(bi) then we update the best position bi = pi, and if f(pi) <
f(g) then we update the global best position g = pi.

3.2 Particle Swarm Optimisation Without Panopticon

In PSO, the position of any agent or particle is public. Our scenario differs from
the standard PSO scenario because we consider it private. Therefore, we cannot
use the global best position g when computing a new position or velocity for any
particle.

Instead, we consider an additional system particle that is led by all the par-
ticles. This system particle has its own position and velocity. We denote them
by pG and vG, respectively. These position and velocity are public.

The position pG is analogous to the aggregated model in federated learning.
This position is based on agent’s positions, and it is computed as an aggregation
(using our social choice mechanisms) of previous and current information.

As the best global position g is not available, Eq. 1 cannot be used. Thus we
compute the velocity of each particle in a slightly different way. As the system
particle position is known and any particle can evaluate whether this position is
better or not than its own, we update particles velocity taking advantage of this
knowledge. Formally,

vi =
{

ωvi + φgrg(pG − pi) iff(pG) < f(pi)
ωvi + φprp(bi − pi) otherwise. (2)
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Equation 2 is similar to Eq. 1 but updating does not depend on g, and the
updating rule depends on whether the ith particle is in a better position than
system’s one (i.e., f(pG) < f(pi)).

Updating of system’s position needs to take into account that access to other
particles’ positions is not permitted. Our proposal is that particles can provide
a direction where to lead the system particle. This direction plays the role of the
velocity vector, but there are two main differences.

– One is that the direction is a vector but it does not have a magnitude.
– Another one is that not all directions are possible, but only a limited number

of them.

We have these constraints because we consider that supplying an arbitrary
direction or velocity is not feasible from a privacy perspective: the space of alter-
natives would be too large to protect (too many possible angles and magnitudes).

The number of directions nd is a parameter of the system. In this work we
only consider functions with two variables, so they are functions of the form
f : R2 → R. Then, all nd directions are on the plane.

When nd = 4 it means that particles can vote for four directions and they
correspond to the following direction vectors (1, 0), (0, 1), (−1, 0) and (0,−1).
In general, each possible direction a = 0, . . . , nd corresponds to a different angle,
all angles are equally spaced in [0, 2π] and they are defined with respect to the
(1, 0) vector. At a given time, each particle computes its angle with this vector
(1, 0), say αi, and then vote for the option �αi · nd/(2π)	 which is the nearest
option to their own preferred angle.

Given a set of particles, from their votes for their preferred angle, we can
select an angle using any social choice approach. In particular, we can use plu-
rality voting (i.e., select the most frequent angle), random dictatorship, and
differentially private random dictatorship for selecting an angle. This process
leads to an angle αG which can then be used to find a direction vector vαG

.
That is, vαG

is the unit vector with angle αG with the vector (1, 0). Once the
vector is known, we update the global position as follows:

pG = pG + ωGvαG
,

where ωG is the inertia weight of the global position.

3.3 Analogy with Federated Learning

Our approach has similarities with the standard procedure in federated learning.
Note that agents access pG. So, we assume that this information is publicly
available. This is similar to accessing the average model in federated learning.
Then, the information that agents provide in our system, that is, direction,
can be seen as the difference between the global model and the local model in
federated learning. Our approach is more restrictive than in federated learning,
as we are dealing with a context in which agents can only vote for a few options.
This has, of course, advantages from a privacy point of view.
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4 On the Evaluation of Differentially Private Social
Choice

We have considered different scenarios in order to evaluate differentially private
social choice. Different scenarios differ on the function to be minimized, the social
choice procedure, and the parameters of the system. We discuss these elements
below.

4.1 Functions

In order to evaluate our approach we have used the following functions in R
2,

selected from the review work by Sengupta et al. [10] on particle swarm optimi-
sation. For each function we also include the range of the two variables (x1, x2).

We have selected functions in R
2 because they provide a simple scenario with

only a few voting options and compatible with the example in [12] of a cohort of
drones guiding a ground vehicle. Drones vote continuously to guide the vehicle.
The selected direction, landmark or position at any time is not so important. It
is the overall set of decisions (the rough path) what influences the trajectory of
the vehicle.

The functions we consider are the following ones.

– Quadratic function (x1, x2 ∈ [−100.0, 100.0]):

f1(x1, x2) = x2
1 + x2

2

– Schwefel’s problem 2.22 (x1, x2 ∈ [−10.0, 10.0]):

f2(x1, x2) = |x1| + |x2| + |x1| · |x2|
– Schwefel’s problem 1.2 (x1, x2 ∈ [−100.0, 100.0]):

f3(x1, x2) = x2
1 + (x1 + x2)2

– Generalized Rosenbrock’s function (x1, x2 ∈ [−2.0, 2.0]):

f4(x1, x2) = 100 ∗ (x2 − x1 ∗ x1)2 + (x1 − 1)2

– Generalized Schwefel’s problem 2.26 (x1, x2 ∈ [−500.0, 500.0]):

f5(x1, x2) = −x1sin(
√

|x1|) − x2sin(
√

|x2|)
– Rastrigin’s function (x1, x2 ∈ [−5.12, 5.12]):

f6(x1, x2) = 2 · 10 + x2
1 − 10cos(2x1π) + x2

2 − 10cos(2x2π)

– Ackley’s function (x1, x2 ∈ [−32.768, 32.768]):

f7(x1, x2) = − 20e−0.2
√

0.5(x2
1+x2

2)

− e0.5cos(2x1π)+cos(2x2π) + 20 + e

– Griewank function (x1, x2 ∈ [−600.0, 600]):

f8(x1, x2) = 1 + (1/4000)(x2
1 + x2

2) − cos(x1) ∗ cos(x2/
√

2)

The optimal solutions for these problems correspond to a function equal to
zero, except in the case of f5 where the best solution corresponds to –12569.5.



PSOwp: Particle Swarm Optimisation Without Panopticon 99

4.2 Social Choice Procedures

The social choice procedures we have considered are:

– plurality voting,
– random dictatorship, and
– differentially private random dictatorship.

Social choice with plurality voting and random dictatorship are used as base
line social choice procedures.

In addition, we have also implemented standard PSO. That is, there is an
omniscient agent that observes all other agents and stores the best/optimal
position found so far. This agent represents the guard in the panopticon.

Then, we consider for each of the three procedures above, two cases according
to whether a particle votes or not. They are the following ones:

– A particle always votes;
– A particle only votes when its position is better than the best one, and in

this case, decision to vote is based on a probability.

Thus, we have 7 different approaches: (i) PSO, (ii) plurality voting (PV),
(iii) random dictatorship (RD), (iv) differentially private random dictatorship
(DRD), and (v) plurality voting (bPV), (vi) random dictatorship (bRD), and
(vii) differentially private random dictatorship (bDRD) only among those agents
that have a position better than the global one.

4.3 Parameters

Our system is defined by the number of particles, the inertia weight ω, and the
velocities φp, φg and the inertia weight ωG. In addition, social choice procedures
can have additional parameters corresponding to the probabilities related to
when to vote. We assume that all particles use the same parameter’s values.

We have used different sets of values for the parameters ω, φp, φg, and ωG.
They are the following ones.

– ω: 0.005, 0.001, 0.05, 0.1, 0.2, 0.4
– φp = φg: 0.01, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0
– ωG: 0.005, 0.01, 0.05, 0.1, 0.2, 0.4

We have used 50 particles and 1000 iterations to compare the results. That is,
1000 voting processes. A few additional examples that are shown in the figures
have been considered with additional iterations (10000 iterations). We have used
8 voting options, corresponding to an angle of 2π · a/8 for a = 0, . . . , 7 from
direction (1, 0). We have considered 30 executions, for each of the assignments
considered.
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4.4 Experiments

We evaluate the utility of differentially private random dictatorship using as
test-bed the optimisation problems defined above and as a methodology to solve
this problem the particle swarm optimisation without panopticon (as defined
in Sect. 3.2) as well as using the social choice procedures in Sect. 4.2 with the
parameters described in Sect. 4.3.

Our goal is to see if the differentially private random dictatorship has a
comparable behaviour to the ones supposedly better of plurality voting and
random dictatorship. To that end, we

– compare the solutions obtained using the three social choice procedures, and
– compare different parametrisations (when particles vote, parameters used).

In addition, we use PSO as the reference value. Nevertheless, as it keeps
track of the best solution found so far, we expected PSO to outperform the
other methods.

For each set of parameters considered, we have computed the mean of the
optimal function found. That is, a mean of the values (MeanF) obtained for the
30 different executions. We have also recorded the minimum (MinF) obtained in
these 30 executions. Table 1 displays optimal values of MeanF and MinF found
for each function and each method: PSO – on the top row, right column; PV ,
RD, and DRD – middle row, from left to right; bPV , bRD, and bDRD – bottom
row, from left to right. Between brackets we display the parameters ω, φp = φg

and ωG used to obtain the optimal solution.

PSO Vs. Social Choice Procedures. PSO is always better than any other
social choice procedure. Except for problem f5, PSO reaches always the minimum
for the 30 executions. That is, except for f5, both meanF and minF are always
zero. Best PSO solutions are in most of the cases obtained with the parameters
ω = 0.005, φp = φg = 2, and ωG = 0.005.

As stated above, this is a natural consequence of PSO being omniscient and
keeping track of the best positions found by any agent. Nevertheless, as we show
below, the solutions of social choice procedures are also very good and equal in
practice for most problems.

For problems f1, f2, f3, f4 and f8 (see Sect. 4), the optimal values achieved
for PSO are 0 and social choice procedures give solutions with values at least
less than 0.009, often very close to zero, the global solution. In particular, for f8
we find a solution with differentially private random dictatorship (DRD) with
an objective function equal to 7.41 · 10−9. See also solutions for f1, f2, f3, f4
in Table 1 that are virtually zero. Note that in the table we display both mean
values (MeanF) and the best solution found (MinF).

For problem f5 (with global minimum of −12569.5), PSO obtains a meanF
value of −668, and the best of the 30 executions leads to minF equal to −837.
Social choice solutions (both for meanF and minF) have an optimal value of
around −7. These are the worst results for both PSO and social choice proce-
dures.
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Table 1. Optimal values obtained for the functions f1, . . . , f8 using PSO and the three
social choice procedures (for both voting strategies: always voting, only voting if better
than global optimum). For each function we display MeanF (top) and MinF (bottom)
objective functions achieved. For each pair (function,MeanF/MinF), we have on the first
line: Name of function, value displayed, result using PSO (and parameters ω, φp = φg

and ωG of the optimal result). On the second line we have the results obtained using PV ,
RD, and DRD and on the third line the results obtained using bPV , bRD, and bDRD.

Function/PV /bPV RD/bRD PSO / DRD / bDRD

f1 MeanF 0.0 (0.005 2.0 0.005)

8.46 · 10−6 7.50 · 10−6 1.26 · 10−5 (0.1 2.0 0.005)

7.63 · 10−6 6.93 · 10−6 1.45 · 10−5 (0.4 2.0 0.005)

f1 MinF 0.0 (0.005 2.0 0.005)

2.20 · 10−6 1.58 · 10−6 6.97 · 10−8 (0.05 2.0 0.005)

9.83 · 10−8 1.00 · 10−6 8.50 · 10−8 (0.01 2.0 0.005)

f2 MeanF 0.0 (0.005 2.0 0.005)

0.0033 0.0033 0.0037 (0.01 2.0 0.005)

0.0034 0.0032 0.0041 (0.2 2.0 0.005)

f2 MinF 0.0 (0.005 2.0 0.005)

0.0017 0.0010 9.70 · 10−4 (0.05 1.0 0.01)

4.95 · 10−4 6.59 · 10−4 2.50 · 10−4 (0.2 0.5 0.005)

f3 MeanF 0.0 (0.005 2.0 0.005)

1.00 · 10−5 1.10 · 10−5 1.68 · 10−5 (0.4 1.0 0.005)

9.62 · 10−6 9.98 · 10−6 2.05 · 10−5 (0.2 2.0 0.005)

f3 MinF 0.0 (0.005 2.0 0.005)

8.78 · 10−8 5.94 · 10−7 7.41 · 10−8 (0.2 2.0 0.005)

2.87 · 10−7 2.98 · 10−7 6.56 · 10−7 (0.1 1.0 0.005)

f4 MeanF 0.0 (0.2 2.0 0.005)

0.0667 0.0050 0.0070 (0.4 2.0 0.005)

0.0284 0.0027 0.0054 (0.2 2.0 0.005)

f4 MinF 0.0 (0.005 2.0 0.005)

0.0063 1.57 · 10−4 7.67 · 10−5 (0.4 2.0 0.005)

9.52 · 10−4 4.64 · 10−6 4.36 · 10−5 (0.005 0.2 0.1)

f5 MeanF −668.00 (0.05 2.0 0.4)

−7.8904 −7.8904 −7.8903 (0.005 2.0 0.05)

−7.8905 −7.8905 −7.8905 (0.005 1.0 0.01)

f5 MinF −837.96 (0.005 2.0 0.005)

−7.89 −7.89 −7.89 (0.1 2.0 0.05)

−7.89 −7.89 −7.89 (0.01 0.05 0.01)

f6 MeanF 0.0 (0.005 2.0 0.05)

6.96 0.83 1.18 (0.05 1.0 0.05)

6.18 1.02 1.19 (0.1 1.0 0.05)

f6 MinF 0.0 (0.005 2.0 0.005)

5.40 · 10−4 3.93 · 10−4 2.91 · 10−5 (0.1 2.0 0.005)

2.83 · 10−4 2.30 · 10−4 1.23 · 10−4 (0.05 0.5 0.01)

f7 MeanF 4.44 · 10−16 (0.005 2.0 0.005)

0.40 0.09 0.14 (0.4 0.1 0.05)

0.25 0.11 0.16 (0.05 0.1 0.05)

f7 MinF 4.44 · 10−16 (0.005 2.0 0.005)

0.0043 0.0036 6.18 · 10−4 (0.05 2.0 0.005)

0.0011 0.0017 0.0019 ( 0.005 0.5 0.005)

f8 MeanF 0.0 (0.005 2.0 0.005)

3.08 · 10−6 2.50 · 10−6 5.16 · 10−6 (0.2 2.0 0.005)

2.56 · 10−6 2.64 · 10−6 4.30 · 10−6 (0.005 2.0 0.005)

f8 MinF 0.0 (0.005 2.0 0.005)

8.05 · 10−7 5.11 · 10−7 7.41 · 10−9 (0.2 1.0 0.005)

2.62 · 10−7 5.59 · 10−8 1.61 · 10−8 (0.4 0.05 0.01)
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For the other problems, f6, f7 the best social choice solutions are meanF
= 0.83 and minF = 2.91 · 10−5, and meanF=0.0979 and minF=6.18 · 10−4,
respectively.

Social Choice Procedures and Differentially Private Random Dicta-
torship. Among the social choice procedures, for most of the problems the
best solutions are either random dictatorship or differentially private random
dictatorship. In some cases solutions are better by a factor of 10 or 100 to the
one obtained with plurality voting. So, we can state that randomness is not an
inconvenience but an advantage.

Only for f3 the best solutions are obtained using plurality voting. However,
in this case, the values achieved by the three social choice procedures are very
similar. Observe in Table 1 that the values meanF are 9.62 · 10−6 for bPV and
9.984 · 10−6 for bRD.

When we compare the case of agents always voting and the case of agents
only voting when they have a position better than the global one, we have, as
expected, that in most cases, results are better when only those agents with
better positions vote.

With respect to parameters of the best solutions, there is more variety here
than when using PSO. We can observe in the table that DPD and dDPD has most
solutions with φg = φp = 2.0 but the best solutions for f2 are with φg = φp = 0.5
and for f3 are with φg = φp = 1.0.

Figure 2 shows the evolution of the system particle when differentially private
random dictatorship is used. We can see that except for the problem f6 the
system particle tends to move to the optimal solution. For f5 the optimal solution

Fig. 2. Objective function for problems f1, f2, f5, f6, f7, f8 (right to left, top to bottom)
listed above when differentially private random dictatorship is used. The number of
alternatives considered is 8 and the number of particles is 100.
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Fig. 3. Objective function for problems f1, f2, f5, f6, f7, f8 (right to left, top to bottom)
when differentially private random dictatorship is used and when particles only vote if
they know to be in a better position. The number of alternatives considered is 8 and
the number of particles is 100.

found is far from optimal. This evolution is much faster when particles only vote
when they know to be in a better position than the system particle. This is
illustrated in Fig. 3.

To illustrate that the plurality vote is not always the best alternative, we
show the results obtained for Ackley’s function f7. Figure 4 shows the results
for the three social choice procedures: plurality rule (left), random dictatorship
(middle), and differentially private random dictatorship according to Method 2
(right). Dots correspond to the case of all particles always voting, and lines to the
case that only those particles with a better position vote. It can be clearly seen
that the plurality rule is not best, and that voting only when a better position
is found is clearly better. Recall that the optimal solution for this problem is
when the function is exactly zero.

Summary. The results of our experiments can be summarised stating that

– standard PSO (with panopticon) is the most effective approach considered,
but PSO without panopticon is also quite effective and some solutions have
no significant difference,

– among social choice procedures implementing our variation of PSO (without
panopticon), plurality voting is usually not the best option,

– particles voting only when their solution is a better approach than particles
voting in all occasions, and, last but not least,

– differentially private random dictatorship can be seen as comparable to ran-
dom dictatorship.
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Fig. 4. Objective function for the Ackley’s function f7 when plurality rule (left), ran-
dom dictatorship (middle), and differentially private random dictatorship (right) are
used. Dots correspond to all particles voting and lines to only those particles having a
better solution than the system particle voting. The number of alternatives considered
is 8. Random dictatorship only voting when solutions are better is the one with the
fastest convergence.

Therefore, we consider that a qualitative conclusion is that differentially pri-
vate random dictatorship is a suitable approach to be used in this type of scenario.

5 Conclusions

This paper focuses on the evaluation of differentially private social choice and
more particularly on differentially private random dictatorship. It is standard
to evaluate data privacy mechanisms in terms of their utility or in terms of the
loss they cause. Social choice mechanisms are not so straightforward to evaluate
because the preferences or opinions of the agents are assumed to be expressed in
ordinal terms. This is an important assumption. Our approach permits to eval-
uate social choice under these assumptions. We have proposed a scenario based
on an objective function to optimise by a set of agents, and use a PSO-like
procedure for obtaining the best solution through an iterative voting procedure.
When numerical evaluations of the preferences exist (through e.g. utility func-
tions), other mechanisms (as aggregation of utility functions) should be used.

We have shown that in our scenario, the results of differentially private ran-
dom dictatorship are similar to those for random dictatorship, and usually better
than those obtained with the plurality voting (i.e., selecting the most preferred
option).

As future work we plan to study agents with different privacy requirements
(e.g., privacy budgets) and how these different privacy requirements can affect
the outcome of the system. Among the privacy options to consider, we have the
case that agents want to refrain from voting (opt-out). Our experiment results
used 50 particles in two dimensional problems, we will explore the case of larger
number of particles and larger dimensions for the problem.
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1 Introduction

The area of heuristic optimization methods, which includes evolutionary algo-
rithms and biology-inspired methods, is currently under rapid development of
due to the high efficiency of such approaches in various domains and avail-
ability of large computational resources. However, the proposal of new ideas
is always strongly connected to the level of understanding of these algorithms’
inner functioning principles, which is often not as high as desired. Because of
this, the development of methods which allow better understanding of algorithms
behaviour, for example, the influence of parameter values, would promote intu-
ition of researches and lead to new ideas and directions of investigation.

One of the most popular evolutionary optimization techniques today is the
differential evolution (DE) algorithm, originally proposed in [10]. The DE has
shown its superior properties compared to other approaches in numerous com-
petitions and found a large variety of real-life applications, which makes this
method an interesting research topic. However, one of the disadvantages of DE
is its high sensitivity to parameter values, such as scaling factor F and crossover
rate Cr [4]. Better understanding of these parameters’ influence is one of the
most important directions of studies about DE.

In this paper the expected fitness improvement (EFI) metric is proposed to
visualize the parameter search space of crossover rates of modern DE modifica-
tion, NL-SHADE-RSP algorithm. The expected fitness improvement shows the
possible improvement that could be achieved with different Cr values, highlight-
ing the areas of interest at different stages of search process. Based on the EFI
heatmap profiles, the conclusions about crossover rate importance are made for
different benchmark scenarios, such as biased, shifted and rotated goal functions,
taken from the Congress on Evolutionary Computation (CEC) 2021 competition
for single-objective optimization. The performed experiments shows that efficient
control strategies could be applied for NL-SHADE-RSP crossover rate change.

The rest of the paper is organized as follows: Sect. 2 provides the related
work and describes DE basics, Sect. 3 contains the description of EFI metric
c© Springer Nature Switzerland AG 2022
B. Dorronsoro et al. (Eds.): META 2021, CCIS 1541, pp. 106–123, 2022.
https://doi.org/10.1007/978-3-030-94216-8_9
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calculation method, Sect. 4 contains the experimental setup and results, as well as
their discussion, and Sect. 5 concludes the paper, outlining the possible directions
of further studies.

2 Related Work: Differential Evolution

Differential Evolution or DE is the population based evolutionary algorithm for
solving real-valued optimization problems firstly introduced by R. Storn and K.
Price in [10]. This algorithm became one of the most popular among researchers
due to its simplicity (it is easy to implement and has just three parameters,
which will be discussed later) and high efficiency [7]. The differential evolution
algorithm is based on the idea that to find the optimal solution only the difference
vectors between candidate solutions should be used.

The basic DE approach has two main phases: the initialization and search
conducted by mutation, crossover and selection operators. During the initial-
ization a set (or population) of candidate solutions (also called individuals)
xi = (xi,1, xi,2, ..., xi,D), i = 1, ..., NP , j = 1, ...,D, is randomly generated in
the search space:

S =
{
xi ∈ RD|xi = (xi,1, xi,2, ..., xi,D) : xi,j ∈ [xlb,j , xub,j ]

}
(1)

using the uniform distribution with D being the dimensionality of that space
and NP or population size is the first parameter of the DE algorithm.

After initialization individuals iteratively change their position in the search
space with aim to find the best solution (optimum). For this purpose three
operators are used: mutation, crossover and selection. The search process starts
with mutation and in the original DE approach the rand/1 mutation strategy
was introduced:

vi,j = xr1,j + F × (xr2,j − xr3,j), (2)

where xi,j is the j-th coordinate of i-th individual, index i is different from
indexes r1, r2 and r3, which are also mutually different. It should be noted that
in this formula the second parameter of the DE algorithm, namely the scaling
factor F , chosen from [0, 2], is used. Mentioned parameter has to be adjusted for
an optimization problem in hand.

After mutation the crossover operator is applied to mutant vectors vi,
i = 1, ..., NP . One of the most commonly used crossover operators is the bino-
mial crossover, where each gene of the mutant vector vi is exchanged with the
corresponding gene of xi with a uniformly distributed random number from [0, 1]
and additional condition:

ui,j =

{
vi,j , if rand(0, 1) < Cr or j = jrand

xi,j , otherwise
. (3)

Here Cr ∈ [0, 1] or crossover rate is the last parameter of the DE algorithm, while
the jrand is a randomly chosen index from [1,D]. Thus, the genetic information
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of both parent-individual xi as well as the mutant vector vi are combined to
generate the trial vector ui. That additional condition is required to make sure
that at least one coordinate of the trial vector ui is taken from the mutant vector
vi, otherwise there is a chance that the trial vector and the parent individual
will be the same, which will then lead to unnecessary calculations during the
selection step.

The second crossover operator often used in DE is the exponential crossover,
which performs crossover of adjacent components of the vector. In the exponen-
tial crossover first an integer n1 is chosen randomly in range [1,D] to act as a
starting point for crossover, and then the second index n2 indicating the number
of components to be taken from the mutant vector is determined by increment-
ing n2 with Cr probability. The exponential crossover is then performed using
indexes n1 and n2 as follows:

ui,j =

{
vi,j , if j ∈ [n1, n1 + n2)
xi,j , otherwise

. (4)

To keep individuals in the search space, namely each j-th coordinate of the
i-th mutant vector in the interval [xlb,j , xub,j ], j = 1, ...,D, the midpoint target
bound constraint handling method [1] was applied. In this method if the compo-
nent of the obtained vector is greater than the upper boundary or smaller than
the lower boundary, its parent xi is used to set the new value for the mutant
vector.

Finally, during selection either the trial vector ui or the parent individual xi

is carried to the next iteration. It is done according to their fitness values, which
are usually determined by calculating the objective function values: if the trial
vector ui is better or equal to the parent individual xi in terms of fitness, then
the i-th individual in the population is replaced. The selection step is performed
in the following way:

xi =

{
ui, if f(ui) ≤ f(xi)
xi, if f(ui) > f(xi)

. (5)

Nowadays, there are a lot of modifications of the differential evolution app-
roach developed for solving various optimization problems, including one- or
multi-objective constrained or unconstrained optimization problems. Most of
these modifications are focused on its parameters adjustment or proposing new
mutation strategies [5]. The following several well-known mutation strategies are
commonly applied to the DE algorithm: rand/2, best/1, best/2, current-to-best/1
and current-to-pbest/1.

The last mutation strategy mentioned here, namely current-to-pbest/1, is to
be of particular interest. It was introduced in the JADE algorithm [13] and later
used in the SHADE algorithm [11] and also in its various modifications. The
current-to-pbest/1 mutation strategy works as follows:

vi,j = xi,j + F × (xpbest,j − xi,j) + F × (xr1,j − xr2,j), (6)
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where pbest is the index of one of the pb ∗ 100% best individuals, different from
i, r1 and r2. Thus, to use this mutation strategy the pb parameter should be
chosen.

It was established that the scaling factor F as well as the crossover rate
CR affect algorithm’s efficiency and should be chosen carefully for specific opti-
mization problems. Therefore, using them for mutation and crossover operators
with fixed values may cause poor results. In the JADE algorithm [13] parame-
ters F and Cr are adjusted automatically, to be more specific, firstly for each
individual xi at each iteration t, the crossover probability Cri is independently
generated according to a normal distribution of mean μCr and standard devi-
ation 0.1; obtained value is then truncated to [0, 1]. In the same manner the
mutation factor Fi for each individual xi at each generation t is independently
generated according to a Cauchy distribution with location parameter μF and
scale parameter 0.1. If the obtained value Fi ≤ 0 then it is generated again, and
if Fi ≥ 1 then it is set to 1.

Similar ideas were used in the SHADE algorithm [11], and its mechanism
for parameter adaptation can be described as follows. The historical mem-
ory of H cells (MF,h,MCr,h) is maintained, each containing a couple of F
and Cr values (in the SHADE approach the memory size was set to H = 5
and the current memory index was denoted as h). Thus, for mutation and
crossover operators new parameter values are sampled with Cauchy distribu-
tion F = randc(MF,k, 0.1), and normal distribution Cr = randn(MCR,k, 0.1), k
is chosen in range [1,D] for each candidate solution. Both obtained values are
then truncated to [0, 1] the same way as it is done in the JADE algorithm.

Additionally, two arrays SF and SCr are generated: if there was an improve-
ment in terms of the fitness value, then the corresponding values of parameters F
and Cr as well as the fitness value difference Δf are stored in these arrays. They
are used at the end of the iteration to update the memory cells with weighted
Lehmer mean [3]:

meanwL =

∑|S|
j=1 wjS

2
j

∑|S|
j=1 wjSj

, (7)

where wj = Δfj
∑|S|

k=1 Δfk

, Δfj = |f(uj) − f(xj)| and S is either SCr or SF .

And finally the new memory cell values are updated: M t+1
F,k = meanwL(F ),

M t+1
Cr,k = meanwL(CR), where t is the current iteration number.
The JADE and SHADE algorithms as well as their modifications (for exam-

ple, the L-SHADE approach [12]) also use an external archive A, which size is
usually equal to NP . Solutions replaced during the selection step are stored in
that external archive. The archive A is empty during the initialization and it is
filled as the algorithm works: if the newly generated candidate solution is bet-
ter than the parent individual in terms of the fitness value, then the parent is
saved in the archive. If the archive is full, the new individuals replace randomly
selected ones. The individuals from the archive A are used during the mutation
step, namely individuals used to calculate new coordinates can be randomly
selected as from the population so from the external archive.



110 V. Stanovov et al.

It should be noted that in the L-SHADE algorithm additionally the popula-
tion size NP changes from iteration to iteration: the linear reduction strategy
was proposed for the population size adaptation [12]. The population size NP is
recalculated at the end of each generation, and the worst individuals in terms of
fitness are eliminated. The population size is calculated with the linear function
depending on current number of function evaluations:

NPg+1 = round(
NPmin − NPmax

NFEmax
NFE + NPmax), (8)

where NPmin = 4 and NPmax are the minimal and initial population sizes, NFE
and NFEmax are the current and maximal number of function evaluations.

3 Expected Fitness Improvement Metric

Every optimization method mainly relies on the fitness values, as long as the
goal is to minimize/maximize these values. The described parameter adapta-
tion techniques are designed to adjust parameter values so that higher fitness
improvements are achieved. So, the parameter setting is highly dependent not
only on the fact of the improvement, but also on the improvement value, like in
SHADE algorithm. The problem of setting the parameters represents an opti-
mization problem itself, so a better understanding of this problem structure is
highly desirable.

To perform the visualization of the possible fitness improvements at every
step of the search process with different crossover rates Cr the Expected Fitness
Improvement (EFI) metric is proposed. The EFI is based on the following idea:
at every iteration where EFI should be calculated a large set of solutions is
generated using mutation and crossover steps with different Cr values from a
grid, and for every Cr the average improvement is measured. For example, to
estimate the expected fitness improvements for the full range of crossover rates
at a given generation g, the values of Cr = 0, 0, Crst, ..., 1 − Crst, 1 are tested,
where Crst is the step size. The number of steps is defined as NCrst = 1

Crst
. The

result is an array EFIg,Crk
, k = 0, ..., NCrst for all g = 1, ..., NG generations.

The pseudocode of the EFI estimation for different Cr values is presented in
Algorithm 1.

The EFI array containing the measured possible improvements could be visu-
alized to estimate the distribution of promising crossover rate Cr values and the
efficiency of parameter tuning technique used. However, there is a problem of
values scale, which arises from the fact that at every next generation the aver-
age fitness improvements are gradually decreasing, i.e. if initially the EFI values
could be around 1010 or even more, at the end of the search they could be around
10−10 or even exactly zero. To overcome this issue, the distribution of EFI values
should be visualized at every generation separately.

The described EFI metric is applied to the NL-SHADE-RSP algorithm,
developed for the CEC 2021 benchmark. It which contains several important
improvements compared to the well-known L-SHADE, namely the non-linear
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Algorithm 1. EFI computation
1: Initialize Differential Evolution
2: Set grid with Crst, NCrst
3: Initialize matrix EFI[NCrst, NG] = 0
4: Generation number g = 0
5: while NFE < NFEmax do
6: for s = 0 to NCrst do
7: Set AImp = 0
8: for i = 1 to NP do
9: Sample F value

10: if s == NCrst then
11: Sample Cr value
12: else
13: Set Cr = s ∗ Crst
14: end if
15: Mutation
16: Crossover
17: if f(ui) < f(xi) then
18: AImp = AImp + f(xi) − f(ui)
19: Save new solution
20: end if
21: end for
22: EFI[s,NG] = AImp/NP
23: end for
24: g = g + 1
25: Update algorithm specific parameters
26: end while
27: Return matrix EFI[NCrst, NG]

population size reduction, adaptive archive usage, and modified historical mem-
ory size depending on the problem dimension. The population size in NL-SHADE
is controlled in the following way:

NPg+1 = round((NPmin − NPmax)NFE1−NFEr
r + NPmax), (9)

where NFEr = NFE
NFEmax

is the ratio of current number of fitness evaluations.
This population size control scheme was taken from the Adaptive Gaining-
Sharing Knowledge (AGSK) algorithm [6], which implements the concept of
knowledge exchange between experienced and non-experienced individuals in
the population. The main operators and algorithm structure is still similar to
DE, although there is a difference in trial vector generation - the algorithm
generates them using two populations of mutant vectors. Although the paper
does not describe it, according to the available source code, AGSK implements
non-linear population size reduction presented above.

The NL-SHADE-RSP uses automatic tuning of archive usage probability,
originated from the strategy adaptation implemented in IMODE algorithm [8].
The probability pA of archive usage in the last index r2 in current-to-pbest
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strategy is initially set to 0.5, unless the archive is empty. It is then automatically
tuned based on the number of usages nA, which is incremented every time an
offspring is generated using archive and sum of fitness improvements achieved
with the archive ΔfA and without it ΔfP . The archive usage probability is
recalculated at the end of each generation as follows:

pA =
ΔfA/nA

ΔfA/nA + Δfp/(1 − nA)
. (10)

After this the probability pA is checked to be within [0.1, 0.9] by applying the
following rule: pA = min(0.9,max(0.1, pA)), similar to the rule used in IMODE
algorithm [8].

The pb value for current-to-pbest mutation in NL-SHADE-RSP is controlled
in a similar manner to the jSO algorithm [2], with the initial pbmax set to 0.4
and the final pbmin = 0.2. The same linear reduction of pb parameter is used,
allowing wider search at the beginning and better convergence at the end.

The NL-SHADE-RSP algorithm used both exponential and binomial
crossovers with equal probability, and the type of crossover to be used was ran-
domly chosen for each individual.

In addition to the proposed EFI metric, the pairwise distance distribution
is analyzed in this study. For this purpose, the Euclidean distance between all
individuals in the population is estimated, and the histogram of distances is
built at every generation separately. The distributions of EFI and distances for
several scenarios of DE optimization are presented in the next section.

4 Experimental Setup and Results

The experiments in this study were performed using the benchmark functions
presented for the Congress on Evolutionary Computation 2021 competition on
single-objective optimization [9] because this framework considers eight cases
of the same goal functions, i.e. basic, biased, shifted, rotated functions, and
combinations of these modifications, e.g. biased, shifted and rotated at the same
time. The set of functions contained 10 functions, which should be tested with
the optimization method across dimensions 10 and 20. The maximum number of
function evaluations maxFE is set to 2×105 and 106 for 10D and 20D functions
respectively.

For every function and every benchmark type the step size for checked
crossover rates was set to 0.01, i.e. there were 100 crossover rates tested from
0 to 0.99. The initial population size was set to 30D, as this appeared to be a
reasonable setting in previous studies. The memory size was set to 20D. The
algorithm for EFI estimation was implemented in C++ and compiled with GCC
under Linux Ubuntu 20.04, and the post-processing was performed using Python
3.6 and matplotlib library. The EFI arrays, as well as distance histograms are
visualized as heatmap profiles. In addition, the best, average, worst fitness val-
ues, average EFI, average distance and average of parameter values in memory
cells MCr are shown in the figures. As long as the population size was constantly
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changing and the number of generations spent at the beginning of the search and
at the end of the search to evaluate the same number of solutions is different,
the EFI was calculated not every generation, but every 0.002 NFE

maxFE function
evaluations, resulting in 500 iterations.

The first experiment was performed for the bent cigar function (F1) without
any modifications, 10D, the EFI heatmap is shown in Fig. 1. Better values are
shown in yellow.

Fig. 1. EFI heatmap and distance histogram profiles, F1, basic benchmark, 10D

Figure 1 shows that for the relatively simple bent cigar function, where the
achieved function values are around 10−200, during most of the search process
larger crossover rates were dominating, i.e. the expected improvement for Cr
values was larger when Cr > 0.5 than for Cr < 0.5. This due to the fact that
bent cigar is a non-separable function, i.e. it requires steps along more then one
axis to perform the search. The distance histogram profile shows that there are
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no groups of points, which indicates that there is only one optimum. The average
crossover rate in the memory cells quickly converges to 1, which seems to be a
valid strategy in this case.

Figure 2 shows the results for shifted Schwefel’s function, 10D.

Fig. 2. EFI heatmap and distance histogram profiles, F2, shifted, 10D

The Schwefel’s function has multiple local optima, and in non-rotated case
could be efficiently solved by one-variable-at-a-time strategy, which is clearly seen
on the EFI heatmap, where smaller Cr values perform better, as larger Cr lead
to more “risky” moves in the search space, which not always result in efficient
search. However, this is true only for the main part of the search process, i.e.
from iteration 10 to iteration 300. During the first 10 iterations large Cr values
are better, probably because in this period the initial exploration of the search
space happens, capturing the most interesting areas to exploit later. Similar to
this, the final convergence, which happens at around generation 300, and also
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requires larger Cr values, as at this moment it is important to find the optimum
in a bowl-like landscape, so diagonal steps could be helpful. Also, the pairwise
distance histogram shows that the algorithm identifies multiple local optima,
and then deletes some of them thanks to the population size reduction. Despite
the fact that smaller Cr are better, the memory cells values are dragged up to
1 due to the biased parameter adaptation with Lehmer mean.

Figure 3 shows the results for the same Schwefel’s function, 10D, but for the
rotated case.

Fig. 3. EFI heatmap and distance histogram profiles, F2, rotated, 10D

In the rotated case the EFI heatmap changes for the Schwefel’s function, but
not in the way which could be expected. The first 10 iterations are almost the
same, however, later the search efficiency drops, because it is difficult for the
algorithm to tackle the function landscape. Although the function is rotated,
large Cr values do not lead to significant improvements, while small Cr lead to
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some improvements, which makes the algorithm move the memory cells values
towards zero. It could have been expected that for non-rotated functions smaller
Cr would be more efficient, same as larger Cr for rotated, but the EFI in this
cases shows that the opposite happens. In the rotated case the algorithm stopped
without reaching the global optimum.

Figure 4 demonstrates the EFI heatmap profiles for the next function,
Lunacek bi-Rastrigin, which has two large areas of attraction.

Fig. 4. EFI heatmap and distance histogram profiles, F3, basic benchmark, 20D

Figure 4 represents a particular interest, as here there are several switches
between small and large Cr values being better for the function improvements.
At the initial stage for the first around 20 generations the large Cr are dominat-
ing, and at the distance histogram it is clearly seen that all points have almost
similar distances. After this period, the population is split in two groups, reach
rushing towards one of the areas of attraction, and at this period smaller Cr
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would result in more larger improvements - this could be because of the conver-
gence to local optima, which is easily done by one-variable-at-a-time manner for
non-rotated Rastrigin function. However, at the end of this period, at around
iteration 100, large Cr start dominating again, when two parts of the population
are far from each other. After the population size reduction cancels one of them
out, small Cr values are better again, and finally, when the global optimum is
almost found, Cr close to 1 are good again, allowing fast convergence to the opti-
mum. These several switches demonstrate that even for such relatively simple
problems the behaviour of Cr values could be quite complicated.

It is important to notice here how the average improvement, i.e. average EFI
is related to the Cr switches and average fitness values in the population. When
the red line, average EFI is above the yellow (average fitness) and green (worst
fitness), Cr > 0.5 are dominating, and vice versa. This it true for all periods
except the one around iteration 100, where all three lines are close to each other.
Similar behaviour could be observed on all previous figures: if average EFI is
closer or even larger than worst, then large Cr are better, and when average
EFI is close to best fitness, smaller Cr appear to deliver more improvements.
The mechanism behind such dependence remains unclear.

Figure 5 considers one of the more complicated cases, hybrid function with
bias, shift and rotation applied altogether.

In the case shown on Fig. 5 there are two clearly seen stages of search: initial
convergence and exploration with Cr > 0.8 being the best choice, and the more
difficult and inefficient search, where smaller Cr allow better improvements.
Same as for previous functions, the switch between these two stages, happening
after iteration 100, coincides with the average EFI curve hitting worse and aver-
age fitness curves. The averaged memory cells MCr values in this case still keep
the Cr close to 0.9, although the EFI shows that this is the region of smallest
efficiency. This could be one of the reasons of algorithms low efficiency for this
function. It is important to mention, that although smaller Cr are more efficient
at the middle of the search process, this does not meant that the function is
separable, is actually shows that performing the search along the axis at this
stage would bring more benefits.

Considering the discovered dependency between the crossover rate, current
fitness and average fitness improvement, a simple parameter control scheme was
tested:

Cr =

{
1, if 1

|S|
∑|S|

j=1 Δfj > 1
NInds

∑NInds
i=0 fi

0, otherwise
. (11)

The crossover rate was updated every generation. In this case the EFI calculation
was switched off. The comparison between NL-SHADE-RSP with and without
fitness-based crossover rate control is presented in Table 1. The Mann-Whitney
statistical test with significance level p = 0.01 is used for comparison, with the
number of wins (+), ties (=) and losses (-) over 10 functions for every benchmark
set and both 10D and 20D.
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Table 1. Mann-Whitney tests of NL-SHADE-RSP against modified with crossover
control

Benchmark (code) 10D 20D

Basic (000) 1+/9=/0− 2+/8=/0−
Bias (100) 1+/9=/0− 3+/7=/0−
Shift (010) 1+/9=/0− 2+/8=/0−
Rotation (001) 1+/8=/1− 1+/8=/1−
Bias, Shift (110) 1+/9=/0− 2+/8=/0−
Bias, Rotation (101) 0+/9=/1− 2+/7=/1−
Shift, Rotation (011) 0+/8=/2− 2+/7=/1−
Bias, Shift, Rotation (111) 0+/8=/2− 2+/8=/0−
Total 5+/69=/6− 16+/61=/3−

Fig. 5. EFI heatmap and distance histogram profiles, F5, bias, shift and rotation, 20D
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The results in Table 1 show that such relatively simple control strategy could
be competitive, or even better than the success-history based adaptation used
in L-SHADE based algorithms. The improvements were observed for function
4 (Expanded Rosenbrock plus Rastrigin) for 10D and losses were for functions
5 and 6, i.e. hybrid functions. For 20 the wins were for functions 3 (Lunacek
bi-Rastrigin), 4 and 6, while few performance deteriorations were for functions
8 and 9, i.e. composition functions. The improvements were mainly found at the
end of the search, while for most of the computational resource both modified
and non-modified NL-SHADE-RSP had similar performance - this is mainly due
to the fact that Cr has much less influence on the algorithm performance, then,
for example, scaling factor F .

For better understanding of the reasons of losses against success-history adap-
tation, in Fig. 6 the EFI heatmap profile is provided for F6, hybrid function 2,
for the biased, shifted and rotated case.

Fig. 6. EFI heatmap and distance histogram profiles, F6, bias, shift and rotation, 10D
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In Fig. 6 it can be seen that the search process is relatively slow, but still
taking place for the most of the time, i.e. there is no stagnation until iteration
320, and the crossover rate in the memory cells MCr is set to one, while the EFI
heatmap profile indicates that smaller Cr are better. Considering the rule for Cr
presented above, it would switch Cr to 0 in some cases, allowing to gain faster
improvements, but probably leading the search away from the path where better
final fitness values could have been achieved. This could be one of the reasons why
the parameter adaptation has shown better results in this case. Another reason
is that as long as in Eq. 16 the average improvements are calculated based on
the few improvements available at current generation, the resulting value could
be different from that calculated in EFI, as the last is averaged over a full range
of Cr values. In other words, the average possible improvement without EFI
calculation is biased, as long as it is estimated only with Cr = 0 or Cr = 1,
depending on the results of previous generation.

Fig. 7. EFI heatmap and distance histogram profiles, F8, basic, 20D
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Fig. 8. EFI heatmap and distance histogram profiles, F8, rotation, 20D

Figures 7 and 8 provide the EFI heatmap profiles for composition function 1
(F8), for basic and rotated benchmark cases, 20D.ge

The contrast between the EFI heatmap profiles and distance histogram pro-
files demonstrate how different could be the search on the same function but
with rotation. Obviously, currently available efficient DE variants do not have
the rotational invariance property, and it cannot be achieved with the standard
crossover strategies. Thus, some new crossover techniques should be developed
which would be able to handle the rotated functions as good as non-rotated, for
example with automatically de-rotating crossovers, which is yet to be developed.
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5 Conclusion

In this study the expected fitness improvement metric was proposed to visu-
alize the parameter search space of the crossover rate of the NL-SHADE-RSP
algorithm, allowing to indicate more promising regions for Cr at different stages
of the optimization process. The EFI heatmap profiles allowed revealing several
important properties, such as switching behaviour of more promising Cr values.
Based on the dependence between the improvements and the average fitness val-
ues a simple parameter control strategy is proposed, which was shown to be more
efficient the standard parameter adaptation in some cases. The EFI calculation
represents a general framework, which could be applied to other optimization
algorithms to analyze different parameters’ dynamics during the search process.
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Máximo Arnao Molina1 , Diego Tapia1 , Mauricio Castillo1 ,
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Abstract. This paper proposes a novel learnheuristic called Binary
SARSA - Sine Cosine Algorithm (BS-SCA) for solving combinatorial
problems. The BS-SCA is a binary version of Sine Cosine Algorithm
(SCA) using SARSA to select a binarization operator. This operator is
required due SCA was created to work in continuous domains. The per-
formance of BS-SCA is benchmarked with a Q-learning version of the
learnheuristic. The problem tested was the Set Covering Problem and
the results show the superiority of our proposal.

Keywords: Learnheuristic · SARSA · Sine Cosine Algorithm ·
Combinatorial problem

1 Introduction

Optimization problems have been growing in a big way in the last decades,
causing the emergence of more metaheuristics (MH) that try to solve NP-Hard
combinatorial optimization problems. The premise of the No Free Lunch The-
orem [1,2] incentives us to develop increasingly robust optimization algorithms
that present and high feasible, quality solutions in reasonable computational
times.

To develop more robust algorithms, different techniques used in MH can
be distinguished. First, there is the hybridization of mathematical programming
with MH or also known as “Matheuristics” [3] There are methods that interrelate
MH with simulation problem, also known as “Simheuristics” [4]. There are also
hybridization methods between MH techniques that combine their exploration-
exploitation components [5]. Currently, the area that is in constant development
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and will continue to develop for a couple of years more, learnheuristic is the
interaction of MH with learning techniques, where it has been observed in several
studies that these techniques support operators in various ways to improve their
performance [6–8].

This study presents the incorporation of SARSA to identify a specific action:
the selection of binarization strategies to solve binary domain problems, this
incorporation has already been carried out, but previously with the whale meta-
heuristic [9]. A comparison is made between the proposed implementation of
the Binary SARSA-Sine Cosine Algorithm (BS-SCA) and the work presented
by Cisternas-Caneo et al. in [10], however, this time the number of evaluated
instances is increased. The problem to be solved is the Set Coverage Problem,
and after evaluating 45 instances, it can be established that the proposed imple-
mentation with SARSA performs statistically significantly better.

The paper is organized as follows: In Sect. 2 we raise points in favor of why it
is worthwhile to implement reinforcement learning techniques with swarm intel-
ligence algorithms. In Sect. 3 we present the reinforcement learning techniques
belonging to the machine learning area: Q-Learning and SARSA. Our proposed
BS-SCA as a new algorithm is presented in Sect. 4. Finally, a proper analysis
and discussions are illustrated in Sect. 5, followed by our conclusions and future
lines of work in Sect. 6.

2 Swarm-Intelligence Algorithms

Swarm Intelligence Algorithms are regularly based on interesting behaviors found
in nature. In particular, in those situations that involve behaviors carried out
collectively by some biological systems, such as animals or insects. This is why
these algorithms are founded on the study of self-organized and distributed sys-
tems, because they manipulate a population of agents with limited individual
ability, each of which reacts to its environment and can modify it in order to per-
form intelligent collective behavior. This ability allows communication between
agents, and when they perceive changes in their environment, they interact
locally with other agents. In turn, this results in the formation of a global behav-
ior, which allows agents to deal with complicated situations effectively.

MH have different elements depending on the metaphor they represent.
Although they are generally composed of an instance, parameters, operators,
population, local search, evaluation, initialization, and decision variables [7]. For
the definition of the parameters a considerable number of experiments are car-
ried out that will allow their values to be adjusted. This requires the dedication
of considerable time and an imbalance between the exploration and exploitation
of MH. That is why the need arises for the integration of dynamic elements in
the algorithms so that these are adjusted during the execution of the iterations.
In this paper, SARSA and Q-Learning are used to perform a dynamic selection
of operators.
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2.1 Hybrid-Metaheuristics

A hybrid MH is described as the combination of a metaheuristic algorithm and
a different learning algorithm, for instance, matheuristics, Machine Learning
Programming, Reinforcement Learning (RL) techniques [5]. For this work we
will focus on the hybrids generated with RL, where we find two groups: RL
supporting MH, or MH supporting RL.

Focusing on the first group mentioned above, two lines of research are shown
in the work of Garćıa et al. [11]. First, we find the integration of RL techniques
as the replacement of an operator, such as the handling of a population, local
search, and parameter tuning. Second, is to use RL as a selector of a set of MH,
choosing the most appropriate one depending on the problem to be approached.

When using RL as a selector, we can divide this category into three groups.
The first is algorithm selection that chooses from a set of techniques for the
problem, in order to obtain better performance for a set of similar instances
[12]. Secondly we find the hyperheuristic strategies, where their goal is to use the
MH to cover a set of problems. And finally we find cooperative strategies, which
combine algorithms sequentially with the objective of improving the robustness
of the solution.

3 Reinforcement-Learning Techniques

The main objective of these techniques is that the agent manages to learn a
policy that is able to maximize the long-term rewards by interacting in turn,
with the obtained environment and based on its own experience. The information
of the value function will indicate how fruitful is the consequence of the action
performed from a state, in other words, how good is the reward. The expected
reward function Rt is composed of both the current rewards obtained and the
discounted future rewards. The future reward for the passage of time t is given
by the following Eq. (1).

Rt =
n∑

j=0

γj · rt+j+1 (1)

Now, based on the above (the search for a policy that maximizes the long-
term reward), we in this paper have implemented two recognized techniques in
the area of reinforcement learning in order to compare the optimal state-action
value function obtained. On the one hand we have: Q-Learning, as used in the
work of Cisternas-Caneo et al. [10,13] and SARSA as used in Becerra-Rozas
et al. [9].

Q-learning is one of the best known algorithms in the area of reinforcement
learning [14] and is an off-policy method, meaning that the agent is independent
of the environment where it is executing and chooses the action a that it con-
siders to give it the most value. When the agent selects an action and executes
it in the environment a perturbation is generated. The impact of this pertur-
bation is judged through the reward or punishment (r) to decide which is the
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next state st+1 of the environment. The way to represent the update equation
mathematically is Eq. (2):

Qnew(st, at) = (1 − α) · Qold(st, at) + α · [rn + γ · maxQ(st+1, at+1)] (2)

Where Qnew(st, at) is nominating the reward of the action taken in state st
and rn is the reward received when action at is taken, maxQ(st+1, at+1) is the
maximum value of the action for the next state, the value of α must be 0 < α ≤ 1
and corresponds to the learning factor. On the other hand, the value of γ must
be 0 ≤ γ ≤ 1 and corresponds to the discount factor. If γ reaches the value of 0,
only the immediate reward will be considered, while as it approaches the value
1 the future reward receives greater emphasis relative to the immediate reward.

In contrast, unlike Q-Learning, SARSA [15] is an on-policy algorithm, this
tells us that this time, the agent if will be dependent on the execution envi-
ronment and the next action will be taken based on the value of the current
state-action. For this reason, it is often said that SARSA is a more conservative
algorithm than Q-Learning and this, in turn, allows it to learn faster. Based on
this, the state-action value update equation is defined as in Eq. (3):

Q(st, at) ←− Q(st, at) + α · [r + γ · Q(st+1, at+1) − Q(st, at)] (3)

3.1 Reward Function

A good balance of reward and punishment results in an equal variety in action
selection, which makes the optimal action identified more trustworthy. For this
reason, we will use a simplified version of Xu and Pi’s work [16]. The actions
of our smart selector will be rewarded based on this version, which considers as
reward value +1 when fitness is improved or 0 otherwise. In Eq. (4) contained
in Table (1) we can see the above (Table 1).

Table 1. Types of rewards

Reference Reward function

[16] rn =

{
+1, If the current action improves fitness

0, otherwise.
(4)

4 Binary SARSA - Sine Cosine Algorithm

Sine Cosine Algorithm (SCA) [17] is a swarm metaheuristic of recent interest to
researchers for solving complex optimisation problems. While it is a metaheuris-
tic that provides great results, it still falls into the classic problem of swarm
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metaheuristics, falling into premature convergences which implies falling into
local optima [18]. Recent works [10,13,19], the authors propose ambidextrous
metaheuristics [20,21] where their main objective is to improve decision making
during the optimisation process, which translates into improving the exploration
and exploitation balance, i.e. avoiding premature convergence and thus improv-
ing the solutions obtained.

The authors in [10,19] propose the incorporation of Q-Learning to Sine
Cosine Algorithm as an intelligent binarization schemes selector mechanism to
solve discrete optimisation problems [22]. Our proposal is to replace Q-Learning
by another intelligent selector mechanism such as SARSA and compare both
techniques performing the same task, selecting binarisation schemes with the
aim of improving the major problem of SCA, premature convergence.

As proposed in [19], the states used in SARSA are the phases of the MH, i.e.,
exploration and exploitation. The estimation of these states is done by means
of diversity metrics which allow quantifying the dispersion of individuals in the
search space. The metric used in this work is the Dimensional-Hussain Diversity
[23] and is defined as follows:

Div =
1

l · n

l∑

d=1

n∑

i=1

|x̄d − xd
i | (5)

Where n is the number of search agents in the population X, x̄d is average
of the d-th dimension, and l is the number of dimension of the optimization
problem.

This diversity quantification is calculated iteration by iteration and to deter-
mine whether the population has an exploration or exploitation behavior the
equations proposed by Morales-Castañeda et al. in [24] are used. There they pro-
pose that the percentage of exploration (XPL%) and the percentage of exploita-
tion (XPT%) is given as follows:

XPL% =
(

Divt
Divmax

)
× 100 , XPT% =

( |Divt − Divmax|
Divmax

)
× 100 (6)

By obtaining these percentages, the phase in which the MH is found is deter-
mined as follows:

next state =
{

Exploration if XPL% ≥ XPT%
Exploitation if XPL% < XPT% (7)

The proposal of this work is shown in Algorithm 1. In line 1 we initialise the
Q-values of the Q-Table, in lines 4–5 we determine the initial state (exploration
or exploitation) of SARSA, in line 7 we select an action from the Q-Table for
the corresponding state, in line 16 we execute the selected action and observe
its consequences from the obtained fitness, in lines 17–18 we determine the next
state of SARSA, and finally in line 19 we update the Q-value of the selected
action from the SARSA Eq. (3).



132 M. Becerra-Rozas et al.

Algorithm 1. Binary S-Sine Cosine Algorithm
Input: The population X = {X1, X2, ..., Xn}
Output: The updated population X ′ = {X ′

1, X
′
2, ..., X

′
n} and Xbest

1: Initialize Q-Table with q0
2: Initialize random population X
3: Set initial r1
4: Calculate Initial Population Diversity (X) using equation (5)
5: Define the initial state using equation (7)
6: for iteration (t) do
7: a : Select action from Q-Table
8: for solution (i) do
9: Evaluate solution Xi in the objective function

10: for dimension (j) do
11: Update P t

j , where P t
j = Xbest,j

12: Randomly generate the value of r2, r3, r4
13: Update the position of Xi,j

14: end for
15: end for
16: Binarization X with action a and apply reward function
17: Calculate Population Diversity (X) using equation (5)
18: Define the next state using equation (7)
19: Update Q-Table using SARSA equation (3)
20: Update r1
21: Update Xbest

22: end for
23: Return the updated population X where Xbest is the best result

5 Experimental Results

We present the results in the table (2). The table is composed such that: in the
first column is the name of the instance, in the second, the known optimal value of
each instance. For the remaining columns, the three subsequent columns indicate:
the best result achieved in each instance (Best), the average of the results (Avg)
and the relative percentage deviation (RPD) according to the Eq. (8). These
three columns are replicated for both implemented versions. The comparison is
made with the re-implementation of the algorithm proposed by Cisternas-Caneo
et al. [10], however, this time with more instances. The sum of all columns and
the p-value of the Wilcoxon Mann-Whitney test [25] are presented in the last
two rows. To establish which of the two hybridized versions is superior, the test
allows us to evaluate whether the results obtained differ considerably (Table 2).

RPD =
100 · (Best − Opt)

Opt
. (8)

The total number of instances used to solve the Set Covering Problem with
Beasley’s OR-Library instances was 45. These cases were run with 40 populations
and 1000 iterations, with a total of 40,000 calls to the objective function, as used
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Table 2. Results obtained solving SCP by BS-SCA and BQ-SCA

Inst. Opt. BS-SCA BQ-SCA

Best Avg RPD Best Avg RPD

4.1 429 432 434.0 0.7 435 442.72 1.4

4.2 512 527 535.9 2.93 537 553.71 4.88

4.3 516 524 529.0 1.55 534 552.03 3.49

4.4 494 502 515.12 1.62 514 530.44 4.05

4.5 512 524 530.14 2.34 537 553.17 4.88

4.6 560 564 570.56 0.71 573 588.68 2.32

4.7 430 435 439.25 1.16 441 449.77 2.56

4.8 492 500 502.57 1.63 509 516.39 3.46

4.9 641 665 677.14 3.74 683 697.48 6.55

4.10 514 518 519.57 0.78 521 533.88 1.36

5.1 253 256 266.22 1.19 264 272.75 4.35

5.2 302 318 326.27 5.3 327 335.58 8.28

5.3 226 230 231.1 1.77 230 235.62 1.77

5.4 242 247 250.22 2.07 250 254.6 3.31

5.5 211 213 215.62 0.95 218 221.46 3.32

5.6 213 218 222.12 2.35 221 231.26 3.76

5.7 293 297 305.11 1.37 304 316.4 3.75

5.8 288 290 294.56 0.69 296 301.32 2.78

5.9 279 283 285.14 1.43 284 293.42 1.79

5.10 265 271 273.0 2.26 274 281.35 3.4

6.1 138 143 146.0 3.62 144 148.16 4.35

6.2 146 151 152.56 3.42 152 159.06 4.11

6.3 145 148 149.5 2.07 149 151.29 2.76

6.4 131 131 133.6 0.0 133 136.03 1.53

6.5 161 165 171.82 2.48 173 183.26 7.45

a.1 253 260 264.22 2.77 266 269.42 5.14

a.2 252 254 266.2 0.79 267 273.8 5.95

a.3 232 238 244.25 2.59 245 248.87 5.6

a.4 234 241 246.5 2.99 245 252.61 4.7

a.5 236 242 245.0 2.54 247 251.27 4.66

b.1 69 69 70.9 0.0 71 72.68 2.9

b.2 76 76 77.8 0.0 78 81.35 2.63

b.3 80 80 84.4 0.0 82 83.87 2.5

b.4 79 82 83.3 3.8 83 84.9 5.06

b.5 72 72 73.12 0.0 73 75.03 1.39

c.1 227 237 240.5 4.41 246 251.85 8.37

c.2 219 230 235.44 5.02 237 242.89 8.22

c.3 243 252 254.88 3.7 259 263.25 6.58

c.4 219 228 232.25 4.11 230 236.1 5.02

c.5 215 222 225.5 3.26 229 234.2 6.51

d.1 60 62 64.6 3.33 64 65.97 6.67

d.2 66 67 73.27 1.52 69 69.97 4.55

d.3 72 75 81.8 4.17 76 78.86 5.56

d.4 62 62 64.6 0.0 63 64.16 1.61

d.5 61 62 69.89 1.64 64 66.35 4.92

Average 259.18 263.88 2.11 264.38 271.27 4.23

p-value 0.00
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in [26]. The code was written in Python 3.8 and executed using the free Google
Colaboraty service [27]. The following parameters were specified for the SARSA
and Q-Learning algorithms: γ = 0.4 and α = 0.1.

The exploration-exploitation graphs obtained: Fig. 1 and 2 according to
Sect. 4, do not show similar behaviors to those presented by Morales-Castañeda
et al. in [24], despite the fact that our proposal does not have similarities to
the graphs presented by them, when observing the results obtained it is deter-
mined that they are not random algorithms since they present variations in their
exploration percentages.

Fig. 1. SCP - Exploration and Exploita-
tion Graphic of instance 4.7 version BS-
SCA

Fig. 2. SCP - Exploration and Exploita-
tion Graphic of instance 4.7 version BQ-
SCA

6 Conclusion

The results are encouraging because the performance of a binarization selector
reduces tuning times by not having to evaluate combinations of various bina-
rization schemes in the literature.

SARSA has proven to be efficient as an intelligent selector of binarization
techniques when evaluating it in the sine-cosine algorithm with the 45 instances
present in OR-library of the Set Covering Problem. This can be noticed when
comparing it with the version applied by Q-Learning, since we obtain better
results in 44 of the 45. On the other hand, these results are statistically signifi-
cantly better when performing the Wilcoxon-Mann-Whitney test.

We can also notice that when observing in detail the graphs used for explo-
ration and exploitation there is a similar convergence, but with BS-SCA the
values tend to have smaller magnitude changes, with higher occurrence, and
much more defined which may indicate that they are more efficient in solving
this problem.

As future work, in addition to the implementation of SARSA in other meta-
heuristic techniques, we will also seek to implement other reinforced learning
techniques, other transfer functions and ways to binarize so that our intelligent
selector has more to choose from. It is also necessary to parameterize the results
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obtained through other types of graphs or metrics. Although it provides valuable
and useful information about the search process, it is still necessary a compara-
tive metric and in turn, that this same metric can be incorporated in the learning
process of the agent.
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Abstract. This paper proposes a simple rule-repair algorithm for the
UCS classifier system with real-valued inputs on classification problems.
Our concept is to repair inaccurate rules with a possible minimum reduc-
tion of the rule-generality in order to avoid the problematic cover-delete
cycle. We identify the following two principles to achieve this purpose; 1)
to repair the rule-condition to omit one incorrect input from a matching
space represented by its rule-condition; 2) to repair either a lower value
or an upper value for one dimension xi . Experiments confirmed the ade-
quacy of those principles. Consequently, UCS with our rule-repair algo-
rithm successfully boosts the performance while preventing the increase
of the population size.

Keywords: Machine learning · Learning Classifier System ·
Supervised learning

1 Introduction

Learning Classifier Systems [1] (LCSs) are a paradigm of evolutionary rule-based
learning methods. LCSs intend to produce accurate, maximally general, and thus
explainable rules [2,3]. Relying on this advantage, many works have applied
LCSs to data-mining tasks [4,5]. Technically, LCSs are designed to generate
a minimal rule-set that determines plausible outputs for given inputs. Thus,
each rule should accurately predict an output while covering as many inputs as
possible. For this purpose, rule-based learning evaluates a rule-fitness through
interaction with an environment, and then evolutionary computation, e.g., GA,
generatively refines rules with fitness guidance.

While many branches of LCSs have been proposed thus far [6,7], most works
have extended either one of the two basic LCSs: the XCS classifier system [8]
and the UCS classifier system [9]. XCS is based on a reinforcement learning (RL)
approach, and thus it is suitable for RL problem domains, e.g., online-control
[10]. XCS evaluates the rule-fitness with reward signals. In contrast, UCS is
an extension of XCS, and it uses a supervised learning approach, where both
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an input and the correct output for it are sent to the system. Thus, UCS can
be suitable for supervised learning tasks, e.g., classification [9,11]. Note that
XCS and UCS commonly use the steady-state GA as a rule-evolution scheme.
Consider the LCS’s advantage aforementioned, this paper studies UCS as a data-
mining tool for classification.

However, a restriction of LCSs (including UCS) is in less scalability of the
system performance against the input space size. For instance, the LCS perfor-
mance significantly degrades when dealing with high-dimensional and/or real-
valued inputs [12–14]. To tackle this issue, Debie provided a theoretical insight
for UCS on high-dimensional problems [15]. He also proposed an ensemble learn-
ing scheme of UCS to boost the performance on real-valued classification tasks
[16]. Urabanowicz introduced some heuristics for UCS to improve the efficiency
of rule-evolution (i.e., ExSTraCS) [17]. ExSTraCS successfully solves the 135-
bit multiplexer problem with binary inputs. Some modern works revealed the
impacts of the lexicase selection [18] and the fine-tuning for hyper-parameters
[19] on the UCS framework. In addition, dimensional reduction techniques were
used in XCS, e.g., feature selection [20,21] and deep auto-encoder approaches
[13,14]; those approaches can be extended to the UCS framework.

Although various extensions of UCS have been considered as aforementioned,
there are very few works that intend to repair inaccurate rules for the real-
valued UCS framework. A possible reason is that UCS is originally designed
to evolve only accurate rules to construct a best action map [9]. However, as
another critical reason common to XCS, UCS should be designed to maintain a
low frequency of the rule-production to avoid a problematic cover-delete cycle
[22,23]. For instance, the steady-state GA produces only two offspring rules per
generation, which results in a fundamental inefficiency of UCS. Here, the cover-
delete cycle is one of the major difficulties to design online learning-based LCSs,
meaning that insufficiently-trained rules may be deleted due to a high frequency
of rule-production; and this cycle may frequently occur when each rule is less
general under a limited population size. Thus, a rule-repair strategy can be a
possible reason to provoke the cover-delete cycle.

Note that there are some rule-repair algorithms for XCS. In [24], Lanzi pro-
posed a specify operator for XCS with binary-input problems. His concept is to
repair inaccurate rules identified by the XCS’s reinforcement learning scheme.
In detail, the specify operator replaces some don’t care bits involved in a rule-
condition with specific values of the input. This operator was applied to the
UCS framework [9]. In [25], Iqbal presented a GP-based XCS and its rule-repair
algorithm for GP-based rule expression. Tadokoro introduced a local covering
operator [26]. While this operator does not intend to repair inaccurate rules,
it produces new initial rules with a similar concept to the specify operator.
Although those related works show the effectiveness of rule-repair algorithms,
they have not been designed for UCS with real-valued inputs.

Accordingly, this paper presents a minimum rule-repair algorithm for UCS
with real-valued inputs on classification problems. Our rule-repair algorithm
intends to improve the performance by 1) boosting the classification accuracy
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(i.e., the rule-fitness) of inaccurate rules and by 2) increasing the frequency of
rule-reproductions. Besides, we design our algorithm based on a minimum rule-
repair concept to avoid the problematic cover-delete cycle. That is, our algorithm
repairs the rule-condition with the minimum reduction of its rule-generality; the
rule-condition is repaired so that it excludes one incorrect input from a subspace
covered by its rule-condition.

This paper is organized as follows. Section 2 describes the UCS framework
for real-valued inputs. Section 3 introduces our rule-repair algorithm. Section 4
tests UCS with our rule-repair algorithm on real-valued benchmark classification
problems. Section 5 empirically validates our hypothetical insights. Finally, in
Sect. 6, we summarize our contributions with future directions.

2 UCS for Real-Valued Inputs

This section gives a description of the UCS framework for real-valued inputs
x = [x1, x2, · · · , xd], where d is the problem dimension and xi ∈ [0, 1](i =
{1, 2, · · · , d}). This paper employs a lower-upper representation as a rule-
condition for real-valued inputs [27]. The rule-condition with this coding rep-
resents a d-dimension hyperrectangle as its matching sub-space on the input
space; and thus its rule-generality can be measured with a volume of its hyper-
rectangle. Note that this paper denotes a uniformly-sampled random value as r,
and r ∈ [0, 1], if not stated differently; and all rs used in equations are indepen-
dently sampled. Note also that we introduce new mathematical notations for the
UCS framework, which is exactly the same as in the original working of UCS [9].

2.1 Rule Parameters

A rule cl consists of a condition C = {c1, c2, · · · cd} and an action A, where
a sub-condition ci involves a lower li and an upper ui both used for xi, i.e.,
ci = [li, ui] (li ≤ ui, li, ui ∈ [0, 1]). A rule cl can be matched to x if and only
if li ≤ xi ≤ ui,∀i ∈ {1, 2, · · · , d}, simply denoted by x ∈ C in this paper. The
action A represents a class when its rule is executed.

The rule cl also has the following five main parameters; the number of correct
classification ct ∈ N0, which represents how many times cl belongs to [C]; the
accuracy acc ∈ [0, 1], which is a classification accuracy of cl; the rule-fitness F ∈
[0, 1], which is calculated from acc; the experience exp ∈ N0, which represents
the number of parameter-update times; the numerosity num ∈ N0; which is the
number of subsumed rules to cl by a subsumption operator (see Sect. 2.2).

Suppose two rules cl1 and cl2 both having the same action, cl1 can be more
general than cl2 if and only if l1,i ≤ l2,i ∧ u2,i ≤ u1,i,∀i ∈ {1, 2, · · · , d}, simply
denoted by cl2.C ⊂ cl1.C in this paper. All rules are contained in a population
[P ] with the maximum population size N .
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2.2 Framework

The UCS framework is composed of the training phase and the test phase. During
training, UCS activates rule-parameter updates and the steady-state GA in order
to produce the optimal rule-set as a solution. During the test phase, it only
determines an output based on the trained rule-set.

2.2.1 Training Phase
At the initial iteration t = 0, UCS builds the population [P ] as an empty set.
For t ← t + 1, UCS receives an input x together with its correct class A∗. Then,
it builds a match set [M ] consisting rules matched to x, given by;

[M ] = {cl ∈ [P ] | x ∈ cl.C}. (1)

Then, UCS further builds a correct set [C] and an incorrect set [!C], given by;{
[C] = {cl ∈ [M ] | cl.A = A∗},

[!C] = {cl ∈ [M ] | cl.A �= A∗}.
(2)

Thus, [C] and [!C] are composed of (temporarily) accurate rules and inaccurate
rules, respectively. If [C] is empty, the covering operator takes place to produce
a new rule with an initial setting {A = A∗, ct = 0, exp = 0, F = 0.01, num = 1};
and li and ui for ci ∈ C are initialized as;{

li = xi − r · s0,

ui = xi + r · s0,
(3)

where s0 ∈ [0, 1] is a hyperparameter that controls the initial rule-generality.
Thus, x ∈ C is always satisfied. Note that 0 ≤ li ≤ ui ≤ 1.

Next, UCS updates rule parameters. First, ct is updated as ct ← ct + 1 for
each rule in [C]. Next, for all rules in [M ], exp, acc, and F are updated. In detail,
exp is updated as exp ← exp+1 to count the update time; then, acc is updated
by;

acc =
ct

exp
. (4)

Thus, acc represents the classification accuracy of cl. Then, the fitness F is
updated with exponential reduction, given by;

F = (acc)ν , (5)

where ν controls a selection bias in the steady-state GA.
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Finally, the steady-state GA is applied to [C] to generate plausibly better
rules. First, UCS selects two parent rules from [C]; and it produces two offspring
rules cl1, cl2 as copies of the corresponding parent rules except for {ct = 0, exp =
0, F = 0.01, num = 1}. Then, a crossover operator is activated with a probability
χ; and this paper employs the uniform crossover. If the crossover is activated,
it may swap c1,i ∈ cl1.C for c2,i ∈ cl2.C with a probability 0.5 for each i =
{1, 2, · · · , d}. Next, the mutation operator is also applied to each sub-condition
of cl∗.C (i.e., c∗,i, with a probability μ (∗ can be 1 and 2)). In detail, l∗,i and
u∗,i for c∗,i may be mutated as;

l∗,i ←
{

l∗,i − r · m0 r < 0.5,

l∗,i + r · m0 otherwise,
(6)

u∗,i ←
{

u∗,i − r · m0 r < 0.5,

u∗,i + r · m0 otherwise,
(7)

where m0 is a hyperparameter that controls a degree of the rule-generality; again,
0 ≤ l∗,i ≤ u∗,i ≤ 1. Then, two offspring rules are inserted to [P ]; and rules may
be deleted if the population size [P ] exceeds N . This paper uses the tournament
selection with a tournament size τ .

A subsumption operator may be applied to the rules in [C] after updating
the rule parameters or to offspring rules after the steady-state GA. A rule can
be subsumed by a more general rule than it, provided that the more general
rule is reliably accurate and sufficiently updated (i.e., acc > acc0 ∧ exp > θsub);
acc0 ∈ [0, 1] defines the minimum classification accuracy the maximally accurate
rules must have; and θsub ∈ N defines the minimum update time. In detain, for
each rule cl in [C] except for maximally accurate, maximally general rules cl∗,
cl∗ subsumes cl if cl.C ⊂ cl∗.C ∧ cl.A = cl∗.A; then, the numerosity of cl∗ is
updated as cl∗.num ← cl∗.num + cl.num, and cl is deleted from [P ].

2.2.2 Test Phase
For a given input x, UCS builds the match set [M ], where all actions a existed
in [M ] are contained in [AM ]. Then, for each action a ∈ [AM ], it builds a subset
[Ma] which consists of rules having the action a, given by [Ma] = {cl ∈ [M ] |
cl.A = a}. Finally, it outputs the best action A′ having the highest fitness, that
is,

A′ = arg max
a∈[AM ]

∑
cl∈[Ma]

cl.F. (8)
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(a) (b) (c) (d)

Fig. 1. Examples of possible repair patterns of the rule-condition to eliminate a mis-
classified input (denoted by the black dot). “A” represents the original subspace covered
by a rule; “B”, “C”, and “D” represent repaired subspaces by repairing {l1, u2}, u1,
and l1, respectively. “D” can have the hightest rule-generality in those examples.

3 Minimum Rule-Repair Algorithm

In this section, we first introduce our concept of the minimum rule-repair algo-
rithm. Then, the detailed algorithm is described.

3.1 Concept

As described in the previous section, given x at iteration t, the UCS frame-
work does not intend to utilize rules temporarily identified as inaccurate, (i.e.,
cl′ ∈ [!C]). However, such inaccurate rules may contribute to the correct classi-
fication for other matched inputs. Consider cl′ misclassifies some inputs x′, its
classification accuracy (cl′.acc), certainly improves if cl′.C is repaired to match
inputs except for x′s. Thus, acc tends to improve by reducing the rule-generality.

However, this strategy (i.e., to reduce the rule-generality), provokes the
problematic cover-delete cycle under a restricted population size, as noted in
Sect. 1. Thus, we here consider a conservative approach to design our rule-repair
algorithm. Our algorithm is designed to repair cl′’s rule-condition with a pos-
sible minimum reduction of the rule-generality. Specifically, given x at t, we
repair cl′.C to eliminate x from its matching sub-space represented by its rule-
condition. That is, we target one single input for each repair to avoid a drastic
reduction of the rule-generality. In this case, we can still consider various repair
patterns of the rule-condition. Figure 1 shows possible examples of repair pat-
terns on two-dimensional inputs x = [x1, x2]; As shown in this figure, we can
suppose possible repair patters (“B”, “C”, and “D”); however, “D” can have the
highest rule-generality in those patterns. Technically, we do not need to repair
both li and ui and/or more than one dimension xi to achieve the minimum
reduction of the rule-generality.

Thus, our minimum rule-repair algorithm is designed to satisfy the following
two conditions; 1) to repair the rule-condition to eliminate x from its matching
sub-space, and 2) to repair either li or ui for one dimension xi.
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3.2 Algorithm

Our rule-repair algorithm is activated after the rule-parameter update in the
UCS framework. First, we add a new rule-parameter rt ∈ N0, which denotes the
latest update time its rule was repaired. The initial value of rt is set to 0 when
a rule is generated by the covering operator or the steady-state GA. Then, it
selects and then repairs only sufficiently-updated rules. In detail, UCS with our
algorithm builds a repair set [R], given by;

[R] = {cl ∈ [!C] | cl.exp − cl.rt > θsub} . (9)

Thus, once a rule is repaired, we temporarily remove its rule from candidates for
repair until its rule-quality is estimated trustworthy. In other words, this boosts
a stable convergence of rule-parameters, and it also prevents a drastic reduction
of the rule-generality.

Next, for each cl ∈ [R], we randomly select a dimension index k from
[1, 2, · · · , d] to decide a target sub-condition ck for repair; and then it gener-
ates new upper/lower candidates l̂k, ûk as;{

l̂k = xk + D ,

ûk = xk − D ,
(10)

where a hyperparameter D ∈ [0, 1] controls the minimum distance between a
specific input value xk and l̂k/ûk. Thus, cl’s rule condition can be guaranteed
that it does not match x at t when either lk = l̂k or uk = ûk. Note that D should
be set to a relatively small value, e.g., D ≤ 0.01, to maintain a small reduction
of the rule-generality; in Sect. 5, we empirically reveal the impact of D. Next, we
further select either l̂k or ûk to maintain the rule-generality as possible. Since the
other sub-conditions ci(i �= k) are not repaired, a volume of the hyperrectangle
specified by cl.C changes dependent on the length of ck (i.e., uk − lk). Thus,
to maximize the rule-generality, it is sufficient that we can use the candidate
maximizing the length of ck, that is;{

lk ← l̂k if uk − l̂k > ûk − lk,

uk ← ûk otherwise.
(11)

Note that as an exceptional case, we forcedly set uk to ûk if l̂k > uk, and vice
versa; if l̂k > uk and ûk < lk, we skip to repair the rule-condition, but this is
the extremely rare case in our experiments. Finally, rt is updated as rt ← exp.
Algorithm 1 shows the pseudo-code of our algorithm.

4 Experiment

This section tests our rule-repair algorithm on two real-valued benchmark classi-
fication tasks: the real-valued multiplexer problem (RMUX) and the real-valued
majority-on problem (RMOP).
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4.1 Benchmark Problems

4.1.1 Real-Valued Multiplexer Problem
The n-bit multiplexer problem (n-MUX) is originally used as a binary input
classification problem to validate the generalization capacity of XCS [8]. It has
been extended for real-valued classification tasks [12,28]. The n-MUX is defined
over a binary string of n = k+2k; a decimal number of the first k bits represents
a position of one of the remaining 2k bits. Then, the correct class is the bit
pointed to by the first k bits. In n-RMUX, each attribute xi is binarized at the
common boundary 0.5 (i.e., 0 if xi < 0.5 or 1 if xi ≥ 0.5) and then a correct class
of the real-valued input is determined with the same procedure of the n-MUX.
Note that, the binarization boundary is not a critical factor dependent on the
problem difficulty, as the steady-state GA is designed to independently change
the sub-condition ci based on only its corresponding attribute. This paper uses
{6, 11, 20, 37}-RMUXs to evaluate the scalability of the algorithm.

4.1.2 Real-Valued Majority-On Problem
The n-bit majority-on problem (n-MOP) is also originally defined with binary
inputs [25]. In n-MOP, if the number of “1” exceeds the number of “0”, the
correct class is 1; otherwise 0. This paper extends n-MOP to a real-valued clas-
sification task; each attribute xi is also binarized at the common boundary 0.5.
The n-MOP and n-RMOP are highly overlapping problems, where LCSs often
suffer to improve the performance [25]. This paper uses {11, 15}-RMOPs.

4.2 Experimental Settings

We employ the following experimental paradigm. One iteration involves a set of
one training input and one test input of the problem. For the training input,
UCS activates the training phase to produce the solution. For the test input,
it activates only the test phase in order to evaluate the system classification



Minimum Rule-Repair Algorithm for Supervised LCS 145

accuracy as the UCS performance. In addition, we evaluate the population size
(i.e., the number of rules in [P ]) to evaluate the generalization capacity of UCS.
The UCS performance and the population size are reported as an average of
30 trials. We test UCS and UCS with our rule-repair algorithm (denoted by
“Ours”).

We use the following UCS parameter settings with respect to [9,12]; β = 0.2,
δ = 0.1, ν = 10, θGA = 25, χ = 0.8, θdel = 20, θsub = 20, acc0 = 0.99,
P# = 0.8, μ = 0.04, τ = 0.4, s0 = 1.0, and m0 = 0.1. The subsump-
tions are turned on. For {6, 11, 20, 37}-RMUXs and {11, 15}-RMOPs, we set
N and the maximum iterations to {800, 5000, 30000, 30000, 10000, 100000} and
{50000, 200000, 1000000, 1500000, 200000, 500000}, respectively. For our repair
algorithm, we set D = 0.01.

4.3 Result

Figures 2 and 3 summarize the performances and the population size. As shown
in Fig. 2, our rule-repair algorithm successfully boosts the UCS performance on
all the problems employed in this paper. Specifically, our rule-repair algorithm
improves the performance at early iterations, where we can expect that many
inaccurate rules exist in [!C]. For instance, it reaches almost the optimal perfor-
mance after 100,000 iterations on 11-RMUX, but UCS requires 200,000 iterations
to reach it. The performances on RMOPs do not reach the optimal performance
due to the complexity of the overlapping problem, which is a similar tendency
to existing works [25,29].

A possible drawback of our rule-repair algorithm is to increase the population
size since it enhances a bias to produce specific rules with less rule-generality.
As shown in Fig. 3, this insight can be observed in early generations. However,
our rule-repair algorithm successfully prevents the increase of the population size
over iterations. Besides, it produces a more compact population than that of UCS
on 6, 11-RMUXs. Note that the population size reaches the maximum population
size N if the cover-delete cycle occurs. This tendency can be observed for both
UCSs on RMOPs, and so our rule-repair algorithm itself does not provoke the
cover-delete cycle. We suspect that N should be further increased to cover various
niches defined in RMOPSs [29]. Thus, we can empirically confirm that our rule-
repair algorithm successfully prevents the cover-delete cycle.

Finally, we further give empirical insights to confirm the efficiency of our rule-
repair algorithm. Figure 4 shows the summation of numerosity of rules in [!C]
over iterations (i.e.,

∑
cl∈[!C] cl.num), on 11-RMUX and 11-RMOP. Note that the

population involves many inaccurate rules if
∑

cl∈[!C] cl.num is a large value since
inaccurate rules tend to be over-generalized; and so those rules frequently match
inputs, resulting in the increase of the

∑
cl∈[!C] cl.num. From the figure, it is

obvious that our rule-repair algorithm contributes to decreasing the summation
of numerosity of [!C]. This means that our rule-repair algorithm successfully
reduces the inaccurate rules by improving their classification accuracy.
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In summary, our rule-repair algorithm successfully repairs the inaccurate
rules, and thus it boosts the UCS performance while preventing the increase of
the population size as well as the cover-delete cycle.
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Fig. 2. The performances of UCS and the proposal.

5 Analysis

This section presents analytical insights into our minimum rule-repair strategy.

5.1 Analysis of the Number of Sub-conditions to Be Repaired

One of our strategy to minimize the reduction of the rule-generality is to repair
either li or ui for one sub-condition ci. In this subsection, we validate the
impact of this strategy. In detail, we here extend our algorithm to repair Ψ
sub-conditions at the same time, where Ψ is the number of sub-conditions to be
repaired; and a default setting is Ψ = 1. More specifically, we insert a “for” loop
(i.e., for i = 1 to Ψ) between line 3 and 4 in Algorithm 1; and each dimension
index k is randomly sampled with no duplicates.

We here compare the performances of UCS with the rule-repair algorithm for
Ψ = {1, 3, 5}. Note that the rule-generality of repaired rules should be rapidly
decreasing with the increase of Ψ. Figures 5 and 6 show the performances and the
population size on 11, 20, 37-RMUXs with the same experimental settings (see
Subsect. 4.2), respectively. As shown in those figures, the performance gradually
degrades with the increase of Ψ. This tendency is clearly highlighted with the
increase of the problem dimensions d = {11, 20, 37}. Besides, the population size
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Fig. 3. The population sizes of UCS and the proposal.
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Fig. 4. The summation of numerosity of rules in [!C].

with Ψ = 1 decreases slightly faster than Ψ = {3, 5}. This indicates that our
minimum rule-repair strategy (i.e., Ψ = 1) successfully discovers the optimum
rules faster than the other settings in this paper. Accordingly, those experimental
results empirically confirm our hypothetical insight; the rule-condition should be
repaired with as minimum reductions of the rule generality as possible.

5.2 Analysis of the Minimum Distance D

Next, we analyze the impact of the hyperparameter D, which controls the min-
imum distance between a specific input value xk and l̂k (or ûk). As noted in
Sect. 3, the reduction of the rule-generality can be also minimized in terms of
D, e.g., D = 10−10. Thus, according to our hypothesis (i.e., to minimize the
reduction of the rule-generality), D may be an important parameter dependent
on the performance.
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Fig. 5. The performances of UCS with the rule-repair algorithm with Ψ = {1, 3, 5}
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Fig. 6. The population of UCS with the rule-repair algorithm with Ψ = {1, 3, 5}

We here compare the performances with D = {0.001, 0.01, 0.1}. Figure 7
shows the performances on 11, 20, 37-RMUXs with the same experimental set-
tings as in Sect. 4.2. Note that the UCS performance of 37-RMUX is reported
as an average of 10 trials due to the increase of the computation time. As shown
in this figure, our rule-repair algorithm with D = 0.1 very slightly improves the
performance; however, compared to the impact of Ψ, no significant impact of D is
observed even with the increase of the problem dimensions. This is because that
D does not significantly change a matching probability of the rule-condition to an
input. For instance, suppose 11-MUX and a rule-condition C with {li = 0.1, ui =
0.9},∀i = {1, 2, · · · , 11}, its matching probability can be 0.0859(= (0.9 − 0.1)11)
for randomly-sampled inputs under a uniform distribution. Then, consider that
we repair l1 with the first element of input xi = 0.4, the sub-condition c1 can be
rewritten as {l1 = 0.4 + D,u1 = 0.9}(i = 1). Then, the matching probability of
C can be {0.0536, 0.0526, 0.0430} for D = {0.001, 0.01, 0.1}, respectively. Con-
sequently, we suppose that D cannot be an important parameter dependent on
the performance unless it is set to an enough small value.
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Fig. 7. The performances of UCS with the rule-repair algorithm with D =
{0.001, 0.01, 0.1}

6 Conclusion

This paper proposed Minimum Rule-repair Algorithm (MRA) for UCS with
real-valued inputs on classification problems. Our concept is to repair inaccu-
rate rules with a possible minimum reduction of the rule-generality in order to
avoid the problematic cover-delete cycle. Accordingly, we identified the following
two principles to achieve this purpose; 1) to repair rule-condition to eliminate one
incorrect input from a matching subspace represented by its rule-condition, and
2) to repair either a lower value or an upper value for one dimension xi. Exper-
imental results confirmed the adequacy of those principles. Consequently, UCS
with MRA successfully boosts the performance while preventing the increase of
the population size as well as the cover-delete cycle.

In future work, we apply our algorithm to real-world classification tasks,
where some difficulties, e.g., missing attribute and class imbalance, can be
observed. We further analyze the impact of the hyperparameter D (the min-
imum distance) on non-uniformed distributions of inputs, aiming to reveal its
optimal setting up guide.
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Abstract. This paper tackles the 2-Dimensional Guillotine Cutting
Stock Problem with Stack Constraints. The problem asks for the cutting
of a set of items with the minimum amount of raw material. The cutting
patterns are subject to a number of constraints, including a new realistic
constraint, regarding item precedence, which has just been introduced
in the literature. In this case, the items are organized in stacks, where
each stack represents a customer request and defines the order in which
the items must be cut. That is, if item i precedes item j within a stack,
then i must be cut before j. However, there is no precedence constraint
between items in different stacks. This constraint comes from applica-
tions where items must be stacked and shipped in the exact order that
they will be used by the customer, thus avoiding the risk of damaging
fragile items (as is the case in the glass industry) or the cost of moving
heavy items (as is the case in the steel industry). We propose two heuris-
tics, one Evolutionary Algorithm (EA) adapted from a similar problem
in the literature, and a novel Biased Random Key Genetic Algorithm
(BRKGA). Computational results show that BRKGA outperforms the
evolutionary algorithm from the literature.

Keywords: Cutting stock · Dynamic programming · Evolutionary
algorithm · Guillotine cut · Stack constraints

1 Introduction

The problem of cutting a large plate of raw material into a specified set of smaller
objects is a common industrial challenge in glass [1], paper [2], wood [3], and
steel [4] industries, among others. This problem is referred as the 2-dimensional
cutting stock problem (2DCSP for short) [5]. It aims at cutting all the smaller
objects with the minimum amount of raw material. In this paper, we refer to
c© Springer Nature Switzerland AG 2022
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the large plate of raw material simply as plate and to the smaller objects as
items. Besides, as in [6–11], we assume that they are two-dimensional and have
a rectangular shape.

Fig. 1. An example of a cutting pattern.

We focus on the variant of 2DCSP called the 2-dimensional 3-staged cutting
stock problem subject to guillotine constraints (2DCSP-3S for short) [6,7,9,10].
In this variant, only guillotine cuts are allowed, i.e., cuts that go from one side
to the opposite side of the plate and split it into two rectangular pieces. These
cuts are divided into stages, where each cutting stage consists of a sequence of
parallel guillotine cuts. At each stage, the cuts are orthogonal to those of the
previous stage, since each piece of plate is rotated by 90◦ before the next cutting
stage begins. We refer to a k-cut as a guillotine cut performed in the k-th stage.
Besides, we assume that the plate is oriented such that its width is larger than
its height, and that the odd staged cuts are vertically oriented, while the even
staged cuts are horizontally oriented. An example of a 3-stage cutting pattern
used to separate three items from a plate is shown in Fig. 1, where the items are
numbered from 1 to 3 and the unused pieces of plate are shadowed.

This cutting pattern can be interpreted as a tree, where the root node (at
level 0) corresponds to the whole plate, and each node in the k-th level of the
tree corresponds to a piece of plate obtained from a k-cut to the piece of plate
of its parent node. Therefore, the leaves of this tree corresponds to either items
or unused pieces of plate. It is assumed that cuts are performed using a depth
first approach in this tree to avoid changing the piece of plate that is in the
guillotine. An example of the tree representing the cutting pattern of Fig. 1 is
given in Fig. 2. First, a vertical 1-cut is applied to the root node to detach an
unused piece of plate. Next, a horizontal 2-cut is performed to extract the item
1. Then, two successive vertical 3-cuts are executed to obtain items 2 and 3, as
well as another unused piece of plate.

In the case of 2DCSP-3S, the maximum number of stages is limited to three.
However, a single additional 4-cut is allowed if and only if it is used to separate
a single item from an unused piece of plate [6,12–14]. This is known in the
literature as trimming. Figure 3a shows an example of trimming, where the item
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Fig. 2. Representation of the cutting pattern of Fig. 1 as a tree.

3 is separated from an unused piece of plate by a single 4-cut, while Fig. 3b gives
an example of an invalid 4-cut used to separate item 3 from item 4.

In this paper, we deal with a variant of 2DCSP-3S that has additional prece-
dence constraints that was recently introduced in [15]. In this case, the items are
organized in stacks, where each stack represents a customer request and defines
the order in which the items must be cut. That is, if item i precedes item j within
a stack, then i must be cut before j. However, there is no precedence constraint
between items in different stacks. This constraint comes from applications where
items must be stacked and shipped in the exact order that they will be used by
the customer, thus avoiding the risk of damaging fragile items (as is the case in
the glass industry) or the cost of moving heavy items (as is the case in the steel
industry). We refer to this variant of 2DCSP-3S as the 2-dimensional Guillotine
Cutting Stock Problem with Stack Constraints (2DCSP-SC). This problem is
formally defined below.

Let W and H be the width and the height of the plates, respectively, and
I be the set of items to be cut, where each item i ∈ I has height hi and width
wi. Besides, let S be the set of stacks that represent customer orders, whereas
b = (πs

1, π
s
2, . . . , π

s
ns

) describes the order in which the items from stack s ∈ S must
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Fig. 3. Example of a 4-cut cut allowed (a) and not allowed (b).

be cut, such that πs
k ∈ I must be cut before πs

k+1 ∈ I, for all k = {1, . . . , ns −1},
where ns is the number of items in s.

A solution to 2DCSP-SC consists of a sequence of cutting patterns P that
describes how, and in which order, the plates must be cut. This solution must
satisfy all the following constraints: (i) the plate cannot be rotated; (ii) the items
can only be rotated by 90◦; (iii) all items in I must be cut exactly once; (iv) if
i ∈ I precedes j ∈ I in a stack, then i must be cut before j; (v) only guillotine
cuts are allowed; and (vi) the number of cutting stages is at most three along
with the additional 4-cut, as previously described.

The cost f(P ) of a solution P to 2DCSP-SC is the amount of raw material
used to cut all items. As in [6,16–18], the unused pieces of plate that result from
the cutting patterns P are divided into two types. The so called leftover is the
material to the right of the last 1-cut applied to the last plate. It is assumed that
this piece of plate can be reused, and it is not considered in f(P ). All the other
unused pieces of plate are considered waste, as it is assumed that they cannot
be reused. For example, in Fig. 3a, the unused piece of plate colored in gray is
considered waste, while that filled with dots is considered leftover. The objective
function f(P ) is defined as

f(P ) = H · W · (|P | − 1) + H · r(P ),

where |P | denotes the number of plates used, H · W · (|P | − 1) is the total area
of the first |P | − 1 plates. Furthermore, r(P ) gives the position of the last 1-cut
on the last cutting pattern of P . Thus, H · r(P ) represents the used area of the
last plate.

Let Δ be the set of feasible solutions for 2DCSP-SC. This problem consists of
finding a solution P ∗ = argminP∈Δf(P ), i.e., the cutting patterns that use the
least amount of raw material to cut all items in I. When there is only one item
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per stack, this problem reduces to 2DCSP-3S. Since 2DCSP-3S is NP-Hard [19],
2DCSP-SC is also NP-Hard.

As there is no known technique to design a polynomial-time exact algorithm
for NP-Hard problems, this paper focus on heuristic algorithms. However, as
far as we can tell, the new precedence constraints introduced in [15] preclude
the use of most algorithms in the literature related to 2DCSP-3S [13,16,17,20],
except those in [21], because they were not designed to consider item precedence.
Therefore, this paper adapts an Evolutionary Algorithm (EA) described in [21],
and also proposes a Biased Random-key Genetic Algorithm (BRKGA) to address
the 2DCSP-SC. Computational experiments show that BRKGA outperforms the
EA of the literature.

The remainder of this paper is organized as follows. First, related work are
discussed in Sect. 2. Next, a constructive algorithm for 2DCSP-SC, which is used
as a decoder for the other heuristics, is proposed in Sect. 3. Then, the adaptation
to 2DCSP-SC of the Evolutionary Algorithm of [21] is detailed in Sect. 4, and the
proposed Biased Random-key Genetic Algorithm is described in Sect. 5. Finally,
computational experiments are reported in Sect. 6 and concluding remarks are
drawn in the last section.

2 Related Work

A Sequential Heuristic Procedure (SHP) was proposed in [22]. The first stage
of this heuristic selects the height of the cut, the second stage the length of the
cut, and the third stage the number of times the generated cut pattern will be
used. The authors concluded that the performance of the proposed heuristic is
better than heuristics that use fixed measures to define the sizes of the cuts. A
variant of 2DCSP-3S in which the plates may contain defects and vary in size was
addressed in [23]. The proposed heuristic first sorts the larger sides of the plates
in ascending order, and the items are sorted in decreasing order following the
same criteria. The algorithm tries to position the widest items on the smallest
plates and after all the items are positioned, it checks if any item was placed in
any defective area; if so, that item is removed, and the possibility of being added
to any of the plates already used is verified. Computational experiments showed
that these heuristics obtained better results than those presented in [24].

A heuristic procedure based on Variable Neighborhood Search (VNS) was
proposed in [25]. To build an initial solution, three heuristics based on the first-fit
approach of [26] were used (3-staged First Fit Decreasing Height with rotations,
matching step and Fill Strip), so that the best solution provided by them is
selected. Computational experiments concluded that the heuristic proposed in
this work provided better solutions than the VNS approach present in [26].

A heuristic that combines a recursive approach and a Beam Search algorithm
was proposed in [17]. Unlike branch and bound algorithms, in Beam Search, only
elite nodes with high potential are investigated [27]. In this approach, the recur-
sion is used to generate segments of strips, and a Beam Search heuristic is used to
obtain the 3-staged cutting patterns considering usable leftover. Computational
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experiments showed that the heuristic proposed in this work obtained better
solutions than those of [6].

A Finite First Fit Heuristic (FFF), an Evolutionary Algorithm (EA), and two
strategies based on branch-and-bound have been proposed to solve 2DCSP-3S
in [21]. Computational experiments showed that EA obtained better results than
the other heuristics. As far as we know, FFF and EA are the best heuristics in the
literature that can be adapted to handle the precedence constraint of 2DCSP-SC.
Therefore, they are adapted to 2DCSP-SC in Sects. 3 and 4, respectively.

3 Finite First Fit (FFF) Heuristic

In this section, we extend the FFF heuristic of [21] to 2DCSP-SC. This heuristic
assumes that all the items are oriented in such a way that their width is greater
than or equal to their height, and it does not perform any further rotations. It
starts with an empty solution, and, at each iteration, it inserts an item in the
solution using the first fit approach described in Algorithm 1.

FFF inserts the items in the order they appear in a permutation Π of the
items in I. This permutation is such that if an item i precedes an item j in any
stack, i precedes j in Π. This property is necessary to guarantee that there is
always a place to insert an item without violating the precedence constraints.
That is the case because when an item is inserted in the solution, all preceding
items have already been inserted. In the worst case scenario, the next item
can be inserted in a new empty plate. The sorting algorithm used to generate
permutations that satisfy this property is explained in the next section.

Instead of describing Algorithm 1 using the usual recursive tree representa-
tion of a solution, we adopt a novel representation based on what we called a
k-box representation. A 0-box by definition is a plate. Therefore, it has always
height H and width W . Such a box is divided into a sequence of 1-boxes. There-
fore, a 1-box has always height H, but can have variable width. It is assumed that
the 1-boxes are placed contiguously from the left to the right of their respective
0-box. Therefore, all the area of the 0-box not covered by a 1-box is unused area
(waste or leftover). Analogously, a 1-box is divided into a sequence of 2-boxes.
Therefore, a 2-box has always the same width of its respective 1-box, but can
have variable height. It is assumed that the 2-boxes are placed contiguously from
the bottom to the top of their respective 1-box. Therefore, all the area of the
respective 1-box not covered by a 2-box is waste. Similarly, a 2-box is divided
into a sequence of 3-boxes, each one associated to exactly one item. Therefore, a
3-box has always the same height of its respective 2-box, but its width is exactly
the same as that of its corresponding item. It is worth pointing out that, from
the width of the 3-box, one can infer if the corresponding item was rotated or
not. Besides, it is implicit that if the height of a 3-box is larger than that of
the corresponding item, a trimming 4-cut occurs. It is also assumed that the
3-boxes are placed contiguously from the left to the right of their respective
2-boxes. Therefore, all the area of the respective 2-cut not covered by a 3-box
is waste. It can be observed that there is a direct correspondence between a
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k-box and a level k node in the cutting pattern tree. The advantage of the k-box
representation is that one does not need to account to the exact position of the
nested k-cuts, but only to the size of the corresponding k-boxes, which can be
inferred from the width and height of the items in each box.

The pseudo-code of FFF is described in Algorithm 1. This heuristic receives
an instance I of 2DCSP-SC and a permutation Π of the items in I, and returns a
solution corresponding to a sequence of cutting patterns P that describes how to
cut all the items in I without breaking the precedence constraints. In line 1, an
empty partial solution P is initialized. At each iteration of the loop of lines 2 to
22, the next item i, according to the permutation Π, is inserted in the solution.
Next, at each iteration of the loop of lines 3 to 20, FFF scans every 0-box b0

in the order they appear in P . Then, at each iteration of the loop of lines 4 to
15, FFF evaluates every 1-box b1 in the order they appear in b0. Following, at
each iteration of the loop of lines 5 to 10, FFF inspects every 2-box b2 in the
order they appear in b1. If the item i fits in b2 (see line 6), a new 3-box with i
is initialized and is appended to b2 in line 7, and the heuristic continues to the
next item in Π in line 8. It is worth noting that only the 2-boxes whose items are
cut after those that precede i are considered. Otherwise, i could be cut before
an item that precedes it. On the other hand, if i does not fit in b2 but it fits as

Algorithm 1. Finite First-Fit (FFF)
Input: I and Π
Output: P

1: P ← [ ]
2: for each i in Π do
3: for each b0 in P do
4: for each b1 in b0 do
5: for each b2 in b1 do
6: if i fits in b2 respecting the precedence constraint then
7: b3 ← i, and b2 ← b2 : b3

8: continue to the next item in Π
9: end if

10: end for
11: if [i] fits in b1 respecting the precedence constraint then
12: b2 ← [i], and b1 ← b1 : b2

13: continue to the next item in Π
14: end if
15: end for
16: if [[i]] fits in b0 respecting the precedence constraint then
17: b1 ← [[i]], and b0 ← b0 : b1

18: continue to the next item in Π
19: end if
20: end for
21: b0 ← [[[i]]], and P ← P : b0

22: end for
23: return P
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a new 2-box on top of b1 without breaking the precedence constraint (see line
11), a new 2-box (containing a single 3-box with i) is appended to b1 in line 12,
and FFF continues to the next item in Π in line 13. Moreover, if the latter is
not possible, but i fits as a new 1-box to the right of b0 without breaking the
precedence constraint (see line 16), a new 1-box (containing a single 2-box with
i) is appended to b0 in line 17, and FFF continues to the next item in Π in line
18. Finally, if i does not fit any box of the current solution, a new 0-box (plate)
is appended to P in line 21 with a single 1-box containing i. When all the items
are inserted in P the solution is returned in line 23. This heuristic is used as a
decoder in both the Evolutionary Algorithm of [21] and the Biased Random-key
Genetic Algorithm introduced in Sects. 4 and 5, respectively.

4 An Evolutionary Algorithm for 2DCSP-SC

In this section, the Evolutionary Algorithm (EA) of [21] is adapted to address
2DCSP-SC. This algorithm represents a solution as an |I|-vector, in which each
component is a real number (referred to as key) in the range [0, 1] associated
with an item in I. Each solution is decoded by a decoding heuristic that receives
the vector of keys and builds a feasible solution for 2DCSP-SC. Let ki be the
key associated with the item i ∈ I and wi be the width of i, the decoding of
EA consists of two steps. First, a permutation Π is generated accordingly to the
following selection sort algorithm. Let ρi = ki ·wi, at each iteration of the sorting
algorithm, the item with the largest value of ρi, that is on top of a stack in S,
is popped from its stack and added to the end of Π. Then, the FFF heuristic is
run with the resulting permutation of items. The cost of the solution returned
by FFF is used as the fitness of the chromosome.

EA is a steady-state evolutionary algorithm, where each offspring replaces
the worst solution in the population. Initial solutions are created at random, and
at each iteration two parent solutions are selected randomly. Then, the Order 3
Crossover (OX3) of [28] is applied to these solutions to generate a new offspring.
Two mutation operators are used: (i) the Reciprocal Exchange (RX), which
chooses two items at random and swaps their keys; and (ii) the Block Exchange
(BX), which swaps the keys of two non-overlapping blocks of consecutive items.
The size of these blocks is set to

⌈
2R

⌉
, as suggested by [21], where R is a random

value in the interval (0,
⌊
ldn

2

⌋
], in order to allow shorter blocks to be chosen

more likely. The number of mutations applied to each new offspring solution is
chosen as a Poisson-distributed random variable with expected value 2. Every
time a mutation is applied to the offspring, either RX or BX is randomly chosen
with equal probability.

5 Biased Random-Key Genetic Algorithm

Random-key Genetic Algorithms (RKGA) were first introduced by Bean [29] for
combinatorial optimization problems for which solutions can be represented as a
permutation vector. In this approach, two parents are selected at random from
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the entire population to implement the crossover operation in the implementa-
tion of a RKGA. Parents are allowed to be selected for mating more than once
in a given generation.

A Biased Random-key Genetic Algorithm (BRKGA) differs from a RKGA in
the way parents are selected for crossover, see Gonçalves and Resende [30] for a
review. In a BRKGA, each element is generated combining one element selected
at random from the elite solutions in the current population, while the other is
a non-elite solution. We say the selection is biased since one parent is always an
elite individual and because this elite solution has a higher probability of passing
its genes to the offsprings, i.e., to the new generation. A BRKGA provides a
better implementation of the essence of Darwin’s principle of “survival of the
fittest” than the RKGA, since an elite solution has a higher probability of being
selected for mating and the offsprings have a higher probability of inheriting the
genes of the elite parent.

The BRKGA for 2DCSP-SC evolves a population of chromosomes that con-
sists of |I|-vectors of keys, which are decoded exactly as in the Evolutionary Algo-
rithm described in Sect. 4. We use the parameterized uniform crossover scheme
proposed in [31] to combine two parent solutions and produce an offspring. In
this scheme, the offspring inherits each of its keys from the best fit of the two
parents with probability ρ > 0.5 and from the least fit parent with probability
1− ρ. BRKGA do not make use of the standard mutation operator, where parts
of the chromosomes are changed with a small probability. Instead, the following
concept of mutants is used: a fixed number of mutant solutions are introduced
in the population in each generation, randomly generated in the same way as in
the initial population. Mutants play the same role of the mutation operator in
traditional genetic algorithms, diversifying the search and helping the procedure
to escape from locally optimal solutions.

The keys associated to each item are randomly generated in the initial pop-
ulation. At each generation, the population is partitioned into two sets: TOP
and REST . Consequently, the size of the population is |TOP | + |REST |. Subset
TOP contains the best solutions in the population. Subset REST is formed by
two disjoint subsets: MID and BOT , with subset BOT being formed by the worst
elements on the current population. As illustrated in Fig. 4, the chromosomes in
TOP are simply copied to the population of the next generation. The elements
in BOT are replaced by newly created mutants that are placed in the new set
BOT . The remaining elements of the new population are obtained by crossover
with one parent randomly chosen from TOP and the other from REST . This
distinguishes a biased random-key GA from the random-key genetic algorithm
of Bean [29] (where both parents are selected at random from the entire pop-
ulation). Since a parent solution can be chosen for crossover more than once
in a given generation, elite solutions have a higher probability of passing their
random keys to the next generation. In this way, |MID | = |REST | − |BOT |
offspring solutions are created. The algorithm stops when a maximum elapsed
time is reached.
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6 Computational Experiments

The computational experiments reported in this section evaluates the perfor-
mance of the BRKGA and the EA heuristics. These algorithms were imple-
mented in C++ and compiled with GNU gcc version 6.3. The population size
of both heuristics was set to 1000 solutions, and the stopping criteria was set to
10 min of running time. All experiments were performed in a single core of an
Intel Xeon machine with 2.00 GHz of clock speed and 16 GB of RAM. As both
BRKGA and EA relies on stochastic operators, we ran these heuristics 20 times
for each instance using different seeds for the Mersenne Twister pseudo-random
number generator [32].

Fig. 4. Population evolution between consecutive generations of a BRKGA.

Three sets of instances were used in the experiments, namely Set A, Set B,
and Set X. These instances were adapted from realistic ones employed in the
ROADEF Challenge 2018, which tackled a similar problem commissioned by
Saint-Gobain Glass France, which is one of the world’s leading flat glass manufac-
turers. The original instances resemble scenarios found in Saint-Gobain factories
and can be retrieved from the website http://www.roadef.org/challenge/2018/
en/instances.php. We adapted these instances by ignoring the data regarding
specific constraints of Saint-Gobain’s guillotines, and using only the data neces-
sary for 2DCSP-SC. In every instance, the plates have W = 6000 and H = 3210.
Table 1 presents the characteristics of each instance set. One can see that the
instances greatly vary. The number of stacks range from 1 to 247, while the num-
ber of items stretch from 5 to 656. Furthermore, the smallest width of an item
is only 345, while the maximum width of an item is equal to 3495. Additionally,
the height of the items also vary between 123 and 2010.

The results for this experiment are displayed in Tables 2, 3 and 4, whereas
each table gives the result for a different instance set. The first column of each
table displays the instance name, while the second column presents a lower bound
(LB) computed as

∑
i∈I wihi, i.e., the sum of the area of all items in I. The

http://www.roadef.org/challenge/2018/en/instances.php
http://www.roadef.org/challenge/2018/en/instances.php
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Table 1. Characteristics of each instance set

Set A Set B Set X

Number of instances 20 15 15

Min. number of items 5 68 124

Ave. number of items 101.95 303.87 284.33

Max. number of items 392 656 412

Min. number of stacks 1 2 2

Ave. number of stacks 11.20 32.00 28.53

Max. number of stacks 72 241 247

Min. item width 345 351 353

Ave. item width 1317.35 1410.69 1317.40

Max. item width 3495 2952 2813

Min. item height 137 123 193

Ave. item height 594.82 668.63 600.03

Max. item height 2010 1759 1828

Table 2. Results for the Set A of instances

Instance LB BRKGA EA

gap (%) cv (%) gap (%) cv (%)

A1 4514704 10.87 0.00 10.87 0.00

A2 77201851 13.32 1.74 13.64 0.92

A3 41796990 19.79 1.10 20.80 1.19

A4 41796990 19.90 0.92 21.06 1.17

A5 56570007 15.55 1.25 17.77 1.16

A6 43254870 14.40 0.82 15.81 0.11

A7 70195170 20.02 1.16 22.25 1.17

A8 138045196 20.53 1.92 22.45 0.80

A9 44879034 21.47 4.63 25.53 0.81

A10 71100239 21.33 1.36 27.08 2.44

A11 64444211 19.18 0.23 21.37 1.43

A12 29180006 20.52 2.58 29.01 0.71

A13 213400977 11.75 0.73 14.20 1.02

A14 226360542 17.98 0.99 20.69 1.03

A15 238633039 16.87 1.33 20.07 0.71

A16 37325677 22.37 0.00 23.59 1.21

A17 19623149 54.83 0.00 54.83 0.00

A18 60282102 22.42 2.00 27.06 2.25

A19 41044876 20.33 1.23 28.23 4.46

A20 14710475 35.25 0.00 35.25 0.00

Average 20.93 1.19 23.58 1.12
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Table 3. Results for the Set B of instances

Instance LB BRKGA EA

gap (%) cv (%) gap (%) cv (%)

B1 77110392 10.12 1.00 9.11 0.24

B2 315354085 18.47 1.13 21.04 0.66

B3 349989487 15.36 0.72 16.79 0.62

B4 148205615 15.98 0.23 18.17 0.74

B5 319711555 37.81 0.00 37.81 0.00

B6 192874073 15.69 1.45 18.89 0.87

B7 187746291 11.82 1.41 17.17 1.03

B8 339397811 13.44 0.65 16.68 0.68

B9 293827643 12.06 0.61 14.35 0.82

B10 345904837 14.32 1.23 18.47 0.99

B11 336052870 14.34 0.84 18.81 0.53

B12 259876763 18.19 0.80 22.51 0.54

B13 484072875 17.81 0.94 22.36 0.66

B14 176124110 17.05 1.32 21.33 0.88

B15 432558079 17.07 0.71 20.20 0.91

Average 12.48 0.86 14.68 0.67

Table 4. Results for the Set X of instances

Instance LB BRKGA EA

gap (%) cv (%) gap (%) cv (%)

X1 244983403 17.38 0.76 17.93 0.74

X2 147062803 12.08 1.22 17.81 0.81

X3 156830774 15.93 1.16 19.03 1.33

X4 241257058 14.97 1.12 17.78 0.51

X5 78796003 19.99 1.05 22.86 0.59

X6 248147317 15.59 0.68 19.10 0.98

X7 369443070 15.72 0.88 18.85 0.77

X8 134427339 47.35 1.57 47.62 0.00

X9 361189695 15.49 1.06 19.53 1.09

X10 333756718 15.16 0.57 19.14 0.87

X11 223408308 19.19 1.12 23.14 1.26

X12 242393345 16.76 1.44 21.97 1.08

X13 259467828 13.91 0.78 19.41 0.98

X14 158409238 19.33 1.00 22.73 0.85

X15 242691036 19.02 1.71 24.73 1.27

Average 13.89 1.07 16.58 0.87
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third and fourth columns present the results for the BRKGA. The third column
presents the relative optimality gap of the BRKGA’s fitness computed against
the lower bound displayed in the second column, while the fourth column gives
the coefficient of variation (cv) of the algorithm’s results. The same information
is given for the EA in the fifth and sixth columns, respectively. The last line of
each table presents the average relative optimality gap and the average coefficient
of variation for each heuristic.

One can see from these tables that the relative optimality gap of BRKGA was
smaller or equal than that of EA for all evaluated instances. BRKGA obtained
an average relative optimality gap of 20.93%, 12.48%, and 13.89% for the sets
A, B, and X of instances, respectively, while that of EA was 23.58%, 14.68%,
and 16.58%. Therefore, it can be concluded that BRKGA obtained better results
than EA when solving the proposed instances. However, one can observe that
EA is a more stable method than BRKGA, as its average coefficient of variation
was smaller than that of BRKGA for all sets of evaluated instances.

7 Concluding Remarks

In this work, we tackled the Two-dimensional Three-staged Cutting Stock Prob-
lem with Stack Constraints (2DCSP-SC). We extended the Evolutionary Algo-
rithm (EA) described in [21] to address the 2DCSP-SC. Furthermore, we pro-
posed a Biased Random Key Genetic Algorithm (BRKGA). Both algorithms use
the Finite First Fit (FFF) heuristic as a decoder. Computational experiments,
performed on three sets of realistic instances, show that BRKGA found solutions
with smaller optimally gaps in all but one of the instances tested.

Future works may explore exact methods, such as branch-and-bound algo-
rithms, to improve the lower bounds proposed in this paper. Alternatively, other
heuristic methods that do not rely in Genetic Algorithms could be devised for
the problem, such as heuristics based on local search.
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30. Gonçalves, J.F., Resende, M.G.C.: Biased random-key genetic algorithms for com-
binatorial optimization. J. Heuristics 17, 487–525 (2011)

31. Spears, W., deJong, K.: On the virtues of parameterized uniform crossover. In:
Belew, R., Booker, L. (eds.) Proceedings of the Fourth International Conference
on Genetic Algorithms. Morgan Kaufman, San Mateo, pp. 230–236 1991)

32. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. (TOMACS) 8(1), 3–30 (1998)

https://books.google.com.br/books?id=Kl7vAAAAMAAJ
https://books.google.com.br/books?id=Kl7vAAAAMAAJ


A Genetic Algorithm for a Capacitated
Lot-Sizing Problem with Lost Sales,

Overtimes and Safety Stock Constraints
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Abstract. This paper deals with a complex production planning prob-
lem with lost sales, overtimes, safety stock and sequence dependent setup
times on parallel and unrelated machines. The main challenge of this
work is to propose a solution approach to obtain a good feasible plan in
a short execution time (around 2min) for large industrial instances. We
develop a genetic algorithm that combines several operations already
defined in the literature to solve the problem. Preliminary numerical
results obtained with our algorithm are presented and compared to a
straightforward MIP resolution. The method appears to be an appealing
alternative on large instances when the computational time is limited.

1 Introduction

The problem presented in this paper is related to practical cases encountered in
the food industry for production planning. In this context, manufacturers can
generally use several production lines, each able to make several types of items.
This complexity usually leads to problems that are too large to be solved opti-
mally by off-the-shelf solvers. In addition, the models we consider in this paper
also combines constraints from the lot-sizing and the scheduling literature, by
assuming that the setup times between different types of items depends on the
production sequence. This further limit the applicability of standard methods in
practice, when the planners need to obtain “good” feasible solutions in reason-
able time to test several machine configurations or shifts assignments and obtain
quick insights to support their decisions.

This problem extends the field of lot-sizing, which has been extensively stud-
ied since the work of Wagner and Whitin [1]. Motivated by the physical con-
straints found in practical applications, the finite production capacity version of
the problem (CLSP) has received a lot of attention, see [2] and [3] for a review
of extensions and solution approaches. The problem we consider is an extension
of the industrial problem with lost sales and shortage costs presented in [4], for
which the authors introduce new classes of valid inequalities. The safety stock
c© Springer Nature Switzerland AG 2022
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is seldom considered in the deterministic production and inventory literature.
[5] define the safety stock as a lower bound on the number of units that must
be held in the inventory at each period when [6] choose to penalize the missing
units from the safety stock. The latest version is studied here. Versions of the
problem with parallel machines and sequence dependent setups are less common
in the literature. [7] develop new heuristics on a parallel machines problems. [8]
present an industrial problem in which setup times depend on the sequence of
production and propose a solution procedure based on subtour elimination and
patching. [9] use a small bucket formulation to compute the sequence of pro-
duction. [10] also present an extensive review of this extension and compare the
efficiency of several methods to solve it. The possibility to exceed the production
capacity is not common in the literature, see [11] for an overtime extension of a
capacitated lot-sizing problem.

In terms of metaheuristics, various researches have been done on the previ-
ously detailed extensions of our problem. [12] propose a Genetic Algorithm (GA)
to tackle a multi-items CLSP and on multiple production lines, using various
crossovers and mutation. The authors also use a new operator called “siblings”
that consists in a local search using a ranking system on the neighbours. [13]
propose a Tabu-Search (TS) to solve the same problem. [14] and [15] propose
hybridized GA to solve the CLSP with an overtime constraints. The hybridiza-
tion introduces elements of Tabu-search and Simulated Annealing into the GA
in order to improve the efficiency of the algorithm. On top of that, they also use
multi-population on different version of the algorithm to tackle their instances.
On the single-machine CLSP with sequence dependent setup times, [16] and [17]
propose a Threshold Accepting whereas [18] develop a Tabu-Search and [19] pro-
pose a GA. To the best of our knowledge however, none of the previous problems
incorporate a target-stock constraint similar to our case.

In the following, we denote CLSSD-PM the multi-item capacitated lot-sizing
problem with lost sales, safety stock, overtimes, and sequence dependent setups
on parallel machines. A previous work in [20] focus on a part of this problem
without safety stock. To the best of our knowledge, this whole problem has never
been studied in the literature before.

2 Problem Definition

The CLSSD-PM is a extensive version of the capacitated lot-sizing problem
which is proven to be NP-hard [21]. The goal is to plan the production of N
different items, over T time periods and on M parallel unrelated production lines.
There is a demand dit for each item i ∈ {1, ..., N} in each period t ∈ {1, ..., T}
that must be satisfied if units of i are available in stock. When that is not the
case, the demand can be (partially or totally) lost, incurring a per-unit lost
sales cost lit. Any production of item i in period t on line m ∈ {1, ...,M} is an
integral number of batches, i.e. a multiple of a fixed quantity Qi of units. The
production of one such batch incurs a cost pimt and requires a production time
τ i
m. In addition, the production of items of type k immediately after items of

type i �= k during a given period on machine m induces a setup time γik
m .
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Each line m at each period t has a (planned) time capacity of Cmt, but
production overtimes are allowed up to a maximum total production time C̄mt.
When production occurs during the planned capacity, the corresponding cost of
line usage is cmt per unit of time, but this cost increases to cmt + c̄mt when the
production needs overtime, i.e. for any usage that exceeds Cmt.

We model item storage by the mean of a target stock Sit for each item i in
each period t. Any unit of stock of i in period t that exceeds Sit induces an excess
storage cost of h+

it, while missing inventory to reach the target stock incurs a
per-unit penalty equal h−

it .
We also make the following hypothesis on our problem:

– Demand and inventory are satisfied and consumed following a FIFO rule.
This implies that it is impossible to choose to loose some demand of an item
that is held in stock.

– Setup times between items follow the triangle inequality rule.
– At the beginning of each period, each line is in a neutral state, and the setup

time to start the production of the first item in any period is null.

The objective of our problem is to minimize the total cost of the production
planning (line usage, production, storage and lost sales combined). For concise-
ness reasons, we do not present the MILP formulation here and instead refer the
interested readers to the [22].

3 Genetic Algorithm

We now develop a genetic algorithm to address the CLSSD-PM. We start by
introducing the general structure of the procedure, before presenting in mode
details the chromosome representation, crossover and mutation operators.

3.1 Genetic Algorithm Pseudo-Code

We use a generational genetic algorithm (GA), which creates successive gen-
erations of a population of individuals, by using specific operators inspired by
nature and called crossovers and mutations. We keep some overlapping between
consecutive generations, i.e. some of the best elements obtained in the current
population are retained for the next generation, to keep the most interesting
information of what has been done in previous iterations.

To avoid being in a local optimum for too long, the algorithm sometimes
performs a reset that re-generates randomly a large portion of the current pop-
ulation. This operation is done only after a long period without improvement
of the best known solution. A pseudo-code of the procedure is presented in
Algorithm 1.
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Algorithm 1: Genetic Algorithm
1 curGen ← GeneratePopulation() ;
2 s∗ ← bestIndividual ;
3 while stopping criterion not met do
4 nextGen ← overlap(curGen);
5 while |nextGen| < maxPopSize do
6 if condCrossover then
7 parent1, parent2 ← selectionCross(curGen);
8 nextGen.add(crossover(parent1, parent2));

9 end
10 if condMutation then
11 mutated ← selectionMutation(curGen);
12 nextGen.add(mutation(mutated));

13 end

14 end
15 if condReset then
16 reset();
17 end
18 if cost(nextGen.bestIndividual) < cost(s∗) then
19 s∗ ← nextGen.bestIndividual ;
20 end
21 curGen ← nextGen ;

22 end
23 return s∗

3.2 Chromosome Representation

The problem requires two type of decisions: The first one assigns the production
of items to periods and machines, while the second one aims at designing the
production sequences. As a consequence, we propose the following independent
variables that serve as chromosomes:

– xmt: Set of tuples 〈item; quantity〉 produced on m during t.
– wmt: Contains the ordered sequence of production on m during t.

Other necessary information to represent a solution are deduced from these
two variables, using the dependent variables below:

– cost: Total cost of the solution.
– umt: Time usage of line m in period t.
– prodit: Number of batches of i produced in period t.
– stocki

t: Stock of item i available at the end of period t.
– Li

t: Number of lost sales for item i in period t.
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To ensure diversity within the population, we start a completely random
chromosome generation. For each line in each period we draw randomly a subset
of items and affect to each of them a random production quantity. The sequence
is determined as the items are drawn. Since the goal is to minimize the objective
function of our problem, we keep a fitness parameter fitness = 1

cost(solution)

updated to ensure that the gaps between the costs of different solutions are
proportional. Finally, the selection is made based on a roulette wheel mechanism,
applied to the fitness of the population.

3.3 Crossover

In order to explore a large variety of solutions, we apply several crossovers from
one generation to the next, in a similar fashion as the GA presented in [12]. In
our case, we have three different crossover:

– On periods.
– On items.
– On sequences.

Crossover on Periods. This crossover is heavily inspired by [12]. It basically
consists of a two-point crossover applied on the periods of the solutions. The
concept is to choose randomly a subset of periods and exchange all the produc-
tion quantities of the two parents in the selected periods. Table 1 illustrates a
crossover on periods 3 and 4.

Table 1. Illustration of the period crossover

Crossover on Items. This crossover is inspired by [12] For a given machine m
and a given time period t, this crossover iterates following the item information
stored in the chromosomes xmt of both parents. For each m and t, we consider
the union the items produced by the two parents and draw for each of them
a random boolean. If we draw 0 then the first child takes the first parent’s
production, and the second child takes the second parent’s. Otherwise the first
child takes the second parent’s production, and the second child takes the first
parent’s. Table 2 shows a practical example of this crossover for a given period
and line.
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Table 2. Example of item crossover for a given period and line

Parent 1:
Item 1 4 3

Quantity 15 13 9

Parent 2:
Item 2 9 4

Quantity 17 10 5

Union and random draws:
Union items 1 4 3 2 9

Random draws 1 1 0 0 0

Child 1:
Item 4 3

Quantity 5 9

Child 2:
Item 1 4 2 9

Quantity 15 13 17 10

Crossover on the Sequences. This crossover is inspired by [19] This crossover
enables us to change the sequence of production. For each line and in each period,
we form the set containing the common items from the two parent solutions. We
then create a new sequence in the following manner:

1. Draw a random integer X between 1 and the number of common items
2. Order the X first item as they are in the sequence of the first parent. The

remaining items follow the same order they have in the sequence of the second
parent.

3. Create the sequences of the children using the parents sequences in which the
common items are reordered.

Table 3 shows a practical example of this crossover for a given period and line.

3.4 Mutation

We consider a mutation that swaps the positions of two randomly selected items
in the sequence of production, as represented in Table 4. As we also do not want
to alter the totality of the individual we will add a parameter to describe the
amount of information that will be altered in a mutated individual.
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Table 3. Example of sequence crossover for a given period and line

Parent 1: Sequence 1 2 3 4 5 6 7 11

Parent 2: Sequence 10 9 8 7 6 5 4 3

Intersection: Common items 3 4 5 6 7

Random number draw X: 3

Order from the parents:
Order of the first X items on parent 1 3 4 5

Order of remaining items on parent 2 7 6

New order: New order 3 4 5 7 6

Child 1: Sequence 1 2 3 4 5 7 6 11

Child 2: Sequence 10 9 8 3 4 5 7 6

Table 4. Example of a mutated sequence on items 2 and 6

Sequence before mutation 1 2 3 4 5 6

Sequence after mutation 1 6 3 4 5 2

3.5 Repair

Note that such movements may result in infeasible solution since some line usage
may exceed its maximum capacity. When this situation arise, we repair them by
removing the production of one or more items until we don’t exceed the hard
capacity anymore and then replace it if possible on previous periods. In order to
have a minimum impact on the quality of the solution, we chose to remove the
item having the highest ratio prodi

t

demandi
t

so that we can avoid most of the lost sales.
The quantity the remove in order to make the period feasible, is stored and will
be spread on the previous periods where the item was already in production.

4 Experimentation Results

The instances that we use for our numerical experiments are derived from prac-
tical applications defined by VIF, a software company specialised in solutions
for the food industry.
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4.1 Parameters

Our algorithm is tuned through 9 parameters that have been tested to choose
the best possible values.

– Size of the population: 200 individuals.
– Number of generations: 15000 generations, limited to 2 min of execution.
– Percentage of overlapping population between generations: 10%.
– Percentage of rested population: 50%.
– Number of non-improving iterations needed to reset: 200.
– Crossover ratio: 90%.
– Mutation ratio: 10%.
– Percentage of information of an individual that will be mutated: 20%.
– Ratio between the different crossovers: 60% period crossover, 20% item

crossover, and 20% sequence crossover.

4.2 Experimentation

Implementation and tests of the algorithms have been done in Java. Tests have
been realised on a personal computer with the following characteristics:

OS: Ubuntu 18.04.4 LTS
Processor: Intel i5-7600K @ 4.200 GHz × 4
GPU: NVIDIA GeForce GTX 1070
RAM: 16 Gb
Type: 64-bit

We tested our GA on 168 instances that combine the following parameters:
Number of items ∈ {20, 30, 40, 50, 75, 100, 125}, number of lines ∈ {1, 2, 4, 6} and
number of periods ∈ {15, 30}. The lower bound and upper bound considered are
based on the results computed by CPLEX in 4 h using a MIP formulation of the
problem. We compare our results with the best lower bound (LB) obtained by
CPLEX using settings presented in [22] and compute the gap achieved by our
procedure with the following formula:

Gap =
GA.cost − LB

LB
× 100

4.3 Results

We tested the GA presented in this paper with a maximum computational time
of 2 min and compared the solutions obtained with the ones found by CPLEX
in 4 h. Note that the latter are used as a baseline and do not represent a viable
option for practitioners to do its large computational time. In fact except for
the smallest instances, CPLEX rarely even finds a feasible solution within 2 min,
which already gives the GA an edge in the specific application that is targeted. In
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Table 5. Comparison of gaps obtained by CPLEX (4 h) and our GA (2min) by group
of same size instances

Instances CPLEX Gap(%) GA Gap(%)

Items-lines-periods Min Max Mean Min Max Mean

20-1-15 0.1 4.1 1.7 381.9 625.8 534.0

20-1-30 1.8 19.9 8.9 492.1 836.4 731.4

20-2-15 0.1 10.0 2.5 258.0 520.3 374.2

20-2-30 2.4 13.2 7.0 527.8 1108.7 707.8

30-1-15 1.5 12.0 5.0 602.4 1 203.1 907.3

30-1-30 0.8 1 163.3 277.1 1 000.8 1 911.9 1 243.8

30-2-15 1.8 18.8 9.5 513.2 1 122.8 792.2

30-2-30 7.4 544.4 190.9 379.9 1 298.2 975.5

40-1-15 7.6 75.1 40.2 685.7 1 471.5 1 094.8

40-1-30 533.8 2 853.7 1 198.4 685.0 2 245.4 1 352.4

40-2-15 6.0 789.9 145.7 391.5 1 553.2 1 025.3

40-2-30 322.2 7 127.8 3 177.8 640.1 1 768.2 1 383.7

50-1-15 83.0 3 573.4 842.4 968.8 1 778.6 1 411.2

50-1-30 292.0 14 145.4 4 063.2 998.6 3 452.6 2 033.9

50-2-15 4.9 1 305.0 735.0 1 014.6 1 598.5 1 351.5

50-2-30 530.9 4 277.8 2 543.6 1 681.4 2 312.7 1 914.2

75-2-15 774.5 2 811.1 1 713.8 2 070.9 3 459.9 2 891.2

75-2-30 432.6 6 829.5 2 879.3 2 139.9 4518.3 3 328.3

75-4-15 464.6 2 134.6 1 744.8 1 883.3 3 079.3 2 582.1

75-4-30 3 141.6 7 866.4 4 537.1 1 912.0 4 281.5 3 387.3

100-2-15 1 163.1 4 824.4 2 494.2 2 055.4 5 426.2 3 864.5

100-2-30 4 406.2 8 608.9 6 371.8 3 921.6 5 789.1 4 449.2

100-4-15 742.3 5 212.6 2 569.0 2 787.8 4 832.3 4 034.2

100-4-30 3 243.8 6 843.9 5 090.9 4 273.1 6 017.9 5 241.9

125-4-15 3 126.3 11 547.6 5 756.7 3 945.9 6 101.4 4 935.5

125-4-30 4 960.9 19 640.6 8 306.3 5 348.4 7 110.8 6 402.2

125-6-15 2 437.1 6 862.7 4 358.6 3 169.0 6 314.2 5 301.0

125-6-30 5 021.4 17 563.0 7 579.5 5 423.7 7 130.9 6 295.3

addition we observe that in 45 out of the 168 tested instances, our GA obtains a
better solution in 2 min than the one obtained by CPLEX in 4 h. The distribution
of these 45 instances is as follows:

– 0 case for 20 items.
– 1 case for 30 items (0 for 15 periods, 1 for 30 periods).
– 7 cases for 40 items (0 for 15 periods, 7 for 30 periods).
– 10 cases for 50 items (2 for 15 periods, 8 for 30 periods).
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– 9 cases for 75 items (3 for 15 periods, 6 for 30 periods).
– 11 cases for 100 items (7 for 15 periods, 4 for 30 periods).
– 7 cases for 125 items (5 for 15 periods, 2 for 30 periods).

The Table 5 compares the gaps obtained by CPLEX and our GA on groups
of 6 instances of same size. For each group we retain the minimal gap obtained,
the maximal gap and the mean gap for all 6 instances.

This table also shows clearly the great differences that can appear between
solutions found by CPLEX on 2 instances of same size (example for instance
of size 50-1-30 where we have a minimal gap of 292% and a maximal gap of 14
145%) whereas our GA shows closer values (min: 999%, max: 3 453%). In general,
the consistency of the results obtained by the GA is better across instances of
the same size: In particular it appears that the solutions from CPLEX seem
more sensitive to the number of periods that our procedure. Even if the results
obtained by our GA are far behind the ones obtained by the MIP for the smallest
instances, they become competitive on larger ones. For the largest instances, our
heuristic consistently outperforms in 2 min the feasible solution computed by
CPLEX in 4 h.

These results clearly demonstrate the tendency of metaheuristics, in this case
a genetic algorithm, to deal quickly with complex problems, and their usefulness
in practice to tackle large industrial instances compared to MIP formulations
and commercial solvers. Finally, note that the two approaches can also be used
in combination, where the solution find by the GA can serve as a first feasible
solution for the MIP solver, in an attempt to speed up the its convergence
towards an optimal solution.

5 Conclusion

In this work, we apply the well-known genetic algorithm paradigm to develop a
dedicated algorithm that is able to run quickly on large industrial instances of a
complex practical production planning problem. The main contributions of this
study can be partitioned in two broad categories. First, the heuristic developed
is the first one that takes into account several industrial extensions of classical
lot-sizing problems, such as the combination of multiple unrelated machines
and sequence-dependent setup times. Second, it provides a viable alternative
to commercial solvers to deal with large industrial instances that displays a
robust behavior with respect to the size of the problem considered. Note that
the solution obtained using our procedure may serve as a warm start for an exact
method.

While the first results obtained show that such metaheuristics are a viable
alternative on large instances, additional work is necessary to improve the over-
all performances. In particular, the method would become a lot more reliable
if the solutions on small instances were comparable to the ones computed by
commercial solvers. Local search methods or more advanced concepts such as
hybridization or multi-population could help reduce the gap in such cases. We
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could also seek to find dominance properties to reduce the search space and
speed up the resolution.

Another research direction to achieve this goal is to apply the procedure to
a simpler problem that approximates the original one. In a recent paper [22],
we developed a procedure that computes clusters of items with small switching
times, which enables the algorithm to primarily focus on positioning clusters in
the production sequence rather than items. This approximation greatly reduces
the size of the original problem and was proven successful when used in com-
bination with classical heuristics from the lot-sizing literature. It is likely that
the GA presented in this paper would also benefit from this reduction of the
problem size to converge faster to good quality solutions.
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Abstract. Grammatical inference consists in learning a formal grammar
(as a set of rewrite rules or a finite state machine). We are concerned with
learning Nondeterministic Finite Automata (NFA) of a given size from
samples of positive and negative words. NFA can naturally be modeled
in SAT. The standard model [1] being enormous, we also try a model
based on prefixes [2] which generates smaller instances. We also propose
a new model based on suffixes and a hybrid model based on prefixes
and suffixes. We then focus on optimizing the size of generated SAT
instances issued from the hybrid models. We present two techniques to
optimize this combination, one based on Iterated Local Search (ILS), the
second one based on Genetic Algorithm (GA). Optimizing the combina-
tion significantly reduces the SAT instances and their solving time, but
at the cost of longer generation time. We, therefore, study the balance
between generation time and solving time thanks to some experimental
comparisons, and we analyze our various model improvements.

Keywords: Constraint problem modeling · Grammar inference ·
SAT · Model reformulation · NFA inference

1 Introduction

Grammatical inference [3] (or grammar induction) is concerned with the study
of algorithms for learning automata and grammars from some observations. The
goal is thus to construct a representation that accounts for the characteristics
of the observed objects. This research area plays a significant role in numerous
applications, such as compiler design, bioinformatics, speech recognition, pattern
recognition, machine learning, and others.

In this article, we focus on learning a finite automaton from samples of words
S = S+ ∪ S−, such that S+ is a set of positive words that must be accepted
by the automaton, and S− is a set of negative words to be rejected by the
automaton. Due to their determinism, deterministic finite automata (DFA) are
generally faster than non deterministic automata (NFA). However, NFA are
significantly smaller than DFA in terms of the number of states. Moreover, the
space complexity of the SAT models representing the problem is generally due
to the number of states. Thus, we focus here on NFA inference. An NFA is
represented by a 5-tuple (Q,Σ,Δ, q1, F ) where Q is a finite set of states, the
c© Springer Nature Switzerland AG 2022
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vocabulary Σ is a finite set of symbols, the transition function Δ : Q×Σ → P(Q)
associates a set of states to a given state and a given symbol, q1 ∈ Q is the initial
state, and F ⊆ Q is the set of final states.

The problem of inferring NFA has been undertaken with various approaches
(see, e.g., [1]). Among them, we can cite ad-hoc algorithms such as DeLeTe2 [4]
that is based on state merging methods, or the technique of [5] that returns a
collection of NFA. Some approaches use metaheuristics for computing NFA, such
as hill-climbing [6] or genetic algorithm [7].

A convenient and declarative way of representing combinatorial problems is
to model them as a Constraint Satisfaction Problem (CSP [8]) (see, e.g., [1] for an
INLP model for inferring NFA, or [9] for a SAT (the propositional satisfiability
problem [10]) model of the same problem). Parallel solvers have also been used
for minimizing the inferred NFA size [2,11].

Orthogonally to the approaches cited above, we do not seek to improve a
solver, but to generate a model of the problem that is easier to solve with a
standard SAT solver. Our approach is similar to DFA inference with graph col-
oring [12], or NFA inference with complex data structures [9]. Modeling thus
consists in translating a problem into a CSP made of decision variables and
constraints over these variables. As a reference for comparisons, we start with
the basic SAT model of [9]. The model, together with a sample of positive and
negative words, lead to a SAT instance to be solved by a classic SAT solver
that we use as a black box. However, SAT instances are gigantic, e.g., our base
model space complexity is in the order of O(k|ω+|) variables, and in O(|ω+|.k|ω+|)
clauses, where k is the number of states of the NFA, and ω+ is the size of the
longest positive word of the sample. The second model, PM , is based on inter-
mediate variables for each prefix [2] which enables to compute only once parts of
paths that are shared by several words. We propose a third model, SP , based on
intermediate variables for suffixes. Although the two models could seem similar,
their order of size is totally different. Indeed, PM is in O(k2) while SM is in
O(k3). We then propose hybrid models consisting in splitting words into a prefix
and a suffix. Modeling the beginning of the word is made with PM while the
suffix is modeled by SM . The challenge is then to determine where to split words
to optimize the size of the generated SAT instances. To this end, we propose two
approaches, one based on iterated local search (ILS), the second one on genetic
algorithm (GA). Both permit to generate smaller SAT instances, much smaller
than with the DM model and even the PM model. However, with GA, the
generation time is too long and erases the gain in solving with the Glucose SAT
solver [13]. But the hybrid instances optimized with the ILS are smaller, and the
generation time added to the solving time is faster than with PM . Compared
to [9], which is the closest work on NFA inferring, we always obtain significantly
smaller instances and solving time.

This paper is organized as follows. In Sect. 2 we present the direct model,
the prefix model, and we propose the suffix model. We then combine suffix and
prefix model to propose the new hybrid models (Sect. 3). Hybrid models are
optimized with iterated local search (Subsect. 3.2), and with genetic algorithm
in Subsect. 3.3. We then compare experimentally our models in Sect. 4 before
concluding in Sect. 5.
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2 SAT Models

Given an alphabet Σ = {s1, . . . , sn} of n symbols, a training sample S = S+ ∪
S−, where S+ (respectively S−) is a set of positive words (respectively negative
words) from Σ∗, and an integer k, the NFA inference problem consists in
building a NFA with k states which validates words of S+, and rejects words of
S−. Note that the satisfaction problem we consider in this paper can be extended
to an optimization problem minimizing k [2].

Let us introduce some notations. Let A = (Q,Σ, q1, F ) be a NFA with:
Q = {q1, . . . , qk} a set of k states, Σ a finite alphabet, q1 the initial state, and
F the set of final states. The empty word is noted λ. We denote by K the set of
integers {1, . . . , k}.

We consider the following variables:

– k the size of the NFA we want to learn,
– a set of k Boolean variables F = {f1, . . . , fk} determining whether states q1

to qk are final or not,
– and Δ = {δs, #    »qiqj |s ∈ Σ and i, j ∈ K} a set of n.k2 Boolean variables defining

the existence or not of the transition from state qi to state qj with the symbol
s, for each qi, qj , and s.

The path i1, i2, . . . , in+1 for w = w1 . . . wn exists if and only if d = δw1, #         »qi1qi2
∧

. . . ∧ δwn, #                »qinqin+1
is true. We say that the conjunction d is a c path, and Dw, #    »qiqj

is the set of all c paths for the word w between states qi and qj .

2.1 Direct Model

This simple model has been presented in [9]. It is based on 3 sets of equations:

1. If the empty word is in S+ or S−, we can fix whether the first state is final
or not:

if λ ∈ S+, f1 (1)
if λ ∈ S−, ¬f1 (2)

2. For each word w ∈ S+, there is at least a path from q1 to a final state qj :
∨

j∈K

∨

d∈Dw, #    »q1qj

(
d ∧ fj

)
(3)

With the Tseitin transformations [14], we create one auxiliary variable for
each combination of a word w, a state j ∈ K, and a c path d ∈ Dw, #     »q1qj :
auxw,j,d ↔ d ∧ fj . Hence, we obtain a formula in CNF for each w:

∧

j∈K

∧

d∈Dw, #    »q1qj

[(¬auxw,j,d ∨ (d ∧ fj))] (4)
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Table 1. Clauses for DMk

Number of cl. Arity Constraints

|S+|.(|ω+| + 1).k|ω+| 2 (4)

|S+|.k|ω+| |ω+| + 2 (5)

|S+| k|ω+| (6)

|S−|.k|ω−| |ω−| + 1 (7)

Table 2. Variables for DMk

Number of var Reason

k Final states F

n.k2 Transitions δ

|S+|.k.|ω+| Constraints (3)

∧

j∈K

∧

d∈Dw, #    »q1qj

(auxw,j,d ∨ ¬d ∨ ¬fj) (5)

∨

j∈K

∨

d∈Dw, #    »q1qj

auxw,j,d (6)

3. For each w ∈ S− and each qj , either there is no path state q1 to qj , or qj is
not final:

¬
⎡

⎣
∨

j∈K

∨

d∈Dw, #    »q1qj

(
d ∧ fj

)
⎤

⎦ (7)

Thus, the direct constraint model DMk for building a NFA of size k is:

DMk =
∧

w∈S+

(
(4) ∧ (5) ∧ (6)

)
∧

∧

w∈S−
(7)

and is possibly completed by (1) or (2) if λ ∈ S+ or λ ∈ S−.

Size of the Models (see [9] for details). Consider ω+ and ω−, the longest word
of S+ and S− respectively. Table 1 presents the number of clauses (Column 1)
and their arities (Column 2), which are an upper bound of a given constraint
group (last column) for the model SMk. Table 2 presents the upper bound of
the number of Boolean variables that are required and why the are required.
We can see on Tables 1 and 2 that the space complexity of the DMk is huge
(O(|S+|.k.|ω+|) variables, and O(|S+|.(|ω+| + 1).k|ω+|) clauses) and with large
clauses (up to arity of |ω+|+2), and that only small instances for a small number
of states will be tractable. It is thus obvious that it is important to improve the
model DMk.

2.2 Prefix Model [2]

Let Pref(w) be the set of all the non-empty prefixes of the word w and, by
extension, Pref(W ) = ∪w∈W Pref(w) the set of prefixes of the words of the set
W . For each w ∈ Pref(S), we add a Boolean variable pw, #    »q1qi which determines
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whether there is or not a c path for w from state q1 to qi. Note that these
variables can be seen as labels of the Prefix Tree Acceptor (PTA) for S [3]. The
problem can be modeled with the following constraints:

1. For all prefix w = a with w ∈ Pref(S), and a ∈ Σ, there is a c path of size
1 for w:

∨

i∈K

δa, #    »q1qi ↔ pa, #    »q1qi (8)

With the Tseitin transformations, we can derive a CNF formula. It is also
possible to directly encode δa, #    »q1qi and pa, #    »q1qi as the same variable. Thus, no
clause is required.

2. For all words w ∈ S+ − {λ}:
∨

i∈K

pw, #    »q1qi ∧ fi (9)

With the Tseitin transformations [14], we create one auxiliary variable for
each combination of pw, #    »q1qi and the status (final or not) of the state qi:
auxw,i ↔ pw, #    »q1qi ∧ fi. Hence, for each w, we obtain a formula in CNF:

∧

i∈K

((¬auxw,i ∨ pw, #    »q1qi) ∧ (¬auxw,i ∨ fi)) (10)

∧

i∈K

(auxw,i ∨ ¬pw, #    »q1qi ∨ ¬fi) (11)

∨

i∈K

auxw,i (12)

3. For all words w ∈ S− − {λ}, we obtain the following CNF constraint:
∧

i∈K

(¬pw, #    »q1qi ∨ ¬fi) (13)

4. For all prefix w = va, w ∈ Pref(S), v ∈ Pref(S) and a ∈ Σ:
∧

i∈K

(pw, #    »q1qi ↔ (
∨

j∈K

pv, #     »q1qj ∧ δa, #    »qjqi)) (14)

Applying the Tseitin transformations, we create one auxiliary variable for
each combination of existence of a c path from q1 to qi (pv, #     »q1qj ) and the
transition δa, #    »qjqi : auxv,a,j,i ↔ pv, #     »q1qj ∧ δa, #    »qjqi . Then, (14) becomes:

∧

i∈K

(pw, #    »q1qi ↔ (
∨

j∈K

auxv,a,j,i))
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For each w ∈ Pref(S), we obtain constraints in CNF:
∧

(i,j)∈K2

(¬auxv,a,j,i ∨ pw, #    »q1qi) (15)

∧

(i,j)∈K2

(¬auxv,a,j,i ∨ δa, #    »qjqi) (16)

∧

(i,j)∈K2

(auxv,a,j,i ∨ ¬pw, #    »q1qi ∨ ¬δa, #    »qjqi) (17)

∧

i∈K

(¬pw, #    »q1qi ∨ (
∨

j∈K

auxv,a,j,i)) (18)

∧

(i,j)∈K2

(pw, #    »q1qi ∨ ¬auxv,a,j,i)) (19)

Thus, the constraint prefix model PMk for building a NFA of size k is:

PMk =
∧

w∈S+

(
(10) ∧ . . . ∧ (12)

)
∧

∧

w∈S−
(13) ∧

∧

w∈Pref(S)

(15) ∧ . . . ∧ (19)

and is possibly completed by (1) or (2) if λ ∈ S+ or λ ∈ S−.

Size of the Models. Consider ω+, the longest word of S+, ω−, the longest
word of S−, σ = Σw∈S |w|, and π, the number of prefix obtained by Pref(S)
with a size larger than 1 (π = |{x|x ∈ Pref(S), |x| > 1}|), then:

max(|ω+|, |ω−|) ≤ π ≤ σ ≤ |S+|.|ω+| + |S−|.|ω−|

The space complexity of the PMk model is thus in O(σ.k2) variables, and in
O(σ.k2) binary and ternary clauses, and O(σ.k) (k + 1)-ary clauses (Tables 3
and 4).

2.3 Suffix Model

We now propose a suffix model (SMk), based on Suf(S), the set of all the non-
empty suffixes of all the words in S. The main difference is that the construction
starts from every state and terminates in state q1. For each w ∈ Suf(S), we add
a Boolean variable pw, #    »qiqj which determines whether there is or not a c path
for w from state qi to qj . To model the problem, Constraints (10), (11), (12),
and (13) remain unchanged and creation of the corresponding auxiliary variables
auxw,i as well.
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Table 3. Clauses for PMk

Number of cl. Arity Constraints

2.k.|S+| 2 (10)

k.|S+| 3 (11)

k k + 1 (12)

k.|S−| 2 (13)

π.k2 2 (15)

π.k2 2 (16)

π.k2 3 (17)

π.k k + 1 (18)

π.k2 2 (19)

Table 4. Variables for PMk

Number of var Reason

k Final states F

n.k2 Transitions δ

|S+|.k Constraints (9)

π.k2 Constraints (14)

For each suffix w = a with w ∈ Suf(S), and a ∈ Σ, there is a c path of size
1 for w:

∨

(i,j)∈K2

δa, #    »qiqj ↔ pa, #    »qiqj (20)

We can directly encode δa, #    »qiqj and pa, #    »qiqj as the same variable. Thus, no clause
is required.

For all suffix w = av, w ∈ Suf(S), v ∈ Suf(S) and a ∈ Σ:
∧

(i,j)∈K2

(pw, #    »qiqj ↔ (
∨

k∈K

δa, #     »qiqk ∧ pv, #     »qkqj )) (21)

We create one auxiliary variable for each combination of existence of a c path
from qk to qj (pv, #     »qkqj ) and the transition δa, #     »qiqk : auxv,a,i,k,j ↔ δa, #     »qiqk ∧ pv, #     »qkqj

For each w = av, we obtain the following constraints (CNF formulas):
∧

(i,j,k)∈K3

(¬auxv,a,i,k,j ∨ pw, #     »qkqj ) (22)

∧

(i,j,k)∈K3

(¬auxv,a,i,k,j ∨ δa, #     »qiqk) (23)

∧

(i,j,k)∈K3

(auxv,a,i,k,j ∨ ¬pw, #     »qkqj ∨ ¬δa, #     »qiqk) (24)

∧

(i,j)∈K2

(¬pw, #    »qiqj ∨ (
∨

k∈K

auxv,a,i,k,j)) (25)



GA and ILS for Optimizing the Size of NFA Models 189

Table 5. Clauses for SMk

Number of cl. Arity Constraints

2.k.|S+| 2 (10)

k.|S+| 3 (11)

k k + 1 (12)

k.|S−| 2 (13)

π.k3 2 (22)

π.k3 2 (23)

π.k3 3 (24)

π.k2 k + 1 (25)

π.k3 2 (26)

Table 6. Variables for SMk

Number of var Reason

k Final states F

n.k2 Transitions δ

|S+|.k Constraints (9)

π.k3 Constraints (21)

∧

(i,j,k)∈K3

(pw, #    »qiqj ∨ ¬auxv,a,i,k,j)) (26)

Note that some clauses are not worth being generated. Indeed, it is useless
to generate paths starting in states different from the initial state q1, except
when the w is in S, and w is also the suffix of another word from S. Removing
these constraints does not change the complexity of the model. This can easily
be done at generation time, or we can leave it to the solver, which will detect it
and remove the useless constraints.

Thus, the constraint prefix model PMk for building a NFA of size k is:

SMk =
∧

w∈S+

(
(10) ∧ . . . ∧ (12)

)
∧

∧

w∈S−
(13) ∧

∧

w∈Pref(S)\S

(22) ∧ . . . ∧ (26)

and is possibly completed by (1) or (2) if λ ∈ S+ or λ ∈ S−.

Size of the Models. Consider ω+, ω−, σ, and π as defined in the prefix model.
Table 5 presents the number of clauses (first column) and their arities (Column
2) which are an upper bound of a given constraint group (last column) for
the model SMk. Table 6 presents the upper bound of the number of Boolean
variables that are required, and the reason of their requirements. To simplify,
the space complexity of SMk is thus in O(σ.k3) variables, and in O(σ.k3) binary
and ternary clauses, and O(σ.k2) (k + 1)-ary clauses.

3 Hybrid Models

We now propose a family of models based on both the notion of prefix and the
notion of suffix. The idea is, in fact, to take advantage of the construction of a
prefix p and a suffix s of a word w such that w = p.s to pool both prefixes and
suffixes. The goal is to reduce the size of generated SAT instances. The process
is the following:



190 F. Lardeux and E. Monfroy

1. For each word wi of S, we split wi into pi and si such that w = pi.si. We thus
obtain two sets, Sp = {pi | ∃i, wi ∈ S and wi = pi.si} and Ss = {si | ∃i, wi ∈
S and wi = pi.si}.

2. We then consider Sp as a sample, i.e., a set of words. For each w of Sp, we
generate Constraints (15) to (19).

3. We consider Ss in turn to generate Constraints (22) to (26) for each w ∈ Ss.
4. Then, for each wi = pi.si, clauses corresponding to pi must be linked to

clauses of si.
– if wi = pi.si ∈ S−, the constraints are similar to the ones of (13) including

the connection of pi and si:

∧

(j,k)∈K2

(¬ppi,
#     »q1qj ∨ ¬psi,

#     »qjqk ∨ ¬fi) (27)

– if wi = pi.si ∈ S+, the constraints are similar to (9):
∨

(j,k)∈K2

ppi,
#     »q1qj ∧ psi,

#     »qjqk ∧ fk (28)

We transform (28) using auxiliary variables auxwi,j,k ↔ pw, #     »q1qj ∧pw, #     »qjqk ∧
fi to obtain the following CNF constraints:

∧

(j,k)∈K2

((¬auxwi,j,k
∨ pw, #    »q1qj

) ∧ (¬auxwi,j,k
∨ pw, #     »qjqk

) ∧ (¬auxwi,j,k
∨ fk)) (29)

∧

(j,k)∈K2

(auxwi,j,k ∨ ¬pw, #     »q1qj ∨ pw, #     »qjqk ∨ ¬fk) (30)

∨

(j,k)∈K2

auxwi,j,k (31)

Thus, the hybrid model HMk for building a NFA of size k is:

HMk =
∧

w∈S+

(
(29)∧ . . .∧(31)

)
∧

∧

w∈S−
(27)∧

∧

pi∈Pref(Sp)

(22)∧ . . .∧(26)
∧

si∈Suf(Ss)

(15)∧ . . .∧(19)

and it is possibly completed by (1) or (2) if λ ∈ S+ or λ ∈ S−.
We do not detail it here, but in the worst case, the complexity of the model

is the same as SMk. It is obvious that the split of each word into a prefix
and a suffix will determine the size of the instance. The next sub-sections are
dedicated to the computation of this separation wi = pi.si to minimize the size
of the generated hybrid instances with the HMk model.
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3.1 Search Space and Evaluation Function for Metaheuristics

The search space X of this problem corresponds to all the hybrid models: for
each word w of S, we have to determine a n such that w = p.s with |p| = n and
|s| = |w| − n. The size of the search space is thus: |X | = Πw∈S |w| + 1.

Even though we are aware that smaller instances are not necessarily easier to
solve, we choose to define the first evaluation function as the number of generated
SAT variables. However, this number cannot be computed a priori: first, the
instance has to be generated, before counting the variables. This function being
too costly, we propose an alternative evaluation function for approximating the
number of variables. This fitness function is based on the number of prefixes
in Pref(Sp) and suffixes in Suf(Ss). Since the complexity of SMk is in O(k3)
whereas the complexity of PMk is in O(k2), suffixes are penalized by a coefficient
corresponding to the number of states.

fitness(Sp, Ss) = |Pref(Sp)| + k.|Suf(Ss)|
Empirically, we observe that the results of this fitness function are propor-
tional to the actual number of generated SAT variables. This approximation of
the number of variables will thus be the fitness function in our ILS and GA
algorithms.

3.2 Iterated Local Search Hybrid Model HM ILSk

We propose an Iterated Local Search (ILS) [15] for optimizing our hybrid model.
Classically, a best improvement or a first improvement neighborhood is used in
ILS to select the next move. In our case, a first improvement provides very poor
results. Moreover, it is clearly impossible to evaluate all the neighbors at each
step due to the computing cost. We thus decide to randomly choose a word in
S with a roulette wheel selection based on the word weights. Each word w has
a weight corresponding for 75% to a characteristic of S, and 25% to the length
of the word:

weightw = 75%/|S| + 25% ∗ |w|/(
∑

wi∈S

|wi|)

The search starts generating a random couple of prefixes and suffixes sets (Sp,
Ss), i.e., for each word w of S an integer is selected for splitting w into a prefix
p and a suffix s such that w = p.s. Hence, at each iteration, the best couple
(p, s) is found for the selected word w. This process is iterated until a maximum
number of iterations is reached.

In our ILS, it is not necessary to introduce noise with random walks or restarts
because our process of selection of word naturally ensures diversification.
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Algorithm 1: Iterated Local Search
Input: set of words S, maximum number of iterations max iter

maximum of consecutive iterations allowed without improvement
max iter without improv

Output: set of prefixes S∗
p , set of suffixes S∗

s

1: Couple of prefixes and suffixes sets (Sp,Ss) is randomly generated
2: (S∗

p ,S∗
s ) = (Sp,Ss)

3: repeat
4: Choose a word w in S with a roulette wheel selection
5: (Sp,Ss) is updated by the best couple of the sub-search space corresponding

only to a modification of the prefix and the suffix of word w
6: if fitness(Sp, Ss) < fitness(S∗

p , S∗
s ) then

7: (S∗
p ,S∗

s ) = (Sp,Ss)
8: end if
9: until maximum number of iterations max iter is reached or (S∗

p ,S∗
s ) is not

improved since max iter without improv iterations
10: return (S∗

p , S∗
s )

3.3 Genetic Algorithm Hybrid Model HM GAk

We propose a classical genetic algorithm (GA) based on the search space and
fitness function presented in Sect. 3.1. A population of individuals, represented
by a couple of prefixes and suffixes sets, is improved generation after generation.
Each generation keeps a portion of individuals as parents and creates children
by crossing the selected parents. Crossover operator used in our GA is the well-
known uniform crossover. For each word, children inherit the prefix and the
suffix of one of their parents randomly chosen. Since the population size is the
same during all the search, we have a steady-state GA. A mutation process is
applied over all individuals with a probability pmut. For each word w, each prefix
and suffix are randomly mutated by generating an integer n between 0 and |w|
splitting w into a new prefix of size n and a new suffix |w| − n. The search stops
when the maximum number of generations is reached or when no improvement
is observed in the population during max gen without improv generations.

4 Experimental Results

To test our new models, we work on the training set of the StaMinA Competition
(see http://stamina.chefbe.net). We use 11 of the instances selected in [2]1 with
a sparsity s ∈ {12.5%, 25%, 50%, 100%} and an alphabet size |Σ| ∈ {2, 5, 10}.
We try to generate SAT instances for NFA sizes (k) near to the threshold of the
existence or not of an NFA.

1 We kept the “official” name used in [2].

http://stamina.chefbe.net
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Algorithm 2: Genetic Algorithm
Input: set of words S, population size sP , mutation probability pmut,

maximum number of generations max gen,
portion of population conserve in the next generation pparents,
maximum of consecutive generations allowed without improvement
max gen without improv

Output: set of prefixes S∗
p , set of suffixes S∗

s

1: Population P of couples of prefixes and suffixes sets (Sp,Ss) is randomly
generated

2: (S∗
p ,S∗

s ) = Argminfitness(P)
3: repeat
4: Select as parents set Par a portion pparents of P
5: Generate (1 − pparents).sP children by uniform crossover over parents in a

set Children
6: P = Par ∪ Children
7: Mutate for each individual of P the prefix/suffix for each words of S with a

probability pmut

8: Update the population
9: Update (S∗

p ,S∗
s ) if necessary

10: until maximum number of generations max gen is reached or (S∗
p ,S∗

s ) is not
improved since max gen without improv generations

11: return S∗
p and S∗

s

4.1 Experimental Protocol

All our algorithms are implemented in Python using specific libraries such as
Pysat. The experiments were carried out on a computing cluster with Intel-E5-
2695 CPUs, and a limit of 10 GB of memory was fixed. Running times were
limited to 10 min, including generation of the model and solving time. We used
the Glucose [13] SAT solver with the default options. For stochastic methods
(ILS and GA), 30 runs are realized to exploit the results statistically.

Parameters used for our hybrid models are:

ILS AG

max iter 10 000 sP 100

max iter without improv 100 max gen 3000

max gen without improv 100

pmut 0.05

pparents 0.03
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4.2 Results

Our experiments are reported in Table 7. The first column (Instance) corre-
sponds to the official name of the instance, and the second one (k) to the num-
ber of states of the expected NFA. Then, we have in sequence the model name
(Model), the number of SAT variables (V ar.), the number of clauses (Cl.), and
the instance generation time (tM ). The right part of the table corresponds to the
solving part with the satisfiability of the generated instance (SAT ), the decisions
number (Dec.), and the solving time (tS) with Glucose. Finally, the last column
(tT ) corresponds to the total time (modeling time + solving time). Results for
hybrid models based on ILS (HM ILSk) and GA (HM GAk) correspond to
average values over 30 runs. We have decided to only provide the average since
the standard deviation values are very small.

The last lines of the table correspond to the cumulative values for each column
and each model. When an instance is not solved (time-out), the maximum value
needed for solving the other model instances is considered. For the instance
generation time (tM ), a credit of 600 s is applied when generation did not succeed
before the time-out.

We can clearly confirm that the direct model is not usable in practice, and
that instances cannot be generated in less than 600 s. The prefix model allows the
fastest generation when it terminates before the time out (on these benchmarks,
it did not succeed once and was thus penalize for cumulative values). It also pro-
vides instances that are solved quite fast. As expected, the instances optimized
with GA are the smallest ones. However, the generation is too costly: the gain
in solving time is not sufficient to compensate the long generation time. In total,
in terms of solving+generation time, GA based model is close to prefix model.
As planned with its space complexity (in O(k3)), suffix based instances are huge
and long to solve. However, we were surprised for 2 benchmarks (ww-10-40 and
ww-10-50) for which the generated instances are relatively big (5 times the size
of the GA optimized instances), but their solving is the fastest. We still cannot
explain what made these instances easy to solve, and we are still investigating
their structure. The better balance is given with the ILS model: instances are
relatively small, the generation time is fast, and the solving time as well. This is
thus the best option of this work.

It is very difficult to compare our results with the results of [2]. First of all,
in [2], they try to minimize k, the number of states. Moreover, they use parallel
algorithms. Finally, they do not detail the results for each instance and each k,
except for st-2-30 and st-5-50. For the first one, with k = 9 we are much faster.
But for the second one, with k = 5 we are slower.
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Table 7. Comparison on 11 instances between the models DMk, PMk, SMk,
HM ILSk, and HM GAk.

Instance k Model Var. Cl. tM SAT Dec. tS tT

st-2-10 4 DMk 190 564 1 817 771 13.46 True 973 213 88.62 102.09

PMk 1 276 4 250 1.27 True 3 471 0.10 1.37

SMk 5 196 17 578 1.30 True 4 332 0.21 1.51

HM ILSk 1 188 4 179 4.14 True 2 503 0.05 4.18

HM GAk 1 107 3 884 14.45 True 2 368 0.05 14.50

st-2-20 6 DMk – – – – – – –

PMk 4 860 17 150 1,34 False 1 625 706 241,24 242,59

SMk – – – – – – –

HM ILSk 5 688 21 073 5,39 False 662 354 98,35 103,74

HM GAk 4 735 17 611 34,65 False 708 356 94,95 129,61

st-2-30 9 DMk – – – – – – –

PMk – – – – – – –

SMk – – – – – – –

HM ILSk 20 637 78 852 7.55 True 1 998 574 228.53 236.07

HM GAk 16 335 62 832 66.94 True 4 079 686 527.44 594.38

st-5-20 4 DMk – – – – – – –

PMk 4 024 13 464 1.49 True 2 641 0.08 1.57

SMk 14 964 50 660 1.68 True 23 540 3.23 4.91

HM ILSk 3 608 12 514 7.83 True 14 584 0.72 8.56

HM GAk 3 522 12 180 47.84 True 18 344 0.94 48.78

st-5-30 4 DMk – – – – – – –

PMk 5 364 18 054 1.43 True 177 711 21.57 23.00

SMk 21 084 71 502 1.87 True 362 318 128.02 129.89

HM ILSk 4 837 16 955 9.90 True 156 631 19.90 29.81

HM GAk 4 705 16 478 119.42 True 171 062 21.67 141.09

st-5-40 4 DMk – – – – – – –

PMk 6 284 21 216 1.52 False 7 110 0.55 2.07

SMk 23 604 80 104 1.55 False 15 708 1.74 3.29

HM ILSk 5 745 20 290 10.29 False 6 206 0.34 10.62

HM GAk 5 548 19 517 150.50 False 6 204 0.35 150.85

st-5-50 5 DMk – – – – – – –

PMk 11 150 38 745 1.59 False 1 943 735 562.80 564.39

SMk – – – – – – –

HM ILSk 11 085 40 258 10.80 False 911 280 238.10 248.90

HM GAk 10 040 36 350 279.87 False 1 093 093 287.46 567.33

st-5-60 5 DMk – – – – – – –

PMk 14 200 49 455 1.52 False 1 245 538 383.37 384.89

SMk – – – – – – –

HM ILSk 13 920 50 568 13.47 False 800 920 231.82 245.29

HM GAk 13 180 47 755 313.30 False 950 601 270.97 584.26

ww-10-40 4 DMk 15 012 112 039 2.07 True 69 219 1.52 3.59

PMk 3 624 11 900 1.38 True 977 0.03 1.41

SMk 13 844 46 648 1.25 True 4 173 0.02 1.28

HM ILSk 2 896 10 342 5.94 True 3 897 0.06 6.00

HM GAk 2 761 9 839 75.57 True 2 842 0.04 75.60

ww-10-50 4 DMk 80 548 694 641 5.61 True 483 153 103.52 109.14

PMk 5 364 17 850 1.28 True 167 390 20.29 21.57

SMk 20 844 70 482 1.49 True 74 482 11.58 13.07

HM ILSk 4 633 16 514 7.71 True 73 534 5.46 13.17

HM GAk 4 517 15 940 123.21 True 52 894 3.38 126.59

Cumulative values DMk 397 451 3 014 842 4 221,15 – 10 821 816 2 041,50 6 262,65

PMk 76 783 270 936 612,82 – 9 253 965 1 757,47 2 370,29

SMk 151 211 525 099 2 409,15 – 9 379 218 1 879,65 4 268,80

HM ILSk 74 237 271 543 83,03 – 4 630 483 823,33 906,36

HM GAk 66 450 242 386 1 225,75 – 7 085 451 1 207,23 2 432,98
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5 Conclusion

In this paper, we have proposed to use some metaheuristics algorithms, namely
ILS and GA, to improve the size of SAT models for the NFA inferring prob-
lem. Our hybrid model, optimized with GA gives, on average, the smallest SAT
instances. Solving these instances is also faster than with the direct or prefix
models. However, generation of the optimized instances with GA is really too
long and is not balanced out with the gain in solving time; it is at the level
of the prefix model w.r.t. total CPU time. The ILS model generates optimized
instances a bit larger than with GA and a bit smaller than with prefixes. More-
over, the solving time is the best of our experiments, and the generation time
added to the solving time makes of the HM ILSk our better model.

In the future, we plan to speed up GA to make it more competitive. We also
plan to consider more complex fitness functions, not only based on the number
of SAT variables but also on the length of clauses. We also plan a model portfolio
approach for larger samples.

References

1. Wieczorek, W.: Grammatical Inference - Algorithms, Routines and Applications.
Studies in Computational Intelligence, vol. 673. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-46801-3

2. Jastrzab, T., Czech, Z.J., Wieczorek, W.: Parallel algorithms for minimal nonde-
terministic finite automata inference. Fundam. Informaticae 178, 203–227 (2021)

3. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, Cambridge (2010)

4. Denis, F., Lemay, A., Terlutte, A.: Learning regular languages using RFSAs. Theor.
Comput. Sci. 313, 267–294 (2004)
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Abstract. This paper focuses on a capacitated multi depot vehicle rout-
ing problem, where each depot has a finite supply capacity to meet
the customers demand. To solve this problem we propose a multi phase
methodology, that extends the “cluster first, route second” approach. It
is based on iterative routings to find and reassign misplaced customers
with respect to the depots and with the objective of improving the final
routing. Several assignment and routing algorithms are considered to
evaluate the proposed methodology under different settings. A mathe-
matical model of the problem is given to perform a comparative study of
the methodology against an exact solution method. The results obtained
from the numerical experiments carried out allow us to conclude that the
methodology can be successfully applied to the capacitated multi depot
vehicle routing problem.

Keywords: Multi depot vehicle routing problem · Heuristics · Supply
capacity · Clustering · Assignment

1 Introduction and Related Works

We address the problem of distribution of goods from several depots to a set of
geographically dispersed customers with known coordinates and demand, assum-
ing finite supply capacity at each depot and an unlimited fleet of homogeneous
and capacitated vehicles. We refer to this problem as the Capacitated Multi-
Depot Vehicle Routing Problem (CMDVRP). The objective is to determine a
set of routes starting and ending at each depot, minimizing the total distance
traveled and subject to the supply capacity of each depot and the capacities of
the vehicles. The CMDVRP can be found in recent real life applications such
as emergency facilities location-routing and city logistics problems [20,22]. The
CMDVRP is an NP-hard problem since it can be considered an extension of the
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Multi-Depot Vehicle Routing Problem (MDVRP), which in turn is an extension
of the classical Vehicle Routing Problem (VRP) [8].

We present here a novel multi phase methodology to solve the CMDVRP
inspired by the “cluster first, route second” approach. The initial phase consists
of the assignment of costumers to depots and the final phase produces the rout-
ing of the VRPs related to all depots. Between these two phases, there is an
intermediate phase for the reassignment of customers to depots with the aim to
obtain a high quality solution in the cluster first part, improving in this way the
final routing phase. The detection and reassignment of customers are based on a
combination of misplaced-customer criterion and routing algorithm. A misplaced
customer is reassigned to another depot, if this reassignment improves the cost
of the general solution, which is the objective of the proposed methodology. The
main idea behind the proposed methodology is that the complexity of the algo-
rithms used in each phase can be chosen by the decision makers according to
their needs and possibilities. The strength of the methodology is to provide good
quality solutions in reasonable times, even in the case of using simple algorithms
(easy to understand and code).

As far as we know, only few authors focus on the CMDVRP, and in par-
ticular, by means of the “cluster first, route second” approach. Giosa et al. [9]
describe and compare several assignment algorithms for the clustering phase.
Tansini et al. [17] compare the results obtained by a set of heuristic algorithms
for the assignment of customers to depots with assignments obtained from solv-
ing the Transport Problem. Six heuristics for the clustering problem (assignment
of customers to depots) are presented and analyzed in [10]. Also [18] consider this
approach for the real-life problem of milk collection. Allahyari et al. [1] tackle
the CMDVRP extension in which every customer is satisfied either by visiting
the customer or by being located within an acceptable distance from at least
one visited customer. Calvet et al. [4] consider the CMDVRP for the case of
customers with stochastic demand and supply constraints on the depots due to
the limited number of capacitated vehicles assigned to each of them. A collab-
orative routing problem with shared carriers and multiple depots (wholesalers)
with limited storage is tackled in [21].

We note that many authors have considered the multi-depot vehicle rout-
ing problem with limited capacity on vehicles and/or route lengths, but not on
the supply depots. For instance, Vidal et al. [19] propose a framework to solve
the MDVRP, the Periodic VRP (PVRP), and the multi-depot periodic VRP
with capacitated vehicles and constrained route duration. Contardo and Mar-
tinelli [6] suggest an exact algorithm for the MDVRP under capacity and route
length constraints, exploiting the vehicle-flow and set-partitioning formulations.
Recently, Pessoa et al. [15] propose a generic branch-cut-and-price solver for
different vehicle routing variants and related problems.

The remainder of this paper is organized as follows. In Sect. 2 we introduce
the mathematical formulation for the CMDVRP. The proposed methodology for
solving the CMDVRP is further described in Sect. 3. In Sect. 4 we present the
results of the comparison between the methodology against exact methods and
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we also analyze the effectiveness of the exploration phase of the methodology.
Finally, in Sect. 5, we provide the conclusions and some directions for future
research.

2 The Capacitated Multi-Depot Vehicle Routing
Problem (CMDVRP)

The CMDVRP can be formally described as follows, extending that presented in
[14] for the MDVRP. Let G = (V,E) be a directed graph, where V denotes the set
of nodes {1, ..., n} and E ⊆ V ×V the set of arcs. Let D be the set of depot nodes
{1, ...,m}, with 1 ≤ m < n, and U the set of customer nodes {(m + 1), ..., n}.
For each node i ∈ V there is a related quantity qi ≥ 0 that represents either
the supply capacity for nodes i ∈ D or the demand requirements in the case of
nodes i ∈ U . For each arc (i, j) ∈ E there is a routing cost ci,j ≥ 0. Let also
consider the set of the possible routes R = {1, ..., (n − m)}. A route r can be
defined as either the empty set or a finite sequence of at least three elements of
V satisfying the following conditions: 1) in the extremes there is the same node
i, with i ∈ D, 2) the internal nodes are customers nodes j with j ∈ U , and 3)
for any pair of nodes j, k ∈ U , we have that j �= k. We assume that for each
route r there is a vehicle of capacity p ≥ 0. Then, the objective is to determine
the set of routes r in R in order to fulfill the demand of each customer without
exceeding the vehicle and depot capacities, minimizing the total cost of routing.
To formulate the CMDVRP as a Mixed Integer Linear Programming (MILP) we
define the binary variables xijkr to be equal to 1 only if the arc (i, j) is in the
route r of the depot k; 0 otherwise. Thus, the MILP proposed for the CMDVRP
is as follows:

min
∑

i∈V

∑

j∈V

∑

k∈D

∑

r∈R

cijxijkr (1)

subject to:
∑

j∈V

∑

k∈D

∑

r∈R

xijkr = 1, ∀i ∈ U (2)

∑

j∈V \{i}
xijkr =

∑

j∈V \{i}
xjikr, ∀i ∈ V,∀k ∈ D,∀r ∈ R (3)

∑

i∈U

∑

j∈V \{i}

∑

k∈D

qixijkr ≤ p, ∀r ∈ R (4)

∑

i∈U

∑

j∈V \{i}

∑

r∈R

qixijkr ≤ qk, ∀k ∈ D (5)

∑

j∈U

xkjkr ≤ 1, ∀k ∈ D,∀r ∈ R (6)
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∑

j∈U

xijkr = 0, ∀i, k ∈ D, i �= k,∀r ∈ R (7)

yi − yj + (n − m)
∑

k∈D

∑

r∈R

xijkr ≤ n − m − 1, ∀i, j ∈ U, i �= j (8)

yi ≥ 0, ∀i ∈ U (9)

xijkr ∈ {0, 1}, ∀i, j ∈ V,∀k ∈ D,∀r ∈ R (10)

The objective function (1) is the minimization of the total cost of distance
traveled. Constraints (2) state that each customer is included in a single route.
Constraints (3) are for the route continuity. Constraints (4) and (5) represent
the vehicle and depot capacity, respectively. Constraints (6) and (7) state that
one route is assigned at most to a single depot. In (8) are the constraints of
Miller-Tucker-Zemlin for subtours elimination [3]. Finally, constraints (9) and
(10) are for the domain of values of the decision variables.

Although the main difference between CMDVRP and MDVRP are the con-
straints of (5), we note that, in general, a more restricted problem is more difficult
to solve.

3 Multi-phase Methodology for the CMDVRP

It is worth to note that the assignment problem and the routing problem in the
“cluster first, route second” approach are not independent from each other. A bad
assignment solution will result in routes of higher total cost, even if an effective
routing algorithm is used. Motivated by this, we consider an improvement to
this approach, by means of a multi-phase methodology (MPM) for solving the
CMDVRP. It begins from an initial assignment of costumers to depots and in
the final phase produces the routing of the VRPs related to all depots. We
introduce an intermediate phase in which misplaced costumers are detected and
may be reassigned to another depot, if it improves the cost of the overall solution.
Successive reassignment of misplaced costumers, based on the routing, will in
most cases lead to an improvement of the solution. An outline of the proposed
methodology for the CMDVRP is as follows:

1. Assignment phase: choose and apply an assignment algorithm of customers
to depots taking into account demand and supply restrictions. The choice may
depend on computational time and other restrictions.

2. Exploration phase: choose and apply a routing algorithm for all VRPs
related to the depots. Again, the choice may depend on computational time
and other restrictions. Then, repeat until no further improvement can be
achieved:
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(a) Detect misplaced customers based on the current assignment and even-
tually other restrictions.

(b) Reassign misplaced customers and run the selected routing algorithm.
Accept the reassignment if it improves the cost of the overall solution.

3. Final routing phase: choose and apply the final routing algorithm for all
VRPs related to the depots.

One of the advantages of the suggested MPM is that each phase offers the pos-
sibility of choosing different algorithms depending on the specific characteristics
of the problem, the problem instances, hardware limitations, time restrictions,
etc. They can be exchanged and combined in different manners. Thus, a specific
selection of algorithms for each phase produces a particular MPM instantiation
that can be considered a heuristic procedure to solve the CMDVRP. Next the
MPM phases are explained in more detail and some algorithms that can be used
in each one are mentioned.

3.1 Assignment Phase

Since each phase of the methodology offers a great variety of possibilities to
instantiate and since there are several known methods that can be used to obtain
an initial assignment of customers, in this work we narrow down the study to
two assignment schemes.

We use the urgency assignment (Ur) which is a simple and fast assignment
method that considers an urgency value μc for each customer c that determines
the order in which customers are assigned to depots with limited supply capacity
[9], as follows:

μc =
[ ∑

d∈D

dist(c, d)
]

− dist(c, d′) (11)

where dist(c, d) is the distance of customer c to depot d, and dist(c, d′) is the
distance to the closest depot d′. This measure accounts for the cost of assigning a
customer to a depot other than its closest depot. Customers with more urgency
(higher μc value) will be assigned first. Once a depot is complete it will no
longer be considered for the further assignments and will hence not participate
in the urgency calculations. Note that after each assignment the urgency of some
customers must be recalculated.

Alternatively in this study the modified urgency assignment (MUr) is used
as another assignment method and is defined as the combination of the urgency
assignment [9] and the cluster assignment [10]. Customers are assigned to depots
with the same criterion as in the urgency assignment until a fraction of them
have been assigned (in this case 1/4) and then finalizes by assigning customers
to the closest cluster made up of each depot and the already assigned customers,
where it is feasible to assign the customer, i.e. will not exceed the total capacity
of the depot.

There are other interesting assignment algorithms that could be explored
such as the sweep approach [11] or using a grid or Voronoi diagrams [2]. We note
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that some of them do not consider the capacity of the depots and may require an
adaptation or post-processing in order to give an acceptable initial assignment.

3.2 Exploration Phase

The exploration phase is the keystone of the proposed methodology. It is char-
acterized by: 1) the definition of misplaced customers; 2) the processing order
of the misplaced customers; 3) the routing algorithm used iteratively; 4) the
criterion that determines if each misplaced customer should be reassigned or
not; and 5) the reassignment strategy. In the following sections we describe the
definitions and algorithms to be used in our study for this phase.

Definition of Misplaced Customers: Here, the definition of misplaced cus-
tomers, the processing order of the misplaced customers, and the criterion that
determines if each misplaced customer should be reassigned or not, all of them
depend on the routing algorithm that is used iteratively to obtain the results of
the VRPs related to all depots.

It is possible to infer that different definitions of misplaced customers lead
to different ways of exploring neighboring solutions. The first approach was to
define misplaced customers as those whose two closest customers are assigned
to another depot. In general, we can define a misplaced customer as that for
which its n closest customers are assigned to other depots (possibly different),
for certain positive integer n > 0. Thus, a more flexible definition considers a
customer to be misplaced if considering its n closest customers, m of them are
assigned to other depots, where m ≤ n. Observe that this definition focuses on
the cost of the solution, therefore the reassignment strategy considers the supply
capacity of the depots.

Other approaches would be to consider constraints such as capacity and time
windows in the definition of misplaced customers.

Processing Order of the Misplaced Customers: In this work, misplaced
customers are processed in descending order of the following misplaced criterion:

ϕc = dist(c, d) −
[ N∑

i=1

dist(c, ci)
]

(12)

where customer c has been assigned to the depot d and c1, ..., cN are its N closest
customers not assigned to d, but assigned all to the same depot. The value of
ϕc can be positive or negative, where a high positive value of ϕc means that the
customer c is very far from the assigned depot compared to the distance to its
closest neighbors.

Routing Algorithm Used Iteratively: Three different algorithms for the
routing of the customers assigned to each depot were tested in this paper for
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the Exploration phase: Clarke and Wright algorithm [5], Sweep [11] and JSprit
(available at https://jsprit.github.io/) which is a metaheuristic defined by the
ruin-and-recreate principle [16]. It is a highly optimized method that consists of
a large neighborhood search that combines elements of simulated annealing and
threshold-accepting algorithms. Both Clarke and Wright and Sweep are classical
and simple routing algorithms for the VRP, and also Clarke and Wright is a very
popular constructive heuristic [12] and Sweep is the most elementary version of
petal-type constructive heuristics [12]. It is worth noting that in each iteration,
the routing algorithm only needs to bee applied for those depots with reassigned
customers, since the others remain unchanged.

Reassignment Criterion: The reassignment criterion used in this paper is to
reassign a customer if it produces a lower routing cost than the current assign-
ment. It is important to note that once the reassignments are decided, it is only
necessary to run the routing algorithm for the implicated depots. The routing
for the rest of the depots remains unchanged.

Reassignment Strategy: Different approaches can be considered for the reas-
signment strategy. They should describe the conditions and the procedure to
assign a misplaced customer to another depot, that will potentially improve the
final routing. In general, the demand of customers and the capacities of depots
should be considered. In this paper the reassignment strategy is determined by
a two-stage procedure executed over an ordered list of misplaced customers.
As part of the strategy, it has to be decided the number m of customers with
the same target depot that may be considered to be reassigned simultaneously.
This section explains the strategy suggested to reassign one misplaced customer
(m = 1) at a time in the exploration phase.

In the first stage, the reassignment of a misplaced customer i to the depot
d′ of the closest customer i′ is attempted, if d′ has enough spare capacity to
serve costumer i. If the reassignment produces a better overall routing result,
it is accepted and the list of misplaced customers is recalculated. If there is
no improvement, the next misplaced customer in order of misplaced criterion
is considered to be reassigned. If depot d′ does not have enough spare capacity
to serve costumer i, then i is reassigned to the closest depot d′′ (if it exists)
that does have enough spare capacity to serve it. Again, if the reassignment
produces a better overall routing result, the reassignment is accepted and the
list of misplaced customers is recalculated.

The aim of the second stage is to try reassign the misplaced customers that
remain in the list after the first stage. In this stage the same processing is done
with the misplaced customers as in the previous stage except in the way of deter-
mining the alternative depot d′′ and the reassignment moves. Let us assume that
depot d′ does not have enough spare capacity to serve the misplaced customer
i under consideration, with d′ as in the first stage. Then, a misplaced customer
i′′ assigned to d′ is determined, that could potentially be reassigned to another
depot d′′, with d′′ the depot of the closest customer to i′′, allowing d′ to serve the

https://jsprit.github.io/
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customer i. If misplaced customer i′′ exists, a double reassignment is attempted
by means of assigning i′′ to depot d′′ and i to depot d′. If the double reassign-
ment of customers produces a better overall routing result, the reassignment is
accepted and the list of misplaced customers is recalculated.

The two stages described above, are repeated until there are no further mis-
placed customers (the list is empty) or no misplaced customer reassignment
results in a cost improvement.

In the case of at least two misplaced customers (m ≥ 2) being reassigned
together, the procedure is similar but the destination depot has to have enough
spare capacity to serve the set of misplaced customers under consideration.

3.3 Final Routing Phase

Several routing algorithms can be used to produce the final routing once the
Exploration phase has finished. In this work the same three algorithms used in
the Exploration phase were tested for the Final routing phase.

4 Evaluation of the Proposed Methodology

In this section we provide the results obtained from different numerical experi-
ments of several MPM instantiations. Given the reasonable computational time
observed for the MPM methodology, we performed all experiments with all com-
binations of assignment and routing algorithms for the phases of the methodology
(assignment, exploration and final routing phases). The MPM instantiation with
the best result obtained is shown in the tables (in the case of equal cost the one
with the fastest time is chosen).

The mathematical model for the CMDVRP presented in Sect. 2 was coded
in AMPL and solved with CPLEX 12.6.3.0 on a PC Intel Core i7, 16 CPUs,
64 GB of RAM (DDR4) and CentOS 7. The MPM instantiations were coded in
Java and executed in a PC with Intel Xeon CPU E3-1220 V2, 4 GB of RAM and
Windows 7.

4.1 Comparative Study with Exact Method

Solving the CMDVRP to optimality is extremely costly due to the computational
complexity of the problem. Nevertheless, an important aspect of a comprehensive
analysis for any proposed heuristic approach is to compare its results against
exact methods both regarding objective values and running times.

In https://www.fing.edu.uy/owncloud/index.php/s/XnvURwxKzQUaH1P
it is available the benchmark set of instances used to compare different MPM
instantiations against CPLEX. Table 1 presents the results obtained.

The first column of Table 1 provides the identification of the instances, with
20 nodes in total, 2 or 3 depots, and a sequential number. The capacity of each
depot is in the range [66, 125], and the vehicle capacity in the range [50, 70]. The
sum of the customers demand is of 180 units for each instance. We note that

https://www.fing.edu.uy/owncloud/index.php/s/XnvURwxKzQUaH1P
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the distribution of the customers and depots is based on real map coordinates
on certain islands of the Pacific ocean. Columns 2 to 4 report the name of the
MPM instantiation, the costs and the total running times (in seconds) of all
phases of the methodology for each one of the instances in the benchmark set.
The name of each MPM instantiation is composed by four terms separated by a
simple dash: the assignment algorithm (Ur or MUr), the criterion for misplaced
customers and the routing algorithms used for the exploration and final phases,
respectively. For example, a misplaced criterion 5c1n2m means that 5 closest
customers are considered for determining if certain customer is misplaced, at
least 1 of them is assigned to another depot, and 2 can be reassigned simultane-
ously. For all the experiments performed, we consider 1 to 5 closest customers
for the misplaced criterion and between 1 or 2 customers to be reassigned simul-
taneously. The algorithms used in each phase and the misplaced criteria of the
MPM instantations listed in Table 1 were those for which we obtained the best
results in the experiments. Columns 5 reports the cost obtained from CPLEX
with a running time limited to 3600 s (no significant improvements were noticed
with higher running times). Last column 6 in Table 1 provides the percent-
age gap between the cost of the MPM instantiation and CPLEX, calculated
as 100 ∗ (MPMCost − CPLEXCost)/CPLEXCost.

Table 1. Comparison of results for MPM instantiations against CPLEX.

Instance MPM instantation Time Cost CPLEX cost % Gap cost

20n2d01 MUr-5c1n2m-JSprit-JSprit 58.79 3064.9 3085.83 −0.68

20n2d02 Ur-5c1n2m-JSprit-JSprit 24.757 5726.34 5726.34 0.00

20n2d03 Ur-5c1n2m-JSprit-JSprit 22.591 224.18 229.92 −2.50

20n2d04 Ur-1c1n1m-Sweep-C&W 0.001 158.03 158.03 0.00

20n2d05 Ur-5c1n2m-JSprit-JSprit 45.336 354.39 361.26 −1.90

20n2d06 Ur-5c1n2m-Sweep-JSprit 0.266 5808.51 5808.51 0.00

20n2d07 MUr-5c1n2m-JSprit-JSprit 11.337 5873.72 5873.71 0.00

20n2d08 Ur-5c1n2m-JSprit-JSprit 37.826 5062.75 5062.75 0.00

20n2d09 Ur-5c1n2m-Sweep-JSprit 0.298 910.97 924.15 −1.43

20n2d10 Ur-1c1n1m-Sweep-C&W 0.001 292.26 292.26 0.00

20n3d01 Ur-1c1n1m-C&W-JSprit 0.354 2556.36 2726.02 −6.22

20n3d02 Ur-5c1n2m-Sweep-JSprit 0.248 159.84 159.84 0.00

20n3d03 Ur-1c1n1m-C&W-JSprit 0.329 123.98 123.98 0.00

20n3d04 Ur-1c1n1m-C&W-JSprit 0.354 4773.08 4973.73 −4.03

20n3d05 Ur-1c1n1m-C&W-JSprit 0.347 4576.78 4576.78 0.00

Average 13.522 −1.12

From the results in Table 1 we note that MPM outperforms CPLEX in 6 of
the 15 instances, and achieves the same objective value in the remaining ones.
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Thus, we can conclude that MPM is competitive with CPLEX because the gap
error is always negative or zero and the running times of all the considered MPM
instantiations are significantly lower than CPLEX (less than 60 s versus 3600 s).
We also want to note that the most effective MPM instantiation considering
both, costs and running times, is Ur-1c1n1m-C&W-JSprit, since it shows the
two lowest percentage cost gaps and less than a half of a second of running
time. This MPM instantation makes use of different algorithm approaches for
the exploration and final routing phases. This seems to indicate that it would
be enough to use a simple and fast algorithm for the exploration phase, and a
good and eventually time consuming routing algorithm for the final phase.

4.2 Comparative Study with and Without Exploration Phase

A central part of the proposed methodology, is the intermediate exploration
phase for the detection of misplaced customers and the reassignment of them
to depots using a routing algorithm. In this section we analyze the impact
of including the exploration phase in the methodology by means of a com-
parative study over ten large instances with different geographical character-
istics, available also at the same web repository provided in Sect. 4.1. Some of
them are based on instances of the TSPLIB (http://comopt.ifi.uni-heidelberg.
de/software/TSPLIB95/vrp/), and others were randomly generated, trying to
create clusters of customers with different densities.

Tables 2 and 3 report the results obtained for the MPM instantiations MUr-
5c1n2m-Sweep-Sweep and Ur-2c1n1m-Sweep-JSprit without and with explo-
ration phase, respectively. Due to the large size of the instances considered,
we chose Sweep for the routing of the exploration phase, since it is a simple and
fast routing algorithm, although not very efficient. For this reason, it is not the
purpose of the experiments presented here to compare the quality of the solu-
tions obtained of these MPM instantiations. The algorithms of the others phases
and the misplaced criteria used for the MPM instantiations were those for which
we obtained the best results in the experiments performed. Columns 1 to 6 pro-
vide the information about the instances: name, number of total nodes, number
of depots, total depot capacity, vehicles capacity and total customer demand,
respectively. Columns 7 to 10 show the costs and the total running times (in
seconds) of all phases of the MPM methodology, without and with exploration
phase, respectively. The last two columns report the percentage of gap for the
costs and the time ratio (the ratio between the running times observed with and
without exploration).

From Tables 2 and 3 we can appreciate that the exploration phase results in
a performance improvement that may depend on the routing algorithms used
for the exploration and final phases. In the case of the same algorithm (MUr-
5c1n2m-Sweep-Sweep), the inclusion of the exploration phase results in a bet-
ter final solution for all the instances, with an average improvement of 7.18%.
Although the running times increased on average 17 times, they can still be
considered very good taking into account the size of the instances. In the case
of different routing algorithms (Ur-2c1n1m-Sweep-JSprit), we note from Table 3

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/vrp/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/vrp/
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that in most instances (7 of 10) the inclusion of the exploration phase results in
a better final solution, with an improvement in costs from 0.18% to 6.83%. In
addition, empirically it seems that the inclusion of the exploration phase does
not cause a significant increase in the execution times. Indeed, in almost half of
the instances there is a marked decrease in them. This may be due to the fact
that the reassignment of customers to depots of the exploration phase simpli-
fies the final routing, i.e., less effort is needed to obtain a good quality routing.
Again, it can be seen that it is enough to use a simple and fast algorithm for the
exploration phase, and a good and eventually time consuming routing algorithm
for the final phase. However, in some cases using different routing algorithms
for the two phases can result in a higher cost final solution, as it can be seen in
Table 3.

Table 2. MUr-5c1n2m-Sweep-Sweep performance without and with exploration phase.

Inst. Nodes Dep. D.Cap. V.Cap. Dem. Without exp. With exp. % Gap Time

Cost Time Cost Time Cost Ratio

L01 200 5 4250 80 3885 626409.84 0.319 591986.94 1.811 −5.50 5.68

L02 200 5 4250 80 3885 612327.72 0.043 564351.64 1.904 −7.84 44.28

L03 200 8 4400 80 3885 693744.67 0.078 690438.63 0.583 −0.48 7.47

L04 262 13 15920 500 12106 8438.75 0.060 7373.04 1.840 −12.63 30.67

L05 500 6 15000 300 12488 404082.94 0.327 364345.57 4.123 −9.83 12.61

L06 500 6 15000 300 11750 401862.56 0.440 368230.51 15.161 −8.37 34.46

L07 800 7 24500 300 22890 572609.36 0.984 546426.73 11.102 −4.57 11.28

L08 800 7 24500 300 24007 585369.28 1.978 542194.85 22.870 −7.38 11.56

L09 1050 50 50073 500 40801 482949.62 3.818 443298.2 16.027 −8.21 4.20

L10 1050 50 44450 500 40411 452780.95 1.934 420944.92 17.881 −7.03 9.25

Average −7.18 17.15

Table 3. Ur-2c1n1m-Sweep-JSprit performance without and with exploration phase.

Inst. Nodes Dep. D.Cap. V.Cap. Dem. Without exp. With exp. % Gap Time

Cost Time Cost Time Cost Ratio

L01 200 5 4250 80 3885 481912.19 10.202 487401.81 8.475 1.14 0.83

L02 200 5 4250 80 3885 468610.92 7.409 467768.58 6.902 −0.18 0.93

L03 200 8 4400 80 3885 578998.86 5.098 578998.86 4.814 0.00 0.94

L04 262 13 15920 500 12106 7022.09 23.496 6542.62 26.43 −6.83 1.12

L05 500 6 15000 300 12488 299702.93 60.413 298152.39 60.57 −0.52 1.00

L06 500 6 15000 300 11750 308062.74 56.938 312336.36 50.678 1.39 0.89

L07 800 7 24500 300 22890 466505.25 166.581 463011.41 157.925 −0.75 0.95

L08 800 7 24500 300 24007 469352.3 123.842 467293.69 125.404 −0.44 1.01

L09 1050 50 50073 500 40801 390585.03 19.974 388445.21 21.17 −0.55 1.06

L10 1050 50 44450 500 40411 414786.54 17.403 409329.19 18.793 −1.32 1.08

Average −0.80 0.98
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5 Conclusions

The Capacitated Multi-Depot Vehicle Routing Problem (CMDVRP) is an exten-
sion of the MDVRP that considers limited supply on the depots. As far as we
know the CMDVRP problem has received much less attention in the literature
than other MDVRP extensions. In order to solve this NP-hard problem, we intro-
duce a Multi-Phase Methodology (MPM) that extends the well-known approach
of “cluster first, route second”. The most relevant feature of MPM is an interme-
diate exploration phase for detecting and reassigning misplaced customers based
on VRP algorithms. As the VRP is a well-known and widely studied problem,
the strength of the proposed MPM is to give a straightforward an efficient gen-
eral framework for the direct use of VRP algorithms, in many cases publicly
available and free, to solve the CMDVRP. Each MPM phase offers the possibil-
ity of choosing different algorithms depending on the specific characteristics of
the problem, the problem instances, hardware limitations, time restrictions, etc.
A specific selection of algorithms, for each phase, produces a particular MPM
instantiation that yields a heuristic procedure to solve the CMDVRP.

From the results obtained of the numerical experiments carried out, we can
conclude that the multi-phase methodology suggested can result in competitive
heuristics compared to exact methods. In particular, it may be useful for users
who often need to find solutions of quality in a reasonable computational time.
We point out that it would be enough to use a simple and fast routing algorithm
for the exploration phase, and a good and eventually time consuming routing
algorithm for the final phase. We also note that in general the exploration phase
produces better solutions without causing a significant increase in the execution
times but, in many cases, there is a decrease in them. This may be due to the
fact that the reassignment of customers to depots during the exploration phase
makes that less effort is needed to obtain a good quality final routing.

The proposed multi-phase methodology enables and facilitates the use of dif-
ferent combinations of algorithms and the possibility to define the criterion for
misplaced customers that may include geographical information, supply capacity
constraints, time windows and others constraints. Therefore, it has a great poten-
tial to be adapted to specific MDVRP variants such as Periodic-VRP (PVRP),
MDVRPTW or CMDVRPTW. The exploration phase of MPM allows the intro-
duction of randomness for example in the order in which the misplaced customers
are considered to be reassigned or in the reassignment strategy. We believe that
the methodology could benefit from employing a randomized strategy in order
to explore the solution space more extensively and eventually escape from local
optimal solutions.

A possible and interesting direction for future research is to compare the
proposed methodology against different solution procedures of the literature for
related problems, such as MDVRP (the problem without capacity constraints
on the depots). In order to make this comparison, we adapted the instances sug-
gested by [7] and available at http://neumann.hec.ca/chairedistributique/data/
mdvrp/. We consider those MDVRP instances of [7] without supply capaci-
ties on the depots nor time constraints on the routes duration, but do have

http://neumann.hec.ca/chairedistributique/data/mdvrp/
http://neumann.hec.ca/chairedistributique/data/mdvrp/
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restrictions on the vehicle fleet size. Preliminary results obtained in tests com-
paring different instances of MPM and the multiphase SFLA-PLEONS algorithm
of [13], which as far as we know is one of the faster and more accurate algorithms
in the literature for MDVRP, shown that MPM methodology is competitive with
fastest running times. The objective is to continue doing more tests varying the
instantiations of MPM methodology and also look for other instances of MDVRP
in the literature.

Finally, some of the results of the numerical experiment reported, deserve
a further analysis. One of them is to analyze the causes of why the addition
of the exploration phase does not increase the execution times of the overall
methodology, as we empirically observed in the numerical experiments reported
in Tables 2 and 3. Another issue is in which cases and why it is sufficient to use a
simple and fast algorithm for the exploration phase, and a good and eventually
time consuming routing algorithm for the final phase, to obtain good quality
solutions.
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Abstract. Renewable energies are increasingly used around the world
to replace fossil energy resources such as gas, coal, and oil sources in
order to reduce greenhouse gases. Eco-industrial parks promote the use
and sharing of renewable energy sources between factories in a collec-
tive self-consumption framework. This article presents a new strategy of
photovoltaic self-consumption in an eco-industrial park, that combines
collective and individual self-consumption. This strategy has been com-
pared with the classical configuration of self-consumption, in which facto-
ries do not share a common photovoltaic installation. Two mathematical
models have been proposed and solved for these two configurations, the
results show that the new strategy is more efficient than the classical
configuration of individual self-consumption.

Keywords: Eco-industrial park · Renewable energy · Collective
self-consumption · Mathematical modeling

1 Introduction

Energy production is mainly based on fossil energy resources such as gas, coal,
and oil sources. According to the UN (United Nations Organization), the use
of these resources results in global warming of 1.5 ◦C due to the emission of
greenhouse gases [1]. Among the targets set out in the European Union’s (EU)
climate and energy framework for 2030, is to reduce greenhouse gases emissions
and to increase the share of renewable energy [2].

Energy self-consumption is an important option, which drives to increase
renewable energy sources as a result of high energy prices and the emission of
greenhouse gases. There are two types of self-consumption:

– The individual self-consumption, that is part of the total energy production
consumed by the system. It refers to the process by which a producer con-
sumes its energy production [3].

– The collective self-consumption, that is the case where several consumers
share the same energy production. For instance, an industrial park contains
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several factories that share a photovoltaic production [4]. There is another
form of collective self-consumption, particularly in eco-industrial parks. Fac-
tories exchange the surplus of energy between themselves, in terms of energy
symbioses.

Eco-industrial parks (EIPs) are characterized as a set of factories located in
the same geographic area, with the goal of fostering cooperation and resource
sharing [5]. EIPs aim to efficiently exchange natural resources, reduce overall
environmental impact, and increase economic benefits to participants [6].

This article presents a study, which combines individual and collective
self-consumption in an eco-industrial park. In order to minimize energy costs
and greenhouse gas emissions. The rest of this article is organized as follows.
Section 2 presents the industrial symbioses involving renewable energy. Section 3
presents the problem description and Sect. 4 introduces the mathematical model.
Section 5 provides the data generation for testing the model. Section 6 includes
a discussion of the results. Section 7 draws conclusions with some directions for
future research.

2 Related Work

The main objective of eco-industrial parks is to facilitate industrial symbiosis
between a set of production units that can generate exchanges of waste, mate-
rials, and energy. Industrial symbiosis has been defined by Chertow et al. [7] as
a collective commitment including physical exchanges of materials, energy, and
products between factories that have geographical proximity. In this context,
Butturi et al. [8] proposed a multi-objective optimization to evaluate energy
symbiosis, that includes the integration of renewable energy sources within an
eco-industrial park and considering both economic and environmental issues.
They discuss three scenarios that provide individual company and park man-
agers with relevant information, which support the decision-making regarding
the economic sustainability and environmental impacts of energy symbiosis.
Jiang et al. [9] presented a genetic algorithm to solve a multi-objective optimiza-
tion, that propose an exchange the electricity between four parks in absence of
grid power. Their aim was to minimize a power interruption, storage system cost,
and customer dissatisfaction. Heendeniya [10] proposed an agent-based model to
exchange energy between prosumers, which have their own PV power generation
and a battery storage. Each agent tries individually and collectively to maximize
self-consumption of renewable energy.

The economic feasibility of self-consumption in eco-industrial parks and
remote areas has been studied in several papers. Among these works, Contreras
et al. [11] present a cooperative planning framework that integrates long-term
planning and short-term operation of an energy collective composed of consumers
sharing a photovoltaic and storage system. Their objective was to determine the
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optimal size of the PV plus storage system, that reduces total costs. Long-term
planning gives each consumer an idea of how much they can save, which allows
them to decide to join the collective or not. Pedrero et al. [12] presented an eco-
nomic evaluation of shared self-consumption of PV installations between three
halls with the addition of the option to sell surplus energy. They prove that the
economic feasibility depends largely on the compensation for the electricity fed
into the grid.

A study on the integration of renewable energy in eco-industrial parks in the
literature has been treated by Butturi et al. [13]. The result of this study shows
that a few articles have considered the integration of renewable energy. Among
the works that have been published after this research [13], we find Jiang et al.
[9], which discuss in their paper the exchange of renewable energy between four
parks with the integration of a storage system. Butturi et al. [8] treat the case of
renewable energy exchange between factories. In another study, Pedredro et al.
[12] deal with the case of collective self-consumption with the option of selling
the surplus energy between 3 factories that share a photovoltaic installation.

The result of this state of the art shows that there is a lack of articles that
deal with the combination of individual and collective self-consumption within
an eco-industrial park, as well as few papers have considered in the same study
the storage option and the option of selling the surplus energy.

In this paper, a new strategy of energy self-consumption in eco-industrial
park is introduced. It allows the merge of both individual and collective self-
consumption with the integration of storage systems and the addition of the
option of selling surplus energy.

3 Problem Definition

In this section, the eco-industrial park’s strategy and the classic individual self-
consumption configuration are presented. The structure of the strategy of the
eco-industrial park is as follows:

– Each factory has its own photovoltaic production that provides energy to
satisfy the demands. Excess energy is either stored in the factory’s battery or
sold to the grid.

– In case the factory’s self-production is not sufficient to guarantee its energy
requirements, the factory relies on the shared photovoltaic production or the
shared battery.

– The common photovoltaic production and the common battery provide a
percentage of their energy to each factory. This percentage depends on the
investment cost of each factory for the creation of the park. The surplus
energy from the common production is either stored in the common battery
or sold to the grid.
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– The appeal to the main grid is made in case of an emergency where the
factory’s own production, its battery, the common production, and the com-
mon battery are not enough to guarantee the energy demands needs in the
factories.

The Fig. 1 represents the schema of this strategy for a case of three factories.

Fig. 1. Schema of strategy for a case of three factories.

The objective is to compare this strategy with the classical configuration
(individual self-consumption) which is already studied in several articles in the
literature. This configuration is very present in residential buildings that use
photovoltaic panels with the integration of batteries [3]. As an example to this
study, Braun et al. [14] used a lithium-ion battery to increase self-consumed
photovoltaic energy with the addition of the option of selling the surplus energy.

The structure of this configuration in our study is as follows:

– Each factory has its own photovoltaic production that provides energy to
satisfy the demands. Excess energy is either stored in the factory’s battery or
sold to the grid.

– In case the factory’s self-production is not sufficient to guarantee its energy
requirements, the factory draws energy from the grid.

The Fig. 2 represents the schema of classical individual self-consumption for
a case of three factories.
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Fig. 2. Schema of individual self-consumption for a case of three factories.

4 The Mathematical Models

In this section, two mathematical models are addressed to present the strategy
of the eco-industrial park and the classical configuration for self-consumption
which are presented in the previous section.

4.1 Parameters and Decision Variables

Sets:
j = {1, . . . , J}: set of factories in the eco-industrial park
t = {1, . . . , H}: set of the time period (in hours)
i = {1, . . . , I}: set of PV installation in the park
Parameters:
Dj,t[KWh]: Energy demand of factory j at period t
Qp

i,t[KWh]: Amount of photovoltaic energy available in the shared source i
at period t

Qf
j,t[KWh]: Amount of photovoltaic energy available in the factory j at

period t
P g
t [e/KWh]: Price of energy from the grid at period t

P s
t [e/KWh]: Price of energy sold to the grid at period t

P f
t [e/KWh]: Price of energy drawn from the factory’s production at period t

P p
t [e/KWh]: Price of energy drawn from the shared production at period t

P bf
t [e/KWh]: Price of energy drawn from the factory’s battery at period t

P bp
t [e/KWh]: Price of energy drawn from the shared battery at period t

SOCmax
j [kWh]: Maximum state of charge of the factory’s battery j

SOCmin
j [kWh]: Minimum state of charge of the factory’s battery j

SOCPmax[kWh]: Maximum state of charge of the shared battery
SOCPmin[kWh]: Minimum state of charge of the shared battery
ηchar: Losses due to the battery’s charging
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ηdech: Losses due to the battery’s discharge
ICf

j [e]: Investment costs related to the factory j for its own photovoltaic
energy and battery during the horizon H

ICp
j [e]: Investment costs related to the factory j for the common photo-

voltaic production and battery during the horizon H
ICp[e]: Total investment costs of the park during the horizon H

Prfj [%]: The contribution rate of the factory j to the construction of the park

Decision variables:
Ef

j,t[KWh]: Amount of energy which is drawn by factory j at period t from
its PV production

Ep
i,j,t[KWh]: Amount of energy which is drawn by factory j at period t from

the common source i
Eg

j,t[KWh]: Amount of energy which is drawn by factory j at period t from
grid

Edbf
j,t [KWh]: Amount of energy which is drawn by factory j at period t from

its battery
Edbp

j,t [KWh]: Amount of energy which is drawn by factory j at period t from
the common battery

Ecbf
j,t [KWh]: Amount of produced energy by the factory j at period t stored

in its battery
Ecbp

i,t [KWh]: Amount of produced energy by the common source i at period
t stored in the common battery

Esf
j,t [KWh] : Amount of produced energy by the factory j at period t that is

sold to the grid
Esp

t,i[KWh] : Amount of produced energy by the common source i at period
t that is sold to the grid

Esp
t [KWh] : Amount of produced energy in park at period t that is sold to

the grid
SOCjt: State of charge of the factory’s battery j at period t
SOCPt: State of charge of the common battery j at period t
cpt : = 1 if the common battery is charging at period t. 0 otherwise
dpt : = 1 if the common battery is discharging at period t. 0 otherwise
cfj,t: = 1 if the factory’s battery j is charging at period t. 0 otherwise
dfj,t: = 1 if the factory’s battery j is discharging at period t. 0 otherwise

In the following, the model of the individual self-consumption is presented
as model 1 and the model of the individual and collective self-consumption is
presented as model 2.

4.2 Objective Function of Model 1

The objective function aims to minimize the energy cost of the factories. It is
calculated by subtracting the following two blocks:
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– The first is the summation of the variable costs of energy which are: the
costs of purchasing energy from the grid, the factories productions, and the
factories batteries.

– The second is the sale of the surplus energy to the grid by the factories.

min Z1 =
J∑

j=1

H∑

t=1

(P g
t × Eg

j,t + P f
t × Ef

j,t + P bf
t × Edbf

j,t − P s
t × Esf

j,t) (1)

4.3 Constraints of Model 1

Constraint (2) ensures that the total demand of each factory j is satisfied by the
energy sources available in factory j and the grid at period t.

Ef
j,t + Edbf

j,t + Eg
j,t = Dj,t ∀j, t (2)

Constraint (3) ensures that the sum of the quantities of energy drawn by
each factory j, stored in the factory’s battery j, and sold to the grid must be
equal to the quantity of energy available in the factory’s production j at period
t.

Ef
j,t + Ecbf

j,t + Esf
j,t = Qf

j,t ∀j, t (3)

The constraints (4), (5), and (6) represent the state of charge initial, final,
and at period t respectively for the factory’s battery j.

SOCj,0 = SOCmin
j (4)

SOCj,T = SOCmin
j (5)

SOCj,t = SOCj,(t−1) + ηchar × Ecbf
j,t − 1/ηdech × Edbf

j,t ∀j, t (6)

Constraint (7) ensures that the factory’s battery j is protected against acceler-
ated aging.

SOCmin
j ≤ SOCj,t ≤ SOCmax

j ∀j, t (7)

Additionally, the amount of charging and discharging of the factories batter-
ies must also meet the upper and lower bound constraints. Constraints (8) and
(9) refer to the maximum to be charged in the factory’s battery j at period t
and constraints (10) and (11) represent the maximum to be discharged in the
factory’s battery j at period t.

Ecbf
j,t ≤ SOCmax

j × cfj,t ∀j, t (8)

Ecbf
j,t ≥ cfj,t ∀j, t (9)

Edbf
j,t ≤ SOCmax

j × dfj,t ∀j, t (10)

Edbf
j,t ≥ dfj,t ∀j, t (11)

Constraint (12) ensures the choice between charging or discharging of the fac-
tory’s battery j at period t.

cfj,t + dfj,t ≤ 1 ∀j, t (12)
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4.4 Objective Function of Model 2

The aim of the objective function of model 2 is the same as of model 1, it
minimizes the energy cost of the factories in the park. Equation (13) represents
this objective function.

min Z2 =
J∑

j=1

H∑

t=1

(P g
t × Eg

j,t + +P f
t × Ef

j,t + P bf
t × Edbf

j,t + P p
t ×

I∑

i=1

(Ep
i,j,t)

+ P bp
t × Edbp

j,t − P s
t × (Esf

j,t + Esp
t )) (13)

4.5 Constraints of Model 2

Constraints (3–12) of model 1 are applied to model 2. In addition, the following
constraints have been exclusively applied to model 2.

Constraint (14) ensures that the total demand of each factory j is satisfied
by the energy sources available in the park, the factory j, and the grid at period
t.

Ef
j,t + Edbf

j,t +
I∑

i=1

(Ep
i,j,t) + Edbp

j,t + Eg
j,t = Dj,t ∀j, t (14)

Constraint (15) ensures that the sum of the quantities of energy demands of all
factories is satisfied by the common source i, the energy stored in the common
battery from source i, and the energy sold to the grid from source i must be
equal to the quantity of energy available in the shared source i at period t.

J∑

j=1

(Ep
i,j,t) + Ecbp

i,t + Esp
t,i = Qp

i,t ∀t, i (15)

Constraint (16) represents the total energy sold to the grid by the shared pro-
duction.

I∑

i=1

(Esp
t,i) = Esp

t ∀t (16)

Constraint (17) represents the percentage of energy to be drawn from the
common production and the common battery by each factory j during the hori-
zon H.

H∑

t=1

(Edbp
j,t +

I∑

i=1

(Ep
i,j,t)) = Prfj ×

H∑

t=1

I∑

i=1

(Qp
i,t) ∀j (17)

The constraints (18), (19), and (20) represent the state of charge initial, final,
and at period t respectively for the shared battery.

SOCP0 = SOCPmin (18)

SOCPT = SOCPmin (19)
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SOCPt = SOCP(t−1)+ηchar ×
I∑

i=1

(Ecbp
i,t )

− 1/ηdech ×
J∑

j=1

(Edbp
j,t ) ∀t (20)

Constraint (21) ensures that the shared battery is protected against accelerated
aging.

SOCPmin ≤ SOCPt ≤ SOCPmax ∀t (21)

Additionally, the amount of charging and discharging of the common battery
must also meet the constraints of the upper and lower limits. Constraints (22)
and (23) refer to the maximum to be charged in the common battery at period
t and Constraints (24) and (25) represent the maximum to be discharged in the
common battery at period t.

I∑

i=1

(Ecbp
i,t ) ≤ SOCPmax × cpt ∀t (22)

I∑

i=1

(Ecbp
i,t ) ≥ cpt ∀t (23)

J∑

j=1

(Edbp
j,t ) ≥ dpt ∀t (24)

J∑

j=1

(Edbp
j,t ) ≥ SOCPmax × dpt ∀t (25)

Constraint (26) ensures the choice between charging or discharging of the shared
battery at period t.

cpt + dpt ≤ 1 ∀t (26)

5 Data Generation

This section presents how the model data was generated, such as photovoltaic
installation, battery size, and investment costs.

5.1 Photovoltaic Installation in Factories

In this study, the maximum size of photovoltaic production will be installed on
the roofs of factories is considered. As a hypothesis, the available surface on
the roofs of these factories taken into account to install photovoltaic panels is
Smin ≤ S ≤ Smax where Smin = 800m2 and Smax = 1200m2 Based on [15] a
1.9 m2 monocristallin solar panel can produce 365 W, so the maximum size of
the photovoltaic installation that can be placed in a surface S is α = S×365

1,9 .
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To calculate the amount of energy Qf
j,t produced with a PV installation α,

in each period t during the horizon H, the European Commission’s Photovoltaic
Geographic Information System (PVGIS) [16] is used. The PVGIS-SARAH radi-
ation database is chosen, it can offer PV load profiles with a resolution of one
hour between 2005 and 2016, which in turn were used to generate an average
annual PV load profile for each factory roof.

To summarize, for each factory j of surface Sj , it is possible to install a PV
production size αj that gives an amount of energy Qf

j,t at each period t.

5.2 Photovoltaic Installation in the Park

The size of the PV installation in the park is chosen with the following method:

– Calculating the difference between the total demand and the total energy pro-
duced by all factories in one year, which is defined by R =

∑8760
t=1

∑J
j=1 Dj,t−∑8760

t=1

∑J
j=1 Qf

j,t

– Using PVGIS, the determination of the size of the PV installation that pro-
duces a percentage k of R, i.e.:

∑8760
t=1

∑I
i=1 Qp

i,t = k × R. This size is used to
calculate the amount of energy produced in the park over 4 horizons (1 month,
1 season, 2 seasons, and 4 seasons).

In this study, the cases where k is 20% 40%, 60%, and 80% are compared.

5.3 Battery Size in the Factories and in the Park

In a study of PV self-consumption by Luthander et al. [3], they report that PV
self-consumption can be increased by 13–24% by using a battery capacity of 0.5–
1 kWh for each KW of PV power installed. In this case study, a 1 kWh lithium
battery is installed for every 1 kW of PV power installed.

5.4 Investment Cost of the Factories

For each factory, there are two types of investment costs:

– Fixed investment costs for its own photovoltaic energy and battery during
the horizon H.

– Fixed investment costs for the shared photovoltaic production and battery
during the horizon H.

To calculate the investment costs in the factories and in the park, the data of
Pedrero et al. is used [12], represented in Tables 1 and 2.
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Table 1. PV installations reference costs

PV power Reference cost [e/W ]

≤ 10 kW 1.5

10 kW−100 kW 0.9

100 kW−1 MW 0.75

Table 2. Economic parameters for the calculation of investment costs

Parameter Value

PV modules service life 25 (year)

Inverter service life 15 (year)

Inverter cost 0.2e/W

Maintenance cost 0.02e/(W × year)

To calculate the contribution cost for each factory, Table 3 is relied upon.

Table 3. Percentage of contribution for each factory

Total demand Percentage of contribution

Factory j
∑H

t=1 Dj,t Prfj =
∑H

t=1 Dj,t
∑H

t=1
∑J

j=1 Dj,t

5.5 Different Energy Costs

The variation in electricity prices over the optimisation horizon can affect the
total energy cost. In this paper, time-of-use (TOU) pricing is put to use to
balance electricity supply and demand. The purchase price of the electricity grid
is the most expensive and the price of the energy from the factory is the cheapest.
The prices are classified in this order:

P f
t ≤ P bf

t ≤ P p
t ≤ P bp

t ≤ P g
t ∀t

6 Numerical Study

In this section, illustrative examples are considered to validate and evaluate the
presented models, which are solved by CPLEX on an Intel Core i5 with 2.7 GHz
and 8 GB RAM.

To compare the results between the proposed new strategy and the classical
configuration of individual self-consumption, the ratio between the investment
and the price paid by all factories at the end of the horizon H is calculated.

X = IC1
G1 and Y = IC2

G2 represent this ratio in the case of individual self-
consumption and the strategy respectively
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with:

– IC1: Total investment cost of the factories during the horizon H for the case
of individual self-consumption.

– G1: Total cost paid by the factories during the horizon H for the case of the
individual self-consumption.

– IC2: Total investment cost of the factories during the horizon H for the case
of the strategy.

– G2: Total cost paid by the factories during the horizon H for the case of the
strategy.

In the rest of this paper, four different cases of the eco-industrial park are used.
The first one contains 3 factories, the second 6 factories, the third 9 factories, and
the fourth 15 factories. Each case is tested over 4 horizons (1 month, 1 season, 2
seasons, and 4 seasons) which are presented in hours. The values represented in
the following tables are the average value of the gap between X and Y over the
4 horizons.

The gap can be calculated by Y −X
X × 100. For example, the value 235.4

presented in Table 4 represents this gap in the case of 3 factories and k =
40%. It was calculated using the previous gap formula with X = 0, 1184 and
Y = 0, 39712. The more this gap is greater, the considered strategy is more
performed.

Variation of the Size of the Photovoltaic Installation in the Park
Table 4 represents the average values of the gap during the four horizons for each
case of the eco-industrial park by varying the percentage k of the photovoltaic
installation of the park. As a result, it can be concluded that:

– In each instance, the use of the proposed strategy model is better than the
individual self-consumption model.

– Despite the increase in the number of factories, there is a small decrease of
the gap, which gives the possibility to add several factories in the same park
without having the problem of decreasing the gap.

– By increasing the energy of the park by 20% the gap increases between 52,44%
and 123,14%.

Table 4. Variation of the size of the photovoltaic installation in the park

3 factories (%) 6 factories (%) 9 factories (%) 15 factories (%) Average (%)

k = 20% 105,50 105,51 102,60 102,59 104,05

k = 40% 235,40 235,44 228,65 228,62 232,03

k = 60% 398,19 386,38 386,16 386,08 389,20

k = 80% 608,16 603,25 588,69 588,58 597,17

Average 336,81 332,64 326,52 326,47
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Variation in the Selling Price of Surplus Energy
Due to low feed-in tariffs [10] especially for large installations, three categories
of energy selling price are considered such as: P s

t = 1/10 × P g
t , P s

t = 1/5 × P g
t

and P s
t = P g

t where P s
t : Price of energy sold to the grid at period t and P g

t :
Price of energy from the grid at period t.

Table 5 represents the average values of the gap during the four horizons for
each case of the eco-industrial park by varying the selling price of the surplus
energy.

Table 5. Variation in the selling price of surplus energy

3 factories (%) 6 factories (%) 9 factories (%) 15 factories (%) Average

P s
t = 1/10× P g

t 231 231,04 224,28 224,25 227,64

P s
t = 1/5× P g

t 235,40 235,44 228,65 228,62 232,02

P s
t = P g

t 298,99 299,00 291,13 266,79 288,97

Average 255,13 255,16 248,13 239,89

It is concluded that:

– The proposed strategy is more efficient than the individual self-consumption
in each case.

– The increase in the selling price of surplus energy increases the gap between
the proposed strategy and the classical configuration of individual self-
consumption.

The proposed strategy gives better results than the classical configuration of
individual self-consumption even in the months when there is little photovoltaic
production such as January.

7 Conclusion

This paper develops two mathematical models, the first one represents a new
strategy of self-consumption in eco-industrial parks and the second one defines
the classical configuration of individual self-consumption. In both models, the
option of storage and sale of surplus energy have been addressed. This study
represents a step forward in the under-investigated field regarding the integration
of renewable energy in eco-industrial park [13]. The two models were tested and
compared, the results show that with this new strategy the factories can reduce
the price of electricity compared to the classical configuration of individual self-
consumption.

According to [17] the necessary condition to justify the creation of an eco-
industrial park, is to prove that the benefits achieved by working with a collective
strategy of factories are superior to the benefits achieved by working as a single
factory. This study shows that investing collectively among the factories is more
efficient than investing alone.
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With this strategy, several factories can be in the same park because the
results show that despite the increase in the number of factories, there is a small
decrease in the gap and the results obtained by this new strategy are still more
efficient.
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