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Abstract. Acoustic sounds produced by the human body reflect
changes in our mental, physiological, and pathological states. A deep
analysis of such audio that are of complex nature can give insight about
imminent or existing health issues. For automatic processing and under-
standing of such data, sophisticated machine learning approaches are
needed that can extract or learn robust features. In this paper, we intro-
duce a set of machine learning toolkits both for supervised feature extrac-
tion and unsupervised representation learning from audio health data.
We analyse the application of deep neural networks (DNNs), includ-
ing end-to-end learning, recurrent autoencoders, and transfer learning
for speech and body-acoustics health monitoring and provide state-of-
the-art results for each area. As show-case examples, we pick three
well-benchmarked examples for body-acoustics and speech, each, from
the popular annual Interspeech Computational Paralinguistics Challenge
(ComParE). In particular, the speech-based health tasks are COVID-19
speech analysis, recognition of upper respiratory tract infections, and
continuous sleepiness recognition. The body-acoustics health tasks are
COVID-19 cough analysis, speech breath monitoring, heartbeat abnor-
mality recognition, and snore sound classification. The results for all
tasks demonstrate the suitability of deep computer audition approaches
for health monitoring and automatic audio-based early diagnosis of
health issues.

Keywords: Computer audition · Digital health · Health monitoring

1 Introduction

Diagnosis of disease, ideally even before symptoms are noticeable to individuals,
facilitates early interventions and maximises the chance of successful treatments,
especially for mental health. Whilst early diagnosis cannot enable curative treat-
ment of all possible diseases, it provides the considerable chance of averting irre-
versible pathological changes in organ, skeletal, and nervous systems, as well as
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chronic pain and psychological stress [8]. Research in machine learning for audio-
based digital health applications has increased in recent years [6]. Substantial
contributions have been made to the development of audio-based techniques for
the recognition of various health conditions, including neurodegenerative diseases
such as Alzheimer’s or Parkinson’s [20], psychological disorders such as bipolar
disorder [16], neurodevelopmental disorders such as Fragile X, Rett-Syndrome, or
Autism Spectrum Disorder [17], and contagious diseases such as COVID-19 [15].
In the proceeding section of this paper, we first introduce seven health-related
corpora for speech and acoustic health monitoring tasks (Sect. 2). In Sect. 3, we
then introduce a set of contemporary computer audition methods and analyse
their performance for various early digital health diagnosis and recognition tasks.
The last section concludes our paper and discusses future work.

2 Speech and Acoustic Health Datasets

In this section, we introduce seven health related speech and audio datasets
which have been used in recent editions of the INTERSPEECH Computational
Paralinguistics ChallengE (COMPARE) [18,19,22]. We further provide informa-
tion about the important characteristics of each dataset and the used partitions
for the machine learning experiments (cf. Table 1).

Cambridge COVID19 Sound Database – Speech & Cough. This dataset
which was used for a sub-challenge in the 2019 edition of the INTERSPEECH
ComParE contains two speech and cough subsets from the Cambridge COVID-19
Sound database [3,11]. The audio files were resampled (in some cases, upsam-
pled) and then converted to 16 kHz and mono/16 bit, and further normalised
recording-wise to eliminate varying loudness. For the COVID-19 Cough (C19C),
725 recordings (one to three forced coughs) from 343 participants were provided,
in total 1.63 h. For the COVID-19 Speech (C19S), 893 speech recordings from
366 individuals were used, in total 3.24 h.

Upper Respiratory Tract Infection Corpus (URTIC). This corpus is pro-
vided by the Institute of Safety Technology, University of Wuppertal, Germany,
and consists of recordings of 630 subjects (382 m, 248 f, mean age 29.5 years,
std. dev. 12.1 years, range 12-84 years), made in quiet rooms with a micro-
phone/headset/hardware setup (sample rate 44.1 kHz, downsampled to 16 kHz,
quantisation 16 bit). To obtain the state of health, each individual reported a
binary one-item measure based on the German version of the Wisconsin Upper
Respiratory Symptom Survey (WURSS-24), assessing the symptoms of common
cold. The global illness severity item (on a scale of 0 = not sick to 7 = severely
sick) was binarised using a threshold at 6.

Düsseldorf Sleepy Language (SLEEP) Corpus. This corpus [21] contains
speech recordings of 915 individuals (364 f, 551 m) at different levels of sleepi-
ness (1–9 KSS, 9 denotes extreme sleepiness). The participants performed various
pre-defined speaking tasks and read out text passages. Moreover, spontaneous
speech is collected in the form of elicited narrative content. The sessions which
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Table 1. Number of instances per class in the all partitions for each dataset.

# Training Development Test Σ

Speech-based datasets for health monitoring

COVID-19 Speech (C19S) Corpus [3,11,23]

No COVID-19 243 153 189 585

COVID-19 72 142 94 308

Σ 315 295 283 893

Upper Respiratory Tract Infection Corpus (URTIC) [19]

C 970 1 011 895 2 876

NC 8 535 85̇85 8 656 25 776

Σ 9 505 9 596 9 551 28 652

Düsseldorf Sleepy Language (SLEEP) Corpus [21]

1–9 (Karolinska Sleepiness Scale (KSS)) 5 564 5 328 5 570 16 462

Acoustic datasets for health monitoring

COVID-19 Cough (C19C) Corpus [3,11,23]

No COVID-19 215 183 169 567

COVID-19 71 48 39 158

Σ 286 231 208 725

UCL Speech Breath Monitoring (UCL-SBM) Corpus [18]

Speakers 17 16 16 49

Heart Sounds Shenzhen (HSS) Corpus [22]

Normal 84 32 28 144

Mild 276 98 91 465

Moderate/Severe 142 50 44 236

Σ 502 180 163 845

Munich-Passau Snore Sound Corpus (MPSSC) [19]

Velum (V) 168 161 155 484

Oropharyngeal lateral walls (O) 76 75 65 216

Tongue (T) 8 15 16 39

Epiglottis (E) 30 32 27 89

Σ 282 283 263 828

lasted roughly one hour per participant were further held between 6 am to 12 pm
in order to acquire high variability in the levels of perceived sleepiness. Using
this dataset, the sleepiness of a speaker can be assessed as regression problem.
Continuous recognition of sleepiness is of high relevance for sleep disorder mon-
itoring.

UCL Speech Breath Monitoring (UCL-SBM) Corpus. This corpus con-
tains spontaneous speech recordings that took place in a quiet office space, and
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recordings from a piezoelectric respiratory belts worn by the subjects. All signals
were sampled at 40 kHz; speech was downsampled to 16 kHz and breath belts to
25 Hz in post-processing [18]. All 49 speakers (29 f, 20 m) reported English as a
primary language ages range from 18 to approximately 55 years old (mean age
24 years; std. dev. ˜10 years). Breathing patterns also provide medical doctors
vital information about an individual’s respiratory and speech planning [4].

Heart Sounds Shenzhen (HSS) Corpus. The HSS corpus, provided by the
Shenzhen University General Hospital, contains heart sounds gathered from 170
subjects (55 f, 115 m; ages from 21 to 88 years (mean age 65.4 years, std. dev.
13.2 years) with various health conditions, such as coronary heart disease, heart
failure, and arrhythmia. The acoustic signals were recorded using an electronic
stethoscope with a 4 kHz sampling rate and a 20 Hz–2 kHz frequency response.
Three types of heartbeats (normal, mild, and moderate/severe) have to be clas-
sified Table 1. Automatic machine learning based approaches could help moni-
toring patients with unclear symptoms of heartbeat abnormalities.

Munich-Passau Snore Sound Corpus (MPSSC). The MPSSC is intro-
duced for classification of snore sounds by their excitation location within the
upper airways. The corpus contains audio samples of 828 snore events from 219
subjects (cf. Table 1). The number of recordings per class in the corpus is unbal-
anced, with 84% of samples from the classes Velum (V) and Oropharyngeal
lateral walls (O), 11%, Epiglottis (E)-events, and 5% Tongue (T)-snores. This is
in line with the probability of occurrence during normal sleep [12].

Table 2. Results for all seven introduced corpora. The official challenge baselines
and the winners of each sub-challenge are provided. UAR: Unweighted Average Recall.
PCC: Pearson’s correlation coefficient. ρ: Spearman’s correlation coefficient. *: [2] was
a separate submission and not as a part of the sub-challenge.

Speech-based health monitoring Acoustic health monitoring

C19S URTIC SLEEP C19C UCL-SBM HSS MPSSC
Approach UAR [%] UAR [%] PCC ρ UAR [%] UAR [%] UAR [%]

Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test

Baseline systems of the ComParE [23, 19, 21, 22, 2]

openSMILE 57.9 72.1 64.0 70.2 .251 .314 61.4 65.5 .244 .442 50.3 46.4 40.6 58.5
End2You 70.5 68.8 59.1 60.0 N/A 61.8 64.7 .507 .731 41.2 37.7 40.3 40.3
auDeep 62.2 64.2 N/A .257 .321 67.6 67.6 N/A 38.6 47.9 44.8 61.3
Deep Spectrum 56.0 60.4 N/A N/A 63.3 64.1 N/A 44.1 46.1 44.8 67.0*
Fusion of Best – 71.1 – 71.0 – .343 – 73.9 – .621 – 56.2 – 55.8

Winners of each sub-challenge from left to right: [10, 14, 9, 5, 13]

baseline won 65.8 72.0 .367 .383 69.9 75.9 .640 .763 baseline won – 64.2
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3 State-of-the-Art Methodologies and Results

This section provides results from the winners of each sub-challenge (cf. Table 2).
Further, the results are compared with the performance of four machine learn-
ing and deep learning baseline systems of ComParE, namely openSMILE1 [7],
End2You2 [24], auDeep3 [1], and Deep Spectrum4 [2]. Each of baseline sys-
tem utilises a different methodology to extract or learn features from the audio
signals. In particular, openSMILE is designed to extract expert-designed fea-
tures such as pitch, energy, and prosody for specific speech and audio tasks.
The End2You approach utilises an end-to-end learning paradigm to extract
features from raw audio with a convolutional network and then performing the
final classification using a subsequent recurrent network. auDeep makes use
of recurrent sequence-to-sequence autoencoders for unsupervised representation
learning, and Deep Spectrum applies transfer learning techniques with pre-
trained image convolutional networks for deep feature extraction from audio
plots.

4 Conclusions and Future Work

We have carefully selected seven (three speech-based and three body-acoustics-
based plus one ‘inbetweener’ – breathing) medical datasets for audio-based early
diagnosis of various health issues (cf. Sect. 2), and demonstrated the suitability of
(deep) computer audition methods for all introduced tasks (cf. Sect. 3). For data
of a more complex nature (e. g. SLEEP or C19C), we showed that unsupervised
learning of representations provides better results compared to other baselines.
For the regression task UCL-SBM, End2You (composed of convolutional and
recurrent blocks) outperforms other systems showing its suitability for modelling
time-continuous data. Further, we recommend the application of transfer learn-
ing approaches (e. g. Deep Spectrum) for audio health monitoring tasks where
the data is scarce as such models are pre-trained on larger datasets. As a next
step, more holistic views on audio-based health monitoring will be needed that
do not focus on ‘healthy’ vs ‘sick’, but target the big picture of health state
synergistically. With this and more data or data-efficient strategies, audio-based
health monitoring in every-day life appears around the corner.
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