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Abstract Dynamic substructuring allows to describe an assembled structural sys-
tem in terms of component subsystems. In experimental dynamic substructuring, the
model of at least one (sub)system derives from experimental tests: this allows to
consider systems that may be too difficult to model. The degrees of freedom (DoFs)
of the assembled system can be partitioned into internal DoFs (not belonging to the
couplings) and coupling DoFs. A possible application of experimental dynamic sub-
structuring is substructure decoupling, i.e. the identification of the dynamic model
of a structural subsystem embedded in a structural system known from experiments
(assembled system) and connected to the rest of the system (residual subsystem)
through a set of coupling DoFs. Coupling DoFs are often difficult to observe, either
because they cannot be easily accessed or because they include rotational DoFs.
However, whilst coupling DoFs and in particular rotational DoFs are needed when
coupling together different subsystems, they are not essential in substructure decou-
pling, because the actions exchanged through the couplingDoFs are already included
in the dynamic response of the assembled system. The most promising fields in sub-
structure coupling are: couplingwith configuration dependent interface and nonlinear
couplingwith localized nonlinearities.With reference to substructure decoupling, the
most remarkable topics are: interface optimization, configuration dependent coupling
conditions, and joint identification.
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1 Introduction

In the framework of dynamic substructuring, substructure coupling consists in the
identification of the dynamic behavior of an assembled structural system, starting
from the dynamic behavior of the component subsystems. The degrees of freedom
(DoFs) of the assembled system can be partitioned into internal DoFs (not belonging
to the couplings) and coupling DoFs. Many well-established techniques exist to
perform substructure coupling when all substructures are modeled theoretically, see
for instance [8, 12, 18] and subsequent literature. However, in many cases, the model
of at least one subsystem derives from experimental tests, mainly because complex
subsystems may be too difficult to model. In this case, one speaks of experimental
dynamic substructuring.

A general framework for dynamic substructuring is provided in [15], where pri-
mal and dual assembly are introduced. Furthermore, coupling can be performed in
the physical domain, in the frequency domain (Frequency Based Substructuring), or
in reduced domains (e.g. the modal domain). When using the modal domain or other
reduced domains, truncation problems may arise. In Frequency Based Substruc-
turing, Frequency Response Functions (FRFs) are used to avoid modal truncation
problems.

A well known issue in experimental substructure coupling is related to rotational
DoFs. Whenever coupling DoFs include rotational DoFs, the related rotational FRFs
must be obtained experimentally. This becomes a quite complicated task when mea-
suring only translational FRFs, as shown in [20]. Several techniques for measuring
rotational responses have been devised, see e.g. [1, 21].

Substructure decoupling represents another possible application of experimental
dynamic substructuring. It can be defined as the identification of the dynamic model
of a structural subsystem embedded in a structural system known from experiments
(assembled system) and connected to the remaining part of the system (residual sub-
system) through a set of coupling DoFs. Decoupling is a need for subsystems that
cannot be measured separately, but only when coupled to their neighboring substruc-
ture(s) (e.g. fixtures needed for testing or subsystems in operational conditions).

Coupling DoFs are often difficult to observe, either because they are not easy to
access or because they include rotational DoFs. However, whilst coupling DoFs and
in particular rotationalDoFs are neededwhen coupling together different subsystems,
they are not essential in substructure decoupling [9]. In fact, the actions exchanged
through the connecting DoFs are already embedded in the dynamic response of the
assembled system.

Contact problems can also be tackled using a numerical computation technique
based on dynamic substructuring, if time varying coupling conditions are assumed.
In [2, 6] a sliding contact interface between a rigid suspended bar and a lumped mass
is considered, without and with friction. In [3, 7] a sliding contact interface between
a horizontal and an oblique cantilever beam is considered, without and with friction,
using a basic contact assumption, in order to deal with friction induced vibrations
not involving instabilities. In [4, 5] the sliding contact between a horizontal and an
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oblique cantilever beam is considered again, usingmore realistic contact assumptions
that take into account the deformation of the contacting bodies in order to analyze
friction induced instabilities.

In the present contribution, Sect. 2 describes the recent advances of research on
experimental substructure coupling, focusing on configuration dependent Frequency
Response Function; Sect. 3 deals with substructure decoupling, focusing on inter-
face optimization; finally, Sect. 4 discusses the future perspectives of experimental
dynamic substructuring.

2 Experimental Substructure Coupling

Let us consider a dynamic systemmade up of n coupled subsystems. Each subsystem
can be described either in the physical domain using mass, stiffness and damping
matrices or in the frequency domain using the dynamic stiffness matrix.

2.1 Frequency Based Substructuring

In the frequency domain, the equation of motion of a linear time-invariant subsystem
r may be written as:

Z(r)(ω)u(r)(ω) = f (r)(ω) + g(r)(ω) (1)

where:

Z(r): dynamic stiffness matrix of subsystem r ;
u(r): vector of degrees of displacements of subsystem r ;
f (r): vector of external forces on subsystem r ;
g(r): vector of connecting forces with other subsystems (internal constraints).

The equation of motion of the n subsystems to be coupled can be written in a
block diagonal format, by omitting the frequency dependence:

Zu = f + g (2)

with

Z =
⎡
⎢⎣
Z(1)

. . .

Z(n)

⎤
⎥⎦ , u =

⎧⎪⎨
⎪⎩

u(1)

...

u(n)

⎫⎪⎬
⎪⎭
, f =

⎧⎪⎨
⎪⎩

f (1)

...

f (n)

⎫⎪⎬
⎪⎭
, g =

⎧⎪⎨
⎪⎩

g(1)
...

g(n)

⎫⎪⎬
⎪⎭
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The compatibility condition at the interfaceDoFs implies that any pair ofmatching
DoFs u(r)l and u(s)m , i.e. DoF l on subsystem r and DoF m on subsystem s must have
the same displacement, that is u(r)l − u(s)m = 0.

This condition can be generally expressed as:

Bu = 0 (3)

where each row of B corresponds to a pair of matching DoFs.
The equilibrium condition for internal constraint forces implies that, when the

connecting forces are considered at a pair of matching DoFs, their summust be zero,
i.e. g(r)l + g(s)m = 0: this holds for any pair of matching DoFs. Furthermore, if DoF
k on subsystem q is not a connecting DoF, it must be g(q)k = 0: this holds for any
non-interface DoF.

Overall, the above conditions can be expressed as:

LT g = 0 (4)

where the matrix L is a Boolean localisation matrix.
Equations (2)–(4) can be put together to obtain the so-called three-field formula-

tion, describing the coupling between any number of subsystems:

⎧⎨
⎩
Zu = f + g
Bu = 0
LT g = 0

(5)

In the dual formulation [15, 22], the total set of DoFs is retained, i.e. each interface
DoF is present as many times as there are substructures connected through that DoF.
The equilibrium condition g(r)l + g(s)m = 0 at a pair of interface DoFs is ensured by
choosing, for instance, g(r)l = −λ and g(s)m = λ. Therefore, the equilibriumof internal
constraint forces can be ensured by writing the connecting forces in the form:

g = −BTλ (6)

where λ are Lagrange multipliers corresponding to connecting force intensities.
The equilibrium of internal constraint forces (4) is thus written:

LT g = −LTBTλ = 0 ∀λ (7)

Since Eq. (7) is always satisfied by any set of connecting force intensities λ, the
system of equations (5) becomes:

{
Zu + BTλ = f
Bu = 0

(8)
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To eliminate λ, from the first of Eq. (8), it can be written:

u = −Z−1BTλ + Z−1 f (9)

which substituted in the second of Eq. (8) gives:

BZ−1BTλ = BZ−1 f ⇒ λ = (
BZ−1BT

)−1
BZ−1 f (10)

Substituting λ in the first of Eq. (8), it is obtained:

Zu + BT
(
BZ−1BT

)−1
BZ−1 f = f

⇒ u =
(
Z−1 − Z−1BT

(
BZ−1BT

)−1
BZ−1

)
f (11)

By considering that:

Z−1 = H =
⎡
⎢⎣
H(1)

. . .

H(n)

⎤
⎥⎦ (12)

being H(r) = [Z(r)]−1 the Frequency Response Function (FRF) matrix of the r -th
subsystem, Eq. (11) can be rewritten:

u =
(
H − HBT

(
BHBT

)−1
BH

)
f (13)

Therefore, by considering that the FRF matrix Hc of the coupled system satisfies
the relation u = Hc f , it is:

Hc = H − HBT
(
BHBT

)−1
BH (14)

Note that the rows and columns corresponding to the coupling DoFs appear twice
in Hc. Obviously, only independent entries are retained.

2.1.1 Configuration Dependent Interface

An interesting extension of the substructuring approach is to consider systems built
from time-invariant component subsystems subjected to configuration dependent
coupling conditions, such as those encounteredwhen a relativemotion exists between
two coupled bodies.

In this case, compatibility and equilibrium conditions become configuration
dependent. If χ denotes a given configuration, the compatibility condition can be
generally expressed as:
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BC(χ)u(χ) = 0 (15)

where each row of BC(χ) concerns a pair of matching DoFs at configuration χ.
The equilibrium condition g(r)l (χ) + g(s)m (χ) = 0 at a pair of interface DoFs is

ensured by choosing, for instance, g(r)l (χ) = −λ(χ) and g(s)m (χ) = λ(χ). Therefore,
the overall interface equilibrium can be ensured by writing the connecting forces in
the form:

g(χ) = −BE
T (χ)λ(χ) (16)

where λ(χ) are Lagrange multipliers corresponding to connecting force intensities
and BE(χ) is different from the signed Boolean matrix BC(χ) used to enforce the
compatibility condition, because BE(χ) must also account for friction forces at the
interface.

2.2 Configuration Dependent Frequency Response Function

A configuration dependent frequency response function of the coupled system can
be computed as follows. When a configuration dependent interface is considered,
Eq. (8) can be rewritten as:

{
Zu(χ) + BE

T (χ)λ(χ) = f
BC(χ)u(χ) = 0

(17)

A procedure similar to that outlined in Eqs. (9)–(13) can be followed to eliminate
λ(χ) from the first of Eq. (17) and to obtain, finally, an expression of the FRF matrix
of the coupled system with configuration dependent interface:

Hc(χ) = H − HBE
T (χ)

(
BC(χ)HBE

T (χ)
)−1

BC(χ)H (18)

In Fig. 1, a beam on beam system is considered, where the upper oblique beam
1 is subjected to a vertical load Fy and to a constant velocity vx in the horizontal
direction. Therefore, the contact point C moves from the fixed end to the free end
of the horizontal beam. More details about the system characteristics are available
in [3]. Figure1 shows the configuration dependent drive point FRF at the contact
point C , computed according to Eq. (18). It can be noticed that the low level pattern
highlights configuration dependent anti-resonance locations, while the high level
pattern accounts for configuration dependent resonance location.
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Fig. 1 Configuration dependent beamon beammodel. aBeamon beammodel [3].b |HCyCy(ω,χ)|

3 Decoupling

As stated in the Introduction, substructure decoupling consists in the identification of
a dynamic model of a structural subsystem, starting from the FRFs of the assembled
system RU and from a dynamic model of the so-called residual subsystem R. The
unknown subsystemU (NU DoFs) is joined to the residual subsystem R (NR DoFs)
by nc coupling DoFs through which constraint forces (and moments) are exchanged
(see Fig. 2). The degrees of freedom of the assembled structure (NRU DoFs) can be
partitioned into coupling DoFs (c), internal DoFs of substructure U (u) and internal
DoFs of substructure R (r ).

The FRFs of the unknown substructure U can be predicted from those of the
assembled structure RU by taking out the dynamic effect of the residual subsystem
R. In principle, this can be accomplished by considering a negative structure, i.e.
by adding to the assembled structure RU a fictitious substructure with a dynamic
stiffness opposite to that of the residual substructure R (see Fig. 3). The effect of

Fig. 2 Assembled system
RU , with the unknown
subsystem U (green) and the
residual subsystem R
(blue) [11] (For
interpretation of the
references to colour in the
text, the reader is referred to
the web version of this
chapter)
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Fig. 3 Scheme of the direct decoupling problem [11]

Fig. 4 Trivial set of disconnection forces (and moments) acting on the assembled structure (corre-
sponding to the standard interface) [11]

the negative structure is to add a set of disconnection forces (and moments) to the
external forces acting on the assembled system in order to uncouple the unknown
substructure from the assembled structure. However, the set of disconnection forces
is not unique. In fact, several sets of disconnection forces can be devised:

– a trivial set, consisting of disconnection forces acting at the coupling DoFs and
opposite to the constraint forces (see Fig. 4); in this case, disconnection forces may
include moments opposite to the constraint moments.

– non trivial sets of disconnection forces acting at different DoFs but able to cancel
the constraint forces at the coupling DoFs (see Fig. 5); in this case, disconnection
forces applied to internal DoFsmust be able to provide amoment about the rotation
axes.

In both cases, the dynamic equilibrium of the assembled structure RU is:

ZRUuRU = f RU + gRU (19)
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Fig. 5 Non trivial sets of disconnection forces corresponding to a mixed interface (left) and to a
pseudo interface (right) [11]

where gRU is the vector of disconnection forces applied to the assembled structure by
the negative structure,ZRU is the dynamic stiffness matrix of the assembled structure
RU , uRU is the vector of degrees of freedom of the assembled structure RU , f RU

is the external force vector on the assembled structure RU .
Similarly, the dynamic equilibrium of the negative structure is expressed as:

− ZRuR = f R + gR (20)

where −ZR is the dynamic stiffness matrix of the negative structure, and uR, f R

and gR are defined as for the assembled structure.
In order that Eqs. (19)–(20) can be put together to represent the unknown substruc-

ture U , disconnection forces gRU and gR must be in equilibrium, and compatibility
between degrees of freedom uRU and uR must hold at the interface between the
assembled structure RU and the negative structure. Note that such interface includes
both the coupling DoFs between substructures U and R, and the internal DoFs of
substructure R (the blue part of the structure in Fig. 3). However, it is not necessary
to retain the full set of these interface DoFs, because it is sufficient that the number of
interface DoFs be not less than the number of coupling DoFs nc. Therefore, several
options for interface DoFs can be considered:

• standard interface, including only the coupling DoFs (c) between substructures
U and R, e.g. those corresponding to the disconnection forces (and moments) in
Fig. 4;

• extended interface, including also a subset of internal DoFs (i ⊆ r ) of substruc-
ture R;

• mixed interface, including subsets of coupling (d ⊂ c) and internal DoFs (i ⊆ r ),
e.g. those corresponding to the disconnection forces in Fig. 5 (left);

• pseudo interface, including only internal DoFs (i ⊆ r ) of substructure R, e.g. those
corresponding to the disconnection forces in Fig. 5 (right).
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The use of a mixed or pseudo interface allows to replace rotational coupling DoFs
with translational internal DoFs.

Compatibility at the (standard, extended, mixed, pseudo) interface implies that
any pair of matching DoFs, i.e. DoF l on the coupled system RU and DoF m on
subsystem R, must have the same displacement, that is uRU

l − uR
m = 0. Let SC be

the set of NC interface DoFs on which compatibility is enforced. The compatibility
condition can be expressed as:

BC u = 0 where: u =
{
uRU

uR

}
(21)

whereBC has size NC × (NRU + NR) and each row corresponds to a pair ofmatching
DoFs.

Let SE be the set of NE interface DoFs on which equilibrium is enforced. Note
that sets SE and SC can be different (non-collocated approach [22]); the traditional
approach, when SE ≡ SC , is called collocated. The equilibrium of disconnection
forces implies that for any pair of matching DoFs, i.e. DoF r on the coupled system
RU and DoF s on subsystem R, their sum must be zero, that is gRU

r + gR
s = 0. In

the dual assembly, the total set of DoFs is retained, and the equilibrium at a pair
of matching DoFs is ensured by choosing gRU

r = −λr and gR
s = λr . Therefore, the

overall interface equilibrium can be ensured by writing the disconnection forces in
the form:

g = −BE
T λ where: g =

{
gRU

gR

}
(22)

where λ is a vector of Lagrange multipliers corresponding to disconnection force
intensities, and BE is a NE × (NRU + NR) matrix.

Having defined BC and BE, an expression of the FRFHU of the unknown subsys-
tem can be derived using the same procedure as in Sect. 2.2, leading to:

HU = H − HBE
T

(
BCHBE

T
)+

BCH (23)

where + denotes the pseudo-inverse. This operation is necessary because it can be
NC �= NE . To obtain a determined or overdetermined matrix for the generalized
inversion operation, the number of rows of BC must be greater or equal than the
number of rows of BE, i.e.

NC ≥ NE ≥ nc (24)

3.1 Interface Optimization

Disconnection forces gRU must be able to uncouple the unknown substructure from
the assembled system, i.e. they are such as to cancel constraint forces at the coupling
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DoFs. If coupling DoFs include rotational DoFs, constraint forces include moments
about some given axes.

As stated at the beginning of Sect. 3, the set of disconnection forces is not unique.
Therefore, non trivial sets of disconnection forces, typically not including moments,
can be selected taking into account the further objective of avoiding ill conditioning
problems.

In Eq. (23), the product BCHBE
T that has to be inverted is defined as interface

flexibility matrix. In fact, as shown in [9], it can be rewritten as:

BCHBE
T = Ĥ

RU − Ĥ
R

(25)

where Ĥ
RU

and Ĥ
R
are the FRFs of the assembled structure and of the residual sub-

structure at interface DoFs. The interface flexibility matrix depends on the choice of
interface DoFs and it can be ill conditioned for some set of interface DoFs. Therefore,
the conditioning of the interface flexibility matrix must be taken into account in the
choice of interface DoFs.

An application is performed on the assembled system shown in Fig. 6a. The resid-
ual subsystem R consists of a cantilever beam with two offset short arms (Fig. 6b).
The unknown substructure U is the beam bolted to the free end of the cantilever
beam. The joint involves both translational and rotational DoFs. More details are
available in [10].

The experimental FRF matrix of the assembled system is obtained at seven loca-
tions (3, 6, 9, 10, 11, 13, 20) along the z-direction orthogonal to the plane of the

(a) Assembled system. (b) Residual subsystem.

Fig. 6 Experimental test bed for decoupling [11]
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structure. For the residual subsystem, the experimental FRF matrix is similarly mea-
sured at five locations (3, 6, 9, 10, 11). Coupling DoFs are: 11z, 11θx and 11θy , that
is one translational DoF and two rotational DoFs around the horizontal and vertical
directions in the plane of the structure.

There are 3 coupling DoFs, so that nc = 3. As stated in Eq. (24), it must be
NE ≥ nc = 3, where nc = 3 is the minimal number of DoFs. Therefore, in principle,
any set of at least 3 DoFs among the measured DoFs on the residual subsystem is a
possible set of interface DoFs. It can be quite significant to compare minimal sets of
DoFs.

As shown in [10], either DoF 9z or DoF 10z must be included among the interface
DoFs so that the corresponding disconnection force is able to provide a moment
around DoF 11ϑy . The objective is to select, between DoFs 9z and 10z, the most
appropriate in terms of the condition number of the interface flexibility matrix. It
may be convenient, although not strictly necessary, to keep one of the coupling DoFs,
in this case DoF 11z, among the interface DoFs.

Therefore, two minimal sets of DoFs are compared, each one of then representing
a mixed interface: 11z, 3z, 9z and 11z, 3z, 10z.

The condition number of the interface flexibility matrix Ĥ
RU − Ĥ

R
is considered

for each of the two sets of interface DoFs (Fig. 7). It can be noticed that the condition
number is lower when DoF 9z is considered instead of DoF 10z, except in a limited
frequency range, i.e. 1200–1300 Hz. Therefore, according to this criterion, DoF 9z
should be preferred to DoF 10z.

FRFs of the unknown substructure are predicted using the two sets of minimal
interface DoFs defined previously. To check decoupling results, FRFs are measured
also at three locations (11, 13, 20) of the unknown subsystem U . The FRF of the
unknown substructure U , predicted using interface DoFs 11z, 3z, 9z, is shown in
Fig. 8: the result is quite clean considering that experimental data are being used.
The FRF of the unknown substructure U , predicted using interface DoFs 11z, 3z,
10z, is shown in Fig. 9: the result is much worse than in the previous case, especially
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Fig. 9 HU
11z,11z : measured (—) (blue), predicted from experimental FRFs using coupling DoF 11z

and internal DoFs 3z, 10z (∗∗∗ ) (red) [10]

in the frequency band 400–1000 Hz, where the condition number of the interface
flexibility matrix using interface DoFs 11z, 3z, 9z is significantly lower than using
interface DoFs 11z, 3z, 10z.

4 Perspectives

Perspectives of experimental dynamic substructuring differ according to whether
substructure coupling problems or substructure decoupling problems are considered.
With reference to substructure coupling problems, themost promising fields are those
of coupling with configuration dependent interface and of nonlinear coupling with
localized nonlinearities.

Coupling with configuration dependent interface is discussed in Sect. 2.1 and a
simple example of configuration dependent Frequency Response Function is shown
in Sect. 2.2: the example considers numerically simulated FRFs, but the procedure
can be readily extended to experimental FRFs.
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Nonlinear coupling with localized nonlinearities, i.e. linear structures connected
by nonlinear joints is an ongoing field of research. The focus is about the effects of
nonlinear connections on the dynamics of an assembly in which the coupled subsys-
tems can be assumed as linear. This is suitable in many engineering systems where
the nonlinearity introduced by the connecting element is much more relevant than
those of the substructures to be coupled, as for bolted joints, wire rope isolators,
turbine blade-rotor connections, etc. The advantages of nonlinear dynamic substruc-
turing, where the nonlinear connecting elements are modeled using nonlinear normal
modes, are shown in several papers [16, 17].

The most remarkable topics in substructure decoupling are: interface optimiza-
tion and disconnection force identification; decoupling with configuration dependent
coupling conditions; joint identification, including nonlinear joints.

Interface optimization, discussed in Sect. 3.1, concerns how to select the best set
of DoFs in order to have a good conditioning of the interface flexibility matrix. In
fact, by considering pseudo-interfaces, measurements on the connecting DoFs can
be avoided. This is useful when for instance connecting DoFs are difficult to access.
Identification of disconnection forces is discussed in [11].

Substructure decoupling with configuration dependent coupling conditions is a
very challenging task, that can lead to interesting results for instance when only the
coupling conditions are configuration dependent, while the subsystems to be coupled
are not, as for a lifting crane or a Cartesian robot.

Among the many techniques that can be devised to deal with joint identification,
substructure decoupling is—in the authors’ opinion—one of the most promising.
Typically, the envisaged process involves subsequent steps of substructure coupling
and decoupling: model mixing techniques [14, 19] can be used to merge experimen-
tal measurements and theoretical models, and nonlinear joints can be identified by
experimentally varying the excitation level [13].
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