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Abstract The contributions to nonlocal elasticity given by the authors in the last
two decades are reported in this article. To better illustrate the above contributions
and their pertinence to the nowadays research framework, we start with a scrutiny
of the inconsistencies encountered within the Eringen’s purely nonlocal model and
the remedies required to overcome shortcomings and paradoxical situations known
from the literature. It is shown that the so-called strain-difference based nonlocal
theories encompassing the mentioned contributions provide effective methods to
address boundary-value problems. Applications to plates by nonlocal finite elements
and size effects analysis of beams in bending have been reported as illustrative
examples of previously obtained results.
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theory · Eringen’s differential nonlocal theory

1 Introduction

The roots of nonlocal elasticity can be traced back to the continuum theories by
[1–3], as well as to the multipolar elasticity theory by [4]. Eringen and Edelen [5–9]
formulated nonlocal elasticity theories featured by the presence of quantities called
residualswithwhich the nonlocal nature of fields as body forces,mass, stress, entropy,
etc., is assessed which makes them rather cumbersome for application purposes.
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Eringen and co-workers (see e.g. [10–13]) simplified the above elasticity theories
in such a way that the nonlocal theory and the classic one differ from each other
only in the stress-strain constitutive equation, but leaving unaltered the equilibrium
equations and the kinematic relationships. Notably, with the nonlocal constitutive
equation the stress at a point is expressed as a weighted mean value over a neighbor
region of that point. For this purpose, a convolution operation upon the strain field
is used, which is featured by a nonlocal kernel being a function of the Euclidean
distance between the stress and strain points. Rogula, [14], provided a mathematical
definition of the nonlocality concept based upon the existence of an internal length
scale as a material parameter. Variational principles within this nonlocal elasticity
theory were developed by Polizzotto [15].

The above simplified Eringen’s nonlocal model was widely used for both theo-
retical and engineering applications not only within elasticity, but also in many other
fields as plasticity, crack and damage mechanics, dislocation theory, etc. There exists
a huge literature on these matters, for which reference is made to more specific works
as: [16–18] for plasticity, crack mechanics and damage mechanics; [19] for nonlo-
cal theories of elasticity, thermo-elasticity and electro-magneto-elasticity. The above
nonlocal elasticity theory developed by Eringen and co-workers will be referred to
as the Eringen’s (integral) nonlocal theory, or Eringen’s (integral) nonlocal model,
in the following.

An important aspect of a nonlocal continuum theory with respect to the classi-
cal local one is that, on addressing a boundary-value problem, the former leads to
governing integro-differential equations carrying in more computational difficulties
than the governing differential equations to which one arrives with the latter. Erin-
gen, [20], provided amethod to address an integral nonlocal boundary-value problem
by means of a differential equation of which the Green function coincides with the
kernel of the integro-differential equation. After this step by Eringen, a new branch
of nonlocal elasticity grew up with the name of differential nonlocal elasticity. This
was widely applied to beam, plate and shell models simulating sensor and actuator
devices within micro- and nano-technologies in the purpose to solve various engi-
neering problems as buckling, vibrations andwave propagation problems, alongwith
size effect analysis, for which reference is made to the review papers [21–23].

1.1 Inconsistencies of the Eringen’s Nonlocal Model.
Remedies

Notwithstanding the notable success of the Eringen’s nonlocal theory, some incon-
sistencies were soon discovered and discussed [24], as described hereafter.

One such inconsistency originates from the Eringen’s integral nonlocal model
leading to ill-posedboundary-valueproblems. In fact, the inherent integro-differential
governing equation, viewed as integral equation, falls into the category of Fredholm
integral equations of the first kind which —as known from integral equation theory
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[25]—admits multiple solutions, or no solutions at all. After the contributions by
[26, 27], it is known nowadays that a necessary and sufficient condition in order that
an integral nonlocal model admits a (unique) solution is that some special boundary
conditions (called also “constitutive” BCs, or even “nonlocality” BCs) must be not
in contrast with the imposed traction boundary conditions. A remedy to the above
drawback was proposed by Eringen, [5, 28], and implemented by many others [15,
29–37]. With this formulation the fully nonlocal model is replaced with a two-phase
local/nonlocal mixture model, which leads to Fredholm integral equations of the
second kind, hence to well-posed boundary-value problems. Another remedy to the
Eringen’s integral nonlocal model was proposed by [38] with a new formulation in
which the basic concepts of the Eringen’s integral nonlocal model are saved, but the
strain and stress play therein interchanged roles.

A second inconsistency of the Eringen’s integral nonlocal model is more directly
related to the differential formof it. Eringen [20] likely proposed thismodel to address
problems with infinite domain (like crack tip singularities, wave propagation, and the
like). Peddieson and co-workers [39] first used the differential nonlocal model for
size effects analysis of micro- and nano-beams. It was found that the model generally
predicts softening effects on the stiffness with increasing the length scale parameter
of the beam, but may also predict hardening (as for a cantilever beam under uniform
load), or even no size effects at all (as in the so-called “paradox” case, namely, a
cantilever beam under point load at the free end), all apparently without a precise
rule. The right motivation for which the above anomalous behavior gets out is likely
due to the conjugate governing differential equation having a degree equal to that of
the integro-differential equation. Therefore the differential-based solution cannot in
general coincidewith the integral-based solution (if it exists), due to the impossibility
to implement the nonlocality BCs as side conditions.

A third inconsistency of the Eringen’s nonlocal model has been identified with
its property of not saving uniform local fields. This implies that, in the case of
homogeneous nonlocal elastic material, the stress corresponding to a uniform strain
is not uniform in general, except in an infinite domain. In other words, the Eringen
nonlocal model does not comply with the locality recovery condition [40], that is,
the condition for which the material behaves as a local material under a uniform
strain field. A milder form of this condition is the local stress recovery condition
[41], in which the stress is uniform under a uniform strain, but the material still
saves some nonlocality features. A remedy to this kind of inconsistency, proposed
by Polizzotto and co-workers [41], is in the form of a two-phase local/nonlocal model
in which the nonlocal phase is driven by the strain difference measured at the generic
point with respect to the reference point where the stress is evaluated. This model
called strain-difference based nonlocal model, automatically satisfies the local stress
recovery condition; it also leads to Fredholm integral equations of the second kind
and thus to well-posed boundary-value problems. Another form of strain-difference
based nonlocal model was also proposed in [40], which complies with the more
stringent locality recovery condition, that is, under uniform strain, not only the stress
is uniform, but the inherent Helmholtz energy potential looses its dependence on the
length scale parameter.
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1.2 Objectives and Outline

The purpose of the present paper is to give an insight over the family of strain-
difference based nonlocal models developed by the authors in the last two decades
within elasticity. To be concise, the mentioned family is reduced to two basic models,
of which one (called “first type”) complies with the local stress recovery condition,
the other (called “second type”) complies with the more stringent locality recovery
condition and both models lead to well-posed boundary value problems. The paper is
organized as follows. After the introductory arguments in Sect. 1, some preliminary
considerations are reported inSect. 2. Sections3 and4 constitute the central part of the
paper, in which the two strain-difference based models are presented. Applications
of these models to engineering problems are reported in Sect. 5. Section6 concludes
the paper.

2 Preliminaries to Eringen’s Nonlocal Elasticity

In this section, the Eringen’s nonlocal constitutive model of continuum elasticity
is recalled in its fully nonlocal integral form. For this purpose, a 3D (finite) solid
body of domain V is considered within a R

3 space, which before deformation is
referred to a Cartesian orthogonal co-ordinate system, say x = (x1, x2, x3). The body
is constrained at a portion, say Sc, of its boundary surface S = ∂V , in such a way as
to impede any rigid motion. The body is also subjected to external actions, which are
assumed in the form of body forces, say b(x) within V (N/m3) and surface forces, or
tractions, say p(x), applied on the free portion S f = S\Sc (N/m2). All these forces
vary in time in a quasi-static manner.

Eringen and co-workers, [10–13, 19], proposed a nonlocal constitutive model for
elastic materials, which in the common case of homogeneous material, is expressed
as

σ (x) = C :
∫
V
g(x, xI)ε(xI) dV I ∀ x ∈ V (1)

where the colonproduct denotes double index contractionoperations (e.g. (C : ε)i j =
Ci jklεkl) and dV I = dV (xI). The stress σ (x) of Eq. (1) is the “nonlocal” stress arising
at the field, or reference, point x ∈ V , ε(xI) is the “local” strain acting at the generic
source point xI ∈ V . Also, the two-point symmetric function g(x, xI) is the kernel
function (called also attenuation or influence function after Eringen), which is posi-
tive definite and generally is assumed to depend on the field and source points x, xI

through the Euclidean distance r = |x − xI|. For mathematical convenience, often in
the literature the kernel g is taken in the form of an exponential as

g(x, xI) = k0 exp
( − r

c

)
, r = |x − xI| (2)
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where c denotes the length scale parameter. The coefficient k0 is determined through
the normalization condition

∫
V∞

g(x, xI) dV I = 1 (3)

where V∞ is the infinite domain (R3) in which V is embedded, [16, 19]. In the
Introduction, it was pointed out that the Eringen’s nonlocal constitutive stress-strain
relation (1) leads to ill-posed boundary-value problems whereby there may be either
a multiple solution, or more likely no solution at all, due to the impossibility to
conciliate the boundary traction conditions with the nonlocality BCs, [26, 27].

In our treatment of nonlocal elasticity, we make reference to a two-phase
local/nonlocal model cast in the form

σ (x) = C :
[
ξε(x) + (1 − ξ)

∫
V
g(x, xI)ε(xI) dV I

︸ ︷︷ ︸
E(x)

]
(4)

This relation strongly appeals to a two-phase local/nonlocal mixture model with the
coefficient ξ playing the role of local phase parameter, but also that of an (essentially
positive) material constant, not necessarily less than 1. The two-phase model (4)
leads to well-posed boundary-value problems. The stress σ (x) is there expressed
linearly in terms of the local strain ε(x) along with the strain integral E(x) given by
the formula

E(x) = R(ε)(x) :=
∫
V
g(x, xI)ε(xI) dV I (5)

where R(·) denotes the nonlocal operator acting on (·).
For a correct thermodynamic treatment of the considered two-phase model let us

assume, in agreement with the stress-strain relation (4), the existence of an internal
energy potential, say u = u(ε,E, η), where η is the entropy density, [15, 19, 42].
Assuming isothermal conditions for simplicity, the energy balance principle (or first
thermodynamics principle) can be cast in a point-wise form as

u̇ = σ : ε̇ + P in V (6)

where P is the (nolocality) energy residual, that is, the energy density transmitted to
the generic particle from all other particles within the body as a consequence of the
nonlocal nature of the material, [9, 15, 19, 42]. The following insulation condition
has to be satisfied, [9], that is

∫
V
P(ε, ε̇) dV = 0 (7)



200 C. Polizzotto et al.

holding for any deformation mechanism and signifying that the particle system is
constitutively insulated within V , that is, no long distance energy is transmitted to
the body from the exterior environment due to the nonlocal behaviour of thematerial.

Let the Helmholtz free energy ψ = ψ(ε,E) be introduced using the Legendre
transform ψ = u − Tη, with T > 0 being the (constant) absolute temperature. The
energy balance (6) may then be rewritten as

T η̇ = σ : ε̇ − ψ̇ + P ≥ 0 in V (8)

Here, the non-negativity sign on the r.h.s. is introduced to enforce the second ther-
modynamics principle. In this way, inequality (8) identifies itself with the Clausius-
Duhem inequality, [43, 44], which differs from its classical counterpart only for the
presence of the energy residual P . Was P identically vanishing for any deformation
mechanism, then the material would be a simple material.

Let inequality (8) be integrated over V to obtain, recalling (7) and using the
appropriate Green identity, the following inequality

∫
V

[
σ − ∂ψ

∂ε
− R

(∂ψ

∂E

)]
: ε̇ dV ≥ 0 (9)

As this has to hold for arbitrary deformation mechanism ε̇, a necessary and sufficient
condition of (9) is the state equation

σ = ∂ψ

∂ε
+ R

(∂ψ

∂E

)
(10)

where σ represents the Cauchy stress work-conjugate to ε̇. Equation (10) implies
that (9) is satisfied as an equality and therefore

P = ψ̇ − σ : ε̇ = ∂ψ

∂E
: R(ε̇) − R

(∂ψ

∂E

)
: ε̇ in V (11)

which is the constitutive equation for P .

3 Strain-Difference Based Nonlocal Models of First Type

In this section,we start to provide strain-difference based nonlocalmodels. Two types
of such models will be presented, that is, first type models in the present section,
second type models in the next section. In this section the material is characterized
by a Helmholtz free energy function of the strain ε and strain integral E specified by
(5), cast as a quadratic form as

ψ = 1

2
ε : C∞ : ε + 1

2
ε : C1 : E + 1

2
E : C2 : E (12)
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which constitutes an extension of the treatment reported in [41]. Since E → 0 as the
length scale parameter c → ∞, the moduli tensor C∞ characterizes the asymptotic
behavior of the material; the tensors C1, C2 are defined in terms of the moduli
tensor of classic anisotropic elasticity, C, that is, C1 = α1C, C2 = α2C, with α1, α2

being suitable scalar coefficients. Both C∞ and C are considered nonhomogeneous
within V .

Let the body be subjected to external quasi-static actions as specified at the begin-
ning of Sect. 2.We go to determine the governing equations of the inherent boundary-
value problem within the framework of small displacements and linearized elasticity
using the principle of the minimum total potential energy of nonlocal elasticity, [15],
through the functional �[u] here cast in the form

�[u] :=
∫
V

ψ(ε,E) dV −
∫
V
b·u dV −

∫
S f

p·u dS (13)

Here, ψ(ε,E) is the functional (12), whereas u denotes the inherent displacements.
The functional (13) has to be minimized under the kinematic restrictions relating ε to
u, as well as the imposed displacements u = uc on Sc. Following a straightforward
procedure, [15], one easily arrives at the total Cauchy stress σ (x) cast in the form

σ (x) = C∞(x) : ε(x) +
∫
V
k(x, xI)ε(xI) dV I (14)

The (symmetric) kernelk(x, xI) here above is the nonlocal anisotropicmoduli tensor,
that is,

k(x, xI) = α1k1(x, xI) + α2k2(x, xI) (15)

where

k1(x, xI) := 1

2

[
C(x) + C(xI)

]
g(x, xI)

k2(x, xI) :=
∫
V
C(z)g(x, z)g(xI, z)dV (z)

⎫⎪⎪⎬
⎪⎪⎭

(16)

The Cauchy stress σ (x) of (14) collects a local contribution at x ∈ V , along with
two types of long distance contributions, one of which is the result of the interaction
of every two particles (xI, x) ∀xI ∈ V , the other of every three particles (xI, z, x)
∀(xI, z) ∈ V .

Since the σ (x) of (14) does not comply with the locality recovery condition, Eq.
(14) is replaced with

σ (x) = α0C(x) : ε(x) +
∫
V
k(x, xI) : [ε(xI) − ε(x)] dV I (17)

Equation (17) shows that σ (x) = α0C(x) : ε̄ for ε(x) = ε̄ in V . Indeed, the local
stress recovery condition is satisfied, but not the locality recovery condition, since
in fact for ε(x) = ε̄, ψ can be shown to still have a nonlocal form as
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ψ = 1

2
ε̄ : C∞(x) : ε̄ +

[
α1γ (x) + α2γ

2(x)
]1
2

ε̄ : C(x) : ε̄ (18)

which contains c through the function

γ (x) =
∫
V
g(x, xI) dV I (19)

The variational principle invoked previously led us to two forms of the stress-strain
relation, namely (14) pertaining to the original strain-integral model characterized
by an asymptotic moduli tensor C∞(x), and (17), pertaining to the strain-difference
based model characterized by an asymptotic moduli tensor α0C, α0 > 0. The varia-
tional principle also leads us to the equilibrium equations with which the stress σ is
required to comply, that is,

∇ · σ + b = 0 in V, σ · n = p on S f (20)

where n denotes the unit external normal to S = ∂V , along with the kinematic equa-
tions, that is,

ε = 1

2

(
∇u + (∇u)T

)
in V, u = uc on Sc (21)

Equation (20) and (21), typical of linearized elasticity, associated with (17) form
a consistent set of equations governing a well-posed boundary-value problem. It
in fact leads to an integro-differential equation of the second differential order in
the displacement u constituting a Fredholm integral equation of the second kind.
This admits a unique solution free from any paradoxical condition and additionally
satisfies the local stress recovery condition.

4 Strain-Difference Based Nonlocal Models of Second Type

In this section, a strain-difference based nonlocal model complying with the locality
recovery condition is reported. Here, the material is characterized by a Helmholtz
free energy ψ(ε,Ed) defined as

ψ = 1

2
ε : C : ε + 1

2
Ed : (αC) : Ed (22)

where Ed = R(Dε) = strain difference integral in which

Dε(x, xI) = ε(x)I − ε(x) ∀(x, xI) ∈ V (23)

and then
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Ed = R(Dε)(x) =
∫
V
g(x, xI)

[
ε(xI) − ε(x)

]
dV I (24)

The strain-difference based nonlocal model here considered is a phenomenological
model accounting for inhomogeneity of the moduli tensor C(x) and of the length
scale parameter c = c(x) along with the additional attenuation effects produced by
the latter inhomogeneities. As reported in [40], where the mentioned model was
developed, the kernel function g(x, xI) is taken in the form

g(x, xI) = k0 exp
(−req

c0

)
(25)

where c0 is the largest value of c(x) in V , whereas req denotes the equivalent distance
defined as

req = r + r∗ (26)

Here, r is the so called geodetical distance, that is, the length of the shortest path
between x and xI without intersecting the boundary surface. For a non-convex domain
it is r ≥ |x − xI|, but r = |x − xI| for a convex one (no holes, nor rientrant angles,
nor cracks). The scalar r∗ is a fictitious (non-negative) distance accounting for the
additional attenuation effects produced by inhomogeneities of both C(x) and c(x).
However, in the present short review, convex domains are considered, therefore r =
|x − xI| and c(x) = c = constant.

The constitutive stress-strain relation can be obtained as in Sect. 3, but using the
Helmholtz potential (22). So we obtain the total Cauchy stress as

σ = C : ε + αR
(
C : R(Dε)

)
(27)

After some mathematical operations (not reported here for brevity), one obtains two
possible forms for the stress-strain relation, that is, either

σ (x) = C(x) : ε(x) − α

∫
V
J(x, xI)[ε(xI) − ε(x)] dV I (28)

or, equivalently,

σ (x) = C(x) : ε(x) + α

∫
V
S(x, xI)ε(xI) dV I (29)

Here above, J and S denote the nonlocal stiffness tensors expressed as

J(x, xI) = [
γ (x)C(x) + γ (xI)C(xI)

]
g(x, xI) − k2(x, xI) (30)

S(x, xI) = 1

2

[
γ 2(x)C(x) + γ 2(xI)C(xI)

]
δ(x − xI) − J(x, xI) (31)
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where γ (x) is given by (19) (0 < γ (x) ≤ 1), whereas the tensor k2 is given by (16)2.
Also, J and S satisfy the equalities

∫
V
J(x, xI) dV I = γ 2(x)C(x),

∫
V
S(x, xI) dV I = 0 ∀ x ∈ V (32)

It is readily seen that for a uniform strain field, say ε(x) = ε̄ = const., Eq. (28) gives
σ (x) = C(x) : ε̄, that is, the local stress condition is recovered correspondingly.
Additionally, since EdR(D ε̄) = 0 identically, the Helmholtz free energy loses its
dependence on the length scale parameter c, which means that the locality recovery
condition is satisfied with the strain-difference based nonlocal model of second type.
Combining (28), or (29), with the equilibrium equation (20) and the kinematic equa-
tions (21) leads, again as in Sect. 3, to an integro-differential equation of the second
differential order in the displacement u. This constitutes a Fredholm integral equa-
tion of second kind, which admits a unique solution free from paradoxical condition
and in addition complying with the locality recovery condition.

5 Numerical Results

The strain-difference based nonlocal model of second type has been implemented
into a nonlocal version of the finite element method (NL-FEM) in [45]. Such formu-
lation is based on a nonlocal total potential energy principle given in [40], where the
strain-difference based NL-FEM was proposed starting from a variational treatment
of a BVP which is a straightforward extension to the strain-difference-based nonlo-
cal model of the general variational principles conceived in [15]. Some numerical
findings, related to a nonhomogeneous plate under tension, are given hereafter as
an effective application of the NL-FEM. The above quoted papers are referred for
theoretical and computational details. The discussed model has been also applied in
[46] to the analysis of small-scale Euler-Bernoulli beams in bending. The relevant
beam problem is reduced to a set of three mutually independent Fredholm integral
equations of the second kind (each independent of the beam’s ordinary boundary
conditions, only one depends on the given load), which can be routinely solved
numerically. Some results concerning a benchmark beam case are given next as a
second numerical example, while referring to the above quoted paper for details.

5.1 A Nonhomogeneous Square Plate Under Tension

The square plate under tension depicted in Fig. 1 is analyzed via theNL-FEM.Geom-
etry, material data, boundary and loading conditions are specified in Fig. 1 whose
sketch shows that the plate is fixed along the edge at x = 0 with assigned dis-
placements ūx = ū y = 0, and suffers uniform given displacements ūx = 0.001cm
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Data :

x

y

2a 2aa

2a

a

2a

1E

2E

0.001 cmxu

1 cma
0.5 cmt

1 20.4 E E

2 210 E GPa
0.2

xu

Fig. 1 Nonhomogeneous square plate under tension, after [45], with piecewise constant Young
modulus. Geometry (t= thickness), boundary and loading conditions, material data

along the free edge at x = 5a. The attenuation function is the bi-exponential of
Eq.(2) with k0 = 1/2πc2t with an influence distance (i.e. the distance beyond which
g(x, xI) ≈ 0) equal to 11c. C0 quadratic, 8−nodes isoparametric Serendipity nonlo-
cal finite elements (NL-FEs) have been used for the numerical analyses. The pecu-
liarity of suchNL-FEs is that each element, say the n−th one, aside from the standard
(local) element stiffness matrix, say kloc

n , is equipped with element matrices of non-
local nature, say knonloc

n and knonloc
nm . The first one accounts for the influence exerted

on the n−th element by the nonlocal diffusive processes over the whole domain, it
contains the operator γ (x) given by (19). The second one is a set of element matri-
ces, all pertaining to the n−th element, precisely: a self-stiffness matrix, obtained
for m = n, plus all the cross-stiffness matrices with m �= n being m the generic ele-
ment neighbor of element n. Each knonloc

nm (with n �= m) contains the matrices of the
Cartesian derivatives of the shape functions of elements m and n so accounts for the
influence on the element n of the neigbor elements. Further details are given in [45]
and are here omitted for brevity.

InFig. 2 the plate sizea has beenproportionally varied, assuminga = 0.5, 1, 2 cm,
so defining three proportional sized plates with the boundary conditions of Fig. 1 and
suffering the displacements ūx which have been accordingly proportionally varied
with the plate dimension such that ūx = a/1000. The three solutions obtained with
local elasticity coincide, each FE model is a scaled version of the other two. In
contrast, the three nonlocal elastic solutions given by the NL-FEM show a decreasing
– a flattening – for decreasing specimen dimensions confirming the capacity of the
NL-FEM to capture size effects.
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Fig. 2 Nonhomogeneous plate under tension, after [45]. Strain profiles εx versus x/L at y = 2.5
cm, c = 0.1 cm, α = 50, mesh of 40×40 FEs and for three different proportional sized plates given
by a = 0.5, 1 and 2 cm. Local (lines without markers) and nonlocal (lines with markers) solutions

5.2 Small-Scale Euler-Bernoulli Beams in Bending

A simple benchmark Euler-Bernoulli beam in bending has been analyzed, precisely
a cantilever beam under point load P at the free end. The beam has been assumed
homogenous, of length L and referred to orthogonal co-ordinates (x, y, z). The x
axis coincides with the beam axis, z is oriented along the beam height, y is in the
width direction. The bending plane coincides with the plane (x, z), the (y, z) axes
coincide with principal inertia axes of the cross section. The only meaningful strain
component is εxx and the transverse attenuation effects are assumed to be negligible
such that the attenuation function g can be considered to be a function of the x co-
ordinate only, i.e. g = g(x, x I) herein assumed in the bi-exponential form of Eq. (2).
The fundamental bending moment/curvature relation featuring the strain-difference
based nonlocal model for beams proves to be:

M(x) = E Iχ(x) − α

∫ L

0
J (x, x I)

[
χ(x I) − χ(x)

]
dx I (33)

where M(x) and χ(x) are the bending moment and the curvature, respectively, E
is the Young modulus and I the second area moment of the cross-section. Equation
(33), counterpart of (28) for the EB beam model, leads to a solving equation for the
beam problem which is a Fredholm integral equation of the second kind. The latter,
as shown in [46] (see also [47, 48]), can be solved by a splitting strategy that provides
a set of three mutually independent Fredholm integral equations of the second kind,
all of which holding no matter how the beam is constrained. The solution for the
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P

L

Fig. 3 Cantilever beam subjected to a point load at the free end, after [46]. Normalized deflection
at the free end cross section versus internal length parameter λ for strain gradient (Polizzotto 2014,
[49], dashed line), strain-difference integral (present model, solid line), stress-driven (Barretta et
al. 2018, [50], dash dot line) and Eringen differential (Peddieson et al. 2003, [39], solid line with
triangles) constitutive behavior

beam problem is indeed achieved to within four constants to be determined by the
ordinary boundary conditions characterizing the analyzed specific beam case.

In Fig. 3 the normalized deflection versus the normalized internal length param-
eter is reported. The obtained result is plotted against the ones given by the strain
gradient model [49], the stress-driven model [50] and the Eringen differential [39].
The obtained results show that, with the exception of the Eringen’s nonlocal model
which is affected by the discussed inconsistencies, the predicted size effects are of
stiffening type, a circumstance which seems to confirm the well-known smaller-is-
stiffer phenomenon. It is worth noting that for “small” values of the internal length c
the three methods are in substantial agreement with one another, while for c → ∞,
at difference with the other models, the asymptotic behavior predicted by the strain-
difference (here not shown for brevity) is of local type, a result in agreement with
the expected (local) behavior of a size dependent nonlocal beam model, which for
c → ∞ behaves like an atomic lattice model, [20, 51].

6 Conclusion

An overview of a family of strain-difference based nonlocal elasticity theories has
been presented. These essentially include two model types, of which one complies
with the “local stress recovery condition”, the other with the more stringent “locality
recovery condition”, but both models lead to well-posed boundary-value-problems
without computational drawbacks or other paradoxical conditions.
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