Toward a Smart Approach of Migration ®)
from Relational System DataBase ety
to NoSQL System: Transformation

Rules of Structure

Abdelhak Erraji, Abderrahim Maizate, and Mohammed Ouzzif

Abstract In the last few years, databases have become very important and very
large because they play a strategic and important role in most organizations and
because they receive a huge flow of information from multiple sources every
moment in building BigData. This situation identified several limitations and
weaknesses in relational database management systems (RDBMS), such as avail-
ability, real-time response, horizontal scalability, decision support, advanced data
analysis, and especially the management of Bigdata which can reach zeta bytes in
storage. This requires the storage and organization of this data in a new manage-
ment system database not fixed by a rigid structure and resolves all problems
associated with the storage of database in a relational system. In this view, orga-
nizations need a new NoSQL (not only SQL) system that overcomes the limitations
of the relational system. The change of the database management system requires
the migration of the databases from the relational system to another NoSQL, taking
into consideration all stored data and keeping the majority of the possibilities and
functionalities of the old system, with all the advantages of the new system. In this
paper, we will identify the elements of relational databases that belong to nature:
data, structure, and semantics, which we must migrate to a NoSQL system, such as
a document-oriented system. Also in this paper, we will present the rules for
transforming the structure of the relational system to another document-oriented
NoSQL, according to the principal’s basics of a new approach to migration.

Keywords Migration DataBase - NoSQL - Database - Transformation rules -
BigData

A. Erraji (X))
RITM ESTC Laboratory, Hassan II University, ENSEM, Casablanca, Morocco

A. Maizate - M. Ouzzif
RITM ESTC Laboratory, Hassan II University, ESTC, Casablanca, Morocco

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 783
M. Ben Ahmed et al. (eds.), Innovations in Smart Cities Applications Volume 5,
Lecture Notes in Networks and Systems 393, https://doi.org/10.1007/978-3-030-94191-8_63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94191-8_63&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94191-8_63&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94191-8_63&domain=pdf
https://doi.org/10.1007/978-3-030-94191-8_63

784 A. Erraji et al.

1 Introduction

To be able to control the data as well as the users, we need database management
systems. A database management system is a set of computer software that is used
to manipulate databases and performs ordinary operations such as viewing, modi-
fying, building, transforming, copying, backing up, or restoring databases of data.
The relational model is based on a solid mathematical model based on the logic of
the first-order predicates. It is based on simple concepts that make it strong at the
same time as it is his weakness. Distributed storage is a real constraint on systems’
today’s relationships, to which is added the complexity of the structures of the data
manipulated by the systems. At the time of the Web 2.0 revolution and given the
current use of the Internet, the amount of data available on the web is increasing
year by year exponentially. Today, companies are facing a huge increase in the
quantity of data they need to store and process. This is especially true for very
fashionable web applications like Twitter, Facebook, and Google. These must cope
with the huge amount of activity generated by their millions of users. So the first
basic need that NoSQL answers are performance. Relational database management
systems (RDBMS) are the predominant solution for the storage and processing of
data, but the experience of these companies has shown that the RDBMS model is
reaching its limits in the face of such large amounts of data [1]. The NoSQL
databases are mainly designed to optimally store given datasets, but as a counter-
part, the language used to query the NoSQL system is much less rich. This is why
relational databases will always survive, and NoSQL can never fully replace SQL.

Moving from a relational database to a NoSQL database has become one of the
most desired benefits for a developer or an organization today. Working with a more
flexible data model and having rigid schemas is a big advantage. The difference
between relational database management systems (RDBMS) and NoSQL databases
is the data model used. Each record in a relational database conforms to a schema
with a fixed number of fields. The data is denormalized into several tables, and so the
key benefit is that there are fewer duplicate data in the database [2]. In NoSQL
databases, each object can have a completely different structure from other objects.
The main advantages of databases are the flexible data model since data can be
inserted without a defined schema; easy scalability because the data between the
servers can be propagated automatically; and finally, the advanced technologies and
modern NoSQL databases that cache data, for example, and in a transparent manner.

2 From RDBMS to NoSQL Database

2.1 Literature

Currently, scientific research rarely discusses how to effectively validate the best
way to migrate data from RDBMS to NoSQL databases to ensure the quality of the

Toward a Smart Approach of Migration from Relational System... 785

data being migrated. Therefore, those needs become a major concern and an
interesting research topic. According to [19], data has become an essential hub for
information processing. The authors present a framework, named NoSQLayer,
based on two parts: a migration module and a mapping module. The first one is a set
of methods enabling seamless migration between RDBMS, and the second one
provides a persistence layer to process database requests and translate and execute
requests in any RDBMS. In 2016, the authors of the article [20] present an auto-
matic transformation of a multidimensional conceptual model into two NoSQL
databases: column-oriented and document-oriented models, and to validate the
transformation, they implemented four data warehouses using Cassandra (as a
column-oriented NoSQL system) and MongoDB (as a document-oriented NoSQL
system). The results show that MongoDB with hierarchical transformation is more
suitable when dealing with OLAP queries. In the same year (2016), the authors of
Article [21] proposed a flexible and highly modularized data adapter for hybrid
database systems by using a general SQL layer that accepts queries from applica-
tion services. It also controls query flow during database transformation. Therefore,
they can provide a seamless mechanism to use RDBMS and NoSQL databases at
the same time. NoSQL databases are designed to solve data processing problems in
volume [22]. Cloud computing also enables the database as a service model to
manage large volumes of user-generated data using NoSQL data repositories.
Authors in [23] have presented a NoSQL data migration framework to foster data
portability across cloud-based heterogeneous NoSQL data repositories; results
show that the document-based database supports efficient migration of data,
whereas the graph database ensures effective management of large volumes of data
[24]. In 2017, the authors of the article [25] proposed a meta-model-based data
merging approach, which allows simultaneous querying of data from heterogeneous
database systems. Results of database queries are translated into JSON objects, and
data merging is done by concatenating separate JSON files, so the result can be
represented by any data visualization source (tables, Excel, CSV files, etc.). In
addition, Big Data has also become a crucial issue and one of the most important
technologies in the modern world [26]. The authors have presented a study by
proposing a document-oriented data model for big data and then applying this
model to migrate relational database applications to NoSQL.

All of these approaches transform relational databases into NoSQL systems from
the point of view of data or structures only or both. Now, a relational database has
the semantic aspect, which defines how we construct the entities, the tables, and
their structures, and how we can generate new information from this structure and
the stored data.

2.2 Discussion

We notice that articles [4—11] have transformed just a part of the relational data-
bases and ignored another part in their migrations. Indeed, all relational databases

786 A. Erraji et al.

have three types of data: the first is stored in tables; the second is contained in the
structures of tables; and the third is implicit and deduced from the relationships
between the tables, which form the semantics data in BDDRs.

To explain the third type, we will consider the following MCD model:

This MCD model will be transformed to the following MLD model (Fig. 2):

In turn, it keeps the same form as tables in a relational system database. In the
example above, we notice that the MCD has three elements (student, school, and
registration operation), but its transformation into MLD keeps only the first two
elements, and the third has been transformed into a foreign key in one of the two
tables.

For relational systems, the registration operation models the effect and action
between two objects and their multiplicity. This operation is implicit in MLD; it
comes from the registration relationship in MCD, which can be restored in the
BDDR by joining two tables using a foreign key.

However, the NoSQL systems do not allow joining the tables, so the foreign
keys do not have any meaning in these systems, and also, one cannot restore the
relations between the tables, which shows losing information during the transfor-
mation and others being superfluous like foreign keys.

To this end, we consider that the relations must have a particular transformation
and that the foreign keys must disappear in the transformation, or else find a way to
realize the joins in the NoSQL systems.

The joining of two tables in relational systems is based on three main steps: the
Cartesian product of the two tables, the restriction of the rows based on the join
condition to form a new data source for the SQL query and the referential integrity
constraints. This third principle prohibits the deletion of a value used as a primary
key in another table, and the addition of a foreign key that is not a primary key in
the other table to verify the data integrity. These principles are managed by the
relational system, which respects the ACID principle, which promotes data con-
sistency. As for the NoSQL system, the documents are very large, and therefore
their product generates a file that may have zeta bytes of data and be full of bad data

Fig. 1 Example of MCD
model
idStudent idSchool
(1,1)
Fig. 2 The transformation of
the MCD model in Fig. 1 to Student__} ~School
the MLD model idStudent idSchool
#idSchooII

Toward a Smart Approach of Migration from Relational System... 787

that requires restriction filtering based on a condition, which weighs down the
system to simple data to extract, such as student enrollment in a school.

For NoSQL systems, data consistency can be a non-mandatory plus. They
implement the BASE principle coming from the CAP theorem instead of ACID.
The BASE principle favors the availability of data and the speed of responses.
Therefore, the joins in relational systems must find another form during their
transformation.

3 Analyzing and Rules of Transformation

3.1 Why MongoDB is Used as the Destination in Our
Approach as a NoSQL System?

To complete our migration approach studys, it is necessary to specify the destination
category into which the old databases will be transformed. The authors of this paper
have shown that document-oriented NoSQL databases are the most suitable for
transforming relational databases [12] because they are similar in structure to
relational systems. As a destination system, MongoDB is the favorite system
because it implements the principles of the Document-oriented NoSQL category
and it provides high performance in its category of NoSQL [13].

MongoDB stores data in JSON or Binary JSON (BSON) files as collections,
which are structured in their files as a list of objects. Each object stored can be
named “Document” and respects JSON’s form. The object in JSON has a reference
and an object, which contains several attributes with their values. This structure is
very similar to the projection of a table onto a row in the relational system. So one
row in a table can be transformed into an object in JSON, and one table storing a list
of rows can be transformed by a collection into a list of objects. So we can
transform all the tables into JSON files.

On the other hand, the stored functions can be transformed into programs in
JavaScript, which might manipulate JSON files. Other data, which controls the
structure in a relational system, can be transformed and stored in Mongoose, which
controls the structure of data in MongoDB.

MongoDB can use a framework named “Mongoose” to define the structure of
documents that will be stored in JSON files in their schemas. In these schemas,
Mongoose can define all components of a relational database except for four ele-
ments: relationships, foreign keys, joining collections, and triggers. In the following
section, we will define the rules for the transformation of relationships and foreign
keys.

788 A. Erraji et al.

Fig. 3 Different types of RelationShip

Relationship in relational

system Database
Binary

¥ ¥
(Many to Many | (One to One

(Reflexive] One to Man

[One in the [ast] One in middle

3.2 Rules of Transformation of Relationships and Foreign
Key

This is the core of the relational system and the most demanding and interesting part
of the migration. In our study, we will distinguish the relationships according to six
types, as presented in Fig. 3:

In the relational model, relationships between entities are transformed into tables
or foreign keys, to allow joins between tables to render the full picture of data in the
relational system and to merge parts of the data dispatched in tables into a single
complete data source with respecting the goal of the query. This data source is used
to extract the complete data or derive other new information. But in the concept of
objects, we reason by attribute. The notion of attribute makes it possible to store an
entire collection of objects (equivalent to a table in the relational model) in the form
of an attribute, which can be used by loops and the attribute access mode, to have a
sequence of data to restore the same complete information as the relational model.
This difference between the two systems clearly shows that in the relational model
the connection between the data containers is done horizontally, on the other hand
in the object model is done vertically.

Since the joins in the relational model are more expensive in terms of resources
(RAM, CPU, etc.) and especially for large tables, their transformations in the same
way in the object model will be more expensive than the relational system con-
sidering the vertical linking of collections. This situation requires the proposal of a
model with fewer joins.

For this, we will use the nesting of entities (collections) in the form of an
attribute when transforming relationships to create a structure giving the same
calculation possibilities as the relational model but with fewer joins.

To go in this way, we will try to remove the relations and substitute them with
nesting in the form of attributes, but this nesting will give a single collection
extended vertically and very complex, especially in the access to the elements at the
bottom of this nesting.

To have the optimum, we keep the same concept as the relational model in some
cases and adopt the new approach of nesting by attributes in other cases, knowing
well that this mixing must be done in such a way as to improve the system
performance. To do this, we must begin by transforming the elements at the

Toward a Smart Approach of Migration from Relational System... 789

extremities of the relational model to establish an intermediate situation. This
transformation will be repeated until the final situation is reached, in which the
different relations are transformed with the constraint of not exceeding two nesting
levels per attribute in large objects so as not to reduce performance during the
extraction operations of the data.

The rules to follow during these transformations are revealed in the following
sections.

Our solution consists of proposing the following transformation rules to trans-
form each type of relationship.

Rule 1 to Define a New Form of Foreign Key: We see that in the relational
model, the foreign key is a duplicate in the current table of the field representing the
primary key in another table. But in MongoDB, the identifier is attributed auto-
matically and is different from the primary key defined in the relational model.

However, the primary key in the relational model will be transformed in
MongoDB into an ordinary field whose verification of uniqueness and existence
will be delegated to the Mongoose through the definition of the schema of the
processed document.

According to these two situations, the foreign key will be transformed by an
attribute whose value is an object made up of two attributes: the identifier of the
object attributed in MongoDB, resulting from the transformation of the row of the
table containing the primary key, which is called “Ref”, and the attribute whose
value results from the transformation of the value of the field playing the primary
key in the relational model, which is called “value”.

A foreign key will be represented by adding the new attribute in each document
in our JSON files to represent the other entity that is part of the relationship. The
name of this foreign key is the same as the collection representing the other entity,
and its value is an object, whose structure must be defined in Mongoose. The
objects added as the value of this key will be used to make aggregations in the file
result of this transformation with fewer joins of collections.

Rule 2 for Non-binary Relations: In the relational model, this relationship is
transformed into an independent table and allows self-joining to generate new
information. If we attribute to it the new conception of transformation by attribute,
then we lose this possibility of self-joining. As a result, we propose that this
complex association be converted into an independent JSON file, with a new for-
eign key added to all documents in the collection of the new file JSON following
the first rule. This transformation is explained by the following Fig. 4:

Rule 3 for Binary Relations of Type (Many to Many): In the relational model,
this relationship is transformed into an independent table and allows self-joining to
generate new information. If we attribute to it the new conception of transformation
by attribute, then we lose this possibility of self-joining. Therefore, we propose that
this complex association be converted into a new independent file JSON in the
same way as rule 2. This transformation is explained by the following Fig. 5:

790 A. Erraji et al.

Bank Client
IDBank {l-n)m (1.0)] RegNumber
NameBank FistName
Capital LastName
Adress
Agency
IDAgency
city
adress
Transform to '
Bank.json Agency.json Clients.json
("_id":Objectld("5dc..), | [("_id":Objectld("11t."), | [(*"ja":Objectid("67t.."),
"IDBank":"CH301", "IDAgency':1236,

"RegNumber':20211120,
*"NameBank":"BMCE", "eity":"Chicago", "FistName":"James",

“capital":2098710871}, | ["adress":" adress1"j, | "LastName":"Biker",
(" ia":Objectld("24b.."), (" id":Objectid("11t.."),|| "Adress":"Alexandria.."},

“IDBank":"CH302" "IDAgency":1244, (" _id":Objectld("6 .."),
"NameBank":"CIH" ""city":" Chicago", "RegNumber':202111 ,
= e b " "etr " " T. (LA "
"capital":65888710871}, adress":" adress1"}, FistName':" Cross ",

"LastName'":" Chari",
" Adress':"Arlington.."},

Have;json
{""_id":Objectld("66.."),
"openingdate":"'12/12/2020",
"client":{"Rel":Objectld("67t.."),
"value':20211120},
"Bank'":{"Rel:Objectld("S4c.."),
"value":"CH301"},
"Agency'":{"Ref:ObjectId("11t..""),
"value':1236}

b

Fig. 4 Example of the practice of rule 1 and rule 2 to transform of Relationship non-binary

Product Client
IDProd (LII)m (1.0)] RegNumber
Label w FistName
Price LastName
I'ransform to ’
Bank.json Clients.json Selljson
{"_id"":Objectld("54c.."), ||{"_id":Objectld("67t."), | g GhccTar66.™),
"IDProd":"CH301", "Reg‘\' umber':20211120, " quantity "':50 »
"Label":" mobile ", FistName":""James", "client"":{"Ref":Objectld("67t.."),
"Price":200) "LastName":"Biker" }, "value":20211120},
{"_id":Objectld("24b.."), |["_id":Objectld("6 ."), ||vproduct's{"Ref":Objectld("Sdc.."),
"IDProd ":""CH302", "RegNumber':202111, "value":"CH301"}
"Label":" pen ", "FistName":" Cross ", %
"Price": 34}, "LastName":"Chari"},

Fig. 5 Example of practice rule 3 to transform Relationship binary type: many to many

Toward a Smart Approach of Migration from Relational System... 791

Transform top—""> {Modu!e.lson

" id™"m12",
[practical side “title™ "Java”,
idModule (0,1) (1,1)[@PraticalSide| ., coefcient: {3'
title : numberHours -

coefficient . " dm 112, .
m coefficient “numberHours™:30,

') “coefficient™ 2}

Fig. 6 Example of practice rule 4 to transform Relationship binary type: one to one

Rule 4 of Binary Relations of Type (One to One): In the relational model, this
relationship is transformed into a foreign key and makes it possible to verify the
existence of a correspondent on the other side. Therefore, we propose that this
simple association disappear by adding another attribute to all documents of the
collection that hold the relation, whose name is exactly the name of the other entity
and whose value is the document of the other entity. The minimum cardinality of 0
will be expressed by the attribute (“required”: false) in the schema defining the
document in Mongoose and the absence of the internet object in the global object.
This transformation will drastically reduce the number of joins and eliminate joins
whose primary purpose is to verify the existence of a correspondent on the other
side. This transformation is explained by the following figure Fig. 6:

Rule 5 for Binary Relations of Type (One to Many), Which the Entity on the
Side of the Cardinality (One) Does not Participate in Another Relation: We
propose for this simple association that it must disappear by adding to the docu-
ments of the collection that holds the relation another attribute whose name is
exactly the name of the other entity and whose value is formed by a list of docu-
ments of the other entity. The association on the side of the cardinality “n” is the
one that will contain the objects of the other entity. The minimum cardinality of 0
will be expressed in the same way as rule 4. This transformation will considerably
reduce the number of joins by storing this join by default in the collection. This
transformation is explained by the following Fig. 7:

Rule 6 for Binary Relations of Type (One to Many), Which the Entity on the
Side of the Cardinality (One) Participates in Another Relation: We propose
that this complex association must be transformed according to the rule 3 trans-
formation presented above. This transformation is explained by Fig. 5.

Rule 7 for Reflexive Binary Relations: This type of relationship is designed in
the logic of relational databases to be successively joined with the same table,
building an object hierarchy according to the meaning of the relationship. This type
is generally related through ordinary binary relations, but it is a very special type in
its logic, modeling, and processing. Theoretically, this kind of relation favors an
infinite number of joins of such a table with itself by using aliases. Also, the table

792

idModule
title
coefficient

Transform ln|::>

TrainingProgram

IdProgram
title

A. Erraji et al.

TrainingProgram.json
{

*_id™: "p1”,

“title": "selling Technics",

"module™:[{ "_id":1, "title":"mod1","c
Ries , "title":"mod1","
{ ™1, "title™:"mod1","coeff".3}

[-

Fig. 7 Example of practice rule 5 to transform relationship binary type: one to many

Transform To

"

Meta-Model
Relationnal System

Respect
Conform To

Transform to

Meta-Model
Document Store System

Conform To/
)

e
=
File JSON | A

Transformation
Structure Loyer
TSRSNLayer

Relationnal system

isjpart

Data
Structure

Data
Sementic

==,

check the
structure

check Data and
Extract Resluts

is part

v Programs
JavaScript o
i * Files L
i Respect JSON
|| I e .
Transform with ETL Data J Wgratog
B, ata Layer

Providethe Data MDR SHLayer

Fig. 8 The architecture of our approach “TMSDRDND Approach”

on the left has a different role than that which will be placed on the other side, even
though they are from the same table. But in practice, we make a single join or
double join of this table with itself. This relationship is not an ordinary binary
relationship. Therefore, we will transform according to rule 3 of the transformation
presented above. This transformation is explained by Fig. 5.

4 Proposed Approach

In our approach, called the “TMSDRDND Approach”, we will go through two
stages: the first, in the “TSRSNLayer” layer, aims to transform the structure data
and semantic data into the destination NoSQL model according to a set of rules that
respect the models defined previously (meta-model of both systems), and produces
a file which controls the structure according to a set of schemas, and another file in
JavaScript which contains the functions stored and ready to be used. The second
step, in the “MDRSNLayer” layer, consists of using an ETL, which will begin its
processing by extracting the data according to the models proposed in the first
stage. Then it will perform the necessary transformations according to the

Toward a Smart Approach of Migration from Relational System... 793

transformation rules of the layer. “TSRSNLayer” and finally it loads the data from
the source into JSON files using the results files of the “TSRSNLayer” layer pro-
cessing. Figure 8 shows the architecture of the “TMSDRDND Approach”.

5 Conclusion

Currently, NoSQL is a technology that is emerging in power; it is implemented in
environments handling large masses of data such as Google, Yahoo, Twitter,
Facebook, etc. Search engines are the first users of these technologies because they
need a lot of power. The storage and processing of these volumes of data are the
same for social networks, which manage a very strong increase in load due to a
large number of users and simultaneous requests.

This approach solves many problems in the previous approaches and it has two
phases: the first will transform the data structure and semantics of the relational
system into two files in the NoSQL system according to seven transformation rules,
which transform the axis principal in a relational system into all relations; and the
second phase uses an ETL tool, which we develop according to the first phase to
extract, transform, and load data. In this work, we succeeded in proposing another
way to transform the different relationships based on their cardinalities. This
transformation adopts two models: the first is based on the notion of attributes of
objects and their vertical nesting for the restoration and generation of data, while the
second aims to create a new collection of data to allow it to self-join for the
generation of new information. Also, we managed to find a new model to transform
foreign keys, keeping the possibilities offered according to the relational model and
respecting the principles of MongoDB. This transformation generates a new attri-
bute in one of the documents with a value of type object.

In future work, we will present an implementation of our approach through a
system of tools.

References

—

. S. Tiwari, Professional NoSQL (Wiley, Hoboken, 2011)

G. Brun, NoSQL vs Relationnel, (2011)

3. Db-engines.com, DB-Engines - Knowledge Base of Relational and NoSQL Database
Management Systems, (2015)

4. L. Rocha, F. Vale, E. Cirilo, D. Barbosa, F. Mourdo, A framework for migrating relational
datasets to NoSQL. Procedia Comput. Sci. 51, 2593-2602 (2015)

5. R. Yangui, A. Nabli, F. Gargouri, Automatic transformation of data warehouse schema to
NoSQL data base: comparative study. Procedia Comput. Sci. 96, 255-264 (2016)

6. Y.T. Liao, J. Zhou, C.H. Lu, S.C. Chen, C.H. Hsu, W. Chen, Y.C. Chung, Data adapter for

querying and transformation between SQL and NoSQL database. Futur. Gener. Comput. Syst.

65, 111-121 (2016)

»

794

7.

10.

11.
12.

13.

A. Erraji et al.

A. Bansel, H. Gonzalez-Vélez, A.E. Chis, Cloud-based NoSQL data migration, in 2016 24th
Euromicro International Conference on Parallel, Distributed, and Network-Based Processing
(PDP) (IEEE, 2016), pp. 224-231

. P. Atzeni, F. Bugiotti, L. Cabibbo, R. Torlone, Data modeling in the NoSQL world. Comput.

Stand. Interfaces 67, 103149 (2020)

. A. Vathy-Fogarassy, T. Hugyak, Uniform data access platform for SQL and NoSQL database

systems. Inf. Syst. 69, 93—-105 (2017)

S. Hamouda, Z. Zainol, Document-oriented data schema for relational database migration to
NoSQL. in 2017 International conference on big data innovations and applications
(innovate-data), (IEEE, August 2017), pp. 43-50

P. Bante, K. Rajeswari, Big Data Analytics Using Hadoop, (2017)

D.C.T.A. Complete, Multi-criteria analysis between NoSQL databases categories toward a
complete migration from relational database. J. Theor. Appl. Inf. Technol. 100(1) (2022)
O. Hajoui, R. Dehbi, M. Talea, Z.I. Batouta, An advanced comparative study of the most
promising nosql and newsql databases with a multi-criteria analysis method. J. Theor. Appl.
Inf. Technol. 81(3), 579 (2015)

	63 Toward a Smart Approach of Migration from Relational System DataBase to NoSQL System: Transformation Rules of Structure
	Abstract
	1 Introduction
	2 From RDBMS to NoSQL Database
	2.1 Literature
	2.2 Discussion

	3 Analyzing and Rules of Transformation
	3.1 Why MongoDB is Used as the Destination in Our Approach as a NoSQL System?
	3.2 Rules of Transformation of Relationships and Foreign Key

	4 Proposed Approach
	5 Conclusion
	References

