
Software Quality Prediction Using
Machine Learning

Bhoushika Desai and Roopesh Kevin Sungkur

Abstract In today's fast-changing environment, in order to create much more
stable and complex software programs. With the emergence of Machine Learning,
many companies are increasingly embracing this revolutionary approach, both in
terms of growth and maintenance, to reduce software costs. As the size of appli-
cations increases in terms of functionality, when designing test cases, Software
Quality Prediction is becoming more complex. Since the software measurement
mechanism in a constant cycle has several benefits, namely reliable project cost
estimation, process improvement and product quality compliance, it is vital to try
further analysis of software metrics in order to implement the use of machine
learning in software quality prediction. This research aimed at building two models
which is Software Defect Prediction Model (SDPM) which will be used to predict
defects in software and Software Maintainability Prediction Model (SMPM) which
will be used for Software Maintainability. Different classifiers, namely Random
Forest, Decision Tree, Naïve Bayes and Artificial Neural Networks have been
considered and then evaluated using different metrics such as Accuracy, Precision,
Recall and Area Under the Curve (AUC). The two models have successfully been
evaluated and Decision Tree has been chosen as compared to other classifiers which
tends to perform much better for both models. These models have been eventually
been deployed as web services. Finally a framework based on a set of guidelines
that can be used to improve software quality has been devised.

Keywords Software quality prediction � Software models � Machine learning �
Classifiers � Score model

B. Desai � R. K. Sungkur (&)
Department of Software and Information Systems, Faculty of Information
and Communication Technologies, University of Mauritius, Moka, Mauritius
e-mail: r.sungkur@uom.ac.mu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Ben Ahmed et al. (eds.), Innovations in Smart Cities Applications Volume 5,
Lecture Notes in Networks and Systems 393, https://doi.org/10.1007/978-3-030-94191-8_32

401

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94191-8_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94191-8_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94191-8_32&domain=pdf
mailto:r.sungkur@uom.ac.mu
https://doi.org/10.1007/978-3-030-94191-8_32

1 Introduction

In software companies, system quality of the product is becoming a real concern.
There are several variables that contribute to bad software products. Since the early
1970s, the software issue has arisen, with software engineers were unable deliver
high-quality software at times and on budget [4]. Eventually, in their efforts to
produce high-quality software and gain customer loyalty, software companies
encounter numerous challenges. Inefficient management, administration, developer
ego, strict schedules and strain, additional costs (e.g. buying new tools), contra-
dictory views and values, lack of training on standards, inadequate resources to
simplify the application development, lack of organizational quality management
structure, poor knowledge of the process, Disapproval of senior management and
the updated version of the system, poor communication, difficulty of coding and
programming errors are ways of reducing software quality planning. There is a
shortage of skilled workers in the technology sector that results in low performance.
These could arise when programming and reviewing are done by the same indi-
vidual or even when they're not comfortable with a computer language and are
required to code. Such individuals are not skilled in this sector, leading to poor
software quality. As this is a constantly evolving environment, the software busi-
ness must provide its staff with frequent training to keep them aware with new
technologies and resources. At the beginning of a project, it is advised to add
developers not at the end or somewhere in between, that end up in a poor-quality
product.

Another factor that causes applications to not achieve success is software testing.
Software is not tested properly. In addition, each part or module should be tested
during the manufacture of a product known as the system test. Testing is a pro-
cedure that guarantees that the system satisfies the client's criteria and specifica-
tions. Checking code is a way for software bugs to be detected and can also prevent
program failure. Errors must be detected and corrected before the software is
delivered to the customer, which contributes to a reliable product, maintains reli-
ability, and decreases costs. Errors should usually be found early in the test phase.
In addition, regression testing must be done to ensure the testing of the updated
component of the program.

As reported by [6], it was observed that since the tester do not have enough
software data to evaluate the system, and the most common quality issues emerged.
He also suggested that monitoring was rigorous and that there was no written
guideline for fair quality assurance of software. Modifications in requirements are
most popular whilst designing complex systems. For instance, if the requirements
are changing continuously in the early phases, and if the Software Development
Life Cycle is defined, the new specification modification may still be managed.
Additionally, company consumers start to understand what they can do to reduce

402 B. Desai and R. K. Sungkur

their everyday activities as the work proceeds and keep changing their minds by
requesting more improved functionality. This problem affects the output of software
products.

2 Literature Review

2.1 Software Defects and Software Maintainability

A software error is a software issue, mistake, defect, fault, failure, or flaw that
provokes the system to generate an inaccurate or unforeseen result. Faults are
critical aspects of a program. They are occurred from architecture or manufacture,
or from outside environment. Faults in program are coding errors that affects var-
ious quality compared to expectation. Most of the errors are mostly from program
code, several of them are from compiler-generated erroneous code [5]. Computer
failures are a risk issue for computer developers and customers. Software errors not
only reduce the consistency of the product, increase the costing but also slow the
production timeline. Predicting software faults is presented to overcome this kind of
problem. Software Defect Prediction can effectively advance software testing effi-
ciency and guide the resource allocation. SDP detects the faulty element, which
involves a wide variety of checks. Early detection of an error results in useful
resource allocation, significantly decreases the amount of the time and cost of
software and good quality software development. A SDP model consequently has a
crucial role in understanding, assessing and enhancing the software quality of a
software. [5]. Maintainability of software is defined as the correct in a software
system to be changed adapt to environmental changes or meet specific needs pre-
requisites. This summary shows what software is maintained depending on different
elements of program alteration (adaptation, rectification, enhancement, or preven-
tion) [2].

2.2 Software Metrics

Software metric is a domain of computer science which is concerned with various
software quantities and their developments [10]. Software metrics is among the
main methods for successful analysis of the application [3]. Software metric is
useful in improving software quality, cost analysis and budget planning [14] and
with the aid of software measurement the software system can be interpret in an
efficient way. Software quality metrics are the subgroup of computer metrics which,
therefore, emphasizes the quality component of program, play a crucial role
throughout the analysis and improvement of software quality.

There are three parameters of software metrics as shown in Fig. 1 below:

Software Quality Prediction Using Machine Learning 403

Project Metrics
Project metrics can be used for tracking the condition and progress of a project. By
standardizing the work and helping to strengthen the software development strat-
egy, project metrics avoid the issues or future risks [1]. Some scholars take the view
that management is risk management [8]. This finding is attributed, in particular, to
the belief that a large portion of project faults could have to do with poor risk
management. Project metrics identify attributes of the project and its execution. For
examples, the number of programmers, the personnel description over the soft-
ware's life cycle, timetable, effectiveness and cost [1].

Product Metrics
Product metrics determines the software product's attributes at any point of its
production. Product metrics can calculate system size, software design complexity,
portability, maintenance capacity, project scale and efficiency. Product metrics are
being used to extrapolate and reveal the product quality. Product metrics are used
for regular or final service measurements [12]. Quality of the product is a crucial
competitive concern when offering new products [9]. The quality of software
products comprises of two stages: intrinsic product quality (reliability, density of
defects) and customer satisfaction (user problems, customer satisfaction). The
intrinsic quality of the software is determined by the number of functional faults in
the program, or how often the program will operate before a malfunction occurs.
Reliability is the likelihood that under defined circumstance a program will execute
its specific task or a specific time period [13].

Process Metrics
Process metrics is oriented towards the software development method. It primarily
addresses the length of the project, the form of technique used and the accumulated
costs. Process metrics may be used to improve the production and maintenance of
the software [7]. For examples of process metrics are the effectiveness of fault
elimination throughout development, the analysis of test fault onset and the
response time of the repair processes [12]. Experts have usually concentrated on
two main categories of fault prediction metrics: code metrics that quantify appli-
cation attributes such as size and complexity and process metrics are number of
modifications and number of programmers [11].

Fig. 1 Software metric parameters [5]

404 B. Desai and R. K. Sungkur

2.3 Machine Learning

Machine learning is a field in computer science that facilitates the learning of
machines without complex programming. Machine learning is being used in a
number of computer operations, where it is not easy to develop and relevant
research algorithms with good results [15]. The problems can be fixed through
machine learning easily by constructing a model which is a reasonable interpreta-
tion of a chosen dataset. Machine learning is becoming an innovative area from
training the machines to emulate the nervous system, which has turned the domain
of statistics into a large area that develops important mathematical concepts of
learning processes. Machine learning consists of developing algorithms which
enable the system to learn. Training is a method of finding out statistical regularities
or other data patterns. The machine learning algorithms being developed to serve
some role in the individual method of teaching (Talwar and Kumar, 2013). The
below diagram illustrates the different machine learning algorithms (Fig. 2).

3 Methodology and Proposed Solution

The main objective of this research is to explore the issues and difficulties that lead
to low software quality products and to demonstrate how machine learning can be
used to predict the quality of application and provide the guidelines to address the

Fig. 2 Machine learning algorithms [5]

Software Quality Prediction Using Machine Learning 405

problem encountered. The research objectives (ROs) of this research are depicted
below.

RO1: To build a software defect prediction model.
RO2: To build a software maintainability prediction model.

The project will consist of two models: one for predicting defects in software
which is software reliability and the other for predicting software maintainability.
The model will be built and trained with several classifiers for both defect and
maintainability. The best classifier will be chosen during evaluation of the model.
Figure 3 below shows the research design whereas Fig. 4 shows the system design
being used in this research. The diagram will be same for both model that is defect
and maintainability prediction model. First, the data will be extracted from the
dataset and then the data will be pre-processed by cleaning the data and removing
missing values. The data will be split in sections and then the algorithms will be
chosen. The model will be trained accordingly and finally the model will be
evaluated.

Building the Model
The Azure Machine Learning Tool has been chosen to create the experiment
because it is much easier as it is drag and drop. The aim of the model is to predict

Fig. 3 Research design

406 B. Desai and R. K. Sungkur

software defects and classification algorithms were used to train same. The SQL
transformation has been used to remove outliers in the dataset. The data has been
split into 2 sections: 80% for training the model which contain 8704 rows of records
and 20% for testing the model which represents 2176 rows of records. The model is
then trained with the below classifiers with the 80% of the training data and scored
with the 20% of the testing data. After the scored model, it is then evaluated based
on the accuracy, precision, recall and AUC. Several classifiers have been used as
mentioned in the diagram, Two Class Neural Networks, Two Class Bayes Point
Machine, Two Class Boosted Decision Tree and Two Class Decision Forest whose
equivalent is Artificial Neural Network (ANN), Naive Bayes, Decision Tree and
Random Forest.

About the Data
The software defect dataset that has been used in this research has been downloaded
from Kaggle, and same is found on PROMISE repository which is accessible to the
public. The defect dataset is called ‘JM1’. The dataset contains 22 columns of
attributes and has 10,885 instances. The dataset is in ARFF format and ready to use
for creating the model. Before building the model, the dataset has been analysed
and some graphs have been derived from the data. The below graph stated the
number of defects in the dataset. The TRUE represents 2106 defects and FALSE
represents 8779 which means non-defective (Fig. 5).

Fig. 4 System design

Software Quality Prediction Using Machine Learning 407

The diagram below shows bug per line of code. As we can see, 0–600 lines of
code approximately there are around 6 bugs. The rest above 600 lines of code can
be considered as outliers (Fig. 6).

4 Results and Interpretation

4.1 Software Defect Model Evaluation

Score Model: For scoring the model, the testing dataset is being used which
contains 2176 rows of records. It shows that there are 1756 elements which rep-
resents 81% of the data that contain no defects and 420 elements which represents
19% of data that contain defects.

Fig. 5 Number of defects

Fig. 6 Bug - line of code

408 B. Desai and R. K. Sungkur

Evaluate Model: Each model has been evaluated and wrap up together in the
table below. For evaluating these classification models, Accuracy, Precision, Recall
and Area Under the Curve (AUC) have been used (Table 1).

The AUC has been chosen as the evaluating parameters because it is best to
define the accuracy of the classifiers. Artificial Neural Networks (ANN) tends to be
the least reliable prediction model according to the AUC which is 0.716. Naïve
Bayes performed slightly better that ANN with an AUC of 0.719. Random Forest
has a higher AUC of 0.730 as compared to Naïve Bayes and ANN. Decision Tree
had the best result of a high AUC value of 0.741 as compared to other experimented
classifiers.

4.2 Software Maintainability Model Evaluation

Score Model: For scoring the model, the testing dataset is being used which
contains 837 rows of records. It shows that there are 777 elements which represents
93% of the data do not contain changes and 60 elements which represents 7.2% of
data that contain changes.

Evaluate Model: Each model has been evaluated and consolidated in the table
below. For evaluating these classification models, Accuracy, Precision, Recall and
Area Under the Curve (AUC) have been used (Table 2).

The AUC has been selected as the evaluating factor because it is best to define
the accuracy of the classifiers. Naïve Bayes had the least reliable prediction model

Table 1 Evaluate defect model

Classifiers Accuracy Precision Recall AUC

Two Class Decision Forest (Random Forest) 0.810 0.514 0.255 0.730

Two Class Boosted Decision Tree (Decision
Tree)

0.790 0.447 0.374 0.741

Two Class Bayes Point Machine (Naïve Bayes) 0.809 0.529 0.086 0.719

Two Class Neural Networks (Artificial Neural
Networks)

0.812 0.558 0.126 0.716

Table 2 Evaluate maintainability

Classifiers Accuracy Precision Recall AUC

Two Class Decision Forest (Random Forest) 0.925 0.444 0.200 0.790

Two Class Boosted Decision Tree (Decision
Tree)

0.924 0.457 0.350 0.836

Two Class Bayes Point Machine (Naïve Bayes) 0.930 0.667 0.033 0.782

Two Class Neural Networks (Artificial Neural
Networks)

0.933 0.750 0.100 0.865

Software Quality Prediction Using Machine Learning 409

according to the AUC which is 0. 782. Random Forest performed slightly better
that Naïve Bayes with an AUC of 0. 790. Decision Tree has a higher AUC of 0.
836 as compared to Naïve Bayes and Random Forest and a recall of 0.350 and
precision of 0.457. ANN had the best result of a high AUC value of 0.865 as
compared to other experimented classifiers but with a low recall of 0.100. However,
Decision Tree tends to perform much better as compared to the other classifiers for
both defect and maintainability prediction.

5 Conclusion

The aim of this research was to build two models which is Software Defect
Prediction Model (SDPM) and Software Maintainability Prediction Model (SMPM)
and finally to devise a framework based on a set of guidelines that can be used to
improve software quality. Both models have successfully being built and tested
with datasets available online. Several classifiers, namely Two Class Neural
Networks, Two Class Bayes Point Machine, Two Class Boosted Decision Tree and
Two Class Decision Forest whose equivalent is Artificial Neural Network (ANN),
Naive Bayes, Decision Tree and Random Forest have been considered for the
purpose of this research and then eventually compared. To evaluate the models,
several metrics have been used. These include Accuracy, Precision, Recall and Area
Under the Curve (AUC). The two models (SDPM and SMPM) have successfully
been evaluated and Decision Tree has been chosen as compared to other classifiers
since it tends to perform much better in both models’ prediction. Software Quality
is indeed is becoming an essential condition in the Software Industry. The results of
this research is interesting since it addresses the issue of Software Quality
Assurance by making use of Machine Learning, ensuring that this is done in a more
reliable and effective way.

References

1. R. Aliverdi, L.M. Naeni, A. Salehipour, Monitoring project duration and cost in a
construction project by applying statistical quality control charts. Int. J. Project Manag. 31(3),
411–423 (2013)

2. H. Alsolai, M. Roper, Application of ensemble techniques in predicting object-oriented
software maintainability, in EASE ‘19: Proceedings of the Evaluation and Assessment on
Software Engineering (ACM, 2019) ISBN 978-1-4503-7145-2/19/04

3. N.E. Fenton, M. Neil, Software metrics: roadmap, in Proceedings of the Conference on The
Future of Software Engineering (ACM, Limerick, Ireland), pp. 357–370

4. S. Jayawarna, A.T. Fonseka, Factors affecting product quality in the software development
industry of Sri Lanka. Sri Lankan J. Manag. 1 (2011)

5. N. Kalaivani, R. Beena, Overview of software defect prediction using machine learning
algorithms. Int. J. Pure Appl. Math. 118(20), 3863–3873 (2018)

410 B. Desai and R. K. Sungkur

6. A. Khan, N. Nuzhat, K. Aihab, Survey to improve software quality assurance in developing
countries. Int. J. Technol. Res. Islamabad 3.1 1–6, 3–5 (2015)

7. L. Madeyski, M. Jureczko, Which process metrics can significantly improve defect prediction
models? An empirical study. Softw. Qual. J. 23(3), 393–422 (2015)

8. J. Menezes, C. Gusmão, H. Moura, Indicators and metrics for risk assessment in software
projects: a mapping study. in Proceedings 5th Experimental Software Engineering Latin
American Workshop (ESELAW 2008) (2008)

9. F.J. Molina-Castillo, R.J. Calantone, M.A. Stanko, J.L. Munuera-Aleman, Product quality as
a formative index: evaluating an alternative measurement approach. J. Prod. Innov. Manag. 30
(2), 380–398 (2013)

10. K. Mordal, N. Anquetil, J. Laval, A. Serebrenik, B. Vasilescu, S. Ducasse, Software quality
metrics aggregation in industry. J. Softw. Evol. Process. 25(10), 1117–1135 (2013)

11. F. Rahman, P. Devanbu, How, and why, process metrics are better, in 2013 35th International
Conference on Software Engineering (ICSE) (IEEE), pp. 432–441

12. M.S. Rawat, A. Mittal, S.K. Dubey, Survey on impact of software metrics on software
quality. (IJACSA) Int. J. Adv. Comput. Sci. Appl. 3(1)

13. F. Selnes, An examination of the effect of product performance on brand reputation,
satisfaction and loyalty. Eur. J. Mark. 27(9), 19–35 (1993)

14. M. Sharma, G. Singh, A. Arora, P. Kaur, A comparative study of static object-oriented
metrics. Int. J. Adv. Technol. 3(1), 25–34 (2012)

15. D. Sharmal, N. Kumar, A review on machine learning algorithms, tasks and applications. Int.
J. Adv. Res, Comput. Eng. Technol. (IJARCET), 6(10), 1548–1552 (2017)

Software Quality Prediction Using Machine Learning 411

	32 Software Quality Prediction Using Machine Learning
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Software Defects and Software Maintainability
	2.2 Software Metrics
	2.3 Machine Learning

	3 Methodology and Proposed Solution
	4 Results and Interpretation
	4.1 Software Defect Model Evaluation
	4.2 Software Maintainability Model Evaluation

	5 Conclusion
	References

