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Abstract  In recent years, engineered nanoparticles have been the focus of inten-
sive scientific and technological development in different applications, including 
agriculture and food production/security. Copper-based nanoparticles have interest-
ing features, such as low production cost and potent antimicrobial actions at con-
centrations considered safe to humans and to the environment, making them good 
candidates for agricultural applications. Moreover, copper-based nanomaterials can 
be prepared not only by traditional chemical and physical methods but also by green 
routes involving biogenic methods in a sustainable manner. Copper is involved in 
plant growth, metabolism, and defense, and it has been used in agriculture as a key 
player in fungicides in the combat of plant diseases. Recently, the design of copper-
based nanoparticles has opened new avenues to protect and defend crops, with supe-
rior results and lower toxic effects compared with bulk copper (massive copper). In 
this scenario, the current chapter presents and discusses recent progress in the 
design and applications of copper-based nanoparticles with potent antimicrobial 
applications for agricultural pest management, green routes to synthesize the 
nanoparticles, and recent progress in the applications of copper-based nanoparticles 
as pesticides, as well as their phytotoxic activity. We hope that this chapter opens 
new avenues in this important topic involving nanotechnology and agriculture.
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1  �Introduction: Importance of Copper in Agriculture

The biological role of copper (Cu) arose during the evolution of photosynthetic 
organisms, which changed the Earth’s atmosphere from anaerobic to aerobic due to 
the progressive accumulation of oxygen (Burkhead et al., 2009). Under physiologi-
cal conditions, Cu exists in two forms: the reduced state (Cu+) and the oxidized state 
(Cu2+), and it can bind to different substrates depending on its state. Cu has a signifi-
cant influence on plant metabolism due to its presence in several biomolecules and 
its participation in numerous metabolic routes in the plant, as a metal cofactor in 
certain metalloproteins involved in electron transport and oxidative stress response. 
In chloroplasts, Cu is a constituent of plastocyanin (Pc), the most abundant Cu pro-
tein in plant chloroplasts, which acts as an electron carrier in primary photosyn-
thetic reactions. Cu is also a constituent of stromal Cu/Zn superoxide dismutase 
(Cu/Zn-SOD), which protects against reactive oxygen species (ROS) generated dur-
ing the oxygenic photosynthetic reactions (Yruela, 2013).

In addition to being essential for plant metabolism, Cu has been used in agricul-
tural practice for years as an active ingredient of fungicides to enhance crop produc-
tion by controlling plant diseases. The most common Cu-based fungicide 
formulations contain Cu sulfate, Cu hydroxide, Cu oxychloride, or Cu carbonate 
(Husak, 2015). The Bordeaux mixture (a complex of Cu sulfate pentahydrate and 
lime) has been used in viticulture as a plant protection product against the stated 
fungal diseases since the eighteenth century, being the first fungicide to be used on 
a worldwide scale. Nowadays, a Cu hydroxide- and Cu sulfate-based fungicide is 
the only product allowed under organic standards, which is effective against 
Plasmopara viticola (Vitanovic, 2012).

Since the Bordeaux mixture, there has been rapid growth in the development and 
use of Cu-based fungicides, revolutionizing plant protection in the twentieth cen-
tury. Among the advantages conferred to the use of Cu in agriculture, we can high-
light the low cost, relatively high toxicity to plant pathogens, chemical stability, and 
long residual periods (Lamichhane et al., 2018). Cu is used as an active ingredient 
strictly for its protective function, as it has no curative or systemic activity and, once 
applied, Cu particles may adhere to leaf surfaces to provide a protective film. This 
film is a reservoir that, when in contact with water and low pH, releases Cu ions, 
which act on the pathogen cells (Lamichhane et  al., 2018). In other words, as 
Cu-based fungicides do not penetrate and translocate well in plants, coverage of the 
target is achieved through the application of large amounts of the product.

In this scenario, the frequent and extensive use of Cu-based fungicides, coupled 
with the limited Cu mobility in the soil, results in the accumulation of this metal in 
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the upper soil layers as a consequence of direct application, drift, or dripping from 
leaf surfaces (Fan et al., 2011; Brunetto et al., 2016; Amlal et al., 2020). The long-
term foliar application of Cu-based fungicides can easily increase the concentration 
of this metal to levels close to 200 mg kg−1, contrasting with Cu concentration in 
noncontaminated agricultural soils that usually varies from 5 to 30 mg kg−1 (Adrees 
et al., 2015).

The heavy metals that act as micronutrients (e.g., Cu, iron, manganese, nickel, 
and zinc), when present in soils in concentrations above the optimum level, compro-
mise plant growth and development due to changes in physicochemical properties 
of soil. In addition, they trigger adverse effects in various physiological processes of 
plants (Tiwari & Lata, 2018).

These metals cannot be degraded or destroyed, although their chemical forms 
can change. Once dispersed in water, soil, and air, they can accumulate in plant tis-
sues (Cheng et al., 2017), posing a severe threat to human health through contami-
nation of the food chain (Nuapia et al., 2018). Despite the environmental problems 
caused by the continuous use of heavy metal-based protective fungicides, there are 
additional problems related to synthetic pesticides in general.

The conventional application of synthetic pesticides coupled with a lack of 
proper rules and regulations causes serious environmental problems, releasing toxic 
compounds that contaminate the surrounding medium through leaching or rainfall 
runoff, reaching water bodies and even groundwater (Pradhan & Mailapalli, 2020). 
Moreover, only a minimal quantity of the applied pesticides (less than 1%) reaches 
the target species, while the remainder affects nontarget organisms, promoting 
resistance in weeds, insects, and pathogens, in addition to having an environmental 
impact (Usman et al., 2020).

In this context, nanotechnology has been studied in agriculture as a tool to 
increase the effectiveness of different agrochemicals as fertilizers and pesticides, 
helping to reduce the amount released into the environment (Kumaraswamy et al., 
2018). Nanomaterials can be used to synthesize nanofertilizers (nano-sized nutri-
ents, nano-coated fertilizers, or engineered metal-oxide/carbon-based nanomateri-
als) and nanopesticides (inorganic nanomaterials or nanoencapsulated active 
ingredients) to provide targeted/controlled release of nutrients and agrochemicals. 
Thus, they can deliver precisely the recommended dosage for plants, improving the 
biological efficacy and with less environmental damage (Iavicoli et al., 2017; Bhan 
et al., 2018).

Some studies have recently combined different nanotechnological approaches 
with Cu bioactivity, showing promising effects on plants. As examples, we can cite 
Cu nanoparticles (Cu NPs) (Hafeez et al., 2015), polymeric (chitosan) nanoparticles 
containing copper ions (Cu2+) (Choudhary et al., 2017a, b), nanocomposites of chi-
tosan/alginate loaded with Cu oxide (Leonardi et  al., 2021), Cu3(PO4)2 and CuO 
nanosheets, and copper oxide nanoparticles (CuO NPs) (Ma et al., 2020) developed 
as nanofertilizers to improve the efficiency of micronutrient use, aiming to enhance 
plant growth and development.

However, the association between nanotechnology and Cu bioactivity has been 
mainly used for the development of nanopesticides against plant pathogens 
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(Giannousi et al., 2013; Kanhed et al., 2014; Saharan et al., 2015; Vanathi et al., 
2016; Choudhary et al., 2017b; Sathiyabama & Manikandan, 2018; Pariona et al., 
2019; Ma et al., 2020). In addition, this combination has been applied for the control 
of storage pests (El-Saadony et al., 2020), for antibacterial composite food packag-
ing (Longano et al., 2012), and to extend the shelf-life of stored tomatoes (Solanum 
lycopersicum L.) (Meena et al., 2020).

Here, we review recent progress in the design and use of Cu-based nanomaterials 
in agriculture, highlighting their potent actions as an antimicrobial agent in pest 
management.

2  �Nanotechnology: Definition and Applications 
in Agriculture

Notably, the field that addresses nanotechnology (also known as “nanoscience”) has 
received significant attention in recent years from scientific research (Arya et al., 
2018; Camacho-Flores et al., 2015). As a form of technology and scientific study, 
nanotechnology addresses the study of materials developed at the nanoscale (Arya 
et al., 2018; Mohanpuria et al., 2008). Commonly, nanoparticles are classified as 
particles with a size on the scale of 1–100 nanometers (nm); however, some recent 
works address these same materials—also known as nanostructured materials—in a 
size range of 1–1000 nm, taking into account the composition and formation of 
these types of material, their properties, and applications in relation to their mass 
macrostructure (Arya et  al., 2018; Camacho-Flores et  al., 2015; Jeevanandam 
et al., 2018).

Several different kinds of nanoparticles (metallic, metal oxide, and hybrid 
nanoparticles) have attracted considerable attention due to their physical, biologi-
cal, chemical, catalytic, optical, and, in some cases, magnetic characteristics, with 
promising applications in several fields, including, more recently, agriculture 
(Burdusel et al., 2018; Jeevanandam et al., 2018; Giannousi et al., 2017). Hybrid 
nanoparticles represent an example of versatile nanomaterials with superior advan-
tages compared to monofunctional nanoparticles, allowing the design of nanostruc-
tures with different combinations in a unique stable nanostructure, which enables 
improvement in their application, including in agriculture and food storage 
(Burdusel et al., 2018; Kumar et al., 2018; Tavaf et al., 2017).

The considerable increase in agricultural production in recent years together 
with growing concern about environmental issues has accompanied innovation in 
the area of ​​nanotechnology and nanobiotechnology, where science seeks the devel-
opment and improvement of materials such as metallic nanoparticles, cationic poly-
mers, and antimicrobial agents (Giannousi et  al., 2017; Ahamed et  al., 2014). 
Cu-based nanoparticles have been used as a priming agent post-harvest and in food 
storage, in addition to enabling some aspects of the harvest, such as an increase in 
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productivity and a reduction in the impacts of abiotic and biotic stress factors, 
including pest control (Kasana et al., 2017; Ahamed et al., 2014).

2.1  �Copper Nanoparticles (Cu NPs) and Copper Oxide 
Nanoparticles (CuO NPs)

Cu NPs particularly are a type of material with a low cost of production (Gawande 
et al., 2016; Shobha et al., 2014; Evano et al., 2008). Despite the extensive history 
of applications and large-scale uses of Cu in various fields, one must always con-
sider the instability that Cu0 presents under an ambient atmosphere, causing its oxi-
dation (Gawande et al., 2016; Shobha et al., 2014; Hafeez et al., 2015). In this way, 
methods are being explored for the development of more stable Cu NPs to avoid or 
minimize the oxidation of this type of nanomaterial, aiming at the development of 
structurally more complex Cu-based materials, leading to the formation of “core–
shell” nanomaterials (Gawande et  al., 2016; Giannousi et  al., 2017; Hafeez 
et al., 2015).

Nanotechnology can provide advantages for the agricultural sector to develop 
more sustainable activities (Hafeez et al., 2015; Gawande et al., 2016). Crop yield 
is controlled by different and complex characteristics that can be explained by biotic 
and abiotic factors linked to the genetic issues of each species (Hafeez et al., 2015). 
According to some studies, the contamination of soil or water caused by various 
microorganisms can cause disturbances to agricultural health as well as to human 
health (Ahamed et al., 2014). As such, Cu NPs or CuO NPs find their places in agri-
culture as part of mitigating actions in irrigation and management, breeding, protec-
tion, fertilization, pest control, and production of numerous crops of wheat (Triticum 
aestivum L.), cotton (Gossypium hirsutum L.), and lettuce (Lactuca sativa L.), 
among others (Hafeez et  al., 2015; Kasana et  al., 2017; Pelegrino et  al., 2020; 
Pereira et al., 2021).

Cu itself is an important micronutrient, playing an essential role in plant nutrition 
and health. Cu NPs and CuO NPs can promote soil remediation, protection against 
pathogens, and plant growth (Seabra et  al., 2014; Rajput et  al., 2017; Pelegrino 
et al., 2020). Some desirable advantages in the application of these nanomaterials 
are demonstrated by their potential effects on the decrease in post-harvest plant 
sensitivity, reducing the potential adverse effects observed during the storage, trans-
port, and exposure of the final product (Managa et al., 2018). In this way, Cu-based 
nanoparticles can improve not only crop production, but also health and food safety 
when applied in agriculture as fertilizers, herbicides, and antimicrobial agents 
(Pelegrino et al., 2020; Wang et al., 2019; Kumar et al., 2015).
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2.2  �Chemical and Biological Routes to Prepare cu NPs 
and CuO NPs

There are several routes to synthesize Cu-based nanoparticles (Gawande et  al., 
2016). Metallic and metal oxide nanoparticles can be prepared using physical, 
chemical, or biological methods (Pereira et al., 2021). Each synthetic route dem-
onstrates advantages and disadvantages, including parameters to control nanopar-
ticle features, such as particle size, degree of agglomeration, surface charge, and 
morphology (Gawande et al., 2016; Umer et al., 2012; Mijatovic et al., 2005).

Cu NPs and CuO NPs can be synthesized by chemical routes, such as condensa-
tion, chemical reduction, and oxidation (Gawande et  al., 2016; Ahamed et  al., 
2014). Basically, the synthesis of Cu NPs is based on the reduction of Cu2+. 
Commonly, the chemical routes for obtaining nanoparticles are performed under a 
controlled experimental setting, leading to nanomaterials with controllable size, 
aggregation state, stability, and morphology (Gawande et al., 2016). However, in 
some cases, chemical routes might involve high energy input and the presence of 
toxic chemicals.

In contrast, biological routes to synthesize nanoparticles are considered a low-
cost, clean, nontoxic, and eco-friendly approach (Salvadori et al., 2013; Thakkar 
et al., 2010). Our group has reported the plant-mediated synthesis of CuO NPs for 
agricultural approaches (Pelegrino et al., 2020; Kohatsu et al., 2021). Green tea-
synthesized CuO NPs were applied on lettuce seedlings, in the range of 0.2 and 
300 μg  mL−1. As expected, low nanoparticle concentrations (up to 40 μg  mL−1) 
enhanced seed germination, whereas higher concentrations (higher than 40 μg mL−1) 
inhibited seed germination. Moreover, CuO NPs increased the levels of nitrite and 
nitric oxide, molecules involved in plant growth and defense (Pelegrino et al., 2020). 
In a further study, green tea CuO NPs were applied (either by foliar application or 
soil irrigation) on lettuce under greenhouse conditions. Foliar administration of 
CuO NPs (20 mg per plant) improved lettuce dry weight, number of leaves, CO2 
assimilation, and macronutrient content, enhancing the nutritional value of the let-
tuce (Kohatsu et al., 2021).

Biogenic synthesis of nanoparticles is based on biological entities that act as 
reducing agents, leading to the formation of the nanoparticles while promoting their 
coating, which diminishes nanoparticle oxidation and degradation. Thus, nanopar-
ticles can be biologically synthesized by plants, fungi, some yeasts, and bacteria 
(Krumov et al., 2009; Rahman et al., 2009; Honary et al., 2012). For instance, Cu 
NPs were biologically synthesized by various plant extracts, such as gotu kola 
(Centella asiatica L.), flowers (Aloe vera), latex (Calotropis procera (Aiton) W.T 
Aiton), brown algae (Bifurcaria bifurcata R. Ross), and coffee (Coffea Arabica L.) 
powder extract (Shobha et al., 2014). The Cu source employed can be copper nitrate, 
acetate, or sulfate, leading to Cu NPs with different sizes and antimicrobial activity 
(Kasana et al., 2017; Shobha et al., 2014; Lee et al., 2008; Mohanpuria et al., 2008). 
Overall, biological routes are cost-effective and eco-friendly methods to synthesize 
Cu-based nanoparticles, and these green routes demonstrate advantages over 
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traditional chemical routes (Hafeez et  al., 2015; Shobha et  al., 2014; Salvadori 
et al., 2013).

2.3  �Copper-Based Nanocomposites in Agriculture

In addition to the use of Cu NPs and CuO NPs in agriculture, other kinds of nano-
materials, such as silver (Ag NPs), selenium (Se NPs), silica (SiO NPs), zinc (Zn 
NPs), and gold (AuNPs) nanoparticles can be used as fertilizers, increasing seed 
germination and crop growth, in addition to acting as natural pesticides and antimi-
crobial agents (Pestovsky & Martínez-Antonio, 2017).

Nowadays, versatile nanomaterials can be prepared by using a combination of 
different kinds of nanoparticles, and thus the synthesis of hybrid nanoparticles con-
sists of the combination of nanomaterials with specific properties to compose a 
single nanomaterial (Tung et  al., 2016). Core–shell nanoparticles might present 
advantages over simple nanoparticles, enhancing the nanomaterial biocompatibility, 
stability, and dispersion in the environment in which they are inserted (Iravani, 
2020). Some types of nanoparticles that additionally have a layer of another type of 
nanomaterial or a non-toxic agent end up not only improving the property of the 
hybrid nanomaterial but also protecting their core against oxidation, degradation, 
and incompatibility (Wakaskar, 2018; Iravani, 2020; Pestovsky & Martínez-
Antonio, 2017).

In this direction, the antimicrobial actions of Cu NPs covered with silica were 
reported in tomato plants (Carvalho et al., 2019). In a similar approach, Cu silica gel 
coated with ZnO NPs was effective in bacterial control in plants, proving to be more 
effective than commercially available Cu-based bactericides (Iravani, 2020; 
Carvalho et al., 2019). Likewise, iron nanoparticles and Cu NPs increased the anti-
oxidant activity in wheat seeds, inducing resistance against abiotic stress (Pereira 
et al., 2021). Although each of these nanoparticles, in isolated form, demonstrates a 

Fig. 1  Schematic representation of copper-based NP application in plants and expected effects
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specific type of antimicrobial activity on crops, turning these nanomaterials into 
hybrid nanosystems might enhance their advantages for agricultural applications by 
increasing their antimicrobial activities. Thus, the use of Cu-hybrid NPs in pest 
control is a promising topic to be further explored.

3  �Applications of Cu-Based Nanoparticles as Nanopesticides

Currently, more than 30% of crop production is lost due to various plant diseases 
caused by bacteria, fungi, viruses, and insects (Rai et  al., 2018). Cu-based com-
pounds have been used since early times for pest control, as they are able to damage 
biomolecules such as DNA, lipids, and proteins (Borkow & Gabbay, 2005). Among 
various forms of Cu, copper sulfate (CuSO4), copper oxide (CuO/Cu2O), and copper 
hydroxide (Cu(OH)2) are the most commonly employed as pesticides, although they 
present potential risks such as soil damage and environmental hazard (Wilbois 
et al., 2009). In this field, nanoscaled pesticides demonstrate promising improve-
ment compared to conventional bulk pesticides, promoting better penetration and 
higher efficiency of Cu (Parisi et al., 2014). Therefore, the evaluation of Cu-based 
NPs on crops, both as a micronutrient and pesticide, has increased in the last decade. 
Figure  1 illustrates possible applications of Cu-based nanoparticles in crops, 
enabling their translocation and action as a micronutrient and/or pesticide.

It should be noted that Cu might positively or negatively affect plants, mainly 
depending on its concentration. In this direction, the administration of Cu-based 
nanomaterials in crops might allow sustained and controlled Cu release, avoiding 
undesired effects. Among different Cu-based nanomaterials, nanostructured 
Cu(OH)2 has been one of the most studied as a nanopesticide. The increasing num-
ber of scientific articles employing nanostructured Cu(OH)2 mainly results from the 
commercialization of a formulation containing 20-nm needles of Cu(OH)2, Kocide® 
3000 (Li et al., 2019). In this sense, Kocide® 3000 has boosted the agricultural mar-
ket regarding the use of nano-formulations and the research field regarding the 
evaluation of the benefits and impacts of Kocide® 3000, as well as comparisons with 
other Cu-based nanoparticles. For example, the beneficial effects of Kocide® 3000 
on crops were compared with bulk copper chloride (CuCl2) and CuO and with 
nanoparticulated CuO and Cu NPs in sugar cane (Saccharum officinarum L.) 
(Tamez et al., 2020). For nanoparticulated formulations, including Kocide® 3000, 
significant changes were observed in root Cu levels, while the translocation of Cu in 
the leaves was consistent with all forms of analyzed copper. Moreover, the accumu-
lation of Cu in sugar juice and alteration in the activity of antioxidant enzymes were 
also observed in the highest evaluated concentration (60 mg kg−1).

Regarding the application of Cu-based nanomaterials as nanopesticides, the 
long-term effects of Cu(OH)2 NPs were monitored over one year in both soil micro-
organisms and plants (Simonin et al., 2018). Even after three sequential applications 
of Kocide® 3000 (6.68 mg L−1), no negative side effects were observed in plants and 
in the microbiota. Positive effects were verified in plants treated with the Cu(OH)2 
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product, evidenced by an increase of 27% in the biomass. In contrast, there were no 
significant modifications in nontarget soil microbiota, corroborating previous publi-
cations (Hong et al., 2015; Zhao et al., 2016; Zhao et al., 2017).

Although presenting promising potential, it has been revealed that Cu(OH)2 
treatment using Kocide® 3000 was not efficient for reducing bacterial disease 
(Qushim et  al., 2018). Bacterial spot disease was favored by humid weather in 
tomato plants, which were treated with various commercial products, including 
Kocide® 3000. Results indicated that Cu(OH)2 nano-needles present in the formula-
tion did not reduce bacterial spot disease severity (Qushim et al., 2018). Furthermore, 
in a study with tobacco (Nicotiana tabacum L.) hornworm (Manduca sexta)-infected 
tomato leaves treated with either Kocide® 3000 or laboratory-synthesized Cu(OH)2 
nanowires, it was evidenced that the life-stage of the pest is a key point for the appli-
cation of Cu(OH)2 nanopesticides, as significant results were observed in the first-
instar larvae, but not in the second-instar larvae for both treatments (Li et al., 2019). 
Interestingly, the growth retardation of tobacco hornworm was higher for Kocide® 
3000 than for the laboratory-synthesized Cu(OH)2 nanoparticles. This tendency was 
associated with the dissolution percentage of Cu ions (five times higher for Kocide® 
3000), indicating that the release of the Cu ions is an important aspect for pest 
control.

Besides Cu(OH)2 nanoparticles, other Cu-based nanoparticulated forms have 
been used as nanopesticides, such as Cu NPs (Cumplido-Nájera et al., 2019), CuO 
NPs (Giannousi et al., 2013; Ma et al., 2020; Vanathi et al., 2016), CuS NPs (Shang 
et  al., 2020), Cu-chitosan NPs (Vanti et  al., 2020), and Cu-SiO2 NPs (Xu et  al., 
2020). Cumplido-Nájera et  al. (2019) evaluated the combination of Cu NPs and 
potassium silicate in the control of Clavibacter michiganensis in tomato plants 
(Cumplido-Nájera et  al., 2019). Cu NPs presented spherical morphology, with a 
size of 42 nm. At both evaluated concentrations (50 and 250 mg L−1), Cu NPs were 
effective in reducing the plant contamination, inducing the activity of the enzymes 
superoxide dismutase (SOD), phenylalanine ammonia-lyase (PAL), glutathione 
peroxidase (GPX), and ascorbate peroxidase (APX). Besides changing levels of key 
defense compounds in tomato plants, Cu NPs promoted a reduction of 16.1% in 
yield loss (Cumplido-Nájera et al., 2019).

A similar pattern was observed using Cu NPs against Alternaria solani infesting 
tomato plants (Quiterio-Gutiérrez et al., 2019). The contamination was significantly 
reduced by Cu NPs, while the activity of antioxidant enzymes increased in the 
leaves, and GPX activity also increased in the fruit. Moreover, Cu NPs increased the 
content of nonenzymatic antioxidant compounds, such as vitamin C, chlorophyll, 
phenols, and flavonoids.

In vitro studies have also evidenced the potential of Cu NPs as nanopesticides 
(Banik & Pérez-de-Luque, 2017; El-Saadony et al., 2020). Biosynthesized Cu NPs 
presented a spherical shape and a diameter ranging from 10 to 70 nm, coated with 
characteristic biomolecules, such as phenols, amines, and alcohol (El-Saadony 
et al., 2020). When evaluated against Tribolium castaneum at six different concen-
trations (from 50 to 300 μg mL−1), it was observed that Cu NPs were able to pro-
mote 100% mortality after 5  days. Moreover, better results were obtained for 
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biosynthesized Cu NPs when compared to chemically synthesized Cu NPs, which 
might be attributed to the characteristic surface coating. A similar pattern was 
observed for commercial Cu NPs tested against various pathogenic microorgan-
isms, employing concentrations from 100 to 400  mg  L−1 (Banik & Pérez-de-
Luque, 2017).

CuS NPs are less commonly employed in crops compared to Cu(OH)2 NPs, Cu 
NPs, or CuO NPs, although CuS NPs have demonstrated promising potential and 
advantages depending on the targeted application (Shang et al., 2020). CuS NPs dem-
onstrated the highest antimicrobial activity in vitro compared to both control and CuO 
NPs. In a greenhouse study, rice seedlings (Oryza sativa L.) were infected with 
Gibberella fujikuroi and treated with CuS NPs, CuO NPs, and Kocide® 3000. Both 
forms of Cu nanoparticles effectively inhibited the infection, highlighting the highest 
efficacy of CuS NPs. In contrast, Kocide® 3000 demonstrated no effect against G. fuji-
kuroi infection in rice seedlings. In foliar application, CuS and CuO NPs (50 mg L−1) 
reduced the infection by 30%, while Kocide® 3000 achieved only 15%.

Cu NPs may also be allied to other molecules and/or nanoparticles. For instance, 
a nanocomposite based on Cu NPs and chitosan demonstrated 98% inhibition of 
phytopathogens Rhizoctonia solani and Pythium aphanidermatum, allied with ben-
eficial effects on chilli (Capsicum annuum L.), cowpea (Vigna unguiculata (L.) 
Walp), and tomato plants (Vanti et al., 2020).

4  �Phytotoxic Effects of Cu-Based Nanopesticides

Nanopesticides have been developed as an efficient alternative to reduce the impacts 
of agricultural practices on the environment and on nontarget organisms, creating 
better crop protection management. However, the effects of these agrochemicals on 
plants have not been fully characterized, and more research is essential to distin-
guish the benefits and risks they confer to the agrosystem (Carley et al., 2020).

Different studies in the literature have discussed the dual effect of nanoparticles 
on crops, which can exhibit both negative and positive impacts. The effects trig-
gered on the plant are dependent on factors such as plant species, size, structure, 
shape, concentration, stability, and other chemical properties of nanoparticles 
(Gabal et al., 2018). The toxicity of metal-based nanoparticles to plants may involve 
at least three different mechanisms: i) released ions from nanoparticles may be toxic 
to exposed plants, ii) nanoparticle interactions with environmental media may pro-
duce chemical radicals able to generate oxidative stress on plants, and iii) nanopar-
ticles interact directly with plants, leading to toxic effects on metabolism (Chen, 
2018). Although engineered nanomaterials can suppress crop diseases by directly 
acting on pathogens through ROS generation (Adisa et al., 2019), the same mecha-
nism, when excessively induced, causes phytotoxicity, leading to plant oxidative 
damage (Ahmed et al., 2019).

Considering the diversity of studies over the years on Cu-based nanomaterials 
applied as nanopesticides, a summary of applications and potential phytotoxic 
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effects on plants is presented in Table 1. Some of these are discussed in more detail 
in the text below.

The application of Cu-based NPs of different compositions and sizes against 
Phytophthora infestans was tested in tomato plants (Lycopersicon esculentum var. 
Belladona) in comparison to the performance of the registered commercially used 
Cu-based products (Giannousi et al., 2013). Cu2O NP was the most efficient formu-
lation against P. infestans (73.53%) in comparison to all products ten days after 
application. In general, all Cu-based NPs were found to be effective, while the 
applied dose of the products was reduced significantly without affecting their effi-
cacy. In addition, phytotoxicity symptoms such as small necrotic spots and some 
chlorotic spots on the leaves were observed in plants treated with the Cu2O NPs and 
Cu/Cu2O composite nanoparticles, 3 and 7  days after application, which disap-
peared 10 days after application. However, no phytotoxicity symptoms were found 
in fruits and flowers. Cu/Cu2O composite NPs exhibited the highest phytotoxicity 
(3.75%) compared to the other formulations. This behavior can be attributed to the 
presence of the metallic core in the NPs, which can be considered more bioreactive 
than the oxides. Although Cu/Cu2O composite NPs demonstrate excellent efficiency 
in suppressing the pathogen growth, their application approaches the limit between 
plant protection and phytotoxicity.

Young and Santra (2014) reported that a composite material of sol–gel silica host 
matrix loaded with mixed-valence Cu could be an alternative to conventional bio-
cides against Xanthomonas alfalfa strain F1 ATCC 49120. Phytotoxicity studies 
were performed using Vinca sp. and Hamlin orange (Citrus sinensis (L.) Osb) under 
greenhouse conditions to observe potential plant tissue damage. Formulations were 
sprayed at concentrations of 90, 450, and 900 ppm of metallic Cu, and observations 
were taken at 24, 48, and 72 h after spray application. Except for CuCl2 and Kocide® 
3000 (commercial product), all other treatments containing Cu at 900 ppm induced 
mild phytotoxic symptoms in Vinca sp. 24 h after application. In addition, Vinca sp. 
exhibited moderate to high levels of plant tissue damage 48 h after application of 
CuSiNG (water-soluble composite copper (II) loaded silica nanogels) and 
MV-CuSiNG (composite mixed-valence copper loaded silica nanogel), which 
remained after 72 h. On the other hand, Hamlin orange exhibited strong tolerance to 
Cu-induced phytotoxicity even at the highest Cu concentration (900 ppm), regard-
less of the formulation.

Saharan et al. (2015) synthesized chitosan NPs loaded with Cu ions and evalu-
ated their growth promotion and antifungal efficacy in tomato seedlings (Solanum 
lycopersicum Mill cv. Navodhya) under laboratory conditions. Seeds treated with 
Cu–chitosan NPs (0.08% and 0.10%) showed improved seed germination and seed-
ling growth compared to all other treatments. On the other hand, at the highest NP 
concentration (0.12%), slight decreases in seedling length, vigor index, and biomass 
were observed compared to 0.08% and 0.10%, but not when compared to the con-
trol (water), chitosan (dissolved in 0.1% acetic acid), and CuSO4 0.1% (dissolved in 
water) treatments. Furthermore, the 0.12% concentration was the most effective 
treatment in disease control during the experiment.

As can be observed in studies from the last eight years that used Cu-based 
nanoparticles as nanopesticides, there is a lack of information about the possible 
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phytotoxicity conferred by the application of these nanoformulations. A few studies 
have performed specific analyses or more careful monitoring to detect possible phy-
totoxic symptoms. As previously described, some symptoms appear some hours 
after application and may disappear or intensify during the following days, depend-
ing on the plant species, nanoformulation type, and concentration (Li et al., 2020; 
Ma et al., 2020; Sathiyabama et al., 2020; Cumplido-Nájera et al., 2019; Quiterio-
Gutiérrez et al., 2019). In addition to the complete characterization of antifungal 
activity in vitro and in vivo, careful monitoring of plants (visible symptoms, mor-
phophysiological, and/or metabolic alterations) after nanopesticide application is of 
utmost importance for better characterization of the effects of Cu-based nanopesti-
cides, highlighting the pros and cons of their use for plant protection.

Because the evaluations of effectiveness and potential uses are directly related to 
the effects on plant growth, some studies in which Cu-based nanomaterials were 
applied as nanofertilizers reported relevant information about phytotoxicity.

Lee et al. (2008) evaluated in vitro the growth of beans (Phaseolus radiates L.) 
and wheat seedlings, as well as the bioaccumulation of Cu NPs applied at concen-
trations of 0, 200, 400, 600, 800, and 1,000 mg L−1 with an exposure period of 48 h. 
A decrease in seedling length was observed for both species, reaching the lowest 
values at the highest concentration (1,000 mg L−1). Beans were more sensitive than 
wheat to Cu NPs, with the induction of root necrosis. The no-observed-adverse-
effect concentrations for wheat root and shoot exposed to Cu NPs were less than 
200 and 800  mg  L−1, respectively. In addition, bioaccumulation increased with 
increasing concentrations of Cu NPs. The cupric ions released from Cu nanoparti-
cles had negligible effects in the concentration ranges used in this study, which 
suggests that the apparent toxicity resulted from Cu NPs.

Hafeez et al. (2015) carried out a study to determine the potential of Cu NPs to 
enhance the growth and yield of wheat cultivar Millat-2011. Although germination 
was not affected by Cu NP concentrations up to 0.8 ppm, it decreased significantly 
with nanoparticle application in concentrations equal to or higher than 1 ppm, using 
a medium composed of three layers of sterilized filter paper in Petri dishes. Cu NP 
concentrations higher than 2 ppm were deleterious to wheat plants in solution cul-
ture, whereas lower concentrations (0.2, 0.4, 0.6, 0.8, and 1.0 ppm) enhanced seed-
ling growth. When applied to the soil, Cu NPs (10, 20, 30, 40, and 50  ppm) 
significantly increased the growth and yield of wheat compared with control. The 
results showed that Cu NPs can enhance the growth and yield of wheat, but their 
effects are dependent on the concentration and the growth medium.

Zuverza-Mena et al. (2015) evaluated the impact of Cu-based formulations on 
agronomic and physiological parameters of cilantro (Coriandrum sativum L.) 
plants. The treatments (Cu(OH)2; Cu NPs; Cu μPs (micro-Cu); CuO NPs; CuO μPs 
(micro-Cu oxide) or CuCl2) were applied at 20 or 80 mg Cu per kg of commercial 
substrate. Cu NPs, CuO NPs, CuO μPs, and CuCl2 reduced seed germination at both 
concentrations, while only CuO μPs decreased shoot growth. All Cu-based treat-
ments impaired nutrient accumulation in shoots, except Fe and Ni. The results 
showed that, even at a low concentration (20 mg kg−1), the Cu-based nanoparticles 
or compounds might affect plant nutritional quality.
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Yang et al. (2015) evaluated the roles of dissolved metal ions in the CuO NP 
phytotoxicity against maize (Zea mays L.) and rice. Root elongation was signifi-
cantly inhibited by CuO NPs in both species in a concentration-dependent manner 
(25 to 2000 mg L−1), which was not related to Cu2+ release.

The data discussed here show that there is a narrow concentration range between 
the protective and the phytotoxic effects induced by engineered Cu-based nanoma-
terials applied to plants as nanofertilizers and/or nanopesticides. Moreover, factors 
such as nanomaterial concentration, plant species, and exposure route are determi-
nants for the intensity of each effect. Studies need to describe all the conditions 
involved in the application of nanomaterials and provide as much information as 
possible about their effects on plants to allow the continuous development of nano-
structures aimed at improving agricultural practices.

5  �Final Remarks

In recent years, nanotechnology and agriculture have been areas of intensive interest 
from the scientific, technological, and commercial fields. In general, engineered 
nanoparticles can be used to promote plant growth and defense against pathogens 
while increasing crop resistance under biotic stress. Cu is an important micronutri-
ent in plants, participating in several endogenous activities, acting in the metabo-
lism of carbohydrates and proteins as well as being directly involved in the role of 
chlorophyll synthesis in photosynthesis. However, it is known that the use of Cu at 
high concentrations can have negative effects on plants.

Cu-based nanoparticles are nanomaterials with potent antimicrobial effects that 
can be used as pesticides in agriculture. The use of nanomaterials has several advan-
tages over massive (bulk) materials, including higher efficacy and less toxicity. 
Recently, greener routes to synthesize Cu-based nanoparticles have been widely 
investigated. These nanoparticles can be prepared using several approaches, their 
surface can be coated or functionalized with active polymers or other metallic 
nanoparticles, or they can be incorporated into inorganic or organic materials lead-
ing to the formation of hybrid nanoparticles. These strategies can minimize nanopar-
ticle toxicity and maximize their biological effects and biocompatibility. Moreover, 
Cu-based nanoparticles might have superior effects to commercially used fertiliz-
ers, pesticides, and herbicides, which do not contain nanomaterials.

Considering the last few years, several signs of progress have been achieved in 
using Cu-based nanoparticles as pesticides in agriculture. However, further studies 
are still required to better understand the phytotoxicity of these nanoparticles. It is 
essential to highlight that the safe and conscious use of nanomaterials in different 
crops could minimize ecological impacts, such as pollution and ecotoxicity. Thus, 
recent efforts have been focused on understanding and improving nanomaterials to 
mitigate unwanted effects on plants and the environment. The use of Cu-based 
nanoparticles as active agents in pesticides is a promising and realistic approach in 
agriculture.
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