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Preface

Welcome to the proceedings of BNAIC/Benelearn 2021, the 33rd edition of the annual
Benelux Conference on Artificial Intelligence and the 30th edition of the annual
Belgian-Dutch Conference on Machine Learning.

In 2021, this joint conference was organized by the University of Luxembourg,
under the auspices of the Faculty of Science, Technology, and Medicine (FSTM) and
the Interdisciplinary Lab for Intelligent and Adaptive Systems (ILIAS), and the IT
for Innovative Services (ITIS) research department from the Luxembourg Institute of
Science and Technology (LIST).

Held yearly, the objective of BNAIC/Benelearn is to promote and disseminate recent
research developments in Artificial Intelligence in the Benelux. In 2021 we returned to
in-person attendance, underCovidCheck regulations, as a three-day event: the conference
taking place from Wednesday, November 10 to Friday, November 12, 2021.

BNAIC/Benelearn 2021 included invited keynote speakers, research presentations,
posters, and demonstrations. The conference provided ample opportunity for interaction
between academia and industry. This year, the chosen motto of the conference was “AI
in ACTION”, to reflect the aforementioned synergies between academia and industry.

For the scientific part, we welcomed four types of contributions, namely, a)
regular papers, b) encore abstracts of work already published in 2021, c) posters, and
demonstrations, and d) thesis abstracts. We received 105 submissions overall, out of
which 46 were regular papers. Of these, 14 were selected for inclusion in this volume
of the Springer CCIS series after a second round of reviewing by members of the
Program Committee, representing a 30% acceptance rate. All regular papers, posters,
and demonstrations received three expert single-blind reviews on average, whereas thesis
and encore abstracts were reviewed by at least one Program Committee member.

All scientific contributions were presented as 20-minute talks, for which the
conference program comprised four parallel tracks. In addition to these scientific
presentations, we had keynote presentations by Fosca Giannotti (ISTI-CNR Pisa, Italy),
Katie Atkinson (University of Liverpool, UK), Carles Sierra (IIIA of CSIC, Spain),
ManuelaNaveau (Kunstuniversität Linz,Austria), JulieBernauer (NVIDIACorporation,
USA), and Iris von der Tuin (Utrecht University). We also held a special FACt (FACulty
focusing on the FACts of AI) session with presentations by Benoit Macq (Polytechnic
School of UCLouvain, Belgium), Gilles Louppe (University of Liège, Belgium), and
Christoph Schommer (University of Luxembourg, Luxembourg).

To conclude, we want to express our gratitude to everyone whomade this conference
possible. Without their efforts, this conference could not have taken place. In addition to
all invited speakers mentioned above, many thanks go to our sponsors: Luxembourg’s
National Research Fund (FNR), the Dutch Foundation for Neural Networks (SNN),
the Foundation for Knowledge-Based Systems (SKBS), and the Benelux Association
for AI (BNVKI). We also thank all the organizing and Program Committee members
for their hard work to guarantee the high quality of this conference, both before and
during the conference. We sincerely appreciate all the student volunteers, administrative
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and secretarial assistants, and, of course, all the academic as well as business sponsors.
Finally,we also thank all the authorswhomade important contributions to the conference.

November 2021 Luis A. Leiva
Cédric Pruski

Réka Markovich
Amro Najjar

Christoph Schommer
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Active Learning for Reducing Labeling
Effort in Text Classification Tasks

Pieter Floris Jacobs1(B) , Gideon Maillette de Buy Wenniger1,2(B) ,
Marco Wiering1(B) , and Lambert Schomaker1(B)

1 University of Groningen, Groningen, The Netherlands
p.f.jacobs@student.rug.nl, {m.a.wiering,l.r.b.schomaker}@rug.nl

2 Open University of the Netherlands, Heerlen, The Netherlands
gideon.maillettedebuywenniger@ou.nl

Abstract. Labeling data can be an expensive task as it is usually per-
formed manually by domain experts. This is cumbersome for deep learn-
ing, as it is dependent on large labeled datasets. Active learning (AL)
is a paradigm that aims to reduce labeling effort by only using the data
which the used model deems most informative. Little research has been
done on AL in a text classification setting and next to none has involved
the more recent, state-of-the-art Natural Language Processing (NLP)
models. Here, we present an empirical study that compares different
uncertainty-based algorithms with BERTbase as the used classifier. We
evaluate the algorithms on two NLP classification datasets: Stanford Sen-
timent Treebank and KvK-Frontpages. Additionally, we explore heuris-
tics that aim to solve presupposed problems of uncertainty-based AL;
namely, that it is unscalable and that it is prone to selecting outliers.
Furthermore, we explore the influence of the query-pool size on the per-
formance of AL. Whereas it was found that the proposed heuristics for
AL did not improve performance of AL; our results show that using
uncertainty-based AL with BERTbase outperforms random sampling of
data. This difference in performance can decrease as the query-pool size
gets larger.

Keywords: Active Learning · Text classification · Deep Learning ·
BERT

1 Introduction

Deep Learning (DL) is a field in machine learning in which neural networks
with a large number of layers are made to perform complicated human tasks.
These networks have to be trained on a large amount of data to be able to learn
the underlying distribution of the task they are trying to model. In supervised
learning, this data is required to be labeled with the desired output. This allows
the network to learn to map the input to the desired output. This study will focus
on an instance of supervised learning, called text classification. Data labeling is
usually done manually and can grow to be an expensive and time-consuming
c© Springer Nature Switzerland AG 2022
L. A. Leiva et al. (Eds.): BNAIC/Benelearn 2021, CCIS 1530, pp. 3–29, 2022.
https://doi.org/10.1007/978-3-030-93842-0_1
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task for larger datasets, like those used in DL. This begs the question of whether
there is no way to reduce the labeling effort while preserving good performance
on the chosen task. Similarly to lossy compression [1], we want to retain a good
approximation of the original dataset while at the same time reducing its size as
much as possible. More specifically: given a training set, how can we optimally
choose a limited number of examples based on the amount of relevant information
they contain for the target task?

Conceptually, answering this question requires quantifying the amount of
information contained in each data point. This finds its roots, like lossy com-
pression, in information theory [31]. A model trained on limited data has an
entropy associated with its target variable predictions. Our goal is to greedily
select the data for labeling, while reducing entropy as much as possible, sim-
ilar to how it is done in research on decision trees [13]. In essence, we aim to
incrementally, optimally select a subset of data points; such that the distribution
encoded by the learned model maximizes the information gain or equivalently
minimizes the Kullback-Leibler divergence [21] with respect to the unknown dis-
tribution of the full labeled data. However, there are two problems. First, the
labels of the data are not known until labeling, and additional held-out labeled
data to aid the selection is typically not available either. This contrasts with
the easier case of summarizing a known dataset by a subset of data, in which
the Kullback-Leibler divergence of a selected subset with the full set can be
measured and minimized. Second, because the parameters of a neural network
change during training, predictions and certainty of new data points also change.
Because of these two problems, examples can only be greedily selected based on
their expected utility for improving the current, incrementally improved model.
As the actual labels for examples are lacking before their selection, their real
utility cannot be known during selection. Therefore, only proxies for this utility
such as model uncertainty can be used, as discussed next.

A machine-learning technique called Active Learning (AL) [30] can be used
to combat these problems. In AL, a human labeler is queried for data points
that the network finds most informative given its current parameter configura-
tion. The human labeler assigns labels to these queried data points and then the
network is retrained on them. This process is repeated until the model shows
robust performance, which indicates that the data that was labeled is a sufficient
approximation of the complete dataset. There are multiple types of informative-
ness by which to determine what data to query the oracle for. For instance
calculating what results in the largest model change [3] or through treating the
model as a multi-arm bandit [2]. However, the existing literature predominantly
utilizes different measures of model uncertainty [5,7–9,37], which is also done in
this research. Bayesian probability theory provides us with the necessary mathe-
matical tools to reason about uncertainty, but for DL has its complications. The
reason is that (typical) neural networks, as used for classification and regres-
sion, are discriminative models. These produce a single output, a so called point
estimate. Even in the case of softmax outputs this is not a true probability den-
sity function [7,8]. Another view on this is that modern neural networks often
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lack adequate confidence calibration, meaning they fail at predicting probability
estimates representative of the true correctness likelihood [14].

This poses a problem to Bayesian probability theory as it prevents us from
being able to perform Bayesian inference. With Bayesian inference we can deter-
mine the probability of a certain output y* given a certain input point x*:

p(y ∗ |x∗,X, Y ) =
∫

p(y ∗ |x∗, ω)p(ω,X, Y )dω (1)

Unfortunately, for the discriminative neural network models there is no prob-
ability distribution: the output is always the same for a given input. What is
more, even if we suppose the network was generative (Eq. 1), the integral is not
analytically solvable due to the fact that we need to integrate over all possi-
ble parameter settings ω. However, it can be approximated. Existing literature
has explored different methods of achieving this, with Monte Carlo Dropout
(MCDO) being the most popular one [5,8,38]. In MCDO, the network applies
dropout [34] to make the network generative. Multiple stochastic forward passes
are performed to produce multiple outputs for the same input. The outputs can
then be used to summarize the uncertainty of the model in a variety of ways.

This research uses the MCDO approximation to compare different
uncertainty-related AL query methods for text classification, noting there is
still little literature on the usability of AL for modern NLP models. We strive
to answer the following research question:

Research Question. How can uncertainty-based Active Learning be used to
reduce labeling effort for text classification tasks?

Where previous literature focused on comparing AL strategies on small
datasets and on the test accuracy of the final classifier, this paper will try and
explore the usability of AL on a real-world setting, in which factors like the effect
of transfer learning and considerations such as scalability have to be taken into
account. The goal is to reach a performance similar to the state-of-the-art text-
classification models that use a large randomly sampled set of labeled examples
as training set. This should show whether AL can be applied to reduce labeling
effort.

2 Related Work

Active Learning Applied to Deep Learning for Image Classification
Multiple methods of incorporating AL into Deep Neural Networks (DNNs) have
been proposed in the past. Most of these focus on image classification tasks.

Houlsby et al. [16] proposed an information theoretic approach to AL:
Bayesian Active Learning by Disagreement (BALD). In hopes of achieving
state-of-the-art performance and making minimal approximations for achiev-
ing tractability, they used a Gaussian process classifier and compared the per-
formance of BALD to nine other AL algorithms. Their findings included that
BALD, which we use in this study, makes the smallest number of approximations
across all tested algorithms.
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Gal et al. [9] used a Bayesian convolutional network together with MCD to be
able to approximate Bayesian inference and thereby proposed an AL framework
that makes working with high dimensional data possible. They compared results
of a variety of uncertainty-based query functions (including BALD and variation
ratio) to random sampling and found that their approach to scaling AL to be
able to use high dimensional data was a significant improvement to previous
research, with variation ratio achieving the best results.

Drost [5] provided a more extensive discussion of the different ways of incor-
porating uncertainty into DNNs. He tried to learn which way of computing the
uncertainty for DNNs worked best. Using a convolutional neural network, he
compared the use of dropout, batch normalization, using an Ensemble of NNs
and a novel method named Error Output for approximating Bayesian inference.
His main conclusion was that using dropout, batch normalization and ensembles
were all useful ways of lowering uncertainty in model predictions. He found that
the Ensemble method provided the best uncertainty estimation and accuracy
but that it was very slow to train and required a large amount of memory. He
concluded MCDO, which is what we use in this study, to be a promising strategy
of uncertainty estimation, albeit that one has to take into account slow inference
times.

Gikunda and Jouandeau [10] explored an approach for preventing the selec-
tion of outlier examples. They combined the uncertainty measure with a cor-
relation measure, measuring the correlation of each unlabeled example with all
other unlabeled examples. A higher correlation indicated that an example was
less likely to be an outlier. Their method is similar to using a local KNN-based
example density as discussed in [41], which is one of the methods we used in
this work. The main difference with the KNN-density approach is that their
correlation-based density does not consider local neighborhoods in the density
estimation. As uncertainty measure they used so-called sampling margin, which
is based on the difference in probability between the most likely and second most
likely class according to softmax outputs. This is somewhat similar to variation
ratio, but does not use stochastic forward passes. It uses plain softmax outputs
instead, making it quite distinct from the dropout-sampling based approach we
adopt in this work.

Active Learning Applied to Deep Learning for Text Classification
A survey of deep learning work on using AL for text classification is given in [29].
They present a taxonomy of different query functions, including those focused
on prediction and model uncertainty that we use. They also discuss the incor-
poration of word embeddings into DNN-based AL, which is something that we
attempt in this study.

BERT is used in combination with AL in [6]. They presented a large-scale
empirical study on AL techniques for BERT-based classification, covering a
diverse set of AL strategies and datasets; focusing on binary text classification
with small annotation budgets. They concluded that AL can be used to boost
BERT performance.
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Active Learning for Regression
Whereas our work is on classification, dropout-based AL can be adapted for
regression as well, and this was done by [38]. They used the set of T sample
predictions from the forward passes to compute sample standard deviation for
the T predictions, using this as a measure of uncertainty. Evaluation was done
on standard open multivariate datasets of the UCI Machine Learning repository.

Confidence Calibration
Dropout sampling as used in this work aims to solve the problem that soft-
max outputs are not reliable representations of the true class probabilities. This
problem is known as confidence calibration, and dropout sampling is not the only
solution to it.

Guo et al. [14] evaluated the performance of various post-processing tech-
niques that took the neural network outputs and transformed them into values
closer to representative probabilities. They found that in particular a simplified
form of Platt Scaling, known as temperature scaling, was effective in calibrating
predictions on many datasets. This method conceptually puts a logistic regres-
sion model with just one learnable ‘temperature’ parameter behind the softmax
outputs, and is trained by optimizing negative log likelihood (NLL) loss over the
validation set. It thus learns to spread out or peak the probabilities further in a
way that helps to decrease NLL loss, thereby as a side-effect increasing calibra-
tion. Recently, using a new procedure inspired by Platt Scaling, Kuleshov et al.
[20] generalized an effective approach for confidence calibration to be usable for
regression problems as well.

Discriminative Active Learning and Cartography Active Learning
Gissin and Shalev-Shwartz [11] proposed an AL method, called Discriminative
Active Learning (DAL). Their method uses a separate binary classifier trained
to distinguish examples from the labeled and unlabeled set. Using this classifier,
the acquisition function is then set to prefer examples predicted to belong to
the unlabeled set, with the aim of greedily making the labeled set more similar
to the unlabeled one. The classifier uses as input the representation learned by
the model, but not the labels. Their approach was evaluated on image classifi-
cation tasks. While it was competitive when using large batch sizes and labeling
budgets, it fell behind uncertainty-based methods in other settings.

Zhang and Plank [40] proposed a new AL method called Cartography Active
Learning (CAL), which takes inspiration from work on Data Maps [35] as well as
DAL [11]. Like DAL, they used a separate binary classifier as the basis for their
acquisition function. Different from DAL however, they used the available labels
when determining example informativeness. Their method uses the information
about the model performance on the currently labeled dataset to predict the
informativeness of currently unlabeled examples. They trained a classifier that
predicts whether training examples have been correctly classified across train-
ing epochs, for a fraction of times above a chosen threshold. The used acquisi-
tion function favors unlabeled examples closest to the decision boundary of this
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classifier, as these ambiguous yet not overly easy or hard examples were hypoth-
esized to be the most beneficial for training the model.

The method was evaluated on text classification tasks. Significant improve-
ments over state-of-the-art AL methods, as well as analysis based on confidence,
variability and correctness statistics [35] provide evidence for the effectiveness of
the method. The model used for evaluating the method utilizes averaged word
embeddings as inputs to a Multi-layer Perceptron; as opposed to more context-
aware sentence encodings such as those provided by BERT.

3 Methods

This section will go on to describe the general AL loop, the model architecture,
the used query functions, the implemented heuristics, and finally the experimen-
tal setup.

3.1 Active Learning

An implementation of the general AL loop/round is shown in Appendix A.2
(Algorithm 1). It consists of four steps:

1. Train: The model is reset to its initial parameters. After this, the model is
trained on the labeled dataset L. The model is reset before training because
otherwise the model would overfit on data from previous rounds [17].

2. Query: A predefined query function is used to determine what data is to be
labeled in this AL round. As discussed, this can be done in various ways, but
the guiding principle is that the data that the model finds most useful for the
chosen task gets queried.

3. Annotate: The queried data is parsed to a human expert, often referred to
as the oracle. The oracle then labels the queried examples.

4. Append: The newly-labeled examples are transferred from the unlabeled
dataset U to L. The model is now ready to be retrained to recompute the
informativeness of the examples in U now that the underlying distribution of
L has been altered.

Please note that the datasets used for the experiments (Sect. 3.5) were fully
labeled and the annotation step thus got skipped in this research. U existed
out of labeled data that was only trained on from the moment it got queried.
This was done to speed up the process and to enable scalable and replicable
experiments with varying experimental setups.

3.2 Model Architecture

BERT. The model used to classify the texts was BERTbase [4], a state-of-the-art
language model which is a variant of the Transformer model [39]. Specifically, we
used the uncased version of BERTbase, as the information of capitalization and
accent markers was judged to be not helpful for the used tasks and datasets. Due
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to computational constraints, only the first sentence of the used texts was put
into the tokenizer and the maximal length to which the tokenizer either padded
or cut down this sentence was set to 50. To better deal with unknown words and
shorter text, we used the option of the BERTbase tokenizer to make use of special
tokens for sentence separation, padding, masking and to generalize unknown
vocabulary. Finally, a softmax layer was added to the end of BERTbase, which
is essential as the implemented query functions (Sect. 3.3) compute uncertainty
based on sampled output probability distributions.

Monte Carlo Dropout. Monte Carlo dropout (MCDO) is, as discussed in
Sect. 1, a technique that enables reasoning about uncertainty with neural net-
works. Dropout [34] essentially ‘turns off’ neurons during the forward pass with
a predefined probability. Dropout is normally used during training to prevent
overfitting and create a more generalized model. In MCDO though, it is used
to approximate Bayesian inference [8] through creating T predictions for all
data points, using T slightly different models induced by different dropout sam-
ples. The result of these so-called stochastic forward passes (SFP’s) can then be
used by the query function to compute the uncertainty, as will be explained in
Sect. 3.3. The way MCDO is incorporated in the AL loop is shown in green in the
Appendix (Algorithm 2). BERTbase has two different types of dropout layers:
hidden dropout and attention dropout. Both were turned on when perform-
ing a stochastic forward pass. Note that there are other ways of approximating
Bayesian inference with neural networks. Frequently used ones are:

– Having an ensemble of neural networks vote on the label [19].
– Monte Carlo Batch Normalization (MCBN) [37].

MCDO was chosen over the ensemble method due to it being easier to implement
and quicker to train. MCBN was not chosen as it has been shown to be more
inconsistent than MCDO [5].

Sentence-BERT. Textual data offers the advantage of having access to the use
of pre-trained word embeddings. These are learned representations of words into
a vector space in which semantically similar words are close together. Textual
embeddings can be computed in a variety of ways. BERT specific ones include
averaging the pooled BERT embeddings and looking at the BERT CLS token
output. Other more general ways are averaging over Glove word embeddings [26]
and averaging embeddings created by a Word2Vec model [23]. We have opted
to make use of Sentence-BERT [27], a Siamese BERT architecture trained to
produce embeddings that can be adequately compared using cosine-similarity.
For our purposes this provides better performance than the other embedding
computations. Sentence-BERT was used separately from the previously discussed
BERTbase model, and was used only for assigning embeddings to each sentence
in the dataset that were used by the heuristics described in Sect. 3.4.
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3.3 Query Functions

The query functions determine data selection choices of the model in the AL loop.
This paper will focus on functions that reason about uncertainty, obtained from
approximated Bayesian distributions [8]. For every data point, the distribution is
derived from T stochastic forward passes and resulting T (in our case) softmax
probability distributions. The following subsections will go on to discuss the
implemented query functions. One is encouraged to look at [7] for an extensive
discussion that highlights the difference between these functions.

Variation Ratio. The variation ratio is a measure of dispersion around the
class that the model predicts most often (the mode). The intuition here is that
the model is uncertain about a data point when it has predicted the mode class a
relatively small number of times. This indicates that it has predicted other classes
a relatively large number of times. Equation 2 shows how the variation ratio is
computed, where fx denotes the mode count and T the number of stochastic
forward passes.

v[x] = 1 − fx
T

(2)

The function attains its maximum value when the model predicts all classes an
equal amount of times and its minimum value when the model only predicts
one class across all stochastic forward passes. Variation ratio only captures the
uncertainty contained in the predictions, not the model, as it only takes into
account the spread around the most predicted class. It is thus a form of predictive
uncertainty.

Predictive Entropy. Entropy H(x) in the context of information theory is
defined as:

H(x) = −
n∑

i=1

p(xi) log2 p(xi) (3)

This formula expresses the entropy in bits per symbol to be communicated,
in which p(xi) gives the probability of the i-th possible value for the symbol.
Entropy is used to quantify the information of data. In our case we want to
know the chance of the model classifying a data point as a certain class given
the input and model parameters (p(y = c|x,ω)). We can compute this chance
by averaging over the softmax probability distributions across the T stochastic
forward passes. This adjusted version of entropy is denoted in Eq. 4, where ω̂t

denotes the stochastic forward pass t, and c the number associated to the class-
label.

H[y|x,Dtrain] = −
∑
c

(
1
T

∑
t

p(y = c|x, ω̂t)

)

log

(
1
T

∑
t

p(y = c|x, ω̂t)

) (4)
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To exemplify: in binary classification, the predictive entropy is highest when
the model its softmax classifications consist of T times [0.5, 0.5]. In that case,
expected surprise when we would come to know the real class-label is at its
highest. The uncertainty is computed by averaging over all predictions and thus
falls under predictive uncertainty.

Bayesian Active Learning by Disagreement. Predictive entropy (Sect. 3.3)
is used to quantify the information in one variable. Mutual information or joint
entropy is very similar but is used to calculate the amount of information one
variable conveys about another. In our case, we’ll be looking at what the average
model prediction will convey about the model posterior, given the training data.
This is a form of conditional mutual information, the condition or the third
variable being the training data Dtrain. Houlsby et al. [16] used this form of
mutual information in an AL setting and dubbed it Bayesian active learning by
disagreement (BALD).

I[y, ω|x,Dtrain] = −
∑
c

(
1
T

∑
t

p(y = c|x, ω̂t)

)

log

(
1
T

∑
t

p(y = c|x, ω̂t)

)

− 1
T

∑
c,t

p(y = c|x, ω̂t)

log p(y = c|x, ω̂t)

(5)

The difference between Eqs. 5 and 4 is that the conditional entropy is sub-
tracted from the predictive entropy. The conditional entropy is the probability
of the full output being generated from the training data and the input. This
is the reason we do not average the predictions for every single class. We first
sum over all classes, so that we do not average over the model parameters for
every single class and thus take into account the fact that we are looking at the
chance of the complete probability distribution being generated.

BALD is maximized when the T predictions are strongly disagreeing about
what label to assign to the example. So in the binary case, it would be highest
when the predictions would alter between [1, 0] and [0, 1] as these two predictions
are each others complete opposite. Unlike the variation ratio and predictive
entropy, BALD is a form of model uncertainty. When the softmax outputs would
be equal to T times [0.5, 0.5], the minimal BALD value would be returned as
the predictions are the same and the model is thus very confident about its
prediction.

3.4 Heuristics

Redundancy Elimination. In AL, a larger query-pool size (from now on
referred to as q) results in the model being retrained less and the uncertainties
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of examples being re-evaluated less frequently. Consequently, the model gets to
make less informed decisions as it uses less up-to-date uncertainty estimates.
Larger q could therefore theoretically cause the model to collect many similar
examples for specific example types with high model uncertainty in an AL round.
Say for instance we were dealing with texts about different movie genres. Sup-
pose the data contained a lot of texts about the exact same movie. When the
model would be uncertain about this type of text, a large q would result in a
large amount of these texts getting queried. This could be wasteful, as querying
this type of text a small amount of times would likely result in the model no
longer being uncertain about that type of text. Note however, that low model
uncertainty by itself is no guarantee for robustly making accurate predictions for
a type of examples. Yet provided such robust performance is achieved, additional
examples of the same type would be a waste.

The above could form a problem as although a smaller q should theoreti-
cally provide us with better results, it also requires more frequent uncertainties
re-computation. Every computation of the uncertainties requires T stochastic
forward passes on the unlabeled dataset U . This entails that, next to the com-
putation, the time required to label a dataset would increase as well, which is
not in line with our goal. In hopes of improving performance with larger q, we
propose two heuristics:

1. Redundancy Elimination by Training (RET)
2. Redundancy Elimination by Cosine Similarity (RECS).

For both of these heuristics, a new pool, which we will refer to as the
redundancy-pool RP, is introduced. The query-pool QP will be a subset of
RP of which we will try to select the most dissimilar examples.

RET tries to eliminate redundant data out of RP by using it as a pool to
retrain on. The data point with the highest uncertainty is trained on for one
epoch and then the uncertainties of the examples in RP are recomputed. This
process gets repeated until QP is of the desired size. Note that although this
strategy seems similar to having a q of one, it is less computationally expensive
as only the uncertainties for the examples in RP have to be recomputed (which
also shrinks after each repetition). Algorithm 3 of Appendix A.2 shows how RET
is integrated in the AL loop.

The main purpose of RET is to enable the use of larger q. However, one needs
to be mindful of the fact that when q is increased, RP is to be increased in size
well. This being due to the fact that smaller differences between the sizes of RP
and QP result in less influence of the heuristic. In the RET algorithm, forward
passes over RP contribute to the total amount of forward passes. Furthermore,
this contribution increases linearly with the redundancy-pool size (|RP|) and
in practice coupled query-pool size q. Using |RP| = 1.5 × q, this contribution
starts to dominate the total amount of forward passes (approximately) once
q >

√|data|. This is explained in more detail in Appendix A.1. This limits its
use for decreasing computation by increasing q. Because of this, RECS is aimed
at being computationally cheaper.
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Instead of retraining the model and constantly taking into account recom-
puted uncertainties, RECS makes use of the sentence embeddings created by
Sentence-BERT (Sect. 3.2). The assumption made is that semantically similar
data conveys the same type of information to the model. The examples are
selected based on their cosine similarity to other examples. RP is looped through
and examples are only added to QP if their cosine similarity to all other points
that are already in QP is lower than the chosen threshold l. If not enough
examples are selected to get the desired q, the threshold gets decreased by 0.01.
Algorithm 4 of Appendix A.2 shows how this heuristic is added to the AL loop.

Sampling by Uncertainty and Density (SUD). Schomaker and Oosten [25]
showed that the distinction between separability and prototypicality is impor-
tant to account for. In their use case of the SVM, data points that had a high
margin to the decision boundary were not always representative of the class pro-
totype. Uncertainty sampling also tries to sample examples close to the decision
boundary, but has been shown to often select outliers [28,36]. Outliers contain a
lot of information that the model has not encountered yet, but this information
is not necessarily useful. As with the previously described RECS heuristic, we
hypothesize that semantically similar sentences provide the same type of infor-
mation. In that situation, outliers are very far from other examples in embedding
space.

Zhu et al. [41] proposed a K-Nearest-Neighbor-based density approach called
Sampling by Uncertainty and Density (SUD) to avoid outliers based on their dis-
tance in embedding space. In this approach, the mean cosine similarity between
every data point and its K most similar neighbors is computed. A low value
indicates that a data point is not very similar to others. This value is then mul-
tiplied with the uncertainty and the dataset is sorted based on this Uncertainty-
Density measure. They showed that this measure improved performance of the
maximum entropy model classifier. We will explore whether this approach also
works for BERT combined with the embeddings computed by Sentence-BERT.
The adjusted pseudocode is shown in Appendix A.2 (Algorithm 5).

3.5 Experimental Setup

Data. (The code used for the experiments can be found at https://github.com/
Pieter-Jacobs/bachelor-thesis.) Two datasets were used to validate and compare
the performance of the different AL implementations. Table 1 shows an overview
of the amount of examples and classes of each dataset. The first of the used
datasets was the Stanford Sentiment Treebank [33] (SST). SST exists out of
215,154 phrases from movies with fine-grained sentiment labels in the range of
0 to 1. These phrases are contained in the parse trees of 11,855 sentences. Only
these full sentences were used in the experiments, and the sentiment labels were
mapped to five categories in the following way:

https://github.com/Pieter-Jacobs/bachelor-thesis
https://github.com/Pieter-Jacobs/bachelor-thesis
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Table 1. An overview of the two datasets used in the experiments

Dataset Examples Number of classes

SST 11,850 5

KvK 2212 15

– 0 ≤ label < 0.2: very negative
– 0.2 ≤ label < 0.4: negative
– 0.4 ≤ label ≤ 0.6: neutral

– 0.6 < label ≤ 0.8: positive
– 0.8 < label ≤ 1: very positive

Use of the SST dataset was motivated by its size as well as by it being a
benchmark for language models. It allowed for the evaluation of AL for a larger
dataset and for comparison with results found in related work such as [24]. This
helped to check whether BERTbase was achieving desirable performance.

The second dataset that was used consists of the descriptions of companies
located in Utrecht. The companies are all registered at the Dutch Chamber of
Commerce, or Kamer van Koophandel (KvK) and were mapped to their cor-
responding SBI-code. The SBI code denotes the sector a company operates in,
as defined by the KvK. The HTML of the companies websites was scraped and
the meta content that was tagged as the description was extracted. In nearly all
cases, this contained a short description about what the company was involved
in. Note that only English descriptions were used. The KvK dataset provided
us with the opportunity to evaluate AL for a classification problem with a large
amount of classes as well as the ability to compare results between a dataset with
a limited number of examples and one with a relatively large amount of examples
(SST). Testing AL on a dataset with a limited number of examples was deemed
necessary due to the fact that most of the positive results found in related work
were achieved by making use of very small datasets. The dataset will not be
shared and is not available online due to the fact that it was constructed as part
of an internship at Dialogic.

Evaluation Metrics. To evaluate and compare the performance of the different
AL strategies, two evaluation metrics were reported: the accuracy and an altered
version of the deficiency metric proposed in [41].

The variant of deficiency that was used is shown in Eq. 6, in which n denotes
the amount of accuracy scores, acc(R) denotes the accuracy of the reference
strategy and acc(C) the accuracy of the strategy to be compared to this refer-
ence strategy. In our case, n is equal to |U|

q + 1 (+1 comes from the accuracy
achieved after training on the seed), as we computed the test accuracy after
every AL round.1 Furthermore, instead of using the accuracy that was achieved
in the final AL round for acc(C) and acc(R) like [41], we use the overall maxi-
mum accuracy. This accounts for the fact that the last achieved accuracy in a
1 For our experiments, this resulted in our n ranging from 20 to 191 for the SST dataset

and from 17 to 152 for the KvK dataset (the used q can be found in Sect. 3.5).
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classification task is not necessarily the best value, while still returning a metric
which provides a summary of the entire learning curve. This in turn means that
a decrease/increase in its value is analogical to a decrease/increase in overall per-
formance of the comparison strategy. However, the deficiency does not convey
whether there were points at which the accuracy of a strategy was higher than
usual and would serve as a good point to cut-down the dataset to reduce label-
ing effort. A deficiency of <1 indicates a better performance than the reference
strategy whereas a value of >1 indicates a worse performance.

DEF (AL,R) =
∑n

t=1(max(acc(R)) − acct(C)∑n
t=1(max(acc(R)) − acct(R))

(6)

Experiments. The goal of the experiments was to answer the question of
whether overall labeling effort could be reduced through making use of AL.
We split this into the following three sub-questions:

1. Does AL achieve better performance with less data when compared to plain
random sampling?

2. What is the relation between query-pool size q and the achieved performance?
3. Do the proposed heuristics (SUD, RET, RECS) improve the performance of

AL?

The statistical setup used for the experiments can be found in Table 2. The
setup for SST was based on the proposed setup in [33]. To reiterate, the following
AL strategies were implemented:

1. Variation Ratio (Sect. 3.3)
2. Predictive Entropy (Sect. 3.3)
3. BALD (Sect. 3.3)

4. RET (Sect. 3.4)
5. RECS (Sect. 3.4)
6. SUD (Sect. 3.4)

Table 2. The statistical setup used for both datasets. The percentages used are relative
to the full dataset size.

Dataset Seed U Dev Test

SST 594 (5%) 7951 (67%) 1101 (9%) 2210 (19%)

KvK 111 (5%) 1659 (75%) 221 (10%) 221 (10%)

To answer subquestion 1, these strategies were compared to the performance
of random sampling using a q of 1% of the dataset size. For subquestion 2, the
three query functions were be compared across three q: 0.5%, 1% and 5% of
the dataset size. Finally, to be able to answer subquestion 3, RET, RECT and
SUD were compared with a q of 1%. As RET, RECS and SUD were meant as
additions to general problems of uncertainty-based AL, they were only tested
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for the variation ratio query function. This function was chosen, because it was
reported in [7] to give the best result. To make the results more generalizable,
all the experiments mentioned above were run three times.

Moreover, to test the assumption of the RECT strategy, we measured whether
there was a relation between how the model softmax predictions changed towards
the one-hot vector of the actual label and the cosine similarity to the data point
that was trained on. The relationship was quantified by means of Kendall’s τ
between the ranking of the examples based on which one had the largest change
in KL divergence after training on the top example and the ranking of the
examples based on cosine similarity to the example being trained on.

Hyperparameters. Table 4 gives an overview of used hyperparameters. Model
weights were randomly initialized using the various PyTorch initialization
defaults for the respective model components. In addition to the randomness
of weight initialization, randomness determines dropout choices during train-
ing. These two forms of randomness influence model performance. For each sys-
tem/setting, we averaged results over three repeated runs which were identical
except for these random elements. This helps to prevent false conclusions due to
performance differences caused by effects of these elements.

Both dropout rate and l (the cosine-similarity threshold used in RECS) were
chosen based on a grid search across both datasets. The amount of stochastic
forward passes T was based on [6] and was set to 10 across all experiments.2 Early
stopping was applied on each training phase of the AL loop, Table 3 shows the
amount of epochs used for each dataset. The model yielding the lowest validation
loss across all epochs was used for evaluation and uncertainties computation.
Note that in a normal AL setting, validation sets are usually not available due
to the labelling effort required and this strategy would be less feasible.

The Adam algorithm [18] was used for optimization and its learning rate
was tuned based on the CLR method [32]. The best performing computationally
feasible batch size (128), out of the tried batch sizes (32, 64, 128, 256), was used
in all experiments. The betas and ε were set to their default values. The size of
RP was chosen arbitrarily, determining its optimal choice is left future research.

Finally, dimensionality reduction using PCA was tried to determine whether
this would result in better class-separability. For every data point in the full
dataset, the classes of the group of ten most similar data points (based on cosine
similarity) were determined. By maximizing the average of the number of within-
group same-class data points, the used dimensionality was determined.

2 Larger values up to 100 were tested, but induced much larger training times without
noteworthy performance gains.
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Table 3. The amount of epochs used
for early stopping for the different
datasets.

Dataset # Epochs

SST 15

KvK 25

Table 4. Hyperparameters values

Parameter Value

Dropout rate 0.2

T 10

l 0

β1, β2 0.9, 0.999

ε 1 * 10−8

Learning rate 2 * 10−5

Batch size 128

RP size 1.5*q

Embedding dim. 768

4 Results

This section will go onto visualize and describe the achieved results for all three
experiments described in Sect. 3.5. Note that for all figures, the results were
averaged over three runs with the error bars showing one standard deviation.
Furthermore, all deficiencies were rounded to two decimal places. For deficiency
values <1 (improvements over the reference strategy), we show the smallest value
in the comparison in bold. For the sake of readability and to keep graph points
aligned, in the graphs for query-pool sizes of 0.5% and 1% the points shown are
respectively those at every 10th and 5th and interval.

4.1 Active Learning

Figure 1a shows how the query functions performed on the KvK dataset. All
query functions outperform random sampling when the labeled dataset is less
than 200 examples large. After this, in particular BALD and variation ratio
continue to mostly outperform random sampling until near the maximum labeled
data size. Notably, many of the performance differences are larger than one
standard deviation.

Figure 1b shows how random sampling and the implemented query functions
performed on the SST dataset. On this dataset the results for the random sam-
pling baseline and the other systems is much smaller, and there does not seem
to be a clear winner.
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Fig. 1. The achieved test accuracy on the KvK dataset (a) and on the SST dataset
(b) by random sampling and the uncertainty-based query functions.

Finally, the deficiencies shown in Table 5 show a positive result (<1) for all
query functions except for predictive entropy for the SST dataset. Matching the
graphs, the performance gains as measured by the deficiency scores are overall
more substantial on the KvK dataset. BALD has the lowest deficiency for both
datasets.

Table 5. The deficiencies (Eq. 6) of the uncertainty-based query functions. Random
sampling was the reference strategy.

Dataset VR PE BALD

SST 0.95 1.01 0.89

KvK 0.67 0.9 0.64

4.2 Query-Pool Size

Figure 2a shows the performance of variation ratio across different q when used
on the KvK dataset. In the middle range of the graph, variation ratio with a q
of 5% has a worse performance than the other q. The q of 0.5% and 1% achieve
similar performance with the accuracy scores always staying within one standard
deviation of each other.

Figure 2b shows the performance of the different q on the SST dataset. The
performance of variation ratio with a q of 0.5% fluctuates more when compared to
the other q. Moreover, it results in an overall worse performance when compared
to the other sizes. The q of 5% shows to have the best and most consistent
performance over the whole learning curve in terms accuracy. However, the q of
0.5% manages to outperform the other q at about 5000 labeled examples.
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Fig. 2. The achieved test accuracy on the KvK dataset (a) and the SST dataset (b)
by using the variation ratio query function with different q.

The deficiencies for the different q across both datasets are shown in Table 6.
For the SST dataset, the q of 5% had a lower deficiency across the learning curve
whereas the q of 0.5% shows a relatively high deficiency. For the KvK dataset
however, we see that the q of 5% has a relatively high deficiency when compared
to the similarly performing q of 0.5% and 1%.

Table 6. The achieved deficiencies (Eq. 6) by the different q for the different datasets.
A q of 1% was the reference strategy.

Dataset 0.5% 5%

SST 1.65 0.62

KvK 0.91 1.33

4.3 Heuristics

Figure 3a shows the performance of using variation ratio with heuristics together
with the performance of solely using variation ratio on the KvK dataset (also
shown in Fig. 1b). Both RET and RECT show no clear improvement over solely
using variation ratio. The same can be gathered from the results of the SST
dataset shown in Fig. 3b as their accuracy scores stay within one standard devi-
ation for the entire learning curve. Moreover, Table 7 shows that the average
Kendall’s τ is around 0 with a relatively large standard deviation; indicating
that there is no relationship between the compared rankings.

Lastly, SUD shows an overall worse performance for both the SST and KvK
datasets. The deficiencies shown in Table 8 also show high values for SUD across
both datasets.
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Fig. 3. The achieved test accuracy on the KvK dataset (a) and on the SST dataset
(b) by the different heuristics.

Table 7. The mean and the 1 SD range
of Kendall’s τ from the described rank-
ing experiment across the two datasets
(rounded to two decimal places).

Dataset Mean σ

SST 0.14 0.33

KvK 0.02 0.47

Table 8. The achieved deficiencies by
the different heuristics. Variation ratio
was the reference strategy.

Dataset RET RECT SUD

SST 1.02 1.05 1.23

KvK 0.98 0.96 1.33

5 Discussion

This research investigated whether AL could be used to reduce labeling effort
while at the same time maintaining similar performance to a model trained on
a full dataset. To achieve this, the performance and scalability of different AL
query-strategies was tested for the state-of-the-art NLP model: BERT.

Conclusions. The results showed that uncertainty-based AL can provide
improved performance over random sampling for cut-down datasets. This differ-
ence was not consistent throughout the whole training curve: at specific points
AL outperformed random sampling and at others at it achieved similar perfor-
mance. BALD was the query function with the overall best performance. This
could be the case due to the fact that it is the only query function used which
measures model uncertainty. The found results differs from what was found in
[7,9], where variation ratio achieved the best overall performance.

Unfortunately, the results found for the KvK dataset show that the found
improvement can diminish as query-pool sizes get larger, which corresponds to
what was theorized hypothesized in Sect. 3.4.
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Moreover, the two proposed heuristics aimed at improving scalability did
not help in improving performance for either dataset and the heuristic aimed at
avoiding outliers even resulted in worse performance. This was surprising due
to the favorable results found in [41], albeit that they only tested it for training
sets of up to 150 examples.

An unexpected result was found in that the assumption that semantically
similar data conveyed the same type of information did not hold according to
the conducted ranking experiment. A possible explanation for this could be that
the texts were not mapped to embeddings in a way in which semantically similar
data was close enough to each other. Another curious finding was that for the
SST dataset, the smallest q resulted in the worse performance, especially at the
beginning of the learning curve. This is counter-intuitive due to the fact that
performance seems to suffer from more frequent uncertainty estimates. A poten-
tial justification for this could be that updating too frequently at the beginning
of the learning curve results in the model not being able to train enough on high
frequency classes. This could result in the model focusing too much on the long
tail of the class distribution due to the fact that it is more uncertain about texts
with low frequency classes at the start of the learning curve. Further research is
needed to build a better understanding of this. Conversely, given that AL was
shown to have little influence on the achieved accuracy and that most of the
differences between the different q are within one standard deviation, one could
argue that that the size of q did have an influence on the results whatsoever and
that we thus cannot conclude anything from the found results.

From the above, we conclude that uncertainty-based AL with BERTbase can
be used to decrease labeling effort. This supports what was concluded by [12].

When looking at the bigger picture, we showed that AL can still provide
an improvement in performance over random sampling for large datasets. The
improvement of performance of AL with BERT is however limited when com-
pared to what it achieved for older NLP models [28,36,41] and even more so
when compared to image classifiers [5,9,16]. Performance did show to increase
more when used on the KvK dataset. A possible explanation for this is its smaller
size. BERT is pretrained on a large amount of data and only needs fine-tuning
for achieving good performance on a specific task. Transfer learning models [15]
like BERT have the ability to perform well on new tasks with just a limited
amount of data. The power of this few-shot learning also became apparent on a
dataset which we decided not to use. Here, BERT was able to get a low valida-
tion error on the seed alone, while at the same time having a training accuracy
of 100%.

An additional explanation can be found in the nature of the two tasks and
their examples. The SST dataset belongs to a sentiment analysis task, with sen-
timent scores in the range 0–1. These were binned into spans of 0.2 to get a
five-class classification task. Furthermore, bag-of-words (BOW) models such as
Naive Bayes were shown to perform relatively really well on this task, because
specific individual words provide substantial information about the class. As a
consequence, each example is actually compound : it indirectly provides informa-
tion about not just that example but about the sentiment contributions of all
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the words in that example as well. In contrast, the KvK dataset provides is a
real classification task as opposed to a regression task converted to classifica-
tion task, with 15 distinct classes. A subset of words in each example can be
expected to be informative for the class label, as opposed to words giving nearly
independent contributions as is the case in sentiment analysis.

A limitation of the research was that, due to computational constraints, only
the first sentence of texts was used. There were data points where the first
sentence did not contain any clear indication of its label. Take for example the
following description from the KvK dataset:

“Hi, I’m Barbara Goudsmit.Welcome to my woven world! I am a
passionate hand weaver from the Netherlands who loves creating patterns

and bringing them to live on my 8-shaft loom.”

This type of data could have resulted in the network learning suboptimal
mappings, which could in turn have had an influence on the performance of AL.

Future Research. This work focused on classification tasks. A future direc-
tion could be to investigate the influence of AL on BERT’s performance in the
context of regression tasks and also to examine how the proposed heuristics per-
form there. Moreover, more recent BERT variants, like for instance RoBERTa
[22], could be tested to see whether AL still outperforms the random sampling
benchmark. Furthermore, the used query functions were mostly developed for
and used in computer vision. Query functions aimed at text classification or at
the fact that BERT is a pretrained model could be further investigated. Lastly,
an important direction for future work remains making AL more scalable by
finding ways to preserve performance with larger query-pool sizes.

Acknowledgments. We would like to express our thanks and gratitude to the people
at Dialogic (Utrecht) of which Nick Jelicic in particular, for the useful advice on the
writing style of the paper and the suggested improvements for the source code.

Appendix

A.1 RET Algorithm Computational Cost Analysis

The number of forward passes required by the RET algorithm depends on two
factors:

1. Basic passes: The forward passes required by the “normal” computation of
uncertainty at the beginning of the computation for every query-pool.

2. RP passes : The forward passed required for intermediate updates, using the
redundancy pool RP .
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In this analysis we will assume that the size of the redundancy pool |RP| is
chosen as a factor f > 1 of the size of the query-pool q. A reasonable assumption,
considering that making |RP| larger than needed incurs unnecessary computa-
tional cost, whereas a too small value is expected to diminish the effect of the
RET algorithm. We furthermore notice that given this assumption, and assum-
ing a fixed total number of examples to label, there are two factors influencing
the required amount of RP passes :

– Linearly increasing the query-pool size and coupled redundancy pool size
causes a quadratic increase in the number of required forward passes per
query pool round.

– At the same time, a linearly increased query-pool size also induces a corre-
sponding linear decrease in the number of required query-pool rounds.

We will see that these two factors will cause a net linear contribution to the
number of RP passes starts causing a net increase of total passes once the query-
size comes above a certain value. Looking at (1) more precisely, the amount
of passes over RP that needs to be performed per query-pool round can be
computed as an arithmetic progression:

|RP| + (|RP| − 1) + (|RP| − 2) + . . . + (|RP − q) (7)

=
1
2

× (q + 1) × (|RP| + |RP| − q) (8)

=
1
2

× (q + 1) × ((2f − 1) × q) (9)

=
1
2

× (q + 1) × f ′ × q) (10)

=
1
2

× f ′ × (q2 + q)) (11)

Let’s assume we use f = 1.5 (as also used in our experiments), and conse-
quently, f ′ = 2f − 1 = 2. The number of forward passes over RP then becomes
exactly q2 + q.

The complexity can then be expressed by the following formula:

T × �#Samples
q

� × (|data| + q2 + q) (12)

This can be approximately rewritten as:

T × #Samples × (
|data|

q
+

q2 + q

query-pool
) (13)

= T × #Samples × (
|data|

q
+ q + 1) (14)

Note that the second term query-pool-size + 1 only starts dominating the
number of forward passes in this formula as soon as:

q + 1 ≈ q >
|data|

q
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This is the case when
q >

√
(|data|)

Until then, the computational gains of less basic passes outweighs the cost of
more RP passes. In practice though, this may happen fairly quickly. For example,
assuming we have a data size of 10000 examples, and we use as mentioned
q = 1.5| × RP|, then as soon as q ≥ 100 the increased computation of the
RP passes starts dominating the gains made by less basic passes when further
increasing the query-pool size, and the net effect is that the total amount of
computation increases.

In summary, for the RET algorithm, RP passes contribute to the total
amount of forward passes. Furthermore, this contribution increases linearly with
redundancy-pool size and coupled query-pool size, and starts to dominate the
total amount of forward passes once redundancy-pool-size >

√
data-size. This

limits its use for decreasing computation by increasing the query-pool size.

A.2 Algorithms

Algorithm 1. The general AL loop.
Input Labeled dataset L = {(xi, yi)}n

i , the unlabeled data U = {(xi, ∅)}n
i and the

untrained classifier f(x; θ).
Output Fully labeled dataset L = {(xi, yi)}n

i and trained classifier
f(x; θ)

1: n ← Desired length of L
2: q ← Query-pool size
3: Q(x) ← Query Function
4: while L length < n do
5: Retrain f(x; θ) on L
6: Sort U based on Q(U)
7: Let Oracle assign labels to Uq

0

8: Insert Uq
0 into L

9: Remove Uq
0 from U

10: end while
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Algorithm 2. The AL loop with MCD.
Input Labeled dataset L = {(xi, yi)}ni , the unlabeled data U = {(xi, ∅)}ni and the untrained
classifier f(x; θ).
Output Fully labeled dataset L = {(xi, yi)}ni and trained classifier
f(x; θ)

1: n ← Desired dataset length
2: q ← Query-pool size
3: Q(x) ← Query Function

4: T ← Number of SFP’s
5: while L length < n do

6: Retrain f(x; θ) on L
7: P ← ∅
8: for t = 0, ..., T do
9: insert f(U ; θt) into P

10: end for

11: Sort U based on Q(P )
12: Let Oracle assign labels to Uq

0
13: Insert Uq

0 into L
14: Remove Uq

0 from U
15: end while

Algorithm 3. The AL loop with Redundancy Elimination by Training (RET).
Input Labeled dataset L = {(xi, yi)}ni , the unlabeled data U = {(xi, ∅)}ni and the untrained
classifier f(x; θ).
Output Fully labeled dataset L = {(xi, yi)}ni and trained classifier
f(x; θ)

1: n ← Desired dataset length

2: r ← Redundancy-pool size
3: q ← Query-pool size

4: T ← Number of SFP’s
5: Q(x) ← Query Function

6: while L length < n do

7: Retrain f(x; θ) on L
8: P ← ∅
9: for t = 0, ..., T do
10: insert f(U ; θt) into P
11: end for

12: Sort U based on Q(P )

13: U ← ∅
14: queried ← 0

15: while queried < q do
16: for t = 0, ..., T do

17: insert f(RP; θt) into U

18: end for
19: i ← argmin(U)

20: Let Oracle assign label to Ui

21: Train f(x; θ) on Ui

22: Insert Ui into L
23: Remove Ui from U
24: queried ← queried + 1
25: end while

26: end while
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Algorithm 4. The AL loop with Redundancy Elimination by Cosine Similarity
(RECS).
Input Labeled dataset L = {(xi, yi)}n

i , the unlabeled data U = {(xi, ∅)}n
i and the

untrained classifier f(x; θ).
Output Fully labeled dataset L = {(xi, yi)}n

i and trained classifier
f(x; θ)

1: n ← Desired dataset length
2: u ← Redundancy-pool size
3: q ← Query-pool size
4: l ← Cosine similarity threshold
5: T ← Number of SFP’s
6: Q(x) ← Query Function
7: Cos(x, y) ← Cosine similarity between x and y
8: while L length < n do
9: Retrain f(x; θ) on L

10: P ← ∅
11: for t = 0, ..., T do
12: insert f(U ; θt) into P
13: end for
14: Sort U based on Q(P )
15: U ← ∅
16: while Ulength < q do
17: for i = 0, ..., u do
18: if Cos(Ui, U

Ulength
0 ) < l then

19: insert Ui into U
20: end if
21: end for
22: l ← l − 0.01
23: end while
24: Reset l to initial value
25: Let Oracle assign labels to U
26: Insert U into L
27: Remove U from U
28: end while
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Algorithm 5. The AL loop with SUD.
Input Labeled dataset L = {(xi, yi)}n

i , the unlabeled data U = {(xi, ∅)}n
i and the

untrained classifier f(x; θ).
Output Fully labeled dataset L = {(xi, yi)}n

i and trained classifier
f(x; θ)

1: n ← Desired dataset length
2: q ← Query-pool size
3: k ← Amount of similar examples to compute density with
4: T ← Number of SFP’s
5: Q(x) ← Query Function
6: Cos(x, y) ← Cosine similarity between x and y
7: while L length < n do
8: Retrain f(x; θ) on L
9: P ← ∅

10: E ← ∅
11: for t = 0, ..., T do
12: Insert f(U ; θt) into P
13: end for
14: for example in U do
15: similar ← Sort(Cos(example, U))

16: Insert
sum(similark0 ))

k
into E

17: end for
18: Sort U based on Q(P∗E)
19: Let Oracle assign labels to Uq

0

20: Insert Uq
0 into L

21: Remove Uq
0 from U

22: end while
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Abstract. Free space estimation is an important problem for auto-
nomous robot navigation. Traditional camera-based approaches rely on
pixel-wise ground truth annotations to train a segmentation model. To
cover the wide variety of environments and lighting conditions encoun-
tered on roads, training supervised models requires large datasets. This
makes the annotation cost prohibitively high. In this work, we propose
a novel approach for obtaining free space estimates from images taken
with a single road-facing camera. We rely on a technique that generates
weak free space labels without any supervision, which are then used as
ground truth to train a segmentation model for free space estimation. We
study the impact of different data augmentation techniques on the perfor-
mances of free space predictions, and propose to use a recursive training
strategy. Our results are benchmarked using the Cityscapes dataset and
improve over comparable published work across all evaluation metrics.
Our best model reaches 83.64% IoU (+2.3%), 91.75% Precision (+2.4%)
and 91.29% Recall (+0.4%). These results correspond to 88.8% of the
IoU, 94.3% of the Precision and 93.1% of the Recall obtained by an equiv-
alent fully-supervised baseline, while using no ground truth annotation.
Our code and models are freely available online.

Keywords: Weak supervision · Free space estimation · Data
augmentation · Recursive training

1 Introduction

Perception is the first step towards autonomous robot navigation. To be able to
safely act in the world, a robot needs to perceive its environment and identify
traversable free space. In the context of autonomous driving, free space is usually
defined as road areas that are not occupied by either static objects such as traffic
signs and road dividers, or by dynamic entities such pedestrians and cars [18].
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Since collision-free planning requires a fine-grained understanding of the envi-
ronment around the vehicle, we attempt to label each pixel of a front-facing
camera as traversable or not.

This work focuses on systems that use a single road-facing camera. Monocular
free space segmentation has traditionally been approached using supervised seg-
mentation techniques. Although effective, these techniques require vast amounts
of pixel-wise annotated frames. Studies have shown that such pixel-level ground
truth is significantly more expensive to craft than image-level labels or bounding
boxes [27]. In addition to the large labor costs entailed by labeling each frame [7],
such approaches are held back by the wide variety of environments and lighting
conditions that are present at runtime and need to be captured in training data.
This need for ever larger annotated datasets makes supervised learning unsuit-
able for solving this problem. Instead, we tackle it in a different way: relying on
a method that generates weak, noisy, free space annotations without any super-
vision [42], we train a neural network to generalize past the label noise using
data augmentation and recursive training.

Our contributions can be summarized as follows: (1) we study the impact of
data augmentation on weakly-supervised free space segmentation, (2) we propose
a recursive training scheme that uses a progressively refined ground truth, (3)
we establish a new state-of-the-art for weakly supervised free space estimation
on the Cityscapes dataset, improving over previous efforts by +2.3% in IoU,
+2.4% in Precision, and 0.4% in Recall, (4) we discuss the limitations of our
simple recursive training approach, and (5) we release our code and models for
reproduction and further work.

The remainder of this paper is organized as follows: In Sect. 2, we review
the recent literature for free space estimation, data augmentation in the context
of semantic segmentation, and recursive training. In Sect. 3, we introduce our
data augmentation and recursive training schemes. In Sect. 4, we describe our
use of the Cityscapes dataset [7] and detail the experimental setup of this study.
In Sect. 5, we carry out experiments and present the qualitative and quantita-
tive results achieved. Finally, we summarize our contributions and share further
research directions.

2 Related Work

Over the last decades, free space estimation has been approached with methods
that leverage a wide variety of sensors, e.g. GNSS [24], LiDAR [45] or cam-
eras [35]. In this work, we place a particular focus on recent camera-based learn-
ing methods that use Convolutional Neural Networks (CNNs). Our work builds
on recent advances in network architectures for segmentation and on unsuper-
vised methods specific to free space estimation. We present this background
material in the following sections.
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2.1 Supervised Learning for Segmentation

As a segmentation task, supervised free space estimation has directly benefited
from progress in semantic segmentation. Pixel-level prediction carries a cru-
cial challenge for network design: an optimal prediction can only be achieved
by combining fine-grained local information with global contextual cues. Fully
Convolutional Networks (FCNs) rely on skip connections to carry these cues in
their encoder-decoder architecture [28], while SegNets ease the upsampling task
by reusing encoder max-pooling indices in the decoder [3]. Building on simi-
lar ideas, U-Nets combine entire encoder feature maps with decoder features at
each step of the expansion path of the network [40]. U-Nets have attracted a lot
of attention in recent years, and researchers have proposed refinements such as
the use of dense connections [19] and dilated convolutions [51], the integration
of attention mechanisms [34], or extensions to volumetric images [32]. In this
work, we will rely on a simple U-Net architecture. Our choice is motivated by a
recent finding that many recent architecture improvements are outperformed by
a well-tuned vanilla U-Net [17].

2.2 Weakly-Supervised Semantic Segmentation

The major drawback of supervised techniques is their reliance on extensive
human-annotated datasets. The cost of labeling is particularly important in
segmentation tasks, where the total time required to annotate every pixel in
a single frame can reach 1.5 h in some cases [7]. The reuse of models pre-trained
on very large datasets such as ImageNet [11] partially alleviates this problem,
but several thousands of training images are still routinely needed to reach ade-
quate performance. In recent years, researchers have devised strategies to reduce
or eliminate the need for human annotations during training.

In cases where fine-grained annotations are available for at least a subset of
the data, semi-supervised approaches such as Co-Training can be applied [37].
In the complete absence of pixel-wise ground truth labels, researchers have pro-
posed to use domain adaptation from synthetic datasets [16], or to rely on
weaker ground truth. Existing techniques rely on coarser labels, such as bound-
ing boxes [9,20,21,46], image-level labels [12,38,43], class activation maps [5],
single points [4], or scribbles [26].

2.3 Unsupervised and Weakly-Supervised Monocular Free Space
Segmentation

Monocular free space estimation has been approached in many different ways
that differ in the representation they use. Stixel-like approaches represent obsta-
cles as vertical sticks [2,8] or horizontal curves [48], but ignore free space lying
behind obstacles. Monocular SLAM relies on video sequences to obtain point-
clouds which do not explicitly represent free space [10,13,33]. Using temporal
sequences and structure-from-motion to jointly learn an explicit representation of
free space and obstacle footprints has also been recently proposed [44]. Our work
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uses a different strategy: we learn dense free space estimates from single frames
using approximate masks that are obtained without human-supervision. Such
weak labels have historically been generated using depth information from stereo
pairs before localizing the ground plane, for example using the v-Disparity algo-
rithm [14,23,31]. Other attempts exploit strong road texture and location priors,
by dividing the input into superpixels and clustering them based on saliency
maps [43] or semantic features [35]. We stress that using weak labels departs
from previously mentioned approaches that leverage coarse ground truth, since
weak labels contain false positives and negatives.

2.4 Training Strategies for Weakly-Supervised Segmentation

Recent research shows that it is possible to train over-parametrized models to
generalize past some of the label noise using Stochastic Gradient Descent (SGD)
schemes combined with early stopping [25]. Dealing with label noise at training
time has become an important research area over the past few years. Solutions
to this problem include label cleaning [6], noise-aware network architectures [41],
or noise reduction through robust loss functions [29,30,39].

Besides work on training algorithms themselves, researchers have also largely
explored regularization through data augmentation in unsupervised settings.
Traditional augmentation strategies (scaling, color jittering, flipping, cropping,
etc.) change pixel values in a single input image without altering its semantic
content. More recently, researchers have proposed augmentations that combine
several images and their labels. Two notable examples are MixUp [50] and Cut-
Mix [49]. MixUp is a method that augments the training set using convex combi-
nations of image pairs and labels, while CutMix overlays random crops of other
samples on top of original frames.

3 Methodology

In this work, we train U-Net models to predict dense free space from RGB images
by learning on approximate labels that can be generated without any supervision.
Since our focus is on improving training aspects rather than on improving weak
labels generation, we will reuse the weak labels from [42]. We look at improving
training across two dimensions: data augmentation and recursive training.

3.1 Data Augmentation

We study the impact of data augmentation on weakly-supervised free space
estimation. We cover both traditional augmentation techniques that operate on
single images, as well as MixUp and CutMix, which are more recent and combine
multiple samples.
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Color-Flip-Crop. To represent traditional augmentation techniques, we use a
combination of color jittering, horizontal flips and random cropping, which we
will refer to as Color-Flip-Crop or CFC in the remainder of the text. Each
augmentation is independently applied with a 50% probability. The color jitter-
ing randomly affects brightness, contrast, saturation, and hue using the bounds
defined in the Torchvision implementation [1]. In order to preserve most of the
original image, cropping is performed with a randomly chosen rectangle that
occupies between 25% and 50% of the image area. The aspect ratio is also ran-
domly chosen, with the constraint that the height is at least 10% of the height
of the original image. Figure 1 shows some examples of the effect of CFC on a
single randomly chosen training image.

Fig. 1. Seven possible Color-Flip-Crop augmentations on a random training sample.
The original sample is on the top-left. We show ground truth mask for illustration
purposes, they are not used during training.

MixUp. Rather than augmenting isolated images, Mixup trains models on convex
combinations of samples [50]. By training on synthesized samples that lie between
the original training samples, MixUp encourages the network to exhibit a linear
behavior between samples and helps preventing memorization. During training,
each sample (x1, y1) is combined with another random sample (x2, y2) from the
batch using Eqs. 1 and 2, where we sample λ uniformly in [0, 1]. The effect of
combining input samples is illustrated on Fig. 2.

xmixup = λx1 + (1 − λ)x2 (1)

ymixup = λy1 + (1 − λ)y2 (2)

Fig. 2. MixUp augmentation combining two random samples (a) and (b) from the
training set. The convex combination using λ = 0.5 is shown as (c). We show ground
truth mask for illustration purposes, they are not used during training.
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CutMix. Similar to Mixup in spirit, CutMix also combines two random input
samples (x1, y1) and (x2, y2) from the same batch [49]. Rather than combin-
ing them over the entire image, CutMix overlays a crop of x2 over x1, and the
same crop of y2 over y1. Equations 3 and 4 formalize this process using a ran-
dom binary mask M ∈ {0, 1}H×W to denote the cropped area (◦ denotes the
element-wise product). Like for the CFC augmentation, the cropping mask M
occupies between 25% and 50% of the image area with a random aspect ratio.
Figure 3 illustrates four different instances of CutMix augmentation on a chosen
training sample. CutMix generates more natural images than MixUp and allows
the network to learn more localizable features since the transformation is only
applied to a fraction of the input image.

xcutmix = (1 − M) ◦ x1 + M ◦ x2 (3)
ycutmix = (1 − M) ◦ y1 + M ◦ y2 (4)

3.2 Recursive Training

We are training neural networks to estimate free space by learning on approxi-
mate labels yweak. Since neural networks trained with SGD variants are partially
robust to noise in their training targets [25], the outputs y will tend to approxi-
mate the unknown ground truth y∗ better than yweak. Assuming the outputs y
are better estimates of free space than yweak, it is natural to treat them as cleaner
targets for a second round of training. This process can in principle be iterated
to obtain progressively cleaner outputs y2, y3, etc.. This approach was already
attempted in the context weakly-supervision free space segmentation [43], but

Fig. 3. Four instances of the CutMix augmentation on a random training sample. We
show ground truth mask for illustration purposes, they are not used during training.
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Fig. 4. Recursive training procedure. The current model is trained on augmented out-
puts from the model obtained at the previous training round. In this example, CFC is
used for augmentation. The process is similar for other augmentation strategies.

we revisit its impact in the presence of data augmentation and with different
weak labels. Figure 4 illustrates the process for a given training round.

4 Experimental Setup

4.1 Dataset

Our experiments leverage the Cityscapes dataset, which provides pixel-wise
ground truth labels for 30 visual classes in 5000 frames [7]. The official test
set has no public annotation, and we therefore treat the 500 frames of its val-
idation set as our test set and randomly split the Cityscapes training set into
2380 training and 595 validation frames. Since we are interested in estimating
drivable free space in the context of autonomous vehicle navigation, we consider
free space equivalent to the road class. Cityscapes also contains 1.6% of frames
with no road pixel. For these frames, visual inspection confirmed that free space
correspond to the ground class, and that label was used for free space instead of
road. Finally, the semantic labels include 6 void classes such as unlabeled, out of
the region of interest or ego-vehicle. Following official Cityscapes segmentation
benchmarks, we ignore pixels corresponding to such classes at evaluation time
using a binary evaluation mask. We note that this evaluation mask is never used
during training or validation, only to evaluate models on the test set.
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4.2 Evaluation Metrics

We use three evaluation metrics: the Intersection-over-Union (IoU), Precision
and Recall. IoU is a standard metric in segmentation tasks to reflect the overall
quality of the predictions. However, IoU does not immediately capture false
free space positives. These pixels that are labeled as part of the road but are
actually occupied are extremely harmful in robotic path-planning scenarios. For
this reason, we also monitor the Precision of the free space class, i.e. the fraction
of our free space prediction that is indeed free space. To obtain a complete picture
of prediction quality, we also monitor Recall. We however note that missing free
space in predictions has less impact than false free space positives in robot
navigation contexts. Given a single free space prediction ŷ, ground truth y, and
evaluation mask m, the metrics for a single frame of shape H ×W are computed
with Eqs. 5, 6 and 7, where ŷ, y, m ∈ {0, 1}H×W .

IoU =
∑

i ŷiyimi∑
i(ŷi + yi − ŷiyi)mi

(5)

Precision =
∑

i ŷiyimi∑
i ŷimi

(6)

Recall =
∑

i ŷiyimi∑
i yimi

(7)

4.3 Network Architectures

Following recent research that shows that a well-tuned vanilla U-Net can outper-
form many refined variants on most segmentation tasks [17], we opt for a U-Net
structure based on a ResNet18 residual network backbone [15,40,47]. To allow
for comparison with prior art, we also implement and train the SegNet model
described in [42]. For computational reasons, we use a 512× 1024 input resolution
in all experiments. Outputs are however re-scaled using nearest neighbor interpo-
lation in order to compute IoU and Precision in the original 1024×2048 resolution.

4.4 Training Procedure

We use the PyTorch framework [36] and train randomly initialized models to min-
imize a binary cross-entropy loss using the Adam optimizer [22], a batch size of 8
and an initial learning rate of 0.001. We train our models on single NVIDIA V100
for up to 200 epochs, with an early stopping strategy that halts training when the
validation loss has not improved by at least 10−4 for 50 consecutive epochs. For
each experiment, we select the model that minimizes the validation loss.

4.5 Use of Ground Truth Data

The Cityscapes dataset provides ground truth annotations for all training and
validation frames used in this study. We stress that these annotations are only
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used to train the fully-supervised baseline for comparison with our weakly-
supervised approach. Outside of the fully-supervised experiment, ground truth
labels are never used for training, hyperparameter tuning, or to perform early
stopping. Ground truth IoU, Precision and Recall are computed only once on
the test set, after all these steps have been performed.

5 Results

This section describes the experiments carried out to benchmark our proposed
method, using Precision, IoU and Recall. We present results for three main
categories of models: 1) a fully-supervised upper-bound, 2) unsupervised and
weakly-supervised baselines, and 3) U-Nets trained on the weak labels using
recursive training and different augmentation strategies. The quantitative results
for each category are summarized in Table 1. In this section, we analyze the
results of each category, discuss the limitations of recursive training, and present
qualitative results.

5.1 Fully-Supervised Results

Since Cityscapes provides pixel-wise ground truth annotations for our training
and validation data, we use it to train a fully-supervised U-Net for comparison
with its unsupervised counterpart. When trained on ground-truth labels, our U-
Net model reaches high IoU (94.12%), Precision (97.26%) and Recall (97.27%).
Since this fully-supervised model is the only one that uses ground truth labels
at any point during training and validation, it is expected to produce an upper-
bound for our unsupervised experiments.

5.2 Unsupervised and Weakly-Supervised Baselines

Competing unsupervised approaches are often focused on generic semantic
segmentation rather than free space estimation, and use other datasets than
Cityscapes as benchmarks [5,9,12,38,46]. Among weakly-supervised approaches
that tackle free space estimation [14,16,43,48], only two publish results for
Cityscapes. Distant Supervision [43] and Unsupervised Domain Adaptation [16]
respectively obtain an IoU of 80% and 70.4%, but do not report Precision or
Recall values.

We generate approximate labels without supervision using the technique
described in [42]. Evaluating these raw weak labels, we obtain an IoU of 79%,
a Precision of 87.78% and a Recall of 89.24%. These results can be further
improved by training a neural network to generalize beyond the noise in these
labels. This was already attempted using the SegNet architecture in [42], which
we also implement and train for comparison. SegNet is able to improve results
over raw weak labels in IoU (+2.3%), Precision (+1.58%) and Recall (+0.91%).
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5.3 Data Augmentation and Recursive Training

We train the same U-Net model using different data augmentation strategies.
Since the outputs of our different augmented U-Nets are better than the initial
weak labels, we use them as target for a second round of training. We iterate this
recursive training process four times for each of the data augmentation strategies
under study. We limit training to four rounds for computational reasons and
because it is enough for IoU values to reach their peak.

No Augmentation. We start by training a U-Net with the weak labels as targets
and without any data augmentation. We observe that it compares favorably with
the results from SegNet, reaching an IoU of 81.85%, a Precision of 90.65%, and
a Recall of 89.76%. Without resorting to data augmentation, recursive training
over several rounds is unable to meaningfully improve IoU, and slightly decreases
Precision in favor of Recall.

MixUp. Applying MixUp allows to improve Precision compared to not using data
augmentation by 0.5% in the first training round. IoU is maintained, but Recall
decreases by 0.45%. Iterative training is however not effective when combined
with MixUp, since we observe a drop in Precision after each round. As discussed
in Sect. 4.2, free space IoU and Precision are more important than Recall in an
autonomous navigation scenario. In this case, increases in Recall are not enough
to compensate this effect, and we observe a steady decrease in IoU.

Color-Flip-Crop. Traditional data augmentation consisting of color jittering,
horizontal flips and random cropping is able to improve IoU over not using
augmentation and over using MixUp. After a single training round, CFC allows
to reach an IoU of 81.99% through increasing Recall by 1.47% compared to
the first round without augmentation. Subsequent training rounds are able to
improve both Precision and IoU. After 3 iterations, the model reaches an IoU of
82.34% and a Precision of 90.75%.

CutMix. The CutMix augmentation can be seen as providing the advantages
of cropping and MixUp. Like MixUp, it synthesizes new input samples by com-
bining pairs of existing ones. However, CutMix produces more natural images
and its effect is localized since it only affects the area of a random crop. The
locality of CutMix has been shown to allow models to learn more localizable
features in classification scenarios [49], and it is not surprising that such features
are helpful in this segmentation context. Indeed, models trained with CutMix
augmentation outperform all other models by a wide margin. After a single
training round, CutMix improves over not using augmentations in IoU (+1.2%),
Precision (+0.5%), and Recall (+0.26%).

Since our application scenario favors Precision over Recall, our best overall
model is obtained after the fourth training round, reaching an IoU of 83.64%
and a Precision of 91.75%. Compared to the prior state-of-the-art results from
SegNet [42], it improves IoU by 2.3%, Precision by 2.4% and Recall by 0.4%.
Although our model does not rely on any human-annotated ground truth, its



40 F. Robinet and R. Frank

relative performance compared to the fully-supervised variant is impressive: we
reach 88.8% of its IoU, 94.3% of its Precision, and 93.1% of its Recall.

5.4 Limits of Recursive Training

While CutMix results are impressive, we note that the success of recursive training
is limited. When not applying data augmentation or when using MixUp, recursive
training does not improve on IoU or Precision. In the case of CFC and CutMix
augmentations, results are more encouraging, but the improvements are limited
to three rounds of training. Starting with the fourth round of training, IoU results
start to degrade, sometimes getting worse than those obtained after a single round
of training. Explaining this effect is not straightforward: given that target labels on
round 4 are superior to those used on round 3 in both IoU and Precision, we would
expect to either observe improved or plateauing results. Such recursive training
strategy has been successfully used in foreground class segmentation contexts with
results improving over more than 10 rounds [21]. As opposed to our completely
unsupervised approach, the authors of [21] could exploit coarser ground truth in
the form of bounding boxes in order to refine predictions after each round. We
postulate that the absence of such refinement step in our approach is the reason

Table 1. Results on the Cityscapes validation set, which we treat as our test set. The
best results for a given data augmentation strategy are underlined, and the best overall
results are reported in bold.

Training/Validation Labels Test IoU Test precision Test recall

Fully-supervised U-Net Ground truth 94.12% 97.26% 97.27%

Unsup. domain adaptation [16] Synthetic data 70.40% Not reported Not reported

Distant supervision [43] Image labels 80.00% Not reported Not reported

Weak labels [42] No training 79.00% 87.78% 89.24%

SegNet (repr. from [42]) Weak labels 81.30% 89.36% 90.15%

U-Net (no augmentation)

Round 1 Weak labels 81.85% 90.65% 89.76%

Round 2 Output of round 1 81.79% 89.53% 90.80%

Round 3 Output of round 2 81.86% 90.15% 90.27%

Round 4 output of round 3 81.82% 90.11% 90.25%

U-Net + MixUp

Round 1 Weak labels 81.89% 91.14% 89.31%

Round 2 Output of round 1 81.97% 90.89% 89.60%

Round 3 Output of round 2 81.62% 90.13% 89.97%

Round 4 Output of round 3 81.45% 89.91% 90.02%

U-Net + Color-Flip-Crop

Round 1 Weak labels 81.99% 88.80% 91.23%

Round 2 Output of round 1 82.12% 89.71% 90.64%

Round 3 Output of round 2 82.34% 90.75% 90.69%

Round 4 Output of round 3 81.91% 90.21% 90.27%

U-Net + CutMix

Round 1 Weak labels 83.05% 91.19% 90.51%

Round 2 Output of round 1 83.58% 91.20% 91.12%

Round 3 Output of round 2 83.77% 91.23% 91.29%

Round 4 Output of round 3 83.64% 91.75% 90.62%



Refining Weakly-Supervised Free Space Estimation 41

we are unable to further leverage recursive training. Designing such a prediction
refinement step will be the topic of future work.

5.5 Qualitative Results

We compare the free space estimates from weak labels with the predictions of
our best model on test set samples on Fig. 5.

The ability of our learned model to generalize past some of the noise present
in the weak labels that were used during training is clearly visible in the first
two rows of Fig. 5. Indeed, the cars and side walks that were wrongly considered
free space in the weak labels are correctly predicted by our trained model. In
addition to its higher Precision, our model also has higher IoU and Recall, as
illustrated by the near-absence of orange areas in its predictions.

The third row shows a more contrasted situation. Although our model is
able to cover more free space, it still shows some signs of overfitting to noise in
the weak labels. Shadows are especially problematic because they are likely to
impact the superpixel segmentation that the weak labels are based on, resulting
in missed free space areas such as the one present in front of the cyclist. Since this

Weak Labels Predictions

Fig. 5. Qualitative results from the test set obtained from a U-Net trained with Cut-
Mix for 4 rounds. Predictions are color-coded using the ground truth: green and red
respectively corresponds to correct and incorrect predictions, orange represents miss-
ing free space, and areas that are ignored at evaluation time are denoted in blue (see
Sect. 4.1). (Color figure online)
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effect happens fairly consistently over the training set, our model is incapable of
completely addressing it.

Finally, the fourth row illustrates another partial failure of our model in
a particularly crowded scene. Compared to the corresponding weak labels, the
trained model correctly rejects pedestrians, but is unable to produce a clean seg-
mentation around them and considers the pavement as occupied space. Although
the prediction still contains errors, we note that red areas in our prediction are
much more acceptable from a semantics point-of-view than the ones from the
corresponding weak labels.

6 Conclusion

In this work, we investigate different weakly-supervised training strategies for
teaching a neural network to predict free space from images taken with a single
road-facing camera. Our models are trained using weak labels that are generated
without human intervention, and we investigate the impact of recursive training
with several data augmentation schemes. We show that the CutMix augmenta-
tion is particularly efficient for free space estimation, especially when combined
with recursive training. We benchmark our results on the Cityscapes dataset and
improve over unsupervised and weakly-supervised baselines, reaching 83.64%
IoU (+2.3%), 91.75% Precision (+2.4%) and 91.29% Recall (+0.4%). Our best
model obtains 88.8% of the IoU, 94.3% of the Precision and 93.1% of the Recall
of the fully-supervised competitor that trains from expensive pixel-wise labels.
Finally, we show that simple recursive training is limited in its ability to increase
performances, and suggest directions to improve the approach. Future work will
also investigate improvements to weak label generation and applications to more
general segmentation scenarios.
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18. Janai, J., Güney, F., Behl, A., Geiger, A.: Computer vision for autonomous vehicles:
problems, datasets and state-of-the-art. ArXiv abs/1704.05519 (2020)

19. Jégou, S., Drozdzal, M., Vázquez, D., Romero, A., Bengio, Y.: The one hun-
dred layers tiramisu: fully convolutional densenets for semantic segmentation. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 1175–1183 (2017)

20. Kervadec, H., Dolz, J., Wang, S., Granger, E., ben Ayed, I.: Bounding boxes for
weakly supervised segmentation: global constraints get close to full supervision.
In: Medical Imaging with Deep Learning (2020). https://openreview.net/forum?
id=VOQMC3rZtL

https://hal.archives-ouvertes.fr/hal-02054836
https://doi.org/10.1016/j.imavis.2017.01.009
https://doi.org/10.1109/TPAMI.2007.1049
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2017.631
https://doi.org/10.1007/978-3-319-10605-2_54
https://doi.org/10.1007/978-3-319-10605-2_54
http://arxiv.org/abs/1612.02649
http://arxiv.org/abs/1612.02649
http://arxiv.org/abs/1809.10486
http://arxiv.org/abs/1809.10486
https://openreview.net/forum?id=VOQMC3rZtL
https://openreview.net/forum?id=VOQMC3rZtL


44 F. Robinet and R. Frank

21. Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B.: Simple does it: weakly
supervised instance and semantic segmentation. In: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 1665–1674 (2017). https://doi.
org/10.1109/CVPR.2017.181

22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR
abs/1412.6980 (2015)

23. Labayrade, R., Aubert, D., Tarel, J.P.: Real time obstacle detection in stereovision
on non flat road geometry through “v-disparity” representation. In: Intelligent
Vehicle Symposium 2002, vol. 2, pp. 646–651. IEEE (2002)

24. Laddha, A., Kocamaz, M.K., Navarro-Serment, L.E., Hebert, M.: Map-supervised
road detection. In: 2016 IEEE Intelligent Vehicles Symposium (IV), pp. 118–123
(2016). https://doi.org/10.1109/IVS.2016.7535374

25. Li, M., Soltanolkotabi, M., Oymak, S.: Gradient descent with early stopping is
provably robust to label noise for overparameterized neural networks. In: Interna-
tional Conference on Artificial Intelligence and Statistics, pp. 4313–4324. PMLR
(2020)

26. Lin, D., Dai, J., Jia, J., He, K., Sun, J.: ScribbleSup: scribble-supervised convolu-
tional networks for semantic segmentation. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3159–3167 (2016). https://doi.org/
10.1109/CVPR.2016.344

27. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

28. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3431–3440 (2015)

29. Lu, Z., Fu, Z., Xiang, T., Han, P., Wang, L., Gao, X.: Learning from weak and
noisy labels for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell.
39, 486–500, March 2017. https://doi.org/10.1109/TPAMI.2016.2552172

30. Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration.
Trans. Img. Proc. 17(1), 53-69 (2008). https://doi.org/10.1109/TIP.2007.911828

31. Mayr, J., Unger, C., Tombari, F.: Self-supervised learning of the drivable area for
autonomous vehicles. In: 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 362–369. IEEE (2018)

32. Milletari, F., Navab, N., Ahmadi, S.: V-Net: fully convolutional neural networks for
volumetric medical image segmentation. In: 2016 Fourth International Conference
on 3D Vision (3DV), pp. 565–571 (2016). https://doi.org/10.1109/3DV.2016.79

33. Newcombe, R., Lovegrove, S., Davison, A.: DTAM: dense tracking and mapping
in real-time, pp. 2320–2327, November 2011. https://doi.org/10.1109/ICCV.2011.
6126513

34. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas, March
2018

35. Oliveira, G.L., Burgard, W., Brox, T.: Efficient deep models for monocular road
segmentation. In: 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 4885–4891 (2016). https://doi.org/10.1109/IROS.2016.
7759717

36. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.,
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Abstract. To be able to predict a molecular graph structure (W ) given
a 2D image of a chemical compound (U) is a challenging problem in
machine learning. We are interested to learn f : U → W where we
have a fully mediating representation V such that f factors into U →
V → W . However, observing V requires detailed and expensive labels.
We propose graph aligning approach that generates rich or detailed
labels given normal labels W . In this paper we investigate the scenario
of domain adaptation from the source domain where we have access to
the expensive labels V to the target domain where only normal labels W
are available. Focusing on the problem of predicting chemical compound
graphs from 2D images the fully mediating layer is represented using
the planar embedding of the chemical graph structure we are predicting.
The empirical results show that, using only 4000 data points, we obtain
up to 4x improvement of performance after domain adaptation to target
domain compared to pretrained model only on the source domain. After
domain adaptation, the model is even able to detect atom types that were
never observed in the original source domain. Finally, on the Maybridge
data set the proposed self-labeling approach reached higher performance
than the current state of the art.

1 Introduction

Chemical compounds are often represented by a graph representation of their
chemical structure. These graph representations are actually a simplification of
the chemical compound as it loses some information about the electronic struc-
ture of the molecule. However, in the field of drug discovery this graph represen-
tation is often used as valuable input for machine learning pipelines. Examples
of formats describing the graph representation of a chemical compounds are
SMILES [36] and MOLfile [5]. However, especially in patents but also in scien-
tific literature the chemical compound is only described using an image format.
Automatically recognizing the chemical structures on these images is valuable
for machine learning approaches to be able to process these sources of chemical
compounds.

Learning to recognize a graph structure from 2D images of chemical com-
pounds seems like a fairly simple task for humans. However, for machine learning
models it seems that generalization to new domains of images (e.g. different line
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width, font face) [21] is not happening naturally. When we humans see an image
with a graph structure that we do not recognize completely, we start reasoning
and analyzing the part of the graph we are not sure about. We humans auto-
matically align the graph part we recognized on the image with the complete
graph including the unrecognized part of the graph. One way to finish our graph
prediction is to guess the unknown nodes or edges after which we check for cor-
rectness. If the graph prediction was correct we know that this guess was most
probably correct and we could try to apply this new knowledge to other images.

To be able to do this reasoning on for example images using graph align-
ment in machine learning we need a detailed (on pixel level) representation.
Therefore we assume a fully mediated model [2] where we are interested to learn
f : U → W having a fully mediating representation V such that f factors into
U → V → W , which is visualized in Fig. 1. Thus, in order to predict W from
U we first need to pass the fully mediating layer, no side paths are allowed.
When a fully mediating representation is used some assumptions [23,25,26] are
made about the mechanism of the underlying process. This mechanistic prior
restricts the space of possible models to all the models that follow the mechanis-
tic assumption. We hypothesize that the use of this richer representation (fully
mediating representation) enables for a better generalization. Additionally, as
an interesting side effect, we observe that the mechanistic assumption allows for
a better interpretability of the underlying model.

In the case of optical graph recognition of chemical compounds from 2D
images, the fully mediating layer is represented using the planar embedding of
the chemical graph structure we are predicting. In order to learn the planar
embedding of a chemical graph structure, we start from a model described in
Oldenhof et al. [21] which has two steps: an image segmentation and an image
classification step. To train this model, pixel-wise annotations are needed for
every image describing precise locations of nodes and edges in the graph (planar
embedding) which we will call rich or detailed labels in our setup (V ). How-
ever, these rich labels are not always available and implies a manual process
where intermediate organic chemistry knowledge is required. In the more com-
mon cases, data sets only contain 2D images of chemical compounds (U in Fig. 1)
and on the other side the final output in SMILES [36] or MOLfile [5] format (W
in Fig. 1). These formats describe the graph structure of the chemical compound
but not the particular planar embedding of this graph structure (V in Fig. 1) in
the context of the image. To solve this problem, we propose a graph aligning
approach1 that generates rich labels V given normal labels W . This method
would enable learning of the fully mediating representations given only normal
labels W . In the Figs. 7, 8 and 9 in AppendixA.4 examples of U , V and W are
shown.

In Sect. 4 we empirically evaluate our domain adaption method. We observe
that compared to the non-adapted model we drastically increase accuracy even
on atoms and bond that were not present in source domain.

1 Code available: https://github.com/biolearning-stadius/chemgrapher-self-rich-lab
eling.

https://github.com/biolearning-stadius/chemgrapher-self-rich-labeling
https://github.com/biolearning-stadius/chemgrapher-self-rich-labeling
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Key Contributions: (1) we propose a novel rich labeling framework by intro-
ducing the use of a fully mediating layer, (2) in the case of graph recognition
we show that the rich labeling can be performed by graph alignment, (3) we
show it enables data efficient domain adaption and (4) reaches state-of-the-art
performance on Maybridge compound data set.

Fig. 1. We are interested to learn f : U → W having a fully mediating representation
V such that f factors into U → V → W . In the case of optical graph recognition of
chemical compounds from 2D images, the fully mediating layer is represented using
the planar embedding of the chemical graph structure we are predicting.

2 Related Work

Structural Scene Representation and Visual Reasoning. Our work has
similarities with research done on structural scene representation and visual rea-
soning [11,19,41]. The disentanglement of the reasoning and the representation
described in Yi et al. [41] enables the model to solve complex reasoning tasks.
In our work the complex reasoning task would be graph alignment which is
disentangled from the optical graph recognition.

Slot Attention. Our method is related with a method called slot attention [17]
where the Hungarian algorithm [16] is incorporated in a model for object detec-
tion. This Hungarian algorithm is limited to only sets while in our case we need
to map more complicated structures composed of different atoms connected with
different bond for which we need graph alignment in order to adapt iteratively
a model to a new target domain.
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Image to Graph Methods. In the field of computational chemistry there are
several tools available [7,18,20–22,33,34] to convert an 2D image of a chemical
compound to a SMILES [36] format or similar which in fact represents a graph
structure of a chemical compound. Also for road extraction from satellite images
there are several methods available [3,8,12]

Graph Matching. In computer vision graph alignment is usually known as
graph matching. It can be useful to (1) locate objects from features [10], (2)
to transfer knowledge [42] and (3) to find matches in database [13]. Also for
comparing social networks graph matching can be very important to allow to
uncover identities of communities [14]. In chemistry, comparing graphs can be
helpful to identify identical chemicals, substructures or maximum common part
of chemicals. In the work of Willett et al. [37] an overview is presented about
the use of similarity searches in chemical databases.

Domain Adaptation. In the work of Kouw and Loog [15] a comprehensive
overview is given for domain adaptation methods when labels for the target
domain are not available. Our method has some similarities with semi-supervised
iterative self-labeling [4,27] approaches where predictions on a data set of a new
domain of a pre-trained model are used as pseudo-labels and used to retrain the
model again iteratively until convergence. In the work of Das and Lee [6] even a
graph matching loss is first used to learn a domain invariant representation for
source and target domain after which the use of pseudo-labels show a significant
improvement of performance. In our work the graph matching is used for a
different purpose as opposed to the work of Das and Lee [6]. Graph matching
is used in our work to generate rich labels given the ‘normal’ labels we have
from the target domain. This is where our method also differs from other semi-
supervised methods for domain adaptation when no target label information at
all is assumed and no distinction is made between rich and ‘normal’ labels.

Weak Supervision. In our setup we use the term ‘rich’ or ‘detailed’ labels to
differentiate from the normal labels. We would like to contrast these ‘rich’ labels
with the term ‘strong labels’ used in the setting of weak supervision. For example,
in the machine learning task of image segmentation pixel-wise labels are needed
which are expensive and often not readily available. Therefore, weak supervi-
sion methods have been developed to address this issue. Weak supervision can be
used to help image segmentation by only using image labels (no pixel-wise labels)
[35,38]. A more general framework was presented in Xu et al. [39] to be able to learn
semantic segmentation from a variety of types of weak labels (e.g., image tags,
bounding boxes and partial labels). Another approach is to augment the strong
labeled data set using weakly labeled data [40]. However, the main difference with
all of the methods mentioned above is that our method does not work on weak
labels because our end goal is different. The main goal of our machine learning
approach is to help to predict ‘normal’ labels by using rich labels.

Front Door Criterion. Our framework exploits fully mediating variables. A
variable is called a mediator when it meets several conditions regarding the
relationship with other variables as described in Baron and Kenny [2]. Another
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perspective of the mediating relationship is given by Pearl [23,26], Pearl et al. [25]
who introduce the front door criterion where the mediator actually enables to
estimate unbiased causal effects. A more formal interpretation of these causal
effects is presented in Pearl [24]. In order to use a mediating model the mediator
needs to be identified or assumed first, which is not always straightforward. In
our setup (see Fig. 1), the assumption means that the relation between input
u ∈ U and planar embedding v ∈ V is a map and as well as the relation between
v and the final graph w ∈ W . Furthermore, we assume no side paths from
u to w.

3 Self-labeling of Fully Mediating Representations

Our goal is to learn f : U → W assuming a fully mediating representation V such
that f factors into U → V → W . In order to learn the first part of f (U → V )
we need labels for V which are expensive in the case of optical graph recognition
of chemical compounds from 2D images where V is represented as the planar
embedding of the chemical graph structure. Our method tries to address this
issue by iteratively updating the model using self-labeled labels for V by graph
aligning the graph predictions using the model from previous iteration with the
given true graphs (labels W ).

3.1 Graph Alignment

A possible and often used closeness score to compare graphs is the graph edit
distance [29]: given 2 graphs, not necessarily of equal size and a set of oper-
ations, that are O = {vertex/edge/label insertion/deletion/substitution}, and
a cost function c : O �→ R, so we find the cheapest sequence of operations that
convert G1 into G2, which translates to an optimization problem:

min
{ei}k

i=1∈Ok:G2=(ek◦...◦e1)×G1

k∑

i=1

c(ek),

Although there are some efficient algorithms available [30–32] in order to
compute the graph edit distance, it remains a computational hard problem.

Closely related with the concept of graph edit distance we introduce for our
method the map E(v) which gives the allowed operations on a given graph v given
a specific constraint. This constraint is a parameter which can be tuned for a spe-
cific data set or problem domain. Examples of such constraints are maximum 2
node substitutions or maximum 1 edge substitution as shown in Fig. 2.

3.2 Method

Let us now say we have a trained neural network model for f : U → V , a
projection (not trainable) φ : V → W , a pair (u,w) of input u ∈ U and normal
label w ∈ W and we would like to infer rich label v ∈ V from the given datapoint
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Fig. 2. Two examples of chemical compounds graphs with their graph edit distance.
The nodes of the graphs are first aligned before computing the graph edit distance.
The node alignments are marked with the gray dashed arrows. The differences after
graph alignment are highlighted and the substitutions are marked with the red dashed
arrows. (Color figure online)

(u,w). In the setting of chemical structure recognition the projection φ : V → W
is straightforward (U implies W ) and a few examples are shown in AppendixA.4.
We also assume the map E(v) which gives all allowed graph edits for the graph
v. Let v̂ = f(u) be the predicted rich label from the model, then we define a
term correcting edit as

Definition 1. Edit e is a correcting edit if when e is applied to the prediction
v̂ and then projected to the W space the resulting graph is the true graph w (up to
isomorphism), i.e.,

φ(e × v̂) ∼= w,

where × is the application of edit to the planar embedded graph v̂.

Notice that for a given v̂ and w there can be multiple edits that are cor-
recting edits which create a dilemma of choosing the best correcting edit.
Therefore, we make the following assumption:

Assumption 1. The probability that a correcting edit e results in the true
underlying rich label v is monotonely decreasing with respect to the size of edit
e ( i.e., |e|).

In other words, if we take two correcting edits e1, e2 then we assume the
following:

|e1|< |e2| ⇒ P (e1 × v̂ = v) > P (e2 × v̂ = v)

The assumption is based on the fact the probability of any individual mistake
in a graph by the model is low. This is because if the probability of a mistake
would be high the model would not be able to produce a graph with a total of
1–2 edit distance. Thus, the graphs with few edits have low mistake probability
and for them the Assumption 1 is valid.

Then we use the following optimisation problem to find the best correcting
edit e to convert v̂ to rich label v for input u:

E∗ = arg min
e∈E(v̂)

|e| such that φ(e × v̂) ∼= w,
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where arg min returns the set of minimal solutions or the empty set if no
solutions exist.

There are three possible outcomes of last mentioned optimization problem:
(1) no solution is found, (2) a single e is found or (3) multiple equal size e are
found. In the optimal case (2) a single e is found so we can label a new v for our
given datapoint (u, v). In the case of (1) when no solution is found, no new v is
labeled. In the last case (3) when multiple equal size solutions are found there
are four options we could do. First (3.1), we could discard the solutions and
not label u. Second (3.2), we could take e that results in the highest likelihood
for e × v̂ based on the model f . Third (3.3), a solution e is picked uniformly
randomly in order to generate the rich label v. Fourth (3.4), pick e randomly
according to the likelihood of e × v̂ in the model f .

This process is repeated for every datapoint (u,w) we have available from the
target domain. Thus, several new labels v are found for different datapoints. Once
all datapoints are processed these new rich labeled datapoints are added to the
training data set after upsampling and our model can be retrained. Upsampling
is recommended especially in the case when a low number of normal labelled data
points are available compared to the original training dataset. In Sect. 4 different
upsampling strategies will be evaluated. After this, a new iteration begins and all
available datapoints (u, v) are again processed to find even more new rich labels
v and we can retrain the model again. This iterative process can be repeated
until convergence (see Algorithm 1).

Algorithm 1: Iterative algorithm for Self-Labeling of Fully Mediating Rep-
resentations
Data:
Target domain data L = {(ut

i, w
t
i)}ni=1

Source domain data S = {(us
j , v

s
j )}mj=1 (rich labels)

Result: f : U → V
repeat

// Inferring rich labels for target data
T = [];
for (u,w) in L do

v̂ ← f(u);
E∗ ← arg min

e∈E(v̂)

|e| such that φ(e × v̂) ∼= w;

if E∗ is a not empty then
e ← choose(E∗);
v ← e × v̂;
appendRichLabels(T, (u, v));

end
end
T ← UpSample(T);
f ← RetrainModel(S,T);

until Converged(f);
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4 Experiments

For the experiments we focus on the problem of predicting chemical compound
graphs from 2D images where the fully mediating layer is represented using the
planar embedding of the chemical graph structure we are predicting. In order to
measure empirically the performance of our method of self-labeling fully mediat-
ing representations we perform three steps. (1) We pre-train (training details in
AppendixA.2) a ChemGrapher [21] model (summarized in AppendixA.1) where-
fore, corresponding to the pipeline described in the work of Oldenhof et al. [21], we
sample around 130K chemical compounds from ChEMBL [9] in SMILES format
and artificially generate, using an RDKit fork [1], a rich labeled dataset with 2D
images of chemical compounds. (2) Secondly, we test the baseline performance of
this pre-trained model on two different test sets from two different target domains
than the source domain of the pre-trained model. (3) Thirdly, we apply our domain
adaptation method and measure performance again on the two target domains.

For the first target domain we take a data set from the work from Staker et al.
[33], which we will call Indigo data set. For the second target domain we take
the data set which was published by the developers of MolRec [18] which we will
call the Maybridge data set. Both data sets provide 2D images from a chemical
compound together with corresponding identifier of a the chemical compound like
SMILES [36] or MOLfile [5]. These identifiers describe the graph structure of the
chemical compound however they do not provide the planar embedding of the
graph (e.g. no information about the pixel coordinates of every node or edge in the
image). Visually we can also observe that the Maybridge dataset contains images
where the style is closer related to the training images style used for the pre-trained
model compared with the images in Indigo dataset where the style of images is
quite different. Therefore we expect a significant worse starting performance of the
pre-trained model on the Indigo dataset compared with the Maybridge dataset.

Table 1. Summary of datasets from the 2 different target domains

Dataset Orig. size # samples to be considered
for self-rich-labeling

# test samples

Indigo 50,000 4,000 1,000

Maybridge 5,740 4,000 1,000

From both data sets we randomly sample 5,000 datapoints which are split in
4,000 datapoints used for our method and 1,000 datapoints to measure perfor-
mance on (summarized in Table 1). When processing the 4,000 datapoints our
method will be able to generate rich labels for the datapoints where the graph
prediction could be graph aligned with the true graph. As the number of rich
labeled datapoints this way is maximum 4,000 we will upsample them (x number
of copies) before adding them to the training data set. In our experiments we
differentiate between two strategies of upsampling. One way is to upsample all
the rich labeled data points equally from the target domain to a fixed number,
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for example 20,000. Another way is to take into account, while upsampling, the
number of atom types that are rich labeled and make sure that the rare atom
types are upsampled to a specific threshold.

One important tuning parameter in our method is the number of allowed
operations. For our experiments we will try two different values for this parame-
ter. Firstly, we set this parameter to zero meaning we do not allow any operation
for graph alignment. We will call this exact graph alignment. Secondly, we
allow a maximum of 2 node substitutions or a maximum of 1 edge substitution
for graph alignment, which we will call correcting graph alignment.

In total we will measure the performance of 4 variations of our method (vary-
ing allowed operations and upsampling strategy) on both data sets. The perfor-
mance we will measure is the accuracy of U → W as we only have access to
the normal labels of target domain. However, we assume that if the final graph
prediction is correct (W ) it is highly likely that also the planar embedding (V )
is correct. As our method is an iterative method we will report results for every
iteration starting with the initial performance before applying our method. The
results of these experiments are summarized in Fig. 3. We observe that all vari-
ations of our method are able to improve performance on target domain com-
pared with initial pre-trained model on source domain. On the Indigo data set
the best variation is even able to obtain 4x improvement. The best variation
of our method on the Indigo data set was using correcting graph alignment
without upsampling of rare atom types while on the Maybridge data set the best
variation was also using correcting graph alignment but with upsampling of
rare atom types. Some of the underperforming variations of our method were
stopped early in order to save computational resources.

Fig. 3. Comparison performance of methods on Indigo and Maybridge data set. Self-
labeling by correcting graph alignment is clearly better performing than when
exact graph alignment is used. Sometimes upsampling of rare atoms to a specific
threshold (note postfix rare) before retraining of model can boost performance. Per-
formance on target domain at iteration 0 is the performance of pre-trained (on source
domain) ChemGrapher before domain adaptation.
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We choose the best variation of our method for every data set and analyze
the performance on different atom and bond types per iteration. We measure
for every atom or bond type the percentage of graphs predicted correctly from
the total number of graphs containing that specific atom or bond type per iter-
ation, which is visualized in Fig. 4. Most of the performances of the different
atom and bond types increase per iteration for both data sets even when initial
performance was 0%.

The atom types where initial performance was 0% are atom types never
seen before in source domain. For example in the Indigo data set there are
compounds with atom labels like R1, R2 and R3 representing R-groups which
were not present in the original data set from the source domain. For illustration
purposes we visualize in Fig. 5 the segmentation step which forms part of the
graph recognition model used in this study. In the initial segmentation from the
pre-trained model we can clearly see that the model confuses the R-group atoms
with the oxygen atom type and the hydrogen atom type. After applying our
method the model is able to make correct predictions. In the same Fig. 5 we also
observe that in the Indigo data set carbon sometimes also is represented using
a C which was never the case in the original data set. The initial segmentation
mainly confuses these carbon atom types with the oxygen atom type. After
applying our method the model again makes the correct prediction.

Fig. 4. We take the best performing methods and analyze their performance on dif-
ferent atom and bond types per iteration. We observe that for some atom types the
method is able to increase performance even though initial performance was 0%. This
is the case in for example R-groups in Indigo data set or superatom NO2 in Maybridge
data set.
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Similarly, the superatom NO2 present in the Maybridge data set was never
observed in the source domain. However, again after applying our method the
model is able to detect superatom NO2 correctly. We illustrate the segmentation
step of the graph recognition model in Fig. 6 for an example image taken from
the Maybridge data set. We observe that in the initial segmentation the pre-
trained model confuses NO2 with nitrogen atom and also oxygen atom which
chemically is not the correct prediction. In the final segmentation after applying
two iterations of our method the newly trained model is able to make the correct
prediction.

Additionally Fig. 5 and Fig. 6 also show an interesting side effect when using
a fully mediating representation. Consider a classical model where input is an
image and output is SMILES. When the output prediction of the model is incor-
rect it is not clear in which part of the image the mistake was made but in the
case of having available the planar embedding (mediation representation) the
expert can see where and how the mistakes happened. This makes the model
more interpretable.

Fig. 5. Comparison initial segmentation with final segmentation after applying self-
labeling of fully mediating representations for Indigo data set. We observe that the
initial model is making mistakes on the R-group atom type and carbon represented
with a ‘C’. In the final model we see that now predictions are all correct.

Fig. 6. Comparison initial segmentation with final segmentation after applying self-
labeling of fully mediating representations for Maybridge data set. The initial model
predicts the superatom NO2 as two separate atoms O and N which is chemically not
correct. The final model makes the correct prediction.

Finally we compare in Table 2 the resulting best performance of the model
after applying our method on the Maybridge data set with several other meth-
ods available. We observe that our approach enables to reach higher performance



Self-labeling of Fully Mediating Representations by Graph Alignment 57

than the current state of the art. For the freely available tools OSRA [7] and
Molvec [28] we measured the performance using the same randomly 1000 data-
points from the Maybridge dataset. For MolRec [18] this was not possible but
we report for information the performance on the total Maybride dataset as
reported in the work of M. Sadawi et al. [18]. Finally for ChemGrapher [21] we
measured performance using three different training datasets. Firstly, we mea-
sure the performance when we only have access to the source domain (generated
using RDKit [1]). Secondly, we measure performance using the same training
dataset from source domain but adding upsampled (100 copies) 20 handpicked
manually rich labeled datapoints from the target Maybridge domain (as was
done in the work of Oldenhof et al. [21]). Finally, instead of manually rich label-
ing datapoints, we process the 4,000 datapoints from Maybridge target domain
where our method will be able to generate rich labels for the datapoints where
the graph prediction could be graph aligned with the true graph, after which
these rich labeled datapoints are added to the training dataset.

Table 2. Comparison performance on Maybridge data set. We observe that our app-
roach enables to reach higher performance than the current state of the art. Most of
the tools available for chemical graph recognition are rule based approaches for which
a training dataset is not relevant.

Method Training dataset Accuracy

Source domain Target domain

OSRA (v2.1.0) [7] N/A N/A 80.4%

Molvec (v0.9.8) [28] N/A N/A 78.4%

ChemGrapher [21] 130K images N/A 72.6%

ChemGrapher [21]
(using manually
rich-labeling)

130K images 40 manually handpicked
and rich-labeled images
(upsampled)

81.6%

Proposed domain
adaptation

130K images 4,000 non-rich labeled 86.3%

MolRec [18] N/A N/A 83.8% from [18]

5 Conclusion

Machine learning models often are faced with the problem to not generalize
well to a new domain. This is also the case for chemical graph recognition from
images. We have shown that fully mediating layers can be exploited in machine
learning models to adapt in data efficient way to new domains, without the
need of rich expensive labels as they can be generated using our method. In
the case of chemical graph recognition we empirically show that our method
is able to adapt to a new domain of chemical compounds, with previously
unobserved atom or bond types. Our rich-labeling method required only 4,000
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normal labeled points in the target domain to go from 10% accuracy to 39%,
i.e., almost 4x improvement in the difficult Indigo data set. Using more normal
labeled points and more iterations would most probably give a higher resulting
accuracy. Furthermore, on Maybridge data set, again using only 4,000 images,
we reached high accuracy obtaining better performance than the current state
of the art.

Effective tools of chemical structure recognition from images enable access
to the knowledge in chemical literature which is currently only available through
expensive chemistry databases. We believe it as an important step towards open
pharmaceutical science.

It would be interesting to apply this method to other contexts where the
output of a machine learning model could be represented with a graph structure.
For example, the case of structural scene representation, where a scene could be
represented using a graph where every vertex could represent an object and
every edge would represent the relations between the objects (e.g. side-by-side,
on-top-of, under). This structural scene could be in form of 2D images or it could
be even generalized to 3D models, where point clouds are available and one is
interested to transform them into 3D graphs of connected parts.
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A Appendix

A.1 Architecture Summary of Graph Recognition Tool

Every iteration of our method we need to train the graph recognition tool
described in Oldenhof et al. [21]. This graph recognition tool is built using a com-
bination of different convolutional neural networks. The first part is a semantic
segmentation network to pixel-wise predict every atom, bond and charge type.
The second part consists of three classification networks to classify every seg-
ment predicted by the semantic segmentation network. After the first step of the
ChemGrapher model [21], the segmentation network (Table 3), the predicted seg-
ments are processed so that for every segment the center of mass is calculated.
These centers of mass would be the atom/bond/charge candidates to be classified
by the classification networks (Table 4).
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Table 3. Summary of the layers of the segmentation network

Layer Kernel Nonlinearity Padding Dilation

conv1 3 × 3 ReLU 1 No dilation

conv2 3 × 3 ReLU 2 2

conv3 3 × 3 ReLU 4 4

conv4 3 × 3 ReLU 8 8

conv5 3 × 3 ReLU 8 8

conv6 3 × 3 ReLU 4 4

conv7 3 × 3 ReLU 2 2

conv8 3 × 3 ReLU 1 No dilation

Last 1 × 1 None No padding No dilation

Table 4. Different layers in the classification network

Layer Kernel Nonlinearity Padding Dilation

Depthconv1 3 × 3 ReLU 1 No dilation

conv2 3 × 3 ReLU 2 2

conv3 3 × 3 ReLU 4 4

conv4 3 × 3 ReLU 8 8

conv5 3 × 3 ReLU 1 No dilation

Global maxpool Input size None No padding No dilation

Last 1 × 1 None No padding No dilation

A.2 Training Details for Graph Recognition Tool

Training details of the graph recognition tool for every iteration of our method
are summarized in Table 5. The input images used for training of the different
networks are a mix if images from source domain and upsampled rich labeled
images from target domain. For pretraining of the ChemGrapher model only
images from source domain were used. The training was performed using a com-
pute node with 2 NVIDIA v100 GPUs with 32 GB of memory.



60 M. Oldenhof et al.

Table 5. Training details for different networks

Network #input images #epochs Walltime Minibatch
size

Learning
rateSource

domain
Target domain
(upsampled)

Segm. network 114K 20K 5 24 h 8 0.001

Atom clas. 12.4K 2.6K 2 8 h 16 0.001

Charge clas. 12.4K 2.6K 2 8 h 16 0.001

Bond clas. 4.4K 2.1K 2 4 h 64 0.001

A.3 Computational Cost per Rich-Labeling Iteration

In the following Table 6 the computational cost for 1 rich-labeling iteration is
summarized including all steps: (re)training, predicting and graph aligning rich-
labeling.

Table 6. Computational costs per rich-labeling iteration

Training Predict Graph aligning

Hardware 2 NVIDIA v100 GPUs 1 NVIDIA v100 GPU Intel Xeon Gold 6240 2.6GHz

Dataset Source+Target domain Indigo/Maybride Indigo Maybridge

#datapoints See Table 5 4,000 4,000 4,000

Walltime ∼44 h (details Table 5) ∼2 h ∼40min ∼3min

A.4 Examples of Cases Where Graph Alignment Fails

We would like to showcase some examples where the constrained (max 2 node
substitutions or max 1 edge substitution) graph alignment fails. At the same
time it is important to note that our proposed domain adaptation method is an
iterative method, so if a graph alignment fails in a previous iteration it could
succeed in a next one when the new model makes a new graph prediction closer
to the true graph.
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Fig. 7. Example 1: It is clear that to align the graph prediction W ′ with the true graph
W more than 2 node substitutions are needed. So no rich labeling is possible for this
example in this iteration.
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Fig. 8. Example 2: It is clear that alignment of the graph prediction W ′ with the true
graph W can not be solved with only substitutions.

Fig. 9. Example 3: It is clear that alignment of the graph prediction W ′ with the true
graph W can not be solved with only substitutions.
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imec IDLab, University of Antwerpen, Antwerpen, Belgium
akash.singh@uantwerpen.be

https://www.uantwerpen.be/en/

Abstract. In recent years, Capsule Networks (CapsNets) have achieved
promising results in tasks such as object recognition thanks to their
invariance characteristics towards pose and lighting. They have been pro-
posed as an alternative to relational insensitive and translation invariant
Convolutional Neural Networks (CNN). It has been empirically proven
that CapsNets are capable of achieving competitive performance while
requiring significantly fewer parameters. This is a desirable characteristic
for Deep reinforcement learning which is known to be sample-inefficient
during training. In this paper, we propose DCapsQN, a task-independent
CapsNets-based architecture in the deep reinforcement learning setting.
We experiment in the model-free reinforcement learning setting, more
specifically in Deep Q-Learning using the Atari suite as the testbed of
our analysis. To the best of our knowledge, this work constitutes the first
CapsNets-based deep reinforcement learning architecture to learn state-
action value functions without the need for task-specific adaptation. Our
results show that, in this setting, DCapsQN requires 92% fewer parame-
ters than the baseline. Moreover, despite their smaller size, the DCapsQN
provides significant boosts in performance (score), ranging between 10%–
77% while further stabilising the Deep Q-Learning. This is supported by
our empirical results which shows that DCapsQN agents outperform the
benchmark Double-DQN agent, with Prioritized experience replay, in
eight out of the nine selected environments.

Keywords: Deep reinforcement learning · Capsule networks · Deep
Q-learning

1 Introduction

Reinforcement Learning (RL) is an experience-based learning paradigm, where
the agent interacts with the environment by performing an action and learns how
to maximize its cumulative reward based on the returned rewards. The learning is
based on trial and error and often requires a large amount of data for Deep Rein-
forcement Learning (DRL). In recent years, with advancements in Deep Learn-
ing (DL), Convolutional Neural Networks (CNNs) have made breakthroughs in
c© Springer Nature Switzerland AG 2022
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multiple machine learning tasks like natural language processing and computer
vision [12,14]. The field of DRL has benefited from the remarkable flexibility and
advancement of DL as well. CNNs have remarkable flexibility to learn features for
the agent to learn a proper policy or value function. Having scalar nature, CNNs
have additive nature in neurons at any given layer, they are ambivalent to spa-
tial relationships within their kernel of previous layers [15]. Thus despite their
good performance, they have an inherent weakness of limited modelling capabili-
ties for spatial relationships between the learned features [25,29]. For example, for
the task of recognizing faces in images, CNNs are capable of learning the regions
that resemble a nose or a mouth. However, when recognizing a face, at test time,
they have the weakness of focusing on the occurrence of these “facial parts” and
completely ignore the spatial arrangement in which these should occur in order to
effectively represent a face.

Capsule Networks (CapsNets) were designed to mimic human vision [9,25].
They address the inherent limitation of CNNs, while significantly decreasing the
required number of parameters. CapsNets aim to preserve the spatial information
(pose and precise location) and attributes (length, thickness etc.) by encoding fea-
tures in vectors rather than scalar values. Under this formulation, the magnitude
of the vector represents the probability of the existence of the entity it is repre-
senting. CapsNets in DL require less training data, which is a desirable attribute
within a DRL setting. The architectural design of CapsNets profits from dynamic
routing. Routing by agreement is a novel dynamic routing technique, it plays a
key role in preserving spatial information. The architectural overview of capsules
draws inspiration from the Multi-Layer Perceptron architecture. This architec-
ture with routing by agreement is designed to preserve part-whole relationships
(locations, orientations, etc.) between various entities levels which may be a com-
plete entity or part-of an entity. For example, the relative positions of a nose and
a mouth on a face in a portrait. [25] used the magnitude of a vector from the last
layer of CapsNets for classification in supervised deep learning.

Reinforcement learning approaches such as DQN strive to estimate the
action-value function [18,19]. Traditionally for vision-based tasks, an agent’s
architecture uses CNNs and fully connected layers to approximate the optimal
action-value function. The CNN-based architecture of the agent in various deep
reinforcement learning algorithms [19,26,28] are inspired from [11]. The agent
learns on raw sensory input that uses CNNs to mimic the effects of receptive
fields [19]. While the magnitude of the vector in CapsNets is a good surrogate
for multi-class classification, it is not a good candidate for estimating the state-
action value function in DRL.

Here we propose DCapsQN, an architecture suitable for an agent to learn
value functions based on part-whole relationships. We demonstrate how part-
whole relationships assist in value function estimation and that Q-estimates
from them are much more self-coherent. Owing to a large number of atari envi-
ronments and their experimental/computational costs, we limit our experiments
to a diverse subset of environments with different natures and tasks.

Across multiple environments, the proposed agent uses 92% fewer parameters
and improves 10%–77% on performance (score) compared to the baseline.
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The main contributions of this paper are:

1. Introducing DCapsQN, a task-agnostic CapsNets-based architecture.
2. Presenting the first CapsNets based architecture study on the atari bench-

mark.
3. Comparing DCapsQN to the traditional CNN-based architecture of DeepQN,

showing a reduction in the number of trainable parameters.

2 Background

2.1 Capsule Networks

Computer graphics employ Hierarchical Modeling for building complex objects
by placing simpler objects and their known relations [7]. The idea of CapsNets is
to achieve the capabilities of inverse hierarchical modelling to better understand
the scene where lower level capsules represents simpler entities and higher level
capsule represent the complex. The concepts of capsule (Fig. 1) and CapsNets
(Fig. 2) were introduced in [25] to retain the spatial relationship between complex
and simple entities [9,25].

CapsNets architecture is inspired from Multi-Layer Perceptron architecture,
where a capsule replaces a neuron in a layer. Capsule [25], as a fundamental unit
of CapsNets, can be defined as a group of neurons where the activities of the
neurons within a capsule represent the various properties like pose (position, size,
orientation) (Fig. 1). Capsule encodes an entity as a vector where its magnitude
represents the probability of entity occurrence and its orientation represents
attributes of the entity (Fig. 1). The magnitude of the vector output is always
bound between 0 and 1.

We arrange capsules in 2 levels, in lower level l they are called primary
capsules and upper-level l + 1 they are called secondary capsules.

Fig. 1. The similarity between a capsule and a neuron [16].

Primary Capsules: Following the first convolutional layer, the primary capsule
(PrimaryCaps) is responsible for transforming scalar values into a vector. A
capsule in Fig. 2 refers to a group of convolutional layers. It is the first layer
where the process of inverse hierarchical modelling takes place. The capsule here
reshapes the feature maps outputs of convolutional layers to output vectors.
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Fig. 2. The figure shows fundamental Capsule network architecture.

Secondary Capsules: Following PrimaryCaps is Secondary Capsules (Sec-
ondaryCaps). They receive an input vector from PrimaryCaps. The weight
matrix Wij transforms the output vector of a PrimaryCaps to serve as input to
SecondaryCaps.

ûj|i = Wijui (1)

Routing by Agreement: Routing by agreement is a dynamic routing technique
introduced in [25]. Pooling operations statically forward the relevant information
from the previous layer to the following layer and in this process, it loses infor-
mation. Contrary to statically connected pooling layers, dynamic routing during
the forward pass redirects the output from PrimaryCaps to the most relevant
parent in SecondaryCaps. Each capsule i (where 1 ≤ i ≤ N ) in a layer l has
vector ui to encode spatial information. The output of PrimaryCaps ui of the
ith layer acts as input to all capsules in layer l + 1 of SecondaryCaps.

The Coupling coefficient cij is iteratively determined through routing by
agreement. It represents the agreement of a capsule of layer l with l + 1. If the
agreement is high, the coupling coefficient for child-parent will increase, other-
wise, it would decrease. The coupling coefficient plays a role in the child-parent
relationship to form a parse tree-like structure in CapsNets. The weighted sum
(sj) from all PrimaryCaps contributes to forming the output of SecondaryCaps.

sj =
N∑

i=1

cij ûj|i (2)

The magnitude of the output vector from PrimaryCaps is limited between 0
and 1 by using a squashing function. The magnitude of the vector represents the
probability of the existence of an entity represented by a capsule.

vj =
‖sj‖2

1 + ‖sj‖2
sj

‖sj‖ (3)

The squashing function makes sure to limit the length while still retaining
the positional information.
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2.2 Deep Reinforcement Learning

We study the utility of CapsNets-based representations in Double DQN using
prioritised experience replay. The method uses proportional prioritization of pri-
oritised experience replay.

The Q-learning algorithm is a temporal difference learning algorithm. To
update the value estimate of a state-action pair, the temporal difference (TD)
error is computed at each time step. Deep Q-learning was first introduced by [18]
to approximate Q-values for high dimensional sensory input. Deep Q-learning
is known to be unstable and it overestimates the Q-values. To remedy this [28]
proposed Double DQN. They decoupled the networks for selecting and evaluating
an action separately. The agent generally selects an action using ε-greedy policy.
Under the ε-greedy policy, agents can take a random action with ε probability
or select an action with 1-ε probability maximising Q(s, a).

An Experience replay is used to store the agent’s interaction with the environ-
ment at each time step [18]. This buffer is used to sample batches of experience
during training. [26] proposed a new experience replay design called prioritised
experience replay (PER), where the most important experiences were replayed
to the agent. The importance or priority of experience was calculated using the
TD error. With the design choice, [26] were able to empirically show that expe-
rience replay became more efficient and effective, which led to even better and
faster learning of an agent. The agent performed better compared to the previous
state-of-the-art DQN.

3 Related Work

On account of the drawbacks of CNNs, [25] introduced the idea of CapsNets,
but most of the published research on CapsNets is currently focused in the field
of deep learning. [5,21,23,24] extend the work of [25] by proposing new capsule-
based architectures. [23] proposes a DenseNet-like skip connection where the
standard convolution component in the CapsNet is replaced with a hierarchi-
cal architecture. The resulting architecture outperforms the original CapsNets
on datasets like SmallNORB and Cifar-10. [24] remove the margin loss to show
that unsupervised training of sparse capsules can potentially lead to deeper archi-
tectures while achieving higher accuracy. [5] proposes a novel routing algorithm
based on eigen-decomposition of votes. This leads to a higher convergence speed
of the new architecture compared to original CapsNets. [1–3] and [15] inves-
tigate the performance of CapsNets in medical applications like brain tumour
classification, COVID cases classification, Alzheimer disease detection and Lung
segmentation. [30] study 3D-capsules for pose estimation. The work exploits the
structural relations among local parts for pose estimation. [10] propose dual
attention mechanism capsule network for higher accuracy and faster training.

While CapsNets have gained popularity in standard deep learning approaches,
their study within a Deep Reinforcement Learning (DRL) context has received
significantly less attention. [4] tries integrating CapsNets with Deep-Q Learning.
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They showed thatCapsNets-based agents underperformwith respect to their base-
line. The experiments were done on FlashRL with environments like Flappy Bird,
Deep Line wars etc. The architecture takes 84×84 input which propagates to out-
put n × 16 vector from last capsule layer. n being number of actions. The archi-
tecture proposed by [4], employs the magnitude of the vector output from the last
capsule layer for action-value estimation. The authors [4], do not take into consid-
eration that magnitude of the vector from a capsule is not a good fit for action-value
estimation. While the value function could have any negative or positive value, the
magnitude of the vector output from CapsNets is bounded between zero and one
(Eq. 3).

[20] combines CapsNets with A2C, but limits the scope of the study to
only maze navigation in the ViZDoom environment. The ViZDoom environ-
ment only [13] provides tasks like move-and-shoot and maze navigation. Unlike
the ViZDoom, the atari benchmark offers a more diverse, challenging and con-
ceivable tasks in learning, modelling, and planning. Inspired from previous stud-
ies [18,19,28], we choose a widely accepted Atari benchmark [6] to empirically
show the advantage of our framework in task-agnosticism and parameter reduc-
tion. The study proposes a generalised CapsNets-based agent to learn a state-
action value function with no task-specific adjustments. Our DCapsQN, to the
best of our knowledge, is the first generalised, task agnostic framework to learn
state-action value functions to solve nine diverse atari tasks in addition to maze
traversals.

4 Methodology

In this section, we introduce the agents and the environment used as a testbed
for the analysis. We employ the atari suite for our experiments as it provides a
variety of environments with respect to input space, action space and rewards.

Baseline Agent. For the baseline, we choose Double-DQN with prioritised
experience replay [26,28]. The first layer in this architecture is a convolutional
layer composed of 32, 8×8 convolution kernels with a stride of 4. This first layer
feeds a second convolutional layer of 64, 4 × 4 kernels with a stride of 2. The
third layer receives input from the second and has 64, 3×3 kernels with a stride
of 1. The last convolutional layer of this set is connected to two FC layers. The
first FC layer is composed of 512 neurons while the second FC layer is composed
of a number of neurons equal to the output value estimates for the actions of
interest. ReLU acts as the activation function for all the layers except the last
FC layer. The architectural design of the CapsNets-based agent is depicted in
Fig. 3 (bottom).

DCapsQN Agent. In a DRL agent, CNNs learn relevant visual features with
respect to the task at hand while the FC layers aim at learning valuable combi-
nations of these features and map them to value functions related to the actions
of interest. In this regard, the FC layers learn the value function based on the
features generated by CNNs. We explore the application and utility of CapsNets-
based representations with Double DQN. The architectural design of the
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DCapsQN depicted in Fig. 3 (top), takes inspiration from [25,28] to learn part-
whole relationship between visual entities in input state.

Fig. 3. DCapsQN (top) and Double-DQN (bottom) architecture.

A convolutional layer acts as the first layer, as shown in Fig. 3. The Con-
volution layer has 16, 3 × 3 convolution kernels with a stride of 4 and ReLU
activation. This layer detects features from states and serves as an input to the
Primary capsule layer. We have 49 capsules in the Primary capsule layer. A
Primary capsule layer, here is a collection of convolutional capsules. A single
convolution capsule comprises of a group of convolution layers with 9 × 9 kernel
and with a stride of 2. Each capsule in the PrimaryCaps receives the input of all
convolutional layers. Each primary capsule outputs an 8-dimensional vector. The
output from the Primary capsule serves as input to the Secondary capsule layer.
The Secondary capsule layer has 8 capsules with each Secondary capsule produc-
ing a 16-dimensional vector as output. Each of the Secondary capsules receives
the input from all Primary capsules. The connection between the PrimaryCaps
layer and the SecondaryCaps is controlled by dynamic routing. In our study, we
followed the routing by agreement algorithm [25] where each child chooses its
parent based on the cosine similarity between its transformed vector output and
the vector output of its candidate parent. The dynamic routing between layers
utilizes the vector output from capsules to preserve hierarchical relations in a
state. Three routing iterations are used between capsule layers in order to find
optimal weights for relations between layers.

Environment. The Arcade Learning Environment (ALE) [6] is a popular bench-
mark composed of a collection of Atari 2600 games. It provides a challenging and
diverse set of tasks with respect to visual input, rewards returned by the envi-
ronment, action space and difficulty. [17] integrate around 40 techniques from a
dozen papers in order to determine the difficulty level of the games that are part
of the benchmark.
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Atari offers 57 environments, to compare the performance of our DCapsQN
agent with respect to the baseline agent, we choose a subset of the environments
that are diversified in terms of visual input (simple, complex), reward (sparse,
dense), action space (3, 4, 6, 8, 18) and difficulty score [17]. Across various tasks,
both agents are tasked with collecting the maximum reward. The environment
gets reset the moment when the agents use all of their lives.

The input states are composed of simple states such as Pong, Boxing to fairly
complex input states like Fishing Derby or Alien. The tasks are also diversified
with respect to rewards offered by the environments. The agents are evaluated
with dense rewards environments like Breakout, Pong and sparse rewards envi-
ronments like Fishing Derby. Further, we the select the tasks that lay in difficulty
spectrum of −2 to 10. Higher the difficulty score, lower was the performance of
most able techniques considered in [17].

Training Protocol. With Atari, we restrict the training of both agents to only
20 million steps. The DCapsQN-based agent uses a batch size of 128 and a
Learning rate of 0.00015 with RMSprop optimizer and Prioritised experience
replay with alpha = 0.5 and beta with linear annealing from 0.4 to 1. The other
hyper-parameters such as discount rate, the size of the experience replay memory,
target network updates are the same as [26]. Baseline agents use the same hyper-
parameters as described in [26]. An epsilon-greedy action selection method is
employed to balance our exploration and exploitation. Both Double DQN and
DCapsQN based agents randomly explore for the first 50000 steps and then
linearly decrease the probability to randomly select an action for the next 1e6
steps. At end of 20 million steps, there still remains an exploration probability of
0.01. The evaluation section compares the cumulative reward collected by agents
in all tasks. The average is calculated from 4 randomly initialized agents.

Evaluation Protocol. For evaluation, we refer to [26,28]. We evaluate both
agents every 1 million steps and average over 100 episodes. The other hyper-
parameters are the same as Double-DQN [28].

5 Analysis

In any given task an agent collects rewards to maximize its performance. The
cumulative reward collected by an agent is the attribute that links to the agent’s
success in a given task. Apart from the cumulative rewards, to better understand
the CapsNets-based representation in DRL environments, we try to get a deeper
insight regarding the agents’ performance under different attributes, e.g. input
states, rewards and action space, of the environments.

5.1 Cumulative Reward and Parameters

Our DCapsQN agent (Sect. 4) has around 92% lower number of trainable param-
eters compared to baseline. To highlight the difference, Table 1 presents a com-
parison of trainable parameters of both agents under different environments.
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(a) Alien (V3) (b) Boxing (V1)

(c) Breakout (V2) (d) Fishing derby (V3)

(e) Pong (V1) (f) Qbert (V2)

(g) Space invaders (V3) (h) Tennis (V1)

(i) Tutankham (V3)

Fig. 4. Average score collected by the agents in the respective environment. The agents
follow an epsilon greedy policy. The shaded area represents the ± standard deviation
over 4 runs.
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Table 1. Parameters comparison.

Environment name DCapsQN parameters Baseline parameters Difference

Alien (V3) 136,426 1,693,362 91.94%

Boxing (V1) 136,426 1,693,362 91.94%

Breakout (V2) 129,244 1,686,180 92.33%

Fishing Derby (V3) 136,426 1,693,362 91.94%

Pong (V1) 130,270 1,687,206 92.27%

Qbert (V2) 129,244 1,686,180 92.33%

Space Invaders (V3) 136,426 1,693,362 91.94%

Tennis (V1) 130,270 1,687,206 92.27%

Tutankham (V3) 131,296 1,688,232 92.22%

Table 2. Performance comparison

Environment name Difficulty Actions DCapsQN score ± S.D Baseline score ± S.D Performance

Alien (V3) – 18 1678.20 ± 261 1503.79 ± 351 11.60%

Boxing (V1) −2.11368712 18 92.87 ± 6 58.74 ± 18 58.10%

Breakout (V2) −0.44196066 4 259.4 ± 59 191.1 ± 87 35.74%

Fishing Derby (V3) 1.28989165 18 −11.99 ± 14 −27.19 ± 14 55.90%

Pong (V1) −0.04440702 3 20.15 ± 0.8 18.25 ± 1.7 10.41%

Qbert (V2) 1.39864132 6 9942.95 ± 1918 5616.26 ± 1349 77.03%

Space Invaders (V3) 0.16420283 6 787.64 ± 172 924.11 ± 232 −14.76%

Tennis (V1) 10.48605210 18 −7.138 ± 6 −23.645 ± 0.98 69.79%

Tutankham (V3) 1.98175005 8 148.75 ± 37 129.20 ± 61 15.13%

To show the effectiveness of the representations learned via CapsNets, we com-
pare the agents’ performance with respect to the cumulative reward collected
by them in all of the analyzed tasks. Table 2 presents the comparison of the
performance of both agents. Though DCapsQN agents have a lower number
of training parameters, they outperform baseline in all selected environments
except SpaceInvaders.

Further in our study, we try to rationalise about the higher cumulative reward
collected by DCapsQN on individual attributes of the environment like input
state (Sect. 5.2), action space (Sect. 5.3) and reward (Sect. 5.4). We also discuss,
how they supplement to cumulative reward in discussion (Sect. 6.2).

It is also observable that there is co-relation between difficulty score and aver-
age score of DCapsQN. With low difficulty environments like Pong and Boxing, the
average score by DCapsQN is more stable and has lower degree of noise compared
to the baseline. However with higher difficulty score environment like Tennis or
Qbert, we witness a very high standard deviation (S.D) and noisier average score.

5.2 Input State

In this section, we reason how the input state of an environment (Fig. 5) is an
influencing factor for DCapsQN agent. The CapsNets architecture focuses on
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(a) Alien (V3) (b) Boxing (V1) (c) Breakout (V2)

(d) FishingDerby (V3) (e) Pong (V1)

(f) Qbert (V2) (g) Space invaders (V3) (h) Tennis (V1)

(i) Tutankham (V3)

Fig. 5. State input of various Atari environments.

recognising simple and complex entities. As shown in Fig. 5 we can organize the
environments in terms of a number of entities and their visual attributes. Pong,
Boxing, Tennis are one of the visually simple environments with low number of
entities, referring to them as V1. Breakout and QBert are more complex than
V1, referred to as V2. But V2 is simpler compared to Alien, SpaceInvaders,
Tutankham and Fishing Derby of V3.

It is observable that in the simpler input state of V1, a DCapsQN agent
performs excellently. The performance could be highly attributed to the very
simple input state. In these environments, there are clear separate entities such
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as players, ball in the input state. The DCapsQN agent’s learning curve is swifter
compared to the baseline Double DQN (Fig. 6). With comparably complex V2,
the convergence of the DCapsQN-based agent is slower yet they outperform the
Double DQN based baseline as well. With added visual complexities and an
increase in the number of observable objects, we can observe that convergence
slows down further. The same can be concluded for V3. The principle that DCap-
sQN focuses highly on entities further strengthen when comparing the difference
in performance in Tennis (V1) and SpaceInvaders (V3). DCapsQN outperforms
the baseline agent which struggles to learn with simpler input state that has clear
separate entities in Tennis (V1) (Fig. 4h). However DCapsQN struggles where
there are multiple copies of the same entities in SpaceInvaders (V3) (Fig. 4g).

5.3 Action Space

The atari suite provides a variety of environments with respect to action space as
well. The action space is an important part of an environment since it is directly
related to the number of actions available for the agent. A larger action space
expresses a higher degree of freedom for an agent to choose an action from. For
our study, we started with a small action space of 3 and 4, in Pong and Breakout,
respectively. From there, we go to the largest action space available in atari, i.e.
18, in Alien, Boxing, Fishing Derby and Tennis. As can be noticed in Table 1,
apart from the expected increase in the number of parameters introduced by the
fully connected layers, there does not seem to be a direct correlation between an
agent’s performance and the action space.

5.4 Reward

In RL, the agent interacts with the environment to get a reward signal and the
next state. With the goal of maximising the cumulative rewards, the reward as
part of the environment governs how well an agent comprehends the input state.
The environments in ALE can broadly be classified into dense rewards or sparse
rewards environments. For our investigation, we diversify our environments with
some dense reward environments such as Alien and some marginally sparse envi-
ronments such as Fishing Derby. DQN suffers from poor sample efficiency when
rewards are very sparse in an environment [8]. There is a relation between reward
density and convergence of an agent to a value function. In the dense reward envi-
ronment Alien, it takes around 3 million steps for a DCapsQN based agent to out-
perform the baseline while in Fishing Derby, it takes around 13 million (Fig. 4).

6 Discussion

6.1 Training

DQN [19] based algorithms use their own estimates to update their value. In
order to analyze and gain insight into the potential of part-whole relations based
representations, we plot and compare the loss (Fig. 7) and value estimates (Fig. 6)
of both agents while training.
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Fig. 6. Value estimates comparison of agents in various environments. It is noticeable
that the baseline is more volatile compared to DCapsQN.

Figure 6 compares the value estimates over time from DCapsQN and the
baseline. Value functions estimate how good it is to perform a given action in a
given state. The notion of “how good” here is defined in terms of future rewards
or expected return [27]. A high oscillation of value estimates in consecutive steps
translates to a high uncertainty of future rewards. We can observe the difference
in magnitude and higher oscillation in consecutive steps between baseline and
DCapsQN. We hypothesize that vectored representations in CapsNets further
help in stabilizing the change in value function of Double DQN. The hypothesis
is further supported by comparing the loss (Fig. 7) of DCapsQN and the baseline.
The losses in DCapsQN are comparatively smaller in magnitude compared to
those from the baseline agents. This can be attributed to a lower change in
weights because the target is often very close to the agent’s current estimate.
The low magnitude of loss in DCapsQN also indicates that CapsNets do not
start representing new entities.

6.2 Environment

While we rationalize the better performance of DCapsQN based agents, there is
not a single most powerful component that directly contributes to it. It is the
combination of all three elements i.e. action space, reward and input state.

It is noticeable the performance of the agent in the environment Tennis is
similar to Boxing although they both have a different difficulty level. The leading
performance of DCapsQN based agents in both environments can be attributed
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Fig. 7. Training loss comparison of agents in various environments. The shaded area
represents the ± standard deviation over 4 runs.

to very simple visual input and high action space. If compared to the difference
in the convergence of agents in Alien (a maze traversal environment and with
a highly dense reward) with Tutankham, which is maze traversal but with a
comparatively sparse reward environment. We notice that the combination of
reward and action space contributed more to the performance, compared to the
visual input state.

Human perception suffers from crowding, The DCapsQN based agent seems
to a show similar phenomenon in SpaceInvaders. The low performance could be
attributed to the combination of crowding and low action space, where there are
multiple instances of the same part and whole objects in the input state [22,25].

7 Conclusion

The paper introduced DCapsQN, a CapsNets-based agent for DRL. We empir-
ically show how CapsNets-based architectures perform well with Double DQN.
The DCapsQN architecture uses fewer parameters while still outperforming the
baseline agent in terms of cumulative reward collected by an agent in a given
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task. In contrast to previous research [4] where the agent did not converge,
DCapsQN converges to find a value function.

The presented architecture was found to be the best performing in terms of
design and capabilities in the environments. The outcome confirms the initial
hypothesis that the value function is learned by the fully connected layers while
CapsNets learns to better represent input states.

Based on observations made in this work, we consider that transfer learning
of representations learned via CapsNets could be an interesting direction for
future research. Once learned part-complex objects, the agent would only need
to converge to find the value function. Although our evaluation covered a variety
of tasks and reward systems, it would be useful to investigate the performance
of the agents in other tasks, domains and within other settings like continuous
action spaces.
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under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” pro-
gramme.

References

1. Afshar, P., Heidarian, S., Naderkhani, F., Oikonomou, A., Plataniotis, K.N.,
Mohammadi, A.: COVID-CAPS: a capsule network-based framework for identifi-
cation of COVID-19 cases from X-ray images. Pattern Recogn. Lett. 138, 638–643
(2020)

2. Afshar, P., Plataniotis, K.N., Mohammadi, A.: Capsule networks for brain tumor
classification based on MRI images and course tumor boundaries. In: ICASSP
2019–2019 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 1368–1372, November 2019

3. Allioui, H., Sadgal, M., Elfazziki, A.: Deep MRI segmentation: a convolutional
method applied to Alzheimer disease detection. Int. J. Adv. Comput. Sci. Appl.
10(11) (2019). https://doi.org/10.14569/IJACSA.2019.0101151

4. Andersen, P.A.: Deep reinforcement learning using capsules in advanced game envi-
ronments. arXiv:1801.09597 [cs, stat], January 2018

5. Bahadori, M.T.: Spectral capsule networks, p. 5 (2018). https://openreview.net/
forum?id=HJuMvYPaM

6. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environ-
ment: an evaluation platform for general agents. J. Artif. Intell. Res. 47, 253–279
(2013). https://doi.org/10.1613/jair.3912

7. Eck, D.J.: Introduction to Computer Graphics (2016)
8. Gou, S.Z., Liu, Y.: DQN with model-based exploration: efficient learning on envi-

ronments with sparse rewards. arXiv:1903.09295 [cs, stat], March 2019
9. Hinton, G., Sabour, S., Frosst, N.: Matrix capsules with EM routing. In: Inter-

national Conference on Learning Representations (2018). https://openreview.net/
forum?id=HJWLfGWRb

10. Huang, W., Zhou, F.: DA-CapsNet: dual attention mechanism capsule network.
Sci. Rep. 10(1), 1–13 (2020)

https://doi.org/10.14569/IJACSA.2019.0101151
http://arxiv.org/abs/1801.09597
https://openreview.net/forum?id=HJuMvYPaM
https://openreview.net/forum?id=HJuMvYPaM
https://doi.org/10.1613/jair.3912
http://arxiv.org/abs/1903.09295
https://openreview.net/forum?id=HJWLfGWRb
https://openreview.net/forum?id=HJWLfGWRb


84 A. Singh et al.

11. Hubel, D.H., Wiesel, T.N.: Shape and arrangement of columns in cat’s striate
cortex. J. Physiol. 165(3), 559–568 (1963). https://doi.org/10.1113/jphysiol.1963.
sp007079

12. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network
for modelling sentences. In: Proceedings of the 52nd Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pp. 655–665. Asso-
ciation for Computational Linguistics, Baltimore (2014). https://doi.org/10.3115/
v1/P14-1062

13. Kempka, M., Wydmuch, M., Runc, G., Toczek, J., Jaśkowski, W.: ViZDoom: a
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Abstract. Object detection on real-time edge devices for new applica-
tions with no or a limited amount of annotated labels is difficult. Where
traditional data-hungry methods fail, transfer learning can provide a solu-
tion by transferring knowledge from a source domain to the target appli-
cation domain. We explore domain adaptation techniques on a one-stage
detection architecture, i.e. YOLOv3, which enables use on edge devices.
Existing methods in domain adaptation with deep learning for object
detection, use two-stage detectors like Faster-RCNN with adversarial
adaptation. By using a one-stage detector, the speed increases by a factor
of eight. With our proposed method, we reduce by 28% the changes in per-
formance introduced by the gap between the source and target domains.

Keywords: Domain adaptation · Object detection · Adversarial
learning

1 Introduction

Object detection and classification are amongst the main tasks addressed by
computer vision [30]. They are used in a wide variety of application domains
like autonomous driving, robotics, medical imaging, tracking of various subjects,
counting, manufacturing, etc. In general, deep learning techniques are applied
which require significant amounts of examples. The performance of deep neural
networks with abundantly available labels surpasses other techniques. Examples
of such use cases are car detection and classification of written characters [11,15].

Most of these deep neural networks also require a GPU which provides the
necessary computing power. Hence, the main obstacles for the adoption of these
supervised machine learning approaches in new applications remain the lack of
(labeled) data and the needed computing power for inference. This last factor
clearly limits their use in edge devices. Often, there already exist application
domains with similar properties and labeled data which can be used as a starting
point, i.e. the source domain. Ideally, the knowledge from the source domain can
c© Springer Nature Switzerland AG 2022
L. A. Leiva et al. (Eds.): BNAIC/Benelearn 2021, CCIS 1530, pp. 86–102, 2022.
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be transferred to the new application domain, the target domain. New application
domains often do not have enough labels. Examples of these include the detection
of animals other than a cat or dog, autonomous vehicles other than cars, and even
detecting the same subject in another environment/dataset can cause the source
model to have a significant drop in performance. Therefore, an automated frame-
work to adapt a source model to a target domain with only a few target labels can
prevent the time- and cost-consuming task of labelling a large dataset.

Existing methods [3,9] for domain adaptation rely on creating domain-
invariance between source and target domain. This can be done by adversarially
changing the feature encodings from convolutional layers or creating synthetic
images which close the gap between the two domains. These techniques will be
discussed in detail in Sect. 2. Regarding domain adaptation for the object detec-
tion task, most efforts from the literature are based on the Faster-RCNN detector
[9]. Faster-RCNN is a good choice for applications with sufficient computational
power or when no real-time inference is needed.

This is even more critical given the increasing number of new use cases where
computations are expected to take place in real-time on-site, instead of on a
remote cloud server [31]. With limited resources and/or the need for a real-time
application, faster frameworks like one-stage detectors provide opportunities to
meet the demand. By using a one-stage network, e.g. YOLOv3 [22], as the back-
bone network to perform object detection, the use of edge devices in real-time
is made possible. This is mainly due to the inference speed advantage of YOLO
over Faster-RCNN [23].

A good application example is an autonomous vessel that needs real-time
tracking of the vessels in the near distance with the computational power on-
board. Maritime vessels scan the whole environment with a radar once or twice
every second [2]. This is sufficient due to their low speed. To make the step
towards autonomous vessels, a camera and/or LiDar sensor needs to be added to
be able to make navigation decisions with a more comprehensive understanding
of the environment. If a camera can locate and classify objects in the water with
the computation power on-board, in synchronization with the radar, then this
could constitute a leap forward for the maritime industry.

Taking the previous application setting into account, in this paper we present
a transfer learning technique based on feature adaptation that uses the labeled
data in a source domain to improve the performance in a target domain with
no or limited labeled data. This effectively increases the overall generalization
and robustness of the source model. The performance is compared against other
transfer learning techniques like cycleGAN image adaptation [33] and combin-
ing feature adaptation with image adaptation. To validate the different transfer
learning techniques, two experiments are set up. First, the different techniques
are used to transfer knowledge from one dataset to another when detecting
the same subject (i.e. cars). The two datasets used in are COCO2017 [18] and
KITTI [7]. Second, the techniques are used to detect similar classes from the
same dataset, i.e. learning to properly detect a lion by transferring the obtained
knowledge from detecting a tiger. The dataset used for this task is OpenImages.
In both cases, there are 30 labelled target images available to fine-tune the source
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model. With feature adaptation, there is a 5 to 9% improvement of the mean
Average Precision (mAP) compared to the fine-tuned source model.

To summarize, we propose domain adaptation techniques based on feature
alignment and synthetic image alignment with fast real-time object detection
models that enable use on the edge with limited labeled data.

2 Related Work

The proposed method lies at the intersection of object detection and domain
adaptation. As such, we will position our system with respect to efforts address-
ing those tasks.

2.1 Object Detection

To perform object detection, the subject first has to be localised and then clas-
sified. There are two main categories for object detection models, i.e. traditional
models without deep learning and models with deep learning.

Engineered Features. SIFT [20] detects objects in the image by matching
local features which are scale- and orientation-invariant. SURF [1] uses a similar
feature descriptor as SIFT but speeds up the process significantly by the integral
image for image convolutions and simplifying the overall method. Other feature
descriptors such as Haar-like features [16], HOG [5], and ORB [24] perform
similarly. They all have their advantages depending on shape, colour, texture,
and illumination. On the one hand, these methods have the advantage of being
relatively lightweight, they are outperformed by their counterparts based on deep
neural networks. This discourage their use in critical applications.

Learning-Based Representations. With the advent of big data and increased
computational power, representation learning methods got a lot of interest.
Moreover, in computer vision, all the current State Of The Art (SOTA) methods
are based on deep convolutional neural networks [13]. Their success is attributed
to the large number of parameters present in Deep Neural Networks (DNN),
which can be used to model all the possible variations of how an object is
depicted. Faster-RCNN [23] is a very commonly used two-stage model which
uses a Region Proposal Network (RPN). This is based on the feature encodings
after multiple convolutional layers to first propose possible bounding boxes to
focus on. In the next step, these region proposals are used to locate the best
proposals and classify the object. To speed up the whole process, there are one-
stage models such as YOLO [21] and SSD [19] without the RPN, making it more
a regression/classification model. YOLOv3 [22] improves YOLO with bounding
boxes at three different scales by using a similar idea as a Feature Pyramid Net-
work [17] and with increased frames per second (fps). There is a small drop in
performance from a two-stage to a one-stage model but the gained speed enables
to detect objects in real-time, even with less computational power.
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2.2 Domain Adaptation

The focus of this paper is to improve object detection performance when oper-
ating on setting with no or limited annotated data is available. While there are
different options to apply transfer learning, they all involve domain-invariance
between source and target domain [8,9,29,32,33]. A possible method is to map
extracted features, which are the input to the domain classifier, from source to
target domain or the other way around [32]. Another option is to change the style
of an image synthetically from source to target domain or vice-versa. This map-
ping is primarily done by a Generative Adversarial Network (GAN) [8]. Recent
SOTA combines both techniques, i.e. creating domain-invariant features which
are based on source images translated to target images.

Real-to-sim domain adaptation [32] adapts the real images to synthetic
images to make the robot feel at home for its navigation task. They use a cycle-
GAN [33] and shift loss for more consistent subsequent frames. The previous
method translates every synthetic frame to the realistic style during the training
of navigation policies. Although effective, this approach still adds an adapta-
tion step before each training iteration, which can slow down the whole learning
pipeline. Instead of using a GAN to upsample the image to perform domain
adaptation, it is also possible to change the extracted features to another domain
without upsampling. In French et al. [6] self-ensembling is used with a student-
teacher method to achieve SOTA results on different visual domain adapta-
tion benchmarks for classification. Adversarial Discriminative Domain Adapta-
tion (ADDA) [29] generalizes the model from the source to the target domain
by changing the feature encodings in the layer before the output layer. The
main method used throughout this paper is based on ADDA and will be fur-
ther explained in Sect. 3. More recently, the strong-weak alignment method [25]
adapts global and local features adversarially with a domain classifier to again
create domain-invariance. Selective Cross-Domain Alignment [34] uses a simi-
lar idea but focuses on discriminative regions of the image representations to
perform adaptations. The main ideas are “where to look” and “how to align”.
Diversify and match [12] obtains better generalization to other domains by diver-
sifying the labeled data and then matching the features adversarially to make
them close to domain-invariant. FRCNN in the wild [3] uses the representa-
tion from the RPN to get instance-level invariance and the image representation
to get image-level invariance. Hsu et al. [9] combine techniques from ADDA
and image-adaptation, using a cycleGAN, to improve generalization to a target
domain.

All the methods listed above use a two-stage detector, mostly Faster-RCNN.
These two-stage detectors reduce halfway the changes in performance introduced
by the domain gap between the model trained on source data and target data
(oracle). To the best of our knowledge, these unsupervised domain adaptation
approaches have not been tested on one-stage detectors like YOLO which would
significantly improve the fps and could enable use on edge devices.
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3 Proposed Method

We hypothesize that a model trained on a large labelled dataset can be trans-
ferred to a new environment by adversarial training on- or offline. This hypothesis
is based on the success of the transfer learning techniques mentioned in Sect. 2.2.
We test this hypothesis by using the principle of adversarial feature manipulation
for domain adaptation. Adversarial Discriminative Domain Adaptation [29] is a
method to acquire a classification model for a target domain which only has unla-
belled samples. This method consists of the following steps (see Fig. 1): First, an
initial classification model is trained on a large dataset of labelled data sampled
from the source domain. Then, a domain discriminator and another classification
and detection model, i.e. the target model, are trained alternately. The input of
the discriminator is the feature encoding just before the last YOLO-layer, com-
puted by alternately encoding the source and target images. After training, the
discriminator should not be able to distinguish the extracted feature encodings
from source and target domain. This can be done by using an inverted-label GAN
loss, with the following loss function for the domain discriminator:

Ldisc = −(1 − Y )log(1 − D(E(I))) − Y log(D(E(I)), (1)

where Y represent the domain label, E(I) the encoded feature from image I,
and D(X) the prediction of the domain classifier with feature X as input. The
discriminator is trained by minimizing Ldisc, while the encoder is trained by
minimizing the binary cross-entropy loss of the detector and maximizing Ldisc.

Finally, the target encoder is evaluated by feeding target samples which are
mapped to an approximately domain-invariant feature space and afterwards clas-
sified by the source classifier.

Fig. 1. Adversarial Discriminative Domain Adaptation (figure adapted from [29]) con-
sists of three steps: 1. Pretraining the source model. 2. While freezing the source
encoder, adversarially training target encoder and domain discriminator to obtain fea-
ture encodings that fool the domain discriminator. 3. Evaluate performance by com-
bining target encoder and source classifier.

3.1 Adversarial Domain Adaptation for Object Detection

The focus in this paper is not only a classification task but also a localization
aspect, i.e. object detection. Although different, the principle of ADDA in an
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object detection setting remains the same by mapping the feature encodings to
a shared feature space between domains. As mentioned in Sect. 2, the application
of ADDA for object detection has been studied in several manners in conjunction
with a Faster-RCNN network and has shown promising results. For successful
domain adaptation with a one-stage detector like YOLOv3 [22], an extra step is
needed to align the domain-invariant features with the source output layer, i.e.
a detection and classification YOLO-layer. This can be done by training on a
small target dataset for a couple of epochs. Consequently, there is no mismatch
between encoding and output layer. The feature encodings will be slightly shifted
to the target domain which can cause a decrease in performance in the source
domain, yet enhance its performance on the target domain.

Applying ADDA in the context of the object detection task consists, mainly,
of three steps (see Fig. 2):

First, the source model needs to be fine-tuned on the large source dataset.
Second, (a) as an intermediate improvement step, it is possible to use a cycle-

GAN [33] to create synthetic images from the source dataset that are more sim-
ilar to the target images. This is achieved by using cycle consistency loss, which
enables the use of unpaired data. Two generators map domain A to B and vice
versa. The principle here is that by applying both generators sequentially, the
output image should be the same as the input image. The comparison between
input and output is the basis for the generator loss function. In between gen-
erators, domain classifiers differentiate between synthetic and real images. The
generators are thus trained by minimizing generator loss and maximizing dis-
criminator loss. In this way, we create an intermediate domain that is closer to
the target domain, and makes it easier to close the domain gap with domain
adaptation. These synthetic images substitute the original source dataset and
do not alter the structure of the adversarial feature adaptation algorithm.

(b) Training a domain classifier alternately on source and target images to
distinguish between them and adapt the feature maps with an inverted-label
GAN loss [29]. This loss is used to achieve domain-invariant features in order
to fool the discriminator. Important for this step is that the discriminator is
pre-trained, otherwise, it may take a longer training time to show significant
improvement, if any. The quality of the domain-invariant features depends on
the quality of the domain classifier.

Third, the target model is fine-tuned with a small number of target images.
For our experiments, we use 30 randomly chosen target images as the small
fine-tuning dataset. More details will be presented in Sect. 5.2.

4 Implementation Details

In our experiments we considering the YOLOv3 [22] detector with Darknet-
53 feature extractor which has 53 convolutional layers. The input images are
resized to 640 × 320 pixels and training is done with a batch size of 16. These
features form the basis for the detection, classification and localization with the
final YOLO-layer. Due to a feature pyramid network (FPN) [17], it is possible
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Fig. 2. Inspired by ADDA [29], our domain adaptation algorithm for one-stage object
detection also consists of three steps: 1. Pre-training on source images. 2a. An inter-
mediate improvement step of the model is replacing the source domain images with
synthetic images generated from a cycleGAN. These generated images create an inter-
mediate domain, which is closer to the target domain. 2b. Adversarially train Darknet-
53 encoder and domain discriminator for obtaining domain-invariant features. Note
that, the difference with ADDA here is that the source and target encoder have shared
weights which improves generalization to both domains. 3. Fine-tuning the model on
a small target dataset.

to predict objects more accurately at different scales because of the up- and
downsampling steps with skip connections between layers with equal feature
size. These skip connections combine low-resolution complex features with simple
high-resolution features. The FPN of YOLOv3 consists of three different scaling
stages and can thus predict for 3 different image sizes.
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The domain classifier is a feed-forward model with 5 convolutional layers and
a sigmoid classification layer at the end.

All models are trained on an Nvidia Tesla V100-SXM3-32 GB GPU. For the
training of the Darknet-53 network, binary cross-entropy is used as the loss func-
tion. Stochastic gradient descent with Nesterov momentum β = 0.937 optimizes
training. The initial learning rate is α = 1e−2 and the final learning rate is
αf = 5e−4 where the learning is rate is defined by a cosine curve.

αcurrent = αf +
1
2
(α − αf )(1 + cos(

epochcurrent

epochmax
π) (2)

The discriminator is trained on batches of 16 images utilizing an Adam opti-
mizer with β1 = 0.5 and β2 = 0.999 to decrease the binary cross-entropy loss
function. The domain classifier is more difficult to train. Its learning rate is
changed depending on the problem and domain gap. We empirically determined
the interval of the learning rate as α = 2e−8 − e−10. The learning rate for the
experiments is optimized with a hyperparameter sweep.

5 Evaluation

5.1 Datasets

We evaluate our method in the following datasets:
COCO2017 (COCO) [18] is a large dataset that consists of 80 labeled

classes. In this study, only the car class is considered. From these examples,
8000 images are used for training and 4000 for testing.

KITTI Object Detection Benchmark (KITTI) [7] is a large annotated
dataset with 15000 images captured from a car-mounted camera. We used 5400
images for training and 1300 for testing.

OpenImages (OI) [14] is a dataset of 9M images annotated with image-level
labels, object bounding boxes, object segmentation masks, visual relationships,
and localized narratives. For the transfer learning task covered in this research,
we chose two similar classes, i.e. Tiger and Lion. Each class has approximately
1000 samples after cleaning up the data.

Cityscapes (CS) [4] is a dataset that consists of 6 labeled classes from
urban street scenes. 2976 images are used for training and 500 for testing. For
domain adaptation benchmarks, Cityscapes also has foggy Cityscapes dataset
which consists of the same images synthetically augmented with a fog using
depth images to blur distant objects [26].

5.2 Experiments

To validate the proposed adversarial feature adaptation method when integrated
with single-stage detectors, we test our approach on two simple domain adapta-
tion problems with datasets that look similar, i.e. a smaller domain gap.
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Concretely, we look at the COCO dataset versus the KITTI dataset with
the focus on the car class. This exhaustively studied case can be a stepping
stone towards other autonomous means of transportation. We will adopt the
Mean Average Precision (mAP), at 0.5 Intersection over Union (IoU), precision,
and recall as performance metrics. In addition, we report the framerate, i.e. the
number of frames processed per second (fps), as an indicator of the computation
costs during inference.

Inference Speed. The framerate is only dependent on the type of detector that
is used as a backbone. The YOLOv3 detector achieves a framerate of 156 fps on
an Nvidia Tesla V100-SXM3-32 GB GPU and 1.83 fps on a 2.7 GHz vCPU. In
comparison, the Faster-RCNN with VGG-16 [28] achieves a framerate of 17 and
0.24 fps on the same GPU and vCPU, respectively. The latter is more represen-
tative for edge devices.

These results stress the need for good object detection performance with one-
stage detectors since this speed-up can determine the feasibility of an application
or not. For example, in the marine sector, a lot of research is done on autonomous
vessels, with an operating speed from 5 to 15 km/h. To navigate autonomously,
they need to detect nearby objects in the waterway. Importantly, these vessels
should be able to scan the environment frequently, around one or two times per
second, which is sufficient at these low speeds [2]. Comparable new applications
will thus benefit from a fast domain adaptation pipeline.

Object Detection Performance with Domain Adaptation. To measure
the performance of the method, we compare the mAP, precision, and recall of
each transfer learning technique to a target domain with two models trained on
target data. We compare with the following two models:

Base (no TL): the vanilla YOLOv3 model trained on 30 annotated target
images without transfer learning. Oracle: the YOLOv3 detector trained on the
full annotated target dataset.

Table 1. Performance baselines on COCO and KITTI focused on the car class

Fine-tuned on KITTI COCO

Tested on mAP P R mAP P R

COCO 0.744 0.623 0.785 0.704 0.666 0.713

KITTI (Base) 0.728 0.733 0.718 0.318 0.464 0.367

KITTI (Oracle) 0.974 0.936 0.961 0.22 0.822 0.166

Table 1 shows the results for the Base and Oracle models evaluated on the
validation sets of the COCO and KITTI datasets. Several observations can be
made in Table 1. First, and as expected, the models trained on images with
the same distribution as the validation images have the highest performance.
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Second, a model fine-tuned on a larger dataset (Oracle) performs better than
one trained on a smaller dataset (Base). However, it seems that this gain in
performance comes a the cost of lower generalization towards other datasets,
e.g. cross-dataset evaluation.

Taking the observations from above into account, we expect the performance
of the models with transfer learning to lie somewhere in between Base and
Oracle.

Measuring the Effect of Domain Adaption. We designed two experiments
to measure the effect that domain adaptation has on performance.

On the first experiment we apply domain adaptation to train a model from
COCO to KITTI dataset, with the focus on the car class. This experiments will
focus on modelling intra-class variations introduced by the domain shift.

On the second experiment, we apply domain adaptation to train a model for
a Lion class starting from the Tiger class. Both classes are extracted from the
OpenImages dataset. Here, transfer learning is performed between two similar,
yet different, classes. This experiment aims at assessing the effect of domain shift
caused by inter-class variations [10].

For both experiments, we limit ourselves to only consider 30 labelled target
images. In future work, the minimum number of needed labelled target images
to achieve improvements will be investigated.

Fig. 3. Precision and Recall curves for the different transfer learning methods (trained
on the COCO dataset) and the oracle model, evaluated on the KITTI dataset.
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Table 2. Performance domain adaptation techniques from COCO to KITTI tested on
both COCO and KITTI validation sets.

Method KITTI COCO

mAP P R mAP P R

No TL (Base) 0.728 0.733 0.718 0.318 0.464 0.367

Feature adaptation 0.796 0.824 0.727 0.584 0.729 0.54

CycleGAN 0.733 0.81 0.653 0.421 0.664 0.378

CycleGAN + feature adaptation 0.797 0.876 0.714 0.519 0.826 0.411

Tables 2 and 3 show the results for experiments one and two, respectively.
In general, it can be noted that combining feature adaptation with synthetic

data augmentation from a cycleGAN gives the best results (mAP) for both
experiments in their respective target domains, i.e. KITTI-cars and Lion. The
models for KITTI-cars and Lion improve 5% and 10%, respectively, compared
to their Base performance. If we define the domain performance gap as the dif-
ference in mAP between Base and Oracle, then the gap is closed by 28%, from
0.728 to 0.797 with an Oracle of 0.974 mAP. The precision improves significantly
by adding the synthetic images while maintaining a similar recall. Figure 3 fur-
ther confirms the fact that the combination of feature adaptation together with

Fig. 4. The ground truth is shown above the line and predictions on images from the
KITTI dataset, generated by the different models, under the line. The models from top
to bottom are: no TL (Base) (R1), feature adaptation (R2), cycleGAN (R3), feature
adaptation with cycleGAN (R4), and Oracle (R5).
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Table 3. Performance domain adaptation techniques from Tiger to Lion tested on
both Tiger and Lion validation sets.

Method Lion Tiger

mAP P R mAP P R

No TL 0.727 0.919 0.609 0.797 0.915 0.607

Feature adaptation 0.764 0.855 0.715 0.908 0.881 0.906

CycleGAN 0.747 0.99 0.661 0.947 0.967 0.836

CycleGAN + feature adaptation 0.768 0.922 0.711 0.926 0.896 0.906

synthetic images from a cycleGAN has the best performance out of the domain
adaptation techniques. It also shows that using synthetic images has an advan-
tage regarding precision while maintaining a similar recall. As hypothesized ear-
lier, we observe that the Oracle model outperforms the transfer learning tech-
niques.

The focus is on the car experiment, as the KITTI and COCO dataset sizes are
large compared to the OI datasets of the Tiger and Lion classes. This means that
more labelled source domain images are present for training, and the evaluation
results are more accurate representations of the models’ performance on the
target domain, as an outlier will have less impact on the overall performance.
Although smaller, the Tiger to Lion domain adaptation still shows the increased
performance with adversarial learning in an inter-class setting.

Figure 4 shows qualitative detection results. More specifically, it shows pre-
dictions of the different models on the KITTI validation dataset. The differ-
ent baselines include: Base (no TL) (R1), a feature adaptation model (R2), a
model trained on cycleGAN synthetic images (R3), a feature adaptation model
with cycleGAN synthetic images (R4), and Oracle (R5). The target models are
designed for the target dataset. Remarkably, applying transfer learning tech-
niques improves the generalization back to the source domain. This is in con-
trast to no transfer learning (no TL) with a model only fine-tuned on 30 labelled
target images starting from the source model. The domain-invariant features
and the intermediate domain dataset generated from a cycleGAN play the most
important factors for this result.

Use of Intermediate Domain from a CycleGAN. Figure 5 shows the result
of using a cycleGAN to generate the synthetic images in an intermediate domain
between source and target domain. It is clear that after the transformation from
tiger to lion, the tiger stripes have vanished and that the colour changed from
orange to tawny yellow. There is a blurring effect that can have a negative effect
on performance but this is likely caused by the small size of the Lion dataset.
The transformation from COCO to KITTI mostly changed the background as
the COCO dataset contains more urban-based images while the KITTI dataset
depicts cars more in or around a forest. That is why the generated images contain
fake trees in the background, even in the reflection of the car window.
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Effect on the Domain-Shift. The accuracy of the domain classifier, before and
after adversarial training on the image encoder, can also provide some insight on
the observed performance. Before any adversarial training of the feature encod-
ings, the pre-trained domain classifier can predict with approximately 55% accu-
racy, in both experiments, what the domain of the tested feature encodings is.
After adversarial training, this drops to 50%. The similarity between datasets
causes a very low accuracy of 55%. Still, the feature encoder manages to extract
useful information from the domain classifier to compensate for the subtle dif-
ferences between datasets.

To follow up on this observation, we conducted an additional experiment
focused on the ships class. More specifically, where the source dataset is the Sea-
ships dataset [27] and the target dataset is a self-annotated dataset from videos
recorded on a cargo ship on inland waterways. The main difference between
those two datasets is the point-of-view, on-board versus on-shore. Because of
this significant difference, the discriminator model performs very well and has
an accuracy of 95+%. Because of this large domain gap, the adversarial model is
not able to manipulate the encoded feature spaces toward each other. This shows
the limitations of using only adversarial training. More pre-processing steps are
needed than only a Cycle-GAN to close the domain gap for effective adversarial
learning.

Unsupervised Setting. In Table 4 a comparison is made between existing
methods and the methods explained and tested in this paper in an unsuper-
vised manner to adapt from the Cityscapes to the foggy Cityscapes dataset.
The difference with the experiments above is that this time, there is not a last
fine-tuning step with a small target dataset. In Table 4, it is clear to see that the
methods with feature adaptation in combination with YOLO do not improve
the results. Using a CycleGAN to create synthetic images works well. As the
foggy Cityscapes itself is a synthetic dataset, it is not surprising that training
on synthetic images from a CycleGAN generates a good result.

The other methods all also use some kind of adversarial feature adaptation,
the main difference is the object detection architecture. In Faster-RCNN, there is

Table 4. Performance domain adaptation techniques from Cityscapes to foggy
Cityscapes, tested on the foggy Cityscapes validation set.

Method Car Truck Bus Train Motorcycle Bicycle mAP

FRCNN in the wild [3] 40.5 22.1 35.3 20.2 20.0 27.1 27.6

Diversify and match [12] 44.3 27.2 38.4 34.5 28.4 32.2 34.6

Strong-weak align [25] 43.5 24.5 36.2 32.6 30.0 35.3 34.3

Progressive DA [9] 54.4 24.3 44.1 25.8 29.1 35.9 36.9

Feature adaptation 45.9 26.9 22.1 4.77 12.3 21.8 22.3

CycleGAN 68.7 41.8 40.1 17.9 16.7 30 35.9

CycleGAN + feature adaptation 37 27.5 30.4 14.2 7.46 16 22.1
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Fig. 5. These four columns of images show the transformations, by using a cycleGAN,
of the source domain images to generate synthetic images, which try to match the
target domain distribution. The source image is shown in the first and third column
in both examples (Tiger from Open Images, and car from COCO), and the generated
output which tries to mimic the target images is shown in the second and fourth column
(fake Lion from Open Images, and fake car from KITTI). In the Tiger to Lion example,
the generated output is blurred, yet tiger stripes have vanished and the colour changed
from orange to tawny yellow. In the car example, the environment changes from urban
to woodland. (Color figure online)
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a Region Proposal Network (RPN) which already gives a good idea where objects
of interest are while filtering out the background. Our theory is that performing
adversarial feature adaptation on these region proposals is much more specific
and accurate domain adaptation. This understanding can be the key for future
work to understand how to replace this RPN in YOLO to have fast, accurate
and specific domain adaptation without the need for a small target dataset. The
previous semi-supervised experiments are still valid as they improve the baseline
model significantly.

Summarizing. To summarize, this one-stage object detection model enables
near real-time use on edge devices with 2 fps on a 2.7 GHz vCPU. The domain
performance gap is reduced by 28% (difference between mAP of Base and Ora-
cle) on the COCO (source) and KITTI (target) datasets. The synthetic images
from a cycleGAN to replace the source images have a positive effect on the pre-
cision and mAP of the model and form a good option to boost performance. The
algorithm works both for inter- and intra-class domain adaptation.

6 Conclusion

We presented a method that enables object detection with a limited amount of
labels on edge devices in near real-time. The main advantages are three-fold.
First, the use of only a limited annotated target dataset, the amount of labels
needed depends on the desired trade-off between cost and performance. Second,
by using a one-stage detector, the proposed system achieves an increased object
detection speed approximately eight times faster. This enables the possibility to
use edge devices, such as a 2.7 GHz CPU which reaches almost 2 fps. Third, a
reduction of 30% in the changes in performance introduced by the domain gap.
Moreover, we observed a significant increase in performance for inter- and intra
class domain adaptation. In the unsupervised setting, we saw that finding an
alternative for the RPN, implemented in the Faster-RCNN model, for the YOLO
model can accelerate the adversarial training to achieve specific, accurate and
fast domain adaptation. There are also some disadvantages of using this method:
On the one hand, a two-stage detector like Faster-RCNN closes the domain gap
more. In Hsu et al. [9] the domain gap is closed by 56% where the target domain
is Cityscapes [4] and the source domain is KITTI, also focused on the car class.
On the other hand, a source domain with abundantly available data is needed
that resembles the target domain. In our experiment, these source domains are
the Tiger class and COCO. When the gap is too large between source (Seaships)
and target domain (self-annotated vessel dataset), using only adversarial training
methods fall short and additional pre-processing is needed to close the domain
gap before using this algorithm.
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Abstract. Explainable artificial intelligence (xAI) is seen as a solution to
making AI systems less of a “black box”. It is essential to ensure transparency,
fairness, and accountability – which are especially paramount in the financial
sector. The aim of this study was a preliminary investigation of the perspectives
of supervisory authorities and regulated entities regarding the application of xAI
in the financial sector. Three use cases (consumer credit, credit risk, and anti-
money laundering) were examined using semi-structured interviews at three
banks and two supervisory authorities in the Netherlands. We found that for the
investigated use cases a disparity exists between supervisory authorities and
banks regarding the desired scope of explainability of AI systems. We argue that
the financial sector could benefit from clear differentiation between technical AI
(model) explainability requirements and explainability requirements of the
broader AI system in relation to applicable laws and regulations.

Keywords: Explainable AI � Artificial intelligence � Financial sector

1 Introduction

In recent years increasingly powerful, but often also increasingly complex, machine
learning methods have become available and are used to greater extent in commercial
contexts [1, 2]. Generally, this form of machine learning is referred to simply as
“artificial intelligence” (AI). The increasing use of novel and hard-to-understand types
of AI systems has sparked a discussion on the need for explainability of AI [3, 4].
Especially for high-risk use cases there is a realization, both scientifically and societal,
that AI needs to be explainable to be understood. For instance, the upcoming EU
legislature on AI [5] will require demonstrable transparency for which explainable AI
will be essential. In the financial sector comprehensive understanding of the use of AI
systems is even more crucial: both stipulated by a wide range of laws and regulations
and because trust in financial institutions is of high importance [6]. Simultaneously,
expectations of new AI systems are high in the financial sector, while regulators need
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time to keep up with the speed of development [7]. Striking the right balance between
performance and explainability can present a difficult dilemma for financial institutions.

The field of explainable AI (or ‘xAI’) studies how AI can be made explainable by
making algorithms and their systems more transparent, often referred to as “opening the
black box” [3]. An improved understanding of the working of these algorithms helps us
to verify them, improve them, and implement them ethically. Most developments in
xAI focus on either technical tools for model developers or approach explainability as a
social or cognitive challenge [8, 9]. Other authors have stated that making models
explainable should be foregone instead of using inherently interpretable models [10].
Given the attention transparency and explainability receive as a requirement for ethical
AI, it is no surprise that many reports on the responsible use of AI have stressed the
need for xAI [11]. Notably, the number of empirical studies that provide practical
insights into how xAI is actually used in practice is very limited [12] which we believe
represents a hiatus in the current literature.

Financial institutions, both large and SME, have begun to use AI, for instance in
delivering instant responses to credit applications, claim settlement, and transaction
monitoring [24, 25]. The World Economic Forum [16] notes that the opacity of AI
systems poses a serious risk to the use of AI in the financial sector: lack of transparency
can lead to loss of control by financial institutions and thereby damage consumer
confidence and society. Given the crucial role of trust in the financial sector,
explainability of the outcomes and functioning of AI systems is considered necessary
[16]. Explainability is in fact one of the EU’s key requirements for trustworthy AI [11].
With new EU AI legislation announced, explainability is expected to become even
more important and necessary for some high-risk use cases such as consumer credit
scoring [5].

Limited empirical descriptions on the challenges surrounding the application of xAI
exist. In addition, only preliminary guidelines exist [17] on how to implement xAI,
often based in theory and lacking empirical validation. In the future, a solid and
practical framework could help organizations to better understand their obligations
(regulatory and otherwise) regarding xAI and how to operationalize them. In the
financial sector, such a framework could also help supervisory authorities to translate
current regulations regarding transparency and the provision of information, to clear
expectations regarding xAI to regulated entities. In lieu of such a framework, a starting
point is to map what is currently expected of in terms of explainability of AI by banks
and supervisory authorities.

The current exploratory study aims to identify what the differences are regarding
the expectations of explainability of AI for supervisory authorities and regulated
entities in the financial sector. Three use cases were examined in which AI is used at
financial institutions in the Netherlands. Data were collected by means of semi-
structured interviews with interviewees of both banks and supervisory authorities. This
study is intended to add empirical data on how xAI is regarded and used in practice and
as stepping stone towards a framework as described above. The main research question
is: What are the perspectives of supervisory authorities and regulated entities
regarding the application of xAI in the financial sector?
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2 Theoretical Background

Explainable AI (xAI), also referred to as interpretable or understandable AI, aims to
solve the “black box” problem in AI [18, 19]. A typical present-day AI system utilizes
data (e.g., information on a person’s financial situation) and produces an outcome (e.g.,
a risk of default indication). However, in such a system it is not always evident from
the output how or why a certain outcome is reached based on the data. Especially when
using more complex AI systems (e.g., using deep learning or random forest methods)
the process from input to output is practically impossible to understand by humans
even with full knowledge of the inner workings, weightings, and biases of the system.
The term xAI encompasses a wide range of solutions that explain why or how an AI
system arrives at outcomes or decisions [20]. One line of research focuses on technical
tools to explore the relation between model input and output, such as SHAP [21] and
LIME [22]. A critique on the xAI field expressed by various authors is that xAI is often
not clearly defined and discussed without proper understanding of the surrounding
concepts and the parties involved [19, 23]. As such, the exact scope of xAI is not
always well-defined, as sometimes the term is used to focus on technical solutions
directly relating to the model, but sometimes the system context is also taken into
account.

Transparency is one of the central concepts of xAI. Importantly, the term is used in
two distinguishable contexts or manners in the literature, which we differentiate by
using model transparency and process transparency. Model transparency is the
property of a model to be understood by a human as it is, in terms of its general
working or design. The opposite of “black-boxness” is model transparency [3, 10].
This type of transparency is generally what model developers refer to and is highly
related to the concept of interpretability [18, 24]. Process transparency is transparency
of the use and development of an AI system; it relates to openness and not concealing
information for stakeholders [24]. This form of transparency is generally what the
colloquial meaning of transparency refers to. However, it is also the type of trans-
parency that is meant in some of the literature on responsible use of AI when talking
about “transparency” [10, 17].

Explainability means that an explanation of the operation and outcome of a system
can be formulated in such a way that it can be sufficiently understood by the stake-
holder [3]. The term “stakeholder” refers to the individual, party, or audience impacted
by the functioning and/or outcomes of the AI system, requiring information in the form
of an explanation. In a vacuum, i.e., without a stakeholder, an explanation cannot be
said to do what is intended, namely making something understood by an individual [9].
We would argue that the core concept of explainable AI is effectual explanation. An
effectual explanation is not only about providing the required information, but to do so
in a manner that leads to stakeholder understanding [25], for instance by offering the
right amount of detail or boundary conditions of a model [26]. In addition, explanations
can be global or local [13, 14, 26]. That is, a global explanation reveals the inner
workings of the entire AI system (potentially including a case at hand), a local
explanation offers insight in a specific outcome.
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We used the following definition of explainable AI in this study: “Given a stake-
holder, xAI is a set of capabilities that produces an explanation (in the form of details,
reasons, or underlying causes) to make the functioning and/or results of an AI system
sufficiently clear so that it is understandable to the stakeholder and addresses the
stakeholder’s concerns.” [15].

Various types of information that can be used as the basis for an explanation can be
distinguished. A distinction that should be noted here is that of the of process-based
versus outcome-based explanation [17]. A process-based explanation gives information
on the governance of the AI system across its design and deployment; the explanation
is about “the how”. An outcome-based explanation gives information on what hap-
pened in the case of a particular decision; the explanation is about “the what”. In
addition, explanations can be said to be “global” (explaining the entire model) or
“local” (explaining a specific outcome) [13, 14, 26]. Furthermore, xAI techniques to
gain more information about the functioning of a model can be model-agnostic (and
work on any model, e.g., SHAP [21]), or be model-specific.

As a basis for this study we established a list of types of information that can
underpin an explanation (of an AI system) that are relevant in the financial sector. We
based this list on literature on explainable AI (using snowball search and focusing on
the most cited papers in the field) and adapted it to fit use cases in the financial sector
[9, 13, 14, 17, 26]. It should be noted that we incorporated types of information that are
related to process-based explanation (e.g. the process surrounding the AI system), and
which might be omitted in some views of explainable AI, that are however relevant
from a regulatory perspective on AI in finance.

• The reasons, details, or underlying causes of a particular outcome, both from a local
and global perspective.

• The data and features used as input to determine a particular outcome, both from a
local and global perspective.

• The data used to train and test the AI system.
• The performance and accuracy of the AI system.
• The principles, rules, and guidelines used to design and develop the AI system.
• The process that was used to design, develop, and test the AI system (considering

aspects like compliance, fairness, privacy, performance, safety, and impact).
• The process of how feedback is processed.
• The process of how explainers are trained.
• The persons involved in design, development, and implementation of the AI

system.
• The persons accountable for development and use of the AI system.

3 Research Method

3.1 Use Cases

To address our research question, we applied a qualitative research approach by means
of a series of semi-structured interviews. Three types of use cases were examined. The
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two supervisory authorities took part in all three use cases, with each of the three banks
partaking in two of the three use cases (due to constraints in availability of intervie-
wees). The three use cases were: 1) consumer credit, 2) credit risk management, and 3)
anti-money laundering. A brief outline of these use cases will now be given.

The use case on consumer credit considers a typical case for consumer credit and a
mortgage lending case. Consumer credit is credit provided to a consumer, which can be
used to purchase goods and services. Financial institutions that provide consumer credit
in the Netherlands have the right and obligation to ensure that the borrower has the
capacity to repay the loan. Credit risk management focusses on internal risk and/or
capital requirement models (early warning systems and probability of defaults models)
where AI systems can be used to improve or replace the currently used models. The use
case on anti-money laundering (AML) concerned AI systems which are used to con-
duct suspicious activity monitoring and transaction monitoring.

3.2 Data Collection

The organizations involved in this study are two supervisory authorities (SAs) and
three banks in the Netherlands. For reasons of anonymity these will be referred to as
“SA”, or “first SA”, “second SA”, “first bank”, etc. depending on which interview took
place first. The three banks belong to the major banks in the Netherlands, each with
more than one million clients, and can be characterized as financial incumbents [27].
Semi-structured interviews were conducted with employees of these five organizations
regarding the three use cases. For all interviews, use case experts (i.e., individuals that
worked primarily on the use case at hand) were present. These experts either had a
technical expertise (those directly involved with the development of the AI system)
and/or a more supervising/governing role (such as compliance & risk officers and
model owners).

At each interview at least two interviewees of that organization were present, and at
most four (if the complexity of the use case required more diverse expertise in the
interviewees). Interviews took between 1 and 1.5 h. In total 13 interviews took place,
six with interviewees from supervisory authorities and seven with interviewees from
banks (as one bank took part in an additional interview to fully cover all questions). In
addition, the findings were refined in a plenary session in which at least one participant
of all five organizations was present. As a starting point during the interviews, a list of
questions was used to guide the discussion, but the conversation was permitted to
develop naturally in the direction deemed most suitable by the interviewers and
interviewees.

The interviews with the banks and supervisory authorities had a slightly different
list of starting questions, as the SA interviewees did not have the same direct knowl-
edge of a specific use case in contrast to the banks. The interviewees of the banks were
asked questions about the following topics: the context of how AI is being used in the
organization, the role of explainability in the AI development process, the workings of
the use case at hand, the application of AI in the use case, the relevant stakeholders, and
how the bank deals with explainability in this particular use case. Finally, the banks
were asked what types of information that can serve as a basis for explanations (based
on the list from Sect. 2) are considered relevant for supervisory authorities.
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For the supervisory authorities, the focus of the interviews was on the boundaries of
what they would allow in terms of AI and what their expectations of explainability
were for that use case. The interviewees were asked questions concerning: their per-
ception of the use of AI and xAI, applicable legislation around the use case, and the
requirements for explainability from a supervisory perspective. In addition, they were
asked what types of information (based on the list from Sect. 2) they consider relevant
for their supervisory role for the use case at hand. The interviews with the two
supervisory authorities were conducted with interviewees who were aware of the
applicable prudential, integrity and conduct regulations relating to the use cases.

All interviews were conducted by two researchers of the HU University of Applied
Sciences via Webex. During every interview, one of the researchers had the lead in
asking questions while the other made notes used for later analysis. After the inter-
views, the interviewees verified the interview reports and supplemented information
where needed.

3.3 Data Analysis

Data analysis was conducted based on the interview reports. As a first step we analyzed
the interview reports and created a list of the main findings and conclusions per
interview. These findings and conclusions were verified and supplemented by the
interviewees. As a next step, we analyzed all interview reports and developed an
overview of the main conclusions. These conclusions were discussed in a plenary
session with participants of the supervisory authorities and banks. The output of this
session was used to refine the conclusions.

4 Results

First, we discuss the most notable results per use case. Second, we discuss the overall
findings.

4.1 Consumer Credit

The first bank provided a use case about mortgage lending (a type of consumer credit)
in which an AI system was used to assess mortgages with traffic-light colors to support
middle office employees. The AI system runs in parallel to other, more traditional
systems in the mortgage approval and monitoring process (e.g. using business rules).
The AI system uses a rather simple form of machine learning based on logistic
regression and uses around 10 variables. It improves on a business rules system in that
it uses historical data. Interestingly, relating to explainability the primary users of the
AI system (the middle office employees) were by design not given detailed insight into
the functioning and results of the AI system to prevent potential gaming of the system.
Due to the relative interpretability of the model, explainability to other stakeholders
was not considered to be a challenge beyond the previous systems.

The second bank also supplemented their traditional loan approval system for
consumer credit with an AI system. The traditional system uses basic data, such as the
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data a client provides through the application process or data from credit bureaus. The
new AI system is trained and continuously supplied with new transactional data. The
combination of both models resulted in fewer defaults on loans. For this use-case,
model developers are considered the most important stakeholders regarding explain-
ability. It was stated that it would be possible from a technological point of view to
explain the model to customers, although this requires a thorough understanding of
which type of narratives would be comprehensible by different consumer groups. This
might require an interactive process, which was indicated to present a challenging IT
problem rather than a problem of getting the relevant information (and explanations)
from the AI system.

One of the SAs monitors whether lenders (i.e. banks) comply with lending stan-
dards. The lending standards (“leennorm” in Dutch) follow straightforward rules
limiting the amount that can be loaned depending on the financial situation of the
lender and are the basis for valid loan approval. Regardless of what an AI system
indicates, banks must (and do) conform to this lending standard in all cases. The
interviewee of the SA indicated that this was the primary method by which the
supervisory authority currently ensured a lending consumer was protected. An inter-
esting point was raised that within the lending standards banks might use AI to find
cases their traditional systems would not give a credit, but the AI determines as being
profitable for the bank. However, this might not always be good for the consumer.
Widespread adoption of AI models might thus require reevaluation of the lending
standards.

In summary, for consumer credit, banks reported they use AI in conjunction to
traditional (“business rules”) systems. As a result of the lending standards, what is and
isn’t allowed for banks by supervisory authorities in terms of offering loans to con-
sumers is currently clearly specified and understandable for both parties. As a result, in
terms of explainability the lending standards are the basis (and thereby the explanation)
for rejection of most loans of consumers. As for the edge cases where (within the
lending standards) newer AI models might give a different recommendation compared
to the traditional models of banks, explainable AI would be especially important to give
insight into exactly what causes the deviation from traditional models. Due to the
current simplicity of the utilized models, this is at the moment not yet a concern, as also
stated by the interviewees. Interviewees at a bank indicated that automated explain-
ability towards consumers (loan applicants) is in principle possible due to the high level
of interpretability of the models. Currently, in most cases there is a human-in-the-loop
(the advisor) who provides the customer with information and acts as a potential ethical
safeguard.

4.2 Credit Risk Management

The AI system of the first bank in the credit risk management use case follows an AIRB
(advanced internal rating-based) model for the bank’s residential mortgage portfolio
(a capital model). It predicts a probability of default for each mortgage customer and a
prediction of loss-given-default for each customer. The model uses around 10–15
variables and is based on logistic regression. There is no interaction with any consumer
based on the model, it is only used internally. The main stakeholders for explanations
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are the internal “first line” and the supervisory authority. More advanced AI is expected
to potentially be able to lead to better performance, however, the interviewees reported
apprehension to use more complex models due to the expected long and time-
consuming process to get approval both internally and externally from supervisory
authorities.

From the interview with the first SA, it became apparent that regulations such as
capital requirements regulations (CRR [28]) heavily determine the boundaries for what
type of AI systems can be used in this use case. Predominantly, logistic regression
models are used across all financial institutions. Models that are more complex may not
meet requirements like traceability and replicability. Another requirement for credit risk
models is to demonstrate “experience” in applying a model. In practice, this means that
the model must be used as a shadow model for at least three years before approval can
be given. Banks are conducting plentiful research and pilots into AI in credit risk, but
the regulations are a limiting factor for further implementation. Currently, AI in credit
risk does not appear to lead to sufficient benefit compared to the challenge of getting its
use approved within the current regulatory framework to make it worthwhile. It was
indicated that the bank first to implement a new AI method must assume it takes at least
a year and a half before approval is granted.

In summation, in credit risk management strict requirements are heavily embedded
in regulations like CRR. Credit risk management forces ‘transparent by design’ models,
therefore, xAI is less of an issue as AI models that are not inherently transparent are
simply not used. Regulations/supervisory authorities are slow to change on credit risk,
possibly to the more international nature and societal importance of regulation in this
use case. Changing these regulations to allow for AI systems that are more complex
will be an incremental process that takes time and trust in the safety of such systems.

4.3 Anti-money Laundering (AML)

For the first bank the use case of anti-money laundering (AML) involved an AI system
developed to detect fraudulent activity in corresponding banking transactions. The AI
system consists of two algorithms (models): a deduplication algorithm and a classifi-
cation algorithm. As AML investigators check the flagged transactions, there is a
human-in-the-loop. The AML investigator receives explanations (e.g., the most
important features leading to a flagging) as part of the outcome of the AI system. The
xAI tool SHAP [21] was used with output provided to the investigator. As such, the
investigator can be said to be main stakeholder for explanation in this use case.
Explanation, in a broader sense, to other stakeholders is done via technical docu-
mentation and various internal processes.

The use case of the second bank concerns machine learning (ML) used for trans-
action monitoring. In the past, transaction monitoring was only done rule-based.
Currently, multiple ML models are used in conjunction with a rule-based methodology.
For instance, there is a supervised AI model that is used as noise reduction (i.e. reduces
false positives) on the output of the rule-based system. Furthermore, there is also a
supervised model that gives customers scores based on suspicion of money laundering
practices and an unsupervised anomaly detection AI model. The output of the models is
intended for transaction monitoring analysts who have expertise in recognizing
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integrity risks. These analysts are generally not concerned with assessing the quality of
model output, which is done by quality assurance analysts. The ML model output
includes extensive information (which can be considered explanation) about suspicious
situations, e.g., indicating the most relevant features, as opposed to rule-based systems.
This explainability aspect of these (modern ML) models is thus an important part of the
subsequent analysis done by the analyst. This analyst also uses a multitude of other
data (sources) outside the detection models for further verification. The analyst can be
seen as the human-in-the-loop in this use case, and as the most important stakeholder in
need of explanation. Notably, results of the ML-models are improved over the tradi-
tional models: both fewer false positives and fewer false negatives (thus more suspi-
cious transactions are reported).

Interviewees indicated that both internally for banks, but also for supervisory
authorities, a change of mindset is required to transition from the traditional way of
thinking in thresholds (contained in business rules), to more probabilistic thinking
about the features of an AML case (contained in modern ML methods). With the latter,
explanations can be more complex, but should not be of less quality.

The first SA, in the case of AML, is tasked with ensuring that banks comply with
the Anti-Money Laundering and Anti-Terrorist Financing Act [29]. Currently, this SA
does not impose any requirements on what type of AI system is used for AML as long
as it can be properly explained both to the supervisory authority and internally. Exactly
what sufficient explanation is for which type of AI system is not defined by the SA but
assessed on a case-to-case basis, due to the highly varying contexts in which AI is used.
For the time being, there is also no framework in which explainability is defined, which
is directly applicable to this use case. In the context of controlled business operations, a
bank must be able to explain how its systems work. If a bank cannot explain an AI
system, both to the supervisory authority and internally, as there may be uncontrolled
business operations the bank does not sufficiently manage its risks.

In summary, AML was indicated to be one of the use cases that can benefit most
from AI in terms of improving results while also being the use case in which the
supervisory authorities allow the most room for the use of novel AI methods. So far,
the issue of explainability did not hinder the deployment of more complex AI systems
in this use case. The internal AML analyst/investigator is viewed as the most important
stakeholder regarding explanations by the banks. This investigator is trained to work
with and understand model output, which can be seen as a form of, or bringing about
of, explainability.

4.4 General

One of the main findings, reported throughout the interviews, is that explainable AI is
high on the agenda of banks and supervisory authorities. Within banks, it either is or is
planned to be an aspect of an ethical framework used within the organization. Such a
framework generally builds on existing principles or procedures (not related to AI
specifically), but there is a trend towards more unification of principles and a more
explicit focus on AI. For supervisory authorities, explainability is not exclusively an
ethical concern, as it is also relevant from a prudential and legal perspective (e.g., a
prudential or legal framework such as CRR, lending standards, and the GDPR).

Exploring Explainable AI in the Financial Sector 113



As such, explainability is relevant to a wide range of supervisory authorities in the
financial sector among which the two in this study, but also including, e.g., data
protection supervisory authorities.

The use of complex AI systems by banks is increasing although often still limited,
mainly still using basic methods such as logistic regression. The use case of AML is a
notable exception where more varied and advanced AI models are used. In the plenary
session, the following reasons for the slow adoption of AI were mentioned: 1) The time
needed to become familiar with and implement complex models and especially xAI
methods (such as SHAP and LIME [21, 22]), which have emerged only in the last
years. Deciding what xAI method to choose, and how to implement it, is a challenging
process as xAI is still developing rapidly and in a short period new methods might
make a current xAI method obsolete. 2) Uncertainty as to whether financial regulations
(such as lending standards, CRR) or the supervisory authority would allow the use of
novel AI. 3) Traditional models are deemed adequate for many use cases. 4) Internal
hesitation to implement complex AI systems in customer facing applications. 5) AI
systems that are more complex are difficult to maintain and monitor over time.

As for the types of information that can serve as the basis for explanations it could
be noted that across all use cases the supervisory authorities indicated they are inter-
ested in the full range of types of information, while the interviewees from banks
generally indicated only a subset per use case was relevant (see Table 1).

Table 1. Responses of SAs and banks on the importance of the types of information that can
potentially underpin an explanation for supervisory authorities per use case. A plus-sign (+)
indicates a positive, a minus-sign (−) a negative, and both (±) indicates a partial importance.
Note that each of the three banks only partook in two use case interviews, and thus two banks
responded per use case, except for the credit risk use case where only interviewees of one bank
filled in this list.

Consumer credit Credit RIsk AML
SAs Bank Bank SAs Bank SAs Bank Bank

The reasons, details, or
underlying causes of a
particular outcome

+ − + + − + − +

The data and features
used as input to
determine a particular
outcome

+ + + + + + − +

The data used to train
and test the AI system

+ + + + + + − +

The performance and
accuracy of the AI
system

+ − + + − + + +

The principles, rules,
and guidelines used to
design and develop the
AI system

+ + + + + + + +

(continued)
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5 Discussion and Conclusions

The main finding of this study is that there appears to be a disparity between the
supervisory authorities (SAs) and the banks regarding the desired scope of explain-
ability required for the use of AI in finance. This is exemplified by responses by these
two types of organization on what types of information are required by SAs in the
various use cases (visible in Table 1). SAs indicate all types of information are relevant
while banks indicate only a subset is relevant. Various laws and regulations already
explicitly or implicitly impose requirements on the explainability of information sys-
tems, regardless of whether they are AI systems or other classes of systems. However,
the use of AI systems brings with it a new type of ethical, social, and legal challenges in
addition to the direct technical challenge of opening the black box of non-interpretable
models [8, 9, 23, 30]. Therefore, it seems warranted to further explore how this dis-
parity should be addressed.

The financial sector could perhaps benefit from clear differentiation between
technical (model) explainability requirements and explainability requirements of
business operations, applicable laws, and regulations on this topic of AI. A similar
bifurcation as can be made for transparency (process transparency and model trans-
parency [23]) might be useful for the xAI field: for instance, “AI model explainability”
and “AI system explainability”. The first of these relating to a set of techniques and
methods that are directly used to better understand the AI model and how its input
relates to its output. The second of these relating to the broader concept of explain-
ability that views the AI model as embedded in a system or a set of systems or

Table 1. (continued)

Consumer credit Credit RIsk AML
SAs Bank Bank SAs Bank SAs Bank Bank

The process that was
used to design,
develop, and test the
AI system

+ + + + + + + +

The process of how
feedback is processed

+ − + + - + + +

The process of how
explainers are trained

+ + + + + + − +

The persons involved
in design,
development, and
implementation of AI
system

+ − + + − + − ±

The persons
accountable for
development and use
of the AI system

+ + + + + + − +
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processes. Whether a black box houses a deterministic machine learning system, or
whether a (larger) black box houses a complex system of processes and various agents
interacting with an AI, both require explanation [25]. In the first case the questions will
be more like “how does this input lead to this output”, the opening of the traditional
black box AI. However in the second case questions could be: “how is this process
designed?” or “who is responsible for the data quality?”.

Most interviewees, especially the technical (i.e. model developers) associated
explainable AI with the technical tools that have been developed in the last few years,
that focus on explaining the model in a low-level fashion. While technical tools, such
as SHAP [21], give additional information about the operation of a model, they do not
answer how such information in general is conveyed understandably to a stakeholder,
by means of an explanation suited to that stakeholder [9]. Additionally, these tools are
often post-hoc or after the fact [13]. Like requirements as privacy, security, and fair-
ness, explainability should require attention from the onset of the design of an infor-
mation system, “explainability by design” [31, 32].

It should be noted that several factors could have made the disparity (seen in
Table 1) larger than it is in actuality. Firstly, the interviewees at the bank might not
have the same understanding about the laws and regulations as interviewees from the
SAs had. Another explanation for the disparity is that it is difficult to translate laws and
regulations into precise requirements for information systems and AI systems in par-
ticular [33], thus for novel developments very broad ranges of requirements are
assumed. The exact reason for the disparity found in this study is certainly a worth-
while topic of future research as well as for subsequent coordination and collaboration
between supervisory authorities and regulated entities on topics such as transparency,
explainability, and associated definitions.

The requirements regarding explainable AI reported in the interviews varied widely
per use case and stakeholder. This limits the possibility of quickly creating a generic
framework or checklist for AI in finance that covers all or most bases. Subsequent
research could first explore a single use case to create a full picture of the explanation
requirements and what information is relevant for which stakeholder given a range of
possible AI models. Subsequently, mapping stakeholders to xAI methods [19, 21, 22]
to see how they can be helped can be a valuable avenue of research that can produce
practical instruments for the implementation of xAI.

This study has several limitations that should be noted. First, we only interviewed
employees of a subset of the Dutch financial sector, three banks and two supervisory
authorities. In addition, we only spoke to a total of 21 employees across the five
organizations. Furthermore, we only touched the surface in the examination of the use
cases with interviews as the main method to collect data. More in-depth studies are
necessary to confirm and extend our findings and to determine whether our findings
hold across different geographies.

We found banks are hesitant to put complex AI models into practice in their
primary business processes for the lending and credit risk use cases. Interestingly,
supervisory authorities indicated that they in principle do not restrict the use of specific
types of AI systems. However, laws and regulations such as lending standards and
CRR impose explainability requirements which limit the choice of AI methods
beforehand. This might be a chicken-or-the-egg type problem, in which banks are
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unclear what regulators would precisely allow and therefore do not develop a certain AI
solution (based on a certain model), while regulators wait for banks to put AI systems
into practice before they can clearly say which type of model is allowed and which is
not. To counteract this, in the plenary session it was proposed to increase communi-
cation between banks and SAs, also in the development process of new AI models.

Notably, in the consumer credit and AML use cases, the use of novel AI methods
went hand in hand with the ability to leverage more (types) of data in addition to the
ability to use historical data. This is a clear advantage of these novel AI methods over
the traditional business rule systems and might explain the increased performance that
was reported in these use cases.

The application of AI at banks for the three use cases is currently only focused on
internal stakeholders, such as the investigators in the AML use case or the mid-office
employees in the consumer credit use case. The fact that there is a human-in-the-loop
was reported as a positive, as this offered an additional safeguard before action was
taken based on the AI output. In the future, more familiarity with (fully) automated AI
systems might lead to banks deploy more customer-oriented AI.

This is one of the first studies that provides practical insight in the application of
xAI in the context of use cases and AI systems in the financial sector. It demonstrates
that a wide range of aspects requires attention when designing and building AI systems,
and that explainability cannot be considered as a merely technical challenge nor a one-
size-fits-all solution. For financial law and policy makers, this research illustrates that
financial laws and regulations have an impact on the design of information systems and
in particular, AI systems.

In conclusion, there appears to be a disparity between the perspectives as provided
by the interviewees of the banks and those of the supervisory authorities for the use
cases investigated in this study. Namely, the supervisory authorities view explainability
of AI in a wider fashion. Potentially, this can be reframed as the supervisory authorities
requiring explanation of the AI model as embedded in a broader system, explicitly or
implicitly part of financial laws and regulations. On the other hand, the regulated
entities (i.e. the banks in this study) tended to view explainable AI more as a
requirement of only the AI model. A clear differentiation between technical AI (model)
explainability requirements and explainability requirements of the wider AI system in
relation to applicable laws and regulations can potentially be of benefit to the financial
sector and help in the communication between supervisory authorities and banks.
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Abstract. In recent years a lot of research was conducted within the
area of causal inference and causal learning. Many methods were devel-
oped to identify the cause-effect pairs. These methods also proved their
ability to successfully determine the direction of causal relationships
from observational real-world data. Yet in bivariate situations, causal
discovery problems remain challenging. A class of methods, that also
allows tackling the bivariate case, is based on Additive Noise Models
(ANMs). Unfortunately, one aspect of these methods has not received
much attention until now: what is the impact of different noise levels on
the ability of these methods to identify the direction of the causal rela-
tionship? This work aims to bridge this gap with the help of an empirical
study. We consider a bivariate case and two specific methods Regression
with Subsequent Independence Test and Identification using Conditional
Variances. We perform a set of experiments with an exhaustive range
of ANMs where the additive noises’ levels gradually change from 1% to
10000% of the causes’ noise level (the latter remains fixed). Additionally,
we consider several different types of distributions as well as linear and
non-linear ANMs. The results of the experiments show that these causal
discovery methods can fail to capture the true causal direction for some
levels of noise.

Keywords: Causal learning · Additive noise models · Noise level

1 Introduction

Thanks to the technological and computational advances during the last decades,
scientists were able to tackle successfully non-trivial problems from different
research areas, with causality being a prominent example. One of the fundamen-
tal problems of causality theory is to determine the causal relationship between
two or more variables. This problem is known as causal discovery, causal identifi-
cation or structure learning [8,27]. For example, given altitude and temperature,
we want to answer the question if the temperature has an effect on altitude, or if
altitude has an effect on temperature. This is of particular interest since if such
c© Springer Nature Switzerland AG 2022
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a causal relationship is known then one can predict the effects on a system in
case of an intervention or a perturbation.

Controlled experimentation, or A/B tests, are considered to be a golden
standard for causal discovery [11,34]. In such experiments, there are two identical
groups with only one variation. The only variable that is varied (intervened on)
is the potential cause. This procedure allows estimating the causal effect of this
variable in a given system. A/B tests are widely used in practical applications.
For example, testing the efficacy of medications is usually done with A/B tests,
see [32] for an example. In this case, the first group, also known as control
group, receives no medication or a placebo, and the second group, known as
intervention group, receives the real medication. The results show the true effect
(if any) of the medication on human health. However, such tests are often too
expensive, unethical, or even technically impossible to execute. For example, to
test the effect of smoking on health with this approach, one needs two non-
smoker groups. Next, the members of one group should be forced to smoke,
and the others not do so. Therefore, it is of great interest to determine causal
relationships from observational data only.

There exist many methods which are able to determine causal relationships
from observational data. One particular group of such methods is based on Addi-
tive Noise Models (ANMs). These methods, as the name suggests, exploit the
additivity of the random hidden noise. ANMs received a lot of attention as they
are well established and yielded many good results [12]. Despite all the research
in the past years, one small but nonetheless important aspect of causal discovery
with ANMs has not received much attention: how do different noise levels of the
additive noise impact the correctness of these methods? In the real world, it can
occur that noise levels change drastically from cause to effect. It can happen,
for example, if the data collection process has a lot of interference like in outer
space.

In this work, we aim to bridge this research gap with an empirical study.
For our analysis, we selected two specific methods: Regression with Subsequent
Independence Test (Resit) [20] and Identification using Conditional Variances
(Uncertainty Scoring) [17]. We chose Resit, as it is known to produce reliable
results [15]. However, this method is not capable to identify the correct causal
direction in the case both the cause and the noise are Gaussian. In fact, this case
was only recently successfully tackled by the Uncertainty Scoring method. That
is why we chose the latter one as well. We perform a set of experiments with
an exhaustive range of ANMs where the additive noises’ levels gradually change
from 1% to 10000% of the causes’ noise level (the latter remains fixed). We also
consider several types of distributions as well as linear and non-linear data. The
results of the experiments show that these causal discovery methods can fail to
capture the true causal direction for some levels of noise.

This paper is organized as follows. In Sect. 2 we introduce related work. Next,
in Sect. 3 we describe the chosen causal discovery methods. In Sect. 4 and Sect. 5
we discuss the experimental setup and the experimental results respectively.
Lastly, in Sect. 6 we draw conclusions and present possible future work.
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2 Related Work

Structure learning is the procedure of determining causal relationship directions
from observational data only and representing these as a (causal) graph. The
basic idea emerged from [33] as path analysis.

Judea Pearl presented in his work [8] a comprehensive theory of causal-
ity and unified the probabilistic, manipulative, counterfactual, and structural
approaches to causation. From this work we have the following key point. If
there is a statistical association, e.g. two variables X and Y are dependent, then
one of the following is true: 1) there is a causal relationship, either X has an
effect on Y or Y has an effect on X; 2) there is a common cause (confounder)
that has an effect on both X and Y ; 3) there is a possibly unobserved common
effect of X and Y that is conditioned upon data acquisition (selection bias); or
4) there can be a combination of these. From there on, a lot of research has been
conducted to develop theoretical approaches and methods for structure learn-
ing. In the rest of this section, we first introduce the common concept behind
all these approaches, and then we present some major works related to additive
noise models.

In general, all methods for structure learning exploit the complexity of
the marginal and conditional probability distributions in some way, see [1–
7,9,13,14,16,18–25,27–30,35]. Under certain assumptions, these methods are
then able to solve the task of causal discovery. Let C denote the cause and E
the effect. Then their joint density can be expressed with pC,E(c, e). This joint
density can be factorized into either (1) pC(c) ·PE|C(e|c) or (2) pE(e) ·PC|E(c|e).
The idea is then that (1) gives models of lower total complexity than (2) and this
allows us to conclude the causal relationship direction. Intuitively, this makes
sense, because the effect contains information from the cause but not vice-versa
(of course, under the assumption that there are no cycles aka feedback loops).
Therefore, (2) has at least as much complexity as (1). However, the definition of
complexity is ambiguous. For example, one can say that “pC contains no infor-
mation about PE|C(e|c)” and then draw partial conclusions about the causal
direction in a given system. This complexity question is often colloquially referred
to as breaking the symmetry, that is pC(c) · PE|C(e|c) �= pE(e) · PC|E(c|e).

As it was already mentioned, causal discovery based on ANMs was widely
studied in the research literature. Silva et al. introduced in [26] a method for
learning the structure of linear latent variable models. The main assumption
in their work is that each variable is a linear function of its parents plus an
additive error term of positive finite variance. Hoyer et al. generalized the lin-
ear framework of additive noise models to the nonlinear case [4]. Earlier works
often assumed linear models for continuous variables. The authors showed that
if data contains non-Gaussian variables, then this can help in distinguishing the
causal directions and identifying the causal graph. Mooij et al. introduced Resit1

method in [13]. This method is based on the idea of minimizing the statistical

1 Resit method is described in Sect. 3.2.
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dependence between the regressors and residuals2. The authors demonstrated
that if the residuals are no longer dependent on the input, then regression can
successfully model the causal dependence. This method does not need to assume
a particular distribution of the noise because any form of regression can be used
(e.g., Linear Regression), and it is well suited for the task of causal inference
in additive noise models. Next, Mooij et al. introduced a method to determine
the causal relationship in cyclic additive noise models and showed that such
models are generally identifiable in the bivariate, Gaussian-noise case [14]. Their
method works for continuous data and can be seen as a special case of nonlinear
independent component analysis. Later, Peters and Bhlmann proved in [19] full
identifiability3 of linear Gaussian structural equation models if all the noise vari-
ables have the same variance. In the next work, Peters et al. proposed a method
that can identify the directed acyclic graph from the distribution under mild
conditions [20]. In contrast, previous methods assumed faithfulness and could
only identify the Markov equivalence class of the graph4. Finally, the authors
of [1,18] proved that linear Gaussian models with different error variance can
be also identifiable. In their method, referred to as Uncertainty Scoring5, this is
done by ordering variables according to the law of total variances and then per-
forming independence tests between them. Park extended this result to additive
noise models in [17].

As we can see, many researchers contributed to the development of ANMs-
based causal discovery methods and widened our understanding of their appli-
cation cases. However, no previous research work analyzed how the level of noise
variance relative to that of the cause variance can impact the accuracy of these
methods. This question forms the basis of the current study.

3 Causal Discovery Methods

In this section, we introduce notations and then describe to two analyzed causal
discovery methods: Regression with Subsequent Independence Test (Resit) [20],
see Sect. 3.2, and Identification using Conditional Variances (Uncertainty Scor-
ing) [17], see Sect. 3.3.

3.1 Notations

In the following text, we give a short definition of additive noise models for the
bivariate case. For more details and multivariate cases, please refer to [4,20].

2 The residuals are defined as the difference between the actual output and the pre-
dicted output.

3 Full identifiability means that not only the skeleton of the causal graph is recoverable
but also the arrows are.

4 Markov equivalence class refers to the class of graphs in which all graphs have the
same skeleton.

5 Uncertainty Scoring method is described in Sect. 3.3.
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Let X,Y ∈ R be the cause and the effect respectively. Let there also be m
latent (hidden) causes U = (U1, . . . , Um) ∈ R

m. Then the causal relationship
can be modeled as follows.{

Y = f(X,U1, · · · , Um)
X ⊥⊥ U

, with X ∼ pX(x) and U ∼ pU (u1, · · · , um),

where f : R × R
m → R is a linear or nonlinear function, and pX(x) and

pU (u1, · · · , um) are the joint densities of the observed cause X and the latent
causes U . We assume that there is no confounding, no selection bias, and no
feedback loops between X and Y . In this case, X and U are independent, which
is denoted by X ⊥⊥ U . Since the latent causes U are unobserved, their influence
can be summarized with a single noise variable Ny ∈ R, and the model can be
rewritten as follows:{

Y = f(X,Ny)
X ⊥⊥ Ny

, with X ∼ pX(x) and Ny ∼ pNy
(ny).

In our experiments, we are considering both linear and nonlinear additive
noise models:

Y = βX + Ny with β ∈ R, for the linear case

and
Y = βXα + Ny with β, α ∈ R, for the nonlinear case.

Also, X and Ny can be drawn from one of the following three distributions: the
normal distribution denoted by the calligraphic letter N , the uniform distribu-
tion denoted by the calligraphic letter U , or the Laplace distribution denoted by
the calligraphic letter L. For example, throughout this work “X is drawn from a
normal distribution” is denoted by X ∼ N or X ∼ N (μx, σx) with μx standing
for the mean and σx for the standard deviation.

3.2 Regression with Subsequent Independence Test (Resit)

We implement Resit following Algorithm 1 from [15]. This algorithm requires
the following inputs: X and Y , a regression method, and a score estimator Ĉ :
R

N × R
N → R; it outputs dir (casual relationship direction). The idea is to

regress Y on X, predict Ŷ , and then calculate residuals Yres = Ŷ − Y . Yres

and X are then used to calculate ĈX→Y , a score for the assumed case X → Y .
Similarly, to test the other causal direction (Y → X), we regress X on Y ,
calculate residuals Xres = X̂ − X and estimate ĈY →X . In our experiments, the
generated data always follows X → Y . This verifies the assumption that only
one direction in our data is correct (and not both). Under this assumption, we
can compare both scores directly to decide on the cause-effect direction, and we
do not need to determine the value of α for the independence tests, see Eq. (1).
Additionally, we can also use entropy estimators to estimate the score Ĉ.
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Algorithm 1. General procedure to decide whether p(x, y) satisfies Additive
Noise Model X → Y or Y → X.

Input:
- I.i.d. sample data X and Y
- Regression method
- Score estimator Ĉ : RN × R

N → R

Output:
- dir

1: reg1 ← Regress Y on X
2: reg2 ← Regress X on Y

3: Yres ← reg1.predict(X) − Y
4: Xres ← reg2.predict(Y ) − X

5: ĈX→Y ← Ĉ(X, Yres)
6: ĈY →X ← Ĉ(Y, Xres)

return dir =

⎧
⎪⎨

⎪⎩

X → Y if ĈX→Y < ĈY →X ,

Y → X if ĈX→Y > ĈY →X ,

? if ĈX→Y = ĈY →X .

(1)

In Algorithm 1, it is possible to split the data into training and test parts. In
this case, the training data is used to fit the regression model and the test data
is used to calculate the value of Ĉ. This procedure is referred to as decoupled
estimation [12]. The advantage of splitting the data lies in the reduction of the
computational time for calculating independence estimates Ĉ. However, in this
work, we use coupled estimation. This means that the entire data-set is used for
both the regression and the independence estimation steps. The latter approach
tends to produce more accurate results for independence estimation.

In our work, we use Linear Regression as a regression algorithm. If an appro-
priate transformation of coordinates is applied, Linear regression can be used in
the non-linear cases as well. In our experiments, we used six different indepen-
dence tests and six different entropy measures for calculating Ĉ. In general, for
the independence tests we have:

Ĉ(XTest, Yres) = I(XTest, Yres),

with I(·, ·) being any independence test. In the case of entropy estimators we
have:

Ĉ(XTest, Yres) = H(XTest) + H(Yres),

with H(·) being any entropy measure. The entropy-based estimator score is
derived from Lemma 1 in [12].

The following estimators were used in this work. The implementation of esti-
mators with numbers 2–12 was taken from the information theoretical estimators
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toolbox [31]. Here we briefly introduce every estimator. Mathematical formulas
for each of them can be found in the Appendix.

1. HSIC : Hilbert-Schmidt Independence Criterion with RBF Kernel6.
2. HSIC IC : Hilbert-Schmidt Independence Criterion using incomplete

Cholesky decomposition7.
3. HSIC IC2 : Same as HSIC IC but with lower precision.
4. DISTCOV : Distance covariance estimator using pairwise distances.
5. DISTCORR: Distance correlation estimator using pairwise distances. It is

simply the standardized version of the distance covariance.
6. HOEFFDING : Hoeffding’s Phi.
7. SH KNN : Shannon differential entropy estimator using kNNs (k-nearest

neighbors) where k = 3.
8. SH KNN 2 : Same as SH KNN but with different search method.
9. SH KNN 3 : Same as SH KNN but with k = 5.

10. SH MAXENT1 : Maximum entropy distribution-based Shannon entropy esti-
mator.

11. SH MAXENT2 : Same as SH MAXENT1 with minor changes.
12. SH SPACING V : Shannon entropy estimator using Vasicek’s spacing

method.

3.3 Identification Using Conditional Variances (Uncertainty
Scoring)

The Uncertainty Scoring method is composed of Algorithm 2 and Algorithm 3
from [17]. It consists of two parts: 1) ordering and 2) conditional independence
testing.

For the first step, ordering, we used backward step-wise selection (Algorithm 2),
as it is more convenient for implementation. The algorithm starts with a set S
which contains all variables represented as nodes in a causal graph. Next, we iter-
ate over S, and for each node, we calculate its conditional variance given all other
remaining nodes. Then, we select the node with the highest conditional variance,
append it to the ordering π, and also remove it from the set S. With the updated
set S, we repeat this process until S is empty. Lastly, the reverse of the ordering
π is returned. The first node to be appended to the ordering is the last one in the
ordering, which is reflected in the name “backward step-wise selection”.

In the second step, we perform uncertainty scoring using Algorithm 3. This
algorithm iterates over the ordering π. For every node j, it performs conditional
independence tests conditioning on every other node l appearing before the node j
in the ordering π. If a node l is dependent on j, then it is added to the set of parents
of j, denoted as Pa(j). In this algorithm, the first node in the ordering never has
parents, so the procedure starts with the second node. Fisher’s z-transform of the
partial correlation, is used for the conditional independence testing.
6 Source: https://github.com/amber0309/HSIC.
7 Low rank decomposition of Gram matrices, which permits an accurate approximation

to HSIC as long as the kernel has a fast decaying spectrum.

https://github.com/amber0309/HSIC
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Algorithm 2. Backward step-wise selection
Input: All variables from an ANM: X = (x1, x2, . . . , xn)
Output: Estimated ordering π = (π1, π2, . . . , πn)

1: Set S = {1, 2, . . . , n}
2: List π = [ ]
3: for m = 1 . . . n do
4: for j ∈ S do
5: Estimate the conditional variance xj given {x1, . . . , xn}\xj , σ2

j|S\j
6: end
7: Append πm = argmaxjσ

2
j|S\j to π

8: Update S = S\πm

9: end
10: return Reversed list π

Algorithm 3. Uncertainty Scoring
Input: All variables from an ANM: X = (x1, x2, . . . , xn)
Output: Dictionary with estimated parents for all variables: G = {Pa(x1) :
[. . . ], Pa(x2) : [. . . ], . . . , Pa(xn) : [. . . ]}

1: Get ordering from backward step-wise selection: π = (π1, π2, . . . , πn)
2: G = {}
3: for m = 2 . . . n do
4: Pa(πm) = [ ]
5: for j = 1 . . . m − 1 do
6: Conditional independence test between πm and πj given {π1, . . . , πm−1}\πj

7: If dependent, include πj into Pa(πm)
8: end
9: Insert Pa(πm) into G

10: end
11: return G

4 Experimental Setup

Generation of Synthetic Data. For all empirical tests, we assume X to be a
cause of Y , that is X → Y . In the sense of additive noise models, we use the fol-
lowing equations: Y = X + Ny for the linear case, and Y = X3 + Ny for the
non-linear case, where

X ∼

⎧⎪⎨
⎪⎩

N (0, 1) or
U(−1, 1) or
L(0, 1)

and Ny ∼

⎧⎪⎨
⎪⎩

N (0, 1 · i) or
U(−1 · i, 1 · i) or
L(0, 1 · i)

with i being a scaling factor for the noise level in Ny. The goal is to analyze how
different standard deviations (boundaries for the uniform case) in the noise term
Ny relative to the standard deviations (or boundaries for the uniform case) in the
X term impact the ANM methods.
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To cover various dependencies between the distributions of X and Ny, we gen-
erate 199 different i factors:

i ∈ {0.01, 0.02, . . . , 1.00} ∪ {1, 2, . . . , 100}.

For each i, every linear and non-linear combination with different distributions is
tested. Totally, we have 18 combinations corresponding to the general structures
Y = X+Ny and Y = X3+Ny, where X and Ny are drawn from the three different
distributions, N , U or L.

Y = X ∼ N + Ny ∼ N ,

Y = X ∼ N + Ny ∼ U ,

Y = X ∼ N + Ny ∼ L,

...

Y = X ∼ L3 + Ny ∼ L.

Note that L3 here signifies the non-linear case Y = X3 + Ny.

Evaluation. For each of the 18 combinations, we perform 100 tests. In every test,
we generate 1000 new samples for X and Ny and attempt to identify the direction
of the causal relationship8 using one of the two algorithms presented in Sect. 3.
Lastly, we simply calculate the fraction of successful tests and define this ratio as
our accuracy measure.

5 Experimental Results

Since we used a large range for the values of i-factor, several different combinations
of distributions, linear and non-linear data, we have too many results to show them
all in detail in this paper. Therefore, we discuss several representative cases and
provide a summary of all results. The latter shows for which values of i-factor the
models are consistently identifiable. For the detailed analysis, we refer to the doc-
ument [10]. Alternatively, all the results and source codes can be accessed from the
relative repository9.

5.1 Resit

We start with the analysis of Resit method. In this set of experiments, we are inter-
ested in which ranges of i-factor allow causal identifiability and how it is related to
the functional model and the chosen independence estimator. Figure 1 shows the

8 The true direction of the causal relationship is known as we generate synthetic data.
9 https://gitlab.com/Shinkaiika/noise-level-causal-identification-additive-noise-

models.

https://gitlab.com/Shinkaiika/noise-level-causal-identification-additive-noise-models
https://gitlab.com/Shinkaiika/noise-level-causal-identification-additive-noise-models
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detailed results for the following 4 linear combinations and their nonlinear coun-
terparts: Y = N + U , Y = U + N , Y = U + L, and Y = L + L. The y-axis shows
the accuracy of causal discovery (#successful tests

100 ), and the x-axis corresponds to
i-factor. Different colors encode 12 estimators used in this work. The value of accu-
racy close to 0.5 means that Resit outputs the correct causal direction in only 50%
of the tests thus indicating unidentifiability. The values close to 1 signify very
good/consistent identifiability. In the following text, we analyze the results for
individual models.

Figure 1a shows the linear model Y = N + U . We can see, that all estima-
tors reach an accuracy close to 100% inside the interval i ∈ [0.8; 5]. However, for
smaller or larger i-factors the accuracy of all estimators start to drop until they
reach unidentifiability (∼0.5). Not all estimators perform the same. For exam-
ple, HISC with Incomplete Cholesky decomposition performs worse for decreas-
ing i-factors compared to all other estimators. SH SPACING V performs the best
among all estimators for this linear model. Figure 1b shows the non-linear model
Y = N 3+U . The non-linear version shows much better results. With i ∈ [0.2; 100],
we have accuracy close to 100% for all estimators. Only a few estimators drop
towards unidentifiability for i < 0.2.

Figure 1c shows the linear model Y = U + N . For i ∈ [0.1; 1] this model is
identifiable. However, for larger values of i-factor, the accuracy of many estima-
tors drop quickly. In this range, SH SPACING V remains above 90%, most other
estimators drop between 60% and 80% but HSIC IC and HSIC IC2 drop to 50%
accuracy demonstrating complete unidentifiability. Figure 1d shows the results for
the non-linear version of this model. For i ≤ 1, all estimators remain above 90%
accuracy, with the exceptions now being HSIC IC and HSIC IC2. For i-factors
larger than 1, estimators behave differently. SH KNN, SH KNN 2, SH KNN 3,
DISTCOV, DISCORR and HOEFFDING remain above 90% accuracy up to i =
100. SH MAXENT1 remains between 80% and 90%, HSIC and SH MAXENT2
between 60% and 80%, and HSIC IC and HSIC IC2 become unidentifiable.

Figure 1e shows the linear case Y = U +L and Fig. 1f shows the non-linear case
Y = U3 +L. The demonstrated results are quite similar to the two cases discussed
above. This indicates that models with the same type of distribution for X behave
similarly.

Figure 1g shows the linear case Y = L+L. For i ∈ [0.1; 10] most estimators are
above 90%, except SH KNN, SH KNN 2 and SH KNN 3 which are above 90% for
i ∈ [0.4; 2]. For larger values of i-factor, all estimators drop quickly to unidentifia-
bility. Finally, Fig. 1h shows the non-linear case Y = L3+L. Similarly to the model
Y = N 3 +U presented in Fig. 1b, this model demonstrates that non-linearity gen-
erally helps in identifying causal relationships. For i ∈ [0.15; 100] all estimators
are above 90% accuracy, often reaching 100%.

The experimental results for Resit with linear and non-linear models are sum-
marized inTables 1 and 2 respectively.The rows correspond to different estimators,
and columns correspond to structural equationmodels. The values in the cells show
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Fig. 1. Several selected detailed results for Resit. x-axis shows the values of i-factor and
y-axis shows the accuracy of causal identification.
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Table 1. Summary for Resit with linear models. The numbers reflect the ranges of
i-factor that allow identifiability with accuracy around or above 90%.

Equation N + N N + U N + L U + N U + U U + L L + N L + U L + L
HSIC 0.17–18 0.13–8 0.05–6 0.06–16 0.04–7 0.1–7 0.12–23 0.1–13

HSIC IC 0.65–26 0.31–7 0.04–3 0.06–15 0.04–5 0.1–4 0.14–26 0.1–8

HSIC IC2 0.7–26 0.33–7 0.1–3 0.14–15 0.11–5 0.1–4 0.14–26 0.12–8

DISTCOV 0.16–23 0.13–7 0.04–7 0.05–21 0.04–10 0.1–7 0.1–25 0.08–15

DISTCORR 0.16–23 0.13–7 0.04–7 0.05–21 0.04–10 0.1–7 0.1–25 0.08–15

HOEFFDING 0.16–25 0.13–8 0.04–7 0.05–21 0.04–8 0.1–7 0.1–25 0.1–10

SH KNN 0.32–12 0.76–1 0.08–4 0.07–12 0.09–4 0.61–1 0.27–12 0.37–3

SH KNN 2 0.32–12 0.76–1 0.08–4 0.07–12 0.09–4 0.61–1 0.27–12 0.37–3

SH KNN 3 0.24–12 0.51–1 0.05–5 0.07–14 0.05–5 0.37–3 0.21–15 0.32–4

SH MAXENT1 0.23–12 0.12–10 0.06–4 0.1–12 0.04–8 0.07–13 0.11–24 0.07–17

SH MAXENT2 0.15–22 0.13–7 0.03–7 0.05–17 0.04–8 0.1–7 0.11–23 0.1–13

SH SPACING V 0.13–33 0.17–5 0.01–100 0.03–40 0.01–100 0.14–6 0.11–33 0.09–13

Table 2. Summary for Resit with non-linear data. The numbers reflect the ranges of
i-factor that allow identifiability with accuracy around or above 90%.

Equation N3 + N N3 + U N3 + L U3 + N U3 + U U3 + L L3 + N L3 + U L3 + L
HSIC 0.04–100 0.08–100 0.04–100 0.02–6 0.03–16 0.03–7 0.02–100 0.04–100 0.02–100

HSIC IC 0.04–83 0.06–100 0.04–70 0.1–0.92 0.14–13 0.1–4 0.03–100 0.05–100 0.03–100

HSIC IC2 0.08–83 0.08–100 0.09–70 0.12–0.91 0.17–13 0.17–4 0.7–100 0.07–100 0.09–100

DISTCOV 0.02–100 0.02–100 0.02–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100

DISTCORR 0.02–100 0.02–100 0.02–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100

HOEFFDING 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100

SH KNN 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100

SH KNN 2 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100

SH KNN 3 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100

SH MAXENT1 0.05–100 0.06–100 0.05–100 0.01–100 0.02–90 0.01–88 0.1–100 0.17–100 0.1–100

SH MAXENT2 0.11–98 0.16–100 0.1–100 0.03–4 0.04–12 0.04–5 0.14–100 0.15–100 0.15–100

SH SPACING V 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100 0.01–100

on what range of i a particular estimator can reach over 90% accuracy. Estimators
have some variance in the results and thus on some intervals they fall below 90%
accuracy. The limits in the cells were chosen as follows: the lower limit designates
where an estimator reaches 90% or higher for the first time, and the upper limit
designates for which value of i it was observed for the last time. In between, most
of the time estimators remain above 90% or rarely fall below, but never below 80%
accuracy. An empty cell means that the corresponding estimator never resulted in
accuracy ≥90%.

As the results show, different noise levels do have an impact on the identifia-
bility performance of Resit. In general, the linear equation models are more fragile
than the non-linear ones. This is explained by the fact that the non-linear relation-
ships tend to break the symmetry between the variables easier, see [4]. The only
structural equation which always remains unidentifiable is Y = N + N , see [24].
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For all other cases, all estimators reach an accuracy of over 90% for some values of
i-factor. For example, all estimators perform perfectly when the noise level of the
X term is comparable to the noise level of the corresponding noise term (Ny), that
is i = 1. For other values of i, there are differences between linear and non-linear
equations. Generally, the accuracy for linear cases drops if i > 7. However, most
non-linear cases retain accuracy over 90% for much larger values of i-factor, even
up to 100. Similar results are observed for the decreasing i-factors.

We can also observe differences between estimators in terms of accuracy.
For example, HSIC is overall the best performing independence estimator while
HSIC IC and HSIC IC 2 perform the worst. SH SPACING V is the best per-
forming entropy estimator while SH MAXENT1 and SH MAXENT2 perform the
worst. Some estimators show better performance for particular structural causal
models, for example, SH SPACING V for Y = U + N ; others are particularly
unsuitable for some structural equations, for example, HSIC IC and HSIC IC2
for Y = N + U . For all non-linear equation models, SH SPACING V and the
three Shannon kNN estimators result in accuracy close to 100% for all values of
i. SH SPACING V also keeps its good performance in the case of linear equa-
tion models. As for independence measures, HSIC, DISTCOV, DISTCORR, and
HOEFFDING perform quite similarly and are good overall. Note again, that these
results are based on the assumption that in our bivariate structure only one direc-
tion of the causal relationship is present, namely X → Y . Without this assump-
tion, we cannot compare the estimates directly but rather need to compare the
estimate to a derived p-value given some significance level α.

5.2 Uncertainty Scoring

Figure 2 shows the results for the Uncertainty Scoring algorithm. Recall that for
these experiments we use only one estimator, the Fisher’s conditional indepen-
dence test. Therefore, we use different colors and styles of lines to encode structural
equation models. The colours of the lines correspond to the distribution type of the
noise variable Ny with the following coding: blue for Ny ∼ N , green for Ny ∼ U ,
and red for Ny ∼ L. The type of the lines encodes the distribution type of the
cause X as follows: solid line for X ∼ N , dashed line for X ∼ U , and dotted line
for X ∼ L. As in the previous experiment, the x-axis shows the values of i-factor
and the y-axis shows the accuracy of causal identification. However, the results
should be interpreted differently. The Uncertainty Scoring method generates a set
of parents for every variable. This set can be empty or can contain cause variables.
Therefore, only one structure of this result is correct and thus the y-axis of the
plots in Fig. 2 shows consistent identifiability at 1, and consistent unidentifiability
at 0.

We proceed to the analysis of the results. First, we can notice that the linear
Gaussian model Y = N + N is now identifiable, as it was demonstrated by the
authors of this method [17]. Interestingly, for this method, the linear cases perform
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better than the non-linear as opposed to Resit. Only the non-linear cases where the
cause X is drawn from the Uniform distribution U show the same performance as
the linear cases. This group of models demonstrates good identifiability for i < 1,
however the accuracy drops fast for i > 1. The reason for accuracy degradation lies
within step 2 of the method, the conditional independence test. If noise levels are
significantly different, then the independence test fails to capture the correlation
between the two nodes and therefore concludes that the nodes are independent
(Type II Error). However, for any given i, the ordering step always performs cor-
rectly10.

We can also notice that models with similar structures have similar perfor-
mance. For example, in Fig. 2b we can clearly identify 3 groups: 1) the group of
dashed lines representing models with X ∼ U show the best performance for i < 1
and the worst performance for i > 1; 2) the group of dotted lines corresponding to
models with X ∼ L demonstrate the worst accuracy for i < 1 and the best accu-
racy for i > 1; finally 3) the group of solid lines that represent the models with
X ∼ N lie in the middle. A similar observation was done for Resit as well, that
is the type of the distribution of the cause variable affects the accuracy of causal
discovery. If we analyze the linear cases from Fig. 2a in the same way, we can notice
that here the type of the distribution of the noise variable Ny probably has more
impact. Indeed, the lines overlap, but they are now grouped more by colors than by
line type. Again, we can observe 3 groups: 1) the group of green lines corresponding
to the models with Ny ∼ U show worse performance for i < 1 and better perfor-
mance for i > 1; 2) the group of red lines representing the models with Ny ∼ L
have better performance for i < 1 and worse accuracy for i > 1; 3) and the group
of blue lines corresponding to Ny ∼ N lies in between.

The results obtained for the Uncertainty Scoring method are summarized in
Table 3. Here, each row corresponds to a combination of distribution types. The
second and the third columns show the results for linear or non-linear models
respectively. The values inside the table are encoded in the same way as it was
done for Table 1; that is they show the ranges where the method has an accuracy
around or above 90%.

10 A quick test in python shell, with i = 57, X ∼ L and Ny ∼ U and 100 repetitions
showed that in these runs the ordering was always correct but only in 35 runs (from
the 100 repetitions) the independence tests were correct.
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(b) Nonlinear Cases

Fig. 2. Results of the Uncertainty Scoring algorithm. x-axis shows the values of i-factor
and y-axis shows the accuracy of causal identification.
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Table 3. Summary for uncertainty scoring. The numbers reflect the ranges of i-factor
that allow identifiability with accuracy around or above 90%.

Equation Linear Non-Linear

N + N 0.08–10 0.33–37

N + U 0.16–10 0.52–67

N + L 0.05–6 0.23–25

U + N 0.04–5 0.04–4

U + U 0.1–8 0.05–6

U + L 0.03–3 0.03–3

L + N 0.14–13 4–100

L + U 0.19–26 5–100

L + L 0.1–10 2–100

6 Conclusions

The results from the experiments showed that two analyzed causal discovery meth-
ods, Resit and Uncertainty Scoring, are affected by different noise scales. For sig-
nificantly small noise levels in the disturbance term Ny, or significantly high noise
levels, these causal discovery methods fail to capture the true causal relationship
of the given structural equation model. Recall that significantly here depends on
the model. For example, for some models, if the noise level was already twice larger
then the methods failed to determine the causal direction consistently. Other mod-
els remained identifiable with 100 times higher noise levels. The range of differ-
ent noise levels analyzed in this work is quite exhaustive and realistically speaking
having noise levels 100 times higher than the potential cause variable is very rare.
Additionally, with very high noise levels the effect of the cause variable is very likely
negligible anyways. However, the discovered relationships can be useful to guide
researchers in practical applications. We also observed different behavior for dif-
ferent distribution types (e.g., Gaussian or Uniform).

For both methods, we observed that if the variance of the noise term is smaller
than that of the cause, then models remained identifiable. The opposite relation-
ship is observed when the variance of the noise term is larger. For example, often
when the standard deviation of the noise term was only half of that of the cause,
the model was still identifiable. However, in several cases, if the standard devia-
tion of the noise term was already twice larger than the standard deviation of the
cause, then the model became unidentifiable. We also tested linear and non-linear
models and our results show that non-linear models were still identifiable in sit-
uations where the linear models are not. For example, some non-linear models,
where the noise term’s variance was 100 times higher than that of the cause, were
still perfectly identifiable while their linear counterparts were not.

Lastly, for Resit we used several estimators: 6 independence estimators and
6 entropy estimators. Our results show differences in terms of performance



136 B. Kap et al.

depending on which estimator is used. We observed that Hilbert-Schmidt Inde-
pendence Criterion with RBF Kernel was the best independence estimator, and
Shannon entropy estimator using Vasicek’s spacing method was the best entropy
estimator.

In our experiments, we tested only two particular methods and three differ-
ent distribution types. However, similar results are expected for other methods of
causal discovery with additive noise models, as their common failing point lies in
the independence estimation.

Future Work. In reality, observed data does not always strictly follow a certain
distribution type. As there are many different possible combinations, it would be
interesting to generalize the impact of different noise levels on any distribution by
using the different properties an observed distribution exhibits. Furthermore, this
work does not formalize mathematically the effect of different noise levels in ANM
causal discovery methods. This could be done in future work.

Acknowledgments. This work was partially supported by the European Union Hori-
zon 2020 research programme within the project CITIES2030 “Co-creating resilient and
sustainable food towards FOOD2030”, grant 101000640.

Appendix

Detailed Description of Estimators

1. HSIC: Hilbert-Schmidt Independence Criterion with RBF Kernel11

IHSIC(x, y) := ||Cxy||2HS

where Cxy is the cross-covariance operator and HS the squared Hilbert-
Schmidt norm.

2. HSIC IC: Hilbert-Schmidt Independence Criterion using incom-
plete Cholesky decomposition (low rank decomposition of the Gram matrices,
which permits an accurate approximation to HSIC as long as the kernel has a
fast decaying spectrum) which has η = 1 ∗ 10−6 precision in the incomplete
cholesky decomposition.

3. HSIC IC2: Same as HSIC IC but with η = 1 ∗ 10−2.
4. DISTCOV: Distance covariance estimator using pairwise distances. This is

simply the L2
w norm of the characteristic functions ϕ12 and ϕ1ϕ2 of input x, y:

ϕ12(u1,u2) = E[ei〈u1,x〉+i〈u2,y〉],

ϕ1(u1) = E[ei〈u1,x〉],

ϕ2(u2) = E[ei〈u2,y〉].

With i =
√−1, 〈·, ·〉 the standard Euclidean inner product and E the expec-

tation. Finally, we have:

IdCov(x, y) = ||ϕ12 − ϕ1ϕ2||L2
w

11 Source: https://github.com/amber0309/HSIC.

https://github.com/amber0309/HSIC


Effect of Noise Level on Causal Discovery 137

5. DISTCORR: Distance correlation estimator using pairwise distances. It is
simply the standardized version of the distance covariance:

IdCor(x, y) =

{ IdCov(x,y)√
IdV ar(x,x)IdV ar(y,y)

, if IdV ar(x, x)IdV ar(y, y) > 0

0, otherwise,

with

IdV ar(x, x) = ||ϕ11 − ϕ1ϕ1||L2
w
, IdV ar(y, y) = ||ϕ22 − ϕ2ϕ2||L2

w

(see characteristic functions under 4. DISTCOV)
6. HOEFFDING: Hoeffding’s Phi

IΦ(x, y) = IΦ(C) =

(
h2(d)

∫
[0,1]d

[C(u) − Π(u)]2du

) 1
2

with C standing for the copula of the input and Π standing for the product
copula.

7. SH KNN: Shannon differential entropy estimator using kNNs (k-nearest
neighbors)

H(Y 1:T ) = log(T − 1) − ψ(k) + log(Vd) +
d

T

T∑
t=1

log(ρk(t))

with T standing for the number of samples, ρk(t) - the Euclidean distance of
the kth nearest neighbour of yt in the sample Y 1:T \{yt} and V ⊆ R

d a finite
set.

8. SH KNN 2: Same as SH KNN but using kd-tree for quick nearest-neighbour
lookup

9. SH KNN 3: Same as SH KNN but with k = 5
10. SH MAXENT1: Maximum entropy distribution-based Shannon entropy

estimator

H(Y 1:T ) = H(n) −
⎡

⎣k1

(
1

T

T∑

t=1

G1(y
′
t)

)2

+ k2

(
1

T

T∑

t=1

G2(y
′
t) −

√
2

π

)2
⎤

⎦ + log(σ̂),

with

σ̂ = σ̂(Y 1:T ) =

√√√√ 1
T − 1

T∑
t=1

(yt)2,

y′
t =

yt

σ̂
, (t = 1, . . . , T )

G1(z) = ze
−z2
2 ,

G2(z) = |z|,



138 B. Kap et al.

k1 =
36

8
√

3 − 9
,

k2 =
1

2 − 6
π

,

11. SH MAXENT2: Maximum entropy distribution-based Shannon entropy
estimator, same as SH MAXENT1 with the following changes:

G2(z) = e
−z2
2 ,

k2 =
24

16
√

3 − 27
,

12. SH SPACING V: Shannon entropy estimator using Vasicek’s spacing
method.

H(Y 1:T ) =
1
T

T∑
t

= log

(
T

2m
[y(t+m) − y(t−m)]

)

with T number of samples, the convention that y(t) := y(1) if t − m < 1 and
y(t) := y(T ) if t + m > T and m = �√T �.
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A Bayesian Framework for Evaluating
Evolutionary Art

Augustijn de Boer(B) , Ron Hommelsheim , and David Leeftink

Radboud University Nijmegen, Nijmegen, The Netherlands

Abstract. Recent advances in computer-generated art (CGA) have led
to a diverse state of generative art models, however, how to evaluate the
works produced by these methods remains an open question, due to the
subjective nature of the domain. In this work, we propose a framework
for evaluating evolutionary art using a Bayesian approach.

The framework provides a method to analyse the results of a num-
ber of ‘art Turing tests’ (ATTs) with a Bayesian model comparison, to
assess the influence the evolutionary process has on the degree to which
computer-generated images are distinguishable from human generated
images.

The cases where the human- and computer-generated art can and
can not be distinguished are represented by the null hypothesis and
the alternative hypothesis, respectively. We demonstrate the framework
using Interactive Evolutionary Computation (IEC) to evolve images with
a function-tree representation. These images are then used in an ATT
in which n = 11 subjects participated. The results indicate a weak
preference for the alternative hypothesis, showing that the human- and
computer-generated images can not reliably be distinguished. We sketch
future applications of the framework, such as evolving cellular automata
or combining the framework with deep learning approaches to CGA. The
framework is available as an open-source code base, and can be used by
researchers and practitioners interested in evaluating their methods for
generating evolutionary artworks.

Keywords: Computational creativity · Evolutionary computation ·
Interactive AI methods and applications · Bayesian statistics · Genetic
programming

1 Introduction

Since the infancy of computers, mathematicians, programmers and eventually
artists have been intrigued by the new ways in which art could be created. Cel-
lular automata have been used to either create or modify images [11], many
different types of fractals can be generated by computers easily [24], develop-
ments in deep learning in the last decade has allowed artists to create art, e.g.,
by using style transfer [10] and Generative Adversarial Networks [9], genetic
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algorithms can be utilized to create art by the iterative process of “survival of
the fittest” [21], and the list goes on.

Here, we will focus on applying Evolutionary Algorithms for generating art.
Evolutionary Algorithms are loosely inspired by the Darwinian theory of evolu-
tion by natural selection, which despite of its relative simplicity, describes all life
in its enormous complexity. The fittest individuals of a population reproduce
often, passing on their genes. The genes mutate and recombine, subsequently
producing new individuals. This process has been abstracted and modified many
times to solve problems such as parameter estimation or agent-based modeling.
It has also been simulated to better understand the actual biological mechanism
[18]. Furthermore, the generation of art by EAs has been explored by many
artists and researchers alike in a variety of different approaches, this is com-
monly called Evolutionary Art (EArt) [21].

Section 2 provides a short introduction into evolutionary art, and the way it is
currently evaluated. In Sect. 3, we propose a framework for evaluating EArt using
a Bayesian approach. In Sect. 4 we demonstrate this framework by applying it to
a specific case, in which a weak preference for the alternative hypothesis is found.
We briefly discuss these results in Sect. 4.3. The results of a short questionnaire
about the experience of working with the framework are discussed in Sect. 5, and
we sketch future directions and applications in Sect. 7.

2 Background

Loosely inspired by Darwinian evolutionary systems, Evolutionary Algorithms
(EAs) can be broken down to a few essential components [2,12]: an initialization
procedure; a fitness function; a selection procedure; a crossover procedure; and
a mutation procedure.

The EA cycle starts by initializing a population of individuals. These individ-
uals are all evaluated using the fitness function, after which a number of them is
selected. That selection of individuals is then crossed over and mutated to form
a new population. This is repeated until some termination criterion is met.

Because the fitness function that is used is unrestricted, EAs allow human
feedback as well as computer feedback to be used for evolution. When human
feedback is used as a fitness function in EAs, we call this Interactive Evolutionary
Computation (IEC). The dependency of the IEC framework on human evaluation
as a fitness function is considered one of its core strengths. Nonetheless, the
amount of control a user has over the process is still very limited; the selection,
crossover, and mutation procedures are governed by pseudo-randomness.

2.1 Evaluating Computer-Generated Art

The Turing test (TT) can be used to assess whether a computer is capable
of exhibiting (human) intelligent behavior [22,23]. In the TT, a subject has to
distinguish a human from a computer by only communicating to them through a
text channel. If the computer is indistinguishable from the human, it passes the
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Turing test. Following that line of thought, to assess whether a system is creative,
one could devise a Turing test specifically for art, or an ‘Art Turing test’ (ATT),
as introduced by Boden [3]. In an ATT, a subject has to evaluate two pieces of
art, one created by a computer, and one created by a human, and decide which
one of them was created by a human. This way of evaluating art may seem fair
at first, but Pease et al. [19] pose some objections. Mainly, their point is that
the ATT does not allow the subject to interact with the art, as opposed to the
classical TT, where the subject can interact with the human and the computer.
Much information about the art that could influence the subject can not be taken
into account this way. Similarly, the ATT does not take into account framing
information. Another argument they pose is that the ATT encourages imitation,
and not creativity. Lamb et al. [16] do acknowledge that the ATT is only valid
in those cases where the CGA is specifically designed to imitate human art. In
this paper we use an ATT to compare CGA and human art that were both made
with the same method, thereby satisfying the constraints set by Lamb et al. To
the best of our knowledge, we are the first to evaluate evolutionary art using the
methods described here.

3 The Bayesian Framework

We propose to evaluate evolutionary art by doing a Bayesian Model Comparison
(BMC) on results from an art Turing test. Here we provide an explanation of
the framework and the methods used, as well as a.

3.1 Art Turing Test

We use an ATT to determine whether the evolutionary process has an influence
on the degree to which the human generated images can be distinguished from
computer-generated images by humans. To this end, three pools of images need
to be generated by EAs.

– One pool is generated by letting a human act as a fitness function for multiple
sessions of 10 generations. After the 10th generation, all images in the popu-
lation are added to the pool of so-called ‘human-generated’ images. Note that
although these images are called ‘human-generated’, the influence the human
has on the generative process is limited. Images from this pool are indicated
with h10.

– One pool of computer generated images is created in the same way, but instead
of using the human evaluation, we use an automatic fitness function. Images
from this pool are indicated with c10.

– The other pool of computer-generated images is created from purely random
initial trees, i.e., they are evolved to generation 1. Images from this pool are
indicated with c1.
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During the ATT, the user is to decide which of two presented images is human-
generated. The pair of presented images can be one of two possible combina-
tions, either a (h10, c10) pair, or a (h10, c1) pair, both being equally likely. The
subject does not know which is being presented, and is not aware that this differ-
ence between the cases exists. Naturally, the images within a pair are randomly
ordered when they are presented to the user.

3.2 Bayesian Model Comparison

Null Hypothesis H0. The probability with which a participant answers cor-
rectly on the Turing test is fixed and does not depend on whether the decision
was on a (h10, c1) pair or a (h10, c10) pair. We let zi be 1 if the answer on the
i’th Turing test was correct, and 0 if it was incorrect. We can express this in a
graphical model M0, as shown in Fig. 1:

Fig. 1. Graphical model M0 for H0

Fig. 2. Graphical model M1 for H1

Alternative Hypothesis H1. The probability with which a participant answers
correctly on the Turing test depends on whether the decision was on a (h10, c1)
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pair or (h10, c10) pair. The graphical model corresponding to this hypothesis can
be found in Fig. 2. The variables θ1 and θ2 are used for each of the two possible
pairs of images. In this graphical representation, if the i′th decision was made
on a (h10, cj) pair, we indicate that with gi = j.

The Bayes Factor. The Bayes Factor (BF) was used as a measure to compare
models M0 and M1. The BF is the ratio of the marginal likelihoods of the two
models: B10 = p(Z|M1)

p(Z|M0)
. To estimate the BF one can construct an hierarchi-

cal Bayesian model in which the selection for model M0 or M1 is part of the
sampling process, and governed by a categorical distribution. The ratio of the
frequency that each model was selected can be used as an estimate for the BF.
The BF acquired this way is then interpreted according to, for example, Kass
et al. [13]. Furthermore, the variable δ expresses the difference between the two
cases in M1, in terms of how easy it was to distinguish the h10 images from the
c1 or c10 images.

4 Application

In this section we will apply our framework to a case where images are evolved
by Genetic Programming. First we will provide an explanation of Genetic Pro-
gramming and the type of representation that was used, then we discuss the
fitness function that we propose to generate art by mimicking human evalua-
tion. Lastly, we will analyze the results of the ATTs and briefly discuss those
results.

4.1 Tree Representation

A Genetic Algorithm (GA) is a type of EA where a distinction is made between
the genotype and phenotype of an individual [12]. The genotype represents the
underlying structure by which a potential solution is represented. Commonly
used representations for the genotype are character strings, trees, or real-valued
vectors. The phenotype represents the physical traits of individuals. This distinc-
tion is central to the field of evolutionary computation, as it allows for dynamical
change of the population via cross-over and mutation between genotypes of the
population members. Genetic Programming (GP) [15] is a specific type of GA
where the phenotype is a computer program, or—as in our demonstration—a
mathematical function.

Whereas EAs such as GA and Evolution Strategies (ES) commonly use linear
structures (such as bit strings and real-valued vectors) for the genotype, one
can alternatively construct a non-linear genotype using a tree representation
[1,12]. In this demonstration, the genotype is a tree representation (TR), and
the phenotype is a mathematical function, which is applied to a grid of pixels to
generate an RGB image. Here one could say that the generated image is a plot
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of the phenotype, or that the image is the phenotype itself. A TR is a recursive
structure consisting of terminal and non-terminal nodes. Terminal nodes are
either variables or constants, whereas non-terminal nodes are n-ary functions.

Crossover between two trees happens with probability pc, by exchanging
a random node in the first tree with a random node in the second tree. The
children of the exchanged nodes are also moved to the other tree, so we call
it a transplantation. Mutation in trees normally happens with probability pm,
by randomly changing the function of a function node, or replacing a leaf node
with a new structure. We found that we already achieved pleasing results without
mutation, and in literature it is stated that very low mutation rates are suitable
for trees [14], so we decided to not apply mutation. In our tree evolution runs,
we always set pm to 0.

We experimented with several versions of tree representations to create RGB
images. Our first representation maps every point in a 2D grid to a single numeric
value, and then maps each numeric value to a RGB value using a color gradient.
Our second representation creates a separate tree for each 2D color channel, and
normalizes each layer separately to lay within the correct interval [0, 255]. These
layers are then stacked to create an RGB image. Our third representation is a
single tree which can map 3D coordinates to a numeric value. Like the second
version, the color channels are normalized individually.

Fig. 3. Examples of tree representation-based images from c10

An excellent illustrated overview of the crossover and mutation methods in these
tree representations can be found on Ashley Mills’ website [1].

4.2 The Mathematical Fitness Function

In this section we present ideas that went into designing the fitness function
that the computer uses to evaluate the images will be presented. We hypothe-
sise that if presented with a small population—say a population consisting of 9
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individuals—a person would evaluate the individuals by the characteristics that
make them stand out from the other individuals in the population. Following this
line of thought, one could define a human-inspired mathematical fitness function
F for an individual p, as the mean distance of individual p to each of the other
individuals in the population P :

FD(p) =
1

|P | − 1

∑

p′∈P,p′ �=p

D(p, p′) (1)

Any distance metric can be used, for example the Euclidean distance. Using the
Euclidean distance does not yield very interesting images, however. Suppose in a
population we have one entirely white image, and one entirely black image. The
Euclidean distance if evaluated in the RGB space is maximized, since the RGB
components of white are (255, 255, 255) and the RGB components of black are
(0, 0, 0). As a result, these images will be assigned a high fitness, even though
they are (subjectively) very uninteresting. A more interesting approach would
be to use the variance of the difference of the pixel values as a distance function.
Using the example of the entirely white and entirely black image again, the
distance between these two images will now be 0; the difference between every
pair of white and black pixels is the same. This approach yielded more interesting
images, see Eq. 2.

DVar(p, p′) = Var(p − p′) (2)

The pool of c10 individuals used in the experiment was evolved using the function
described in Eq. 1 with the distance measure from Eq. 2 as a fitness function. The
pool of c1 individuals was generated by simply randomly initializing trees. The
pool of h10 individuals was evolved by letting a human act as the fitness function
by rating the images produced by them. Starting from the root node, working
downward, each node is uniformly sampled from either the binary or unary func-
tions, or the leaf nodes. Within each category, the specific selection is again sam-
pled uniformly from {+,−,×,÷,power,min,max}, {sin, cos, tan, abs,√ }, and
{x, y, z, 0.618}, respectively.

4.3 Results and Analysis

The h10 pool used here was generated by the authors, who do not have a formal
art education. The experiment was done with n = 11 participants, each of which
performed 20 ATTs, resulting in 220 binary (correct/incorrect) results. The age
of the participants ranged between 20 and 27, and none of them had a formal art
education. The average interaction time per participant was around 15 minutes.
Of the 220 ATTs, 97 were answered correctly, about 44%. The results of the
ATTs on the sub-classes are listed in Table 1.
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Table 1. Results of the ATTs

All c1 c10

Total 220 94 126

# Correct 97 38 59

% Correct 44% 40% 47%

Table 2. Relative sampling fre-
quencies fs for each model

Model rank fs

M0 1 0.468

M1 0 0.532

(a) θ, governing M0, was esti-
mated to have a mode below 0.5.

(b) θ1 was estimated to have a
lower mode than θ2.

Fig. 4. Density estimates

After running two Markov chains of 5000
samples for each model, our samplers over the
model parameters converged nicely to some
interesting distributions, which can be seen in
Fig. 4. It is interesting to see that θ1 peaks at a
lower value than θ2. This seems to imply that
participants have a lower chance of answering
the ATT correctly if the computer generated
image is completely random, and not evolved
using the automatic fitness function.

It would be premature to say that the
use of the automatic fitness function actually
makes the art look less human-like, but that
is what the numbers seem to indicate. Still,
the peak of θ2 is also lower than 0.5, meaning
that the human-generated images are often
correctly identified.

Model M0 was sampled in 46.8% of the
cases during the BMC. Model M1 was sam-
pled in the remaining 53.2% of the cases (see
Table 2), resulting in an estimated Bayes fac-
tor of 1.14. According to Kass et al. [13], this
is weak support for the alternative hypothesis.

Although the BMC showed weak prefer-
ence for the alternative hypothesis, there is too little evidence to reject H0. We
can not conclude that images generated by function trees evolved using the auto-
matic fitness function are perceived as more human-like than images generated
by random function trees. However, the number of participants in our experi-
ment was small, and with more participants it may be possible to give a more
conclusive answer.

5 Questionnaire

All participants were asked to fill in a questionnaire after interacting with the
evolutionary framework through the GUI. The questions and the results of that
questionnaire are listed in Table 3.

The quality and responsiveness of the evolutionary process is rated positively
in general, but indicate that there is still room for improvements. Question 4
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Table 3. Results of the questionnaire, entries are counts

Strongly
disagree

Strongly
agree

1.I enjoyed the process of making images
interactively. 0 0 1 1 2 3 4

2.I have the feeling that the image is improving with
increasing number of iterations. 0 0 1 3 2 1 4

3.I feel that I have control over the evolution of the
images. 0 1 0 3 3 2 2

4.The generated images were surprising to me.
0 1 0 2 2 3 3

5.I find the generated images pleasant.
0 1 0 2 4 3 1

6.I want to know how the underlying mechanism
works. 0 1 1 0 3 0 6

addresses the extent to which participants felt control over the evolution of the
art, which resulted in a mode of 4 and 5, a median of 5 and a mean of 5. This
was a positive outcome, with one outlier on the lower end. Question 5 covers the
degree of surprise of the images, and was perceived positively with a mode of 6
and 7, a median of 6 and a mean of 5.36. Again, we find one low outlier with a
rating of 2. Lastly, question 6 addresses the degree to which participants found
the images pleasant. The results indicate a mode of 5, a median of 5 and a mean
of 5.55. Again, we find one negative outlier at 2.

Based on the questionnaire results, we conclude that the IEC framework is
perceived very positively. Participants generally enjoy the process of creating
images and are curious about the underlying mechanisms. Furthermore, partic-
ipants notice the improvement of images as a function of generations. The results
also indicate room for improvement when it comes to the quality of the gener-
ated art. In particular, participants showed lower scores for control over the gen-
erated art. We hypothesize that this is related to the relative small population size
(a population size of 9 is used at each iteration), which can make the process sus-
ceptible to losing the fittest individuals in the population due to the stochasticity
of the crossover function. Lastly, we conclude that even though the tool is generally
highly perceived, outliers exist, which indicates that there are strong differences
between participants in how the application was used and perceived.

6 Code Base

A primary result of this project is an open-source code base written in Python
which includes many variations of the basic components of evolutionary algo-
rithms listed in Sect. 1, and which can be easily extended to include more. This
Python code also includes a GUI that allows the user to perform the interactive
evolution, and to perform the ATTs required for the proposed framework. The
project can be found on GitHub [4].
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7 Discussion

The demonstration of the ATT using a function-tree representation showed that
participants scored worse than chance, meaning computer generated art could
not reliably be distinguished from human generated art created with the IEC
framework. We hypothesize that this could be caused by the lack of control of
the creative process that is given to participants while using the function-tree
representations. This is in line with the questionnaire results, which highlight
that the evolved images using function-tree representations were generally per-
ceived well by the participants, but the control over the evolutionary process
can still be improved. We hypothesize that the choice of selection strategy can
be of influence on this: by using roulette-wheel selection, individuals with high
ratings are likely to stay in the population. This however also quickly filters out
images with low ratings, causing the process to converge faster than desired. In
contrast, different selection mechanisms such as tournament selection can cause
good solutions to disappear despite high ratings, but retains solutions with low
ratings better than roulette-wheel selection.

We propose several directions for future research, which may provide further
improvements to the statistical framework, and the code base.

First, we believe that the use of different selection mechanisms such as steady
state selection [20] and Boltzmann selection [17], or techniques like elitism [12]
may improve the control of participants over the evolutionary process.

Second, the set of functions that are used to construct the function-tree can
be extended. Since these directly influence the images, this can have a significant
effect on their ratings. Moreover, extensions to our work could include different
representations. We ourselves have experimented representing individuals as Cel-
lular Automata (CA), such as in Conway’s “Game of Life” [8]. We extended these
CAs by generalizing the discrete states to intervals and the discrete time domain
to acceleration, such as in Chan’s “Lenia” [6,7]. Results of both representations
can be seen in Fig. 5a and 5b, respectively.

(a) (b)

Fig. 5. (a) Cellular automaton, (b) Multi-neighborhood cellular automaton.

Third, the presented framework is readily extendable to be applied to dif-
ferent types of evolutionary art representations, such as representations based
on deep learning. For example, Bontrager et al. (2018) [5] combine Generative
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Adversarial Networks (GANs) and IEC to evolve images. Applying different rep-
resentations of artworks in the presented framework is a promising direction of
future research.

Fourth, the many potential uses of the framework can be exploited; for
instance, one could study the influence of the evolutionary process on the per-
ceived creativity of the process underlying the art generation with a finer gran-
ularity than was done here. In our demonstration, we generated pools of c1 and
c10 images, but one could easily extend that to include cn images, and compare
the influence of the generation depth on the Bayes Factor. Additionally, one
could use the framework as a competition between several types of evolutionary
art. Lastly, the ATT could be interpreted more freely, and instead of asking the
subject which of the presented images was perceived to be more likely to be
generated by a human, one could ask the subject simply which of the images
he/she liked more. In a world where computer-generated art is ubiquitous, a
flexible statistical framework like this may prove a valuable tool.

The questionnaire results showed that the application was found very enjoy-
able and quite intuitive, which is why we believe extending the framework and
the code base is a venture worth pursuing.

8 Conclusion

Art is subjective. Nonetheless, complex and often interesting patterns can emerge
using the techniques of algorithmic evolution. Utilizing the input of users in an
Art Turing Test, we frame the task of evaluating generated art as the degree
to which computer generated art can be distinguished from human generated
art. Using a Bayesian model comparison, we created a framework for inferring
whether the difference in degree of distinguishability is significant. The proposed
automated fitness function scored worse than non-evolved function-trees in the
ATT, although the results are inconclusive. We conclude that this means the
method can be further improved to provide more control over the evolutionary
process of generating images. We provide a framework for IEC using function-
tree and CA representations, which allow the user to provide feedback on the
generated individuals. The framework is open source and easily extendable to
different representations, allowing for researchers and practitioners to adopt it
efficiently. Results from an experiment show that the method is well-perceived
in general, however improvements can still be made to the representations.
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Abstract. The Dutch Ministry of Social Affairs and Employment has
to regularly explore the content of labour agreements. Studies on top-
ics such as diversity and work flexibility are conducted on the regular
basis by means of specialised questionnaires. We show that a relatively
small domain-specific dataset allows to train the state-of-the-art extrac-
tive question answering (QA) system to answer these questions automat-
ically. This paper introduces the new dataset, Dutch SQuAD, obtained
by machine translating the original SQuAD v2.0 dataset from English to
Dutch (made publicly available on https://gitlab.com/niels.rouws/dutch-
squad-v2.0). Our results demonstrate that it allows us to improve domain
adaptation for QA models by pre-training these models first on this gen-
eral domain machine-translated dataset. In our experiments, we compare
fine-tuning the pre-trained Dutch versus multilingual language models:
BERTje, RobBERT, and mBERT. Our results demonstrate that domain
adaptation of the QA models that were first trained on a general-domain
machine-translated QA dataset to the Dutch labour agreement dataset
outperforms the models that were directly fine-tuned on the in-domain
documents. We also compare several ensemble learning techniques and
show how they allow to achieve additional performance gain on this task.
A new approach of string-based voting is introduced and we showed that
it performs on par with a previously proposed approach.

Keywords: Extractive question answering · Domain adaptation ·
Dutch

1 Introduction

The state of the art in natural language processing (NLP) field has progressed
since the introduction of Transformer-based models [25]. BERT [7], one of these
models, has become a baseline on numerous benchmarks due to its performance
on them [22]. While language models pre-trained on English corpora are common,
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other languages have fewer available resources. Devlin et al. [7] have trained a mul-
tilingual BERT model (mBERT) on 104 languages and monolingual BERT mod-
els for non-English languages are being investigated, like BERTje [5] for Dutch, for
example. The main advantage of these pre-trained language models is that they
can be applied to multiple downstream tasks, including question answering (QA).

The department Cao Onderzoek en Beleidsinformatie (COB) of the Dutch
Ministry of Social Affairs and Employment regularly investigates the contents of
labour agreements to evaluate existing policies or devise new ones [23]. About
30 research studies are conducted each year by the COB, and every study may
include up to 80 questions to be answered for each unique labour agreement.
Part of these investigations is extracting answers based on the contents of these
labour agreements, which can be automated using a QA system. For this pur-
pose, a small curated dataset composed of roughly 250 training examples is
created, adopting the same format as SQuAD [20], with questions relevant to
these investigations and paragraphs extracted from roughly 100 labour agree-
ments containing the answers. The relevant paragraphs have been collected by
running a baseline model, a BERT model trained on SQuAD data, on textual
segments of labour agreements that have previously been identified as relevant
by domain experts. The final labour agreement dataset is composed of questions
regarding topics like diversity or work flexibility and relevant paragraphs from
each labour agreement to make up training examples. As labour agreements
are legal documents, the language used and overall document structure differ
from Wikipedia texts, which are often used as corpora for pre-training language
models and is also used to create the SQuAD dataset [20].

Similar datasets are created for the biomedical field, the COVID-QA dataset
[17] or BioASQ [24], for example, where Jeong et al. [10] or Poerner et al.
[19] apply transfer learning methods to increase performance on these datasets.
Another instance where transfer learning is applied is by Hazen et al. [8] that
train general domain QA models to an auto manual dataset with limited data.

This paper will compare the performance of three pre-trained language models
on extractive QA for Dutch labour agreements. Three models will be considered:
BERTje [5], RobBERT [6], and multilingual BERT (mBERT) [7]. These models
will be trained and compared on a general domain using a SQuAD v2.0 dataset
[21] which is machine translated into Dutch. The quality of the dataset will be
investigated, as well as the impact of further processing on overall performance.

Fine-tuning the trained models to the domain-specific labour agreement
(CAO) dataset and ensemble models will be other points of investigation. Models
are expected to benefit from training on a large general domain first before being
fine-tuned on the labour agreement dataset, a small domain-specific dataset.
Ensembles are expected to further improve performance. Furthermore, construct-
ing ensembles with models that excel in different types of queries will perform
better than ensembles made up of identical model types [2].

The main research question addressed in this paper is:

– How do pre-trained language models perform on extractive question answer-
ing for Dutch labour agreement by using fine-tuning?
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Table 1. Example question-answer pairs from SQuAD v2.0 [21] and the Dutch labour
agreement dataset. Question 1 is an answerable, or positive, example, answered by
the span of text in red. Question 2 on the other hand is an unanswerable, or negative,
example without a valid answer present in the reference text. Question 3 originates from
the labour agreement dataset, where the reference text commonly contains elements
structuring documents.

Article Normans

Reference text The English name “Normans” comes from the French words

Normans/Normanz, plural of Normant, modern French
normand, which is itself borrowed from Old Low Franconian
Nortmann “Northman” or directly from Old Norse Norðmaðr,
Latinized variously as Nortmannus, Normannus, or
Nordmannus (recorded in Medieval Latin, 9th century) to mean
“Norseman, Viking”

Question 1 When was the Latin version of the word Norman first recorded?

Answer 9th century

Question 2 When was the French version of the word Norman first recorded?

Answer No answer

Article Labour agreement

Reference 3.2 Arbeidsduur

text 3.2.1 Basisarbeidsduur
De basisarbeidsduur is gemiddeld 36 uur per week en 1872 uur
per jaar
3.2.2 Andere arbeidsduur
Je kunt met je leidinggevende een andere arbeidsduur afspreken.
De maximale arbeidsduur is gemiddeld 40 uur per week en
2080 uur per jaar. Je loopbaan mogelijkheden worden niet
belemmerd door een kortere arbeidsduur

Question 3 Wat is de referteperiode?

Answer per jaar

Fine-tuning the model from a machine translated general domain Dutch
SQuAD v2.0 to a specific domain makes it relevant to answer the sub-questions:

– What is the influence of language filtering on a machine translated Dutch
SQuAD v2.0?

– How does domain adapting QA models, trained on a general domain dataset
to a specific domain, using fine-tuning compare to directly fine-tuning models
on a specific domain?

Furthermore, the effectiveness of ensemble models in other applications raises
the question:

– What will be the influence of ensemble models on the performance of extrac-
tive QA on Dutch labour agreements?
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The contributions of this work include the evaluation of Dutch QA models
trained on both a general domain and small specific domain. A fine-tuning strat-
egy is employed which can act as an example for other Dutch QA applications
with specific target domains using only a limited amount of data. Furthermore,
an analysis and proposed filtering for a machine translated Dutch SQuAD v2.0
dataset is performed. The machine translated Dutch SQuAD v2.0 with addi-
tional language filtering is made publicly available1. This dataset can still be
improved upon to reduce noisy examples due to translation in order to create
better Dutch datasets for future studies on extractive QA and other downstream
tasks. Finally, Dutch pre-trained language models are compared on the down-
stream extractive QA task on this Dutch dataset both individually and ensemble
learning for small gains in exchange for more computational power.

2 Related Work

Training and evaluating Dutch QA systems with a lack of dedicated resources
has been investigated by Isotalo [9]. Experiments show that machine translating
datasets is a viable option to train Dutch QA systems on. Disadvantages of using
machine translated data include reducing linguistic richness of translated texts,
possibly resulting in easier examples. Similar works exist that study transfer
learning, or domain adaption, of BERT-based models to specific domains like
the COVID-QA dataset [17,19], biomedical QA [10], or QA on an automobile
manual domain [8].

Möller [17] has created a QA dataset with 2k examples related to COVID-19
annotated by experts of biomedical sciences. Answers are generally longer and
need to be extracted from longer reference texts compared to the general domain
SQuAD dataset [20]. A RoBERTa model [13] was fine-tuned on SQuAD and
evaluated on the COVID-QA dataset as baseline. EM and F1 scores were both
significantly improved on by training the fine-tuned model on the COVID-QA
dataset [17]. Poerner et al. [19] propose a CPU-only domain adaptation method
for pre-trained language models. This approach involves learning Word2Vec [16]
embeddings for text of the target domain, aligning them with the already existing
embeddings of the pre-trained language model and updating the embedding layer
together with a new tokenizer. A baseline BERT model trained of the SQuAD
dataset [20] was adapted using this approach and performs better than prior
being domain adapted.

Another example of domain adaptation of BERT models to the biomedical
field is the work of Jeong et al. [10]. They apply sequential transfer learning
to improve performance of models on biomedical QA. Jeong et al. [10] state
that fine-tuning models on both the SQuAD dataset [20] and BioASQ [24],
a biomedical QA dataset, produces better results than only training on the

1 https://gitlab.com/niels.rouws/dutch-squad-v2.0.

https://gitlab.com/niels.rouws/dutch-squad-v2.0
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BioASQ dataset. Furthermore, they show that fine-tuning BioBERT on natural
language inference (NLI), using the MultiNLI dataset [26], followed by training
on BioASQ outperforms the SQuAD approach. Additional experiments show
that the order of datasets used to fine-tune matters for longer chains fine-tuning
on both the MultiNLI and SQuAD datasets prior to BioASQ.

Hazen et al. [8] investigate domain adaptation to apply QA in new specific
domains like an automobile manual. Their standard approach to transfer a QA
model to this domain is to use general domain datasets like SQuAD [20] as
starting points and training for 2 epochs to the auto manual domain. With
limited data, around 200 examples were shown great performance increase on
the specific domain and shows that models trained on large amounts of general
data can be transfer learned with limited data of a specific domain [8].

This work will be using a machine translated Dutch SQuAD v2.0 dataset
as a general domain dataset in order to adapt the domain to a legal domain
using limited data extracted from labour agreements. Machine translating exist-
ing English datasets into other languages is a strategy employed by others, for
instance, translating SQuAD to Spanish [4], Korean [12], or Persian [1].

3 Datasets

The models are fine-tuned and compared on two Dutch QA datasets. A large
general domain machine translated Dutch SQuAD dataset and a small domain
specific curated dataset composed of Dutch labour agreements.

3.1 Dutch SQuAD v2.0

Dutch SQuAD v2.0 is a machine translated, using the Google Translate API,
version of the original SQuAD v2.0 [21] by Borzymowski [3]2. Direct translations
of the answers were used to find the start tokens in the translated reference text.
Question-answer pairs were lost in translation if the translated answer is not
present in the translated context [3]. Due to this, around 31 thousand question-
answer pairs were removed in the training set of the translated version.

Despite these processing steps, noisy examples remain in the dataset con-
taining foreign words, for example, see Table 2. Examples are either partially
translated or contain large pieces of non-Dutch languages.

In order to further reduce noise in the translated dataset, language identifica-
tion [15] is employed to remove noisy non-Dutch examples using Pythons langid
module3. An example was removed if either the question or the reference text
was classified as non-Dutch.

2 https://github.com/borhenryk/train custom qa model.
3 https://github.com/saffsd/langid.py.

https://github.com/borhenryk/train_custom_qa_model
https://github.com/saffsd/langid.py
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Table 2. Examples of contexts in the Dutch SQuAD v2.0 dataset removed using
language identification.

Example 1: After the Peace of Westphalia, several border territories were
assigned to the United Provinces. They were federally-governed
Generality Lands (Generaliteitslanden). They were Staats-Brabant
(present North Brabant), Staats-Vlaanderen (present
Zeeuws-Vlaanderen), Staats-Limburg (around Maastricht) and
Staats-Oppergelre (around Venlo, after 1715)

Example 2: New Delhi is de thuisbasis van Indira Gandhi Memorial Museum,
National Gallery of Modern Art, National Museum of Natural
History, National Rail Museum, National Handicrafts and
Handlooms Museum, National Philatelic Museum, Nehru
Planetarium, Shankar’s International Dolls Museum. en Supreme
Court of India Museum

Figure 1 shows the language distributions of both questions and answers in
the Dutch SQuAD v2.0 training set. Answers are predominantly classified as
English followed by Dutch and German, unlike the reference texts and questions
that are predominantly Dutch. Out of 18.6k contexts, only 31 cases were clas-
sified as non-Dutch in the training set and 3 in the development set, two cases
are shown in Table 2.

Fig. 1. Language distribution for questions and answers of the Dutch SQuAD v2.0
dataset. All languages are shown that exceed the threshold value t = 100.

The exact distribution of example types per dataset are shown in Table 3.
Positive examples decrease each iteration, while the number of articles remains
constant. The amount of negative examples only decline at the last iteration
when they belong to non-Dutch questions or contexts. As a result of both trans-
lating and filtering, the proportion of positive to negative examples has shifted
towards more negatives per positive example compared to the original SQuAD
v2.0.
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Table 3. Dataset statistics of SQuAD v2.0 [21], a Dutch SQuAD v2.0, a Dutch SQuAD
v2.0 with additional language filtering (LF), and labour agreement dataset.

English Dutch Dutch Labour

SQuAD v2.0 SQuAD v2.0 SQuAD v2.0 (LF) agreements

Train

Total examples 130,319 99,265 95,054 241

Positive examples 86,821 55,767 53,376 165

Negative examples 43,498 43,498 41,768 76

Development

Total examples 11,873 9,669 9,294 103

Positive examples 5,928 3,724 3,588 71

Negative examples 5,945 5,945 5,706 32

3.2 Labour Agreement Dataset

The labour agreement (CAO) dataset is a domain-specific dataset with almost
250 training examples collected from close to 100 labour agreements of Dutch
businesses. Question-answer pairs were collected and curated in cooperation with
experts from the Dutch Ministry of Social Affairs and Employment. Labour
agreements are legally binding contracts, which is reflected in the language used
in both questions and reference texts, which are relatively short compared to the
SQuAD v2.0 dataset [21]. Negative examples are composed of rejected combi-
nations of questions and reference texts. They are added to have slightly more
than two positive examples per negative example, as is the case in the training
set of SQuAD v2.0.

4 Approach

The different model configurations and training policies will be described that
were applied to BERTje [5], RobBERT [6], and mBERT [7] in order to make
meaningful comparisons.

4.1 Fine-Tuning

Initially, the three models were trained on both the unfiltered Dutch SQuAD v2.0
dataset and the language filtered Dutch SQuAD v2.0 dataset to test whether
an mBERT would have an advantage due to translation errors. The fine-tuning
strategy for all experiments consist of training the models for 2 epochs with a
learning rate of 5e−5, batch size of 8 and AdamW [14] with ε = 1e−8. The
pre-trained models were acquired from the Hugging Face model database4,5,6

4 https://huggingface.co/GroNLP/bert-base-dutch-cased.
5 https://huggingface.co/pdelobelle/robbert-v2-dutch-base.
6 https://huggingface.co/bert-base-multilingual-cased.

https://huggingface.co/GroNLP/bert-base-dutch-cased
https://huggingface.co/pdelobelle/robbert-v2-dutch-base
https://huggingface.co/bert-base-multilingual-cased
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and used as starting points for baseline models on the CAO dataset, and the
models trained on the SQuAD datasets for testing whether filtering the dataset
would improve the results of the monolingual models relative to the multilingual
model. The models fine-tuned on the filtered Dutch SQuAD v2.0 dataset are
subsequently fine-tuned for another 2 epochs on the CAO dataset and compared
to the baselines.

4.2 Voted BERT

In order to boost performance on the CAO dataset, two ensemble approaches
utilizing voting mechanisms have been implemented.

The first approach votes based on the sub-strings enclosed by the output
answer spans of models. Voting for the second approach, on the other hand,
relies on the output scores produced by the dot product of token scores with the
start and end vectors. Score voting is applied to ensemble identical models and
string voting to combine mixed model types due to the different tokenizers and
vocabularies of different models.

Score-Based Voting. A model fine-tuned on the filtered Dutch SQuAD v2.0
dataset is copied K times. Each model k is independently fine-tuned, following
the general strategy, on the CAO dataset with a unique seed. At evaluation
time, the models are combined into an ensemble that makes prediction based
on the output scores of the K models. The output of a single model k is a start
vector sk and an end vector ek of size l which is the maximum sequence length.
s and e contain the logits that denote the probability of tokens in the input
sequence being the start and end symbols of an answer. These probabilities are
summed and normalized by K to produce the start and end vector representing
the prediction of the ensemble [27]. If BERT(x; θn) denotes the tuple 〈sk, ek〉
predicted by a BERT model with parameters θk from the input x, this ensemble
can be formulated as:

BERTV OTE(x;Θ) =
1
K

K∑

k=1

BERT(x; θk) (1)

String-Based Voting. The other voted BERT approach is implemented by
voting using an algorithm comparing the output strings in order to mix different
BERT models. As for the score-based approach K models are fine-tuned on the
CAO dataset, they are, however, different model types. One model for each type
is fine-tuned and combined with the others at evaluation time. A naive variant of
the algorithm votes for the most occurring exactly matching output, or defaults
to the longest available prediction in the voting pool. The other version does
not require the outputs of individual models to match exactly. It calculates
the longest common sub-string7 for each unique combination and votes on the
longest prediction in the highest scoring combination.
7 https://www.geeksforgeeks.org/longest-common-substring-dp-29/.

https://www.geeksforgeeks.org/longest-common-substring-dp-29/
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5 Evaluation

A description of the pre-trained language models that have been experimented
on will be given in this section, in addition to the evaluation metrics used to
assess and compare them.

5.1 Models

The pre-trained language models used are comparable in parameters and archi-
tecture but vary in, for example, corpora and objectives during pre-training.

BERTje. BERTje [5] is a Dutch monolingual model comparable to BERTbase

with 12 layers and cased tokenization. It has a vocabulary of 30k tokens and is
pre-trained on 12 GB of corpora originating from Dutch books, TwNC, SoNaR-
500, Web news, and Wikipedia. It is pre-trained on two objectives: sentence
order prediction (SOP) and masked language modelling (MLM). For their MLM
objective, they mask consecutive word pieces that belong to the same word
instead of randomly masking single word pieces.

RobBERT. Another monolingual model is RobBERT [6], a Dutch RoBERTa
based model with 12 self-attention layers, 12 heads and 117M parameters. Rob-
BERT is pre-trained using the RoBERTa training regime [13] and does not
include the SOP objective compared to BERTje. The OSCAR corpus was used
as a dataset, which is 39 GB of Dutch text obtained from the Common Crawl
corpus. It also includes their own byte pair encode (BPE) tokenizer constructed
using the OSCAR corpus consisting of 40k tokens, 10k more than BERTje. The
authors found that RobBERT outperforms other BERT-like models when deal-
ing with smaller datasets.

mBERT. mBERT [7] is a multilingual model for 104 languages trained using
Wikipedia texts using an MLM objective and next sentence prediction (NSP).
mBERT can generalize across languages with a multilingual representation of
words without an explicit training objective for this task [18].

5.2 Evaluation Metrics

We evaluated the QA models using two metrics: exact match (EM) and F1 scores.
In addition to calculating EM and F1 scores on the complete datasets, scores
are calculated for both the subsets of data containing only positive examples
(HasAns) and negative examples (NoAns) individually to give a better insight
into the performance of the models.

Moreover, we calculated the EM and F1 scores per interrogative Dutch words
to gain an understanding of challenging questions. Models that excel at different
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question types can be combined in an ensemble to exploit strengths and compen-
sate for weaknesses. Question types were assigned to questions by using regular
expressions for Dutch interrogative words: wie, wat, waar, waarom, wanneer,
welk, welke, hoe, hoeveel. Questions without a match for any of these words were
placed in a separate category: other.

6 Results

This section presents the collected results to answer the research questions, start-
ing off with the results generated from the Dutch SQuAD v2.0 dataset, followed
by the results of QA systems on the labour agreement dataset.

6.1 Dutch SQuAD

Language Filtering. The effect of language filtering described in Sect. 3.1 is
tested by fine-tuning BERTje [5], RobBERT [6], and mBERT [7] models on both
the unfiltered and language filtered Dutch SQuAD v2.0 dataset and evaluating
these models on their respective development sets. The results of this experi-
ment are shown in Table 4 with models trained on the language filtered dataset
followed by (LF). The HasAns column show the scores calculated exclusively
on the subset of positive examples and NoAns scores on the subset of negative
examples. mBERT achieves the highest scores on the unfiltered dataset by a
large margin on all subsets of the data. While remaining the best performing
model, the difference between models shrinks as RobBERT’s scores improve on
all fields and BERTje slightly decreases except on the NoAns section, where it
becomes the best scoring model.

Table 4. Evaluation results of models, on their respective development set, fine-tuned
on the unfiltered Dutch SQuAD v2.0 dataset and language filtered version. Models
fine-tuned on the language filtered version are followed by (LF). The HasAns column
are the evaluation scores exclusively with the subset of positive examples and NoAns
scores on the subset of negative examples. Bold font indicates the best scores on the
unfiltered dataset, and underlined font indicates the best scores on the filtered dataset.

Model EM/F1 HasAns EM/F1 NoAns F1

BERTje 65.26/69.13 44.33/54.39 78.37

BERTje (LF) 65.05/68.72 43.62/53.89 78.53

RobBERT 63.38/67.34 43.43/53.72 75.88

RobBERT (LF) 64.64/68.55 45.43/55.54 76.73

mBERT 67.37/71.31 47.80/58.03 79.63

mBERT (LF) 65.69/69.35 46.40/55.89 77.81
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Results per Question Type. The datasets contain a diverse mix of question
types, which have been evaluated as separate subsets to identify challenging
questions and compare whether the challenge exists across model types. Table 5
contains these results for all positive examples of the language filtered Dutch
SQuAD v2.0 development set for the models fine-tuned on the training set.

All three models show a comparable performance distribution along the ques-
tion types. Wie/Who and wanneer/when questions are among the best perform-
ing types, while waarom/why, hoe/how, and other questions score worst and have
significantly large differences between EM and F1 scores. Predicting the ground
truth for these question types appears to be challenging, but still parts of them
are captured relatively frequently. Wat/What scores are surprisingly low for the
high number of examples compared to other questions.

Table 5. Model scores of positive examples evaluated per question type on the filtered
Dutch SQuAD v2.0 development set. Underlined scores denote the highest scores per
row, and bold scores the highest score for a model type.

Question type Number of
examples

BERTje mBERT RobBERT

HasAns EM/F1 HasAns EM/F1 HasAns EM/F1

wie/who 332 59.34/65.41 61.14/67.09 61.45/68.39

wat/what 1035 35.65/45.23 38.16/47.47 36.23/46.56

waar/where 244 35.66/49.35 35.66/52.51 38.52/51.87

waarom/why 44 20.45/41.95 22.73/35.22 11.36/33.61

wanneer/when 289 55.36/61.67 65.74/73.51 61.25/69.45

welk/which 444 50.90/57.49 52.70/59.56 53.15/59.06

welke/which 629 44.67/53.10 47.22/54.55 46.10/55.42

hoe/how 198 33.33/47.30 37.88/52.00 36.87/53.87

hoeveel/how much 324 50.00/63.49 50.62/63.66 51.85/65.45

other 103 25.24/37.51 30.10/42.58 26.21/36.15

6.2 Labour Agreement Dataset

Domain Adaptation. Table 6 shows the results of all systems trained on the
labour agreement (CAO) dataset. The training strategies can be derived from the
datasets following the model name. Baseline models are fine-tuned on the CAO
dataset only, as opposed to domain adapted models. They are first fine-tuned
on the large general domain language filtered Dutch SQuAD v2.0 (DSQuAD)
followed by fine-tuning on the small domain specific CAO dataset. The results
show that the baseline models are outclassed by the domain adapted version of
the same model type. BERTje mainly gains performance on the negative exam-
ples and sees the least improvement on the positive examples, whereas both
RobBERT and mBERT drop performance for negative examples and gain sig-
nificant performance on positive examples. In addition to outperforming baseline
models, domain adapted models attain higher scores on the CAO dataset than
models score on the Dutch SQuAD datasets (see Table 4).
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Table 6. Exact match (EM) and F1 scores of all systems evaluated on the CAO
development set. Bold scores indicate the highest score per column, and underlined
scores indicate the highest score per model type. Baseline models are fine-tuned on the
CAO dataset (CAO) while all other systems are first fine-tuned on the filtered Dutch
SQuAD v2.0 dataset followed by fine-tuning on the CAO dataset (DSQuAD + CAO).
K denotes the ensemble size of score-based voted BERT systems. The final cell shows
the mixed ensembles using string-based voting with LCS to indicate voting using the
longest common sub-string algorithm.

System EM/F1 HasAns EM/F1 NoAns F1

BERTje (CAO) 62.14/65.99 57.75/63.34 71.88

BERTje (DSQuAD + CAO) 66.02/71.38 59.15/66.93 81.25

BERTje (DSQuAD + CAO) (K = 3) 66.99/73.94 60.56/70.65 81.25

BERTje (DSQuAD + CAO) (K = 5) 65.05/72.78 61.97/73.19 71.88

RobBERT (CAO) 58.25/61.15 50.70/54.90 75.00

RobBERT (DSQuAD + CAO) 66.99/73.48 66.20/75.61 68.75

RobBERT (DSQuAD + CAO) (K = 3) 69.90/76.83 66.20/76.24 78.13

RobBERT (DSQuAD + CAO) (K = 5) 65.05/72.78 61.97/73.19 71.88

mBERT (CAO) 63.11/68.23 59.15/66.58 78.13

mBERT (DSQuAD + CAO) 69.90/76.38 67.61/77.00 75.00

mBERT (DSQuAD + CAO) (K = 3) 69.90/75.57 66.20/74.42 78.13

mBERT (DSQuAD + CAO) (K = 5) 70.87/75.90 69.01/76.30 75.00

BERTje + RobBERT + mBERT (DSQuAD + CAO) 70.87/76.28 67.60/75.45 78.13

BERTje + RobBERT + mBERT (DSQuAD + CAO) (LCS) 69.90/76.47 66.20/75.72 78.13

Ensemble Models. Ensemble models show in the majority of cases an increase
in performance regarding single models. The score-based approach with ensem-
ble sizes of K = 3 and K = 5 produce primarily better results than single
models. Increasing the ensemble sizes also appear to benefit scores on positives
examples for both BERTje and mBERT. RobBERT, on the other hand, sees a
sudden decrease in performance for K = 5. The ensembles composed of mixed
models perform generally well, achieving high overall scores. Voting using the
string matching approach or largest common sub-string (LCS) approach achieve
comparable results, with a trade-off between EM scores and F1 scores for positive
examples.

7 Discussion

The most significant findings include the improved performance of domain
adapted models compared to baseline models and slight additional gain in per-
formance of ensemble models compared to their single model counterparts. These
results were expected based on the results of similar studies of transfer learn-
ing models from general domain datasets to specific domains in the biomedical
domain [10,17], for example, or on automobile manuals [8].

The ensemble models slightly improve model results as expected [27] which
could be improved upon by creating ensembles of models that do not have as sim-
ilar performance distributions per question type as have been found for BERTje
[5], RobBERT [6], and multilingual BERT [7].
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Hyperparameter optimization for BERT during fine-tuning could increase
model performance. All models have been fine-tuned using a general strategy
which is likely not optimal for each model type, leading to under- or overper-
forming models.

Improving models for the labour agreement domain could alternatively
take the approach of BioBERT [11] by pre-training on data from the target
domain. However, pre-training a model on corpora within a domain requires
large amounts of data and computing power. Alternatively, the relatively inex-
pensive domain adaptation approach of Poerner et al. [19] could be explored.

7.1 Conclusion

In this paper, we examined fine-tuning pre-trained language models for a Dutch-
language QA task. The models were evaluated on a general-domain machine-
translated Dutch SQuAD as well as on a low-resource target domain of Dutch
labour agreements. Our results show that fine-tuning the models on the language-
specific QA dataset is beneficial even when such dataset is machine translated
from English. This finding has important implications beyond the QA task show-
ing that the model performance can be improved across languages by machine
translating English-language resources.

We also note, however, that the domain-adapted models using fine-tuning
attain higher scores on the labour agreement dataset than on the Dutch SQuAD
v2.0 datasets. The cause of this is likely that a machine translated dataset con-
tains more noise compared to a curated dataset. A limited variety of questions
for the labour agreement dataset could be another reason why higher scores are
attained. Our results demonstrate that the best performance can be achieved by
using a mixed ensemble of mBERT, BERTje and RobBERT using string-based
voting, closely followed a mBERT ensemble utilizing a score-based voting sys-
tem. The best models overall reaching EM scores up to 70.87% and a F1 score
of 76.28% on the target domain.

Interestingly, language filtering the machine-translated Dutch SQuAD results
in decreased performance for mBERT, while RobBERT gained in performance
and BERTje had only slight changes in performance. All of these results are still
significantly below comparable QA models for English.

Our results provide important insights on the intricacy of domain adaptation
for non-English QA models. We show that it is feasible to train QA models in a
low-resource scenario which is prevalent when automating recurrent tasks in the
real-world settings, such as the labour agreement investigations by the Dutch
Ministry of Social Affairs and Employment.
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Abstract. In this paper, we propose an inference-based technique to remove
redundancy from natural language (NL) descriptions of Web Ontology Language
(OWL) entities. The existing ontology verbalization approaches generate NL text
segments that are closer to their counterpart statements in the ontology. Some
of these approaches also perform grouping and aggregating of the text segments,
aiming at a more fluent and comprehensive representation. However, we observed
that the human-understandability of such descriptions is affected by the presence
of repetitions and redundancies, and our studies show that such issues can be
removed easily at the semantic level than at the NL level. We propose a novel
technique called semantic-level refinement (or simply, semantic-refinement) for
this purpose. Our approach aims at transforming the knowledge that is repre-
sented as a combination of less expressive (and not specific) logic-based expres-
sions into the ones with high expressivity and specificity. This technique utilizes a
predefined set of rules which are applied repeatedly on the restrictions associated
with the individuals (and the concepts) to obtain a refined set of restrictions, guar-
anteed to be semantically equivalent to the original representation. Such refined
sets of restrictions can then be verbalized to get concise descriptions of the ontol-
ogy entities. Our experiments on ontologies from two different domains show
that the proposed approach could significantly improve the readability of the NL
texts when compared to the texts generated without a semantic-level refinement.

Keywords: Ontology verbalization · Redundancy removal · Rule-based
approach

1 Introduction

Artificial Intelligence (AI) community widely uses ontologies for knowledge repre-
sentation and reasoning. For example, the Gene Ontology1 is now a very prominent
resource in AI-powered Bioinformatics and Genomics. Another example is SNOMED
CT2, which is now fully formalized in OWL (Web Ontology Language) and widely

1 http://geneontology.org/.
2 https://www.snomed.org/snomed-ct/.
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used for electronic health records related applications. It is observed recently that mod-
eling knowledge in the form of ontologies helps to broaden the scope of cognitive AI
and explainable AI (Peroni et al. (2008); Sarker et al. (2020)). However, the domain
knowledge in the form of an ontology is inherently characterized by complex logical
axioms, making the formalized knowledge not accessible to non-ontology communi-
ties (Dentler and Cornet (2015); Venugopal and Kumar (2020); Venugopal and Kumar
(2019)). This had resulted in a large number of natural language (NL) verbalization
tools for OWL ontologies such as NaturalOWL (Androutsopoulos et al. (2014)) and
SWAT Tools (Third et al. (2011)). However, the existing approaches in this direction
mainly strive for one-to-one translation of logical constructs into the corresponding
NL fragments. Such NL translations generally contain redundancies, as a domain con-
cept could be expressed in several different ways in an ontology using the various con-
structs allowed in the ontology language—and, it is not guaranteed that one would
always use the best combination to formalize the knowledge. In this paper, we explore
a systematic approach that removes redundancies at the logic level—preserving seman-
tic correctness—called semantic-refinement. And, it is found to be complementing the
ontology verbalization application by generating concise NL sentences.

Motivating Example. Consider the following axioms from People & Pets
ontology3:

(1) Cat Owner � Person � Owner � ∃hasPet.Animal � ∃hasPet.Cat
(2) Cat Owner(sam) (3) Cat � Animal

The controlled natural language (CNL) descriptions for the individual sam, generated
using standard OWL verbalizers, are as follows. From now on, we refer ‘description’
as the NL description of an entity (individual or concept) generated from the ontology.

– A cat-owner is a person. A cat-owner is an owner. A cat-owner has as pet an animal.
A cat-owner has a cat as pet. Sam is a cat-owner. All cats are animals.
or (with grouping and aggregation)

– A cat-owner is a person and an owner. A cat-owner is all of the following: something
that has pet an animal, and something that has a cat as pet; Example: sam. All cats
are animals.

As can be easily noted, these descriptions have redundant information, and attempt-
ing verbatim translation of each description logical (DL) construct has resulted in this
situation. There are different types of redundancies one can observe here. The obvious
type is the repetition of linguistically similar texts; e.g., “a cat-owner is an owner”. The
other type includes those generic restrictions which can be logically inferred from more
specific restrictions; e.g., having said “A cat-owner has a cat as pet”, it is not necessary
to say “A cat-owner has as pet an animal.” This paper deals with removing redundancies
of the latter kind.

Contributions. In this paper, we propose a technique called semantic-level refinement
(or simply semantic-refinement) that helps in removing the redundant (portion of the)

3 http://www.cs.man.ac.uk/∼horrocks/ISWC2003/Tutorial/people+pets.owl.rdf.

http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/people+pets.owl.rdf


172 V. Ellampallil Venugopal and P. S. Kumar

restrictions and forms a more comprehensive description of an ontology entity. We par-
ticularly focus on generating descriptions from SHIQ DL ontologies. Our proposed
approach generates descriptions of individuals and concepts by first representing the
associated restrictions (knowledge) using a set of DL constructs that have high expres-
sivity and high specificity than using a set that contains less expressive and generic
expressions. If we revisit our previous example, we expect our approach to generate a
text similar to “sam is an owner having at least one cat as pet”; such that the redun-
dant portion of the text “has as pet an animal” is removed (since it clearly follows from
“having at least one cat as pet”). Due to page limitation, detailed proofs for the seman-
tic correctness of the approach are made available in an extended version of the paper
which we refer as longer version4.

2 Related Work

Controlled Natural Languages. Over the last two decades, several CNLs such as
Attempto Controlled English (ACE) by Kaljurand and Fuchs (2007), Rabbit by Hart
et al. (2007), and Sydney OWL Syntax (SOS) by Cregan et al. (2007), have been specif-
ically designed or have been adapted for ontology language OWL. All these languages
are meant to make the interactions with formal ontological statements easier and faster
for users who are unfamiliar with formal notations. Unlike the languages that were intro-
duced to represent OWL in controlled English, proposed by Hewlett et al. (2005); Jarrar
et al. (2006); Androutsopoulos et al. (2014), the aforementioned CNLs are designed to
have formal language semantics and bidirectional mapping between NL fragments and
OWL constructs. Even though these formal language semantics and bidirectional map-
ping enable a formal check to determine if the resulting NL expressions are unambigu-
ous, they can result in generating a collection of unordered sentences that are difficult
to comprehend. To use these CNLs as a means for ontology authoring and for knowl-
edge validation purposes, the verbalized texts need to be properly organized. Stevens et
al. (2011) have performed a detailed comparison of the systems that do such text orga-
nization. Among such systems, SWAT (Semantic Web Authoring) tools are one of the
recent and prominent tools which use standard techniques from computational linguis-
tics to make the verbalized text more readable. They have tried to give better clarity to
the generated text by grouping, aggregation, and elision. Third et al. (2011) have pointed
out that the NL verbalization tools such as SWAT have given much importance to the
linguistic fluency of the verbalized sentences than removing redundancies from their
logical forms, and hence have deficiencies in interpreting the ontology contents.

Redundancy Removal. According to Alani et al. (2006), the works related to refin-
ing ontologies have focused only on ad-hoc application settings; not focusing primarily
on preserving the semantics of the axioms. A notion for removing redundancies from
ontologies without affecting the overall semantics, similar to what we propose in this
paper, was proposed first by Grimm and Wissmann (2011). However, they have looked
at redundancy in ontologies primarily from an ontology engineering and knowledge
evolution point of view and were based on the notions introduced by Liberatore (2005)

4 https://orbilu.uni.lu/retrieve/83875/90647/test.pdf.

https://orbilu.uni.lu/retrieve/83875/90647/test.pdf
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about redundant clauses in propositional logic formulas. Later, Third (2012) proposed
a notion for removing redundancies in the context of ontology verbalization. In their
work, the authors have established the fact that omitting “obvious axioms” while ver-
balization leads to a better reading experience for a human. By “obvious axioms” the
author means those axioms whose semantics are in some sense obvious for an average
human reader. For example, phrases such as “junior school” explicitly convey the mean-
ing that a junior school is a school. In our work, we go further and establish that more
inference-based redundancy removal could still be performed rather than just removing
the morphological variants of the entity names, for greatly improving the quality and
understandability of a verbalized text. Recently, Dentler and Cornet (2015) proposed
four redundancy detection rules and the respective resolution methods, especially for
SNOMED CT. However, there are no further efforts exist in generalizing such rules.

3 Preliminaries and Defintions

We assume that the readers are familiar with the semantics of SHIQ DL ontolo-
gies (Horrocks et al. (2000)). SHIQ DL is an extension of the well-known logic
ALC (Schmidt-Schau and Smolka (1991)) with added support for role hierarchies,
inverse roles, transitive roles, and qualifying number restrictions.

Running Example. In Fig. 1, we introduce a synthetic ontology called academic
(ACAD) ontology which we follow throughout this paper as an example ontology.

Fig. 1. TBox (Terminologies) and ABox (Assersions) of ACAD ontology

Label-Set. The label-set of an individual is the set which contains all the class expres-
sions and (existential, universal and cardinality) restrictions satisfied by that individual.
A list of all label-sets from ACAD ontology is given in Table 1. The scope of the fol-
lowing formal definition of label-set is limited to SHIQ DL.

Definition 1. Formally, the label-set of an individual x (represented as LO(x)) is
defined as: LO(x) = {ci | O |= ci(x)} where ci is of the following form: ci =
A | ∃R.C | ∀R.C | ≤ nR.C | ≥ nR.C. Here, A is an atomic concept, C is a class
expression and R is a role name in ontology O, and m and n are positive integers. C
can be of the form:C = A | C1�C2 | C1�C2 | ∃R.C1 | ∀R.C1| ≤ nR.C1 | ≥ nR.C1,
where C1 and C2 are also class expressions.
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In the above definition, the cis are free from disjunctions. If there exist a dis-
junctive clause satisfied by an individual, then the satisfiablility of each expression
in that disjunctive clause should be checked and all such satisfiable expressions have
to be included as conjuncts in the label-set. Clearly, then, the conjunction of all the
elements in the label-set of an individual can be entailed by the ontology. That is,
O |= ( �n

i=1 ci
)
(x). Here, the variable C will not be recursively expanded further to

generate a large number of complex redundant expressions in the label-set. While this
gives you a reasonable idea of how label-sets are generated, a more detailed account
is presented in the longer version of the paper. Furthermore, the label-set of a concept
can be defined as equivalent to the label-set of an individual that belongs to only that
concept. Such a label-set could be obtained easily by introducing a synthetic individual
as the member of the concept and finding its label-set.

Table 1. Label-sets from ACAD ontology (intentionally omitted � class from the label-sets)

LO(tom) = {Student, IITStudent, IIT MS Student,
∃enrolledIn.IITProgramme, ≤1hasAdvisor.TeachingStaff,
∀hasAdvisor.TeachingStaff, ∃hasAdvisor.Professor }

LO(sam) = {Student, IITStudent, IITPhdStudent,
∃isEnrolledIn.IITProgramme, ≥ 2hasAdvisor.TeachingStaff,
≤ 1hasAdvisor.Professor, ∀hasAdvisor.TeachingStaff,
∃hasAdvisor.Professor }

LO(bob) = {Professor, TeachingStaff }
LO(alice) = { AssistantProf, TeachingStaff }
LO(roy) = {Professor, TeachingStaff }

4 Proposed Verbalization Approach

Fig. 2. Phases involved in the proposed ver-
balization method

Our verbalization process consists of three
phases as shown in Fig. 2. The first phase
takes an ontology as input and generates
label-sets. In the second phase, we pro-
cess these label-sets to a more refined form
using our semantic-refinement technique—
the main highlight of this paper. To under-
stand the degree of reduction performed on a label-set, we assign a redundancy-score
to the label-set while performing the reduction. Finally, we convert the restrictions in
the refined label-sets into NL texts. In this section, we would first discuss the ratio-
nale for our refinement technique, and then we formally define the notion of semantic-
refinement.

Consider the label-sets of the individuals from ACAD ontology given in Table 1.
A label-set would give us all the restrictions (logical expressions) that are satisfied by
an individual. We can effectively verbalize all or part of these restrictions to frame
a meaningful definition for that individual. For example, a well formed description
for the instance tom that can be generated from its label-set is of the form: “Tom



Verbalizing but Not Just Verbatim Translations of Ontology Axioms 175

is a student who is enrolled in an IIT Programme, has one professor as advisor, and
all his advisors are teaching staffs.” Here, not all labels in the label-set were consid-
ered while generating the description. Some of the generic labels (mainly role restric-
tions) in the label-set if verbalized directly may generate confusing descriptions, and
hence they should be reduced or combined with other restrictions (if possible) to get a
more specific (so-called refined) restriction. For example, if left unrefined, the restric-
tions ∀hasAdvisor.TeachingStaff and ∀hasAdvisor.	may give rise to the
description: “all advisors are someone, and all advisors are teaching staffs”, which
may create ambiguity issues to a human reader. It is observed that to generate an unam-
biguous and a short description from a label-set, we have to identify redundant labels
and see if they can be combined with the non-redundant labels to get a (highly expres-
sive and more specific) refined form.

The naive method to perform the aforementioned tasks is by considering all com-
binations of labels and see if they can be reduced to a stricter form of logical expres-
sion. However, we could easily carryout this exhaustive process by considering labels
of specific restriction types in a pre-defined order. For example, all the existential role
restrictions could be considered prior to the universal role restrictions. Such a system-
atic process along with an ordered list of inference rules (called refinement-rules), that
always generate stricter (more specific) forms of a given set of restriction, will ensure a
fast refinement of the label-sets. Since we do this refinement of labels at the logical-level
by considering their semantics, we call the refinement process as semantic-refinement of
label-sets. The refined form of the label-set is called the semantically-refined label-set.

In addition to removing redundant labels in a label-set the semantic-refinement
would also help in avoiding ambiguous verbalization of interim logical expres-
sions. For example, the label: ∀hasAdvisor.Professor can appear in the
label-set of an individual of IITStudent due to the axiom: IITStudent �
∀hasAdvisor.Professor. Linguistically, this label (along with the axiom) can
be interpreted in two ways: either as All advisors of IIT students are Professors or,
semantically, it can be interpreted as Either all advisors of IIT students are Professors
or (vacuously-true case) they do not have an advisor. Clearly, considering the latter
description, even though it is the semantically correct interpretation, may confuse a
reader—especially the case when he could infer from other axioms that the vacuously-
true case would not arise at all.

For identifying the cases where combinations of conditions involving qualifiers
and/or number restrictions occur and to succinctly represent them, we introduce the
following new constructors that have higher expressivity than the regular existential
and universal restrictions.

– Non-vacuous role restriction: 
R.C

R.CI = {x ∈ ΔI |∃y.〈x, y〉 ∈ RI ∧ y ∈ CI∧ ∀z.〈x, z〉 ∈ RI =⇒ z ∈ CI}

– Exactly-one role restriction: ∃=1R.C
∃=1R.CI = {x ∈ ΔI |(∃y1.〈x, y1〉 ∈ RI ∧ y1 ∈ CI∧ ∃y2.〈x, y2〉 ∈ RI ∧ y2 ∈
CI) =⇒ y1 = y2}

– Exactly-n role restriction: ∃=nR.C, general case of exactly-one role restriction.

In our semantic refinement process, like any rule-based approach, the order in which
the inferencing rules are applied is also important as the applicability of one rule may
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depend on the other. We observed that there is a notion of strictness associated with
role restrictions which can be effectively utilized for ordering the rules, such that the
redundant label selection and the application of the rules can be done simultaneously.
The notion of strictness can be looked at as: if a role restriction R1 is implied by another
role restriction R2 (i.e., R2 =⇒ R1), then R1 can be said to be a stricter version of
R2. For instance, 
R.U can be said as the stricter form of ∃R.U and ∀R.U . Similarly,
∃=nR.U is a stricter form of ≤ nR.U and ≥ nR.U . Since we intend to find stricter
forms of role-restrictions, the obvious way is to apply rules corresponding to less strict
restriction types prior to those of stricter restriction types. In general, the more strict-
restrictions you have in the label-set more refined your label-set is. We can easily cap-
ture this notion by finding how often we apply the rules that do this refinement. To
achieve this, we associate a pre-determined weight to each rule such that on applying a
rule the overall redundancy-score of the label-set will reduce depending on the weight
of the rule. In other words, the objective of the semantic-refinement is to find the set
which has the least redundancy score but yet guaranteeing the semantic-equivalence.
The metric used for assigning the redundancy-score is detailed in the next section. The
semantic-refinement of a label-set can be formally defined as:

Definition 2. Given a label-set LO semantically-refined label-set can be defined as the
set LO′ such that ∀ x ∈ LO, ∃ y ∈ LO′ | y |= x (semantic equivalence) and in addition
the set should have the least redundancy-score.

Table 2. Details of rule sets 1–5.
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5 Semantic-Refinement of Label-Sets

We propose seven sets of rules for refining a label-set. Each of these rule sets contain
carefully chosen rules which are repeatedly applied on the selected restrictions in the
label-set until no more refinement is possible. More details of the algorithm follows.

Proposed Refinement Rules. The details of the first five sets of rules are given in
Table 2. Each of the rule sets are named based on the type of restriction they handle.
For example, the first rule set is called Concept Refinement rule since it refines the
atomic concepts in the label-set.

– Concept Refinement Rule (Rule 1a). To apply this rule, we consider all the concept
names that are present in the label-sets whose definitions (i.e., the set of restrictions
which defines the concept) already included in the label-set. If the set of restrictions
defining a concept completely exists in the label-set, then that concept name could
be treated as a redundant information and shall be removed.

– Superclass Refinement Rule (Rule 2a). The label-set of an individual contains all
the concept names which it belongs to. Some of the concepts in these label-sets
are hierarchically related (in class - super-class relationship) in the ontology, result-
ing in redundant labels. For example, consider the label-set LO(tom) in Table 1, it
contains the concepts IIT MS Student and IITStudent. Since it can be inferred
from the concept IIT MS Student that tom is also a IITStudent, we can say that
IITStudent is a redundant information (label) in the label-set. We remove such
redundant labels by preserving only the most-specific concept. If the most specific
concept had been already removed by Rule 1a, the next most specific concept name
would be preserved in the label-set using this rule.

– Existential Role Refinement rule (Rule 3a). We can select two labels of the form:
∃R.U and ∃S.V , from the label-set, as candidates for applying this rule, if U � V
and R � S, in the ontology. According to the existential role refinement rule, can-
didate labels are semantically equivalent to stating only a single restriction of the
form ∃R.U (which we call as the refined form of the labels). In general, all the
rules that we cover in this paper are defined such that given a refined form and the
condition which have been used for refinement, the non-refined forms of the restric-
tion(s) could be traced back. That means, the refinement is done without affecting
the semantics/meaning of the restrictions. The formal proofs of all the rules could
be found at the longer version of the paper.

– Universal Role Refinement rules (Rules 4a & 4b). This rule set contains two rules
that refine universal role restrictions.

– III & IV Combination rules (Rules 5a, 5b & 5c). For applying the rules in this rule
set, we select combinations of existential and universal role restrictions from the
label-set. The rules help in refining such combinations to a reduced form.
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Table 3. Details of rule sets 6 and 7.

The details of the next set of rule sets are given in Table 3.

– Qualified Number Restriction Refinement rules. In this set there are four rules. Here
we mainly try to refine qualified number restriction restrictions (of the form≤ nR.U
or ≥ mS.V ) to stricter version of the same form or to a exactly-n restrictions.

– Exactly-n Role Restriction rules. In this rule set, we reduce the exactly-n role restric-
tions which are generated using the preceding rule-sets.

Algorithm for Semantic-Refinement. As we mentioned before, semantic-refinement
helps in refining restrictions in a label-set to their stricter forms by combining them
using a set of rules. The rules are applied sequentially from 1a to 7c. While applying
these rules, the reduced restrictions may be removed provisionally to avoid using them
in the imminent iterations. We are not removing them permanently, as we may need to
use such reduced restrictions with the non-reduced ones until we are sure that none of
the forthcoming rules may use such a restriction for the reduction anymore. We mark
such restrictions as PRs (Provisionally Reduced ones) so that at a later stage we can
remove them permanently from the label-set.

Algorithm 1 describes the steps that have to be followed for applying the rules. This
algorithm works by taking pairs of restrictions from the label-set and looking for the
applicability of the rules. If a rule is applicable, the restrictions will be checked for
the following set of conditions to decide whether to resume the refinement or not. The
below-mentioned conditions are followed to ensure a quick refinement. The rationales
for considering these three conditions are detailed in the longer version of the paper.
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– Condition-1: No need to further reduce two provisionally reduced (PR) restrictions.
– Condition-2: If a rule combines two restrictions (R1 and R2) and generates either

R1 or R2, then that R1 or R2 should not be marked as a PR.
– Condition-3: If the restrictions of a particular form are not used in successive rule-
sets, the PR restrictions of such forms can be removed at an early stage.

For illustration, let us consider the label-set of the individual sam. Figure 3
shows the refinement steps and the rules in the rule sets used for the
refinement. LO(sam) is represented vertically. In the figure, the arrows represent the
application of rules. The rule numbers are shown in italics. The refinement of two
restrictions may sometimes result in more than one restriction. For representing such
cases, the arrows are followed by brace brackets ({...}) showing the resultant restric-
tions.

Initially, the algorithm marks all the labels in the label-set as not PRs. Then the
algorithm looks for the applicability of Rule 1a. In the figure, LO(sam) contains the
labels IITStudent and IITPhdStudent whose definitions (in the form of restric-
tions) are already present in the label-set. Therefore, on applying Rule 1a, they have to
be removed from the label-set.

In the algorithm, lines 5–31 consider the rest of the rule-set one at a time and look
for possible application of rules on pairs of restrictions in the label-set. In our example
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label-set, since no rules in the rule sets 2, 3, and 4 were applicable, we move to the next
applicable rule set (i.e., Rule-set 5). The algorithm would then apply Rule 5c on two of
the restrictions as shown in the figure and refine them to the two restrictions given in
the brackets. Application of a rule will be done only if the restrictions in the pair are not
marked as PR which is checked using the MARKED AS PR method. The if condition
in line-8 of the algorithm will take care of this. After the application of a rule (using the
method APPLY RULE), the details of the reduced restrictions will be stored in the set
variable REF . Based on Condition-2, appropriate changes are made on the contents of
REF (lines 14–20). Once all the possible rules in a particular rule set are applied, the
reduced restrictions will be marked as PRs (lines 24). Once the algorithm considered
all pairs of labels and checked them for the applicability of all the rules in the current
rule-set, Condition-3 will be checked for possible permanent removal of the PRs. The
entire process will be repeated for all the succeeding rule-sets.

Fig. 3. Steps for the semantic-refinement of LO(sam). Arrows represent the application of rules.

Coming back to our example label-set, after the application of Rule 5c, one of the
reduced restrictions is marked as PR (represented using

√
), while the other restriction is

not marked as PR due to Condition-2. On changing the rule-set, since no other rules in
Rule-set 5 were applicable, the one which is marked as PR can be permanently removed
since Condition-3 is satisfied. In the forthcoming iterations of the for loop (line 5), rules
in the rule-set 6 and 7 are applied in a similar fashion. In the last iteration, we will get
the most refined set of labels, along with a set of restrictions that are marked as PRs.
The restrictions which are marked as PRs are removed to get the refined label-set.

Redundancy Score for Label-Sets.We introduce the redundancy-score to quantify the
degree of refinement that we perform on a label-set. Intuitively, this score is intended
to capture the amount of redundancy in the NL description that is generated from a
label set. This measure is defined in terms of the number of labels in the label set
as it plays a role in determining the redundancy and is also based on the refinement
rules that we apply while performing the reduction. Initially, the label-set will have a
redundancy score of “1” where each label would equally contribute (that is, 1/n where
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n is the number of labels in the label-set) to this score. While applying a rule, the scores
(old scores) of the labels that match the antecedents of the rule are redistributed to the
new labels (generated as per the consequents of the rule) after multiplying with the
weight of the rule. The appropriate weight of the rule is inversely proportional to the
rule number as rules are arranged in the increasing order of the amount of redundancy
they remove. Therefore, the weight of the rule Rulej (denoted as wj) is 1/j. Suppose
Rulej applies to the labels: {L1, ..., Lr}, and produces labels: {R1, ..., Rs}, then each
Ri where (1 ≤ i ≤ s) is assigned a score as follows. For example, E.g., if oldScore of
L1 is 1/8 and that of L2 is 1/8, then on applying the rule: L1 � L2 → R1 � R2, the new
score of R1 would be (2/8 * 1/2)*(1/2) = 1/16 and that of R2 is again 1/16.

newScore(Ri) =
wj × ∑r

k=1 oldScore(Lk)
s

(1)

Those label-sets whose redundancy-score remain as “1” even after applying the
semantic-refinement algorithm are treated as non-redundant label-sets. Therefore, we
have to change the redundancy-score of such label-sets to “0”.

Natural Language Descriptions from the Refined Label-sets. In this paper, we have
considered a template similar to the following regular expression for generating descrip-
tions of individuals and concepts, (“is”) (“a”) C (“,” | “and”)?)+(

RR (“,” | “and”)?)+
In this regex, C represents the concept name in the label-set, and RR denotes the role

restriction in the label-set. The role restrictions are treated in parts. We first tokenize the
role names in the constraints. Tokenizing includes word-segmentation and processing of
camel-case, underscores, spaces, punctuations, etc. Then, we identify and tag the verbs
and nouns in the segmented phase—as R-verb, R-noun respectively—using NLTK5.
We then incorporate these segmented words in a constraint-specific template, to form
a RR. For instance, the restriction ∃hasAdvisor.Professor is verbalized to “has at least
1 professor as advisor”, using the template: <R-verb> at least <n><C> as <R-noun>
(where C corresponds to the concept present in the restriction). The constraint-specific
templates corresponding to the restrictions are listed in Table 4.

6 Empirical Evaluation

We have done the empirical study to address the following two questions:Q1: Does the
semantic-refinement help in improving the understandability of the verbalized knowl-
edge? Q2: Is the semantic refinement helpful in validating the correctness of ontology
axioms? For answering these questions, we present the domain experts with two repre-
sentations of the same knowledge: one is from the label-sets having redundancy score
“1”, and the other from the refined label-sets (that is, with redundancy score < 1). We
call the former as the ones from the baseline approach and the latter as those from the
proposed approach. The descriptions generated using the baseline approach are similar
to the texts generated using an existing ontology verbalizer. Table 5 shows the examples
of the descriptions generated using both approaches.

5 Python Natural Language Tool Kit: http://www.nltk.org/.

http://www.nltk.org/
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Table 4. Constraint-specific templates of the possible restrictions in a refined label-set.

Restriction | Constraint-specific template
∃R.C <R-verb> at least one <C> as <R-noun>

∀R.C <R-verb> only <C> as < R-noun >

≥nR.C <R-verb> at least <n><C> as <R-noun>

≤mR.C <R-verb> at most <m><C> as <R-noun>

�R.C <R-verb> at least one <C> & only <C> as <R-noun>

∃=nR.C <R-verb> exactly <n><C> as <R-noun>

Table 5. Examples of the descriptions of individuals and concepts from PD, HarryPotter (HP) and
Geographical Entity (GEO) ontologies, generated using the proposed and baseline approaches

Proposed approach Baseline approach (with redundancy score =1) Ontology
Bird cherry Oat Aphid: is a biotic-disorder, having at least
one pest-insect and all its factors are pest-insects. (Redundancy score
= 0.340)

Bird cherry Oat Aphid: is a disorder, bio-disorder, pest damage and
insect damage. It is all the following: has as factor only pest-insect, has as fac-
tor only pest, has as factor only organism and has as factor something.

PD

Mite Damage: is a pest damage, having at least one mite pest and all
its factors are mite pests. (Redundancy score = 0.324)

Mite Damage: is a disorder, a biotic-disorder and a pest damage. It is all the
following: has as factor only organism, has as factor only pest, has as factor only
mite pest, has as factor at least one thing.

PD

Hermione Granger: is a Hogwarts Student, a muggle, a gryffindor,
having exactly one cat as pet. (Red. score = 0.425)

Hermione Granger: is a Hogwarts student, a student, a human, a muggle,
a gryffindor. It is all the following: has a pet, has as pet a cat, has as pet only
creature, has at least one creature, has at most one creature, as pet.

HP

Hogwarts Student: is a Student, is a Gryffindor or Hufflepuff or
Ravenclaw or Slytherin, and having exactly one pet. (Redundancy score
= 0.350)

Hogwarts Student: is a student, a human, is a Gryffindor or Hufflepuff or
Ravenclaw or Slytherin. It is all the following: has a pet, has as pet only creatures,
has at least one creature, has at most one creature.

HP

Aggregate of sovereign states: is not a gov. organization,
is aggregate of only sovereign states and is aggregate of at least two
sovereign states. (Red. score = 0.324)

Aggregate of sovereign states: is not a gov. organization and not a
sovereign state. It is all the following: is aggregate of only governmental organiza-
tion, is aggregate of at least two governmental organizations, is aggregate of only
sovereign states and aggregate of at least two sovereign states.

GEO

Florida: is a gov. organization and a major administrative subdivi-
sion, is related to at least one nation as a part, is related to exactly one
sovereign state as a member, and is a subordinate authority of at least
one sovereign state. (Red. score = 0.204)

Florida: is a major administrative subdivision, an organization, a gov. organi-
zation, a subnational entity. It is all the following: is a part of at least one nation,
is a subordinate authority of at least one sovereign state, is a member of at least
one sovereign state and have at most one member of relationship with sovereign
state.

GEO

For Q1, the domain experts were asked to rate the degree of understanding of the
descriptions in the scale: (a) Poor; (b) Medium; (c) Good. And, for Q2, to measure
the usefulness of the generated descriptions for validating the domain knowledge, the
domain experts were told to choose one from the options: (a) Valid (b) Invalid (c)
Don’t know (d) Cannot be determined. If they cannot distinguish a given sentence to
be “Valid” or “Invalid” because of their lack of knowledge, then they are instructed to
choose the third option “Don’t Know”. Option (d) is to be selected if the expert finds it
difficult to reach a conclusion on the validity of the sentence–which means, the descrip-
tion is either ambiguous or confusing. We have used two online available ontologies for
generating descriptions: (1) Plant Disease (PD) ontology, and (2) Data structures and
Algorithms (DSA) ontology. These ontologies can be downloaded from our website6.
The PD ontology has 546 individuals, 105 concepts, and 15 object properties, and the
DSA ontology has 333 individuals, 53 concepts, 19 object properties, and 11 datatype
properties.

Experimental Setup. After generating descriptions from the aforementioned ontolo-
gies, since the manual evaluation of all the generated descriptions is difficult, a small
number of descriptions were utilized for the study. We have selected a representative

6 https://sites.google.com/site/ontoworks/ontologies (all ontologies used are available here).

https://sites.google.com/site/ontoworks/ontologies
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set (and a heterogeneous set) of descriptions by grouping all the descriptions based on
their label-sets and then randomly choosing one description from each group. From PD
ontology, 31 descriptions of individuals and 10 descriptions of concepts were consid-
ered for evaluation. Similarly, fromDSA ontology, 14 descriptions of individuals and 17
descriptions of concepts were chosen. Then, experts from the two domains were asked
to review the verbalized descriptions. To avoid bias, the reviewers were not informed
about the approach followed for generating the description, and the descriptions were
randomly presented via a google form. In addition, to finding the inter-rater agreement
among the experts, we have also recorded the confidence score of each reviewer for a
given question such that in the case of a conflict we make a decision based on their
scores. Seven experts from the PD domain and fourteen experts of DSA were involved
in the study.

6.1 Results and Discussions

Figure 4, 5, 6 and 7 show the summary of the ratings given by the domain experts.

Q1: The degree of understanding of a description is identified by examining the ratings
(i.e., poor, medium, or good) given by the domain experts. The domain experts were
asked to choose ‘poor’ or ‘medium’as the level of understanding if there is any ambi-
guity in the description. To confine the reasons for ambiguity to the fidelity to OWL
constructs alone, possible (manual) grammatical error corrections have been done on
the generated text—as we were not using any sophisticated NL generation techniques.
Grammatical errors such as subject-verb agreement errors, verb tense errors, verb form
errors, singular/plural noun ending errors, and sentence structure errors were corrected
uniformly (and in an unbiased way) for both the approaches. Figure 4 and Fig. 5 show
the summary of the responses (in percentage) which we received for the descriptions
of PD ontology and for the descriptions of DSA ontology, respectively. In both cases,
since the Fleiss’ kappa scores were in the substantial agreement range, the overall rat-
ings are calculated by considering the majority responses. For PD ontology, 32 out
of the 41 descriptions generated using the proposed approach were rated as ‘good’,
whereas, for those generated using the baseline approach, only 6 out of 41 texts were
rated as ‘good’. For DSA ontology, 23 out of 31 descriptions generated by the proposed
approach were ‘good’, only 12 descriptions generated using the baseline approach were
rated as ‘good’. These results highlight the significance of the semantic-refinement pro-
cess in domain knowledge understanding.

Fig. 4. Summary of the ratings obtained for
the descriptions from the PD ontology

Fig. 5. Summary of the ratings obtained for
the descriptions from the DSA ontology



184 V. Ellampallil Venugopal and P. S. Kumar

Fig. 6. Summary to determine the useful-
ness of the generated descriptions in vali-
dating the PD ontology

Fig. 7. Summary to determine the useful-
ness of the generated descriptions in vali-
dating the DSA ontology

Q2: Figure 6 and 7 show the statistics to determine the usefulness of the generated
descriptions in validating the correctness of two domain ontologies. Usefulness of the
generated descriptions in validating the correctness of an ontology is obtained by look-
ing at the number of descriptions which are marked as ‘Cannot be determined’. The
three options: ‘Valid’, ‘Invalid’ and ‘Don’t know’, imply that the text is useful in get-
ting into a conclusion, whereas the option ‘Cannot be determined’ indicates that there is
some problem in the representation. From Fig. 6 and Fig. 7, in case of the proposed app-
roach, only 7 out of 41 descriptions from PD ontology and 4 out of 31 descriptions from
DSA ontology were not useful in determining the quality of the ontology, whereas in
case of the baseline approach, approximately 50% of the descriptions were not helpful.
This clearly indicates that, verbalization after semantic-refinement is highly effective in
applications such as ontology validation.

Discussion and Future Work. In this paper, we have formally defined the notion of
redundancies in a label-set and a technique to systematically reduce the redundancies.
However, the notion of redundancy is, to some extent, subjective. That is, depending on
the readers’ domain knowledge, the level of redundancy in the text varies. In the pro-
cess of semantic-refinement, we remove the generic information from the label-set with
an assumption that the human readers would be familiar with the explicit relationships
between the domain entities. In that sense, a reader with poor domain knowledge may
miss out on generic concept information due to the refinement process. This would be
easily visible when the concept hierarchies are reduced to the specific ones alone. One
possible way to overcome this problem is by including relevant (but, not all) concept
names, that were previously omitted in the semantic-refinement process, in the refined
label-set. E.g., in Table 5, we can further generalize the description of the concept mite
damage, by including additional generic concept details, as “Mite Damage is a pest
damage and a biotic-disorder, having at least one mite pest and all its factors are mite
pests.” Since only a generic concept name is included in addition to all the refined con-
cepts, the meaning of the description is not affected. More investigation and empirical
studies related to this could be done as a future endeavor. Another interesting method
(which is not addressed in this paper) to improve the description of individuals is by
considering the property assertions along with the label-sets while generating descrip-
tions. Considering property relationships/assertions is important because validation of
an ontology also involves verifying the truthfulness of the property assertions in it.
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7 Conclusion

A novel approach for generating natural language descriptions of ontology entities is
presented in the paper. The generated descriptions were not merely verbatim transla-
tions of logical axioms of the ontology. Instead, they were generated from a refined set
of logical restrictions satisfied by individuals/concepts under consideration. We have
proposed seven sets of refinement rules and an algorithm for this refinement process.
We have observed that the proposed method indeed gives us short, precise, and compre-
hensive descriptions of individuals and concepts. Our time-budgeted empirical studies
based on two ontologies have shown that the redundancy-free description of the domain
knowledge is helpful in understanding the formalized knowledge more effectively and is
also useful for validating them, typically for the humans who are experts of the domain
under consideration.
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Abstract. Transfer learning can speed up training in machine learning,
and is regularly used in classification tasks. It reuses prior knowledge
from other tasks to pre-train networks for new tasks. In reinforcement
learning, learning actions for a behavior policy that can be applied to new
environments is still a challenge, especially for tasks that involve much
planning. Sokoban is a challenging puzzle game. It has been used widely
as a benchmark in planning-based reinforcement learning. In this paper,
we show how prior knowledge improves learning in Sokoban tasks. We
find that reusing feature representations learned previously can acceler-
ate learning new, more complex, instances. In effect, we show how cur-
riculum learning, from simple to complex tasks, works in Sokoban. Fur-
thermore, feature representations learned in simpler instances are more
general, and thus lead to positive transfers towards more complex tasks,
but not vice versa. We have also studied which part of the knowledge is
most important for transfer to succeed, and identify which layers should
be used for pre-training (Codes we used for this work can be found at
https://github.com/yangzhao-666/TLCLS).

Keywords: Reinforcement learning · Transfer learning · Sokoban

1 Introduction

Humans are good at reusing prior knowledge when facing new problems. As
a consequence, we learn new tasks quickly, a skill of great interest in machine
learning. In the human brain, information received by our sensors is first trans-
formed into different forms, and different types of transformed information are
stored in different areas of our brain. When another problem arrives later on, we
retrieve useful information and adjust it to better suit solving this new problem.
The knowledge stored in artificial neural networks is also re-usable and trans-
ferable [31]. In supervised learning, pre-trained networks are commonly applied
in computer vision [17,25] and natural language processing [3,9]. Feature repre-
sentations learned from images or words overlap to some extent, which makes
such feature representations reusable and transferable. In reinforcement learning
(RL), transfer learning is relatively new, although with the spread of deep neu-
ral networks, reusing pre-trained models becomes possible in RL as well [1,7].
c© Springer Nature Switzerland AG 2022
L. A. Leiva et al. (Eds.): BNAIC/Benelearn 2021, CCIS 1530, pp. 187–200, 2022.
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Fig. 1. An example instance of Sokoban.

Transfer learning works well in RL for recognition tasks, but tasks that rely
heavily on planning are harder.

In this paper, we study transfer learning of behavior in Sokoban, a popular
RL game in which planning is important [10,12]. It has already been proved
that Sokoban is PSPACE-complete [8] and NP-hard problem [10]. An example
instance from [22] is shown in Fig. 1. The goal of Sokoban is to control a ware-
house worker that pushes all boxes onto targets. Sokoban is a challenging game
where one wrong move can lead to a dead end (after a box has been pushed, it can
not be pulled, and we cannot undo an inadvertent push). This non-reversibility
is known to make games harder for AI agents [5]. Learning to solve Sokoban
tasks is a challenge, especially in the multi-box scenario. For humans, if we have
learned the basics of Sokoban (what is a box, what can an agent do), and if we
are faced with a new, more complex instance, then we immediately focus on the
new challenges in the instance, rather than re-learning the basics again. This
building on prior knowledge saves time in the problem-solving process.

We investigate if we can achieve this kind of pretraining/fine-tuning learning
in an RL agent. Our main hypothesis is that feature representations learned in
Sokoban instances can be reused to improve solving other instances, and that
features learned in simpler instances are more general and better transferable.
We test this hypothesis by means of different experiments, in which parts of the
neural network that has previously been trained on one type of instances (e.g.
one box one target) are taken over (unchanged) to a new type of instances (e.g.
two boxes two targets), whereas the remaining part of the network is trained
on these new instances from scratch. The overall idea is that we see successful
transfer if the preserved knowledge (in terms of network layers) leads to a faster
learning process on the new problem type.

The main contributions of this paper are as follows: First, we show that fea-
ture representations learned in simple Sokoban instances can accelerate learn-
ing in more complex instances, indicating that curriculum learning can be used
in Sokoban. Second, feature representations of simpler instances are more gen-
eral and reusable than features learned in more complex instances. Third, our
results confirm that in RL lower layers learn more general features. Interestingly,
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in some cases the best performance is achieved when more specific features are
transfered, when source task and target task are similar enough to support these
more specific features. Fourth, we found negative transfer from a simple super-
vised learning task, which tells us that choice and design of the source tasks are
crucial. Fifth, we show that transferring top-fully-connected layers will not only
be unhelpful but also harmful to the learning. We also used popular visualiza-
tion techniques to explore potential reasons for successful transfers, which we
explain in detail. Our code and test environments will be made available after
blind review.

The paper is structured as follows: we first briefly review related work on
transfer learning and Sokoban in the next section; then the environment and
methods we are using are described in Sect. 3; Sect. 4 shows the experimental
settings and results; in the last section, we conclude our work and discuss some
potential future directions.

2 Related Work

De la Cruz et al. [6] studied the reuse of feature representations between two
similar games: Breakout and Pong, using Deep Q Network (DQN). They used
a 3-layer convolutional network. Weights learned in one game were transferred
to improve learning the other game; results showed positive transfer of features
between the different games. Pong and Breakout do not require planning; in our
experiments, in Sokoban, we study how a curriculum of simpler instances can
benefit the learning of complex instances. Spector et al. [26] used self-transfer in
a DQN grid-world task to identify which parts should be transferred and which
parts should be fixed, showing significant benefit of knowledge transfer.

Sokoban is a planning task that has been used as a benchmark for model-
based reinforcement learning [16,22]. It has also been used in model-free
RL [14,15], achieving performance competitive with model-based methods. The
efficiency of AlphaZero-style curriculum learning has been shown by solving hard
single Sokoban instances [11,12]. Previous works were aimed at solving single
Sokoban instances; our paper focuses on the transferability of learned knowl-
edge among different instances.

This transferability of learned feature representations was first studied in
image classification problems [31]. It was shown that bottom layers in Con-
volutional Neural Networks (CNNs) extract more general features while ones
extracted from back layers are more specific. In this paper, we verify this idea
under RL settings.

Reinforcement learning [21,27] aims to reinforce behaviors of the learning
agent by rewarding signals obtained from interactions with the environment.
It has reached super-human performance in games such as Go [24], StarCraft
[20,29], as well as Atari games [2] and robotic tasks. In this paper we follow the
conventional MDP notation for RL [27].

Transfer learning reuses prior knowledge to improve the learning efficiency or
performance in new tasks [28,30]. In reinforcement learning, higher-level knowl-
edge such as macro actions, skills and lower-level knowledge such as reward
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functions, policies could be transferred. Transferring learned knowledge could
take different approaches, such as reward shaping [4], learning from demonstra-
tion [19] and policy reuse [13].

3 Experimental Setup

The environment used in the paper is the Gym environment for Sokoban [23];
for the agent algorithms we follow Weber et al. [22]. Examples are shown in
Fig. 2. The game is solved by controlling the agent (green sprite) to push all
boxes (yellow squares) onto corresponding targets (red squares). There’s no hint
about which boxes should on which targets, and boxes can only be pushed;
some actions are irreversible, and can leave the game in an unsolvable state. The
difficulty of the game can be increased easily by putting more boxes as well as
targets into generated rooms. The agent can go up, down, left, and right. The
agent gets a final reward of 10 by pushing all boxes on targets. Pushing a box
on a target will result a reward of 1 and a penalty of −1 for pushing a box off a
target. We also give a small penalty of 0.1 for each step the agent takes.

We perform three types of experiments: (1) related tasks (source and tar-
get tasks are both RL tasks, while source tasks are to solve n-boxes Sokoban
instances and target tasks are to solve m-boxes Sokoban instances, where
n �= m), (2) different tasks (source tasks are supervised learning (SL) tasks
and target tasks are reinforcement learning (RL) tasks), and (3) different tex-
ture appearance (source and target tasks are both RL tasks, while source tasks
are to solve original Sokoban instances and target tasks are to solve Sokoban
instances with different texture appearance). The agent was first pre-trained
on source tasks and then fine-tuned on target tasks. RL tasks are to solve 100
randomly generated n-boxes Sokoban instances. SL tasks are to recognize the
location of the agent in Sokoban instances.

Fig. 2. Examples of Sokoban instances, increasing in difficulty from 1 box and 1 target
to 3 boxes and 3 targets (Color figure online)

The overall statistics of the maps are shown in Fig. 3. As the number of
objectives increases, the number of steps for the optimal solution also increases,
and so does the difficulty of solving the game.
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Fig. 3. Distribution of optimal solutions in different Sokoban instances.

3.1 Neural Network Architecture

The neural network we employ is taken from the DeepMind baseline [22] directly
without hyper-parameter tuning. The model consists of 3 convolutional (Conv)
layers with kernel size 8 × 8, 4 × 4, 3 × 3, strides of 4, 2, 1, and number of
output channels 32, 64, 64. This is followed by a fully connected (FC) hidden
layer with 512 units. The outputs of this FC layer will be fed into two heads: one
for outputting the policy logits and one for outputting the state value. This is
one of the most commonly-used architectures in RL, we selected it also in order
to show what can be achieved with popular architecture. Details of architecture
and hyper parameters we employ are found in Table 1.

Table 1. Hyper-parameters of the neural network and training.

Learning rate 7 · 10−4

Discount factor 0.99

Entropy coefficient 0.1

Value loss coefficient 0.5

Eps in RMSprop 10−5

Alpha in RMSprop 0.99

Rollout storage size 5

No. of environments for collecting trajectories 30
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Fig. 4. Three different transfer approaches, red layers are fixed while green layers are
trainable. They correspond k = 1, 2, 3 from left to right respectively. (Color figure
online)

3.2 Transfer Approach

The main idea of our transfer approach is to reuse feature representations
from source tasks learned by the Conv layers in new unseen target tasks. As
detailed in the last sub-section, our model consists of 3 Conv layers and 2 FC
layers. The feature representations were transferred to new tasks by copying
the weights of the first k Conv layers trained in source tasks (where there are
ns boxes/targets) to initialize the new learning model in target tasks (where
there are nt boxes/targets). Then we froze these weights (they were no longer
trainable) and retrained the remaining part of the model. In our experiments,
k ∈ {1, 2, 3}, ns ∈ {1, 2, 3}, nt ∈ {1, 2, 3}. Please refer to Fig. 4 for an explanation
of this approach. Different squares represent different layers of our neural net-
work. The first 3 layers are Conv layers and the last two are FC layers. Reds are
weights taken from pre-trained model and fixed, greens are weights reinitialized
and trainable.

Solved ratios were used for evaluating agents, and evaluation executes every
1,000 environment steps. 20 randomly selected test instances were performed by
the current learning agent. We say the transfer is positive when the performance
with the transfer is better than without (training from scratch), and negative
when the performance with the transfer is worse than without.

4 Experiments

We designed experiments with different source, target tasks and k, in order
to verify the hypotheses we proposed. We experimented with Sokoban instances
with 1, 2, and 3 boxes. All experiments were run for 1 million environment steps.
We use abbreviations for each experiment. For instance, s1t1k1 means source
tasks are 1-box instances, target tasks are 1-box instances and we transfer and
fix the 1 (first) layer. Exceptions are sPt1k1 and s1t1fc game2. sPt1k1 stands
for the source task is a supervised learning prediction task, and target task is the
RL task over 1-box instances while we only keep the first layer. s1t1fc game2
is that the source and target tasks are both RL tasks over 1-box instances,
but we transfer fully connected layers to instances with different appearance.
The neural networks were trained using Advantage Actor Critic (A2C), a single
threaded variant of A3C [18]. All experiments were performed 5 times with
different random seeds, and figures were drawn using averaged results with 0.95
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confidence interval. Heavy fluctuations were caused by irreversible actions, one
irreversible action during the game could make the whole game unsolvable.

4.1 Transfer Among Related Tasks

Related tasks are tasks where the only difference between source and task is the
difficulties of instances, i.e. the number of boxes and targets. (Recall that both
source and task are trained on 100 different map-layouts, in all experiments.)

Figure 5 and Fig. 6 show results for training on 1-box, 2-boxes, 3-boxes
instances with reusing features learned in different tasks, and we fix k = 3.
All results showed that transferring feature representations learned in single-
box instances is positive. Performance of agents (s1t1k3, s1t2k3, s1t3k3) who
are using features learned from single-box instances always outperform other
agents, including agents training from scratch and using features learned from
other instances. The transfer, however, is not ‘bi-directional’, feature represen-
tations learned in multiple-box instances could not be successfully transferred
to the learning in single-box instances. Their performance (s2t1k3, s3t1k3) con-
verged to a relatively low solved ratio, which indicates that transferred features
are not suitable for single-box instances. Just as humans learn more general
knowledge in simpler cases, our agents also showed that the knowledge learned
from single-box instances is more general and transferable than ones learned in
multiple-box instances.

To further enhance performances of transferring features learned in single-
box instances, we tried different k. We expected that the performance will be the
best when k = 1 since the first layer learn the most general features. However,
the results in Fig. 7 instead show that not k = 1 but k = 2 (s1t2k2, s1t3k2)

Fig. 5. Performance of transferring feature representations learned in 1-box, 2-boxes,
3-boxes instances to learning in 1-box with k = 3. ns = 1, 2, 3, nt = 1, k = 3. Pre-
training on 1-box instances is much better than pre-training on 2 or 3 box instances
when training new 1-box instances.
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Fig. 6. Performance of transferring feature representations learned in 1-box, 2-boxes, 3-
boxes instances to learning in 2-boxes (left) and 3-boxes (right) with k = 3. ns = 1, 2, 3,
nt = 2, 3, k = 3.

perform the best. Similar to [6], features learned in the first 2 layers are still
general enough for transfer; in addition, the difference between source tasks and
target tasks is not as large as expected, and features learned between different
instances are more overlapping than expected.

It is also interesting to see the influence of how many layers are fixed on the
success of the transfer. In particular, we want to know whether a smaller k could
change the negative transfer from multiple-box instances to single-box instances
into positive. (We believe features from multiple and single-box instances are
overlapping to some extent.) Results are shown in Fig. 8. We see that indeed the
first layer (s2t1k1, s3t1k1) did learn enough general features from multiple-boxes
instances to solve the single-box instances. Although agents with features only
learned by the first layer could converge to decent performance in the end, the
transfer is still negative. An interesting point is that k = 3 (s2t1k3) performs
better than k = 2 (s2t1k2) when source tasks are 2-boxes instances. Note that
k = 2 (s3t1k2) performs better than k = 3 (s3t1k3) when source tasks are 2-boxes
instances. There are more overlapping features between the 2-boxes instances
and single instances.

4.2 Transfer Among Different Tasks (SL/RL)

Feature representations learned from previous tasks can either be helpful or
harmful. In the previous subsection we saw some positive transfer to related
Sokoban tasks, in this subsection we study if transfer between supervised and
reinforcement learning tasks works. We follow prior work, Anderson et al. [1]
showed that features can be transfered from hand-crafted supervised learning
(SL) tasks to reinforcement learning (RL). Their model was first trained to
predict state dynamics of the environment, and then pre-trained hidden layers
were helpful to accelerate solving RL tasks.

For transfer to different (randomly chosen) instances in Sokoban, we also
formed a supervised task, which was to train a prediction model to recognize
the location of the agent, shown in Fig. 9a. When humans are solving Sokoban,
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Fig. 7. Performance of transferring feature representations learned in 1-box instances
to learning in 2-boxes (left) and 3-boxes (right) with different k. ns = 1, nt = 2, 3,
k = 1, 2, 3.

Fig. 8. Performance of transferring feature representations learned in 2-boxes (left)
and 3-boxes (right) instances to learning in 1-box instances with different k. ns = 2, 3,
nt = 1, k = 1, 2, 3.

we first need to know where the agent is before we draw up a plan. If we already
know the location of objectives, the solving process could be faster. After the
prediction model could correctly recognize where the agent is, we took feature
representations of the trained model and plug them into a new agent. The first
layer of learned features is fixed, and we only train the remaining part. Figure 9b
shows the performance of transferring and training from scratch. We find nega-
tive transfer for (sPt1k1): the performance is much worse compare with training
from scratch.

4.3 Transfer to Different Appearance

Experiments we described in previous subsections were all trying to transfer
Conv layers which learned feature representations. In the next experiment, we
try to make the agent utilize another part of the learned model, which are back
FC layers of the whole model. The source and target tasks were both single-
box instances, but the target tasks were instances with different appearances.
Figure 10b is an example. The maps used for two groups of tasks were the same,
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Fig. 9. (a): How SL tasks work. Input states and neural network will learn to predict
locations of the agent. (b): Performance of training from scratch and training with
transferred feature representations from SL tasks.

the only difference was how they look like, the appearance was changed, with
different textures, and we call it Game2. Figure 10a shows the transfer approach.
We took FC layers trained in source tasks and fixed them, and retrained the
remaining Conv layers. Since maps were the same, solutions of the instances
were the same. When Conv layers learn new feature representations successfully,
instances are solved then.

Figure 11a shows the performance. One would expect that transferred FC
layers (s1t1fc game2) are faster because the agent only needs to learn new feature
representations. However, the experiments did not show this result. Apparently,
when the whole model is trained jointly, it has more flexibility to be trained into
the final shape; when the last part of the model is fixed, the learning of the first
part will be trying to cater for the last part in order to solve the problem, which
made the learning slower.

4.4 Visualizing Agent Detection

In order to better understand what the network learned, we provide a visualiza-
tion. We follow Yosinski et al. who showed that convolutional neural networks
can detect latent objectives without explicit labels [31]. We visualized a fea-
ture map of a trained neural network on 1-box RL tasks. Figure 11b shows the
latent ‘agent detector’ for Sokoban. The neural network automatically learned
to detect the agent without giving any labels or information. Left rows are pixel
inputs, right rows are outputs of one specific feature map. Yellow-green units
are detected agents. We note that although the network was trained in single-
box instances, it still performed quite well in multiple-box instances, which is
a potential reason for the successful transfer. The agent’s abilities that were
learned in source tasks are useful in target tasks.
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Fig. 10. (a): Transfer approach for transfer to Game2. FC layers are taken from previ-
ously training and fixed, only conv layers will be retrained. (b): An example instance
in Game2. We changed appearances in Game2 with different textures of objectives.

Fig. 11. (a): Training on Game2 using transferred FC layers. Its performance is worse
than training from scratch. (b): The agent detector. Outputs of the twenty third feature
map of the first convolutional layer, which is an agent detector learned from 1-box
instances, and it’s still usable in multiple-boxes scenarios. (Color figure online)

5 Conclusion and Future Work

Our experiments showed that in a reinforcement learning setting the agent in
Sokoban can learn four characteristics that are similar to humans. (1) Fea-
ture representations learned previously can accelerate the new learning in other
Sokoban instances. Knowledge learned in previous related tasks could be reused
to accelerate new learning, transfer learning is occurring, creating an implicit
learning curriculum. (2) Feature representations learned in single-box instances
are more general, and are more effective for learning in multiple-boxes instances,
but not vice versa. Knowledge learned in simpler tasks is more general and
more effective, even in more complex tasks. Further experiments showed neg-
ative learning, that confirms these results. (3) Feature representations learned
in unrelated supervised learning tasks can hurt fine-tuning performance. If the
learned knowledge is required to be helpful in new coming tasks, it’s better to
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learn from similar tasks, otherwise the choice of tasks needs to be careful. (4)
Fixing the top-fully-connected layers and retraining the bottom convolutional
layers slows down learning and hurts performance. We conclude that learning
should have explicit order, less flexibility will not only be unhelpful but also hurt
the learning process and the performance.

Our experiments showed that with a simple 5-layer convolutions/fully con-
nected network (based on DeepMind’s baseline [22]), transfer learning and cur-
riculum learning of behavior to occur in Sokoban. This is surprising, since
Sokoban is a planning-heavy problem, for which one would expect more elaborate
network architectures to be necessary. Reusing pre-trained feature representa-
tions in RL fields is not well studied, and to the best of our knowledge, these
are the first results show transfer learning and curriculum learning with such
a simple network in such a planning-heavy behavioral task. In the future, we
would like to see more utilization of pre-trained feature representations and of
the entire pre-trained model in RL. We believe that reusing pre-trained model
can significantly improve data-efficient reinforcement learning.
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Abstract. Recommitments are essential for limited partner investors to
maintain a target exposure to private equity. However, recommitting to
new funds is irrevocable and expose investors to cashflow uncertainty and
illiquidity. Maintaining a specific target allocation is therefore a tedious
and critical task. Unfortunately, recommitment strategies are still manu-
ally designed and few works in the literature have endeavored to develop
a recommitment system balancing opportunity cost and risk of default.
Due to its strong similarities to a control system, we propose to “learn
how to recommit” with Reinforcement Learning (RL) and, more specif-
ically, using Proximal Policy Optimisation (PPO). To the best of our
knowledge, this is the first attempt a RL algorithm is applied to pri-
vate equity with the aim to solve the recommitment problematic. After
training the RL model on simulated portfolios, the resulting recommit-
ment policy is compared to state-of-the-art strategies. Numerical results
suggest that the trained policy can achieve high target allocation while
bounding the risk of being overinvested.

Keywords: Reinforcement learning · Private equity · Control system

1 Introduction

Private equity is an alternative asset class which refers to direct investments in
non-listed companies made at different stages of their development to create added
value. These companies are then sold few years later with the expectation to obtain
a significant capital gain. Early investments in strong performing companies help
them to develop their business and make them more profitable. Contrary to the
public equity market, private equity investments are not easily accessed as stocks
and bonds. Recently, private equity has been included in the portfolios of insti-
tutional investors such as pension funds, sovereign wealth funds, etc. These insti-
tutional investors have been building sizable allocation by investing “indirectly”
c© Springer Nature Switzerland AG 2022
L. A. Leiva et al. (Eds.): BNAIC/Benelearn 2021, CCIS 1530, pp. 203–217, 2022.
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to private companies through private equity funds. Indeed, managing such a less
traditional asset class requires a high level of expertise to properly enter and exit
direct investments. This explains their preferred modus operandi to invest indi-
rectly as so-called limited partners (LP) through limited partnership funds in
which they commit a certain amount of capital for a given period of time. Com-
mitments are irrevocable and called at the discretion of the fund’s management,
i.e., the general partner (GP), to decide how investments should be realised. The
committed capital is gradually draw down during the so-called investment period
which last several years. To complicate matters, stakes in these funds are illiq-
uid [7] which enforce LP investors to be extremely cautious when it comes to
recommit into new funds to limit the risk of default. Generally, the committed
capital is an upper-bound of the total capital finally called by a fund. A signif-
icant part (≈10%) of the initial capital is generally never invested as described
in [18]. Furthermore, committed capital waiting to be called is generally pictured
as dry powder. Prequin1 reported in November 2020 that North American pri-
vate equity firms are sitting on almost $980bn in reserves. This uncalled capi-
tal dramatically impacts investors’ exposure (see [12]). In practice, LP investors
therefore run so-called overcommitment strategies, i.e., committing more capital
in aggregate than actually available as dedicated resources, with the gap expected
to be filled by future distributions from investments made in other existing funds.
These strategies thus increase the liquidity risk when the fund is only few years
old when the likelihood to be called is the highest. LP investors need to setup a
commitment-pacing strategy, i.e., on how to size and time their commitments,
in order to achieve and maintain a target allocation while complying with the
liquidity constraints imposed by the uncalled capital. As reported in [3] and [9],
few investigations have been engaged to evaluate the cost of maintaining uncalled
capital. This is the reason why the current existing models still remain rudimen-
tary and depend on spreadsheet-based and “trial-and-error” approaches. These
manually-designed strategies are often error-prone and naive although the oppor-
tunity cost, i.e., the cost of being underinvested, and the risk of default in case of
overinvestment can be very damaging for LP investors.

In this work, we propose to investigate an approach relying on Reinforcement
Learning to learn how to size and time dynamic recommitments. The latter can
be formulated as a RL problem to discover reliable recommitment policies using
a Proximal Policy Optimisation algorithm. Recommitment policies can be assim-
ilated as control policies which should maintain a target allocation minimizing
the opportunity cost while preserving investors from the risk of default.

The remainder of this paper is organized as follows. The next section provides
a state of the art on existing recommitment strategies. Section 3 introduces for-
mally the Private Equity Recommitment Problem (PERP). Section 4 described
the Proximal Policy Optimisation algorithm applied on the RL version of the
PERP introduced in Sect. 5. Experiment setups and results are discussed in

1 https://www.preqin.com/insights/research/blogs/what-private-equitys-record-dry-
powder-haul-means-for-the-industry.
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Sect. 6 and 7. Finally, the last section provides our conclusions and proposes
some possible perspectives.

2 Related Works

Recommitment strategies are essential to keep investors constantly invested at
some target allocation. To the best of our knowledge, few studies have tried
to model this as an optimisation problem. They generally rely on some rules
of thumb lacking robustness and flexibility. In [4], authors considered that the
entire private equity allocation should be recommitted to new funds every year
without taking into account past portfolios evolution. Nevin et al. in [11] based
their recommitment strategy on average rates of distributions and commitments.
New commitments should be made if the committed capital does not reach a
target threshold to compensate the difference. This strategy assumes constants
rates which seems very illusory over time. In [18], de Zwart et al. proposed recom-
mitment strategies for funds aiming to maintain stable the exposure to PE. The
strategy’s key feature is the level of new commitments in a given period which
depends on the current portfolio’s characteristics. Importantly, de Zwart’s strate-
gies does not require to forecast funds’cashflows. Although they consider 100%
PE portfolios, their last suggested strategy is a first attempt to design dynamic
recommitment strategies relying on past portfolio development. Finally, Oberli
et al. in [12] extended de Zwart’s work to multi-asset class portfolios includ-
ing stocks and bonds. These two last contributions solely rely on handcrafted
recommitment strategies to control the investment degree (ID), i.e., PE expo-
sure. While they are innovative and improving attempts without the need to
forecast future cashflows, they have been built on specific and limited datasets
with given market conditions. Building recommitment strategies in various mar-
ket conditions is a challenging task. In this work, we investigate Reinforcement
Learning to discover promising recommitment policies using the policy-based
PPO algorithm. Policy-based algorithms [13,15] have been motivated by the fact
that solving a RL problem is all about finding a sequences of actions even for
value-based algorithms [6,10]. Discovering and predicting the best actions avoid
the computational burden to compute all state values. Besides, when the action
space is continuous or very large, policy-based approaches are more attractive
than values as we do not need to solve an optimisation problem to select the
best action.

3 Problem Description

This section describes the Private Equity Recommitment (PERP) by considering
a single LP investor owning a 100% private equity portfolio. To minimize the
opportunity cost, the investor’s primary target is to remain fully invested while
avoiding cash shortage. Let us define P(t) = {f}M

i=1 the set of active funds in
the portfolio at time t. In order to measure its degree of investment, the fraction
of total allocated capital that is actually invested can be computed as follows:
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ID(P, t) =

∑

f∈P(t)

NAV (f, t)

∑

f∈P(t)

NAV (f, t) + Cash(P, t)
(1)

where
∑

f∈P(t)

NAV (f, t) represents the sum of all Net Asset Value (NAV ) for the

underlying funds in the portfolio at period t. Cash(P, t) accounts for the global
uninvested cash in the portfolio, i.e., uncalled capital and possible distributions.
Ideally, the investment degree ID should be as close as possible to 1. A trivial
but not viable solution would be to bring Cash(P, t) to 0 but this is without
counting on future and inopportune capital calls exceeding the investor resources
capacities. Becoming a defaulting investor once capital has been committed is
subject to strong financial and reputational penalties. The PERP is therefore a
challenging problematic for LP investors as they constantly need to stay close to
the boundary without over-crossing it. In [18], authors modelled the problem as a
sequence of single-period portfolio optimisation problems maximizing subsequent
investment degrees using the following formulation:

min
C(P,t)

Et

[
(1 − ID(P, t + 1))2

]
(2)

where the C(P, t) represents the optimal amount of capital to be recommitted
at t. Note that this model only determines the optimal recommitment level with
regards to the next period. This is debatable as the committed capital is called
progressively over the investment period, i.e., roughly during the first 6 years.
With respect to formulation Eq. (2), the optimal level of commitment at period
t is therefore:

C(P, t) = Et

(
Cash(P, t) + D(P, t + 1) − ∑τ

i=1 γt+1,i+1C(P, t − i)
γt+1,1

)

(3)

with Et the conditional expectation, Cash(P, t) the uninvested cash in the port-
folio, D(P, t) representing distributions for the next period, C(P, t−i) the capital
committed i period ago and γt+1,i+1 is the fraction of the capital committed i
periods ago. γt+1,i+1 enables to compute the total capital called at the end of
quarter t + 1, i.e.,

CC(P, t − i) =
τ∑

i=0

γt+1,i+1C(P, t − i) with τ representing the maximum fund

age at which capital can still be called. Interested readers can refer to [18] for
more details about the proof.

One can observe that the analytical solution requires to forecast distributions
(see [8,16]) at t+1 and the fraction of the capital committed in the past that will
be called. Although prediction models can be developed to approximate future
distributions, it is very unlikely to guess future capital calls as direct investments
in private companies are made at the discretion of the fund’s management.
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Some works [12,18] in the literature have tried to cope with this issue by engi-
neering strategies using only available and past quantities. These strategies can
be likened “heuristics” to approximate the optimal amount to be recommitted
at each period and are defined as follows:

– DZ1(P, t) = D(P, t);
– DZ2(P, t) = D(P, t) + UC(P, t − 24);
– DZ3(P, t) = 1

ID(P,t) × (D(P, t) + UC(P, t − 24))

Strategy DZ1(P, t) recommits only current distributions at t while the strat-
egy DZ2(P, t) incorporates the uncalled capital made 24 quarters ago, i.e.,
UC(P, t − 24). The inclusion of this quantity is based on the observation that
unallocated but committed capital for older funds that already passed their
maximal NAV’s peak is unlikely to be called. These funds are typically in the
divestment period. The last strategy DZ3(P, t) scales recommitments obtained
from DZ2(P, t) with the inverse of the current investment degree. If the invest-
ment degree is high, the recommitted capital will be decreased. Conversely, a low
investment degree will amplify the recommitted capital. This allows to perform
some kind of active control to adjust the level of recommitment to reach and
remain stable at a target allocation.

In this paper, we propose to learn an active control system to recommit at
each period. Instead of relying on cashflow predictions and strategies’ engineering
which require strong expert knowledge, we posit that recommitment policies
could be learnt using a policy-based algorithm introduced in the next section.

4 Proximal Policy Optimisation

As aforementioned in Sect. 2, the number of approaches relying on policy learn-
ing has flourished since recent years. They all try to find a trade-off between
fast training and stability. Making large steps in the policy update can be disas-
trous, especially for on-policy algorithms which could never recover from subse-
quent updates. Among all existing alternatives in the literature, we considered
the Proximal Policy Optimisation (PPO) algorithm [15] due to its simplicity.
Although the PPO algorithm was released long after the Trust Region Policy
Optimisation (TRPO) [13] which was the first of its kind, the PPO policy update
is simpler but empirically seems to perform at least as well as TRPO relying on
a second-order approach. But before diving into the stability improvement pro-
posed in the PPO algorithm, let us recall the foundations, i.e., the vanilla policy
gradient. Let πθ represents a policy as a function of the parameter θ, the current
state st, the taken action at and the received reward rt at time t. A trajectory τ
is a sequence of states and actions representing the path taken by an agent. In
Reinforcement Learning, the goal is to discover the trajectory maximizing the
expected return J(θ) = Eπθ

[R(τ)] by updating sequentially the weights θ as
follows: θk+1 = θk + α ∗ ∇θJ(θk) where ∇θJ(θk) represents the policy gradient
and is expressed as ∇θJ(θ) = E [R(τ)∇θ log πθ(at|st)]. R(τ) can take different
forms as suggested in [14]:
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– The total reward trajectory:
∞∑

t=0
rt

– The future reward from action at or rewards-to-go:
∞∑

t=t′
r′
t

– Future reward with baseline:
∞∑

t=t′
r′
t − b(st)

– State-action value function: Qπθ (st, at)
– Advantage function: Aπθ (st, at) = Qπθ (st, at) − V π(st)

All the previous choices lead to the same expected value but have different
variance. The formulation using the advantage function is extremely common
as it uses the state-action value function and the estimation value of the state
as baseline to reduce the variance of the gradient. The PPO algorithm relies on
an estimation of the advantage function and tries to avoid parameter updates
that change the policy too much at one step. In the same way as TRPO, the
loss function is built to measure of how policy πθ performs relatively to an old
policy πθold

:

L(θ, θold) = E
[

Aπθ (st, at)
πθ(at|st)

πθold
(at|st)

]

(4)

While the TRPO algorithm uses the hard constraint DKL(θ||θold) < λ to
limit the KL-divergence between both policies, the PPO algorithm relaxes the
hard constraints and:

– either penalizes the KL-divergence directly in the loss function. This is the
PPO-penalty version which we did not consider in this work.

– or clips the ratio πθ(at|st)
πθold

(at|st)
in the loss function to remove incentives for the

new policy to get far from the old policy. Note that the KL-divergence is not
used anymore as constraints nor as a penalty.

The PPO-clip algorithm considered in this work is depicted in Algorithm
1. Contrary to the penalty version in which penalty coefficients are adjusted
automatically during training, PPO-clip requires a static hyper-parameter ε use
to clip the ratio between the policies. Due to space restriction, we will not go
further into details but more explanations can be obtained from the original
paper [15].

5 Private Equity Recommitment as RL Problem

As described in Sect. 3, the PERP can be solved using two main methodolo-
gies. While the first one relies on cashflow forecasting, the second one engineers
recommitment functions only using past and current quantities from portfolios.
Instead of building explicitly these functions, one could consider a Markov Deci-
sion Processes (MDP) to model a recommitment system and searches for the
best policy in order to maintain a target investment degree while minimizing
the risk of default.
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Algorithm 1. PPO-clip version
1: Initialize policy parameters θ1 and value function parameters φ1
2: for k ∈ {1, ..., M} do

3: Sample a set of trajectories {τi}M
i=1 using the policy πθk

4: Create a batch B of transitions (si
t, ai

t, ri
t) ∀t ∈ {1, ..., |τi|} ∀i ∈ {1, ..., M}

5: Compute rewards-to-go R̂i
t, i.e. rewards from action ai

t, ∀t ∈ {1, ..., |τi|} ∀i ∈ {1, ..., M}
6: Estimate the advantages A

πθk (si
t, ai

t) using the value function Vφk

7: Perform policy update:

θk+1 = argmax
θ

1
M

M∑

i=1

1
|τi|

Ti∑

t=1

[

min

(

Aπθ (si
t, ai

t)
πθ(ai

t|si
t)

πθold
(ai

t|si
t)

, g
(
ε, Aπθ (si

t, ai
t)

)
)]

with g
(
ε, Aπθ (si

t, ai
t)

)
= clip

(
πθ(ai

t|si
t)

πθold
(ai

t|si
t)

, 1 − ε, 1 + ε

)

8: Perform value function update by minimizing mean-squared error:

φk+1 = argmin
φ

1
M

M∑

i=1

1
|τi|

Ti∑

t=1

[
Vφ(s

i
t) − R̂i

t

]2

9: end for

5.1 Modelling

Figure 1 illustrates how the PERP can be turned into a Reinforcement Learning
problem. Each state st represents the portfolio position at time t and contains
the following information:

– ID(P, t): Investment degree at time t
– D(P, t): Distributions obtained from divestments at time t
– CC(P, t): Capital called at time t
– UC(P, t − 24): Uncalled capital from commitment made 24 quarters ago
– Cash(P, t): Portfolio cash at time t
– NAV (P, t): Net Asset Value at time t

The state st gives us the opportunity to control the amount of recommitted
capital at time t, i.e., the continuous action at depicted in Fig. 1. So far, the RL
model is trivial to obtain. However, we need to be extremely cautious regarding
the reward provided to the agent. Although we could define the reward by min-
imizing the deviation to the ideal investment degree as done in Eq. (2), there is
no control on the risk of default. Two alternatives open to us: (1) either we train
on multiple portfolios per episode and adjust the objective using the standard
deviation or (2) we constrain the agent to remain below the fateful boundary,
i.e., ID(P, t) = 1.0. Needless to say, alternative (2) is more challenging for the
agent but we argue that it will be more generalizable than alternative (1). For
this purpose, we define a local reward rvalid

t and a global reward rID
τ . While the

former is applied after each action (recommitment), the second one only occurs
at the end of a valid episode. We recall that a valid episode ends when the maxi-
mum number of steps has been reached. The agent is rewarded after each action
depending on whether the future state of the portfolio is valid:

rvalid
t =

{
0 if ID(P, t + 1) > 1
1 if else
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Fig. 1. Reinforcement learning of private equity policies

If a situation of default happens, the episode is stopped and does not reach the
maximum number of steps allowed. The accumulated reward obtained during the
episode would finally correspond to the number of periods in which the portfolio
remained valid. This reward function strictly increases monotonically to drive
the agent to simply learn to provide valid episodes. Once the agent has learnt to
recommit, i.e., it reaches the maximum number of steps per episode, it receives

an additional and final global reward rID
τ =

T∑

t=1
ID(P, t) where T is the maximal

number of steps per episode. Note that the sum could be replaced by the min
to maximize the worst investment degree obtained during an episode. Finally,
the total reward of a valid episode is the accumulated local reward added to the
shifted global reward:

rτ = rID
τ × 10(digits(T )+1) +

T∑

t=1

rvalid
t (5)

where digits(T ) is the number of digit of T . For an episode lasting 100 steps,
#digit(100) = 2. This shifting mechanism is a constraint handling approach to
make sure that non-valid episodes are guaranteed to receive a total reward lower
than valid ones.

5.2 Synthetic Cashflows

Private equity data is a sensitive topic. Private equity players generally protect
their rich cashflow histories. Although some financial data providers propose
commercial libraries for very specific periods and economies, their data are gen-
erally incomplete. Historical cashflows’s data capture the fund’s dynamics which
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is an essential information for training. Multiple works including [18] and [12]
relied on commercial libraries to draw conclusions or train their own model.
In this work, we adopt another strategy to simulate portfolio evolution over
time. Since 1973, the Yale University’s endowment has been investing in private
equity using a methodology for modelling illiquid assets proposed by Takahashi
and Alexander (see [16]). Referred to as the mother of all cashflows’s models, this
Yale-model can be applied to private equity and real asset funds (e.g. natural
resources and infrastructures). Although, according to Takahasi and Alexander,
the generated projections fit historical data, the cashflows are modelled as deter-
ministic which limit their applicability.

Instead of depending on a commercial solution to acquire historical cashflows
which are often expensive and incomplete, synthetic fund cashflows have been
preferred in this work as they represent a more practical solution. This is the
reason why we decide to rely on an alteration of the Yale-model to make it
probabilistic. These synthetic cashflows are created by funnelling data generated
by the robust and tried-and-tested, albeit over-simplistic, Yale-model through a
noise-adding algorithm to construct a new dataset. The resulting dataset shows
the statistical features and the useful patterns needed for capturing the liquidity
risks associated with portfolio of funds. The synthetic cashflows considered in
this work have been provided by T.Meyer, an expert in private equity and co-
author of this paper.

6 Experimental Setups

In order to fairly evaluate the resulting recommitment policies with the state of
the art, simulations have been performed according to the parameters described
in [18]. Due to the lack of secondary market, a portfolio cannot be bought instan-
taneously. We empirically created initial but mature portfolios over a year by
committing equal capital to 16 randomly selected private equity funds. We also
apply 30% initial overcommitment in setting up all portfolios to be in line with
the experiments performed in [18].

A portfolio simulation consists in recommitting some capital to new selected
fund every quarter. The amount of capital is determined by the current policy
sampled from the critic network (see Algorithm 1). Table 1a details the simu-
lation parameters while Table 1b described the PPO-clip parameters. A single
portfolio simulation last 104 quarters, i.e., 26 years. Capital is recommitted uni-
formly into 4 randomly selected funds. The number of portfolio simulations is
therefore equal to the number of episodes:

#episodes =
steps per epoch × epochs

104
= 125000 (6)

Strategies DZi(P, t) for i ∈ {1, 2, 3} proposed in [18] have been evaluated
with the same parameters and over the same period. All experiments presented
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in this paper were carried out using the HPC facility of the University of Luxem-
bourg [17]. The python library SpinningUp [1] has been considered for the PPO-
clip implementation. A distributed implementation using OpenMPI [5] has been
considered to work with multiple environment in parallel. The discount param-
eter γ has been set to 1.0 since an episode’s length is finite and last 26 years.
The clip ratio ε has been set to 0.2 and represents how far can the new policy
go from the old policy while still improving the objective. PPO-clip ’s networks,
i.e., actor and critic have both two hidden layers of 64 nodes. The ReLU function
[2] has been chosen as activation function.

Table 1. Parameters

Parameters Training Validation

Cashflows frequency quarterly quarterly

Investment period 26 years 26 years

Funds per recommitment 4 4

Fund selection random random

Number of

simulated portfolios
#episodes 1000

(a) Simulation parameters

Parameters Value

Steps per epoch 26000

Gamma 1

Epochs 500

# episodes 125000

Clip ratio ε 0.2

Pi lr / vf lr 3e−4 / 1e−4

Hidden layers [64, 64]

(b) PPO-clip parameters

7 Experimental Results

With regards to the experimental setups described in the previous section, Fig. 2
illustrates the average rewards recorded during policy optimisation/training. One
can easily observe that the PPO-clip algorithm required few epochs to generate
valid policies. The average rewards curve then steadily increases to reach what
we can consider as a plateau in terms of improvements. Indeed, we can note
periodic falls indicating that the algorithm have strong difficulties to improve
more significantly the investment degree without breaking the cash constraint.
When arrived at the rupture point, a policy yielding non-valid episodes is more
likely to be generated leading to a steep fall in terms of overall rewards. When
a fall occurs, the algorithm tries to recover until the next rupture. This pattern
can be easily observed in Fig. 2. Due to the shifting constraint handling approach
implemented in this work, non-valid and valid episodes do not have the same
reward scale which explains these deep reward falls every time the algorithm
encounters a non-valid episode.

The best policy obtained after training is depicted in Fig. 2. In order to
validate results, the obtained policy has been applied on a test set of 1000 port-
folios. After recording the investment degree evolution and the validity of each
portfolio, the average investment degree as well as the surrounding 95% confi-
dence interval have been computed and are depicted in Fig. 3. We first observe
that the percentage of overinvested portfolios remains extremely low, i.e. ≈0.7%.
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Fig. 2. Evolution of the average rewards per epoch

The investment degree varies strongly during the first 6 years going from 0.4 to
almost 1.0. After the first 6 years, the average investment degree slightly increases
to remain stable around 0.9.
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Fig. 3. Best policy obtained with the PPO-clip algorithm

We now compare the investment degree obtained with state-of-the-art strate-
gies engineered in [18], namely DZi for all i ∈ {1, 2, 3}. Each DZi have been
applied on the same test set. Table 2 reports the average investment degree, the
standard deviation of the investment degree and the fraction of overinvested
portfolios obtained for each strategy including the best policy recommitment
PPO − clipbest. Although the active recommitment period only lasts 26 years,
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we have still recorded the investment degree until portfolios were totally divested
(38 years) to observe if there is no delay effect when applying a specific strat-
egy. None of the 3 strategies have generated invalid portfolios. The investment
degree reached by DZ1 and DZ2 remains low, i.e., below 0.6. Nevertheless,
DZ3 obtained the best results among the 3 strategies as reported in [18]. The
recommitment policy PPO − clipbest outperforms the 3 strategies by reaching
a maximum investment degree above 0.8. Nonetheless, the DZ3 reports better
results during the first years as show in Fig. 4. The initial condition of the port-
folio seems to be a challenge for the recommitment policy. Nevertheless, it is
well-known in the literature that portfolio inception is a problem on its own.
Therefore, we are not surprised by this under-performance at the beginning of
the portfolio lifetime. In [18], authors discarded the first three years of the port-
folio’s lifetime to avoid the influence from the initial portfolio formation period.

Regarding the percentage of overinvested portfolios, it comes as no surprise
to encounter some invalid portfolios when getting closer to ID(P, t) = 1.0. This
is due to cashflow variability which is very difficult to predict. An alternative
would be to replace the strong cash constraint by a soft one taking the form
of an additional objective. Most of the LP investors generally own multi-class
asset portfolios. If liquidity is missing due to an unexpected capital calls, more
liquid assets could be sold. Of course, such a situation should be tempered and
the injected cash required to satisfy capital calls should be minimized. For this
purpose, one could consider a multi-objective reinforcement learning algorithm.

Table 2. Summary statistics of the investment degree in recommitment strategies

PPO − clipbest DZ1 DZ2 DZ3

Years Mean Std Invalid (%) Mean Std Invalid (%) Mean Std Invalid (%) Mean Std Invalid (%)

0 0.07 0.02 0.00 0.07 0.02 0.0 0.07 0.02 0.0 0.07 0.02 0.0

1 0.29 0.03 0.00 0.29 0.03 0.0 0.29 0.03 0.0 0.30 0.03 0.0

2 0.52 0.04 0.00 0.52 0.04 0.0 0.52 0.04 0.0 0.55 0.03 0.0

3 0.68 0.06 0.00 0.69 0.04 0.0 0.69 0.04 0.0 0.75 0.03 0.0

4 0.73 0.06 0.00 0.75 0.04 0.0 0.75 0.04 0.0 0.83 0.03 0.0

5 0.74 0.07 0.00 0.76 0.04 0.0 0.76 0.04 0.0 0.85 0.04 0.0

6 0.74 0.07 0.08 0.71 0.05 0.0 0.71 0.05 0.0 0.81 0.05 0.0

7 0.71 0.08 0.20 0.63 0.05 0.0 0.63 0.05 0.0 0.74 0.05 0.0

8 0.71 0.07 0.20 0.56 0.04 0.0 0.57 0.05 0.0 0.70 0.04 0.0

9 0.75 0.05 0.20 0.54 0.03 0.0 0.56 0.03 0.0 0.72 0.04 0.0

10 0.80 0.05 0.20 0.56 0.03 0.0 0.58 0.03 0.0 0.76 0.03 0.0

11 0.84 0.05 0.23 0.58 0.02 0.0 0.60 0.02 0.0 0.79 0.03 0.0

12 0.85 0.05 0.40 0.59 0.02 0.0 0.62 0.02 0.0 0.81 0.03 0.0

13 0.85 0.05 0.58 0.59 0.02 0.0 0.62 0.02 0.0 0.81 0.03 0.0

14 0.84 0.06 0.70 0.58 0.02 0.0 0.60 0.02 0.0 0.79 0.03 0.0

15 0.85 0.06 0.70 0.56 0.02 0.0 0.58 0.02 0.0 0.77 0.03 0.0

16 0.85 0.06 0.70 0.55 0.02 0.0 0.57 0.02 0.0 0.76 0.03 0.0

17 0.86 0.06 0.70 0.54 0.02 0.0 0.57 0.02 0.0 0.76 0.03 0.0

18 0.86 0.07 0.70 0.55 0.02 0.0 0.58 0.02 0.0 0.77 0.02 0.0

19 0.86 0.07 0.70 0.55 0.02 0.0 0.58 0.02 0.0 0.78 0.02 0.0

20 0.85 0.07 0.70 0.55 0.02 0.0 0.58 0.02 0.0 0.79 0.02 0.0

(continued)
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Table 2. (continued)

PPO − clipbest DZ1 DZ2 DZ3

Years Mean Std Invalid (%) Mean Std Invalid (%) Mean Std Invalid (%) Mean Std Invalid (%)

21 0.85 0.08 0.70 0.55 0.02 0.0 0.58 0.02 0.0 0.78 0.02 0.0

22 0.85 0.08 0.70 0.54 0.02 0.0 0.58 0.02 0.0 0.78 0.02 0.0

23 0.85 0.08 0.70 0.54 0.02 0.0 0.57 0.02 0.0 0.77 0.02 0.0

24 0.86 0.08 0.70 0.54 0.02 0.0 0.57 0.02 0.0 0.77 0.02 0.0

25 0.86 0.08 0.70 0.54 0.02 0.0 0.57 0.02 0.0 0.77 0.02 0.0

26 0.85 0.08 0.70 0.54 0.02 0.0 0.57 0.02 0.0 0.78 0.02 0.0

27 0.81 0.09 0.70 0.53 0.02 0.0 0.56 0.02 0.0 0.76 0.02 0.0

28 0.73 0.08 0.70 0.49 0.02 0.0 0.52 0.02 0.0 0.71 0.03 0.0

29 0.62 0.08 0.70 0.44 0.02 0.0 0.46 0.02 0.0 0.62 0.03 0.0

30 0.50 0.07 0.70 0.37 0.02 0.0 0.39 0.02 0.0 0.51 0.03 0.0

31 0.38 0.06 0.70 0.29 0.02 0.0 0.31 0.02 0.0 0.40 0.03 0.0

32 0.27 0.05 0.70 0.21 0.02 0.0 0.22 0.02 0.0 0.29 0.03 0.0

33 0.17 0.04 0.70 0.14 0.02 0.0 0.14 0.02 0.0 0.19 0.03 0.0

34 0.09 0.02 0.70 0.07 0.01 0.0 0.08 0.01 0.0 0.10 0.02 0.0

35 0.04 0.01 0.70 0.03 0.01 0.0 0.03 0.01 0.0 0.05 0.01 0.0

36 0.01 0.01 0.70 0.01 0.01 0.0 0.01 0.01 0.0 0.02 0.01 0.0

37 0.00 0.00 0.70 0.00 0.00 0.0 0.00 0.00 0.0 0.00 0.00 0.0

38 0.00 0.00 0.70 0.00 0.00 0.0 0.00 0.00 0.0 0.00 0.00 0.0
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Fig. 4. Comparison between de Zwart’s strategies [18] and the policy obtained with
the PPO-clip algorithm

8 Conclusion

Recommitting into new PE funds is crucial for LP investors to maintain high
allocation to private equity. Current methodologies rely on cashflow forecast-
ing and over-simplistic approaches which are lacking of flexibility. Although this
problem is a key of major importance, few works have attempted to develop
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a robust and flexible recommitment system. Perhaps, this is due to the lack of
data. This is the reason why we adopted a different strategy consisting in learning
recommitment policies through Reinforcement Learning. Using synthetic cash-
flows build from the traditional but proven Yale-model, we applied Proximal
Policy Optimisation to the Private Equity Recommitment Problem to maximise
the investment degree while avoiding cash shortage situations by constraining
the agent. Results obtained after training confirm that the recommitment policy
outperform the strategies engineered in [18] while limiting the fractions of invalid
portfolios. This work was a first proof of concept and subsequent experiments
will be performed using different RL algorithms. Future works will investigate
a strategy to handle the cash constraint more efficiently. Another avenue for
research would be to model the cash constraint as a soft constraint, typically by
considering it as a second objective. Both opportunity cost and cash shortage
are two conflicting objectives. Finally, this work could be extended to take into
account multi-class asset portfolios.
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Abstract. Markov decision processes are typically used for sequential
decision making under uncertainty. For many aspects however, ranging
from constrained or safe specifications to various kinds of temporal (non-
Markovian) dependencies in task and reward structures, extensions are
needed. To that end, in recent years interest has grown into combina-
tions of reinforcement learning and temporal logic, that is, combinations
of flexible behavior learning methods with robust verification and guar-
antees. In this paper we describe an experimental investigation of the
recently introduced regular decision processes that support both non-
Markovian reward functions as well as transition functions. In particu-
lar, we provide a tool chain for regular decision processes, algorithmic
extensions relating to online, incremental learning, an empirical evalua-
tion of model-free and model-based solution algorithms, and applications
in regular, but non-Markovian, grid worlds.

Keywords: Sequential decisions · Safe reinforcement learning ·
Non-Markovian dynamics · Regular decision process · Linear temporal
logic

1 Introduction

Sequential decision making under uncertainty, often simply denoted by its core
algorithmic subfield reinforcement learning (RL) [34,36,39], has been showing a
huge amount of progress the last decades. Among the recent breakthroughs is the
progression of DeepMind’s RL methods solving the board game Go [32], chess,
Atari computer games, the real-time strategy game StarCraft II, and lately chip
design [26]. The algorithms employ combinations of (Monte Carlo) planning and
value function approximation using deep neural networks.

Underlying typical RL systems is the Markov decision process (MDP) [30]
in which states carry all necessary information to choose (optimal) actions. The
Markov property dictates that given the present, the future is independent of the
past. To scale to more complex problems, one can exploit structure in the space
of state(-action) spaces, or policies or value functions, to utilize abstractions
and approximations, for example as value function approximation, state space
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abstractions [37], and hierarchical decompositions, cf. [36]. Many current deep
RL algorithms too assume the environment behaves as an MDP [38].

To scale to larger problems, the Markov property is no longer adequate, and
one may require dependence on a history of events and observations. For example,
consider a robotic waiter working in a restaurant. It needs to deliver food and bev-
erages to tables, but only after it has been requested by guests, and at the end the
guests need to pay the price of the items delivered earlier. However, keeping a his-
tory of every possible event that ever occurred soon becomes practically infeasible.
One well-known class of non-Markov MDP extensions is the partially observable
MDP [33] in which the current state can be represented as a probability distribution
over (latent) state features, denoted a belief state. Despite the existence of effective
POMDP algorithms, many in robotics domains, the general class of POMDPs is
computationally much more complex than MDPs, it is not easy to decide what the
belief state should include exactly, and how much history should be included, and
updating and interpreting the belief states is non-trivial.

A prominent RL direction [23] is to model dependence on the arbitrary past
explicitly resulting in non-Markovian variants of MDPs. Inspired by seminal work
[3] the idea is to utilize modern logical languages such as linear temporal logic [29]
to represent goals and reward functions over past traces, and to employ formal
computer science techniques (e.g. automata, verification and model-checking)
in decision making. A core idea here is to compile a temporal specification of a
reward function into an automaton that monitors the fulfillment of the temporal
formula. Monitors allow for compiling the original non-Markov problem back into
the MDP framework such that all existing algorithms, including deep RL, can be
employed. This fruitful marriage of RL and formal verification combines flexible
behavior learning algorithms with formal performance guarantees.

One motivation for employing temporal logic in RL comes from the ability
to elegantly specify complex reward structures as in the waiter example, where
earnings depend on an ordered series of events in the history. Another, more
general, motivation is the need to constrain RL behaviors using (declarative)
knowledge about which behaviors are desired or considered safe [15], for exam-
ple to teach an autonomous car how to drive while still obeying traffic rules.
Transparent safety of learned behaviors is often part of a general desire for AI
systems to behave responsibly and explainable [19,24,28].

In this paper we empirically investigate algorithmic variations in one of the
most recently introduced models, regular decision processes (RDP) [6], in which
reward functions and transition functions can be specified using temporal logic.
We employ RDPs specifically for grid worlds, which are archetypical problem
scenarios in RL and allow for focused experimentation with new representa-
tions and algorithms. More specifically, our contributions are i) a novel tool
chain implementing RDPs, utilizing existing algorithms and tools for RL and
model checking, ii) an empirical investigation of the recently introduced RDPs
in grid worlds, iii) algorithmic RL extensions to learn RDP behaviors based on
Monte Carlo value estimation and incremental (online) compilation of RDPs, and
iv) initial steps towards an (empirical) investigation of the trade-offs between
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temporal logical specifications and the complexity of learning. The paper is orga-
nized as follows: we first provide all necessary background in the next section,
after which we discuss our approach in Sect. 3, then we continue with an exten-
sive experimental evaluation in Sect. 4 and we conclude in Sect. 5.

2 Background

Here we will formalize MDPs and basic solution algorithms, after which we
introduce non-Markov reward functions and their corresponding temporal logic
formalizations. Furthermore we introduce the general compilation of logical spec-
ifications into automata functioning as monitors that can be combined with the
original MDP into extended MDPs, which can be solved using off-the-shelf solu-
tion methods. In addition, we describe automata-based shaping techniques to
deal with the resulting sparse MDPs. Last we introduce RDPs, which support
non-Markovian aspects in both reward and transition functions.

2.1 Markov Decision Processes

An MDP M is a tuple M = 〈S,A, T,R〉, where S is the set of states, A the set
of actions, T : S × A × S → [0, 1] the transition function yielding a transition
probability and R : S ×A×S → R the real-valued reward function. Actions only
applicable in state s are denoted a ∈ A(S). A policy maps to each state s ∈ S
an action a ∈ A and is denoted π. Additionally, a discount factor γ ∈ [0, 1] is
used to discount rewards obtained in the future.

As said, MDPs adhere to the Markov Property : given the present (st), the
future (st+1) is independent on the past (st−1). In other words, everything that
is needed to learn from the past is embedded in the present state st. The Markov
Property holds for all states s ∈ S and is formally expressed as:

p(st+1|st) = p(st+1|s1, s2, . . . , st)

A labelling function L : S → 2P , where P is a finite set of atomic propositions
and S the set of states enables a state representation using features.

Solving an MDP comprises computing an optimal policy. A policy is opti-
mal iff it maximizes the expected discounted sum of rewards for every state
s ∈ S. Methods for solving decision making problems are generally divided into
model-based and model-free methods [34]. Model-based methods, generally called
dynamic programming (DP), can employ the full model (T and R) to plan opti-
mal sequences of actions. Model-free methods, generally called reinforcement
learning (RL), do not have knowledge of the model and require sampling, i.e.
trial-and-error learning and use that experience to find optimal policies.

Dynamic Programming (DP) methods such as value and policy iteration find
optimal policies typically by employing a value function that expresses for each
state how good is it for the agent to be in that particular state, and it represents
the (expected) discounted future reward that can be obtained from that state,
by employing a particular policy. The equation used to calculate a state value is
known as the Bellman Equation, which formalizes how a state’s value, denoted
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υ(s), is evaluated in terms of expected returns, expressing a relationship between
the value of a state and the values of its successor states. DP algorithms use it
iteratively to update the value of all states until convergence to the optimal value
function υ∗(s) using the following Bellman Optimality Equation:

υ∗(s) = max
a∈A

∑

s′∈S

T (s′|s, a) [R(s, a, s′) + γ υ∗(s′)]

An optimal action a for s is computed using υ∗(s), T and R.
Where DP methods are concerned with computing a value function, RL tries

to learn value functions using returns obtained from interaction with the MDP.
In order to find a policy in absence of a model, one needs the state-action value
for each action a ∈ A in state s ∈ S, denoted q(s, a), in order to determine
the best policy. A straightforward extension of the previous update rule results

in q∗(s, a) =
∑

s′∈S T (s′|s, a)
[
R(s, a, s′) + γ max

a′∈A
q∗(s′, a′)

]
. One-step RL algo-

rithms employ it to update action-values after each step in the environment and
select their actions based on π∗(s) = arg maxa q(s, a).

In addition to bootstrapping methods above, where values of states (and
actions) are computed using other values, one can employ more unbiased estima-
tion methods for model-free RL such as Monte Carlo estimation (MC) in which a
value is estimated based on the average return of full sample traces in the MDP,
cf. [34]. In Sect. 3 we employ MC as our model-free RL algorithm for RDPs.

2.2 Non-Markovian Decision Processes

If rewards depend on more than just the current state, we end up with
Non-Markovian Reward Decision Processes (NMRDPs) [3], a subset of Non-
Markovian Decision Processes (NMDPs). Temporal logic can be used to specify
the conditions under which reward is obtained. As with MDPs, the states of an
NMRDP can be enhanced by labelling function L : S → 2P and propositions P ,
where each state s ∈ S is a valuation over P , thus s ∈ 2P .

Formally, an NMRDP is denoted as the tuple M = 〈S,A, T, R̄〉, where S,
A and T are as in an MDP, and R̄ is defined as R̄ : (S × A)∗ → R. In
words, the reward is specified as a real-valued function over finite state-action
sequences, or traces, where a trace captures the history of states and is denoted
h = 〈s0, . . . , sk〉. Because the reward is now dependent on the full history, it no
longer fits to define state or state-action values as before. Instead, a temporally
extended reward function for a given trace h and reward formulae ϕ is [4]:

R̄(h) =
∑

1 ≤ i ≤ n : h |= ϕi

ri (1)

where the set of pairs {(ϕi, ri)n
i=1} is assumed to be specified for R̄. That is,

an agent receives reward ri at state s ∈ S of trace h that satisfies temporal
formula ϕi. The value of a trace h is in turn defined as the accumulation of
rewards obtained during trace traversal, possibly discounted by discount factor
γ [4]. The value of such a trace can now formally be defined as follows:
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υ(h) =
|h|∑

k=1

γk−1 R̄(〈h(1), h(2), . . . , h(k)〉)

where discount factor γ ∈ [0, 1] as usual and h(k) denotes the pair (sk−1, ak).
Because NMRDPs define the value of traces instead of individual states, a policy
no longer maps states to actions as before. Instead, a policy for an NMRDP is
a mapping from histories to actions. The value of a policy in terms of expected
return thus becomes the expected discounted sum of rewards over a possibly
infinite amount of traces. The distribution over traces is defined by the initial
state s0, the transition function T and policy π. The expected value of infinite
traces can formally be defined as υπ(s) = Eh ∼ M,π,s0υ(h).

2.3 Temporal Logic, Automata and Product MDPs

Temporal logic to express non-Markovian aspects has a history [3,29] containing,
e.g., Linear Temporal Logic [29] (LTL). It uses the standard Boolean connectives
of propositional logic, i.e. ∧, ∨ and ¬, with the addition of temporal connec-
tives G (always), F (eventually), X (next) and U (until). More recent variations
restrict to finite traces: Linear Temporal Logic over Finite Traces, denoted LTLf,
and Linear Dynamic Logic over Finite Traces which allows for regular expres-
sivity [12]. Using LDLf, goals can be as expressive as regular expressions while at
the same time providing a more attractive specification syntax. Formally, LDLf

formulae φ can be built using an atomic property tt for the logical true, a propo-
sitional formula ϕ and a path expression ρ, which is a regular expression over
propositional formulae φ. In addition to regular expression constructs, ρ uses a
test construct ϕ?, indicating to only continue evaluation when ϕ evaluates to
true. The LDLf formalism, as presented by [12], is expressed in Eqs. (2) and (3).

ϕ ::= tt | ¬ϕ | ϕ1 ∧ ϕ2 | 〈�〉ϕ (2)

� ::=φ | ϕ? | �1 + �2 | �1; �2 | �∗ (3)

Intuitively, one may interpret LDLf formula 〈�〉ϕ as stating that, from the cur-
rent step in the trace, there exists at least one (cf. ∃) execution path that
satisfies regular expression � such that the last step in the trace satisfies ϕ.
Conversely, [�]ϕ states that, from the current step in the trace, all (cf. ∀)
execution paths satisfying regular expression � are such that the last step in
that execution path satisfies ϕ. For example, to formalize the property of a
robotic waiter to always serve guests after they have placed an order, the for-
mula [true∗](order → 〈true∗; served〉)end can be used.

Temporal formulae specified using LDLf can be compiled into Deterministic
Finite Automata (DFA) [4]. Formally, a DFA for formula ϕ is denoted Aϕ =
〈2P , Q, δ, F, q0〉, where 2P is the input alphabet containing all truth assignments
to propositions in P , Q is the state space, δ the transition function, F the set of
accepting states and q0 the initial state.

Core properties that can be expressed in LDLf are safety and liveness [12].
A safety property is used to indicate that something bad should never happen,
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(a) Safety (b) Liveness

h1

h2

1 1

2

2

(c) Grid World

Fig. 1. (left) Automata for LDLf formulae: a) [true∗]〈c∗〉end , b) 〈true∗; c; true∗〉end
(right) A grid world modeled as an RDP

or something good always holds, and can be expressed as [true∗]〈c∗〉end , where c
indicates the good condition and the asterisk (*) indicates c holds at every step
up until and including the last step of the trace. That is, until the end of the trace,
c holds. Conversely, a liveness property indicates that some condition should be
met before the end of the trace and can be expressed as 〈true∗; c; true∗〉end ,
where c is the condition to be met. In words, eventually before the end of the
trace, c holds. Figures 1a and 1b visualize this.

Solving an NMRDP M = 〈S,A, T, {(ϕi, ri)m
i=1}〉, with temporal formulae ϕi

and ri the corresponding rewards, is tackled by formulating the extended MDP
M ′ as M ′ = 〈S′, A, T ′, R′〉 that is equivalent to M in the sense that states can be
mapped in such a way that the mapping yields identical transition probabilities
for T and T ′. Each formula ϕi is compiled into an equivalent automaton, as in
Fig. 1a and 1b, and the cross-product between the original NMRDP M and these
automata is computed, resulting in the extended MDP M ′. Some straightfor-
ward choices should still be made about discounting to prevent infinite reward
exploitation and whether rewards belonging to a formula ϕ can be obtained only
once or multiple times. We omit formal details of this standard construction (but
cf. [4,21]) and refer here to an example later in this paper: Fig. 5 shows a grid
world MDP where a red square needs to be avoided, something which is spec-
ified using the LDLf formula ϕ ≡ [true∗]〈(¬xis1 ∧ ¬yis2)∗〉end , and where the
extended MDP depicted in Fig. 9 is the result of the cross product between the
automaton representing ϕ, the grid world MDP, and the automaton representing
an additional formula expressing a reward of +50 when reaching the top right
corner. Note that the extended model is again an MDP where typical RL and
DP algorithms can be employed.

2.4 Regular Decision Processes: Non-Markovian Dynamics

The concept of an NMRDP can be extended to a decision process in which
not only the reward function, but the transition function too can depend on
the arbitrary past, and where both are represented using a logic like LDLf As
described in Sect. 2.3, these, in turn, can be compiled into automata, which
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allows for rewards and transitions to be monitored, and compiled into product
models yielding an MDP. Such non-Markovian transitions were introduced in
regular decision processes (RDP) [6], which is a fully observable, probabilistic,
non-Markovian, sequential decision making model, where successor states and
rewards can be stochastic functions of the entire history. Just like before, RDP
states are endowed with a labeling function over a set of predicates.

An RDP M is defined as the tuple M = 〈P, S,A,TrL, RL, s0〉, where P is
the set of propositions that induces state-space S with initial state s0, A the
set of actions, TrL the transition function and RL the reward function, where
both TrL and RL are now non-Markovian. Transition function TrL is defined
by a finite set T of quadruples of the form (ϕ, a, P ′, π(P ′)), where ϕ is an LDLf

formula over P , a ∈ A an action, P ′ ⊆ P the set of propositions p ∈ P that are
affected by a when ϕ holds and π(P ′) the distribution over proposition in P ′

that describe the post-action distribution. The reward function RL is specified
using a finite set R of pairs (ϕ, r), where ϕ is an LDLf formula over propositions
in P and r ∈ R a real-valued reward. It is assumed that for the quadruples in
T , the value of variables not in P ′ are not affected by action a [6]. If the set
{(ϕi, a, P ′

i , πi(P ′)) | i ∈ Ia} defines all quadruples for a, then all formulae ϕi

must be mutually exclusive such that ϕi ∧ ϕj is inconsistent for i = j. In other
words, no two formulae ϕi and ϕj can hold at once if both apply to action a
and ϕi and ϕj are not identical. In addition, let s′|P ′ denote the restriction of s′

to properties in P ′. Then, TrL is defined as TrL((s0, . . . , sk), a, s′) = π(s′|P ′) if
quadruple (ϕ, a, P ′, π(P ′)) exists such that s0, . . . , sk |= ϕ and sk and s′ agree
on all variables in P\P ′. That is, given trace s0, . . . , sk, action a and quadruple
(ϕ, a, P ′, π(P ′)) with formula ϕ that is satisfied by s0, . . . , sk, s′ is a possible
next state if it assigns the same value to all propositions not in P ′. If this is the
case, then the transition probability equals the probability π assigns to s′|P ′ . In
all other cases, TrL((s0, . . . , sk), a, s′) = 0.

As an illustration, consider Fig. 1c, outlining a 3 × 3 grid world with the
upper-left state s11 being the initial state and the upper-right state s31 being
a terminal state. Let us define a transition that intuitively states that, when
an agent goes east in the bottom-left state s13 and ends up in the bottom-
center state s23, immediately followed by going east again in s23, the prob-
ability of ending up in the bottom-right state s33 is set to 0.1, denoted
π(s33|{xis2, xis3}) = 0.1. Otherwise, Tr(s23, e, s33) = 1. In other words, the
transition from s23 to s33 depends on the transition from s13 to s23. In addi-
tion, the propositions affected by this transition are defined by P ′ such that
P ′ ⊆ P = {xis2, xis3}. All other propositions are not affected by said transi-
tion. Both transitions can be captured by LDLf formula ϕ1 and ϕ2 as ϕ1 =
〈true∗;¬xis1 ∨ ¬yis3;xis2 ∧ yis3〉end and ϕ2 = 〈true∗;xis1 ∧ yis3;xis2 ∧ yis3〉end .
Given ϕ1 and ϕ2, we can define a quadruple for e that uses ϕ1 or ϕ2 respectively
as (ϕ1, {xis3∧yis3}, 1) and (ϕ2, e, {xis3∧yis3}, 0.1). For brevity, we assume these
are the only quadruples for e, conforming to exhaustiveness and mutual exclu-
sion [6]. Then, let us define two traces h1 and h2 that each reach s33 differently
as h1 = 〈s11, s12, s13, s23, s33〉 and h2 = 〈s11, s12, s22, s23, s33〉. Then, using the
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aforementioned quadruple for e, the affected propositions P ′ and the definition
of TrL, i.e. TrL((s0, . . . , sk), a, s′) = π(s′|P ′), the transition functions on h1 and
h2 from s23 to s33 can be calculated as TrL(h1, e, s33) = π(s33|{xis2, xis3}) = 1
and TrL(h2, e, s33) = π(s33|{xis2, xis3}) = 0.1.

Solving an RDP involves the well known construction of an extended MDP as
a product of all automata monitoring the satisfaction of (transition and reward)
LDLf formulae combined with the initial RDP state space [4,12], resulting in an
MDP that can again be solved by off-the-shelf algorithms. Note that, because
of the combinatorial nature of this construction, the extended MDP does not
necessarily scale well. The equivalence between the RDP and the constructed
MDP entails that optimal policies found in the constructed MDP can be mapped
back to the RDP, thus yielding optimal policies for the initial RDP.

The product models employed in non-Markovian decision process solutions
grow quickly with the number of formulas, see the example in Sect. 2.3. The
result of non-Markovian dependencies is that paths to receiving rewards can
become long, and complicate typical bootstrapping RL methods and exploration.
One general solution for MDPs is reward shaping [27] (RS): giving intermediate
rewards to speed up learning, with the restriction that the extra rewards do not
alter the optimal policy. So-called potential-based RS replaces the original reward
function R : S × A × S → R by an alternative reward function R′(s, a, s′) +
F (s, a, s′) → R, where F (s, a, s′) is a shaping reward function. In turn, this
function can be applied to potential-based RS of the form F (s, a, s′) → γΦ(s′) −
Φ(s) for some Φ : S → R. The way in which RS is applied inherently depends on
the representation of the reward function. For NMRDPs an opportunity arises
to utilize the structure of the DFA representing a reward function [10]. Every
step in the extended MDP can be given a reward proportional to the distance in
that DFA to an accepting state (i.e. when the original reward would be given).

2.5 Related Work

The typical MDP context is well studied and there is an abundance of algo-
rithms and representations [30,34,36,39]. Endowing MDPs with non-Markovian
goal and reward functions has a history with seminal work on model-based set-
tings [3,35] and more recently several subclasses are considered (e.g. probabilistic
vs. deterministic) [4,5]. The most recent addition to the field are the general reg-
ular decision processes [6] we employ here. One aim of all these methods is to
scale MDPs to more complex problems. However, another main reason to utilize
temporal logics for reward specifications is that it opens up many new possibil-
ities for reward function engineering, resulting in more intuitive and technically
useful ways to specify tasks and goals. A more general view, based on automata
as transducers [9] improves on the technical part by merging the non-Markovian
parts into a single structure.

The use of temporal logics [12,29] in model-free RL settings is a recent
trend [23], and comes with additional requirements since the model of the envi-
ronment is unknown. Many ideas here come from constrained or safe [15] forms of
RL, where the policy space is restricted either before learning, or during action
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selection, based on a notion what are (un)desired actions. Safety issues have
obvious connections with model checking [16] and some recent RL approaches
instantiate that connection for safe RL [2,13]. Very recently, several approaches
have appeared combining formal temporal logic with RL [4,7,9–11,22]. Some
focus more on the representational devices such as reward machines [7], some
study additional mechanisms such as shaping to aid in the more complex learn-
ing process [27], and others introduce variants such as geometric LTL to capture
a different semantics of goals [25]. Overall, variations exist in different logics,
different underlying automata (e.g. DFA vs Mealy) and inference algorithms,
and different RL algorithms to solve the resulting extended MDPs.

The meaning of “model-free” has variations here, since one can assume that
nothing is known, or that at least the reward formula is (which is quite believ-
able when we want an agent to adhere to certain rules or restrictions). In the
latter case one can use the monitor automata states as extra state information
and apply any form of deep function approximation [18]. In general, reward
and transition functions may need to be learned from traces for fully general
RL systems. In the temporal logic settings we describe, this typically amounts
to automaton induction algorithms that can work on examples of traces (posi-
tive or negative) in deterministic or even probabilistic settings, which contains
notoriously hard settings, but some promising work is emerging [8,14,20]. In
the context of RDPs, initial work with a Mealy machine representation shows
promise [1]. In addition, temporal logic allows for declarative and intuitive mod-
els, hence in terms of explainability in RL many possibilities are left, and only
some work is just emerging [19].

3 Approach and Software Design

In this paper we develop a new tool chain for the recently introduced RDPs and
experiment with algorithmic variations, specifically applied to grid worlds (cf.
[21]). Figure 2 graphically shows a simplified high-level overview of how decision
processes, temporal logic and model checking intertwine. Currently no software
tool can conveniently model, visualize and solve all RDPs, which motivates our
particular approach. Secondly, RDPs are introduced very recently and not much
empirical evidence has been gathered so far [1,10]. Also the familiar grid worlds
in general are underrepresented in the temporal logical RL community despite
their abundance in basic RL research, and despite their ability to quickly show
insight into models. In general we follow the main paths through Fig. 2, where
rectangles, diamonds and circles represent formalisms (or models), processes and
artifacts, respectively. On the left we see temporal logics such as LTLf/LDLf used
to define non-Markov decision models, as we have seen in the previous sections,
where we also described how these can be compiled into (extended) MDPs,
which can then be solved by traditional MDP algorithms. Note that NMDPs are
not solely dependent on temporal logic, but require other input such as a state
space definition. In the lower-most flow, temporal formulae can be used to define
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Fig. 2. Conceptual/tool chains

system properties that can be verified using model checking1. Finally, experi-
mental learning algorithms can be combined with formal verification methods
to produce a policy.

Our prototype integrates existing software tools. First, an integration is made
with FLLOAT [6], a tool that allows to construct automata from LTLf and
LDLf formulae. Because the prototype is a TypeScript (TS) web application, and
FLLOAT is built with Python, a small web server is put in place to communicate
with FLLOAT. Communication then occurs by making HTTP requests from the
prototype through a Browser HTTP Layer to the FLLOAT application through
a Server API Layer. In addition, an integration with a browser-based Graphviz
extension called Viz.js2 was made. It allows for visualization of automata within
the prototype. Input to the software prototype is defined in terms of TS variables,
stored in a single TS file an presented during execution at runtime.

3.1 Compilation: From RDP to MDP

A core component in our approach is the conversion of NMDPs to MDPs for both
off-line, i.e. before learning, and on-line, i.e. during learning, use cases. Intuitively,
one can think of the off-line case as a model-based control problem, where the
reward function and transition function are fully known to the agent. However,
in contrast to other work, we compute the extended MDP incrementally. On the
other hand, the on-line case can be thought of as a model-free control problem
where the agent has to interact with the environment to learn an optimal behavior.
Also here the algorithm constructs the extended MDP incrementally, but now only
in the areas of the state-action space that are actually experienced by the agent in
1 In the current paper there is no room to highlight it, but model-checkers such as

Storm (https://www.stormchecker.org/) can be employed for shaping and shielding
purposes (and more) in this tool chain, cf. [21]).

2 https://github.com/mdaines/viz.js.

https://www.stormchecker.org/
https://github.com/mdaines/viz.js
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Algorithm 1: NMDP to MDP (off-line)
input : NMDP M = 〈S, A, T, R〉 with LDLf reward automata QR

i and LDLf

transition automata QT
j , with Qk ← QR

i ∪ QT
j for convenience

output: Extended MDP M ′ = 〈S′, A′, T ′, R′〉
1 t ← 0; s′

t ← s′
0 ← (q1,0, q2,0, . . . , qk,0, s0); A′ ← A; S, T, R ← ∅

2 while s′
t /∈ S′ do

3 st ← τ(s′
t)

4 for a ∈ A(st) do
5 st+1 ← T (L(st), a)
6 for qk,t ∈ Qk,t do
7 qk,t+1 ← transition(qk,t, L(st+1))
8 s′

t+1 ← (q1,t+1, q2,t+1, . . . , qk,t+1, st+1)
9 S′ ← S′ ∪ {s′

t+1}
10 T ′(s′

t, a, s′
t+1) ← T (L(st), a, L(st+1))

11 R′(s′
t, a, s′

t+1) ← sum accept(QR
i,t+1)

12 s′
t ← s′

t+1

13 return M ′

the interaction with the environment. In addition, in this model-free setting it is
assumed that the agent has access to only the states of the automata tracking the
formulae, just like in other works (e.g. [18]). Throughout the algorithms, automata
for rewards are indicated by QR

i and automata for transitions are indicated by QT
j

and their union is denoted Qk.
The compilation of an NMDP can exploit knowledge of the known dynam-

ics/reward model. Algorithm 1 outlines our algorithm, generalized to NMDPs.
It incrementally builds an extended MDP off-line by incorporating all LDLf

automata such that only reachable states are generated. Here, off-line means
the compilation is done before solving the final MDP. The transition function in
Algorithm 1 on Line 10 abstracts away the different transition dynamics between
NMRDPs and RDPs by using labelling function L, making it applicable to
both models. Furthermore, the state space generated by Algorithm1 is minimal
because it only generates states that are reachable, and thus solution algorithms
do not waste time on irrelevant states. The resulting MDP can be solved using
e.g. value iteration, cf. [21].

Because in the model-free setting the reward function and transition dynamics
are not known a priori, compilation cannot occur in a similar fashion as in Algo-
rithm1. We employ a different, online, incremental approach in Algorithm2. Sim-
ilar to the off-line algorithm it incrementally builds the extended MDP, only here
the automata QR

i for rewards and automata QT
j for transitions are not known to

the agent. Hence, Qk is not defined as input like it is for Algorithm1. Further-
more, the extended MDP is not fully defined in terms of dynamics of transitions
and rewards. This, in turn, requires an environment capable of handling LDLf

automata for rewards and transitions. In addition to Algorithm2, a step function
first gets the current state st from the environment using st ← env.snapshot(). In
addition, all automata are retrieved through Qk,t ← env.get automata states().
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Algorithm 2: NMDP to MDP (on-line)
input : Environment env with n-step limit per episode, exploration factor ε,

discount factor γ and max episodes

output: Policy π
1 st ← s0 ← env.reset(); Q(s, a) ← arbitrary() for all s ∈ S, a ∈ A(s);

π ← arbitrary()
2 repeat
3 ep = generate episode(n, A(st), π, ε)
4 T ← |ep|
5 G ← 0
6 foreach step of ep, t = T − 1, T − 2, . . . , 0 do
7 G ← γG + rt+1

8 Q(st, at) ← G
9 π(st) ← arg max

a
(Q(st, a))

10 until max episodes;
11 return π

Then, for each qk,t ∈ Qk,t, both the original state and all automata states tran-
sition to their subsequent states through st+1 ← env.transition(st, a) and
qk,t+1 ← transition(qi,t, L(st+1)) respectively. Automata are then updated
through env.set automaton state(Qk, qk,t+1) the reflect the state transition.
Finally, when Qk,t has been iterated over, i.e. all automata have transitioned, a
next state is generated by s′

t+1 ← (q1,t+1, q2,t+1, . . . , qk,t+1, st+1), i.e. the MDP
state is extended with eachmonitor state. In addition, the rewards for all automata
currently in an accepting state are summed by r ← sum accept(Qk,t+1\QT

i,t+1).
Indeed, the better part of Algorithm2 aligns with first-visit MC [34], except that
the underlying problem definition is assumed to be non-Markovian and hence com-
piled on-line from NMDP to MDP.

Similar to Algorithm 1, Algorithm 2 generate only reachable states and is
therefore minimal. This is due to the transition function of automata being
defined as qk,t+1 ← transition(qi,t, L(st+1)), where a transition cannot occur if
the target state is unreachable. Due to the nature of RL, the implicitly extended
MDP contains only states actually encountered by an agent through interaction
with the environment. Note that, as opposed to Algorithm1, Algorithm 2 does
not contain all information on the history of states per se. Due to the trial-and-
error nature of MC, some states might remain unobserved after Algorithm 2 has
completed. Therefore, an optimal policy π∗ is only guaranteed in the limit.

4 Experiments

Our experimental evaluation focuses on RDPs for grid worlds, utilizing a model-
free online MC algorithm. Our experimental evaluation focuses on RDPs for
grid worlds, utilizing a model-free online MC algorithm. Overall, the goal is to
empirically assess various aspects of RL for RDPs, with a focus on the relation
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(a) Not so sparse

1 2

(b) Somewhat sparse

1 2

(c) Very sparse

Fig. 3. Experiment 1 - Goals for on-line compilation with RL

between RDP elements and final learning performance in the resulting extended
MDP. For more experiments, (also model-based, value iteration), cf. [21]. In
this section we target four different empirical questions: R1: How does learning
performance relate to goal sparsity/complexity?, R2: How can shaping help for
complex goals?, R3: What are the implications of safety properties on learning
performance?, and R4: What is the relation between learning performance and
non-Markovian dynamics?

4.1 Experiment 1: Goal Sparsity

This experiment aims at relating goal sparsity to the performance fist-visit
MC. Here, goal sparsity describes the accumulated minimum length of traces
hi accepted by LDLf formulae ϕi. The idea is to increase the grid world size,
while keeping reward formulae constant, such that the traces increase in length
due to an increase in the size of the state space. To illustrate this, temporal
formulae encoding liveness properties are used such that the number of steps to
satisfy a formula increases with the grid world size. The minimum length of a
trace hi is measured in terms of the minimum number of states contained in hi

for it to be accepted. The quantitative measurement is defined by the relative
frequency of values within 10% of the maximum value. This range is deemed
acceptable for a solution as it follows from the value used for ε, being ε = 0.1,
that generates exploration noise. Data is gathered over 50 runs, where each run
consists of 1000 episodes with a maximum of 50 steps per episode. Further-
more, γ = 1. In order to consistently increase the goal sparsity when the grid
world size is increased, the agent always starts in state s11 and an episode is
terminated when the agent reaches s13, after which a new episode is initiated
until the maximum number of episodes is reached. Figure 3 outlines three goals,
each rewarded +1000, with Fig. 3a being the least sparse where goal state are
adjacent, Fig. 3b being somewhat sparse where goal states require the agent to
travel through the center of the grid and Fig. 3c being the most sparse where
the agent is required to go reach the far-right state and then go back to its
initial state again. The goals encoded in LDLf as 〈true∗;xis2 ∧ yis3; true∗;xis3 ∧
yis3; true∗〉end , 〈true∗;xis1 ∧ yis3; true∗;xis2 ∧ yis2; true∗;xis3 ∧ yis3; true∗〉end
and 〈true∗;xis3 ∧ yis3; true∗;xis1 ∧ yis1; true∗〉end respectively.
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Fig. 4. Rel. freq. within 10% of max. value

Figure 4 outlines the results for this experiment. It shows that the latter two
goals quickly become harder to solve in this setting, as there is a steep decline in
optimal behaviour between grid world sizes 3×3 and 4×4. In addition, the graph
shows that for the more sparse goals the chance of finding optimal behaviour
under the conditions outlined for this setting for a grid world of 7 × 7 becomes
nil. Thus, the observed data indicates there is a relation between goal sparsity
and the performance of first-visit MC.

4.2 Experiment 2: Reward Shaping

Recall that for Experiment 1, sparser goals quickly become harder to solve.
Therefore, this experiment aims to apply RS to an RDP construction from Sect. 3
so as to identify whether the performance of MC can be improved when using
a potential function from Sect. 2.4. In addition, Algorithm2 will be used for on-
line compilation in a model-free setting. A preliminary experiment showed that
for a 5 × 5 grid world, in which 〈true∗;xis1 ∧ yis5; true∗;xis3 ∧ yis3; true∗;xis5 ∧
yis5; true∗〉end is used, an optimal policy is rarely found [21]. Therefore, this
experiment outlines the effect of applying a potential function for RS. For this
experiment, a 5 × 5 grid world is used, transitions are deterministic and MC is
applied as the RL learning algorithm. The reward for the goal is set to +1000.
Figure 5a outlines a possible optimal trace for the given goal. The quantitative
measurements are defined by the averaged returns per episode and the size of
the extended MDP. A total of 50 runs with each 1000 episodes and a maximum
of 50 steps per episode is used. Parameters are defined as γ = 1 and ε = 0.1. The
agent always starts an episode in state s11 and an episode is terminated when
the agent reaches s51, after which a new episode is initiated until the maximum
number of episodes is reaches.
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Fig. 5. (a) Possible optimal trace for reward shaping experiment, (b)–(c) Possible opti-
mal traces for safety experiment (Color figure online)

Figure 6 plots the results for this experiment. From Fig. 6a it can be observed
that a shaped reward takes somewhat longer to learn, but the averaged return
is significantly higher for the 5 × 5 grid world. More specifically, the averaged
return for unshaped rewards shows that unshaped rewards are, on average, not
received, as the trend remains just below zero. Finally, Fig. 6b outlines that
shaped rewards reach far more states when compared to unshaped rewards.
Given the observation that unshaped rewards are, on average, not received, all
states reachable only after a goal is satisfied are very rarely explored for unshaped
rewards. Hence, the size of the extended MDP is significantly smaller.

As an intuitive evaluation of the observed results, recall the 5 × 5 grid world
as outlined in Fig. 5a. Finding a trace that follows the critical path for the given
goal without a potential function is then inherently hard. Consider, for example,
the trace outlined by Fig. 5a. This trace contains 16 consecutive steps, where the
agent may stray from the path at each one of these steps with a probability ε.
Even if the agent reaches the end of the trace in the case of unshaped rewards,
the back-propagation of the reward value may be insignificant when it updates
the state-action value of state s11, as the agent only gets rewarded for the trace
when it finally reaches terminal state s51. In turn, on average, the agent might
only obtain the unshaped reward relatively rarely, leaving most of the states
that account for the latter part of the trace uncharted. Note that, as discussed,
this result is accounted for in Fig. 6b. Conversely, a shaped reward encourages
the agent to better follow the critical path, in turn increasing the probability
of satisfying the reward formula by its trace and thus increasing the number of
explored states in the extended MDP generated by Algorithm2. In general, it
can be observed that shaped rewards make learning perform better, while at the
same time increasing the size of the (encountered) state space and the number
of steps required in optimal traces.

When reward shaping is applied, a significant increase in MC performance
can be observed from Fig. 7 for a 5 × 5 grid world. Where the unshaped reward
decreases rapidly between 3×3 and 4×4 grid world, the shaped reward decreases
significantly less over the course of the increasing grid world sizes.
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(a) avg. return (b) ext. MDP size

Fig. 6. MC performance for unshaped vs. shaped rewards.

Fig. 7. Rel. freq. within 10% of max. value for unshaped and shaped rewards

4.3 Experiment 3: Safety

The goal of this experiment is to empirically measure the effects of safety prop-
erties on the performance of learning. Here, a preemptive shield [2] is applied
such that the agent is provided a list of safe actions upon action selection. More-
over, on-line compilation as outlined in Algorithm2 is applied. Next, a 3 × 3
grid world is used and modeled as an RDP in which first-visit MC is applied
as an RL learning algorithm. Transitions are deterministic to reduce experiment
complexity. The quantitative measurement is defined by the performance of the
learning algorithm. A total of 50 runs is performed, each of which consists of
1000 episodes and a maximum of 50 steps per episode. Furthermore, γ = 1
and ε = 0.1. The agent always starts in state s11 and an episode always ter-
minates when the agent reaches state s31. Goal 〈true∗;xis1 ∧ yis3; true∗〉end is
specified for which the agent is rewarded +50 for reaching state s13, i.e. the
bottom-left state. A step cost of −1 is rewarded with each step the agent takes
in the environment. An additional safety property [true∗]〈(¬xis1 ∧ ¬yis2)∗〉end
is specified in LDLf where the agent should never visit unsafe state s21. Figure 5
outlines possible optimal traces for unsafe and safe situations in Fig. 5b and
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(a) avg. return (b) ext. MDP size

Fig. 8. MC performance for safety

Fig. 5c respectively. Note that terminal states, i.e. the top-right states in both
Figs. 5b and 5c, are marked solid black and that unsafe states, i.e. the center-left
states in both Figs. 5b and 5c are marked solid red.

First, in order to verify no unsafe condition is met, Fig. 9 outlines the
extended MDP for this experiment. Because of a technical index mapping, an
unsafe state would have a label that starts with (1, 2, . . .), corresponding to
unsafe state s12. As can be observed, there is no state s′ ∈ S′ of extended MDP
M ′ for which τ(s′) → s21. In other words, the unsafe state is never encountered.
Therefore, safety property [true∗]〈(¬xis1∧¬yis2)∗〉end is never violated. Further-
more, Fig. 8 plots the results for this experiment. Let us reconsider the results
from Fig. 8a and Fig. 8b. It can be observed that, when learning performance is
decreased, the size of the state space has become smaller. However, the intuition
is that, when less states are to be explored, performance is generally increased.
It appears, then, that RL performance is not necessarily dictated by the size of
the state space. To account for what does impact the decreased learning perfor-
mance, let us reconsider the experiment setup. Where state s13 in Fig. 5b can
be reached from two states, i.e. s12 and s23, the same state can only be reached
from a single state s23 in Fig. 5c. This observation leads to the conjecture that
RL performance is related to the accessibility of states required to satisfy goal
formulae. That is, when states have less paths by which they can be reached,
RL performance decreases.

4.4 Experiment 4: Non-Markovian Transitions

This experiment focuses on non-Markovian transition models. Here, on-line com-
pilation using Algorithm2 will be used in a model-free setting, with first-visit
MC. The quantitative measurements are defined by the averaged returns per
episode, the averaged number of steps per episode and the size of the extended
MDP. The experiment consists of 50 runs, each 1000 episodes with a maximum of
50 steps per episode. Furthermore, γ = 1 and ε = 0.1. The grid world is defined
by a 5×2 rectangle. The agent always starts an episode in state s11 and state s51
is defined as a terminal state. There is a single goal 〈true∗;xis3 ∧ yis1; true∗〉end
rewarded when reaching s41 of +10, with the addition of a step cost encoded in
LDLf valued as −1.
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Fig. 9. Product MDP for safety experiment

The first set of 50 runs uses non-deterministic transitions. That is, in every
state of the grid world the agent has a 0.8 probability of ending up in the next
state and a 0.2 probability of remaining in its current state. For example, when
in s21 and taking action s, there is a 0.8 probability that we end up in s22 and a
0.2 probability to remain in s21. The transition from s31 for action e is defined
by 〈true∗;xis3 ∧ yis1〉end and will be different for the regular transition defined
below. A possible optimal trace is visually displayed in Fig. 10a.

The second set of 50 runs uses regular transitions. Now, when the agent
reaches s31, a transition 〈true∗;xis2∧yis1;xis3∧yis1〉end is defined that depends
on whether the agent came from state 21 or not. In case the previous state was
s21, the transition of action e in s31 is defined as a 0.1 probability of ending
up in s41 and a 0.9 probability of remaining in s31. Otherwise, the same tran-
sition probabilities used for the non-deterministic transitions apply, i.e. a 0.8
probability of ending up in s41 and a 0.2 probability of remaining in s31. Here,
the transition in s31 is regularly defined and depends on a history of states. A
possible optimal trace for regular transitions is given in Fig. 10b.

From Fig. 11, we observe that regular non-deterministic transitions, when
compared to non-regular ones, induce a harder problem for a model-free setting,
while the size of the state space is only increased by one additional state that
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Fig. 10. Possible optimal traces for transition complexity variations

(a) avg. return (b) ext. MDP size

Fig. 11. MC performance for transition complexity variations

keeps track of whether or not s21 has been visited. In other words, a small
increase in size can evidently generate a significantly harder problem.

5 Conclusions and Future Work

We have introduced a new tool chain to compute with regular decision processes,
and experimented with novel algorithmic variations with the aim to gain insight
in how complexity of temporal logic formulas relates to the complexity of learning
algorithms such as MC RL for the resulting extended MDPs. We have shown that
by increasing the world size for similar built formulas problems get harder (R1),
but also that reward shaping on the automata representing those formulas can
really help learning, and exploration (R2). The safety experiments (R3) have
shown less states do not necessarily result in easier learning tasks, and the non-
Markov transitions experiments (R4) showed that these only caused a small
increase in state space size, but did complicate learning a lot more.

Our overall conclusions of the experiments point to our main future work
direction. It seems that there are complex relations between i) the complexity
and properties of the temporal formulae defining the non-Markovian aspects, ii)
the resulting size and connection structure of the extended MDP, and iii) the
learning performance of online RL algorithms for the extended MDP. Much more
work is needed to evaluate a temporal specification for a particular problem,
and assess its influence on the complexity of learning the original task in the
presence of the new rule. For MDPs there is much work on measures relating to
e.g. homomorphism and abstraction [36,37] and work is starting to emerge to
gain more insight in the logical side [31] but their interaction needs study.
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Other future work should focus on representations and applications. For the
first, there is much to be gained by utilizing existing formal methods, for exam-
ple the use of transducers and Mealy machines [9] trading off the size of the
state space with compositional modeling. Equally important is to focus more
on utilizing model checking tools [2,16]. Application-wise, there are plenty of
opportunities to utilize the methods in this paper, for example to constrain RL
dialogue agents, in medical domains with logically represented medical guidance
and regulations, or to implement coaching strategies in RL coaching agents [17].
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Abstract. The deployment of Reinforcement Learning (RL) on physi-
cal robots still stumbles on several challenges, such as sample-efficiency,
safety, reproducibility, cost, and software platforms. In this paper, we
introduce MoveRL, an environment that exposes a standard OpenAI
Gym interface, and allows any off-the-shelf RL agent to control a robot
built on ROS, the Robot OS. ROS is the standard abstraction layer
used by roboticists, and allows to observe and control both simulated
and physical robots. By providing a bridge between the Gym and ROS,
our environment allows an easy evaluation of RL algorithms in highly-
accurate simulators, or real-world robots, without any change of soft-
ware. In addition to a Gym-ROS bridge, our environment also leverages
MoveIt, a state-of-the-art collision-aware robot motion planner, to pre-
vent the RL agent from executing actions that would lead to a collision.
Our experimental results show that a standard PPO agent is able to
control a simulated commercial robot arm in an environment with mov-
ing obstacles, while almost perfectly avoiding collisions even in the early
stages of learning. We also show that the use of MoveIt slightly increases
the sample-efficiency of the RL agent. Combined, these results show that
RL on robots is possible in a safe way, and that it is possible to leverage
state-of-the-art robotic techniques to improve how an RL agent learns.
We hope that our environment will allow more (future) RL algorithms
to be evaluated on commercial robotic tasks.

Github repository: https://github.com/Gaoyuan-Liu/MoveRL

1 Introduction

Reinforcement Learning is a Machine Learning approach that allows an agent
to learn what action to execute in which situation, to maximize a scalar reward
[14]. On robots, Reinforcement Learning has the potential of allowing to learn
near-optimal controllers on challenging tasks, on which classical methods such
as planning are not applicable, for instance due to the unavailability of a good
model, or high stochasticity or unexpected events around the robot. However,
in practice, Reinforcement Learning is not often used on robots.

Several challenges currently prevent the use of Reinforcement Learning on
robots, such as safety, sample-efficiency, the ease of implementation of RL on
c© Springer Nature Switzerland AG 2022
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robots from a software perspective, and the trust designers must have in RL to
use it. In this paper, we propose a new OpenAI Gym [3] environment that allows
real-world robotic experiments to be performed, addressing these two challenges:

Software Compatibility with Robots. Existing Reinforcement Learning
environments that have robots in mind, such as the Gym Mujoco envi-
ronments [3], the DeepMind control suite [25], or PyBullet environments
[28], implement environment-specific robotic arms or bodies (not industry-
standard robots), using embedded simulators (not a connection to an
industry-standard simulator). As such, these environments can be used to
show that RL works on robots in theory, but do not help implementing RL
on a real-world robot. Our main contribution, MoveRL, interfaces an RL
agent with the Gym API to ROS, the Robot OS, used by industry-standard
simulators (such as Gazebo) and robots. This allows direct learning on the
robot, or easy transfer of an agent learned in simulation to a physical robot
(without having to re-implement anything).

Safety. The Robot OS comes with many packages that allow to build complete
robotic systems, with planning, collision avoidance, simultaneous localization
and mapping, ... . In this paper, we use MoveIt [4] to transform an action
selected by an RL agent into a motion plan for a robot, while avoiding col-
lisions with obstacles. MoveIt gets its knowledge about obstacles from the
ROS network, which means that it is inherently compatible with simulators
(that know where obstacles are) and depth cameras, that produce the same
information on real robots [11].

Our empirical results in the Gazebo simulator, using a simulated real-world
robot (the Franka Emika Panda manipulator), show that combining an un-
modified implementation of PPO [23] from the stable-baselines3 [21] with a ROS
environment is possible, and that leveraging MoveIt for action execution allows
to prevent almost every collision, even in the early stages of learning.

2 Notations

The Reinforcement Learning literature considers an agent that executes actions
in a Markov Decision Process, defined by a tuple 〈S,A,R, T, μ0, γ〉. S is the
state space, that can be either discrete or continuous. In this paper, we consider
continuous state-spaces, in which each state is a vector of several real values.
A is the action space. In this paper, we consider a continuous action space, in
which each action is a vector of real values. R(s, a, s′) is the reward function,
that produces a single real value after a transition from state s to s′, caused by
the execution of action a. T (s, a) is the transition function, that maps a state
and an action to a new state. μ0 is the initial state distribution, that defines
in which state the agent may start an episode, and γ < 1 is a real value, the
discount factor.

Most Reinforcement Learning literature follows the notation described above.
However, roboticians use other notations, that appear in the literature related to
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ROS and MoveIt, and that we sometimes use in this paper when interfacing with
these components. We provide a brief summary of the differences of notation in
the table below:

RL Meaning Motion planning

s State (observation) q (if joint angles)
p (if end-effector position)

a Action qi (target joint angles)

r Reward r or c (cost c = −r)

3 Related Work

Our main contribution allows a Reinforcement Learning agent to interface with
the Robot OS, for easy control of simulated or physical robots, with the use
of a motion planner to ensure safety. We now provide a related work review
of other approaches at robotic environments for Reinforcement Learning, tech-
niques that allow to make a Reinforcement Learning agent safer, and motion
planning libraries.

3.1 RL Robotic Environment

To tackle various challenges in robot RL [14], numerous robotic RL environments
are developed with different platforms. A brief survey of robotic RL environment
frameworks can be found in [13] and [9]. Each work emphasises specific merits
with regards to particular issues. In this paper, we only review frameworks which
are wildly accepted as benchmark, and particularly, we discuss how they consider
safety when learning.

Mujoco. To improve the reproducibility in RL robotics research, SURREAL [8]
is built on the MuJoCo simulation environment and physics engine [26]. Mujoco
is widely used for RL environments, and frameworks with the same physics
engine can be found in [1,20,29]. Such projects usually focus on theoretical RL
research, and lack compatibility with robotic software such as the Robot OS.
Moreover, the use of Mujoco requires a license id (free for academic purposes,
paid otherwise).

PyBullet. PyBullet is an open-source physics engine, used by [28] to implement
several Reinforcement Learning environments in simulated 3D spaces. These
environments allow the agent to control every joint of the robots, but do not
provide any safety mechanism or collision avoidance. An RL environment for a
quadcopter is developed with PyBullet by [18], but collision avoidance is not
considered, even though it appears crucial for a quadcopter.
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Gazebo. Gazebo is an open-source simulator with a graphical interface, and
an interface to the Robot OS ROS [6]. A Gym environment for interacting with
Gazebo is proposed in [15], but collisions are allowed to happen in the simulator,
which makes replacing the simulator with a real-world robot impractical. How-
ever, because Gazebo and ROS have large communities that developed many
industry-proven tools, we base our main contribution on these two pieces of
software, and add MoveIt for collision avoidance.

3.2 Safe Reinforcement Learning

RL safety is normally defined as a mechanism which can ensure reasonable sys-
tem performance and/or respect safety constraints during the training or vali-
dation processes.

Definition and Survey. RL safety approaches can be categorized in two
classes: tuning the optimization criterion of the algorithm to encourage safe
behavior, and directly intervening on the exploration of the agent to prevent
unsafe actions from being executed.

With the optimization approach, maximizing the long-term reward can gener-
ate statistically safer policy, but does not necessarily avoid the rare occurrences
of damage, neither ensures safety during training. The exploration approach
provides a shielding mechanism that modifies or prevents unsafe actions [10].
Several approaches to Safe RL, belonging to the two classes described above, are
reviewed in [27].

Safe Exploration. In this paper, we focus our attention onto Safe RL
approaches that consider physical issues, and in particular prevent physical dam-
age. In a danger-sensitive learning environment, such as robotics, the importance
of damage avoidance is higher than obtaining high rewards. Therefore, a shielding
layer maintaining zero-constraint-violations throughout whole learning process
is necessary.

[22] introduce safe exploration, more specifically Constrained Reinforcement
Learning, and address two challenges: 1) the difficulty of designing reward func-
tions that nicely balance punishing unsafe actions, and encouraging the agent to
learn the desired skill; 2) the fact that eventually learning the optimal safe policy
does not guarantee that no unsafe action has been performed while learning.

[5] consider that some states can be identified as unsafe, and propose a
method to avoid these states. In [19], a safety layer is applied in a real-robot
system, the safety layer modifies possibly risky actions to the closest valid alter-
natives which satisfy safety constrains, but such constraints are difficult to define
especially when the environment is noisy or uncertain. Similar structured safety
guarantee is also utilized in [2].

When positioning this paper in relation to existing work, it is important to
note that existing work focuses on preventing the execution of specific unsafe
actions, and let the designer define what an unsafe action is. In this paper, we
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use MoveIt to automatically detect what would be unsafe actions, freeing the
designer from this task. Moreover, existing work considers that moving from a
safe state to a safe state is safe. This is not the case in practice, as we explain in
Sect. 4.7: the path between two safe states may go through a wall, and therefore
be unsafe. Our contribution detects these unsafe actions.

3.3 Path Planning

Path planning is one of the most fundamental problems in autonomous robotics,
particularly, in the scenarios where robots have to execute tasks in an environ-
ment with obstacles. Sampling-based methods offer a solution to overcome the
complexity of deterministic robot planning algorithms for a robots with many
degrees of freedom (many joints). A comprehensive survey can be found in [7]. An
open-source library for sampling-based motion planning OMPL (Open Motion
Planning Library) is proposed by [24], and is integrated in an open-source frame-
work, MoveIt!, that offers an state of the art path planning based on several
well-known libraries. MoveIt also integrates implementations of useful robotics
functions, such 3D perception, kinematics calculation and control1.

4 Contribution

Our main contribution is a Gym environment, that allows to interface un-
modified Reinforcement Learning agents written in Python with a simulated or
physical robot exposed on ROS-Noetic, the Robot OS, a collection of libraries
and network protocols that allow components of robotic systems (hardware,
software, planners, ...) to communicate in an industry-standard way. We also
leverage MoveIt, a state-of-the-art motion planner, for efficient action execution
and collision avoidance.

The general architecture of our main contribution, MoveRL, is depicted in
Fig. 1. Every time-step, the agent receives an observation and reward from the
environment, and selects a raw action, a desired position of the robot, not yet
guaranteed safe. The raw action passes through a collision monitor, based on
MoveIt, that observes the current position of obstacles and verifies the action.
Verifying the action relies on the possibility to simulate its outcome, which is
possible on physical robots by using co-simulation (a simulated version of the
robot runs in parallel with the physical robot, an approach very common in
industrial robotics and transparently supported by ROS). In this paper, we only
use pure simulation, and leave co-simulation with a physical robot to future
work.

If the raw action will cause a collision, it is discarded, leading to no movement
of the robot for this time-step, and a punishment given to the Reinforcement
Learning agent. If the raw action is safe, the planner computes a collision-free
path to guarantee the safety during execution. Our action shielding mechanism
ensures that no collision happens when the agent moves.
1 https://MoveIt.ros.org/.

https://MoveIt.ros.org/
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Fig. 1. Our MoveRL framework. Our safety layer leveraging the MoveIt motion planner
contains 2 modules: 1) a collision monitor, that detects actions that lead to collisions,
and 2) a motion planner, that plans a collision-free path to reach the target locations
encoded in (previously-identified) safe actions.

We now detail all the software components of our proposed MoveRL. Our
implementation is available at https://github.com/Gaoyuan-Liu/MoveRL.

4.1 The Gym Environment

To be compatible with standard RL algorithm implementations, such as in Stable
Baseline 3 [21], our contribution needs to be implemented as an OpenAI Gym [3]
environment. A Gym environment is a Python class that contains attributes that
describe its state and action spaces (both Box in our case), and methods that
allow actions to be executed in the environment. The reset method resets the
environment to an initial state, and returns the first observation of the episode.
The step method takes an action as input, passes to ROS and MoveIt for safe
execution, and produces a new state (observation) and reward. We describe all
these steps in more detail later. A done signal is also returned by step, and allows
the environment to choose when an episode should terminate.

4.2 Observation Space

Since we consider kinematics observation, we make an assumption that the
position of obstacles can be detected by sensors, or is available in simula-
tion. The observation space contains two parts: the state of the robot, and
the state of the obstacles. For the robot state, we developed two environ-
ments with two different kinds of observation: joint angles q = [q1, q2, ..., qn]

https://github.com/Gaoyuan-Liu/MoveRL
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for an n degrees-of-freedom robot, and end-effector position and orientation
p = [peex , peey , peez , oeex , oeey , oeez , oeew ], for tasks in which the robot has an end-effector
such as a gripper. For obstacle state, the agent can observe the position and ori-
entation of the obstacles: [pobsx , pobsy , pobsz , oobsx , oobsy , oobsz , oobsw ]. Our environment
class can adjust the size of state space according to the number of obstacles in
the simulation.

Note that the agent observes the position and orientation of the obstacles
(cylinders, spheres, rods, cubes), but not their shape or dimensions. This is not
a problem, as an RL agent is perfectly able to learn what positions in relation to
the center and orientation of an obstacle will translate to negative rewards. So,
the agent sorts of learns the shape of the obstacles by feel, and does not need to
be provided that information.

4.3 Action Space

Our environment exposes a continuous action space, for which actions are vectors
of real values. More precisely, we consider that the action produced by the agent
is a target configuration of the robot, so a list of real values that define the angle
at which every joint of the robot must be set. Robotics libraries call this set
of angles qi, and the Reinforcement Learning literature calls this a. The action
space is constrained by the physical abilities of the robot, with joint position
limits qi,limit and joint velocity limits q̇i,limit.

The physical constraint on the speed of a joint requires careful engineering
of how the agent produces an action. Given a time-step duration Δt, we must
ensure that the action qi,cmd produced by the agent, and sent to the environment,
differs (in absolute value) from the previous action by at most Δt · q̇i,limit, for
every element of qi,cmd. We must also ensure that the action qi,cmd is part of the
allowed range of joint angles [qi,min, qi,max].

We implement these constraints as follows: the policy of the agent pro-
duces the change in joint positions Δqi,cmd, instead of the absolute value of
the joint positions qi,cmd. Then, we clip Δqi,cmd to [−Δtq̇i,limit,Δtq̇i,limit], pro-
duce qi,cmd = qi,prev timestep+Δqi,cmd, and clip qi,cmd to the range [qi,min, qi,max].
This clipped value is sent to the environment, that uses MoveIt to detect and
avoid collisions.

4.4 Why Do We Need Sequences of Actions?

Most tasks on which we evaluate our framework consist of moving the end effector
of a robot to a specific target location. Given the action set described above, it
may seem logical that only one action is necessary for that: putting the robot in
the pose that puts the end effector at the target location. However, in practice,
a sequence of actions is needed for the following reasons:

– The time-step has a fixed duration and the robot cannot move infinitely
quickly, so the actions have to progressively bring the robot close to the
target location;
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– Even if state of the art, MoveIt has difficulties planning motions on long
distances, especially when there are concave obstacles in the scene. Rein-
forcement Learning is particularly useful in this case, as its optimization of
the discounted sum of rewards allows the agent to take actions that move
away from the goal in the short term, but allow to reach it in the long term.

4.5 Reward Function

The reward function is customized for each specific task, but always consists of
the sum of two terms: a task-specific reward and a task-agnostic safety term,
r = rtask + rsafety.

We describe rtask in the next sections. rsafety is 0 when an action would cause
no collision, and some negative constant when an action is detected as being
unsafe (and cancelled). The choice of the constant is described in our experi-
ments, and needs to be large enough that the agent learns to avoid states that
can potentially lead to collisions (especially when there are moving obstacles),
but not too much, so that the agent does not become too conservative (and
learns a policy that remains immobile, for instance).

4.6 Initial States and Termination

Every episode, we initialize the simulated robot to a random pose, to ensure
good exploration. The episode terminates when the end effector of the robot
reaches a pre-defined goal position, or after 100 time-steps.

4.7 Safety Guarantee

After having described the different components of our environment (state space,
action space, ...), we now discuss the different types of collisions that can be
detected by MoveIt, and provide details on how we query MoveIt from a Gym
environment. A full description with code would go beyond the page limit of this
paper, but the complete source code that we use in our experiments is available
on Github (link in the abstract).

Collision Types. To comprehensively consider the potential risk during train-
ing, we categorize collisions into three types:

(a) self collision: two parts of robot itself collide with each other; (b) pose
collision: the commanded configuration qi,cmd collides with objects in the envi-
ronment; (c) path collision: the direct path between two configurations contains
collisions with objects in the environment. Figure 2 shows examples of these three
types of collisions.

Avoiding self-collision and pose collision during learning can be achieved
by constrained inverse kinematics and state-validation checking at each time-
step. However, the avoiding path collisions is more challenging, and tends to
be neglected in the Safe RL literature since it is difficult to do state validation
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Fig. 2. (a) Self collision (b) Pose collision (c) Path collision

checking continuously. Therefore, even when the state for two adjacent steps are
safe, the direct path (without planning) can still collide with obstacles. We give
an unified solution to avoid the aforementioned three types of collision, which is
integrating MoveIt as an safety layer in the RL environment.

Collision Detection. The MoveIt provide package Planning Scene allows to
manage an abstract representation of the environment surrounding a simulated
or physical robot. This environment can contain obstacles of two possible types:
scene object and octomap [12].

Scene objects have an explicit shape, such as a 3D mesh or a primitive shape
(cylinder, box, sphere). It is used when a coarse obstacle is enough, for instance
a big cylinder around a human, to encoder a general area that has to be avoided.
An Octomap is built from a depth camera (or produced by a simulator), and
allows to precisely measure the presence of an obstacle around the robot, without
having to model it. The trade-off between precision and efficiency can be adjusted
with the resolution parameter of the octomap.

Once the Planning Scene has been defined (and kept updated by the simu-
lator or sensors, using ROS network messages that the Gym environment does
not even need to bother with), MoveIt is able to detect collisions using libraries
such as the FCL (Flexible Collision Library) [17].

We stress that the use of ROS allows to transparently interface our Gym
environment with many well-regarded robotic packages, Planning Scene being
only one. Other packages allow to stream updates to the position of the obsta-
cles from a variety of sensors (and are usually shipped with the sensors), or to
visualize various aspects of the scene (for instance, visualizing how a physical
robot senses its surrounding). Figure 3 shows that it is possible to visualize a
textured 3D render of a scene, along with information about the obstacles in it,
and what motion planning has to be performed.

Path Planner. It’s worth noting that the direct path between two valid poses
can still contain collisions, which we term as path collision. To avoid path col-
lisions, a local planner is necessary, and will run every time-step, to produce a
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Fig. 3. The collision detection methods in MoveIt. (a) Gazebo simulation (b) Collision
detection with scene object (c) Collision detection with octomap. The white arm indi-
cates current pose, the orange arm indicate the commanded pose, and the red parts
indicate the collision links.

full motion from the pose of the robot on one time-step, to its pose at the next
time-step.

For each time-step, given a valid action command, a planner plans a collision-
free local path based on the present knowledge of the position of obstacles. In
order to reduce the time consumption of training and minimize the planning
delay, our primary consideration for choosing the most appropriate planner is
efficiency and completeness. Therefore, we evaluated planners available in MoveIt
by their solving time and path length, which can reflect the planners’ efficiency
in either planning and execution phases [16].

The planners’ time consumption and planned path length on a benchmark
task (putting a robotic arm into a desired pose) are shown in Fig. 4. We note
that our objective is not to identify the absolute best planner, but to provide an
informed choice of planner for our Reinforcement Learning experiments. RRT
and its derivative show merits in both planning time and path length. Therefore,
we choose the RRT planner in our experiments.

Fig. 4. Left: Planner planning-time comparison, right: Planner final path length com-
parison.
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Goal-Reaching Task. We now define a goal-reaching task, and detail how
it is implemented with MoveIt. To achieve the goal-reaching task, we define a
dense reward (non-zero whenever there is movement during a time-step), that is
proportional to the change in distance between the end-effector’s current position
and the goal position. The task reward can be formalized as:

rtask(s) =
{

κΔd(s) + rgoal if s is close to sgoal
κΔd(s) otherwise

where rtask(s) is the task reward given to the agent when reaching state s,
Δd(s) is the distance between the end-effector in state s and the target end-
effector location, rgoal is a fixed positive reward given when the target location
is reached, and κ is a weighting constant, allowing to balance rtask and rsafety.
The actual values of rgoal and κ are given in the next section.

5 Experiment

While our main contribution is a Gym environment that allows to learn tasks in
ROS-based robotic environments with standard Reinforcement Learning algo-
rithms, we also provide experimental results, that show that:

– Our framework, that we call MoveRL, works and actually allows an un-
modified PPO agent to learn a task;

– Collisions can indeed be avoided, thanks to MoveIt, which allows simulated
robots to be replaced with physical robots if need be.

5.1 Learning Scenarios

In our experiments, the robot learns to fetch the goal point with its end-effector
by adjusting 7 joint angles. We consider 3 scenarios around this task, that differ
in what kinds of obstacles are around the robot:

1. Table: The table holding the robot is the only exterior obstacle, thus self-
collisions are considered as the major risks in this scenario.

2. Human: The robot and a human worker share a single workspace. The goal
point is located between the human and the robot. Self-collisions and pose
collisions would be the major risks. The human is modelled with basic shapes
such as cylinders.

3. Case: The robot has to reach a goal location inside a box/case (walls with
an opening on top). Finding how to enter the case is challenging in this task
and benefits from the use of Reinforcement Learning. The thin walls of the
case lead to possible path collisions (in addition to self-collisions and pose
collisions).

The 3 training scenarios are illustrated in Fig. 5. Our Github repository con-
tains Gazebo world files for all 3 scenarios.
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Fig. 5. The simulation environment in gazebo. From left to right: table world, human
world, and case world.

Fig. 6. Number of collisions occurring per episode, with and without collision avoidance
with MoveIt. The blue line indicates that our safety layer, based on MoveIt, successfully
prevents collisions throughout the learning process.

5.2 Learning Algorithm

We use a Reinforcement Learning agent from the Stable-Baselines 3 [21], that
contains a set of reliable RL algorithms including A2C, DDPG, PPO, SAC
and TD3. We choose PPO, as it is highly popular, compatible with continuous
actions, and has many implementations. In this paper, we focus on showing
that RL with ROS is possible, we do not aim at evaluating which RL algorithm
performs the best. The hyper-parameters that we use for PPO in our experiments
are the default values used Stable-Baselines 3, as of August 23rd, 2021, with the
following changes: the policy network is MlpPolicy, the learning rate is 0.0005,
the batch size is 200, and the number of steps between policy updates is 100.

5.3 Results

To evaluate our safety layer, we compare how a PPO agent learns with and with-
out our collision avoidance method. We observe that our safety layer successfully
prevents collisions, and has no negative impact on sample-efficiency:

Figure 6 shows that enabling our safety layer successfully prevents collisions,
and that disabling our safety layer leads to a large amount of collisions.
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Fig. 7. Learning curves in each learning scenario. We confirm that our safety layer,
that successfully prevents collisions, has no negative impact on sample-efficiency (the
red and blue curves have the same shape). This shows that safety does not come at
the expense of sample-efficiency with our MoveRL framework. (Color figure online)

Figure 7 presents the learning curves in our three scenarios, with and without
our collision avoidance method. Avoiding collisions does not appear to have any
negative impact on the agent, as the learning curves are comparable. If it has
any effect, it would be a slight increase in sample-efficiency, as seen in the Case
scenario. We are happy with this result, as it shows that safety in Reinforcement
Learning does not come (in our case) at the cost of sample-efficiency and final
policy quality.

6 Conclusion

In this paper, we presented MoveRL, a Reinforcement Learning Gym environ-
ment for robotic manipulators, that builds the widely-used ROS platform for
simulated and physical robots. Thanks to the dynamism of the ROS community,
advanced algorithms for planning, obstacle detection and collision avoidance
are available. We leverage them in our environment to produce a method for
safe Reinforcement Learning on robots. Our experiments show that our safety
mechanism indeed prevents collisions while an un-modified PPO agent learns a
simulated robotic task, and that our method has no negative impact on sample-
efficiency.

While the deployment of our method on a physical robot remains as future
work, we hope that our new software and method will allow Reinforcement
Learning researchers to more easily evaluate their methods on simulated real-
world robots (as opposed to unrealistic robots as available in the Gym Mujoco
tasks, for instance), and will allow robotic engineers to evaluate Reinforcement
Learning for the tasks in which classical planning methods show limitations.
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