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Abstract. The paper presents different time-frequency decomposition-based fil-
tering procedures. These procedures are applied to various types of synthesized
nonstationary test signalswhich are contaminatedwith different levels ofGaussian
white noise. Empirical mode decomposition (EMD), discrete wavelet transform
(DWT) andwavelet packet transform (WPT) based procedures are implemented in
order to perform nonlinear multiscale filtering. The obtained results are compared
and analyzed; conclusions summarize the comparison study.
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1 Introduction

In signal processing applications, the assumption of stationarity of the signal introduces
unwanted limitations, procedures can be applied only in idealized conditions. The signals
in acoustics, geophysics, biology, and biomedicine have a nonstationary behavior which
demands another kind of approach. The nonstationarity of a signal may be caused by
different reasons, as the signal sources, propagation channel or receivers. In all these,
noise appears obviously and could have a nonpredictable and undesired effect.

Nowadays, applications of nonlinear filtering range fromengineering,machine learn-
ing [1], economic science [2] and natural sciences such as geoscience [3]. Valuable appli-
cations of nonlinear filtering can be found also in biomedical engineering applications
[4].

This paper presents three different nonlinear filtering procedures. A comparison
study reflects the different obtainedfiltering results. Themainparameters are the acquired
signal to noise ratio and the absolute value of the reconstruction error.

Splitting the signal in components, processing the components separately and recon-
struct the signal from these, is the main idea in every multiscale signal analysis and
processing task. Usually, the different time-frequency analyzing methods offer vari-
ous decomposition algorithms, the choice is made depending on followed or required
parameters or benefits.

The paper is organized as follows. After the introductive notions, the second para-
graph introduces the theoretical background of multiscale analysis, the third paragraph
presents the used signals and the proposed procedures. After that, experimental and
theoretical results are presented, finally, the concluding remarks end this study.
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2 Time-Frequency Decomposition Techniques

2.1 Empirical Mode Decomposition

The Empirical Mode Decomposition (EMD) was proposed as the fundamental part of
the Hilbert–Huang transform (HHT) [5]. The EMD decomposes a signal in the time
domain through an iterative sifting process, into a set of functions, known as Intrinsic
Mode Functions (IMFs). The IMFs offer a description and a reconstruction of the signal,
even though they are not necessarily orthogonal as in case of other transforms.

The decomposition algorithm obtains smooth envelopes defined by local maxima
and minima of a given sequence and performs a subsequent subtraction of the mean of
these envelopes from the initial sequence. This procedure named sifting process needs
the identification of all local extrema (maxim and minim values). These extrema are
connected by cubic spline lines to create the upper and the lower envelopes. The sifting
process decomposes the signal into IMFs in following way:

For a signal s(t), where m1 is the mean of its upper and lower envelopes the first
component h1 is computed as follows:

h1 = s(t)− m1 (1)

The first step in procedure when the mean value of the two envelopes is computed,
is presented on Fig. 1.

Fig. 1. The first step in sifting process.

In the second sifting process, h1 is treated as the initial signal s(t), and m11 is the
mean of h1’s upper and lower envelopes:

h11 = h1 − m11 (2)

This sifting procedure is repeated k times, until h1k is an IMF, that is:

h1k = h1(k−1) − m1k (3)



Nonlinear Denoising of Nonstationary Signals 845

Then c1 = h1k will be the first IMF component from the analyzed sequence, which
contains the shortest period component of the signal. After separation:

s(t)− c1 = r1 (4)

the previously presented procedure is repeated on rj:

r1 − c2 = r2, . . . rn−1 − cn = rn. (5)

The result is a set of functions; the number of functions in the set depends on the orig-
inal signal. The decomposition process stops when the residue r(t) becomes a constant
or a function without extrema that no longer satisfies the requirements of an IMF.

Finally, the analyzed signal can be expressed as:

s(t) = c1 + c2 + · · · ck + rk (6)

The decomposition is made without external functions, only the signal’s properties
are used. In conclusion, EMD decomposes any given sequence or signal, whether it is
linear, nonlinear or nonstationary, into a set of IMFs [6].

2.2 The Discrete Wavelet Transform (DWT)

In digital signal processing the Fourier Transform is probably themost popular, butmany
other transforms are available for engineers and mathematicians. Every transformation
technique has its applicability with advantages and disadvantages in a certain research
area. In Fourier analysis, the Discrete Fourier Transform (DFT) decompose a signal into
sinusoidal basis functions of different frequencies and amplitudes. The signal can be
completely recovered l from its DFT (FFT) components [7].

In wavelet analysis, the Discrete Wavelet Transform (DWT) decomposes a signal
into a set of mutually orthogonal wavelet basis functions, which differ from sinusoidal
basis functions in that they are spatially localized. Furthermore, wavelet functions are
dilated, translated and scaled versions of a common function ϕ, known as the mother
wavelet. The DWT is equivalent to a tree-structured discrete filter bank where the signal
is first filtered by a lowpass and a highpass filter to yield lowpass and highpass subbands,
approximation and detail components (A, D) as presented on Fig. 1.

Fig. 2. Illustration of DWT implementation through filter bank.

The lowpass subband is iteratively filtered by the same scheme to yield narrower
octave-band lowpass and highpass subbands [8]. In the DWT, the filter outputs are
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downsampled at each successive stage to eliminate the redundancy, keeping the same
length of decomposition, so it returns a data vector of the same length as the input is.

Figure 2 shows that subsequent levels of the DWT operate only on the outputs of the
lowpass (scaling) filter. At each level, the DWT divides the signal into octave bands [9].

2.3 Wavelet Packet Transform (WPT)

The wavelet packet transform (WPT) differ from the discrete wavelet transform (DWT)
because the transformyields in equal-width subband filtering of signalswhich is opposed
to the coarser octave band filtering obtained in the DWT. WPT is superior at time-
frequency analysis because divides the frequency axis into finer intervals (Fig. 3).

Fig. 3. Illustration of WPT.

Both of lowpass and highpass subbands are iteratively filtered by the same scheme to
yield narrower octave-band lowpass and highpass subbands, obtaining detail of approxi-
mation and approximationof detail coefficients (AA,AD,DA,DD). In the non-redundant
WPT the outputs of the bandpass filters are downsampled by two as in case of DWT
[10].

In addition to filtering a signal into equal-width subbands at each level, the WPT
partitions the signal’s energy among the subbands, providing superior frequency reso-
lution. As a result, the WPT can separate nearby frequency components which usually
fall in the same octave band in case of DWT.

The advantage of DWPT is that it is possible to select the optimal representation of
the signal with respect to some criterion.

The WPT best representation of a signal is of three types: it may be the DWT
representation (included in the WPT scheme); it may be the input signal itself; or it may
be a representation that is better than that of the input or DWT [11].

3 Materials and Methods

3.1 The Filtering Procedure

This study uses three types of test signals, three filtering procedures are compared, these
can be observed on Fig. 4.
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Fig. 4. The proposed filtering methods.

The all three filtering methods use threshold for components, the signal is recon-
structed from the truncated components. For every filtering the same thresholds are
applied to see the difference between obtained parameters.

The procedures are compared through signal to noise ratio (SNR) and reconstruction
error. The power of signal x = [xi] and noise n = [ni] are defined as

PS = 1

N

∑N

i=1
x2i , Pn = 1

N

∑N

i=1
n2i (7)

The initial signal to noise ratio SNRi (with known noise) and the obtained signal to
noise ratio SNR (where xf is the filtered signal) are:

SNRi = 10 · lg
(
PS

/
PN

)
(8)
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where N is the length of the signal and the estimated noise is the difference between
filtered and nonfiltered signal ne = xn − xf . The reconstruction error is the absolute
value of the difference between the filtered and original signal.

3.2 Test Signals

This study uses three types of test signals to compare the filtering results. These signals
are of different type and different lengths, all of them having special features.

The three test signals (original and noisy) are presented on Fig. 5.

Fig. 5. The test signals.

To estimate the filtering results, different levels of Gaussian white noise were added
to the signal, see Fig. 6. The noisy signal is taken as a sum between signal and noise, this
study uses six level of added noise. Previously, the signals were preprocessed; resampled
to have the same length and normed to have the same level (in this case the added noise
level is the percentual the same). The length of the signal is 8192 (a power of two,
usually, in this case the numerical procedures product better results).
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Fig. 6. The test signals with added Gaussian white noise.

4 Experimental Results

This study uses signals of equal lengths, the noise is added in six steps, the level is
1%–6% of signals maximum value (Fig. 7).

Fig. 7. The EMD filtering results on testsignal1 (level noise 5).
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Fig. 8. The EMD filtering results on test signal 2.

The thresholding was made according to signal level in every subband, the threshold
values were estimated through the same rules (based on the principle of Stein’s Unbiased
Risk). Both of soft and hard thresholding procedures were applied, the results can be
seen on Fig. 8.

Fig. 9. The EMD filtering results on testsignal3 (noise level 5).
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The next table contains the measured parameter obtained through the EMD based
filtering procedure (Table 1).

Table 1. The parameters obtained for EMD based filtering results.

n SNRi1 SNR1 e1 SNRi2 SNR2 e2 SNRi3 SNR3 e3

1 31.510 0.954 0.316 24.009 3.723 0.050 36.535 14.423 0.087

2 25.683 0.765 0.311 18.182 4.130 0.049 30.708 14.691 0.105

3 22.089 0.497 0.339 14.588 5.794 0.054 27.114 13.742 0.093

4 19.511 0.792 0.308 12.010 5.035 0.065 24.536 11.667 0.128

5 17.670 0.678 0.315 10.169 4.117 0.079 22.695 12.634 0.111

6 16.109 0.876 0.297 8.6089 4.839 0.064 21.134 13.448 0.137

7 14.759 0.234 0.368 7.2582 4.121 0.094 19.784 12.940 0.135

The noise was added in seven levels, the obtained signal to noise ratio is strongly
dependent on signal features. Figure 9 presents the variation of reconstruction errors,
which is taken as the absolute value of the difference between original and filtered signal.
The first signal, due to his properties has the greatest reconstruction error. Figure 10
brings the values of obtained signal to noise ratios versus the initial ones.

Fig. 10. The reconstruction errors in case of EMD based filtering.

Table 2 contains the initial and the obtained signal to noise ratio values from DWT
and WPT filtering and the reconstruction errors of these procedures.

The noise level in this case was set between 1% and 6% of the normed signals value.
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Fig. 11. The initial and obtained signal to ratios in case of EMD based filtering.

Table 2. The obtained parameters in case of DWT and WPT based filtering.

Noise [%] 1 2 3 4 5 6

SNRI1 31.5162 25.6272 21.9741 19.4939 17.6737 16.1093

SNRW1 31.6974 25.8218 22.3774 19.7786 17.751 16.3392

SNRWP1 31.6136 25.8589 22.2189 19.7273 17.9487 16.4154

eW1 0.0025 0.004 0.0055 0.0061 0.0067 0.0084

eWP1 0.0027 0.0044 0.0063 0.008 0.0101 0.012

The used wavelet function and the decomposition level were the same for both DWT
and WPT transform based filtering. The threshold selection rules were the same as in
case of Ifs in EMD decomposition. Figure 11 presents the DWT andWPT based filtering
results for the test signals (Fig. 12).
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Fig. 12. The DWT and WPT based filtering results.

The resulted signal to noise ratios after the DWT and WPT filtering are illustrated
on Fig. 13. The results show that this kind of filtering produces good results due to the
decomposition and thresholding in subbands.
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Fig. 13. The initial and obtained SNR in case of DWT and WPT filtering
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The reconstruction error representation completes the filtering evaluation, good
obtained SNR does not means always a good noise cancellation, the shape of filtered
signal must be as close as possible to the original, other way the filtering has no sense
(Fig. 14).
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Fig. 14. The comparison between filtered and original test signals

5 Conclusions

The aim of this study is to compare different methods in nonstationary signal filtering,
preserving as much as possible the given signal parameters. The main parameters in
examining the methods were the obtained signal to noise ratio and the reconstruction
error. Experimental results demonstrate that the DWT and WPT subband filtering were
more efficient due to the accurate decomposition in subbands. The advantage of EMD
is that there is no need of basic functions, the decomposition is signal driven without
involving external function. To improve the quality of EMD based filtering, a better
thresholding rule must be applied to the intrinsic mode functions.
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