
Cryptographic Key Distribution Protocol
with Trusted Platform Module

for Securing In-vehicle Communications

Béla Genge(B) and Piroska Haller

“George Emil Palade” University of Medicine, Pharmacy, Science and Technology of
Târgu Mureş, Gh. Marinescu 38, Târgu, Mureş, Romania

bela.genge@umfst.ro, piroska.haller@umfst.ro

Abstract. The modern car comprises dozens of Electronic Control
Units (ECUs) running several hundred MBs of code, alongside sophis-
ticated dashboards with integrated wireless communications. While this
has brought upon a wide range of advantages and integrated features,
it also exposed modern vehicles to significant threats. As a response, we
developed a generic scheme for distributing keys between ECUs. The
approach leverages the Trusted Platform Module (TPM) 2.0 standard
to provide a tamper-proof cryptographic co-processors capable of exe-
cuting cryptographic operations in a secure manner. The scheme aims at
empowering ECUs to leverage state of the art cryptographic techniques
by adopting recent technological advances such as the TPM. Implemen-
tation details and analysis demonstrate the feasible application of the
approach in the context of the modern vehicle.

Keywords: Automotive systems · Cryptographic protocols · Trusted
platform module

1 Introduction

The modern car has experienced profound changes in terms of its internal techno-
logical ecosystem. Nowadays, we find dozens of Electronic Control Units (ECUs)
running several hundred MBs of code, alongside sophisticated dashboards with
integrated wireless communications [1].

While this technological advancement has brought upon a wide range of
advantages and integrated features, it also exposed modern vehicles to signifi-
cant threats. As demonstrated by many recent threats [2], vehicle digital com-
munication systems can be exploited in a way that alters the vehicle’s behavior
in order to gain certain advantages (e.g., financial, performance), or, in more
extreme cases, to cause physical damage. Subsequently, changes in the vehicle’s
parameters, the connection of sensor emulators (e.g., AdBlue emulators), can sig-
nificantly alter the operation of the vehicle’s internal subsystems. Such changes
can deactivate critical systems such as the Selective Catalytic Reduction (SCR)
dosing system.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Moldovan and A. Gligor (Eds.): Inter-Eng 2021, LNNS 386, pp. 796–807, 2022.
https://doi.org/10.1007/978-3-030-93817-8_71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93817-8_71&domain=pdf
https://doi.org/10.1007/978-3-030-93817-8_71


Cryptographic Key Distribution Protocol 797

Consequently, it is imperative to ensure that ECUs are able to securely
exchange data, but most importantly, it is necessary that ECUs are empow-
ered with the ability to verify the authenticity of critical frames. To this end, we
find several techniques to ensure the integrity and authenticity of data transfers
within vehicles [3,4]. On the other hand, only few studies addressed the issue of
key distribution in these systems. The main rationale is the high computational
requirements of modern asymmetric algorithms, which can significantly affect
the normal operation of in-vehicle controllers.

To address this issue, this paper documents a generic scheme for distribut-
ing keys between ECUs found in modern vehicles. The approach leverages the
Trusted Platform Module (TPM) 2.0 standard [5] developed by the Trusted
Computing Group (TCG) to provide a tamper-proof cryptographic co-processors
capable of executing cryptographic operations in a secure manner. The approach
is aimed at empowering ECUs to leverage state of the art cryptographic tech-
niques by adopting recent technological advances such as the TPM. Implemen-
tation details and analysis demonstrate the feasible application of the approach
in the context of the modern vehicle.

The remainder of this work is structured as follows. Section 2 provides the
background terminology and an overview of related studies. Then, Sect. 3 details
the developed scheme, while Sect. 4 provides an analysis of concurrency and
security. This is followed by Sect. 5, which provides incipient implementation
details and an analysis on the possible integration impact. The paper concludes
with Sect. 6.

2 Background and Related Work

2.1 Internal Architecture of the Modern Car

From an architectural point of view, the modern car comprises dozens of embed-
ded devices, also known as Electronic Control Units (ECUs), communicating
with each other, as well as with digital and/or analog sensors. Here, we encounter
a diverse ecosystem of control units (e.g., Engine Control Unit, Communication
Control Unit) and sensors (e.g., Nox Sensor), together with communication pro-
tocols that range from Controller Area Network (CAN), to SENT (Single Edge
Nibble Transmission) or MOST (Media Oriented Systems Transport).

In today’s modern vehicles the “backbone” communication is provided by the
Controller Area Network (CAN). Initially developed by Robert Bosch GmbH
in 1986 for connecting electronic devices in motor vehicles, CAN is no longer
restricted to automotive applications. Initially standardized by the International
Standardization Organization (ISO) in 1993 as ISO 11898, and later restructured
in three parts, the CAN standard specifications cover the data link layer and
CAN physical layer for high-speed and low-speed CAN.

The original CAN specifications (Versions 1.0, 1.2 and 2.0A) specify an 11
bit message identifier. This is known as “Standard CAN”. Specification V2.0A
has been updated (to version 2.0B), to remove the message number limitation
and meet the SAE J1939 standard for the use of CAN in heavy duty vehicles.



798 B. Genge and P. Haller

Version 2.0B CAN, referred to as “Extended CAN”, contains a 29-bit identifier
in the arbitration field, which allows over 536 Million message identifiers.

Given the limitations of the “classical” CAN protocol in terms of bandwidth
(up to 1 Mbit/s) and payload size (each CAN data frame can hold up to 8 data
bytes), recently, two main improved communication infrastructures have been
proposed. The CAN+ protocol was proposed by Ziermann, et al. in 2009 [6],
and it exploits the time between transmissions to send additional data. More
recently, in 2012, Robert Bosch GmbH developed the CAN with flexible data-
rate protocol (CAN-FD version 1.0) [7], which later became part of the ISO
11898-1:2015 standard. This specification allows for increased data lengths and,
once the arbitration is decided, a higher bit rate can be configured for the data
phase. Up to 8Mbit/s data rates and up to 64 data bytes are now possible with
CAN-FD.

The AUTomotive Open System ARchitecture (AUTOSAR) Specification of
Secure Onboard Communication standard (AUTOSAR SecOC) [4] provides the
principles for achieving authentication and integrity protection of sensitive data
exchanged communication peers in an automotive network. The approach is
generic, and it supports both symmetric and asymmetric methods. It recom-
mends the use of Message Authentication Code (MAC) for symmetric, and public
key-based digital signatures for asymmetric applications. The specification rec-
ommends that each Protocol Data unit – PDU (e.g., a CAN frame) is extended
with an authentication component (e.g., the MAC) and a freshness value (e.g.,
freshness counter, timestamp). In addition, for certain protocols, such as the
CAN protocol, the size of the MAC tag can be truncated down to 64 bits in
order to fit into a single frame.

2.2 Trusted Platform Module

Each component found within the modern car, depending on its hardware con-
figuration, presents different requirements in terms of security objectives. As
an example, ECUs require a broader range of features in comparison to a digi-
tal sensor, even if the same communication medium is used. Typically, security
objectives are implemented within the existing system and are executed on the
same processing unit. This affects the computational load on the processing
unit. In the case of environmentally restricted units, such an overload can lead
to delays that may alter the real-time operation of the CAN ecosystem.

In order to enable security features in environmentally restricted units, the
use of security controllers is imperative. To this end, the Trusted Platform
Module (TPM) 2.0 standard [5] developed by the Trusted Computing Group
(TCG), offers the description for compatible security controllers. TPMs rep-
resent tamper-proof cryptographic co-processors capable of executing crypto-
graphic operations in a secure manner, isolated from the main processing unit.
In the remainder of this document the TPM abbreviation is used to denote a
security controller compatible with the TPM 2.0 specification.

The TPM presents several core capabilities based on which complex security
mechanisms can be built. Serving as a Root of Trust (RoT), it offers secure key



Cryptographic Key Distribution Protocol 799

storage in volatile and non-volatile memory, an Endorsement key (Ek) sealed and
only available to the TPM itself, and a set of Platform Configurable Registers
(PCRs) capable of performing local integrity measurements by leveraging hash
based functions. For persistent storage, usually TPMs contain a non-volatile
memory which, in certain cases, given it’s modest dimension can’t facilitate the
storage of a high number of cryptographic keys. As a solution to this problem,
the TPM presents two additional methods of processing keys: sealing, which
securely stores the cryptographic keys on disk by encrypting the private part of
the key pair by leveraging the Ek, and key hierarchies, which allow deterministic
key derivation starting from a parent key stored in the TPM. The keys obtained
after derivation at run-time follow a tree-like graph structure, where a node can
represent a parent or child key. To store the key generated from a key hierarchy,
TPM uses the sealing method.

2.3 Related Work

Several techniques have been developed in order to secure CAN communications.
Starting with the work of Herrewege, et al. [3], it was shown that, while the CAN
bus has significant limitations in terms of payload and bandwidth, data authen-
tication is still achievable via Message Authentication Codes (MAC), and more
specifically the HMAC standard, alongside a counter in order to ensure freshness
and resistance against replay attacks. The approach entitled CANAuth presumes
the presence of the CAN+ protocol, which permits out-of-band transmissions [6].

With respect to techniques targeting CAN-FD, which is within the main
scope of the developed approach, we mention the work of Woo, et al. [8], where
a secure communication protocol and security architecture were developed for
CAN-FD-enabled in-vehicle systems. The approach embraces two distinct layers.
A first security layer, where regular ECUs communicate securely by leveraging
symmetric cryptographic constructions (e.g., symmetric encryption, and MAC).
This is reinforced by a second security layer consisting of an advanced gate-
way capable of signing and verifying signatures via asymmetric cryptographic
computations.

Wang and Liu [9] acknowledged the importance of securing gateway ECUs
(i.e., ECUs enabling external communications), which provide various commu-
nication interfaces, including the support for Vehicle to Internet communica-
tions. These benefit from significant computational power and communication
bandwidth and enable the realisation of new infrastructural paradigms such as
the Internet of Vehicles. Wang’s approach focused on the secure distribution of
cryptographic keys in and outside the vehicle. In a similar fashion, we find other
approaches, where the emphasis was placed on the distribution of cryptographic
keys [10]. Groza and Murvay [10] evaluated several techniques for distribut-
ing keys in CAN-FD, including Diffie-Hellman and identity-based cryptography.
Compared to this approach, we present a generic set of protocols that distin-
guish between long-term and short-term keys in order to reduce the number of
messages and, overall, the impact on communications. Furthermore, we leverage
the capabilities of TPM to reduce the computational overhead.



800 B. Genge and P. Haller

Fig. 1. Bootstrapping.

3 Cryptographic Key Distribution Scheme

Typically, security features are implemented within the existing system and are
executed on the same processing unit, which affects the computational load on
the processing unit. In the case of environmentally restricted units, such an
overload can lead to delays that may alter the real-time operation of the CAN
ecosystem. In order to enable security features in environmentally restricted
units, the use of security controllers is imperative.

We realize that not all components found within the vehicle can be equipped
with a TPM. Furthermore, in the case of data exchanges with digital sensors,
complex cryptographic operations (e.g., digital signatures) may not be sup-
ported. Therefore, this paper does not focus on the key distribution concerning
components not supporting TPM extensions.

3.1 Setup and Bootstrapping

Figure 1 denotes the main entities present in the key distribution scheme. Here,
we observe two main entities: “Master” and “Slave”. The Master is the one that
triggers the generation and distribution of a new cryptographic key, while the
Slaves are the recipients of fresh cryptographic keys. The developed key distribu-
tion scheme leverages public key cryptography, and several types of symmetric
keys.

In terms of cryptographic keys, each ECU, that is, each TPM associated to an
ECU, is bootstrapped with several types of keys. More specifically, the following
are the relevant keys at bootstrapping in the context of an ECU/TPM:

– Storage Root Key (SRK): A pair of special, public-private keys that never
leave the TPM. The SRK is used to encrypt the keys that are stored outside
the TPM.

– Key Signing Key (KSK): A pair of public-private keys used in the key distri-
bution procedure, as described later, in order to enforce the non-repudiation
property.



Cryptographic Key Distribution Protocol 801

– OEM Public key (OemPK): The public key of the manufacturer of the ECU
firmware.

– Slave Public Keys (SlavePKs): The public keys of slave ECUs, in the case of
the Master ECU.

– Master Public Key (MasterPK): The public key of the master ECU, in the
case of Slave ECUs.

To provide a more formal notation of the previous key types, several symbols
and notations are introduced. The following notation denotes a public-private
key pair:

[KX ]Y = (KX
pub,K

Y
prv),X ∈ {M,OEM,S1, S2, ...}, Y ∈ {R,S}. (1)

In the notation above, [KX ]Y denotes a pair of public-private key pairs,
such that KX

pub is the public component, and KY
prv is the private component.

In the same definition, the value of X is replaced in particular cases with the
appropriate symbol from the {M,OEM,S1, S2, ...} set, while the value of Y is
replaced with a symbol from set {R,S}.

According to this definition, the ECU Master is bootstrapped with the fol-
lowing keys: [KM ]R – the Master’s SRK; [KM ]S – the Master’s KSK; KOEM

pub –
the Master OEM’s public key; KS1

pub,K
S1
pub – one or more SlavePKs according to

the number of Slave ECUs associated to a Master ECU. Similarly, a Slave ECU
is bootstrapped with the following keys: [KS1 ]R – the Slave’s SRK; [KS1 ]S – the
Slave’s KSK; KOEM

pub – the Slave OEM’s public key; KM
pub – the Master ECU’s

public key.

3.2 Secure Key Generation and Storage

Once the bootstrapping is completed, Master ECUs are the ones that gener-
ate the long-term and the short-term keys. The two key types are distinguished
according to their cryptoperiod. The cryptoperiod denotes the time span during
which a cryptographic key is authorized for use. According to NIST’s “Recom-
mendation For Key Management”, long-term keys should be changed once every
few weeks, while short-term keys (sometimes referred to as session keys), should
be changed once every few days.

Keys need to be generated in a hardware-protected area that cannot be tam-
pered. As it turns out, the TPM addresses this requirement, since it provides
secure generation and storage of cryptographic keys. The cryptographic keys
generated for this purpose are symmetric keys, that is, the keys used to pro-
vide data confidentiality, integrity, and authenticity with the help of encryption
algorithms. It is imperative that the generated keys do not leave the TPM unen-
crypted. For this purpose, TPMs have a particular feature known as sealing.
Sealing denotes the procedure of encrypting data (e.g., session keys) with the
TPM’s SRK. Since the private part of SRK never leaves the TPM, it is prac-
tically impossible for someone to decrypt the session key without knowing the
SRK’s private key. As a result, the TPM can generate a large number of cryp-
tographic keys that can be applied in data authentication, data integrity, and a



802 B. Genge and P. Haller

wide variety of other scenarios. In the case a particular key is needed, the TPM
can load, unseal the key, and apply it to enforce certain security properties.

3.3 Long-Term Key Distribution Protocol

In order to reduce the overhead on the CAN-FD bus, the long-term key distri-
bution protocol is defined as a single message protocol. The message is sent by
the Master ECU to each Slave ECU. We call this protocol the Long-term Key
Distribution Protocol and denote it by Proto-LTK:

ECUMaster → ECUY : pidLTK , kidLTK , N, {K}KY
pub

,

{pidLTK , kidLTK , N, {K}KY
pub

}KM
prv

, (2)

where Y ∈ {S1, S2, ...}. In Proto-LTK, pidLTK denotes the protocol identifier,
which needs to be unique for each type of key. This term is particularly use-
ful in distinguishing between several different use cases, and key distribution
scenarios, and, ultimately, to avoid the so-called multi-protocol attacks, where
cryptographic terms from one protocol are replayed to other protocols. The sec-
ond term kidLTK is the key identifier, which can be implemented as a counter.
The next term N is a random number used to enforce the freshness of the mes-
sage, which is in accordance with AUTOSAR SecOc’s recommendations regard-
ing message freshness. Next, the term {K}KY

pub
is the actual transmission of a

freshly generated long-term key K encrypted with each of the target slave’s
public key. The last term is the digital signature of all prior terms, computed
with the Master’s private key KM

prv. The purpose of this term is to enforce
the authenticity (and integrity via authenticity) and non-repudiation security
properties.

In case the message is missed by a target slave, the protocol Proto-LTK is
extended with a challenge-response sequence, which ensures the explicit interro-
gation of the currently used long-term key:

ECUSi
→ ECUM : pidLTK , NS

ECUM → ECUSi
: pidLTK , kidLTK , NS , (3)

{K}KY
pub

, {pidLTK , kidLTK , NS , {K}KY
pub

}KM
prv

.

In this case, the slave ECU (ECUSi
, where i ∈ {1, 2, ...}) initiates the exe-

cution of the protocol by sending a protocol identifier pidLTK , and a freshly
generated random number NS . As a response to this request, the Master issues
the encrypted and signed long-term key K.

3.4 Short-Term Key Distribution Protocol

Once the long-term key (LTK) is installed, it is used to periodically distribute a
new short-term key (STK). We call this protocol the Short-term Key Distribu-
tion Protocol (Proto-STK). For this purpose, a protocol similar to the one above
is used:



Cryptographic Key Distribution Protocol 803

ECUMaster → Broadcast : pidSTK , kidSTK , N, {k}K ,

{pidSTK , kidSTK , N, {k}K}KM
prv

, (4)

where pidSTK is the protocol identifier, kSTK is the key identifier, N is a
freshness counter, and k is the newly generated short-term key. Compared to
Proto-STK, the protocol exhibits two main differences: (i) Proto-STK uses a
broadcast message, which means that a single message is issued for distributing
the new short-term key k; and (ii) Proto-STK digitally signs the newly issued
STK, which empowers Slave ECUs with the ability to verify the authenticity of
the newly generated key. Once again, the protocol is extended with a challenge-
response scheme in order to ensure the subsequent request of the current key:

ECUSi
→ ECUM : pidLTK , NS

ECUM → ECUSi
: pidLTK , kidLTK , NS , (5)

{K}KY
pub

, {pidLTK , kidLTK , NS , {K}KY
pub

}KM
prv

.

4 Concurrency and Security Analysis

4.1 Concurrency Analysis

In order to assess the possible concurrency issues introduced by the developed
scheme we use the TLA+ language [12]. TLA+ (Temporal Logic of Actions) is a
formal specification language developed by Leslie Lamport. It is a language for
constructing specifications, which can then be analyzed by model checking tools.
The model checker can then explore all possible behavior, and find violations of
desired properties. A language that builds on TLA+ is PlusCal, a formal spec-
ification language that can be translated to TLA+ specification. PlusCal was
developed by Leslie Lamport to aid the specification of algorithms. While Plus-
Cal resembles more of an imperative language, its expressions use the syntax of
TLA+. There is also a translator available that translates PlusCal specifications
to TLA+.

PlusCal adopts a wide range of statements from the ‘C’ programming lan-
guage, making its learning curve less steep. We modeled the developed key dis-
tribution protocol by leveraging PlusCal, and we translated the specification
to TLA+ by using the TLA+ toolbox. The specification presumes two enti-
ties, a Master and a Slave. The Master periodically issues a new session key, and
uses the session key to periodically broadcast authenticated messages. The Slave
updates its key, and uses the key with the identifier it receives in order to verify
the authentication tag. As it turns out, TLA+ detected miss-synchronization
between nodes. According to TLA+ output, certain nodes may miss a specific
key update, and would therefore be unable to authenticate subsequent frames.
Therefore, it is imperative that nodes have the ability to buffer a sequence of
frames and leverage the challenge-response variants of the protocols mentioned
earlier in order to synchronize keys.



804 B. Genge and P. Haller

4.2 Security Analysis

We proceed to the formal analysis of the proposed key distribution scheme with
the help of the Scyther [11] tool. Scyther is a model checking tool designed
under the perfect encryption assumption, which means that an adversary can
only learn an encrypted value if he knows the decryption key. In Scyther, the
adversary is assumed to have full control over the underlying communication
network. It can eavesdrop messages, it can replay, split and concatenate mes-
sages, however, it can correctly encrypt and decrypt a message only if it is in
the possession of the right key. Throughout our assessment we used claim events
to analyze the aliveness, non-injective agreement, non-injective synchronization,
and commitment security properties:

– Aliveness: is a weak form of authentication and it ensures to the protocol
initiator I the aliveness of the protocol respondent R, if, after a complete run
of the protocol by I, R also executed some protocol events (not necessarily in
a recent time).

– Non-injective agreement (Niagree): ensures to the protocol initiator I a non-
injective agreement with the respondent R on free variables appearing in the
protocol’s specification, if whenever I completes a protocol run, then R has
also been involved in executing protocol events with I. However, this property
does not guarantee a one-to-one mapping of runs. As a result, participant I
may complete two runs, while participant R may have taken part only in a
single protocol run.

– Non-injective synchronization (Nisynch): is a stronger form of authentication,
which means that all messages sent/received by the initiator I have been
indeed received/sent by the respondent R.

– Commitment : ensures that if whenever I completes a protocol run with a set
of terms, then the respondent R also completed the protocol run with the
same terms. The property is also useful when verifying a protocol against
impersonation attacks.

As part of Scyther’s modeling language, protocol participants are defined
according to their roles (i.e., initiator, respondent). Message exchanges are mod-
eled with send and recv events. There are predefined types for generating random
numbers (i.e., a Nonce - Number once used), while time stamps and session keys
are modeled as user defined types. The complete protocol model is illustrated in
Fig. 2. Here, the Master was modeled as the protocol’s initiator, while a regular
node was modeled as the protocol’s respondent.

By leveraging the Scyther tool, the developed protocol was proven to be
correct within the Dolev-Yao attacker model. More specifically, it was proven
that the protocol ensures: (i) the synchronized agreement of roles with respect
to runs; and (iii) the secrecy of the LTK K. Similarly to this protocol, the other
variants have also been modeled with the help of the Scyther tool, and were
found to be correct within the Dolev-Yao attacker model.



Cryptographic Key Distribution Protocol 805

Fig. 2. The key distribution protocol’s description in Scyther’s modeling language.

5 Implementation Details

A prototype of the proposed scheme has been implemented in the context of
a laboratory testbed. The testbed comprised of an ECU implemented with the
help of Raspberry Pi model 3B+ running the Automotive Grade Linux oper-
ating system. The ECU was equipped with an An MCP2515 CAN controller,
with a TJA1050 CAN transceiver, and an Infineon OPTIGA SLB 9670 Trusted
Platform Module. The TPM supports a wide range of cryptographic applica-
tions, while providing both symmetric and asymmetric cryptographic primitives.
A wide variety of algorithms are supported, including Elliptic Curve Cryptog-
raphy (ECC), EC Diffie-Helman, 1024 and 2046-bit RSA. The primitives for
building the key distribution protocols and for communicating with the TPM
were implemented in Python 3.5.

For the following analysis, we used 2048-bit RSA and 256-bit SHA, thus
the most resource-intensive algorithms supported by the TPM. Accordingly, we
tested the time for generating the message of Proto-LTK. As it turns out, the
measured time for generating a new symmetric key K of 32 bytes, the sealing
of the message, including generating signature was of 2.11 s. Indeed, this is an
intensive operation, however, this is also a key advantage of offloading these
time-intensive operations to a cryptographic co-processor. An important obser-
vation is that, in the case of Proto-LTK, a new message needs to be generated
for each ECU involved in the communication. However, since this needs to be
performed only once every few weeks (as mentioned earlier), we consider that
the added value of leveraging state of the art cryptographic constructions out-
weigh the computational downside. Conversely, Proto-STK broadcasts a single



806 B. Genge and P. Haller

message to all involved ECUs, which yields a computational effort for signing
only one message. In terms of message dimension, the following implementation
variant is proposed for Proto-LTK. Since pidLTK could be used to distinguish
between different groups of ECUs using the same protocol, a single byte would
be sufficient for this element. kidLTK and N can be used together as freshness
as well as denoting the identifier of the newly issued key. Accordingly, two bytes
for kidLTK would permit releasing a new LTK every week for more than one
thousand years. Subsequently, the value of N needs to be sized according to the
number of ECUs. Considering the number of ECUs in today’s and future vehi-
cles, the size of N can be of one byte. In case more than 256 ECUs are present,
we assume there would be certain partitioning of ECUs in several networks/-
groups, where pidLTK could be used to distinguish between different groups.
The signature with RSA-2048 is of 256 bytes, while the encryption is also of 256
bytes.

Overall, the number of bytes that need to be sent by one run of Proto-LTK
is of 516 bytes. This value is identical to the number of bytes that are gener-
ated by Proto-STK (assuming the same ciphers are used). This translates to 9
frames to be sent on CAN-FD. We observe, however, that the maximum sup-
ported data rate of CAN-FD is of 8Mbit/s. Therefore, a single run of Proto-LTK
would consume aprox. 4Kbits, that is aprox. 0.05% of the available bandwidth.
Considering that the modern vehicle contains dozens of ECUs, for example in
case of 100 ECUs, each ECU receiving a new STK once every day, this would
overall consume 5% of the vehicle’s bandwidth once every day. Therefore, the
overall impact on the vehicle’s communication can be seen as negligible, at least
from a daily consumption point of view (Table 1).

Table 1. Implementation size for RSA 2048.

pid kid N {K}Kpub Signature

Byte count 1 2 1 256 256

TOTAL 516 Bytes

6 Conclusions

We developed a novel scheme for distributing cryptographic keys in modern
vehicles. The scheme includes two protocols, namely: Proto-LTK for distributing
long-term keys, and Proto-STK for distributing short-term keys. Both protocols
are supoprted by synchronization constructions such that ECUs may synchro-
nize and actively interrogate the current key. In order to ensure feasibility of
integration, the scheme adopted the TPM standard. By using an external cryp-
tographic co-processor, several advantages are provided: (i) the TPM provides a
tamper-proof approach for storing and manipulating cryptographic keys; and (ii)



Cryptographic Key Distribution Protocol 807

the TPM can off-load the computation-intensive operations, and thus empower
ECUs with the possibility to use modern cryptographic algorithms. Implemen-
tation details and analysis have shown that the impact on the used bandwidth,
in the case of CAN-FD is of less than 5%. As future work we intend to develop a
full working prototype and assess the performance of the protocol in the context
of inter-ECU communications.

Acknowledgement. This work was funded by the European Union’s Horizon 2020
Research and Innovation Programme through DIAS project (https://dias-project.
com/) under Grant Agreement No. 814951. This document reflects only the author’s
view and the Agency is not responsible for any use that may be made of the information
it contains.

References

1. Coppola, R., Morisio, M.: Connected car: technologies, issues, future trends. ACM
Comput. Surv. 49(3), 46:1–46:36 (2016)

2. Urquhart, C., Bellekens, X., Tachtatzis, C., Atkinson, R., Hindy, H., Seeam, A.:
Cyber-security internals of a Skoda Octavia vRS: a hands on approach. IEEE
Access 7, 146057–146069 (2019). https://doi.org/10.1109/ACCESS.2019.2943837

3. Van Herrewege, A., Singelee, D., Verbauwhede, I.: CANAuth - a simple, back-
ward compatible broadcast authentication protocol for CAN bus. In: ECRYPT
Workshop on Lightweight Cryptography 2011, pp. 1–7 (2011)

4. AUTOSAR: Specification of Secure Onboard Communication AUTOSAR CP
Release 4.3.1. AUTOSAR (2017)

5. Trusted Computing Group: Trusted PlatformModule Library Specification, Family
“2.0”, Level 00, Revision 01.59 (2019)

6. Ziermann, T., Wildermann, S., Teich, J.: CAN+: a new backward-compatible Con-
troller Area Network (CAN) protocol with up to 16”D7 higher data rates. In:
Design, Automation Test in Europe Conference Exhibition, pp. 1088–1093 (2009).
https://doi.org/10.1109/DATE.2009.5090826

7. Robert Bosch Gmbh: CAN with flexible data-rate. Vector CANtech, Inc., MI, USA,
Specification Version 1.0 (2012)

8. Woo, S., Jo, H.J., Kim, I.S., Lee, D.H.: A practical security architecture for
in-vehicle CAN-FD. IEEE Trans. Intell. Transp. Syst. 17(8), 2248–2261 (2016).
https://doi.org/10.1109/TITS.2016.2519464

9. Wang, L., Liu, X.: NOTSA: novel OBU With three-level security architecture for
internet of vehicles. IEEE Internet Things J. 5(5), 3548–3558 (2018). https://doi.
org/10.1109/JIOT.2018.2800281

10. Groza, B., Murvay, P.S.: Identity-based key exchange on in-vehicle networks: CAN-
FD & FlexRay. Sensors 19(22) (2019). https://doi.org/10.3390/s19224919

11. Cremers, C.J.F.: The Scyther tool: verification, falsification, and analysis of secu-
rity protocols. In: Computer Aided Verification, 20th International Conference,
CAV 2008, Princeton, USA, Proc., pp. 414–418 (2008)

12. Lamport, L.: Specifying Concurrent Systems with TLA+ (1999)

https://dias-project.com/
https://dias-project.com/
https://doi.org/10.1109/ACCESS.2019.2943837
https://doi.org/10.1109/DATE.2009.5090826
https://doi.org/10.1109/TITS.2016.2519464
https://doi.org/10.1109/JIOT.2018.2800281
https://doi.org/10.1109/JIOT.2018.2800281
https://doi.org/10.3390/s19224919

	Cryptographic Key Distribution Protocol with Trusted Platform Module for Securing In-vehicle Communications
	1 Introduction
	2 Background and Related Work
	2.1 Internal Architecture of the Modern Car
	2.2 Trusted Platform Module
	2.3 Related Work

	3 Cryptographic Key Distribution Scheme
	3.1 Setup and Bootstrapping
	3.2 Secure Key Generation and Storage
	3.3 Long-Term Key Distribution Protocol
	3.4 Short-Term Key Distribution Protocol

	4 Concurrency and Security Analysis
	4.1 Concurrency Analysis
	4.2 Security Analysis

	5 Implementation Details
	6 Conclusions
	References




