
The Perturbation Method for Dynamic Analysis
of Pole Vaulting

Ouadie El Mrimar1(B) , Othmane Bendaou1, and Bousselham Samoudi2

1 Department of Physics, Faculty of Sciences, Abdelmalek Essaadi University, Sebta Avenue,
93002 Tetouan, Morocco

{elmrimar.ouadie-etu,o.bendaou}@uae.ac.ma
2 Civil Engineering, Energetic and Environment Department, National School of Applied
Sciences, Abdelmalek Essaadi University, Sidi Bouafif Ajdir, 32003 Al-Hoceima, Morocco

b.samoudi@uae.ac.ma

Abstract. Pole vaulting has progressed slowly in terms of performance since the
1960’s. The world record varies by a few centimeters due to the use of flexible
poles. In this research, we propose a new stochastic optimization approach to take
into account the uncertainties. A simplified mass-spring model has been imple-
mented to model the pole vault. This model is considered as a tool to explore the
possibilities of trajectories and performances, in which the parameters associated
with this system are uncertain. This approach is based on the association of the
perturbation method with the fourth order Runge-Kutta method (RK4). The new
stochastic approach is used to optimize the dynamic response of the system and
the computation time. The results of the perturbation method (PM) are compared
to those of the reference Monte Carlo method (MC).

Keywords: Monte Carlo · Perturbation method · Pole vaulting · Mass-spring ·
Stochastic parameters

1 Introduction

Pole Vaulting is an Olympic discipline in which the athlete tries to clear the bar as high
as possible through a flexible pole transforming kinetic energy into potential energy,
therefore, the performance obtained changes considerably with the combination of two
determining factors such as the properties of the pole (stiffness, weight,) and the physical
ability of the athlete (speed, force…).

The pole vault has been the interest of many scientific works for the last thirty years.
Researchers seek to identify performance factors either through experimental studies
[1–4] or through numerical simulations based on mechanical or mathematical models
[5–12].

Motivated by the mechanics of the pole vault, the aim of this research is to perform a
stochastic study on a simplified model of the pole vault consisting of a point mass and a
linear spring, then the determination of the nonlinear dynamic response of a vault using
the differential equations of motion. In general, assumes that the physical parameters
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of the model are deterministic (material properties, initial and boundary conditions…)
but in reality, these parameters are random. To evaluate the variability of the dynamic
response with respect to the variability of the uncertain parameters of the model, a
Monte Carlo simulation is used [13, 14]. This method is often used as a reference, even
if the prohibitive calculation time limits the use of this method. therefore, we use the
perturbation method [15–17] associated with the fourth order Runge-Kutta method [18].
This method based on the Taylor series development of the response around the average
values of the random variables, and allows to calculate directly the averages and standard
deviations of the solutions.

2 Dynamic Modeling

The dynamic modeling of the pole vault is not an easy problem due to the nonlinearity
of the system. Therefore, we decided to model the dynamics using a linear spring-mass
system which we base on a non-dimensional study thanks to the assumption of the
behavior of the vault. The point mass attach to the spring with an initial velocity V0 and
detach when the spring has no energy store and the mass has no horizontal velocity.

2.1 Linear Mass-Spring System

We consider the system composed of a point mass m and a spring of stiffness k and
length R which can rotate freely around the x axis and θ denotes its angle with the y
axis, measured counterclockwise.

It is assumed that the length of the spring in its initial state is R0, its initial angle
of rotation is θ0. The mass has an initial velocity V0 along the negative y axis when it
contacts the free end of the spring can detach from the spring at any time.

Fig. 1. Point mass system and linear spring in its initial state
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2.2 The Equation of Motion

The equation ofmotion of themass-spring system in Fig. 1 is determined by theLagrange
method in the polar coordinate base, where R and θ are the generalized coordinates, the
equations of motion are as follows:

[
R̈
θ̈

]
=

[
Rθ2 + k

m (R0 − R) − g sin θ

− 2
R θ̇ Ṙ − g

R sin θ

]
(1)

And the initial conditions are:

R(0) = R0

Ṙ(0) = −V0 cos θ

θ(0) = θ0

θ̇ (0) = V0
R0

sin θ
(2)

We non-dimensionalize Eq. (1) by introducing the following non-dimensional
variables of time, position and velocity:

τ = t

√
k

m
, r = R

R0
, v0 = V0

R0
sin θ (3)

The non-dimensional equation is:

[
r̈
θ̈

]
=

[
rθ̇2 + (1 − r) − ε sin θ

− 2
r ṙθ̇ − ε

r sin θ

]
(4)

Due to the weight of the mass, the non-dimensional static deflection of the spring is
ε, where:

ε = δ

L0
δ = mg

k
(5)

The non-dimensional initial condition is:

r(0) = 1
ṙ(0) = −ϑ0 cos θ0,

θ(0) = θ0

θ̇ (0) = ϑ0 sin θ0
(6)

The mass must be released from the spring at a certain time, provided that the kinetic
energy of motion of the mass converted into potential energy. Then these two conditions
that must be satisfied:

ṙ
(
τf

) = 1, ṙ
(
τf

)
cos θ

(
τf

) = r
(
τf

)
θ̇
(
τf

)
sin θ

(
τf

)
(7)

Finally, the point mass moves freely under the influence of gravity only, then its
dynamics will be given by the relation:

Z̈ = −g → z̈ = −ε (8)

The dynamics of themass-spring system is described by four state variables r, ṙ, θ, θ̇ .
Since the final time tf is also unknown, we have to solve a two-point boundary value
problem (TPBVP) where (7) provides two conditions that must be satisfied at the final
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Pole Release

Fig. 2. Trajectory of the mass of Fig. 1 with ε = 0.1 for the initial speed ϑ0 = 0.432 and the
initial angle θ0 = π

6

time. We first solve the TPBVP assuming that ε and θ are constants. A solution was
obtained through trial and error for the specific case where ε0 = 0.1 and θ0 = π

6 rad,
Eq. (4) was integrated in time using the initial conditions in (6) for different values of
the velocity ϑ0.

The results are presented in Fig. 2, by transforming the non-dimensional polar
coordinate system to the non-dimensional Cartesian coordinate system:

x = r cos θ

y = r sin θ
(9)

Only ϑ0 = 0.432 satisfies the five boundary conditions at tf = 3.337 which provides
the solution of TPBVP. At this moment the mass detaches from the spring, the maximum
height reached by the mass is h = 1.191. The equations of motion of the mass integrated
with respect to time using the method of (RK4). The model developed in this section
has been implemented in MATLAB 2020.

3 Stochastic Study

The classical method followed when studying mechanical systems is based on the
assumption that the model is deterministic i.e., that its parameters are constant. How-
ever, if we conduct experiments, we will realize the limits of deterministic modeling.
Because there is always a difference between the calculated and measured results, this
is due to the uncertainty of (the material properties, and the initial conditions….). These
uncertainties have an impact on the dynamic displacement behavior of the mass-spring
system. It is therefore necessary to use stochastic methods, in particular theMonte Carlo
method and the perturbation method.



The Perturbation Method for Dynamic Analysis of Pole Vaulting 645

3.1 Monte Carlo Method

The estimation of the moment (mean and variance) of the dynamic response function of
the mechanical system can be obtained by Monte Carlo simulation. Although its com-
putational cost is high, this method has been widely used by dedicated software (such
as MATLAB, ANSYS…) and provides a reference for approximate calculations. The
Monte Carlo method has the advantage of taking into account all types of uncertain-
ties on the parameters of a mechanical system. However, one of its main drawbacks
is the computational time required due to its iterative nature. The dynamic response
function is considered as a random variable image of the base random variable. The
simulation involves constructing a sample of random variable Y1,Y2, . . . ,Yn and pro-
cessing the sample using standard statistical techniques. The n simulations are performed
independently according to the distribution law of the basic random variables.

The mean of Y is given by:

E[Y ] = 1

n

n∑
i=1

Yi (10)

The variance of Y is given by:

Var[Y ] = 1

n − 1

n∑
i=1

[Yi − E(Y )]2 (11)

3.2 Perturbation Method

The perturbation method is widely used in the field of stochastic finite elements, and
is based on the expansion of the Taylor series, which is a function of the basic ran-
dom physical variables, mechanical properties, geometric characteristics, (the random
parameters must clearly appear in the dynamic matrix). The perturbation method allows
to calculate themean and the standard deviation of the displacement of a dynamic system
with uncertain parameters. This method has been used in many fields to solve linear and
nonlinear problems, for static or dynamic modes.

The perturbation method can be used for mechanical systems with independent
random parameters. It is based on the expansion of the first order Taylor series.

In this sectionwewill apply the perturbationmethod. Thismethod consists of approx-
imating the dynamic function of movements Eq. (4) of random variables by their Taylor
expansion around their mean values, depending on the order considered of the Taylor
expansion. The method is said to be first order, second order or higher.

For the mechanical system of Eq. (4) with uncertain parameters, we suppose that
the static deviation parameters and the initial velocity are functions of the random
variables,

{
βp

}
(p=1,...,P)

.

The vector of the average parameters is defined by
{
β
}
, and the quantity:

{dβ} = {β} − {
β
}
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The following notation is used to simplify the writing of derivatives:

[A]0 = [A](β)|β=β

[A]n = ∂[A](β)

∂βn

∣∣∣∣
β=β

(12)

[A]0, [A]n are deterministic corresponding to the derivatives, the repetition of the
index “ n “ twice implies a summation.

The unknownposition, velocity and acceleration vectors are also developed byTaylor
series as follows:

{r} = {r}0 + {r}ndαn

{ṙ} = {ṙ}0 + {ṙ}ndαn

{r̈} = {r̈}0 + {r̈}ndαn

{θ} = {θ}0 + {θ}ndαn{
θ̇
} = {

θ̇
}0 + {

θ̇
}n
dαn{

θ̈
} = {

θ̈
}0 + {

θ̈
}n
dαn

(13)

Substituting these developments in the equation of motion, writing the terms of the
same order, we obtain the following differential systems:

• Equation of order zero:

{x}0 = {r}0 cos{θ}0
{y}0 = {r}0 sin{θ}0 (14)

• First order equation:

{x}n = {r}n cos{θ}0 + {r}0{θ}n sin{θ}0 (15)

{y}n = {r}n sin{θ}0 + {r}0{θ}n cos{θ}0 (16)

The mean is given by:

E[x(t)] = {x(t)}0
E
[
y(t)

] = {y(t)}0 (17)

The variance is given by:

Var[x(t)] = {x(t)}n2Var(βn)

Var
[
y(t)

] = {y(t)}n2Var(βn)
(18)
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4 Simulation and Results

To evaluate the variability of the nonlinear dynamicmotion responsewith randomparam-
eters, we calculated the two moments (mean, standard deviations) of displacement of
the point mass.

In this section, numerical results are presented after the formulation derived in Sect. 3,
usingMATLAB 2020 computer language scripts. The results of the perturbation method
are compared with the Monte Carlo results for 3000 simulations. Some parameters are
considered as random variables, the first random variable is the static spring deflection
ε, and the second random variable is the initial velocity ϑ0.The stochastic behavior is
described using the normal random variables so these parameters are described by the
following relations:

ε = ε0 + σεℵ1, ϑ = ϑ0 + σϑℵ1 (19)

ε0 et ϑ0 designate the average values, ℵ1,ℵ2 are the normal random variables, σε,
σϑ , are the associated standard deviation.

Table 1. Non-dimensional initial parameters and conditions of the system.

ε0 ϑ0 θ0 r0

0.1 0.432 30° 1

To see the influence of multiple uncertain parameters on the dynamic response of
the mass-spring system, it is assumed that the static deflection ε the velocity ϑ0 are all
uncertain parameters and the angle θ0 and the initial spring length r0 are constants Table
1.

For σ = σε = σϑ the mean values and standard deviations of the dynamic com-
ponents of the nonlinear displacements along the two directions x and y have been
calculated with the method of first order perturbation.

The results obtained are shown in Fig. 3 and Fig. 4 for σ = 5% and in Fig. 5 for
σ = 10%. These results are compared to those obtained with theMonte Carlo referential
technique using 3000 simulations.

The results of the mean value response are very satisfactory, the instantaneous mean
values of the displacements and the standard deviations are consistent with the Monte
Carlo reference solutions, and the errors are still acceptable.

For the results of the standard deviations of the displacements, we can clearly see
that for σ = 5% and σ = 10%, the proposed perturbation method provides very similar
results with the reference Monte Carlo method as well as the reduced computation time,
from other Table 2.

On the other hand, we can see that the error increases when the standard deviation
of uncertain parameters increases.
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Fig. 3. Instantaneous mean value and standard deviation of x(t) for σ = 5%.

Fig. 4. Instantaneous mean value and standard deviation of y(t) for σ = 5%.

Fig. 5. Standard deviation of x(t) and y(t) for σ = 5% σ = 10%

Table 2. Comparison of the CPU time in (s) between the two-simulation methods Monte Carlo
method and perturbation method of order 1.

Monte Carlo Simulation MCS First order perturbation method

CPU time in (s) 45.45 1.34
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5 Conclusion

This paper presents the stochastic method based on the development of the perturbation
method by the first order Taylor expansion in combination with the RK4 method.

We have obtained similar results by the perturbation method and the Monte
Carlo method. The results showed that these methods are efficient in terms of saving
computational time.

This method allowed us to optimize the dynamic response of the mass-spring system
and the computation time. We concluded that the two stochastic parameters ε and ϑ_0
significantly affect the performance of the jump.
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