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Clinical Decision-Making

Stephen M. Downs

Learning Objectives

• Describe the basic concepts and main schools of 
probability.

• Use Bayes Theorem to update probabilities in the face of 
new evidence.

• Recognize potential biases and heuristics in probability 
estimation and decision making.

• Construct and analyze decision trees.
• Apply axioms of expected utility theory to quantify pref-

erences in decision models.
• Assess trade-offs of cost and clinical outcomes using 

cost-effectiveness analysis.
• Identify advanced decision-modeling techniques used in 

CDSS.
• Explain the relationship between decision science and 

clinical informatics.
• Understand real-world contexts for clinical decision anal-

ysis and CDSS.

Practice Domains: Tasks, Knowledge, and Skills
The following core competencies are covered in this chapter:

• K026. Decision science (e.g. Bayes theorem, decision 
analysis, probability theory, utility and preference assess-
ment, test characteristics, clinical decision support, shared 
decision making)

Case Vignette
You are working in the fast track (low acuity) of an urban 
primary care clinic. The next patient to be seen is a 34-year- 

old woman with a chief complaint of a sore throat. Before 
you enter the room, what is the probability that she has strep 
throat (streptococcal pharyngitis)? What questions and phys-
ical examination findings will you rely on to help narrow 
down the differential diagnosis? Are there any decision sup-
port tools that you could use to help you make the correct 
diagnosis?

 Introduction

Decision-making under conditions of uncertainty is chal-
lenging. There may be many courses of action to follow, and 
the outcomes of those actions are not known with confi-
dence. Although one action can lead to the most desirable 
result, there is a chance that it may go awry. Perhaps a safer, 
more middle-of-the-road approach would be better.

Consider the classic case of the patient with abdominal 
pain and one episode of vomiting. Her belly is moderately 
tender without significant rebound. Could she have 
appendicitis?

This is the nature of making decisions under uncertainty. 
Any time there are limited resources, different potential 
courses of action, uncertainty about what will follow the 
chosen action, and preferences over the potential outcomes, 
the benefits of formal decision-making techniques come into 
play.

 Cognitive Aspects of Decision-Making

As a decision-making machine, the human brain is prone to 
errors. As recently as 1944, humans were thought of as ratio-
nal agents whose thoughtful actions could explain the behav-
ior of, for example, economic systems [1]. Decision modeling 
was considered descriptive of human behavior. However, by 
the 1960s, a growing body of psychological research showed 
that human decision-making could (and often did) deviate 
from the idealized model [2, 3]. Decision analysis moved a 
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presumed description of decision-making to a normative pre-
scription for how decisions should be made [4].

 Probability: The Heart of Rational Decision 
Making

Probability estimation is a well-understood metric for repre-
senting uncertainty. But even this has been a relatively new 
notion in human history [5]. What is a probability? A prob-
ability is a number between zero and one representing the 
likelihood (or our belief) that something will happen or that 
a proposition is true. What is the probability a roll of two 
dice will come up with “snake eyes” (two ones)? What is the 
probability an infant with fever will have a urinary tract 
infection? What is the probability the president of the United 
States will walk into your office on his hands?

A probability of zero means absolute certainty that an 
event will not happen. A probability of one means absolute 
certainty that it will. All other probabilities are gradations in 
between. In mathematical terms, p(A) represents the proba-
bility of A. Probabilities have certain behaviors described as 
axioms. An axiom is a statement accepted as true for the 
purposes of developing and proving a theorem [6]. In addi-
tion to zero and one representing certainty, the axioms 
include that the probability of A and B is equal to the prob-
ability of A times the probability of B:

 
p AandB p A p B� � � � �� � �,  

A and B are assumed to be independent, a notion dis-
cussed in the section under Bayes’ rule. This notion is intui-
tive with respect to dice. If the probability of rolling a one on 
a single roll of one die is 1/6, then the probability of getting 
one’s on both of two dice is 1/6 × 1/6 = 1/36.

Finally, the probability of A or B is the probability of A 
plus the probability of B:

 
p Aor B p A p B� � � � � � � �,  

If A and B are mutually exclusive, meaning they can’t 
occur at the same time. So, the probability of getting either a 
one or a two on the roll of a single die is the sum of the prob-
abilities of getting each, 1/6 + 1/6 = 1/3.

There are several schools of probability theory. The three 
most common are classical, frequentist, and subjective [7].

 Classical Probability Theory

The classical school refers to the early concepts of probabil-
ity. These applied to games of chance and are fairly easily 
understood. For example, when flipping a coin, we easily 

understand that the probability of getting heads is 50%. If I 
roll a die, I interpret the chance of getting a six as one in six. 
A card chosen randomly from a deck of 52 cards has a one in 
52 probability of being the ace of spades.

The reader would have come up with the same probabili-
ties, or at least understand them as reasonable. But how? Few 
people have flipped a coin hundreds of times, carefully track-
ing the percentage of times the result was heads. And among 
those who have, a vanishingly small minority will have got-
ten exactly 50% heads. Yet, we understand the “true” proba-
bility of heads to be 50%. This is the classical interpretation 
of probability, which can be derived from understanding the 
underlying mechanisms. We know that the result of a coin 
flip can only be heads or tails (ignoring the extremely rare 
case where a coin may land balanced on its edge).

Moreover, we have no reason to believe that either out-
come, heads or tails, is more likely than the other. Therefore, 
we divide our total belief in the result (100%) evenly between 
the two outcomes in the so-called “sample space.” Heads get 
50%, and tails get 50%. Likewise, if we believe a die, when 
rolled, is equally likely to land on any of its six sides, the 
probability of it landing on any given side is 1/6.

Thus, calculation of a classical probability requires no 
empirical data, as it is mostly analytical. Unlike frequentist 
probabilities (see below), it does not require infinite sets. 
Classical probabilities are objective (as we have seen) as 
long as there is consensus about the underlying mechanisms. 
However, they require knowledge of elementary events and 
are strongly model-bound.

 Frequentist Probability Theory
Another school of probability, widely used in scientific dis-
ciplines, is the frequentist interpretation. The concept here is 
that the probability of a specific outcome of an experiment 
can be estimated by repeating the experiment N (a large 
number) times. The ratio of the number of times a specific 
outcome occurs (n) to the number of experiments performed 
(n/N) is an estimate of the probability of that outcome [8]. 
This conceptualization assumes the existence of some under-
lying “true” probability of the outcome. It posits that this true 
probability could be determined if we could conduct an infi-
nite number of experiments. Since this is impossible, fre-
quentist probabilities are estimates. This is why we are 
fond of notions like 95% confidence intervals and p-values to 
tell us how far we might be from the true value. Frequentist 
probability theory also gives rise to the “law of large num-
bers,” the principle that the larger the number of trials, the 
more precise the probability estimation.

A frequentist probability requires historical data. It is 
empirical and cannot be derived from first principles. The 
frequentist school presumes a stable world because the 
underlying “true” probability is assumed not to change. It 
requires exact replication of the experiment and cannot be 
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applied to a unique event. Therefore, estimating the probabil-
ity of success for the first manned trip to mars could not be 
done in a strictly frequentist way. The experiment cannot be 
repeated multiple times. Frequentist probabilities are never 
exact because infinite replication is not possible.

 Subjectivist Probability Theory
The third school of probability is the subjectivist school. 
Subjectivist probabilities require neither data nor formal 
analysis, but the subjective probability school subsumes the 
other schools philosophically. Subjective probabilities are 
the most commonly estimated and used by far and are criti-
cal to the decision modeler. To illustrate a subjective 
 probability, answer the following question: What is the prob-
ability that you will find the word “computer” on page 100 of 
this book. Don’t look; just write down your probability, a 
single number. How did you choose your probability? You 
might have thought about the number of pages you have read 
so far in this book and the number of times you read the word 
“computer.” That would be a frequentist approach. Or you 
might have thought I was going to “game” the system by 
making sure the word “computer” appears on page 100 (clas-
sical). Or you might have considered that this is a book about 
informatics, so most pages will mention a computer—some-
thing between classical and frequentist. Subjective proba-
bilities are best thought of as a measure of belief. They may 
differ from person to person, but they can be applied to all 
conceivable uncertainties. They deny the possibility of objec-
tive probabilities. Instead, they simply represent what is 
going on “between your ears,” a measure of your belief that 
the word “computer” is on page 100 [7].

Now, look at page 100. Did you find the word “com-
puter?” So if your subjective probability was 10%, were you 
wrong? If it was 90%, were you wrong? No, because you 
were only expressing your degree of belief that “computer” 
was on page 100. The only way you could conceivably have 
been “wrong” would be if you had said the probability was 
zero or 100%. Now that you’ve looked at page 100, of course, 
your subjective probability has changed.

I emphasize subjective probabilities because they are the 
most commonly used and because their necessity is inescap-
able in clinical practice and formal decision modeling. 
Consider the physician who sees a patient with a sore throat. 
According to the Centor criteria [9, 10], the probability this 
patient has streptococcal pharyngitis can be estimated by 
adding points for the patient’s age, signs and symptoms as 
follows:

• History of fever
• Tonsillar exudates
• Tender anterior cervical adenopathy
• Absence of cough
• Age <15 add 1 point
• Age >44 subtract 1 point

The probability of strep is estimated based on the score. A 
score of –1, 0, or 1 implies the probability of strep is <10%. 
If the score is 2 points, the probability of strep infection is 
15%; if 3, 32%. If the score is 4 or 5, the probability is 
56%. This is a purely frequentist probability estimation 
because it is based on the number of times strep was found 
in the throats of a sample of patients with different combi-
nations of these findings. But if we learn that two other 
household members have had positive strep throat cultures 
or observe that the patient has a scarlatiniform rash—find-
ings not included in the Centor criteria—we would cer-
tainly adjust our estimate upwards because our belief that 
the patient has strep would be increased. Now the proba-
bility is subjective. No patients or circumstances are iden-
tical to those in a randomized controlled trial or a formal 
observational study. So subjective adjustment of probabili-
ties is the norm.

Subjective probability is equally indispensable in formal 
modeling simply because all probabilities must be repre-
sented in a formal model. There are rarely clinical studies 
that provide a robust and appropriate measurement of all 
needed probabilities.

 Biases in Estimating Probability

Despite the necessity for subjective probability estimates, a 
large body of literature shows that humans are naturally 
prone to errors or biases in their probability estimates. 
Fortunately, there are techniques for improving one’s skills 
at probability estimation.

The human mind uses various “tricks” to estimate proba-
bilities. Kahneman and Tversky described the best known of 
these tricks in their seminal work [2, 3]. To illustrate, con-
sider this well-known example:

Linda is 31 years old, single, outspoken, and very bright. 
She majored in philosophy. As a student, she was deeply 
concerned with discrimination and social justice issues and 
participated in antinuclear demonstrations. Please check off 
the most likely alternative:

 Linda is a bank teller.
 Linda is a bank teller and is active in the feminist 
movement.

In their study, Kahneman and Tversky found that 10% of 
respondents chose the first alternative and 90% chose the 
second, even though quick reflection will reveal that the pop-
ulation of bank tellers active in the feminist movement is a 
strict subset of all bank tellers. Therefore, Linda is at least as 
likely a bank teller as she is a bank teller and active in the 
feminist movement.

This cognitive error is known as the representativeness 
heuristic. A heuristic is a mental shortcut to solving a 
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problem, producing an approximate solution. The represen-
tativeness heuristic involves gauging the probability of an 
event based on how representative it seems to be of a class. 
In this case, a woman who was deeply concerned with issues 
of discrimination and social justice and participated in anti-
nuclear demonstrations sounds like someone who would be 
active in the feminist movement. This representativeness 
apparently made 90% of respondents overlook the logic of 
the problem.

Similar problems occur with what Kahneman and Tversky 
call the availability heuristic. Like the representativeness 
heuristic, availability refers to estimating the likelihood of an 
event based on how easily it comes to mind. Although this 
works much of the time, it can lead one astray. For example, 
most people believe breast cancer is the number one killer of 
women because of this condition’s massive press. While over 
ten times more women die each year from cardiovascular 
disease than breast cancer [11].

One variant of the availability heuristic is the vividness 
effect. This bias occurs because we tend to rate the probabil-
ity of something based on how vividly it is described or, 
sometimes, how emotionally evocative it is. When this chap-
ter was first written, according to surveys, Americans were 
nearly as worried about Ebola as they were about catching 
the flu. At that time, exactly one person in the US had died 
from Ebola—ever. Every year, between 3000 and 49,000 
people die of influenza in the US alone. In most years, this is 
higher than the number who have ever died of Ebola any-
where. But we heard so much more about Ebola, sometimes 
in excruciating detail. It makes getting Ebola seem more real 
and, therefore, more likely.

 Combining Probabilities: Bayes Theorem

Estimating probabilities is one thing, but the more common 
challenge in medical reasoning (and any other reasoning for 
that matter) is how to update probabilities given new evi-
dence. Although we do it all the time (a patient suspected of 
having an infection has an elevated white blood count or a 
pedestrian judges the traffic volume before endeavoring to 
cross the street), we often do it badly. Test yourself.

The average patient has a one in one thousand chance of 
having a disease. A test for that disease has 90% sensitivity 
and 90% specificity (pretty good!). The test is positive. Now, 
what is the chance the patient has the disease? Write down 
your guess. In a test of Harvard medical students, most 
guessed it was in the neighborhood of 90% [12]. The proba-
bility is slightly less than 1%. The math required to avoid this 
potentially catastrophic miscalculation is surprisingly 
straightforward.

Let’s begin with the classic 2-by-2 contingency table 
(Table 6.1).

The table depicts 10,000 hypothetical patients. In the 
columns, we see that one in one thousand, ten patients have 
the disease (truth), and 9990 do not. If the test is positive in 
90% of those with the disease (the definition of sensitivity), 
then 9 of the ten patients with the disease will have a posi-
tive test result. Among the 9990 without disease, 90%, or 
8991, will have a negative test (the definition of specific-
ity). So now, if we look across the rows, we see that of all 
1008 patients with a positive test, nine or about 0.9% have 
the disease. The rest are false positives. Of the 8992 patients 
who have a negative test, only one false-negative will have 
the disease.

Using a 2-by-2 table to make these calculations is a bit 
cumbersome. However, the calculations can be made in a 
closed-form equation. We use the term prevalence to refer to 
the probability of disease before the test is performed (also 
called the prior probability) and the term positive predictive 
value or PPV (also called posterior probability) to refer to 
the probability of disease after a positive test is observed. 
Note the negative predictive value or NPV is the posterior 
probability of no disease after observing a negative test. We 
can calculate the PPV as follows:

Table 6.1 Classic 2-by-2 contingency table

Truth (disease)

Positive Negative
Test Positive 9 999 1008

Negative 1 8991 8992
10 9990

  

PPV
Prevalence Sensitivity

Prevalence Sensitivity Prevale
�

�
� � �1 nnce Specificity� �� �� �1  

(6.1)

where p(D) is the prior probability of disease, p(T|D) is the 
probability of a positive test given disease (the sensitivity), 
p(¬D) is the probability of not having the disease 
(1- prevalence), and p(T| ¬D) is the probability of a positive 
test given not disease (1-specificity).This is Bayes’ formula, 

A more general form of this equation, using terminology 
introduced earlier in the chapter, is:

 

p D T
p D p T D

p D p T D p D p T D
|

|

| |
� � � � �� � �

� �� � � � �� �� �� �  
(6.2)
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attributed posthumously to Reverend Bayes in 1763 [12]. A 
more compact version of Bayes’ formula can be derived by 

dividing formula (6.1) above by the equivalent formula for 
calculating the negative predictive value as follows:

Table 6.2 Sample collection of likelihood ratios (LR) for a hypotheti-
cal decision support system. Each LR describes the relationship 
between evidence (symptoms, findings, test results) and a given diagno-
sis (see text)

Evidence LR+ LR–

Symptom A 2.3 0.8
Exam Finding B 3.0 0.2
Test Result C 4.1 0.85
Test Result D 3.1 0.1

 

PPV

NPPV

Prevalence Sensitivity

Prevalence Sensitivity P

1

1

�
�

�
� � � rrevalence Specificity

Prevalence Speci

� �� �� �
�

�
�
�

�

�
�
�

�� �� �

1

1 1 fficity

Prevalence Sensitivity Prevalence Specifici

� �
� � �� �� �1 1 tty� �

�

�
�
�

�

�
�
�  

(6.3)

Formula (6.3) reduces to

 

PPV

NPPV

Prevalence

Prevalence

Sensitivity

Specificity1 1 1�
�

�
�

�  

The term Prevalence

Prevalence1−
 is referred to as the odds of dis-

ease; it is the probability divided by one minus the probabil-

ity. The term 
Sensitivity

Specificity1−
 is known as the positive 

likelihood ratio (LR+). The term 
PPV

NPPV1−
 is the posterior 

odds of disease (oddspost). Thus, Bayes’ formula can be 
expressed as

 
Odds Odds LRpost prior� � �  

The posterior odds following a negative test are calcu-
lated in the same way, using the negative likelihood ratio 

(LR–), which is given by 
1− Sensitivity
Specificity

.

This is known as the odds ratio form of Bayes’ formula 
[13]. It can become relatively easy to use this formula to 
estimate posterior probabilities in one’s head with practice. 
Let’s revisit our earlier example of a patient with a one in 
one thousand chance of disease and a positive test with 90% 
sensitivity and 90% specificity. The prior probability of dis-
ease is one in a thousand, so the odds of disease is (1/1000)/
(1 – 1/1000), which is very close to 1/1000. (For very low 
probabilities, the odds are approximately equal to the prob-
ability.) The positive likelihood ratio is the sensitivity 
divided by one minus specificity or .9/.1=9. The posterior 
odds are nine times 1/1000 or 9 in 1000. The posterior prob-
ability is the odds/(1+odds) or 0.009/(1+0.009), which is 
very close to 0.009, or 0.9%, as we saw with the 2-by-2 
table above.

Bayes’ formula’s odds ratio invites an attractive algo-
rithm for computing updated probabilities as new evidence 
is acquired. Because we can treat the posterior odds of dis-
ease following one test as the prior odds of disease for a 
subsequent test, we can string together likelihood ratios to 
calculate the posterior odds after an arbitrary number of bits 
of evidence have been evaluated. What’s required is a prior 
probability of disease and a catalog of positive and negative 
likelihood ratios for the evidence to be considered (Table 6.2)

A diagnostic program could evaluate the likelihood of a 
diagnosis with a prevalence of 2% in a patient who has 

Oddsprior : = Prevalence/(1-Prevalence)  =  0.02/0.98       
= 0.0204

Oddspost : = Oddsprior × LR+
A × LR+

B × LR–
C = 0.0204 

× 2.3 × 3.0 × 0.85 = 0.12
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symptom A, exam finding B, and negative test C, but for 
whom the results of test D are unknown as follows:

With a sufficient knowledge base of LRs, such a diagnostic 
program could process an arbitrary number of findings, 
returning an updated probability each time. However, there 
is one critically important caveat. The relationship of each 
finding to the hypothesized diagnosis must be conditionally 
independent of the other findings. In other words, the prob-
ability of exam finding B, given the diagnosis, must not 
depend on the presence or absence of symptom A.  This 
assumption is rarely precisely true. However, it is often 
close enough that the algorithm works. This approach has 
been successfully employed in several decision support sys-
tems [14–16].

So far, we have only considered Bayes’ formula for the 
binary case in which two hypotheses are being considered, 
i.e., that the patient has the disease or the patient does not 
have the disease. The formula is much more general and can 
consider an arbitrary number of mutually exclusive and 
exhaustive hypotheses. The posterior probability of a given 
hypothesis, H1, is given by the formula

 

p H E
p H p E H

p H p E H
i

N

i i

1
1 1

1

|
|

|
� � � � �� � �

� �� � �
��  

The posterior probabilities for the other hypotheses H2 
through HN are calculated in the same fashion. Although this 
formulation is not as compact as the odds ratio form, com-
plex diagnostic problems can be addressed with an adequate 
knowledge base of conditional probabilities. Likelihood 
ratios can also be expanded to multiple levels of a test result 
(interval likelihood ratios) to account, for example, for how 
a 3+ leukocyte esterase test result increases the probability of 
urinary tract infection more than a 1+ result [17].

 Decision Science

Decision analysis (DA) is a method for choosing a course of 
action under conditions of uncertainty. For the purposes of 
DA, a decision can be thought of as having three components

 1. Two or more alternative courses of action,
 2. Uncertainty about the outcomes of those courses of 

action, and
 3. Preferences for the different outcomes that are possible.

A decision also involves an irreversible commitment of 
resources (no “do-overs”).

DA provides a formalism for representing each of these 
components.

 1. Courses of action (and their potential consequences) are 
represented in a decision model, often a decision tree as 
discussed below.

 2. Uncertainty is represented with probabilities and Bayes’ 
theorem, as we have discussed in the previous section.

 3. Preferences are represented with utilities, a numeric quan-
tification of an individual’s relative preferences for differ-
ent outcomes. These are discussed in the next section.

 Decision Trees

A decision tree is a branching diagram representing courses of 
action that can be taken and the events that may happen as a 
result. Consider the following example. A 12-year-old patient 
presents to an emergency room with a mild fever and abdomi-
nal pain. She has vomited once. Based on a detailed history and 
physical examination, you have decided that there is a 30% 
chance she has appendicitis. You have decided on two possible 
courses of action. You can take her directly to surgery and 
remove her appendix. This surgery comes with a small risk of 
surgical death, about 1 in 10,000. Alternatively, you can observe 
her in an observation unit overnight. Let’s make some simplify-
ing assumptions. First, assume that if she doesn’t have appen-
dicitis, she has a self-limited viral infection, and if you observe 
her overnight, she will recover and go home.

On the other hand, if she has appendicitis and you choose 
to observe, there is a 35% chance that her appendix will rup-
ture. In that case, she will require surgery, and the risk of 
surgical death is ten times higher. If her appendix does not 
rupture, she will still need surgery (because she has appendi-
citis), but the risk of death will not be higher.

Figure 6.1 shows a decision tree representing this situation. 
The tree consists of a series of nodes with branches coming out 
of them. It is read from left to right. There are three types of 
nodes; the square node on the left is a decision node. The 
branches coming from a decision node represent the choices 
under the decision maker’s control, in this case, taking the 
patient to surgery or observing overnight. Each of these 
branches leads to a round chance node. Each branch coming 
from a chance node represents something that might or might 
not happen but over which the decision-maker has no direct 
control. The branches are associated with probabilities. In the 
case of the “Surgery” node, the chance of “Surgical Death” is 
0.0001 (one in ten thousand). The chance of “Survive Surgery” 
is 0.9999. In statistical vernacular, chance nodes represent ran-
dom variables, with the branches representing possible values 
in the outcome space. As such, the branches must be mutually 
exclusive and exhaustive, meaning the probabilities of the 
branches emanating from a given chance node must sum to 1.0.

The third type of node is a terminal or value node, shown 
along the right side of Fig.  6.1. These nodes hold numeric 

PPV := Oddspost/(1 + Oddspost) = 0.11, or 11%
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representations of the decision-maker’s values on the outcomes 
at the end of the decision tree. This numeric representation is 
called a utility. For the moment, we will use the world’s sim-
plest utility measure, 1 for surviving and 0 for dying. The theo-
retical basis for assigning more precise values to outcomes is 
discussed in the section “Expected Utility Theory” below.

Following the tree from left to right, if the decision-
maker decides on the surgery option, we have said there is a 
9999 in 10,000 chance the patient will survive. If observa-
tion is chosen, there is a 30% chance the patient will have 
appendicitis. In that case, there is a 35% chance the appen-
dix will rupture. If the appendix ruptures, there is a one in 
1000 (0.001) chance of surgical death and a 999  in 1000 
chance of surviving an appendectomy. If the appendix does 
not rupture, the chance of surgical death from an appendec-
tomy is still 0.0001. Finally, if the patient does not have 
appendicitis, her symptoms resolve, and she goes home.

The decision tree is analyzed moving from right to left, 
using a recursive algorithm. If a node is a utility node, its 
value is its utility. If it is a chance node, its value is the 
expected value of its branches, that is, the sum across its 
branches of the product of the value of the branch times the 
probability of the branch. If the node is a decision node, its 
value becomes the value of whichever of its branches has the 
highest value—the decision that should be taken.

The values of the nodes in Fig. 6.1 are shown as bubbles 
pointing to the nodes. The expected value (EV) of the Surgery 

node is the value of dying times the probability of dying plus 
the value of surviving times the probability of surviving, (1 
× 0.9999) + (0 × 0.0001) = 0.9999. The value of the Rupture 
node is (1 × 0.9990) + (0 × 0.0010) = 0.9990. The value of 
the Appendicitis node is (0.35 × 0.9990) + (0.65 × 0.9999) 
= 0.9996. Finally, the value of the Observe node is (0.30 × 0
.9996) + (0.70 × 1) = 0.99988. Because the EV of Observe is 
lower than EV of Surgery, surgery is the preferred option.

The thoughtful reader will have some objections to this 
simple analysis. First, the difference in the EVs of the surgery 
and observation options seems trivially small, only two in 
100,000. This decision seems like a “close call” that may 
change with minor changes in our estimates of probabilities 
and utilities. This is a legitimate complaint that we will 
address in the section “Sensitivity Analysis” below. A second 
concern might be that our utilities, 1 for survival and 0 for 
death, maybe overly simplistic. Surely, a patient would rather 
be observed overnight and go home than have a ruptured 
appendix and undergo emergent appendectomy and treatment 
for peritonitis. A more nuanced approach to quantifying pref-
erence is discussed in the section “Expected Utility Theory.”

A third point might be that we have missed an alterna-
tive. Instead of choosing surgery or observation, perhaps 
we can perform a test that will help us decide. The option 
of using a diagnostic test is easily modeled with a third 
branch from the decision node, as shown in Fig. 6.2. We 
have modeled a test with 70% sensitivity and 80% 
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Fig. 6.1 The appendicitis decision tree. As described in the text, this decision tree illustrates the three main types of nodes in a decision tree: 
square decision nodes, round chance nodes, and terminal nodes at the end of each path
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Fig. 6.2 The appendicitis decision tree with a “test” node. As described in the text, this version of the appendicitis decision tree includes the 
option of obtaining a test to decide how to treat the patient
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specificity. Between the Surgery and Observation nodes, 
we have inserted a Test node. Under the assumption that 
we would take the patient to surgery if the test is positive 
and observe the patient if negative, the Test Positive 
branch has the same structure as the Surgery branch. The 
Test Negative branch has the same structure as the Observe 
branch, assuming that we will respond to a positive or 
negative test, respectively.

However, note that the probability of appendicitis given a 
negative test is now 14% instead of 30%. This 14% is calcu-
lated using Bayes’ theorem, the probability of disease given 
a negative test or one minus the negative predictive value 
(see above). The probability of a positive test is given 
by p(T+| D) × p(D) + p(T+| ¬D) × p(¬D), the denominator of 
Bayes’ theorem (Eq. 6.2 above).

We calculate the expected utility of the Test node in 
exactly the same way we did for the other two branches, 
getting a value of 0.99993, slightly higher than the EV of 
surgery. So the test option is the best. The difference in 
expected value between the best option without the test 
(surgery at 0.99990) and the expected value of testing 
(0.99993) is known as the expected value of information 
from the test.

But now let us consider another scenario, another patient 
with abdominal pain, but with higher fever, vomiting, and 
pain that is more typical for appendicitis, with migration to 
McBurney’s point. Your subjective judgment is that the 
patient has a 50% chance of having appendicitis. When we 
evaluate the tree, the results are those in Fig. 6.3. Some find 
it surprising that the EV of testing has fallen below the EV of 
surgery. In other words, it is worse to obtain more informa-
tion with the test than to just take the patient to the operating 
room. The test offers no value of information in this 
scenario.

To understand why this is so, consider the six probabil-
ities that have changed, circled in Fig. 6.3. The probabil-
ity of a positive test has gone up to 45%, and the probability 
of a negative test has gone down to 55%. More impor-
tantly, the probability of appendicitis given a negative test 
(the false- negative rate) has increased to 27%. In other 
words, if the test is negative (and we choose to observe), 
there is still a 27% chance the patient has appendicitis. 
Which decision is best depends on the prior probability of 
appendicitis.

 Sensitivity Analysis

The exercise of varying a parameter in a decision model (like 
the prior probability of appendicitis) to see how it effects the 
decision is known as sensitivity analysis. Figure 6.4 shows 
a one-way sensitivity analysis of the probability of appendi-
citis. The x-axis shows the probability of appendicitis varied 

from 0 to 100%. The y-axis shows the expected value. Each 
line on the graph represents one of the three strategies—sur-
gery, test, observe.

When the probability of appendicitis is low, Observe has 
the highest EV. As the probability of appendicitis goes up, 
the EV of Observe drops rapidly while the EV of Surgery 
stays the same (because the risks of surgery are the same 
regardless of the probability of appendicitis). The EV of Test 
drops more slowly as the probability of appendicitis rises. 
We see that at low probabilities, Observe is best. At high 
probabilities, Surgery is best. Only in the middle area does 
Test have the highest EV. The points where the lines cross are 
known as thresholds, and they represent points where the 
best decision changes. Figure 6.4 has dotted lines projecting 
the thresholds onto a “threshold bar” at the bottom [18]. This 
bar represents a decision rule suggesting which option is best 
given the estimated risk of appendicitis.

 Expected Utility Theory

One objection to our appendicitis decision tree is the way the 
outcomes are valued. All outcomes resulting in survival were 
counted as 1, and those resulting in death were counted as 0. 
However, spending a night in observation with no surgery, is 
certainly better than surviving after having a ruptured 
appendix, requiring emergency surgery and resulting in 
peritonitis-although both result in survival. A more nuanced 
measure of preference is needed. That measure is known as a 
utility, and we describe the theory behind it here.

To develop the theory, let’s consider a decision with a 
more quantifiable outcome, money. Imagine that you have 
the opportunity to play a game. In the game, a coin will be 
flipped. If the coin comes up heads, you will win $20. If it 
comes up tails, you win nothing. You have to pay to play this 
game. So there is a choice: pay to play or keep your money. 
Stop now and ask yourself what’s the most you would pay to 
play this game. To help make this decision, you might calcu-
late the EV of the game and compare it to the cost of playing. 
Assuming a “fair” coin, the EV of the game is 50% times 
$20 plus 50% times $0, or $10. If you are happy with this 
result, you should be willing to pay anything up to $10 to 
play the game because the EV of the game worth the same as 
$10 in your pocket. However, many years of experience (and 
research) have shown that the vast majority of people are 
unwilling to pay anything close to $10 for this game. How 
about you? This unwillingness to pay an amount for a gam-
ble equal to the EV of the gamble has been termed risk 
aversion.

So perhaps the whole EV idea doesn’t work. Nicolas 
Bernoulli came up with an even more dramatic example[19]. 
Imagine a game in which we will flip a coin. If it lands on 
heads, you win two dollars. If it lands on tails, the game 
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Fig. 6.3 The appendicitis decision tree with the prior probability of appendicitis increased to 50%, illustrating that which option is best changes 
as the parameters in the decision model change. The circled probabilities are those that change as the prior probability of appendicitis is increased
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shows the expected value of each decision option as the probability 
increases. Points where the lines cross are known as thresholds

ends. Otherwise, we flip again. If you get a second heads, 
you win $4; a third, $8; a fourth, $16; and so forth, doubling 
each time you get heads but ending as soon as you get tails. 
How much would you pay to play that game? Most people 
would pay a few dollars at most, but the EV of this game is 

infinite because the infinite series, lim
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unbounded.
Nicolas Bernoulli appears to have contradicted EV as a 

basis for decision-making. However, his cousin, Daniel 
Bernoulli, proposed a solution, suggesting that the marginal 
benefit of each unit of money gained decreases as the person 
receiving it gains more and more. To paraphrase Bernoulli, a 
dollar surely means more to a pauper than to a rich man.

This idea implies that we need a new metric, a function on 
dollars that behaves the way we want it to behave—that is, 
its expected value is a basis for making a decision. Such a 
function is known as a utility. Expected utility theory was 
first formalized by von Neumann (a mathematician) and 
Morgenstern (an economist) in 1944 [1]. Starting with a set 
of axioms or postulates, they developed a formal proof that 
the expected value of their utility function should be the 
basis of rational choice. Raiffa and Howard have developed 
more intuitive versions of this proof [20]. What follows is 
adapted from Howard’s axioms of expected utility theory.

The axioms of expected utility theory, as framed by 
Howard, are (1) orderability, (2) transitivity, (3) monotonic-
ity, (4) decomposability, (5) continuity, and substitutability 
[21]. To illustrate how they lead to utility theory, imagine 
you have a condition called the clinical epidemioma (CE). 
Left untreated, a CE is uniformly and rapidly fatal. Of course, 
CE is not a real disease; I have invented it for this illustration. 

There are three treatments available: (1) Tumorex, which 
results in a 10-year survival in the 50% of patients whose 
bodies absorb it; (2) GastroSorb, which is absorbed by all 
patients but is effective in 50% of tumors, resulting in 10-year 
survival; and (3) Mediocrin, a generic that results in 4-year 
survival for all patients who take it. In one arm of a random-
ized controlled trial, the combination of Tumorex and 
GastoSorb was tried. The combination was fatal in 20% of 
patients because of an enzyme in 40% of patients that ren-
ders GastroSorb toxic in the presence of Tumorex.

Figure 6.5 illustrates the choice of treatments in the CE in 
a decision tree.

At first glance, the combination seems like the obvious 
winner because it offers the highest life expectancy (5.5 
years), but let’s review the axioms of expected utility and see 
how they apply.

 1. Orderability simply means that we are willing to order 
the outcomes in our decision problem according to pref-
erence. Two outcomes may be deemed equally desirable. 
In the CE example, we probably would prefer 10 years to 
4 years to 0 years.

 2. Transitivity says that if we like A better than B and B bet-
ter than C, then we must like A better than C. A violation 
of this axiom can turn you into a “money pump” because, 
if it is not true, I can get you to pay me a small amount to 
take B in exchange for C, then a bit more to take A in 
exchange for B. But then I can get a bit more to take C in 
exchange for A and continue like this indefinitely.

 3. Monotonicity means that, given two gambles with prizes 
A and B, if I like A better than B, I will prefer the gamble 
that gives me the higher probability of A–I want the gam-
ble with the higher probability of the thing I like better.

 4. Decomposability is also known as the “no fun in gam-
bling” axiom. It states that all we care about is the prob-
abilities of the outcomes, not how the sequence of events 
leads to them. For example, Tomorex is 50% absorbed 
but 100% effective, and GastroSorb is 100% absorbed but 
50% effective. These are equivalent because both repre-
sent a 50% chance at the outcome, 10 years.

 5. Continuity and substitutability states that for any three 
outcomes (for example, 0, 4, and 10 years), there exists 
some probability, p, at which the decision-maker is indif-
ferent between a lottery with probability p of the best out-
come and 1-p of the worst outcome and taking the 
intermediate outcome with certainty. In the case of the 
CE, given a choice between 4 years for sure and a gamble 
with a probability, p, of living 10 years and a probability, 
1-p, of dying, there is some probability, p, at which the 
certainty and the lottery would have equal preference.

Let’s consider just the Combination branch to show how 
these can be applied to the CE tree in Fig.  6.5. The 
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Fig. 6.5 Decision tree illustrating the choice of treatments for the clinical epidemioma. The combination treatment appears to offer the highest 
expected survival. However, application of the axioms of expected utility theory shows that this may not be the best choice (see text)
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decomposability axiom says that multiplying and adding can 
change that branch to a single gamble with a 55% chance of 
10 years and a 45% chance of 0 years without changing our 
preference for that option. The continuity and substitutability 
axiom says that, in the Mediocrin branch, we can replace the 
4 years for sure with a gamble between 10 years at probabil-
ity, p (where p is the indifference probability), and 0 years 
with probability 1-p without changing our preferences.

Comparing the Combination and Mediocrin branches, we 
compare two gambles with the outcomes 10 and 0 years. One 
offers 10 years with a probability of 55% and the other a 
probability p. So the preferred option depends on the indif-
ference point, p. This is assessed using the standard gamble 
(or standard reference gamble described below).

 The Standard Gamble

Von Neumann-Morgenstern (vNM) utilities are assessed 
with the standard gamble. This is simply a process for find-
ing the indifference point. This is done by setting up a trade- 
off between a gamble with the best and worst outcomes and 
an intermediate outcome for certain, as illustrated below 
(Fig. 6.6). A series of forced-choice questions are asked as 
follows. A value between 0 and 1 is assigned to p (e.g., 50%), 
and the respondent (decision maker) is asked whether she 
would prefer a gamble with a 50% chance of 10 years (the 
best outcome) and a 50% chance of 0 years (the worst out-
come), or if she would rather have 4 years for sure, referred 
to as the certain equivalent. If she says she would prefer 4 
years for sure, p is adjusted upward, perhaps to 75%. Then 
the respondent is asked whether she would prefer a gamble 
with a 75% chance of 10 years and a 25% chance of 0 year, 
or if she would rather have 4 years for sure.

The probability, p, is adjusted in this way until p has a value 
at which the respondent cannot choose between the alterna-

tives. For the standard gamble in Fig. 6.6, a common indiffer-
ence point is at about p = 80%. For convenience, we arbitrarily 
set the utility of the best outcome in a decision to 1 and the 
utility of the worst outcome to 0. Thus, at the indifference 
point, the value of the intermediate outcome is the expected 
utility of the gamble or p. If the respondent were indifferent at 
an 80% probability of 10 years (and a 20% risk of death), the 
utility of 4 years (the certain equivalent) would be 0.8.

This process can be repeated for all of the outcomes in a 
decision tree with preference weightings between the best 
and the worst. And the proof put forth by von Neumann and 
Morgenstern means that the expected utility is an appropriate 
basis for choosing alternatives. If these utility values are 
plotted as a function of the outcomes, the result is typically a 
curve, as shown in Fig. 6.7. This curve, said to be concave 
up, is typical of risk aversion. It is consistent with Daniel 
Bernoulli’s proposal that the marginal gain of each unit of 
outcome goes down as the total number of units goes up.

Most individuals will be risk-averse under most circum-
stances, but there are risk-seeking individuals and situations 
in which individuals will exhibit both risk-seeking and risk- 
averse preferences [2, 3].

 Time Trade-Off

By virtue of arising from vNM expected utility theory, the 
standard gamble is generally considered the gold standard 
for utility assessment. However, because it can pose a 
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p U = 1
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Fig. 6.6 The standard gamble. The relative utility values for outcomes 
in a decision analysis are calculated in threes. A forced choice is set up 
between a gamble, consisting of a probability, p, of the most preferred 
outcome and probability, 1-p, of the least preferred outcome, or a cer-
tainty of the intermediate outcome. The probabilities are adjusted until 
the decision maker is indifferent between the gamble and the certainty. 
At this point, the utility of the certainty is equal to the expected utility 
of the gamble. If the utility of the most preferred outcome is set to 1, 
and the utility of the least preferred set to 0, the utility of the certainty 
is equal to p
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Fig. 6.7 Utility curve on years of life. The curve shows one decision 
maker’s utilities on remaining years of life as a function of years of life. 
The figure highlights the that the utility of 4 years of life, U(4 years) is 
0.8 on a scale where U(0 years) = 0 and U(10 years) = 1. The curve is 
bowed up and to the left (concave up), indicating the decision maker is 
risk averse
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cognitive burden, other methods have been developed. The 
most important of these is the time trade-off (TTO) [22]. 
The TTO is most suitable for assessing utilities for time 
spent in a chronic health state. In the TTO, the respondent 
(decision maker) is presented with his remaining life in a 
chronic, less than ideal health state. For example, living with 
total blindness for 20 years (followed by death). He is then 
asked how many of those 20 years he would give up to have 
his vision back. This can, and often is, posed as a series of 
forced- choice responses. For example, would you give up 10 
of those years to have your vision back? This would be 
repeated, adjusting the number of years in good health until 
an indifference point is reached, much as is done with the 
standard gamble.

So if the respondent is indifferent between living 20 years 
with blindness and living only 15 years with vision, his util-
ity for blindness is calculated as the number of years with 
vision divided by the number of years with blindness, 
15/20 = 0.75. Utilities derived from the TTO can be shown to 
be consistent with those derived by standard gamble under 
the assumption that the respondent is risk-neutral, something 
that we’ve said is rarely true [23]. Additionally, the TTO 
assumes a constant proportional tradeoff, meaning that if the 
trade-off were based on 10 years in a health state or 30 years 
in a health state, the response would yield the same ratio of 
¾ described above.

 Quality Adjusted Life Years

Over the last two decades, quality-adjusted life years (QALY) 
has become the most widely accepted utility model in medicine 
[24]. QALY is a multi-attribute utility model, meaning that it 
takes separate measures of health outcomes and combines them 
to form one utility measure [25]. One dimension of the QALY 
is the length of life measured in years. The second dimension is 
the quality of life during those years. Typically, but not always, 
the quality term is a utility, often assessed with the TTO method. 
Other utilities for quality adjustment can come from standard-
ized utility indices such as the Health Utilities Index (HUI) or 
the EQ-5D, EuroQual [26, 27]. Utilities used to adjust QALYs 
must be anchored at zero for death and 1.0 for perfect health. 
The basic formula for a QALY is the length of life multiplied by 
one or more quality adjustments.

Because QALYs are normalized to 1 QALY for a year in 
perfect health and zero QALYs for death, QALYs for time 
spent in different health states can be added together to total 
the QALYs over changing health states even for an entire 
lifetime. This is especially useful for Markov models and 
simulations, as described below.

 Cost-Effectiveness and Cost-Utility Analysis

The concept of cost-effectiveness analysis arises because it 
can be helpful to consider costs and health outcomes of a 
decision problem separately. As we have seen, it is possible 
to measure utilities for monetary outcomes and clinical out-
comes. Moreover, vNM utilities can be assessed over global 
outcomes that include both health and monetary compo-
nents. However, when different parties (e.g., government or 
insurance companies) are paying for health outcomes experi-
enced by others, it can be helpful to consider cost and health 
outcomes separately.

This is done easily enough by assigning both a health out-
come and a monetary outcome to each terminal node of a 
decision tree and solving the tree twice, once for each of the 
outcomes. The general term for this is a cost-effectiveness 
analysis (CEA). When the health outcome is a utility, we use 
the more specific term, cost-utility analysis. To illustrate, 
below (Fig. 6.8) is a tree for evaluating a hypothetical vac-
cine. The tree shows two options: provide the vaccine or 
don’t. The tree models a probability of infection, p(inf), for 
the No Vaccine branch. The probability of infection for the 
Vaccine branch is reduced by multiplying p(inf) times one 
minus the vaccine’s effectiveness. The terminal nodes show 
two values separated by a “/”. The first is the cost accumu-
lated along the path leading to the node, e.g., the cost of the 
vaccine + infection + hospitalization. The second is the util-
ity, in QALYs, for that outcome. (The probabilities are not 
shown.)

The average or expected cost and QALYs for each alter-
native are shown in the corresponding bubble. The vaccine 
strategy costs more ($28 vs. $16) but results in a greater 
number of QALYs (29.98 vs. 29.97). These differences are 
typically examined using a marginal or incremental cost- 
effectiveness table, as shown in Table 6.3.

To construct Table 6.3, the strategies are listed in the first 
column in increasing order of cost. The average (expected) 
cost of each strategy is entered in the second column. The 
third column is the incremental cost, the difference between 
the cost of each strategy and the next cheapest strategy (the 
one above it). The average effect is entered next, followed by 
the incremental effect, the difference in effect between each 
strategy and the strategy above it. An average cost- 
effectiveness ratio, the ratio of the average cost to the aver-
age effect, is next. It is important to know that this number 
has very little meaning in isolation. CEA must always be 
done in comparison between two or more competing strate-
gies. The last column is the incremental cost-effectiveness 
ratio (ICER). This is the ratio of the incremental cost divided 
by the incremental effect.
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In this case, the ICER is $723. That is, the Vaccine strat-
egy will cost $723 for each QALY saved. This is a very 
favorable ratio. Interventions with an ICER of $50,000–
$100,000 per QALY are often considered cost-effective. 
ICERs are especially useful for comparing alternative health 
interventions to achieve the most efficient use of healthcare 
dollars [28].

 Calculating Costs

We’ve discussed the assessment or calculation of utilities. 
There are some caveats to calculating costs. The first is to 

understand that healthcare charges rarely reflect costs. 
Charges are driven more by market forces than actual costs 
to the system. To make matters worse, healthcare systems 
may shift costs from one segment of care to another. 
Payments by government or private insurers may be closer to 
costs but are largely driven by negotiations between payers 
and providers. Payments may be appropriate measures of 
cost if the analysis is being done from the payer’s 
perspective.

But perspective is all-important. Different costs and out-
comes are important to payers, providers, and patients. It has 
been recommended that cost-utility analysis be done from a 
“societal perspective,” accounting for all costs and health 
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Fig. 6.8 A decision tree for conducting a cost-effectiveness analysis. The terminal nodes show a value and a cost term. The tree is solved once, 
calculating the expected value of each option, and a second time, calculating the expected cost of each option. The difference in cost between two 
options divided by the difference in value is the incremental cost-effectiveness (see Table 6.3)

Table 6.3 Table showing the calculation of incremental cost-effectiveness. The options are listed in ascending order of cost. The difference in cost 
and the difference in effect between the sequential options is entered. The incremental cost-effectiveness ratio is the ratio between the difference 
in cost and the difference in effect

Strategy
Average 
cost

Incremental 
cost

Average effect 
(QALY)

Incremental effect 
(QALY)

Cost/
effect

Incremental cost effectiveness ratio 
(ICER)

No 
vaccine

$16 29.9668 $1

Vaccine $28 $12 29.9834 0.0166 $1 $723
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outcomes. Still, it must be acknowledged that no one has a 
societal perspective [24].

It may be that the best way to calculate costs is with a cost 
accounting approach, which considers each of the resources 
that goes into delivering care as well as other costs (e.g., 
travel or lost work) that may be induced by an intervention or 
disease process.

 Advanced Decision Modeling

Up to this point, we have only considered decision trees to 
model decision problems. However, two additional modeling 
approaches deserve attention, especially because modern 
computer technology makes them useful for computer-based 
decision support systems. These techniques are Markov 
models and influence diagrams.

 Markov Models

In DA, Markov models are often used to model health states 
that change over time. Consider, for example, a decision 
regarding the choice of therapies for cancer. Following the 
therapy, 90% of patients enter remission and may follow any 
of a wide number of pathways subsequently. Each year, the 
patient may remain in remission or may experience a recur-
rence. If there is no recurrence in the first year, there may be 
one in the second or the third year, etc. If a recurrence does 
occur, it may lead to death in the first year, or the patient may 
spend two or more years in a chronic recurrent cancer state. 
To try to model all of these possible outcomes in a decision 
tree would be untenable.

Markov models provide a more compact method for eval-
uating such models. Figure  6.9 shows a simple Markov 
model representing this situation. Each node in the model 
(Well, Cancer, Dead) represents a health state. The arrows 
show transitions that can happen with each Markov cycle. 
Each transition is associated with a probability that the tran-
sition will happen in a given cycle. Each health state has an 
associate utility, representing the quality adjustment for the 
time spent in that health state.

In most computer models of Markov chains like this, it is 
possible to represent transition probabilities with formulas or 
lookup tables to make the models more dynamic.

To analyze a Markov model, we simply distribute a hypo-
thetical cohort of patients into each of the health states and 
begin to simulate what happens. Table 6.4 shows how utili-
ties, in the form of QALYs, accumulate with the first two 
cycles of the model.

At the initiation of the cycle, we determined that 90% of 
patients were in remission (the well state), and 10% had resid-

ual cancer. So in cycle 1, patients in the Well state each got a 
utility of 1. So they accrued 0.9 QALY. The 10% in the Cancer 
state had a utility of 0.85, accruing 0.085 QALY. So at the end 
of cycle 1, the model accumulated a total of 0.99 QALY.

In cycle 2, 80% of the patients in the Well state during 
cycle 1 remain there in cycle 2, meaning 72% are in the Well 
state for cycle 2. They have a quality adjustment of 1, so they 
accrue 0.72 QALY. The Cancer state acquired 20% of those 
in the Well state in cycle 1 and retained 80% of those in the 
Cancer state in cycle 1 for a total of 0.26 of the cohort. Their 
quality adjustment is 0.85 so they accrue 0.26 × 0.85 = 0.22 
QALY. The Dead state acquired 20% of those in the Cancer 
state in cycle 1, but since the quality adjustment is 0, they 
accumulate no QALYs.

So during cycle 2, the health states accumulate a total of 
0.72 + 0.22 = 0.94 QALY. This is added to the 0.99 QALY 
accrued in cycle 1 to make 1.9 QALYs accumulated by the 
whole cohort at the end of the second cycle. This process is 
repeated for as many cycles as we want to model the process 
or until the entire cohort is in the Dead state and can no lon-
ger accumulate QALYs.

 Influence Diagrams

An influence diagram alternative to a decision tree emphasizes 
the probabilistic relationships among variables [29, 30]. An 
influence diagram is an acyclic directed graph with three types 
of nodes (much like trees): decision nodes, chance nodes, and 
one value node. Figure  6.10 illustrates a rather generic 

.8

.8

.2

.2

Well
U = 1

Cancer
U = 0.85

Dead
U = 0

Fig. 6.9 A simple Markov model. The Markov model shows three 
health states, well, cancer, and dead. Arcs (arrows) between the health 
states represent the probability of transitioning from one health state to 
the next during a Markov cycle (for example, a year). Utility is accumu-
lated for each cycle (see Table 6.4)
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influence diagram. It represents the decision to treat or observe 
given a test result and a prior probability of disease.

The round chance nodes represent random variables and 
store the probability distributions. The decision nodes store 
potential actions. The value node stores utilities for different 
possible states of the diagram. Arrows (also called arcs or 
edges) entering a decision node represent information avail-
able when the decision is made. In this case, the test result 
will be known before a treatment decision is made. Arcs 
going into a chance node represent variables on which the 
probabilities will be conditioned. The probability of a posi-
tive test result depends on whether the disease is present or 
not. Arcs going into the value node represent the variables 
that will affect the value of the diagram. In this model, the 
combination of the decision to treat or observe combined 
with the presence or absence of disease determines the value. 
The bubbles in Fig. 6.10 show the contents of each of the 
nodes.

Influence diagrams are useful for modeling complex rela-
tionships among random variables, often without decision or 
value nodes. An influence diagram composed of only chance 
nodes is also referred to as a Bayesian belief network (Bayes 
net or belief network). They are often used to make infer-
ences on complex data, sometimes with hundreds of nodes. 
Inference engines that use Bayesian belief networks have 
been used to detect credit card fraud to complex diagnostic 
decision support [31, 32]. Bayesian networks in which the 
directed arcs have a strictly causal meaning are used in causal 
statistical analyses [33, 34].

One of the most recent applications of influence diagrams 
has been as a data structure for mobilizing computable bio-
medical knowledge to share decision support between sites 
in an executable format [35]. In this context, a decision 
model can represent a rule that determines what action to 
take under what circumstances. However, when the “rule” is 
represented as a full decision model, the various 

Table 6.4 Showing the accumulation of expected utilities (as quality adjusted life years) during two cycles of a Markov model. During each cycle, 
the probability of being in a state is multiplied by the utility of a cycle in that state. These are summed across states to calculate the expected utility 
for the cycle. This is repeated for subsequent cycles, accumulating the total expected utility for the whole simulation

Cycle State Probability Expected utility Cumulative utility
1 Well .9 .9 × 1 = .9

Cancer .1 .1 × .85 = .085
Dead 0 0 .99

2 Well .9 × .8 = .72 .72 × 1 = .72
Cancer (.9 × .2) + (.1 × .8) = .26 .26 × .85 = .22
Dead .1 × .2 = .02 .02 × 0 = 0 .94 + .99 – 1.9
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Treat

Observe
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Fig. 6.10 A simple influence diagram. The diagram shows the three 
types of nodes found in an influence diagram: round chance nodes, a 
square decision node, and a diamond value node. The contents of each 

node are shown. An influence diagram with only chance nodes is known 
as a Bayesian belief network (or belief net)
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parameters—probabilities and utilities—used to create the 
rule can be adjusted to local circumstances. So the “rule” can 
be tailored to the individual location.

 Shared Decision Making

DA in the clinical setting was classically applied to a physi-
cian and patient facing a clinical decision where the out-
comes are uncertain and high stakes [36]. However, it is 
rarely practical to complete a formal DA in the context of 
clinical care. It simply takes too much time and too many 
resources. For this reason, DA and CEA are generally used 
to guide practice in general or establish policy.

However, there is a clear need to address the components 
of a decision analysis at the bedside. This need has led to the 
emergence of shared decision-making (SDM) strategies 
[37]. SDM has become increasingly important as more clini-
cal interventions emerge that are preference-sensitive [38]. 
The US Preventive Services Task Force has devoted a cate-
gory of recommendation (“C recommendations”) entirely 
for “selectively offering or providing this service to individ-
ual patients based on professional judgment and patient pref-
erences” [39].

Most clinicians are familiar with shared decision-making 
in an informal sense, discussing the medical decision with a 
patient, providing an opportunity for the patient to ask ques-
tions and contribute to the decision. However, formal SDM 
is a more precise and nuanced process. SDM, sometimes 
called informed medical decision making, should meet three 
key requirements:

 1. The patient is made aware of his or her options
 2. The patient understands the likelihood of the important 

outcomes resulting from each option
 3. The patient undergoes “values clarification,” some exercise 

in which s/he expresses preferences over the outcomes

As a check, formal SDM may include a step in which the 
patient’s final decision is evaluated as consistent or inconsis-
tent with his or her expressed values. The elements of shared 
decision-making clearly correspond to the elements of DA, 
but the assessments and analyses are less quantitative.

SDM lends itself well to automation. There are large 
repositories of automated SDM tools, for example, at the 
Ottawa Hospital Research Institute [40], to which patients 
can be directed when they face one of these preference- 
sensitive decisions. Furthermore, there is a growing body of 
evidence that decision aids that automate SDM improve the 
quality of medical decision-making [41, 42]. Given the clear 
value-added from SDM, one might expect it to be incorpo-
rated broadly in EHRs [43]. However, to date, this has rarely 
been done [44].

 Decision Support Prioritization

A more novel application of DA techniques to medical infor-
matics and decision support is the prioritization of care rec-
ommendations for individual patients. This has been 
especially fruitful in the prioritization of preventive services. 
It was long ago well established that the number of preven-
tive services recommended by authoritative bodies exceeds 
what can be done in a typical visit [45, 46]. Moreover, physi-
cians are likely to spend precious clinical time on services 
with less value [47].

One strategy proposed to address this problem is to use 
decision-analytic algorithms to determine which preventive 
services offer the greatest expected value for the patient and 
prioritize decision support based on that calculation. Such a 
calculation would consider the likelihood the patient needs 
the relevant issue (prior probability), the seriousness of the 
issue (disutility), and the effectiveness of providing decision 
support to address it [48]. This approach has been demon-
strated in both pediatric and adult settings [49–51]. By pri-
oritizing decision support based on expected value, this 
approach can reduce alert fatigue while providing the most 
important decision support.

 The Role of Decision Sciences in Clinical 
Informatics

Medicine is an information-intensive business rife with 
uncertainty, and humans are flawed data processors and 
decision- makers vulnerable to bias. Because computers can 
flawlessly and tirelessly process vast amounts of data, they 
have the potential, if used correctly, to compensate for these 
human frailties. But computers are only as correct as their 
programming. So a strong theoretical grounding for decision- 
making and decision support is indispensable.

Well-designed and well-executed decision models can 
form the basis of strong guidelines that you will want to be 
encoded in your systems. Models of complex Bayesian infer-
ence can help guide computer-based clinical decision sup-
port or represent decision rules in a format that can be readily 
adapted to new settings. DA approaches can also prioritize 
which decision support is provided, avoiding alert fatigue. 
Even day-to-day decision-making about IT purchases, 
investments, and distributions can be informed by more care-
ful analysis of decisions made under uncertainty.

 Future Directions

The relationship between decision analysis, guideline devel-
opment, decision support, and quality measurement is grow-
ing continuously closer. There is a growing emphasis on 
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using EHRs and decision support to improve guideline 
adherence and measure the quality of care through quality 
indicators. Formal decision sciences techniques can improve 
every step in these processes.

 Chapter Summary

In the clinical setting, you will often face difficult challenges 
that do not present clear, singular solutions. Maybe the 34-year-
old woman has strep throat, or maybe she has seasonal aller-
gies, or something much less common. Knowing the probability 
of each of these options is vital to effective treatment. Decision 
trees, expected utility theory, and other DA tools will help 
guide your decision-making process when deciding on the best 
course of action for each of your patients. More and more, 
these theories and models are adopted by technology to create 
computerized clinical decision support systems. Because a 
computer can process much more information at a much faster 
speed than one physician, CDSS can be invaluable in providing 
an efficient and effective medical practice.

 Questions for Discussion

 1. A healthy 56-year-old patient presents with influenza-like 
illness (ILI). How could you apply Bayes Theorem to 
update the probability of the patient having COVID-19 
versus another ILI as you gather evidence?

 2. Under what circumstances could a computer make a reli-
able diagnosis by applying Bayesian algorithms? Would a 
system be acceptable to patients? Physicians? Payors?

 3. Think about a time in the past when your own potential 
biases or heuristics in probability estimation influenced 
your decision-making. Did they help you make a correct 
diagnosis or prevent you from making the right diagnosis?

 4. A new CMO at the medical center suggested that primary 
care clinicians should begin applying formal decision 
analysis when treating patients to enhance shared 
decision- making (SDM). As the CMIO, would you sup-
port this recommendation? Why or why not?

 5. A hospital board member pulls you to the side after your 
presentation on a new CDS system that uses Markov 
chains. He says that he believes Markov chains are based 
on utilitarianism, which he views as un-American. He 
also expresses concerns about potential Russian influence 
on the hospital’s information system. How might you 
politely set him straight about the use of Markov models 
in the CDS system to support rationale decision-making 
by clinicians?
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