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Public Health Informatics

Saira N. Haque, Brian E. Dixon, Shaun J. Grannis, 
and Jamie Pina

Learning Objectives
At the end of this chapter, the reader should be able to accom-
plish these objectives:

• Define public health informatics.
• Explain the impact of informatics on population health.
• Identify different types of information systems used to 

support public health.
• Describe how public health informatics relates to the field 

of clinical informatics.
• Discuss how clinical and public health informaticians 

work together to monitor and improve population health.

Practice Domains: Tasks, Knowledge, and Skills
The following core competencies are covered in this 
chapter:

• K021. Determinants of individual and population health
• K047. Social determinants of health

Key Terms
Disease registries, immunization registries, population 
health, public health, surveillance systems

Case Vignette
Local payers and hospital systems started Safe Community 
Health Information Exchange (SCH) to promote information 
sharing throughout the community. As SCH grew, additional 
stakeholders became involved in exchanging clinical data to 
support care coordination and quality improvement activities 
within the hospitals and physician practices. These stake-
holders included laboratories, long-term and post-acute care 
facilities, federally qualified health centers, and local and 
state public health agencies.

Providers in the community used the SCH infrastructure 
to submit electronic laboratory results for communicable 
diseases to public health authorities, and public health agen-
cies used the electronic health records (EHRs) to investigate 
disease outbreaks. For example, a local measles outbreak 
originated from a group of people who had not received the 
vaccine. This was discovered by tracing a cluster of children 
who arrived at different emergency departments.

SCH’s functionality was tested during the novel coronavi-
rus (COVID-19) pandemic. During the pandemic, SCH 
looked up patient information to support contact tracing, 
identify those with exposure, and give them directions about 
quarantining. Once vaccines became available, the connec-
tion among the state’s immunization information systems 
(IIS, also known as immunization registries) became of 
increased importance. However, some challenges occurred 
because SCH and the IIS possessed fragmented information 
about vaccines administered, where they were administered, 
and by whom. The IIS tracked those who had been vacci-
nated at a site with an IIS connection, whereas SCH had 
access to data on those vaccinated at clinical sites with com-
mercial EHRs. SCH was able to share clinical data with the 
local Department of Veterans Affairs (VA) clinic, but federal 
law prohibited the VA from submitting vaccine administra-
tion records to the IIS.
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As states moved towards broader vaccination coverage of 
the population, providers wanted to ensure that specific 
patient populations (e.g., those with cancer or hypertension) 
were vaccinated. Providers became frustrated when they 
could not access information on those who visited public 
health-operated mass vaccination and mobile vaccination 
sites as well as VA clinics because data from those sites were 
not connected to SCH. Moreover, it was difficult to query the 
regional health information organization (RHIO) for unvac-
cinated people because the IIS was not integrated into the 
RHIO’s infrastructure.

Lack of integration was determined to be mainly due to 
lack of funding at the state health department, which receives 
most of its revenue from federal grant dollars. Because the 
state agency’s budget had mostly flatlined and had been 
 periodically reduced, it had only enough funding to support 
minimal services provided by SCH. Although SCH leader-
ship was passionate about public health, business owners had 
to be good stewards of their limited funding. They could not 
afford to offer many free-of-charge services to the state 
health department. A local philanthropic foundation stepped 
up to provide the funding necessary to support integration 
between SCH and the IIS.

As SCH and IIS integration was completed, state health 
authorities could query records to identify teachers and 
school-aged children who had not yet been vaccinated for 
COVID-19. Analysis of the results identified three geographic 
areas with a high concentration of unvaccinated people. The 
health department then set up vaccine clinics at public schools 
in those areas, providing information to community residents 
about the benefits of vaccination and offering free vaccines. 
With support from health care, school, religious, and com-
munity leaders, vaccination rates increased, and the outbreak 
subsided, so schools could reopen. From that point, epidemi-
ologists could more efficiently monitor community vaccina-
tion rates for COVID-19 and other vaccine-preventable 
diseases, and clinicians in SCH could efficiently query the IIS 
to receive up-to-date vaccine forecasts for their patients. For 
the VA clinic, the state health department had to implement a 
workaround with SCH to enable epidemiologists to view VA 
immunization records.

 Introduction

Informatics is the science of information, studying the repre-
sentation, processing, and communication of information by 
computers, humans, and organizations [1]. Informatics 
draws on a broad spectrum of theories from the computer, 
information, and social sciences. It seeks to fill the gap 
between (1) the correctness problem (how to assure the cor-
rect working of a program) and (2) the pleasantness problem 
(how to build adequate programs and systems to support the 
people using them) [2]. In practice, informatics often requires 

three components: (1) knowledge of the domain in which it 
is being applied (e.g., business, health care), (2) knowledge 
of how information systems are to be designed and devel-
oped to appropriately manage data and information, and (3) 
knowledge of how organizations and people interact with or 
use information systems to achieve their goals (e.g., treat 
patients, transact business).

The term public health informatics (PHI), the subject of 
this chapter, is often used synonymously (or confused) with 
a host of similar-sounding but distinct “adjectives” as noted 
by Hersh [3], including clinical informatics, health informat-
ics, and the broader field of biomedical informatics (BMI). 
BMI is an interdisciplinary field that studies and pursues 
effective uses of biomedical data, information, and knowl-
edge for scientific inquiry, problem-solving, and decision 
making, driven by efforts to improve human health [4]. BMI 
is often conceived of in the United States as encompassing 
health informatics in addition to clinical and public health 
informatics, as depicted in Fig. 25.1 [5]. Although clinical 
informatics applies health information technologies in the 
provision of individual clinical care [6], PHI seeks to apply 
health information and technologies to improve population 
health, including the surveillance and prevention of disease 
and general health promotion [7].

 The Scope of Public Health Informatics

Although public health professionals have utilized informa-
tion and communication technologies (including the fax 
machine) to capture, store, manage, exchange, and analyze 
information about populations, the rise of PHI as a discipline 
within public health and informatics began at the start of the 
twenty-first century. During the first decade, PHI efforts 
around the world were characterized by a focus on the core 
public health function of monitoring populations: early 
detection of bioterrorism [8], such as the anthrax attacks in 
the United States [9] and the Tokyo subway attacks [10], and 
global health threats such as severe acute respiratory syn-
drome [11], the H1N1 pandemic [12], and the COVID-19 
pandemic [13]. The threat of a large-scale epidemic has not 
diminished in recent years, as evidenced in 2014 by Middle 
East respiratory syndrome [14, 15] and Ebola [16], but 
changes in national policies and funding priorities have 
steered PHI in new directions [17]. Today, PHI not only sup-
ports core public health functions [18] but also contributes to 
the following activities in support of population health and 
strengthening the public health infrastructure [19]:

 1. Implementations of informatics systems such as elec-
tronic health record (EHR) systems and health informa-
tion exchange (HIE). PHI often contributes to an eHealth 
strategy established by a nation’s health ministry by sup-
porting capturing, managing, and exchanging data to 
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monitor population health across local, regional, and 
national levels. Recent efforts by the U.S.  Centers for 
Disease Control and Prevention (CDC) have focused on 
the adoption of technologies related to meaningful use 
[20], including electronic laboratory reporting (ELR), 
syndromic surveillance, immunization information sys-
tems (IIS), and cancer registries.

 2. Measurement of population health indicators within and 
across jurisdictions. Just as EHR systems contribute to 
better measurement of clinical outcomes using e- measures 
(refer to Chap. 5), PHI focuses on developing population- 
level health indicators. Public data sets, including CDC’s 
Behavioral Risk Factor Surveillance System and the US 
Census Bureau’s American Community Survey, are inte-
grated and leveraged to create the County Health 
Rankings [21], composite scores representing the health 
of the population living in a geographical county within 
the United States [22].

 3. Implementation of patient-centered care models that sup-
port broader public health system strategies to achieve 
better, coordinated care while reducing costs (e.g., the 
Triple Aim). Patient-centered care models seek to con-
sider patient preferences, self-management, and self- 

reported outcomes in clinical decision-making (refer to 
Chap. 24). Contributions from PHI include leveraging 
social media and short message service (SMS) text mes-
sages (1) to identify disease outbreaks [23], (2) to improve 
maternal and child health outcomes [24, 25], and (3) to 
inform at-risk populations about methods for lowering 
their risk of infection [26].

 Informatics Capacity in Public Health Agencies

Informatics is challenging in public health, given limited 
resources and a limited workforce. Budget reductions in 
public health following the 2009 American economic reces-
sion as well as H1N1 pandemic limit the ability of public 
health agencies to develop, purchase, and deploy new infor-
matics systems [27, 28]. For example, although the Health 
Information Technology for Economic and Clinical Health 
(HITECH) Act provided billions of dollars for health care 
providers to adopt EHR systems, it provided only $30 mil-
lion for public health agencies to enhance their infrastructure 
to receive and analyze data from EHRs [29]. The lack of 

Fig. 25.1 Relationship of 
public health informatics to 
other areas in informatics
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support for public health agencies is particularly problematic 
because with increased provider EHR implementation comes 
more data in different formats for public health agencies to 
process. A shrinking public health workforce compounds 
limited financial resources. In a 2017 survey of the public 
health workforce, nearly half of workers in state and local 
agencies reported they planned to leave within 5 years [30]. 
Fewer experienced workers places stress on agencies to com-
pute and analyze increasing volumes of data with fewer 
human resources.

The most up-to-date information on the PHI workforce 
comes from the same 2017 survey of local and state public 
health agency workers. Approximately 1% of the public 
health workforce is employed to deploy or operate PHI sys-
tems [31], and this proportion is lower in local health depart-
ments versus state health agencies. Moreover, less than 
one-third of public health informaticists report working in an 
informatics division. Most are employed in epidemiology, 
vital records, and communicable disease divisions [31].

The CDC currently sponsors an official, registered appren-
ticeship program in PHI [32] that supports approximately ten 
fellows each year placed in state and local health departments. 
Anecdotal information suggests that the volume of fellows has 
picked up in recent years, especially in the wake of the 
COVID-19 pandemic. However, it is unlikely that the fellow-
ship at the CDC can fulfill the training needs of the nation’s 
public health system. Therefore, more investment in PHI edu-
cation and training is required [28, 31]. It is hoped that a recent 
training program in PHI announced by the U.S. Department of 
Health and Human Services’ (HHS) Office of the National 
Coordinator for Health Information Technology (ONC) [33] 
will train approximately 4000 PHI specialists who can trans-
form the nation’s public health infrastructure.

 Public Health Informatics Education 
and Training

Although the current PHI workforce is limited, recent shifts 
in opinion are favorable to the future. Since 2012, several 
stakeholder groups have convened independently to discuss 
the challenges facing modern public health. First, CDC reor-
ganized its division responsible for national public health 
surveillance coordination. The division hosted strategic 
planning sessions culminating in several reports detailing 
national surveillance activities’ challenges [34]. Second, the 
Council of State and Territorial Epidemiologists updated its 
“Blueprint” for public health surveillance, outlining the chal-
lenges facing state-level surveillance activities [35]. With 
support from the Robert Wood Johnson Foundation, the 
Public Health Informatics Institute (PHII) convened a series 
of meetings with local health department epidemiologists to 
discuss and outline future requirements for surveillance sys-
tems at that level of public health. Finally, the Association of 

Schools and Programs of Public Health (ASPPH) convened 
a panel to review and update the Master of Public Health 
(MPH) core to reflect twenty-first century challenges [36].

Although convened independently, these groups reached 
very similar conclusions regarding the role of informatics in 
public health. CDC created a division within its surveillance 
core to focus on PHI. The revised Blueprint for surveillance 
and PHII workshops identified PHI as critical to the future of 
surveillance practice. Finally, ASPPH identified PHI as a 
core competency for future public health leaders. These 
efforts in recent years should stimulate change within schools 
of public health and other public health training programs 
that will lead to a public health workforce knowledgeable 
about PHI and a larger segment of the workforce that con-
centrates on PHI.

There is a range of approaches to meet the goals of PHI 
education [37]. Approaches include integrating literature 
search training, hands-on/real-world experiences, didactic 
modules, and case studies. Topical areas cover the disci-
plines of health and health care, social and behavioral sci-
ence, and information science and technology.

 Major Players in Public Health Informatics

Numerous entities are interested in the public health system 
is complex, with various organizations at local, state, and 
federal levels. At the federal level, CDC remains the leading 
public health institute in the United States. Although many 
groups within CDC are engaged in PHI work, the largest and 
most active center is the Center for Surveillance, 
Epidemiology, and Laboratory Services [38]. This center is 
driving data modernization and informatics innovation for 
public health and has increased efforts in the wake of the 
COVID-19 pandemic, highlighting the need for public health 
to improve data coordination across all stakeholders [39]. In 
2008, several public health associations came together to 
form the Joint Public Health Informatics Taskforce (JPHIT). 
Since then, others from the public health and informatics 
communities have joined JPHIT to create an open forum that 
enables coordinated and collaborative development and 
implementation of PHI priorities, a unified voice on national 
PHI policy issues, and a focus on improving the performance 
of the public health system through informatics [40]. The list 
of members and affiliates of JPHIT provides a “who’s who” 
of PHI and includes (as of 2021) the following associations:

• American Immunization Registry Association (AIRA), 
which promotes the development, implementation, and 
interoperability of IIS.

• American Medical Informatics Association (AMIA), the 
professional home of leading informaticians: clinicians, 
scientists, researchers, educators, students, and other 
informatics professionals who rely on data to connect 
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people, information, and technology. Specifically, its PHI 
working group focuses on the intersection between tech-
nology and public health.

• American Public Health Association (APHA) is focused 
on improving public health. The Health Informatics 
Information Technology member section is specifically 
focused on PHI.

• Association of Public Health Laboratories (APHL), 
which advocates for public health laboratories and pro-
vides guidance on the development and implementation 
of laboratory information management systems.

• Association of State and Territorial Health Officials 
(ASTHO), which represents public health agencies and 
includes an e-Health portfolio that provides resources to 
state health agencies.

• Council of State and Territorial Epidemiologists (CSTE) 
works to advance public health policy and epidemiologic 
capacity.

• National Association of County and City Health Officials 
(NACCHO) serves local health departments in the United 
States and fosters informatics in local health agencies.

• National Association of Health Data Organizations 
(NAHDO) seeks to improve health care data collection 
and use.

• National Association for Public Health Statistics and 
Information Systems (NAPHSIS) represents the state 
vital records and public health statistics offices in the 
United States.

• North American Association of Central Cancer Registries 
(NAACCR) develops and promotes uniform data stan-
dards for cancer registration, certifies population-based 
registries, aggregates and publishes data from central can-
cer registries, and promotes the use of cancer surveillance 
data and systems.

Several groups are working on various aspects of PHI. No 
matter the effort, PHI's success is predicated on a large vol-
ume of available individual patient data. As more providers 
implement EHRs, the availability of information that can be 
used in the aggregate to support public health will also 
increase. Examples of specific systems that are used to sup-
port public health are outlined in the next section.

 Examples of Public Health Information 
Systems

Public health practice uses a wide variety of data types, data 
sources, and data management techniques. Although many 
data necessary for public health processes are generated dur-
ing routine clinical care, public health agencies require a 
broader set of data captured directly or indirectly from non- 
clinical sources. Clinical data are often insufficient to address 
environmental, genetic, social, and behavioral factors 

required to address major population health challenges [41, 
42]. For example, consider the challenge of addressing 
increasing rates of diabetes in a community. Clinical data 
sources, including the EHR, will have robust data on patients 
with known diabetes diagnoses and/or patients taking pre-
scription medications to treat diabetes. However, EHR sys-
tems may not be the best source for identifying individuals 
with undiagnosed diabetes who are not currently receiving 
care.

Moreover, individuals in the community who are predia-
betic may not be in care or receive regular screenings for 
diabetes. To identify these individuals, public health agen-
cies may need to hold community screening events. They 
may further need to work with clinics and hospitals to 
encourage all residents to schedule a wellness exam with a 
primary care provider to identify individuals with undiag-
nosed diabetes.

Non-clinical information can include a patient’s geospa-
tial location, socioeconomic status, school affiliation, and 
proximity to risk factors such as elevated soil lead levels 
within a community [43–47]. Civil registration records, such 
as birth and marriage certificates and tax records, are exam-
ples of data sources that could provide useful non-clinical 
data for assessing population health. Thus, clinical data must 
be augmented with additional, non-clinical data sources to 
fully inform public health processes and improve population 
health outcomes. This is often a critical role public health 
agencies play in their community.

Additionally, clinical systems often lack sophisticated 
information extraction techniques and case detection algo-
rithms to identify clinical data needed for public health pro-
cesses [48]. For example, although EHR systems can route 
the results of a laboratory culture for methicillin-resistant 
Staphylococcus aureus (MRSA), clinical systems cannot 
consistently identify whether the result was positive or nega-
tive. Case detection techniques and strategies may include 
natural language processing (NLP), rules engines, and 
machine learning algorithms; these techniques can substan-
tially improve case identification [49, 50]. Finally, because 
clinical and non-clinical data are often stored in separate 
databases as separate islands of information, public health 
agencies often lack efficient access to integrated population-
level health data, hindering the ability to identify and man-
age a community’s specific public health needs. Thus, 
effective integration with EHR systems, HIE networks, and 
other health data systems is needed to optimize digital sup-
port of public health processes [51].

 Electronic Laboratory Reporting

ELR refers to the process of electronically transmitting 
laboratory reports that identify reportable conditions from 
laboratories to public health stakeholders and has been 
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shown to improve the timeliness and completeness of dis-
ease reporting [52]. Most states can receive electronic 
reports from laboratories [53], and the volume of electronic 
reporting to state agencies is expected to increase given that 
the meaningful use and Promoting Interoperability 
Programs [20] require eligible hospitals and encourage eli-
gible providers to submit notifiable disease laboratory 
results to public health agencies using ELR. However, limi-
tations of ELR have been reported [54]. Laboratories often 
lack detailed patient demographic information required by 
public health departments. Certain diseases cannot deter-
mine when a test result reflects a new case or chronic 
disease.

As clinical data are increasingly captured electronically, 
there is greater potential for more complete and timely 
reports through increased automated electronic public health 
reporting. An automated ELR system that leverages data 
from an integrated HIE can overcome some of the aforemen-
tioned limitations by enhancing population-based reporting 
with additional data such as recent laboratory results, 
improved patient and provider demographics, and medica-
tion history [8, 55]. For example, Overhage and colleagues 
[52] compared ELR messages identified by an HIE with 
manually reported cases from physicians and hospital infec-
tion control professionals (Fig. 25.2). The analysis revealed 
that an automated ELR detection system implemented with 
fairly basic rules could significantly improve the identifica-
tion of cases that need to be reported to public health 
authorities.

 Electronic Case Reporting

Although ELR messages move laboratory results directly to 
public health agencies, ELR data alone is often insufficient 
to support disease surveillance efforts. Public health agen-
cies also desire to receive electronic case reporting (eCR) 
messages sent from physician practices or hospitals. These 
messages include details beyond what can be sent in an ELR 
message, such as the patient’s disposition at the time of clini-
cal diagnosis and medication prescribed for disease treat-
ment. An eCR message might also contain details about the 
patient’s vaccination history, social determinants, and symp-
toms. Disease investigation specialists at the public health 
department can use these details to identify suspected or 
probable cases before laboratory reporting. In the 2019 
Promoting Interoperability Program, the U.S.  Centers for 
Medicare & Medicaid Services (CMS) promoted eCR as a 
valid public measure for hospitals. The requirement nudges 
hospitals to send “production data” to public health authori-
ties in their jurisdiction.

Today, most eCR messages are electronic faxes sent from 
physician offices. Although known to most public health 
informaticians, the whole world now knows that clinician 
reporting is largely fax-based, thanks to the COVID-19 pan-
demic. Reporters from The New York Times and other major 
news outlets ran stories showing how piles of faxed reports 
were accumulating in local public health agencies during the 
crisis [56]. Because faxed reports had to be manually entered 
into information systems during the pandemic, it could take 

Fig. 25.2 Overhage and 
colleagues’ comparison of 
ELR messages identified by 
an HIE to manually report 
cases from physicians and 
hospital infection control 
professionals [52]
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at least two weeks for a case to be entered and sent to CDC 
for surveillance. Reporters and the public were shocked to 
find out that in 2020, the world relied on 1980s technology to 
track disease spread in communities.

To advance the transition to eCR, CDC and multiple 
health agencies are working to improve US public health 
infrastructure [35]. For example, the Digital Bridge initiative 
facilitates a series of pilot programs across the United States 
[36, 37]. Public health agencies receive structured eCR mes-
sages from hospitals exported from EHR systems. Major 
EHR vendors partnered with the Digital Bridge consortia to 
implement a standards-based data exchange on notifiable 
disease cases. A more experimental demonstration project 
involving CDC, Georgia Tech Research Institute, and the 
Regenstrief Institute leveraged the emerging standard FHIR 
(Fast Health Interoperable Resources, detailed in the chapter 
Health Information Exchange and Interoperability) to 
query eCR data elements from an EHR after an ELR mes-
sage is received from a physician practice [41]. In 2021 and 
beyond, these initiatives are hoped to bring production-grade 
solutions to HIE networks and EHR systems.

 Syndromic Surveillance

Syndromic surveillance refers to a spectrum of processes that 
focus on real-time use of early disease indicators derived 
from prediagnostic data to detect and characterize events 
requiring public health investigation before definitive diag-
noses are made [55]. Many states leverage syndromic sur-
veillance systems for their entire populations [8, 57]. 
Furthermore, CDC created the National Syndromic 
Surveillance Program (NSSP) to support national surveil-
lance efforts [38]. Local and state health agencies, as well as 
CDC, use the NSSP to monitor health trends.

Several studies demonstrate that electronic data from 
emergency department encounters, hospital admissions, and 
retail and pharmaceutical sales can signal the onset and evo-
lution of disease outbreaks earlier than traditional surveil-
lance methods [58]. Today, most syndromic surveillance 
systems utilize emergency department information in combi-
nation with hospital admissions data (e.g., ICD-10-CM 
codes). However, syndromic data can come from any one of 
the following sources [59]:

• Emergency department visits
• Laboratories
• Over-the-counter medication sales
• School absenteeism records
• Social media
• Emergency medical and management services
• Poison control center records
• Nurse call (triage) lines

The aforementioned data sources provide public health agen-
cies with a wide range of structured and unstructured (free- 
text) data. Syndromic surveillance systems increasingly use 
NLP techniques to examine unstructured data to find disease 
indications or combinations of symptoms that constitute a 
syndrome (e.g., influenza-like illness). The performance of 
syndromic surveillance systems can be improved with better 
techniques for parsing and interpreting unstructured data. 
However, modern approaches are useful for tracking influ-
enza and other seasonal illnesses, including heatstroke. Some 
health departments further use syndromic surveillance sys-
tems to identify bicycle accidents and food poisoning events.

 Population Health Disease Registries

Population-based registries contain records for individuals 
residing in a defined geographical area who meet the criteria 
for a specific disease. Public health has traditionally main-
tained disease-specific population registries to support vari-
ous public health functions, including traditional 
epidemiological analyses and emerging use cases that closely 
coordinate population health management with clinical 
stakeholders [60–62]. These registries increasingly rely on 
integration with electronic clinical systems.

 Chronic Disease Registries
To allow public health officials to capture and analyze 
chronic disease data, the Council for State and Territorial 
Epidemiologists identified six categories of information cap-
tured by chronic disease registries: cancer, cardiovascular 
disease, tobacco and alcohol use, physical activity and nutri-
tion, other diseases, and risk factors, and overarching condi-
tions [63]. Because chronic disease registries span a wide 
spectrum of conditions, their implementation and supporting 
systems vary.

 Immunization Registries
Immunization registries, often called IIS, have demonstrated 
the ability to increase population coverage rates for vaccines 
and mitigate the administration of duplicate immunizations 
[64, 65]. The Promoting Interoperability Programs encour-
age health care providers to transmit immunization records 
to IIS.  The introduction of the COVID-19 vaccine in late 
2020 also pushed many public health agencies to require 
electronic submission of vaccination data from hospitals, 
clinics, pharmacies, and local health agency sites where the 
vaccine was offered. Consequently, clinical care systems 
have deployed automated unidirectional electronic transmis-
sion of immunization data to public health. However, 
although routine bidirectional information exchange between 
clinical systems and IIS is not widely deployed, strategies for 
doing so are emerging [66, 67].
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 Cancer Registries
Cancer registries capture details on each cancer case in the 
United States to effectively monitor and address cancer bur-
den, including patient history, diagnosis, treatment, and sta-
tus. Data are first collected by local cancer registries and 
contribute to population-based registries. The data support 
various analyses, including determining cancer incidence, 
calculating survival rates, evaluating clinical outcomes, 
treatment modalities’ efficacy, quality of life; assessing 
referral patterns; and informing geographic distribution of 
resource allocations [68, 69]. Although cancer case reporting 
is comprehensive, early case reporting can be delayed and 
incomplete [70, 71]. Electronic sources may help address 
these shortcomings [72].

 Community Health Assessment

Integrating EHR data with non-clinical data holds great 
promise for addressing the social determinants of health 
(SDOH) [73] and health inequities such as lack of access for 
racial and ethnic minorities [74]. Although EHRs are rich 
in  location-specific clinical data that allow us to uncover 
geographically dependent inequities in health outcomes, sev-
eral other information systems outside of health care deliv-
ery complement those data to support analysis of 
community-level characteristics relating to health. For 
example, the US Census Bureau’s American Community 
Survey captures data on education, housing, and transporta-
tion in a community at levels more granular than the ZIP 
Code. These SDH account for a significant proportion of a 
person’s overall health and well-being. When meaningfully 
integrated, clinical and social determinant data enable clini-
cians, researchers, and public health professionals to actively 
address the social etiologies of health disparities [52, 75, 76] 
(see Fig. 25.3).

Although efforts are underway to increase support for 
capturing SDH data in EHR systems, some experts contend 
that the EHR may not be the best system for capturing and 
managing SDH data [77]. Instead, efforts are underway to 
enable EHR- and HIE-based tools that allow providers to 
identify patients at risk for social and behavioral needs [78] 
and connect them to services, including community-based 
organizations, that can address those needs in support of 
health and well-being. For example, Aunt Bertha (com-
pany.auntbertha.com) is a popular tool that allows medical 
practices to find social and behavioral services in the com-
munity to refer their patients. Tackling upstream problems, 
such as housing instability, through a population health 
program designed to address economic needs can reduce 
morbidity and increase life expectancy in a community 
when paired with robust screening and treatment plans for 
medical needs.

 Contact Tracing Applications

The COVID-19 pandemic put a spotlight on contact tracing, 
a long-standing epidemiological process in which individu-
als with a newly diagnosed case of a notifiable disease are 
linked to their social network to identify individuals who 
may have transmitted the disease or those who may have 
received the disease. Contact tracing is an important tool for 
identifying sexual partners in cases of HIV, syphilis, chla-
mydia, and gonorrhea [79]. In previous outbreaks of interna-
tional concern, including an Ebola outbreak in 2014 [80] and 
a measles outbreak on an international flight [81], contact 
tracing was considered to play a key role in identifying sec-
ondary cases.

The COVID-19 pandemic highlighted the need for better 
and more integrated digital contact tracing solutions that 
scale across local, state, and federal levels. Several countries, 
including Taiwan, South Korea, and China, touted the bene-
fits of digital contact tracing apps in helping to flatten the 
curve in those nations [82, 83]. In the United States, Apple 
and Google provided tools to help states integrate contact 
tracing capabilities in mobile phones with case reporting 
systems. Yet, only a few states implemented the standards- 
based platform. Mistrust in big technology companies, 
fueled by concerns over privacy of the data captured in con-
tact tracing apps, limited adoption and use of the technology 
in the United States [84]. So, although promising, digital 
contact tracing has a long way to go before it can be scaled 
and effective in the next global pandemic or national disease 
outbreak.

 Toward Public Health Decision Support

As discussed in Chap. 7, clinical decision support (CDS) 
provides clinicians, staff, patients, or other individuals with 
relevant knowledge and person-specific information, intelli-
gently filtered or delivered at appropriate times, to enhance 
health and health care decision making [85]. Among other 
quality and safety outcomes, CDS has been shown to effec-
tively improve clinician adherence to preventive care guide-
lines and alert clinicians to potentially adverse medication 
outcomes [86–88]. Various forms of CDS have been intro-
duced into current care processes through the implementa-
tion of EHR systems [89, 90].

 Illustration

In recent years, the scope of CDS has been expanding to 
incorporate public health contexts and use cases. Traditional 
examples of patient-centered CDS alert clinicians when 
abnormal, unexpected, or harmful clinical results are noted, 
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such as when a laboratory value is out of the normal range or 
when a patient may be allergic to a newly prescribed medica-
tion. Extending that model, public health decision support 
(PHDS) can be exemplified in a scenario where clinicians 
receive an alert from the local health department that 
describes a newly discovered contaminant in the water sup-
ply that impacts neighborhoods near the clinic, placing its 
patient population at risk for waterborne illness. The alert 
may further recommend ordering stool samples for patients 
who present with gastrointestinal symptoms. This scenario 

illustrates computer-based PHDS, providing relevant knowl-
edge to inform decisions involving the health and well-being 
of populations using electronic information [91].

 Public Health EHR Alerting
The New  York City Department of Health and Mental 
Hygiene developed and deployed 40 PHDS alerts, such as 
screening measures for influenza and pneumococcal vac-
cines, to more than 2000 physicians via commercial EHR 
systems [92]. This work enabled public health stakeholders 

Fig. 25.3 Example of integration of different types of information in Indiana
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to distribute public health alerts during important events, 
such as infectious disease outbreaks.

 Case Reporting Reminders
Conventional reporting processes require health care provid-
ers to complete paper-based notifiable condition reports, 
which are transmitted by fax and mail to public health agen-
cies. These processes result in incomplete reports, inconsis-
tencies in reporting frequencies among different diseases, 
reporting delays [93], and time-consuming follow-up by 
public health agencies to get needed information [94]. To 
address these issues, medical informatics scientists at the 
Regenstrief Institute electronically prepopulate report forms 
with available clinical, laboratory, and patient data to stream-
line reporting workflows, increase data completeness, and 
ultimately provide more timely and accurate access surveil-
lance data for public health organizations. This work has 
continued to demonstrate promise as a resource to increase 
the frequency and reliability of reporting [95].

 Infrastructure to Support Bidirectional 
Exchange

Although these examples highlight the promise of PHDS, to 
fully realize its potential, advanced clinical information sys-
tems must transmit data to public and population health sys-
tems and consume information from public health agencies. 
Immunization data exchange represents one such use case 
[96]. Today, many clinical systems transmit vaccination data 
to an IIS, which increased dramatically in 2021 due to 
COVID-19 vaccination efforts. Electronically exchanging 
information to and from public health, so-called “bidirec-
tional communication” [97], requires a robust HIE infra-
structure, which remains nascent in many communities.

Current public health infrastructures tend to focus on uni-
directional approaches, maximizing the ability to receive and 
analyze health care data typically originating from clinical 
systems. Suboptimal and often manually intensive methods 
are used to communicate information back to providers. For 
example, health departments commonly send letters via US 
Mail when informing clinicians about events such as influ-
enza disease burden and localized enteric outbreaks. These 
messages are likely to arrive outside of clinical workflow, 
making the information unusable by frontline clinicians. 
Furthermore, current methods may render the information 
obsolete if clinicians read it many days or weeks after the 
public health threat.

A more promising approach would leverage available 
population or contextual information to inform clinical 
decision- making in real-time. For example, a recent clinical 
trial could automate the query for adolescents’ human papil-
lomavirus (HPV) vaccination status [98]. The trial used the 

information to identify whether the adolescent in the pediat-
ric clinic had received zero, one, or two doses of the HPV 
vaccine series. This information triggered a CDS prompt for 
the clinician to ask whether the adolescent and/or guardian 
would like to initiate or finish the vaccination series while in 
the office. The CDS prompt was effective [99], and the infor-
mation further supported the delivery of educational 
resources to the adolescent and family while the patient 
awaited the provider in the exam room [100]. Targeting edu-
cation and just-in-time prompts supported significant 
increases in vaccination rates, especially among boys who 
are often under-vaccinated for HPV.

 Emerging Trends

As the context in which health care is delivered changes, the 
application of informatics to public and population health 
will evolve. Especially in the wake of the COVID-19 pan-
demic, broad changes to health care delivery and system 
reorganization are likely to impact public and population 
health efforts. For example, the pandemic highlighted the 
need for better system-level integration between hospitals or 
clinics and public health agencies [28]. Efforts within health 
systems to evolve EHR systems, expand telehealth services, 
and align operations with public health efforts to address 
SDOH will affect population health's information systems 
and informatics needs. In this section, we describe trends and 
emerging needs in public and population health informatics.

 Post-Pandemic Recovery and Health System 
Evolution

The COVID-19 pandemic significantly affected health sys-
tems across the globe. Routine care, especially primary care, 
was disrupted, and urgent care facilities and hospitals were 
overrun with large populations in acute respiratory distress. 
By the time of this publication, the acute phase of the 
COVID-19 pandemic may have passed, and the next phase 
[101] of any pandemic is recovery.

Recovery from COVID-19 will take many forms, but fun-
damentally, it will require the evolution of the health sys-
tems. Scholars and health leaders in the United States have 
begun to advocate for a new health system that aligns with 
the Public Health 3.0 framework created before the pan-
demic by the US Department of Health and Human Services 
[102, 103]. The Public Health 3.0 framework urges a trans-
formation in which there is a greater focus on building a cul-
ture of health, including cross-sector collaboration and an 
emphasis on health and health equity in all policies [28].

Implementing a new, evolved health system will require 
significant investment in information technologies and 
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 infrastructure to support collaboration across health care 
delivery and public health. Not only will data need to flow 
seamlessly from clinical to public health operations, but 
knowledge from public health will also need to flow down to 
hospitals and clinics to keep providers aware of community 
health trends and incidents. Health care and public health 
systems will need to work together to address community 
health needs, including chronic disease burden. Immediately 
after the COVID-19 pandemic, we anticipate the nation's 
need to address mental health needs and pent-up demand for 
primary care services. There were national shortages of pro-
viders in both these areas before the pandemic, which will 
require health care delivery organizations to work closely 
with public health systems and community organizations 
(e.g., churches, Red Cross, older adult alliances) to organize 
efforts to screen, refer, and treat mental health disorders such 
as post-traumatic stress disorder, major depression, and anxi-
ety induced by months of lockdown and/or social isolation. 
Primary care providers will be needed not only to support 
mental health needs but also to focus on preventive health 
needs for individuals who put off care during the pandemic 
and potentially exposed themselves to poor health behaviors, 
such as overeating, overconsumption of alcohol, and sub-
stance abuse, to mitigate impacts of the pandemic.

Information systems will play a critical role in standard-
izing and analyzing data and information captured across the 
health system and shared among the various private and pub-
lic health partners. Interoperability will be critical to Public 
Health 3.0 efforts, requiring the development and use of stan-
dards and governance of information shared broadly across 
primary care, mental health, and public health providers (and 
community organizations). Referrals to public health and pro-
viders outside an integrated delivery network will be neces-
sary to address patients’ SDOH and community health needs 
fully. Documentation of those services provided outside clini-
cal environments will need to be captured and shared with 
primary care and other providers. Patients will also likely 
share data and information on community and public health 
platforms that will require integration with clinical systems. 
All of these innovations are largely nascent with some current 
pilot work. Continued research and development will be nec-
essary to realize the Public Health 3.0 concept.

 Policy Landscape

The HITECH Act and related policy activities (refer to Chap. 
3) enhanced the adoption and use of EHR systems in clinical 
settings. The meaningful use (MU) program enhanced health 
care delivery and public health activities within local and 
state health departments. For example, several MU criteria 
for public health, including syndromic surveillance and 
ELR, increased data transmission to public health authori-

ties. At the same time, other MU measures, such as the 
requirement to document smoking status in the EHR, sup-
port public health authorities’ capacity to aggregate data at a 
community level to monitor health behaviors and risk fac-
tors. Policies like MU are important to stimulate clinical–
public health partnerships and interoperability.

The MU program sunset just before the COVID-19 pan-
demic. Currently, CMS encourages providers to send syn-
dromic and eCR information to public health agencies 
through the Promoting Interoperability Program [20]. This 
program expanded the menu of public health options, which 
will continue to encourage interoperability between EHR 
systems and public health information systems. Public health 
agencies will receive billions in investment from CDC due to 
the American Rescue Plan Act of 2021. This legislation 
appropriated significant funding for data modernization 
efforts in  local and state health departments. These efforts 
will likely focus on the information systems described in this 
chapter, strengthening efforts to streamline receiving ELR 
and eCR data from clinical providers. This will shift efforts 
away from faxing information to stronger integration with 
commercial EHR systems—finally!

The functions called out specifically in programs like MU 
and Promoting Interoperability are only the tip of the iceberg 
concerning PHI's possibility. For example, monitoring commu-
nity levels of MRSA or antibiotic resistance is possible only 
when public health agencies can integrate data from multiple 
sources. Some health departments are using syndromic surveil-
lance systems to capture not only data streams from emergency 
departments, hospitals, and primary care settings but also from 
poison control centers [104], over-the- counter pharmacy sales 
[105], and social media [106, 107]. Other ideas include merg-
ing geotagging or enhancing syndromic surveillance data with 
geospatial characteristics, with environmental information 
such as clean air ratings to support asthma management or 
extreme weather alerts to address heat- and cold-related injury 
and mortality. Newer uses of surveillance systems are in their 
infancy, necessitating more work to develop the most appropri-
ate algorithms and methods for computing and inferring 
knowledge from the growing number of electronic data sources 
available to public health authorities.

 Improvements in Technology

HIEs are playing an increasing role in coordinating care and 
in addressing outbreaks of disease. HIEs are gaining favor as 
the centralizing authority in a complex group of stakeholders 
that impact public health, including physicians, laboratories, 
and state and federal health agencies. As public health infor-
maticians work to integrate these sources, COVID-19 has 
served as a catalyst to reconsider (and reconfigure) the policy 
and technology that drive interoperability [108].
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Health care reform is similarly changing the relationship 
between clinical and public health informatics. The shift 
toward accountable care organizations has also brought the 
need for community health assessments at the hospital and 
health system levels—work that public health authorities 
Public health informatics: have traditionally performed. 
Change has ushered in new partnerships between health sys-
tems and public health, including much-needed resources to 
support health assessment in a community. The informatics 
front has also brought new ideas around how best to leverage 
EHR data for measuring health in a community. EHR sys-
tems and HIE networks might be sources of more objective 
data around health status or at least sources to complement 
the traditional population-based surveys conducted by public 
health authorities [109]. Such approaches are promising, but 
they need to be studied and refined over time. This is another 
area for collaboration between clinical and public health 
informaticians.

Technological changes will also impact PHI and the cap-
ture of electronic data for use in population health. The vast 
array of patient-centered devices and technologies (refer to 
Chap. 24) entering the market could open public health 
authorities to new sources of data on population behaviors 
and health status. For example, health agencies are increas-
ingly interested in the potential of social media information 
and internet user search queries [109, 110]. In 2020, Zhang 
and colleagues identified 25 major themes to describe the use 
of data from social media platforms to supplement or develop 
public health research, including a variety of diseases and 
public health concerns [111]. In the context of health and 
disease outbreaks, social mobility refers to the movement of 
individuals and their proximity to others. Recent research 
has explored the use of mobile devices and mobile applica-
tions to assess the physical proximity of individuals during 
times where social distancing is recommended to prevent 
disease transmission using Twitter data and Google mobility 
data [112, 113]. Yet although there was initial promise and 
excitement with the release of data sources such as Google 
Flu Trends [114], later analyses concluded that “[Google Flu 
Trends] data may not provide reliable surveillance for sea-
sonal or pandemic influenza and should be interpreted with 
caution until the algorithm can be improved and evaluated” 
[23]. There is an even greater promise with consumer devices 
such as the new Apple Watch and many Fitbit devices. These 
devices and new data sources will need to be evaluated and 
refined in the coming years to produce accurate, current 
assessments and predictive models of population health.

Consumer-facing mobile applications could impact pub-
lic health by collecting information about vaccine hesitancy, 
mask-wearing, and social distancing during the COVID-19 
pandemic. Various mobile applications have been developed, 
with research now emerging to explore the utility of this 
approach [115].

 Improving Health Equity and Creating 
a Culture of Health

Health IT, and PHI by extension, can play a role in the reduc-
tion of health disparities. This can occur by identifying and 
addressing SDOH through technology-enabled assessments 
and interventions [116]. In addition, data standards that cod-
ify SDOH in EHRs are now supporting public health prac-
tice [117].

 Summary

Information systems and technologies are revolutionizing 
the delivery of health care and the practice of public health. 
Just as we have observed a growing demand for informatics 
capacity in health care organizations, we have seen a similar 
process unfolding in the public health sector. Public health 
authorities today are using a growing array of information 
systems to capture, manage, use, and exchange data. Many 
of the data, like in medicine, are fragmented; and a growing 
number of new clinical and non-clinical data sources is on 
the horizon. There is an opportunity for clinical and public 
health informaticians to work together to incorporate novel 
uses of technology while enhancing the science and practice 
of public health, leading to better population health out-
comes for communities.

 Questions for Discussion

 1. How does public health informatics complement clinical 
informatics? In what ways are they distinct?

 2. What roles do various stakeholders and information sys-
tems play in public health informatics?

 3. Why is increased electronic health record adoption impor-
tant for public health informatics?

 4. What is the importance of syndromic surveillance?
 5. Which methods, tools, or systems from public health 

informatics might be useful for clinical informaticians 
within health systems?

 6. How has COVID-19 changed public health information 
systems?
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