
15© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. T. Finnell, B. E. Dixon (eds.), Clinical Informatics Study Guide, https://doi.org/10.1007/978-3-030-93765-2_2

Fundamentals of Computer Science

Eric Puster

Learning Objectives
In this chapter, you will learn about:

• The basic science of computers
• Common vocabulary used by computer programmers
• The building blocks of computer code
• The general approach to solving a problem using a pro-

gram, computational thinking
• Programming best practices to be used in generating code
• The framework for preparing software for use
• How to read code made by others and identify common

problems

Practice Domains: Tasks, Knowledge, and Skills

 – K006. Computer programming fundamentals and compu-
tational thinking

Case Vignette
Complaints from clinicians and nurses about numerous pre-
ventative health maintenance alerts have risen to the top of
the health system. A clinical informaticist is instructed to
integrate them into a single workflow addressed by popula-
tion health nurses. The plan, as devised, involves creating a
list that shows the patients with the most alerts at the top,
along with contact information and barriers to care. When
the patient’s needs have been addressed, their name drops off
the list to allow the next patient to rise to the top. The infor-
maticist meets with the lead programmer for an early design
meeting and is told that this system cannot be created. When
asked why, the programmer cites privacy concerns, database
structure limitations, and processing capacity; what techni-
cal challenges might prevent such a system from being cre-

ated? What practical constraints will such a system be forced
to obey? Why hasn’t a system like this already been deployed
everywhere in the United States?

 Introduction

Long, long ago, automatic weaving looms were created to
make the patterned fabric to replace armies of poorly paid
weavers. At first, a good deal of human help was needed to
reconfigure the machine for each new pattern, but humans
were far from perfect for this process. To prevent waste, the
loom operators began using punched cards to instruct their
looms which weaving pattern to use when creating each bolt
of fabric. The common elements of the various patterns were
broken down to a binary code, as each position on a card was
either punched or not punched.

Hematologists took hold of this idea in 1952 and began
using punched cards to represent patient cases. They then
used these cards to create cross-references for certain disease
characteristics, enabling more accurate differential diagno-
ses based on those characteristics. At first, humans compared
the cards, but in 1961, a computer began to be used for the
purpose. This was the beginning of computers in medicine
[1]. Before long, computers were used to store data about
individual patients, predict diagnosis based on clinical obser-
vations, and send orders electronically. The electronic health
record system was born.

Configuring those systems is one of the most challenging
tasks in the world of computing. Not only can a slight mis-
take mean life or death, but the designers of software must
contend with government policy, hospital politics, inade-
quate funding, changing standards of care, and the need for
the software to communicate with a host of outside
systems.

Fortunately, since the invention of the discipline of com-
puter science, quality assurance techniques have developed.
The definition of Software Quality has reached a mature
international standard. The process of Computational

2

E. Puster (*)
RTI International, Durham, NC, USA
e-mail: epuster@rti.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93765-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-93765-2_2#DOI
mailto:epuster@rti.org

16

Thinking for breaking down a real-world problem into pro-
grammable steps has been thoroughly studied. And Coding
Best Practices, an informal set of guidelines to achieve the
quality standard, are widely available.

Unfortunately, however, programmers are not trained in
medicine. Even those with a long experience in Health
Information Technology (HIT) are not kept abreast of the
latest changes and generally know little of how medicine is
truly practiced. For this reason, they must confer with clini-
cians who have a foot in both worlds, who speak both lan-
guages. If clinicians and researchers can communicate their
world-changing ideas to HIT professionals, the world will
change.

 Programming and Computational Thinking

Generally speaking, for a computer to perform any task, even
the most banal, we must boldly depart from the familiar
shores of standard human thinking and step into a world of
pure logic. This does not mean “smarter logic.” One com-
mon misconception is that a computer is “smart” because of
how well it can complete various tasks. In reality, computers
are quite the opposite, blindly following every instruction
given with no thought to the consequences unless taught
exactly what to look for. The task of a computer program-
mer is to instruct a computer to perform a task correctly,
covering every possible contingency in a reasonable amount
of time, using limited computing resources.

There are exceptions to this micromanaging approach.
Artificial Intelligence aims to task the computer to build its
own logic and does not follow the rules set forth here. This
topic is covered in Chap. 16.

 Computer Primer

Before we can delve into the wonderful world of computers,
we need to develop a shared understanding of some impor-
tant terms. As in every profession, programmers have devel-
oped their lexicon to facilitate their work. Only a portion of
these terms will be included here, but they should be suffi-
cient to at least discuss computer science concepts.

 The Von Neumann Model
Von Neumann was an early pioneer in electronic computing,
and his simple model [2] for the parts of a computer still
holds mostly true today. The names of these parts will be
used liberally throughout this chapter.

Input: Information from the external world. Obtained
from devices like keyboards and mice.

Memory: Stores data for use by the computer. This
includes Random Access Memory (RAM) and Solid-State

Drives (SSD). The reason for different types of memory is
that the closer they are to the heart of the machine, the faster
they are, but the smaller in capacity.

Central Processing Unit (CPU) Control Unit: Follows
instructions to move data, tell the logic unit what to do with
it, and deal with input and output data. Modern high- powered
computers may have more than one.

CPU Logic Unit: Carries out operations on the data from
inputs and memory. The speed of a CPU clock (3 GHz)
refers to the maximum number of commands this unit can
perform each second (3 GHz = 3 billion commands/second).
Modern computers usually have several.

Output: Information sent outside the computer.
Monitors and printers are common devices that use com-
puter output.

 Programming Terms
Although different programming languages vary widely,
some concepts are common between them.

Variable Just like in Algebra, a variable represents a
piece of data that is determined and re-determined as the
process goes on. The variable is created with a specific line
of code called a declaration. This line of code is a com-
mand that names the variable, may give it a starting value
and type, and instructs the computer to reserve a little space
in memory for it. If the value is ever changed during the
program, the computer overwrites the value in memory
with the new value.

There are many variable types, but a few important
ones are the integer (such as 10, abbreviated int), the
floating- point number (such as 10.263, abbreviated float),
and the boolean (TRUE or 1, and FALSE or 0, abbreviated
bool).

Function A function is a specific group of commands that
a program may need to perform many times. A common
function is the “=” on the keypad of a calculator. When the
user presses this function button, a function call is initiated.
The calculator takes whatever is on the screen, the operator
such as + or –, and whatever the user enters afterward, com-
bines these inputs and returns the result to the calculator
screen.

A function in a computer program may be a single line or
a million lines, but they all take inputs, called arguments,
and return a result. A function is also declared, just as a vari-
able is, and stored in memory. In the C programming lan-
guage (a very popular language), functions are declared like
this: return function(arguments). An example of a function
in C is sqrt(), which calculates the square root of a number.
The function call for the square root of 4 would be written x

E. Puster

https://doi.org/10.1007/978-3-030-93765-2_16

17

= sqrt(4), where the answer, 2, would be returned into the
variable x (Fig. 2.1).

Array An array represents a series of variables or values
in a specific order. For instance, the line at the ice cream
shop might be “Frank” then “Jane” then “Lucy”, or hun-
gry_patrons = [“Frank”, “Jane”, “Lucy”] written pro-
gramming style. To look at a specific person in line, square
brackets are used. So hungry_patrons[0] would be “Frank”
and hungry_patrons[1] would be “Jane”. Most languages
have a prewritten function for finding the number of ele-
ments in an array. In C, it is called size() and is a function
built into how an array works. So, for our example array,
 hungry_patrons.size() would be 3. The dot between hun-
gry_patrons and size() shows that the size() function is a
built-in function for arrays rather than a separate one.

String A string is a specific type of array made up of single
characters. For instance, “Ice Cream Shop” is an array of 14
characters (even the space has a character code). Since hun-
gry_patrons is an array of strings, and a string is a type of
array, hungry_patrons is an array of three arrays and could
be written [[“F”, “r”, “a”, “n”, “k”], [“J”, “a”, “n”, “e”],
[“L”, “u”, “c”, “y”]]. Strings are usually identified by being
in single- or double quotes.

Object Many languages use objects, which are variables
that contain key/value pairs, functions, and even other vari-
ables. Key/value pairs in an object are in no particular order,
so they cannot be accessed in the same way as an array. For
instance, your_car.type or your_car[type] might be “sedan”,
while your_car[1] would make no sense to the computer, just
as hungry_patrons[type] would also have no meaning. The
curly brackets in the example tell the computer that every-
thing inside the {} is part of your_car. A note: for compact-
ness, a JavaScript object is used here, rather than C (Fig. 2.2).

 Computer Language

Now that we have discussed some words for talking about
computers, we need to discuss some words for talking to
computers. Before a computer can execute even a single task,
it must understand what it is asked to do. And because a com-
puter makes no assumptions, everything must be spelled out
to the finest detail. This is done, line by line, by laying out
instructions much like a recipe. The computer reads the rec-
ipe from start to finish, performing each step. These recipes
are computer programs. In modern programming, part of the
work of programming is done by humans and part by algo-
rithms. Before we can talk about computer instructions, how-
ever, we need to look at the alphabet used by a computer.

 Binary
English has 26 individual characters to represent its spoken
language, and many more if we include mathematical and
scientific language. In contrast, there are just two characters
in the language of computers, the base 2 number system 0
and 1. The language of the computer is built from only these
two characters, and each 0 or 1 is called a “bit.” The bit itself
arises from an electrical impulse (but how this happens is
beyond the scope of this chapter.)

Fig. 2.1 An example calculator

Fig. 2.2 An example JavaScript object

2 Fundamentals of Computer Science

18

Four bits make a nibble, eight bits make a byte, and six-
teen bits make a word. In early computers, a nibble or a byte
(depending on the system) comprised a single “instruction”
or “number” or “idea.” Complexity has grown since then,
and in modern computers, the basic unit of communication is
arguably the quadword, which comprises a sequence of 64
0’s and 1’s. This is the 64-bit system in commercially avail-
able machines.

 Machine Code
The punched cards of the weaving loom mentioned at the
beginning of the chapter could be thought of as a machine
code to create a recipe or program to weave the fabric.
Humans imprinted a binary code on a card (“hole” or “no
hole”), which was then read by the loom to produce each
successive row in a piece of fabric. It is referred to as a
“code” because the card is not written in normal human lan-
guage (Fig. 2.3).

Modern programmers do not generally look at machine
code. This is because programs written for computers today
are so complex compared with the simplicity of marking
lines of fabric. The algorithms for reducing the program to
the smallest size are so advanced that the code becomes dif-
ficult to translate back into a human-readable form.
Translating machine code is time-consuming and expensive
and contemplated only for very specific purposes, such as
catching cybercriminals.

The smallest units of machine code refer to a single,
basic instruction, such as fetching a number from memory,
performing a logic function on two numbers, or storing a
number in memory. To make things more complicated, every
processor brand might have its own set of instruction codes
or Instruction Set Architecture (ISA). For humans to work
on a program, something more abstract would be helpful.

In one popular machine code [4], instructions for adding
two numbers together might look like this (depending on
variants and hardware).

 Assembly Language
The next step in simplification or abstraction uses readable
human language to represent each step in a process. This
level is at least understandable, even though we still need
many lines of assembly language to perform even simple
programs. To translate assembly language into machine
code, programmers utilize a software tool called an
Assembler. Assemblers use information about the instruc-
tion set and the machine’s architecture to convert each
instruction to binary.

Assembly also allows for other clever tricks, such as com-
ments (small notes that help the programmer remember what
part of the program does), some error checking, and allowing
“labels” to name variables something memorable, such as
“ans” for the answer to the addition problem. At one point in
time, this was the level at which most programmers operated,
but the need to produce more code more quickly and more
reliably pushed the field to the next level.

000000000001000000000000100000110000000000
1000000000000100000011
00000000000100010000000111000011

Fig. 2.3 A Jacquard Loom

A word about words: A word in the computer sense
is a sequence of bits, not a word as in the English lan-
guage sense. Bits combine to form a number, which
may represent that integer exactly, or perhaps a
floating- point number, or even a letter from the English
alphabet. A computer will use a translation table to
understand what the combination of bits represents.
The most common translation table in modern applica-
tions is Unicode [3], so-called because it attempts to
unify all possible symbols, including Asian logo-
graphic languages. In Unicode, “Hello” would be rep-
resented by the integer sequence 1032 1541 1548
1548 1551.

E. Puster

19

The same instructions for adding two numbers together as
above, but in Assembly language, might look something like
this:

For those curious, LD is the command “Load Doubleword”
that loads data from memory. “0x” means hexadecimal nota-
tion, which can be thought of as a shorthand for binary. In
assembly, comments start with a semi-colon; everything on
the line afterward is ignored by the computer. In C, “//”
denotes a comment.

 Compiled Language
The next level of abstraction involved moving toward com-
mands that are easier to read and contain more than one
Assembly instruction within them using a compiler. What
earned the compiler its name is how it converts the compiled
language into machine code using multiple optimizers and
error-checkers in various sequences, compiling the changes
on top of each other. Each line of code is read into the com-
piler, and these statements are, in turn, broken down, ana-
lyzed, optimized, broken down further, checked for errors,
etc., and finally written into machine code. The result is that
complex functions can be represented in very compact state-
ments understandable to humans.

Adding two numbers together in C looks something like
this:

This example is much easier to understand and removes
many spots where a human might make an error.

As in math, there is an order of operations in computer
programs. Note the difference between “=” and “==”. A
computer will not figure out which was meant by the pro-
grammer, which is a frequent source of bugs.

Compiled language also enables code libraries using
linkers, which allows the user to call on common and very
well-tested pre-written code to perform complicated func-
tions. For example, to find a certain string of characters in a
document of any size:

After this executes, the variable index will hold the num-
bered position in the string document where the string “you
found me” first occurs. And because the code library has
been reviewed and optimized many times over, the program-
mer does not need to worry (much) about hidden bugs. They
are ready to move on to build the next part of their program.
How could we possibly do any better?

LD t1 0x00000001 ;Load Memory location 1
into t1
LD t2 0x00000002 ;Load Memory location 2
into t2
ADD ans, t2, t1 ;Add t1 to t2, store the
answer in ans

ans = t2 + t1;

Operators: C-like languages use several symbols for
logical and arithmetic operations. Some important
ones to know are shown here (Table 2.1).

index = strstr(document, “you found me”)

What is TRUE? This brings up the side topic of what
is TRUE and FALSE. These boolean logic ideas show
up frequently in programming and depend somewhat
on what programming language is used. Generally
speaking, FALSE is equal to “0” and any value that is
not FALSE is TRUE. Another way to phrase the ques-
tion is, “Is there something in the variable?” This leads
to some confusion for humans but makes perfect sense
to the computer (Table 2.2).

Table 2.1 Common operators in the C programming language

x + y Return the sum of x and y x – y Return the
difference of x and y

x * y Return the product x and y x / y Return the result of
x divided by y

x = y Store a copy of y in x x %
y

Divide x by y, return
the remainder

x || y If x OR y is TRUE, return
TRUE

x ==
y

If x and y are the
same, TRUE

x
&&
y

If x AND y are TRUE, return
TRUE

x > y If x is larger than y,
TRUE

x >=
y

If x is larger than or equal to y,
TRUE

x !=
y

If x and y are not the
same, TRUE

!x If x is TRUE, return FALSE;
otherwise, return TRUE (or “1”)

x++ Store x+1 in x

x[y] Return the yth value in x x <<
y

Multiply x by 2 to
the yth power

Table 2.2 TRUE vs. FALSE examples

Variable value Is there something there?
0 FALSE
–1 TRUE
[“Frank”, “Jane”, “Lucy”] TRUE
“False” TRUE
4 – 4 (the result of 4 minus 4) FALSE

2 Fundamentals of Computer Science

20

 Interpretive Language
Compiling a program takes time, and any given compiled
program is almost 100% guaranteed to have at least one bug,
meaning it will need to be changed and compiled again.
Eventually, this time adds up. Some programmers thought it
would be nice to run code without having to compile it. This
idea led to the creation of interpreted languages. Interpreted
languages use “just-in-time” compiling to run each instruc-
tion right when needed, without waiting for the compiler.
This allows for quick adjustments to the program, dynamic
typing (meaning the interpreter will figure out the type of a
variable without being told), as well as the ability to “emu-
late” the software, meaning the ability to show what the result
will look like to a user after each change in the code is made.

The most popular languages in use today are only inter-
preted, such as JavaScript and Python, or are compiled with
an option for an interpreter, such as Java and C. There are
many commonalities between these different languages. In

this text, we will represent concepts with C-like structures
unless otherwise specified.

 Control Structures

In a process flow diagram or “decision flow,” each step in the
process has a little box describing what it does. Working very
much like those blocks, the building blocks of a program are
called Control Structures. In programming, a control struc-
ture may also include other blocks inside of itself to break
down the process further. These structures take one of four
general forms: sequential blocks, conditional blocks, itera-
tive blocks, and recursive blocks (Fig. 2.4).

 Sequential
A sequential block executes a series of specific instructions
in order. This is the default mode for most programming
languages.

After each step completes, the program marches on to the
next instruction. In C-like programs, a semi-colon notes the
end of an instruction.

 Conditional (If/Else, Switch)
A conditional block executes several possible sets of instruc-
tions depending on the answer to a TRUE/FALSE question.

In this example, if have_flavor(“chocolate”) returns TRUE,
then we will call buy_ice_cream(“chocolate”). If have_
flavor(“chocolate”) returns FALSE, then we will call buy_
ice_cream(“vanilla”). A second common conditional
control structure is the “switch.” A “switch” command goes
beyond just TRUE and FALSE, checking the value of a vari-
able called “flavor” and deciding on a response.

One other important kind of conditional structure is the
exception. In some languages, an exception is thrown if
some section of code has an error. A separate section of code

get_in_line();
buy_ice_cream();
eat_ice_cream();

if (have_flavor(“chocolate”)) {
 buy_ice_cream(“chocolate”);
} else {
 buy_ice_cream(“vanilla”);
}

Fig. 2.4 An example flowchart with sequential, conditional and itera-
tive elements

E. Puster

21

called an exception handler can take that exception and do
something about it. For example, for the above code, con-
sider the case that there is no ice cream. Then, “flavor” is not
valid, and an exception is thrown, which might trigger an
attempt to get ice cream and try again, or else call the make_
ugly_face() function.

 Iterative (While, for)
Consider the problem of looking through a list of ice cream
flavors to see if the shop has chocolate. We do not know how
many flavors there might be, so it is hard to write a sequence
of conditional blocks to check through it. Instead, we can use
an iterative structure to repeat the same sequence of instruc-
tions repeatedly until we conclude.

The while loop executes a series of instructions, then asks
a question to see if it can stop:

This loop will not stop, ever, until the condition are_we_
there_yet == TRUE. So, setting this loop aside and going
back to our ice cream example, we could create a while loop
that scans each group of characters to see if it is “Chocolate”.
If there is a match, we set a variable are_we_there_yet to
TRUE to tell the loop to stop, and another variable, such as

found_it, to TRUE to show we found it. If we hit the end of
the sign without finding chocolate, we also set are_we_
there_yet to TRUE but in this case, set found_it to FALSE.
If we are not done, we move to the next entry and check again.

A for loop is much like a while statement, except that
some of this work is right in the first line. Consider the
following:

The first thing we do is assert we have not yet found choc-
olate and set found_it to FALSE. Next, we start the for loop,
which has three parts separated by semicolons. The first part
is the initialize step, which sets the variable position equal
to 0. The for loop then makes a test: “Is position less than
the size of the ice_cream_sign array?” If so, we continue.
The last part is the update which tells the computer what to
do after each iteration finishes. In our case, the variable posi-
tion is increased by one to check the next spot in ice_cream_
sign. In this way, we iterate over each position in the
ice_cream_sign array, one at a time.

During each iteration, we check the positionth spot in
ice_cream_sign to see if “Chocolate” is there. If that check
returns TRUE, we set found_it to TRUE to mark our suc-
cess, and we set position to a value which will ensure that
the loop does not run again.

Loops can present serious problems in code and are one
of the most frequent sources of bugs. This will be discussed
more in-depth near the end of this chapter. For now, let us
consider the question of the nested loop. Consider this code,

while (are_we_there_yet == FALSE) {// “Are
we there yet?” “Nope”
 drive(); // Drive
down the road a bit
 eat_chips(); // Eat
some chips
 fiddle_with_AC(); // Try to
get temp right
} // Time to
ask again . . .

found_it = FALSE;
for (int position = 0; position < ice_cream_
sign.size();
position++) {
 if (ice_cream_sign[position] ==
“Chocolate”) {
 found_it = TRUE;
 position = ice_cream_sign.size();
 }
}

Where do we start? An important note is that if we
did want to start at the beginning of a document and
run through to the end, in C-like languages, the first
character would be at position “0”, not position “1”.
The reason for this is beyond the scope of this book.
Starting with “0” is called “zero-indexing” and is
another frequent bug-maker. The position “1” in
“Hello” is “e”, not “H”, as might seem more natural.

switch (flavor) {
 case “vanilla”: // If flavor ==
“vanilla”, start here
 eat_ice_cream();
 break; // This skips the
other cases
 case “chocolate”: // If flavor ==
“chocolate”, start here
 savor_ice_cream();
 break;
 case “mint”: // If flavor ==
“mint”, start here
 make_ugly_face(); // No offense to
mint-lovers
 break;
}

2 Fundamentals of Computer Science

22

meant to change every entry in myarray into all lowercase
“z”, character by character.

The nested structure allows the loop to cycle through each
word in the array and then through each letter of each word
and replace each with “z”, no matter how many words or
how long they are. This structure is very powerful, but the
more layers, the harder it is to understand and fix if it is not
working correctly.

 Recursion
Recursion is not always considered a control structure, but it
can do tasks that no combination of the other mentioned con-
trol structures could. In essence, a recursive process calls
itself, sometimes many times, to reach an answer. An easy-
to- understand (though gratuitous) example is that of the fac-
torial from mathematics.

Let us step through this, calling factorial(3). The function
checks to see if 3 == 1. It does not, so instead, it tries to
return 3 multiplied by a function call. At this point, the pro-
gram puts factorial(3) on the bench and calls factorial(3 -
1). This function starts by checking to see if 2 == 1. It does
not. So instead, the program calculates 2 multiplied by facto-
rial(1), which requires putting factorial(2) on the bench in
memory to wait for the result of factorial(1). Finally, facto-

rial(1) sees that x does equal 1 and returns 1. Factorial(2)
comes off the bench and returns 2 times 1 a.k.a. 2, and facto-
rial(3) then returns 3 times 2 a.k.a. 6.

However, keep in mind that each function call waiting to
return consumes a piece of memory (this has to do with the
programming stack, which is beyond the scope of this chapter).
Calculating factorial(1000) this way may gradually choke the
processor as the program stores each successive function call
on a slower, more distant memory. There are other processes,
like searching an organization chart for a particular person,
where recursion is, by far, the most elegant approach.

To present this process, we need to introduce another data
structure commonly used in programming: the “tree.” In a
tree, there are a series of entries linked together through
parent- child relationships. A parent entry contains informa-
tion about itself and an array of links to all its children. The
start of a tree is the highest entry—the one that has no parent.
In the diagram, you can see a tree with the highest entry
named “Alice.” Our recursive function will have the task of
finding the entry named “Charlie” and will do so in a “depth-
first” fashion, meaning that it will check if it has found the
answer, and if not, will call itself on each of the children.

Call #1 examines the highest entry where it finds Alice is
not Charlie and calls itself on the first link in Alice, the one
pointing down to Bob. This function call is set aside in mem-
ory while function call #2 takes the stage. This call sees that
Bob is not Charlie either and calls itself on the first child of
Bob, Dan. This function, call #3, sees that Dan is not Charlie
and that Dan has no children. It returns FALSE, meaning it
finished without finding Charlie (Fig. 2.5).

myarray = [“Car”, “Red”, “2016”]
// Start by iterating through each element,
like “Car”
for (int word = 0; word < myarray.size();
word++) {

 // Inner loop based on the length of the
element, so 3 for
“Car”
 for (int letter = 0; letter < myarray[
word].size();
letter++) {

 // Set the “letter”th position of the
“word”th element to
“z”
 myarray[word[letter]] = “z”;
 }
}

int factorial(int x) {
 if (x == 1) {return x;}
 else {return x * factorial(x - 1);}
}

Call #2

Call #1

Alice

Bob Charlie

Call #3

,

Dan Erin Frank

, ,

Fig. 2.5 Recursive function calls in a data tree

E. Puster

23

At this point, a normal function would be stuck. There is
no link back to Bob inside Dan. But a recursive function can
overcome this because function call #2 is still sitting inside
the Bob entry, waiting to continue. Function call #2 wakes
back up to get the FALSE return signal from call #3, sees that
there is another child of Bob, and calls #4 on Erin. This also
returns FALSE, so call #5 is made on Frank. This again
returns FALSE (Fig. 2.6).

At this point, call #2 gives up and returns FALSE back to
call #1. Call #1 sees that Alice has another child, and so calls
#6 on Charlie. Call #6 quickly finds it has found Charlie and
returns TRUE. Call #1 knows that when one of its calls
returns TRUE, it should send back the index in the array of
children; in this case, 1 (0 was Bob). Since there was only
one step, an array with a single entry [1] is the final return
value for the function. If the function was searching for
“Frank,” it would have returned [0,2] to show the path: the
first link in Alice (remember 0 is the first one!), then the third
link in Bob (Fig. 2.7).

 Computational Thinking

We have examined some of the common tools used to make
things happen in programs, and we have also seen that solv-
ing a problem using a program can be challenging and error-
prone. Experience over the decades has produced a few
common approaches to reach the end goal of Software
Quality, defined by the International Standards Organization
(ISO) as [5]:

 1. Functional Suitability: Gets the right result.
 2. Performance Efficiency: Gets there in a reasonable time

using few resources.
 3. Compatibility: Friendly towards other software.
 4. Usability: Minimizes user frustration.
 5. Reliability: Does not crash the computer or light things

on fire.
 6. Security: Cannot be misused by bad actors or unwise

users.
 7. Maintainability: Can be understood/updated by the next

programmer (especially oneself.)
 8. Portability: Can be moved or replaced easily.

Computational Thinking focuses on the first part: getting
the right result. But it also considers many of the other fac-
tors in software quality. Denning [6] defines computational
thinking as “the mental skills and practices for designing
computations that get computers to do jobs for us, and
explaining and interpreting the world as a complex of infor-
mation processes.” We will discuss a few techniques along
these lines, thinking about a system designed to irrigate a
garden.

 Specification
The first step in programming involves no computer code,
and strictly speaking, it is outside the box of Computational
Thinking. We must first identify precisely is the question we
are going to answer. This includes mechanical questions,
such as the size of the garden, and computational ones, such

Alice

Bob Charlie

FALSE

FALSE

Call #4

Call #5

,

Dan Erin Frank

, ,

Fig. 2.6 Checking each of the children

Alice

Bob Charlie

FALSE True

[1]

FALSE

Call #6

,

Dan Erin Frank

, ,

Fig. 2.7 Returning the result

2 Fundamentals of Computer Science

24

as how to decide if watering is needed and how much.
Answering these questions upfront will save time by creating
a solution that covers what is needed and no more. We will
address the subject of specification more in-depth later in the
chapter. Here is the start of our specification.

Aims:
• Primary: To encourage the growth of corn in a garden plot

using irrigation.
 – Secondary: To minimize water waste.
 – Tertiary: To minimize user interaction.

Unanswered Questions:
• How do we decide how much water is needed?

 – How does the system dispense the water?

 Decomposition
To accomplish our aims, we need to break them down into
some specific, solvable problems. This process is called
decomposition. As the program solves each of the prob-
lems, it returns the result to the main program. When all
results are in, the aims are reached. Turning our attention
to irrigation, there are a few tasks that make up the overall
aims:

 1. Calculate total water needed per day.
 2. Calculate total water supplied by other means today.
 3. Calculate how far to open the tap to spread that water flow

over 24 h.
 4. Open the valve.

The reader may have noticed an assumption: we are meant to
spread the water flow over 24 h. Assumptions are the bane of
programmers—do not assume anything if possible.
Whenever feasible, nail down every fact in the specification.
Some assumptions can be unavoidable: we might assume
that the water supply has water, that the hoses are connected
and not leaking, that the valve opener has power connected,
etc. In these cases, we still want to identify each assumption
to build exception handlers or other systems to reach the best
end we can (perhaps by sending a message to the user or
using a backup system).

The reader may also have noticed that each of these steps
requires more decomposition, especially how we will figure
out how to calculate the total of other sources of water. Here
is the first attempt in pseudocode.

1. Access a weather internet site.
2. Find information about weather prediction for today.
3. Scan for rainfall prediction.
4. Read rainfall prediction for the day into a variable.

Another critical assumption was just made: the system
will have access to the internet. This will need to be added to
the specification, or another way to predict the rainfall will
need to be used.

 Abstraction
There may be other water sources, such as animal life, sprin-
klers not intended to hit the garden, pipe leakage, the sudden
eruption of an artesian well, or simply a poor prediction from
the meteorologist. However, these are not important enough
or easy enough to predict to be worth the trouble. The prob-
lem can be simplified to:

This is an abstraction. It simplifies a problem from an
unanswerable question to an answerable one.

Whether or not to use an abstraction is often a matter of
art, estimating the likely effect to decide whether it should be
included in the model. This is not specific to the world of
computing, being common to physics, statistics, and
informatics.

A function is another form of abstraction. For instance, in
C, sqrt() is a function that calculates the square root of a
number. The programmer does not need to understand
Newton’s method for square roots to find one, they just call
the function, and the correct answer is delivered to them.

Pseudocode

Pseudocode is not another programming language. It is
like an author outlining their book before they begin
writing it. To make pseudocode, a programmer
describes roughly what they want to accomplish with
each code section to complete the solution.

“How much water do I need today.”

- “How much will fall from the sky today.”

--

“Total water to dispense today.”

E. Puster

25

This function is part of the C code library, a group of widely
used functions that have been written and thoroughly tested.

 Pattern Recognition
Recognizing patterns in a problem allows us to create an
abstraction (such as a function or a loop) to handle the issue
every time it appears, rather than typing the code all over
again. In our irrigation example, we assigned 24 h to the irri-
gation. Why? Consider the pattern of updates on meteoro-
logical estimates. At least once per day, a new prediction is
made. The closer we are to the period of time being pre-
dicted, the more accurate our calculation is.

Recognizing this pattern makes our solution more likely
to give us the right answer. After all, we might simply spread
the yearly average rainfall over 9 months. But then we would
be farther off the mark every day during the 9 months.

Also, each of the steps of calculation needs to be solved
multiple times. As such, they should be in functions or loops
that can be run over and over, rather than a single million-
line program that repeats almost character for character at
the start of each new day during the 9 months.

 Parallel Processing
In years past, the computer had a single processor that needed
to execute each command in order. If a command had to wait
for half a second for information to be fetched from the hard
drive, everything would come to a standstill for the full half-
second, even if the next command did not require that data
yet. Since that time, hardware and software designers have
enabled a way to overcome this obstacle through parallel
processing.

Think about a racetrack where runners all run on a single
lane. Each racer must finish before the next can begin.
Adding parallel tracks makes the race much more exciting
(and takes less time) as all the racers can compete simultane-
ously. Software optimizers or programmers identify sections
of code that can run simultaneously without interfering with
each other and mark them. The computer then turns these
sections of code into a series of executable statements called
threads. Then, while thread #1 waits for the slow hard drive
to respond, thread #2 can run its commands. Increasing the
number of cores or processors in a single computer allows
for more and more threads to run simultaneously.

This kind of computing is also often called asynchro-
nous. It increases performance, but this parallel competition
also makes a new type of bug possible called a race condi-
tion if the threads are not truly independent. One example
might be a news website that wants a user to pay before they
see an article. Two threads are started: one to check to see if
the user is a paying customer, the other thread to load the
content. The race is on! If the programmer is not careful, the
“content loading” thread might show the article before the

“paying customer check” thread finishes, letting the user get
the article for free.

In our irrigation example, finding the prediction for daily
rainfall and calculating the total water needed are separate,
isolated calculations. The order in which they occur does not
matter. They both access one piece of data (the date), but
they do not change it, so running these two commands in
parallel (or asynchronously) works well. However, both need
to finish before calculating the amount of water to dispense;
otherwise, we will cause a race condition and undesirable
results. (In the worst case, an error that causes the program to
stop completely or dispense an infinite amount of water, or at
best, the same amount of water each day despite what the
prediction is).

 Algorithm Design
The word algorithm is often used to describe parts of pro-
grams, but they are not the same. An algorithm is a set of
instructions to complete a calculation, such as determining
how much water to dispense. But the program as a whole
must also operate a valve and perform other functions. In this
way, an algorithm is a part of a program and requires its own
consideration.

In our garden irrigation system, the algorithm appears
simple, but we could consider plenty of modifications that
would introduce more subtleties. For instance, we might
average the predictions from several websites or use a
weighted historical average using the usual rainfall in past
years. We might want to consider the price of water at differ-
ent times of the day or measure the user’s habits to predict
the likelihood that the water flow will cause problems with
water pressure (i.e., someone showering in the house.) We
could also consider the time of day, watering more at night
than when the sun is up. The program could even take
minute- by-minute rainfall measures to predict how much
water will be needed for the rest of the day.

Parallel vs. Asynchronous: These two terms are often
interchanged but are not the same. “Parallel” refers to
two threads executing simultaneously without waiting
for the other to finish. “Asynchronous” also refers to
threads running simultaneously without waiting but
more specifically refers to the two threads not having
to work according to the same rhythm. For example, if
a laptop with a slow processor is playing a game on a
website, and the website server is preparing the next
level of the game using a faster processor, the laptop
and the server are working together, but each to a dif-
ferent rhythm.

2 Fundamentals of Computer Science

26

Each of these could bring benefits to our aims but could
also subvert them. For example, determining when the user
will need water for other things might mean more user inter-
action, which we do not want. On the other hand, averaging
the predictions of multiple websites would help a great deal
if one of the websites were to go down. We also need to con-
sider the available inputs and outputs, the computing
resources at hand, and the end goal in mind. A garden irriga-
tion algorithm that is 100% accurate but requires a small uni-
versity’s computing resources is not useful.

 Coding Best Practice
It is important to discuss the right way to cement these prin-
ciples in code along these same lines. Even if the code
reaches the end goal of giving us the right answer, there are
right ways to code, and there are wrong ways to code. A
quote attributed to Tom Cargill of Bell Labs [7]: “The first
90% of the code accounts for the first 90% of the develop-
ment time. The remaining 10% of the code accounts for the
other 90% of the development time.” Coding projects may
require 180% of the expected time due to code being written
the wrong way, leading to rewrites and workarounds.
Following best practices can make the difference between a
software project being on headlines or headstones.
Unfortunately, coding best practice is not outlined step-by-
step in a position paper; rather, it is an informal set of rules
generally followed by successful programmers. Here are
some of the more prominent ones:

Commenting Almost all languages allow for commenting.
This is the text written into a program that is ignored by the
interpreter/compiler/assembler and is exclusively for the
programmer’s use. They should be written liberally. There
are two reasons for commenting gratuitously: (1) writing
down a chain of thought might reveal errors, and (2) code is
awfully difficult to understand without it, even for the pro-
grammer who wrote it. Verbose comments are encouraged as
a best practice.

Keep It Simple Eventually, the code will need to be
reviewed, maybe even by the original programmer. If the
code is understandable, it increases the chances of being
updated or reused rather than scrapped. A more efficient way
to solve a problem is not always better; others need to under-
stand how it works.

Naming Conventions Along with the above, ensure that
variables and functions are all named something meaningful.
For example, predicted_rainfall is generally better than pr.
Going further, it helps to have variables, and functions dif-
ferentiated by differing use of underscores and capitals, such
as lowercase and underscores for variables (i.e., predicted_

rainfall) and specific capitalization and no underscores for
functions (i.e., dailyRainfallReader()). The reader may also
have noticed that there are no spaces in the names. Almost
always, the compiler or interpreter has no way to know
whether a space is intended to start a new piece of code or is
another part of a name. There can be no ambiguity or assump-
tions in programming; the space represents the move to a
new command or part of a command.

Modular Design When we decompose a problem into indi-
vidual parts, we can then write solutions to those parts. These
are modules. It is very important to segment these modules
from each other because the inevitable bugs become much
easier to deal with if we can isolate the module that causes
them. This also allows for reusability, as a module that per-
forms a task can be used repeatedly by different parts of a
program. This saves the time of writing it again and prevents
the new bugs that that would create.

Handle Garbage Gracefully A function must be written
to handle any input from the user gracefully and without
crashing. If invalid input is given (such as “Golf” or -1 for
rainfall in a day), the program must respond benignly. The
best response points out the issue, such as “Invalid input to
calcVolume(): ‘Golf’” but anything other than crashing or
causing other unpredictable behavior is preferred. This is
also called Programming Defensively as if the programmer
imagines that users and other programmers are going out of
their way to cause trouble.

There are many, many more opinions and ideas about
what constitutes coding best practice. See the sources at the
end of the chapter for more information.

 Operating System

Once a program is written, it needs a place to run. Many
applications are now written to run on an internet browser,
but all must eventually run on some kind of operating sys-
tem. Windows is an example. The operating system is itself
an abstraction. The full understanding of what an operating
system is and what it does is beyond the scope of this text,
but the simplified version is given here for context.

A computer is made of hardware: chips, capacitors, fans,
etc. A tiny kernel runs inside the processor, directing the pro-
cessing of instructions. On top of this runs the BIOS, which
allows the processor to interact with the memory, the key-
board, and other basic devices. On top of the BIOS runs the
Operating System, which provides a means for software to
make hardware requests, send information to the internet,
show graphics on the monitor, or load data from memory. It
also ensures that processor time is shared fairly among all
the applications and that all the applications behave well and

E. Puster

27

do not interfere. When a piece of software runs, processor
time is supplied. All the particulars of how that happens are
hidden from view.

 Application
An application is a program, and it runs on the operating
system, making requests of the hardware repeatedly, usually
at the behest of the user. There are many popular examples of
applications, from iTunes by Apple to Microsoft Teams. The
most familiar applications are those that we install and show
windows for us to interact with when we run them.

Background Applications Some applications are run-
ning even though there is no window showing on the
screen. These are called “Background Applications” and
include things such as the Notification app for Facebook.
They may or may not announce their presence, and many
background applications never interact with a user at all.
Push-style background applications wait to be triggered
(pushed) by other applications, while the pull-style pulls
information automatically to know when to trigger (such
as the time of day). Operating systems generally use doz-
ens of such applications to perform their tasks. It is com-
mon for large applications to load most of themselves into
faster memory in the background using a launcher applica-
tion. When the user clicks to activate them, they can load
more quickly.

Web Applications Some applications run on top of other
applications. This is true of web applications, which do not
run on the Operating System itself but rather on the internet
browser (such as Safari or Chrome). Without the browser, the
software cannot run. These applications require a different
programming language because they make requests of
another application rather than the Operating System, which
brings up the subject of the API.

Application Programming Interface (API) Applications
cannot tell each other what to do unless they specifically
open them to communication. The specific commands and
procedures for one program to communicate with another
one constitute an API. In this way, applications can work
together to accomplish something. Google Authentication
has an API. Facebook and other applications use this when
the user clicks on “Sign in Using Google.” The application
sends some information to Google’s API to tell it who is try-
ing to authenticate. Google asks for the password, checks it,
and sends a success or failure message back to the applica-
tion. If successful, the application logs the user in without
ever seeing the password. Interoperability like this is crucial
in medicine and is covered more in-depth in Chap. 13.

 Beyond the Application
Many years ago, the environment for using a program con-
sisted only of the user, the computer, and maybe some machin-
ery operated directly by the computer, such as a printer. With
the advent of computer networks and the internet, there came
incredible opportunities for sharing data and information
between computers. Modern programming employs what is
often called the client-server model. In this model, the client
computer interacts with the user, showing information and
presenting buttons to push and fields to fill. The client also
interacts with a server, asking for data and submitting the cli-
ent’s user’s data. To organize this data, the server uses a data-
base. In this way, when a client asks for data, the server can
find the correct information quickly and supply it.

A simple example is the checkout of any web store. The
checkout screen is part of a web application running on the
user’s computer or phone, presenting buttons and a display.
The user enters a request to make a purchase of $100 using
their credit card. The application then interacts with a server
computer at the credit card company headquarters, asking if
the user is authorized to make a payment and $100 available.
The server performs two database queries, one to check out
the credit card number, PIN, expiration date, etc., and the
other to see if $100 is available. If both are valid, the server
tells the database to credit $100 to the seller and replies to the
web application that the request was successful. Finally, the
web application shows the user that the transaction was
successful.

Full-Stack Sometimes an individual describes themselves
as a “full-stack” developer. This stack is distinct from the
system stack mentioned earlier. What a full-stack developer
is advertising is the ability to develop programs for serving
users (client-side programming), serving applications
(server-side programming), and serving data (database pro-
gramming). They might say they do a particular kind of
stack, such as a LAMP stack. This refers to a particular group
of programming languages and development platforms. The
LAMP stack is JavaScript (an interpretive language), Linux
(an operating system), Apache (a server platform), MySQL
(a database platform), and PHP (a scripting language for
websites). A full-stack application has a client, server, and
database portion.

Databases Data is the bread and butter of informatics and is
found most often in a database. Greater focus is placed on
databases in other chapters of this text, so it will not belabor
the subject here, only to say that databases use declarative
programming languages. Structured Query Language (SQL)
is an example and differs from the languages we have dis-
cussed up until now, because its lines of code are interpreted
by the software running the database, not the CPU, to deter-

2 Fundamentals of Computer Science

https://doi.org/10.1007/978-3-030-93765-2_13

28

mine what action to take. Think about what happens when
you use a search website. You declare what you are searching
for, and the website returns the results. But every site makes
its list of results differently because of its programming.
Much the same way, declarative code makes a generic
request, and the database code decides how to process it.

 Preparing the Code for Use

Whether or not code is successful in use depends on how
good it is, but it also depends on whether it fully addresses the
problem it set out to solve. It also depends on the ability to be
updated and fixed as the inevitable bugs begin to surface.

 Specifications
Knowing what the code is supposed to do before the pro-
grammers get to work is crucial to success. There is no single
standard method in which to prepare a software specifica-
tion, but there are some common elements (Table 2.3):

Many of these elements are common to project design,
which are covered in detail in Part IV of the book. Suffice it
to say that without a specification, the software cannot be
tested to conform to a specification, and therefore it is impos-
sible to know if it is done or even safe for use.

 Unit Testing
When each module is conceived, the method for testing it
should also be considered before coding begins. Code archi-
tects create a test for each aspect of the program, referred to
as a unit test, and the programmers write simple code to pass
each test. This is called “Test-Driven Development” and has
proven very effective in bringing a specification to life with
as few assumptions as possible, especially in bigger projects
[8]. The tools for this process are discussed in Chap. 12.

 Reading Other People’s Code

Code does not read like a novel. It is designed to be under-
stood by a computer, with no room for assumptions. In
places, it will appear to be excessively lengthy, with many
logic checks that seem unnecessary. In other places, a com-
plicated step in the process may be obscured by a poorly
named function that leaves the reader without any clue to the
intended result. Comments may be present, but even these
can be unreliable at times. As a result, reading code written
by someone else is a daunting process.

The author knows no rigorous, well-studied process for
reviewing code, despite being asked to do it many times.
There are two main techniques to get started trying to under-
stand a piece of code. The first involves writing in commands
called breakpoints or using an interpreter to see exactly
what the program is thinking at a given point in the process.
For example, for the irrigation system, a programmer might
insert a command to print the values of all the variables right
before the code finishes. That command is just for debugging
and forms a breakpoint. This should show how much rain is
predicted to fall, the garden area, the website is used to get
the information, etc.

If the code cannot be run, then the second technique is
needed. First, look for something in the code with a known
intent—for example, the command to read a rainfall predic-
tion from a website, recognizable by the URL. Otherwise,
there may be a particularly helpful comment or a function
call to a well-known library function.

Starting from that well-understood line of code, work
backward towards the beginning of the code section, and
once everything from the beginning makes sense, work for-
ward until the end of the code section. It may be helpful to
add or update comments along the way as a reminder for
those coming after.

 Reading Other People’s Code for Errors

Even more challenging is looking for errors in the code of
others, especially if the program cannot be run. First, find out
what the code is meant to do and how it failed. It may be
valuable for the programmer to think about how they would
approach the end goal of the code, as the error might be
apparent by comparison.

With loops, it is useful to start to write out the value of the
variables at the end of each iteration. This can reveal the pat-
tern of advancement, and give an impression of what the data
might look like 10 or 1000 iterations in (Table 2.4).

We need proceed no further to know where this will wind
up.

Table 2.3 Common elements in software program development

Authoring
information

Who wrote the spec, and when they wrote this
version

Aims What the software is supposed to do from the
perspective of the user.

Methods What tools will be used, such as the programming
language, the database platform, and the operating
system?

Stakeholders Who cares about whether the project succeeds or
fails and those that influence the specifications?

Testing How will we test that the program works and will
continue to work in real-world settings?

Work Estimate How much work will it take to get to the finish
line?

Unanswered
Questions

Project questions that need an answer, even those
that involve no actual coding

E. Puster

https://doi.org/10.1007/978-3-030-93765-2_12

29

Here are some of the most common errors, some of which
have been mentioned before.

Off-by-One Zero-indexing throws humans for a loop.
Consider the following code:

It may seem straightforward, but this code has two com-
mon errors, both relating to zero-indexing. It is in how the
for loop is started: the variable i starts with a value of 1, so
the first loop will add grades[1] to the sum. But grades[0] is
the first number in the array, not grades[1]. The second error
is left to the chapter exercises, which are available as an elec-
tronic download.

Unit Conversion Imperial/Metric conversion contributed
to the crash of at least one space probe [9]. Consider this
code:

It first calls getPatientWeight() and stores the result in
weight, then gets the dosing for acetaminophen by weight,

and then returns the weight-adjusted dosing for a patient.
This code appears innocuous, but it has a serious flaw. Will
the nurse enter kg or lbs.? And what about the online source?
Does it use kg or lbs.? There can be no assumptions in the
code. Modern dose databases will provide the units along
with the dose information, and this should be compared
against the units entered by the nurse to ensure that they
align, and if not, make the conversion. Finally, the units must
be part of the returned value to avoid passing bad data back
up the chain.

Infinite Loop Consider the following code:

We start by setting some things to zero. Then we start our
loop. We first fetch the number of appointments for the day,
then add it to total_appts before going on to the next day.
But we are missing a statement. The variable day is never
actually changed, so we keep adding appointments from day
0 to total_appts over and over again into infinity. This loop
will attempt to continue forever, consuming all computer
resources in its quest for completion. This kind of bug is
what usually causes the dreaded “freezing screen.” There are
times that an infinite loop is intentional, such as the loop to
run the irrigation system every day until the end of time. But
in that case, it would be instructed to wait until the next day
before continuing.

Syntax Error This is a trivial error for a computer to detect
but may be very challenging for a programmer. Consider the
following:

Good, helpful comments describing the exact thought
process are useless to identify the problem in this case. The
line that declares the array “array sieve = . . .” does not have
a semi-colon. That may seem like an innocuous issue, but the

// Calculate the mean
array grades = [86, 72, 95, 100, 65, 92];
int sum = 0;
for (int i = 1; i <= grades.size(); i++) {
 sum = sum + grades[i]; // Add each grade
to the sum
}

int mean = sum / grades.size();

// Calculate the right medicine dose
float weight = getPatientWeight(); // Prompt
nurse to enter
patient weight
// Access online database
float recDosePerWt = getRecDosePerWt(“acetam
inophen”);

return weight / recDosePerWt;

// Count the appointments on my calendar
for the week
int day = 0;
int total_appts = 0;
int daily = 0;
while (day < 7) { // Stop when we reach the
7th day

 // Grab the number of appointments for the
day
 daily = getDayAppointments(day);
 total_appts = total_appts + daily; // Add
to the total

}

Table 2.4 Working a loop by hand

a i j
str a = “astronaut”;
for (int i = 0; i < 1000; i++)
{
 for (int j = 0; j < 5; j++) {
 a = a + a[j];
 }
 a = a + “ “;
}

astronauta 0 0
astronautas 0 1
astronautast 0 2
astronautastr 0 3
astronautastro 0 4
astronautastro a 1 0

2 Fundamentals of Computer Science

30

result is that the computer sees a reserved token “for” for the
for loop in the same line as the array declaration, and it does
not know what to do. This will crash the program. Since the
syntax is different in different kinds of code, the only hope
when reviewing someone else’s code is to look for patterns
in variable declarations or line endings and try to see one that
is not like the others.

Out-of-Bounds Anytime there is a logic check, make sure
it is possible for the check to result TRUE or FALSE depend-
ing on what goes in. Consider the following:

In this case, we get the name of the current meal and then
run a logic check, which, if TRUE, results in eating a sand-
wich. But the logic check is not what it appears. To check if
meal equals “lunch”, we must use meal == “lunch”. The
code shows the value of meal to “lunch” then checks to see

if meal is TRUE. There is a string in the meal variable, so
the result of the check is TRUE, and we eatSandwich(), no
matter the time of day. Sometimes out-of-bounds occurs
when an object or array is used instead of the intended attri-
bute or property. For instance, array < 5 might always return
FALSE, while array.size() < 5 will return TRUE if the array
is small enough.

Another way to be out-of-bounds is called a buffer over-
flow. It was mentioned previously that variables have a spe-
cific place in memory, which is true of strings. Consider this
code for reading the first ten characters of a string:

But what happens if string is less than ten characters

long? This will cause the loop to start reading out what is in
memory outside of string. As expected, this is undesirable
and can be catastrophic if the program is not just reading but
writing to those out-of-bounds memory locations that could
contain other parts of the program.

Dirty Data When code provides for a user to enter some-
thing, it bears remembering that they may enter anything
(mentioned above in “Handle Garbage Gracefully”). They
may write “Cheese” for the year, or write programming
code in the Chief Complaint (see “code injection” in another
text), or even accidentally add whitespace to the beginning
or end of their name. “Whitespace” here refers to characters
in a string that do not appear on the printed page. The space
itself is the most common example, but others the line feed,
the carriage return (both for starting a new line), the tab, and
the non-breaking space. These invisible characters must
always be accounted for when using strings provided by a
user.

Imagine a database for storing patient names. Suppose a
careless assistant added a space at the end of a name. When
the database is later searched for the patient’s exact name
(without the space at the end), the search will come up empty.
The common way to prevent such problems is to scrub or
sanitize the data to ensure that whatever the user enters, your
program can clean it up enough to make sense of it and not
crash. One slightly unusual emoji is sometimes enough to
bring a massive database to its knees.

// Eat a sandwich only if it is lunchtime
string meal = getCurrentMeal();

if (meal = “lunch”) {eatSandwich();}

for (int i = 0; i < 10; i++) {
 // printf prints string[i] to the screen
 printf(“%c”, string[i])

}

// Check a number to see if prime under 100
int checkPrime(int num) {

 // if less than zero or more than 100,
return an error
 if (num < 1 || num > 100) {return -1;}

 // If not prime, one of these must be a
factor
 array sieve = [2, 3, 5, 7]

 for (int i = 0; i < 4; i++) { // Cycle
through each number in
sieve

// If the result is an integer, it can’t be
prime
if (isInt(num / sieve[i])) {return FALSE;}
 }

 // If none of the numbers was a factor,
num is prime
 return TRUE;

}

E. Puster

31

 Recommended Resources/Tools

In this section, the author notes several external resources for
further developing one’s programming skills. The author has
no financial interest in any of the resources.

Learning a Programming Language In the author’s opin-
ion, the best way to learn how to program is to find a problem
the budding programmer cares about, then find a simple tool
that does part of the work and builds on it. There are many
free resources to learn about any given language. Some
prominent ones are:

 – www.learn- c.org: A member of a group of websites for
learning C, JavaScript, Python, SQL, and others.

 – www.cppreference.com: A reference for C/C++.
 – www.w3schools.com: A reference for web development.
 – https://checkio.org: Gamified code tutorials for python.
 – https://stackoverflow.com: A forum where programmers

discuss programming problems. Any problem you are
running into has likely been seen (and solved) before.

Programming Best Practices In the opinion of the author,
the best way to learn the informal rules of programming is to
adapt the tools of other programmers for one’s use. This will
teach the way code is currently written and how to make
code more useful to others. Here are some sources:

 – https://opensource.com
 – https://alternativeto.net: Find an open-source version of

software you use, look at the code yourself.
 – https://curc.readthedocs.io
 – “Hints for Computer System Design” by Lampson [10]

Two sources that deserve mention for widely covering code
architecture are Code Complete [11] for classical techniques
and Clean Code [12] for covering the more modern Agile
methods for coding.

 Emerging Trends

There are many potential developments for Health
Information Technology in the near future. All of them carry
implications for programmers, clinicians, and ethicists alike.
As advancements in this category overlap substantially with
other chapters in this text, only the issues most closely tied to
programming and computer systems are presented.

Cloud-Based Computing Cloud-based computing means
that rather than running software locally on the user’s com-
puter (or a computer owned by the user’s company) and

sending requests to the server in the cloud as needed, part or
all of the application is run on the server itself. This allows
for more flexibility in software crashes, greater ease in updat-
ing the software, potentially better protection of corporate
secrets, and makes it much easier to roll out the software to
new users. All the user needs is an internet browser. New
computer languages (Dart/Flutter) and development plat-
forms (AngularJS) have been constructed to enable this
structure. The principal drawback is in the speed of the appli-
cation since the data must move over the internet to be used
and becomes dependent on shared hardware that many users
might be trying to use simultaneously. A secondary issue is
security, as more organizations are involved in storing and
transporting data.

Best-in-Class vs. All-in-One This conflict refers to choos-
ing between a collection of the best-specialized application
for each task (such as one app for surgery scheduling and a
different one for prescription transmission) or a suite of
applications from a single company that covers all needs. As
expected, best-in-class applications outperform in their main
task but typically struggle to communicate with systems
designed by others. In the medical industry, best-in-class
applications dominated initially, mostly because few organi-
zations could afford applications for all purposes. Eventually,
all-in-ones began to take the lead as communication prob-
lems proved to be too harmful. Now, as better standards pro-
liferate (e.g., SMART on FHIR) [13], and withholding
connectivity becomes illegal (e.g., information blocking)
[14], best-in-class alternatives that communicate seamlessly
may become much more common.

Open-Source Software Open-Source refers to the practice
of sharing all information freely [15]. In the case of software,
it means making all code available for anyone to view, use
and change for free (usually as long as credit is given to the
author.) Linux, an operating system on which both Android
and iOS are based, is open-source. Most servers running web
pages use Linux or one of its derivatives. The VistA project
is an open-source medical record system once used by the
Veterans Health Administration in the United States. It con-
tinues to be used by many clinics around the world. GNU
Health is another open-source suite of interconnected appli-
cations for health management focusing on social medicine.
OpenMRS and OpenHIE, developed by the Regenstrief
Institute, are open-source medical records systems used in
several places worldwide and excel in record-sharing capa-
bilities. And because the code is truly open, anyone with a
desire to help can adopt part of the project and become a
programmer or subject matter expert shaping the next ver-
sion of the software.

2 Fundamentals of Computer Science

http://www.learn-c.org
http://www.cppreference.com
http://www.w3schools.com
https://checkio.org
https://stackoverflow.com
https://opensource.com
https://alternativeto.net
https://curc.readthedocs.io

32

Distributed Computing The current model used by most
electronic health record systems is to have all the patient
records stored in a single database (with some backups
nearby and far away) that all users contact to search for
information. This arrangement is highly susceptible to acci-
dental or malicious failures and requires occasional com-
plete blackouts to update the system. One solution is to
move to distributed computing, where patient records and
other information are scattered throughout numerous com-
puters and copied many times over. This would make an
accident or even an attack much less likely to do significant
damage to the system but poses its own challenges. One has
to do with establishing how to ensure there are enough cop-
ies of a given record to be accessed easily, but not so many
that all device hard drives are full. Another challenge is
making sure the data is safe on all the devices it has been
scattered to.

Alternate Computing Methods The way we make com-
puters is rapidly reaching a dead-end due to the laws of phys-
ics. Increasing the speed of a computer relies on making its
parts smaller. But, if they become much smaller, the vibra-
tion of a single atom could have disastrous consequences.
Some alternatives have been suggested that would use com-
pletely different computational models. The quantum com-
puter accepts a series of coefficients for physics equations,
runs them until they reach a steady-state, and then produces
an answer in the form of quantum bits [16, 17]. A DNA com-
puter could theoretically store data extremely compactly and
perform its functions by splicing DNA strands [18, 19].
These systems require a very different approach to the one
presented here, and none has yet proven that it can truly
replace our current model.

 Summary

Many of the problems we face in medicine can be addressed
with technology. That technology will inevitably rely on
code. But the programmer is not trained in medicine, anat-
omy, pathology or even the sciences medicine depends on.
To communicate to design solutions, clinicians must speak
the language of programmers and understand some of the
constraints imposed by computers. By discussing program
design in the language of programmers, clinicians have a
better chance of implementing the tools that patients and
society require. Without that communication, the process for
maintaining the health of our communities will inevitably
suffer from bugs.

Here is a brief recap of the themes from this chapter:

 – Computers are not smart. They only do exactly what they
are told.

 – Computers are powerful. They can shorten a task of a life-
time to mere seconds.

 – Computers must be instructed carefully, or bad things will
happen.

 – Control structures are the programmer’s tools and include
sequential blocks, iterative blocks, conditional blocks,
and recursion.

Most problems can be broken down into solvable steps using
decomposition, abstraction, and pattern recognition. Keep
these principles in mind when developing new or trouble-
shooting existing programs:

 – Quality software works efficiently but can also be under-
stood and replaced easily.

 – Specifications are required to understand if a program is
finished and safe.

 – Verbose comments are helpful to those who come after
you.

 – Checking the code of others is difficult. Working it out by
hand is a helpful tool but using a computer to do it is
better.

 Questions for Discussion

 1. Returning to the question at the end of the vignette, con-
sider the following questions:

 (a) What are the parts of such a system?
 (b) What tasks must such a system perform, and which

consumes the most resources?
 (c) How might the system tasks conflict with the tasks of

other users of the database? (e.g., nurses, doctors,
administrators)

 (d) Are any of the tasks illegal?
 2. What value does a clinical informaticist provide that even

an experienced health information programmer cannot?
 3. Must a clinical informaticist also be a programmer? How

much programming should an informaticist know?
 4. Complete the specification for the water irrigation system

or another programming problem of your choice.
 5. Write pseudocode to solve the problem mentioned in the

vignette. Consider at least two regular preventative main-
tenance items related to your specialty and one barrier to
care.

 (a) What parts of the solution can run in parallel?

E. Puster

33

 (b) What pieces of data are needed to be stored in a
database?

 (c) Consider the problem as a client-server model. What
parts would run on the client? Which would run on
the server?

References

 1. Lipkin M. Historical background on the origin of computer medi-
cine. Proc Annu Symp Comput Appl Med Care. 1984;987–90.

 2. Von Neumann J. First draft report on the EDVAC. Moore School of
Electrical Engineering University of Pennsylvania. 30 June 1945.

 3. The Unicode Consortium. The Unicode Standard, Version 12.1.0.
Mountain View, CA; 2019.

 4. Waterman A, Asanovic K. The RISC-V instruction set man-
ual, Volume I: User-level ISA, document version 2.2. RISC-V
Foundation, May 2017.

 5. International Organization for Standardization. Systems and soft-
ware engineering—systems and software quality requirements and
evaluation (SQuaRE)—system and software quality models (ISO
Standard No. 25010:2011). 2011.

 6. Denning PJ, Tedre M. Computational thinking. Cambridge, MA:
MIT Press; 2019. Accessed 17 Mar 2021.

 7. Bentley J. Programming pearls: Bumper-Sticker computer science.
Commun ACM. 1985;28(9):896–901.

 8. Rafique Y, Mišić VB. IEEE Trans Software Eng. 2013;39(6):835–
56. https://doi.org/10.1109/TSE.2012.28.

 9. Mars Climate Orbiter Mishap Investigation Board. NASA (1999).
Phase I Report.

 10. Lampson BW. Hints for computer system design. ACM Oper Syst
Rev. 1983;15(5):33–48.

 11. McConnell S. Code complete. 2nd ed. Redmond, WA: Microsoft
Press; 2004.

 12. Martin RC. Clean code: a handbook of agile software craftsman-
ship. 1st ed. Upper Saddle River, NJ: Prentice Hall PTR; 2008.

 13. Mandl KD, Kohane IS. No small change for the health information
economy. N Engl J Med. 2009;360(13):1278–81.

 14. 21st Century Cares Act Final Rule. 85 FR 25642.
 15. What is open source? Internet source: https://opensource.com/

resources/what- is- open- source. Accessed 22 Mar 2021.
 16. Benioff P. The computer as a physical system: A microscopic quan-

tum mechanical Hamiltonian model of computers as represented by
Turing machines. J Stat Phys. 1980;22:563–91.

 17. Kanamori Y, Yoo S. Quantum computing: principles and applica-
tions. J Int Technol Inf Manag. 2020;29:2. Article 3

 18. Organick L, Ang S, Chen YJ, et al. Random access in large-scale
DNA data storage. Nat Biotechnol. 2018;36:242–8.

 19. Erlich Y, Zielinski D. DNA Fountain enables a robust and efficient
storage architecture. Science. 2017;355(6328):950–4.

2 Fundamentals of Computer Science

https://doi.org/10.1109/TSE.2012.28
https://opensource.com/resources/what-is-open-source
https://opensource.com/resources/what-is-open-source

	2: Fundamentals of Computer Science
	Introduction
	Programming and Computational Thinking
	Computer Primer
	The Von Neumann Model
	Programming Terms

	Computer Language
	Binary
	Machine Code
	Assembly Language
	Compiled Language
	Interpretive Language

	Control Structures
	Sequential
	Conditional (If/Else, Switch)
	Iterative (While, for)
	Recursion

	Computational Thinking
	Specification
	Decomposition
	Abstraction
	Pattern Recognition
	Parallel Processing
	Algorithm Design
	Coding Best Practice

	Operating System
	Application
	Beyond the Application

	Preparing the Code for Use
	Specifications
	Unit Testing

	Reading Other People’s Code
	Reading Other People’s Code for Errors

	Recommended Resources/Tools
	Emerging Trends
	Summary
	Questions for Discussion
	References

