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Analytics

Suranga N. Kasthurirathne and Shaun J. Grannis

Learning Objectives
At the end of the chapter, the reader should be able to:

•	 Identify and define key terms and concepts associated 
with data analytics and big data.

•	 Identify and characterize primary and secondary data 
sources of relevance to clinical informatics.

•	 Understand and contrast the functionality, advantages, 
disadvantages, and uses of natural language processing, 
supervised and unsupervised learning approaches, and 
neural networks.

•	 Investigate the role and value of various visualization 
techniques in clinical informatics.

•	 Evaluate machine learning approaches using performance 
metrics such as precision, recall, accuracy, and Area under 
the ROC curve (AUC ROC).

•	 Identify practical considerations and implications that 
influence the adoption of analytical tools and methods.

Practice Domains
Domain 1: Fundamental Knowledge and Skills

•	 K004. Descriptive and inferential statistics.
•	 K025. The flow of data, information, and knowledge 

within the health system.

Domain 2: Improving Care Delivery and Outcomes

•	 K049. Prediction models.
•	 K050. Risk stratification and adjustment.

Domain 4: Data Governance and Data Analytics

•	 K101. Definitions and appropriate use of descriptive, 
diagnostic, predictive, and prescriptive analytics.

•	 K102. Analytic tools and techniques (e.g., Boolean, 
Bayesian, statistical/mathematical modeling).

•	 K103. Advanced modeling and algorithms.
•	 K104. Artificial intelligence.
•	 K105. Machine learning (e.g., neural networks, support 

vector machines, Bayesian networks).
•	 K106. Data visualization (e.g., graphical, geospatial, 3D 

modeling, dashboards, heat maps).
•	 K107. Natural language processing.

Case Vignette
You have just been appointed as the Chief Medical 
Information Officer (CMIO) of a large hospital system with 
an established medical record platform that has been used to 
capture patient data for several years. Your CEO has heard of 
the benefits of data analytics in informing healthcare deliv-
ery. She has tasked you with putting together a long-term 
plan for adopting analytics into your health system. How 
would you approach this challenge?

This chapter was adapted from a prior publication [1].

�Introduction

Data plays a significant role in modern society and the econ-
omy. As envisioned by mathematician Clive Humby, credited 
with the phrase ‘data is the new oil’ [2], it continues to be of 
unparalleled value in driving the information age. Increased 
uptake of health information systems has led to increased 
accessibility and availability of health-related datasets. 
However, learning how to leverage various complex hetero-
geneous datasets to infer value in clinical settings is an uphill 
task. For the last several decades, researchers have demon-
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strated the ability to apply various analytical methods in 
response to multiple challenges impacting various clinical 
care domains [3–6]. Adoption of such analytical tools at scale 
is hampered by concerns of algorithmic bias and unfairness 
[7], limited generalizability and transportability of models 
across new patient populations and settings, and challenges in 
implementation and quality control [8–10].

However, these barriers are subsiding. Widespread accep-
tance of analytical methods and increasing demands on the 
clinical workforce have paved the way for ramping up efforts 
to develop and deploy innovative analytical solutions to 
address a range of use cases, including data analysis, machine 
learning, risk assessment and stratification, and visualization.

However, keeping up with the rapidly evolving Artificial 
Intelligence domain and apply these concepts to clinical 
informatics. Further, understanding the plethora of primary 
and secondary data sources captured at the patient- and 
population-level and leveraging these datasets to extract and 
model clinical, behavioral, and social determinants influenc-
ing patient health and wellbeing can be challenging. Thus, 
researchers and practitioners of clinical informatics need to 
obtain a firm grounding in the fundamentals of analytics and 
potential limitations and challenges that must be overcome 
to build robust analytical solutions. This chapter provides a 
detailed overview of theoretical and practical aspects of data 
analytics and its application in clinical informatics.

�Data to Wisdom

This section provides a brief overview of data, information, 
knowledge, and wisdom and their relationships. It further 
offers an introduction to other analytical terms and the cate-
gorization of various analytical methods.

To learn about data analytics and the use of big data, read-
ers must first understand several key terms - data, informa-
tion, knowledge, and wisdom  - and the hierarchical 
relationships between them. These relationships are 
described as the DIKW (Data, Information, Knowledge, 
Wisdom) pyramid (Fig. 16.1a).

•	 Data (base of the pyramid) collects discrete, objective 
facts or observations that are represented in raw and unor-
ganized form without context. As such, they are of little 
value. As an example, the string ‘101’ is discrete and 
objective but lacks any context.

•	 Information is organized or structured data that has been 
prepared so that it is relevant for a specific need and is 
therefore valid, relevant, and valuable. For example, 
knowing that the string ‘101’ mentioned earlier represents 
an adult’s body temperature in Fahrenheit adds more con-
text and is more meaningful.

•	 Knowledge is a flux of framed experiences, contextual 
information, values, expert insight, and grounded intu-

ition that offer an environment and framework for evalu-
ating and incorporating new information [12]. For 
example, additional context around adult human body 
temperature helps a clinician understand that this patient 
suffers from a fever.

•	 Wisdom (the topmost point of the pyramid) is the ability 
to increase effectiveness. It adds value, which requires the 
use of judgment. Given that judgment may be influenced 
by an individual’s aesthetic values or ethics, wisdom is 
often personal and inherent. For example, by evaluating 
the knowledge presented previously, a clinician under-
stands that they must address the patient’s fever.

The relationships between these factors are represented in 
Fig. 16.1(a) as layers of a pyramid, with the largest source 
(data) at the very bottom and the smallest source (wisdom) at 
the very top. Analytics (defined below) help researchers 
advance from data (widely available but low value) to infor-
mation, knowledge, and wisdom (increasingly harder to 
obtain and more valued).

�Key Terms in Analytics

Definitions for several key terms used in the analytics domain 
are as follows:

•	 Data science: The multi-disciplinary field leverages vari-
ous methods, processes, and algorithms to extract knowl-
edge and insights from structured and unstructured data.

•	 Artificial intelligence (AI): A subdomain of computer sci-
ence that focuses on the simulation of human intelligence 
(or brain function) by a machine. AI is a broad domain 
encompassing machine learning and other topics, such as 
logic, problem-solving, and reasoning, which are out of 
scope for this chapter.

•	 Machine learning: The ability of a computer system to 
learn from the external environment or a data source to 
improve its ability to perform a task. These approaches 
enable various algorithms to learn from data without any 
explicit programming. Machine learning is a subset of AI.

•	 Analytics: The discovery, interpretation, and communica-
tion of meaningful patterns found in data, as well as the 
application of data patterns for effective decision-making.

�Descriptive and Inferential Statistics

Descriptive Statistics  Descriptive statistics refer to a group 
of analytical methods used to summarize datasets in a man-
ner that ‘describes’ or summarizes a population, making 
them easily interpretable to researchers. Descriptive statis-
tics are calculated using basic mathematics and statistics 
measures such as percentages, mean, median, and mode val-
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ues [13]. These metrics do not allow us to make conclusions 
beyond the datasets under test or reach conclusions regard-
ing any hypothesis.

Inferential Statistics  In contrast to descriptive statistics, 
Inferential statistics reach conclusions beyond the dataset 
under test [14]. Inferential statistics uses a random sample of 
data extracted from a broader population to describe and 
infer a larger population of interest. As such, inferential sta-
tistical methods are essential where assessing all individuals 
in a patient population is infeasible. In such an event, infer-
ential methods can make generalizations across the broader 
population of interest. Standard inferential statistical meth-
ods include hypothesis tests, confidence intervals, and 
regression analysis.

�Data Sources

Data sources for clinical informatics research can be catego-
rized into primary and secondary sources. Primary data sources 
are datasets collected by healthcare providers for the specific 
purpose of providing healthcare. Most primary data collection 
activities are performed using Electronic Health Record sys-
tems, lab information systems, or other medical testing equip-
ment. Secondary data sources include existing data that were 
collected for other purposes. There are three main types of sec-
ondary data sources for clinical informatics research:

	1.	 Surveys. A valid, commonly used method to collect 
demographic information, personal behaviors, and atti-
tudes. In some cases, data from physical examinations 
and laboratory tests are collected in addition to these self-

a

b

Fig. 16.1  Introduction to fundamental concepts: (a) the DKIW pyramid and (b) descriptive, predictive, and prescriptive analytics. (b) is derived 
from Gartner Inc’s analytical capabilities visualization [1, 11]
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reported data. Surveys are typically utilized to collect 
data for questions that cannot be answered from other 
data sources. They can be primary or secondary data 
sources depending on who collected the data. Generally, 
surveys are conducted at national (population-based), 
state, and local levels. These data are collected at a per-
sonal or population level, depending on the sampling 
methodology. Widely used secondary survey data sources 
include the National Health and Nutrition Examination 
Survey (NHANES) [15] and the Behavioral Risk Factor 
Surveillance System (BRFSS) [16].

	2.	 Registries. A method to collect data and information on 
individuals suffering from specific diseases or conditions. 
The Agency for Healthcare Research and Quality 
(AHRQ) defines four types of registries [17]: (1) product 
(i.e., pharmaceutical, medical devices, or diagnostic/ther-
apeutic equipment), (2) health services (i.e., exposure to 
medical procedures, clinical encounters, or hospitaliza-
tions), (3) disease or condition (i.e., all patients have 
same disease or condition), and (4) a combination of any 
or all of the above. Data stored in these registries are col-
lected in a standardized, predefined method specific for 
each registry.

	3.	 Health services data. These data are collected as part of 
the routine healthcare processes. They contain large 
samples of individualized patient data, including diagno-
ses, medications, procedures, imaging, and medical 
notes. The two main types of health services data are 
administrative claims data and data extracted from medi-
cal records. Administrative claims data are data which 
encode for diagnoses, medications, and procedures for 
billing purposes. They are coded using standard coding 
systems such as the International Classification of 
Diseases (ICD) [18], Systematized Nomenclature of 
Medicine (SNOMED®) [19], Current Procedural 
Terminology (CPT) [20], and Logical Observation 
Identifiers Names and Codes (LOINC®) [21]. However, 
most data collected during the healthcare process are 
unstructured (i.e., not coded) and exist as free-text, 
images, or video. Thus, manual medical chart reviews 
through Electronic Health Records (EHRs) are needed to 
extract and codify the data before analyses. In the past 
several years, developments in Natural Language 
Processing (NLP) and machine learning have shown 
promise in extracting value from unstructured clinical 
data. Despite the potential of NLP and machine learning, 
widespread adoption is limited due to concerns about 
their overall accuracy, lack of trust by clinicians, and 
generalizability. There are significant limitations to con-
sider before utilizing health services data.

	4.	 Big data. Big data refers to the field of research, method-
ology, and expertise on the extraction, analysis, and per-

sistence of datasets that are too large and/or complex to 
be analyzed by traditional methods. Thus, what consti-
tutes big data may be specific to an individual, implemen-
tation, or location. Three concepts drive the definitions 
and assessment of big data, often referred to as the three 
V’s:
•	 Volume (quantity of data),
•	 Variety (types of datasets), and
•	 Velocity (how often the data are being captured/

reported) [22].

Big data for clinical care delivery became feasible due to

	(a)	 increasing adoption of Health Information System (HIS) 
infrastructure, which enabled widespread collection and 
management of patient-level data,

	(b)	 increased interest in the collection and dissemination of 
population-level datasets and Geographical Information 
Systems (GIS) that describe a wide variety of socio-
economic measures, and

	(c)	 reduced technical barriers and costs associated with data 
persistence and management.

The advent of big data brings new challenges in translating 
datasets of various quality, quantity, and velocity into action-
able information, and ultimately, to knowledge. Big data 
analytics seeks to leverage improvements in computer sci-
ence to address these needs. Big data are of significant inter-
est to the clinical informatics domain due to their ability to 
provide broad insight into various patient health and well-
being perspectives.

�Data Pre-Processing: What Pre-Processing Steps 
Are Necessary to Convert a Data Set into 
a Format Suitable for Analytics?
Any analytical process is only as good as the quality of data-
sets used. As such, it is essential to ensure that datasets used 
for analysis are cleaned and parsed to present a concise, 
valid, and clear picture of the clinical scenarios or patient 
populations under test. Often, raw data must be transformed 
into data vectors, which can be defined as collections or 
arrays of numbers structured in a manner that helps an ana-
lytical approach identify relationships and patterns within 
the data.

�Introduction to NLP

Natural language processing (NLP) is a domain of AI which 
focuses on how computers interpret written and spoken 
human language. NLP is particularly relevant to clinical care 
initiatives, given that clinical reports consist of up to 80% 
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unstructured data [23]. NLP methods may also be used to 
augment the quantity and quality of structured datasets. 
Early attempts at NLP centered on regular expression (regex) 
based matching, hard-coded rule systems, and decision trees, 
rigidly tied to specific use cases. As illustrated in Table 16.1, 
NLP methodology has expanded to support a broader range 
of techniques.

These NLP techniques should be applied with due 
consideration to the context they are applied to. For 
example, noting that a social worker’s note refers to a 
historical (not current) case of homelessness or that evi-
dence of alcohol abuse is linked to the family member of 
a patient rather than the actual patient plays a significant 
role in efficient data extraction. While tools and tech-
niques to evaluate the context are available [24], assess-
ing these constraints adds additional complexity to NLP 
in the clinical domain.

�Machine Learning Approaches

The rapid advancement of Artificial intelligence, computer 
science, and decreasing cost of computational and storage 
resources has brought about significant awareness of the role 
of AI-driven methods for decision-making. Increasing quan-
tities of data and the complex nature of decision-making 
impedes a human expert’s ability to make rational decisions 
based on the datasets at hand. Machine learning approaches 
enable users to learn from these datasets more efficiently and 
effectively and apply this knowledge for decision-making. 
Machine learning efforts can be broadly categorized into 
supervised and unsupervised learning approaches.

�Supervised Learning Approaches

Supervised learning is an approach where, given input fea-
tures and an outcome variable of interest, an algorithm can 
learn the mapping function to convert the input features into 
the outcome of interest. This is referred to as supervised 
learning because the outcome variable serves as a gold stan-
dard used to guide the algorithm on a learning process. 
However, using these methods can be costly and resource-
intensive as they may require human expert input for defin-
ing and preparing a gold standard. Supervised approaches 
can be grouped into two major categories as described below.

	(a)	 Classification models Algorithms that predict a discrete 
or categorical output variable. Listed below are some 
widely known classification algorithms:
•	 Simple Logistic (SL) Given a set of training samples 

with a labeled outcome, SL models develop a logistic 
function to predict the outcome variable. SL does not 
rely on assumptions of normality for predictor vari-
ables. These models are very simplistic, mainly when 
few or no interaction terms are used [25].

•	 Support Vector Machines (SVM) Given a set of 
training examples with labeled outcomes, SVM iden-
tifies an optimal hyperplane (a subspace whose 
dimension is −1 of its ambient space) capable of sep-
arating data into each outcome. SVM models work 
well on small, clean datasets given the ease of draw-
ing clear hyperplanes across these datasets. However, 
they are less effective on larger, noisier datasets with 
multiple overlapping classes.

•	 Bayesian classifiers are probabilistic classifiers 
based on Bayes’ theorem, which describes the prob-
ability of an event based on prior knowledge of condi-
tions related to the event. This approach assumes that 
all features in a model are independent and that the 
presence of one feature does not impact the presence 

Table 16.1  Basic NLP Techniques

Technique Description Example
Lemmatization Grouping together 

inflected forms of a 
word so they may be 
analyzed as a single 
item.

‘Good’ is the 
lemmatized form of 
‘better.’

Stemming The task of reducing 
inflected or derived 
words into their root 
form to better 
identify various uses 
of a single word.

‘Walk’ is the stem of 
‘walking.’

Summarization Produces a readable 
summary of a larger 
block of text.

Condensation of a 
paragraph or a larger 
text document into a 
smaller set of sentences 
or shorter paragraphs.

Sentence boundary 
detection

The task of 
identifying the 
boundaries (start and 
end) of sentences 
from within a larger 
text document.

Identify that the use of a 
dot in the term ‘Dr. 
Walker’ is intended to 
abbreviate the term 
‘doctor’ and not 
intended as a sentence 
break.

Sentiment analysis 
or opinion mining

Identify affective 
states and subjective 
information used to 
infer polarity on 
specific topics.

Identify that the phrase 
‘negative for cancer’ 
indicates that the patient 
does not have cancer.

Part-of-speech 
(POS) tagging

For each word within 
a sentence, determine 
the part of speech, 
such as verbs, nouns, 
or adjectives.

Identify all nouns and 
pronouns in a sentence.

Named entity 
recognition (NER), 
aka entity 
identification

The task of locating 
and classifying 
named entities into 
various predefined 
categories

Identify that ‘car’ is a 
type of ‘vehicle’ and 
that ‘syphilis’ is a type 
of ‘illness’.

16  Analytics



232

of another. Given this assumption, their use may be 
somewhat restricted in the healthcare domain.

•	 Decision trees A supervised learning approach seeks 
to predict an outcome’s value by learning decision 
rules inferred from the training dataset. Decision trees 
are simple to interpret and require little data prepara-
tion and cleaning. They can also be used for both clas-
sification and regression. However, decision tree 
models may result in overly complex trees that are too 
tightly linked to training data and do not yield satis-
factory performance across other datasets.

	(b)	 Regression models Algorithms that predict a numerical 
continuous output variable. Examples include Simple 
Logistic Regression and Random Forest Regression. 
These algorithms mimic their peers in the classification 
section but are designed to output a continuous variable 
rather than a categorical value.

In addition, several supervised learning algorithms may be 
integrated to develop ensemble models. As discussed earlier, 
each supervised learning algorithm poses unique strengths 
and weaknesses. An ensemble model combines multiple 
machine learning algorithms into a single predictive model, 
thereby combining the advantages of each unique model 
towards the final outcome prediction. Decision trees are tra-
ditionally implemented as ensembles consisting of ‘forests’ 
of multiple trees. Two of the most widely known ensemble-
based implementations are Random Forest [26] and eXtreme 
Gradient Boosting (XGBoost) [27]. Random Forest builds 
all trees and then averages the predictions made by each tree, 
while gradient boosting methods build new trees focused on 
addressing errors in prior trees.

�Unsupervised Learning Approaches

Unsupervised (or clustering) learning approaches are methods 
where an algorithm learns to model the underlying distribution 
of data elements given input features but no outcome variable. 
Such approaches are data-driven and rely purely on the quan-
tity and quality of data used in the training process. Unsupervised 
methods are relatively easier to train because they do not 
require the manual cost and effort needed to develop a gold 
standard. However, this usually leads to weaker performance. 
Listed below are two widely used clustering algorithms.

•	 k-means clustering An approach that seeks to group each 
observation into a subset of clusters where each observa-
tion belongs to the cluster with the nearest mean value. 
k-means are one of the oldest and widely used clustering 
algorithms. They are efficient and straightforward and 
therefore suitable for large-scale datasets. However, the 

algorithm cannot pre-determine an optimal number for k, 
meaning that the best value must be selected via incre-
mental evaluation using multiple k values.

•	 Hierarchical clustering An approach that seeks to build 
out a hierarchy of clusters. They can be agglomerative 
(each individual instance starts as a separate cluster, with 
pairs of clusters merging as instances traverse up the hier-
archy) and divisive (all observations start with one cluster, 
and splits are performed as instances traverse down the 
hierarchy). While descriptive, this approach is more com-
plex and requires more memory. Thus, it may be unsuit-
able for larger datasets.

�Neural Networks

Neural networks are computing systems inspired by the 
biological neural networks that constitute animal brains. A 
neural network consists of layers of connected nodes that 
are referred to as neurons. Neural networks can be either 
supervised or unsupervised by nature. Although the prin-
ciples of neural networks were known for decades, they 
did not achieve mainstream interest and adoption until 
large quantities of data and computational processing 
resources that unleashed their true potential became read-
ily available. At a minimum, a neural network consists of 
three layers; one input layer, a hidden layer (any layer 
located between the input and output layers), and an output 
layer. A neural network with more than a single hidden 
layer is referred to as a deep learning network. In contrast 
to other classification systems, neural networks outper-
form traditional machine learning approaches as the scale 
of data increases.

Various neural network systems have been implemented 
in response to a myriad of challenges. However, they are 
increasingly complex, making them harder to interpret than 
other classification models. This limits the application of 
neural networks in certain healthcare domains where the 
interpretability of a prediction is of significant importance. 
However, they are invaluable in analyzing images, data 
streams, and genomic datasets. Currently, neural networks 
are widely used for various tasks linked to clinical care deliv-
ery [28–30]. Listed below are several commonly used classes 
of neural networks.

•	 Convolutional Neural Network (CNN) A neural net-
work approach focused on challenges involving visual 
imagery. These are commonly applied to analyzing 
images or videos.

•	 Recurrent Neural Network (RNN) Neural network 
approach where connections between nodes form a 
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directed graph representing temporal sequences, allowing 
the model to exhibit dynamic temporal behavior. These 
are commonly used to predict sequences of events such as 
changing stock prices, patient heart rate, or other sequen-
tial measures.

•	 Long short-term memory (LTSM) A form of RNN 
capable of learning long-term dependencies, thereby 
enabling it to support sequential predictions. These are 
applied to similar use cases as RNN’s.

�Applications of Analytics in Clinical 
Informatics

In this section, we briefly discuss several use cases where 
analytics could be applied to clinical informatics. Table 16.2 
presents several clinical informatics-oriented use cases that 
can be addressed using analytics.

�Common Pitfalls and Challenges

Some common pitfalls and challenges associated with 
machine learning are as follows:

•	 Overfitting A decision model is said to overfit if it cap-
tures the underlying structure of a dataset too stringently 
and thus, fails to achieve consistent performance across a 
different dataset. Overfitting is caused by noise (irrelevant 

or incorrect data elements included in the dataset) that 
does not generalize across other datasets. Ensuring that a 
model does not suffer from overfitting is referred to as 
generalization. To protect against overfitting, models 
should be trained using broad representative datasets and 
evaluated across various heterogeneous patient 
populations.

•	 Underfitting A decision model is said to be underfitting if 
it cannot adequately capture the underlying structure of a 
dataset and thus, underperforms against both the current 
and other datasets. To protect against underfitting, models 
should be trained using various features that adequately 
represent a use case under test. Often, researchers must 
deal with a tradeoff between model overfitting and under-
fitting in delivering effective models.

•	 Class imbalance In many real-world classification prob-
lems, the outcome variable (class) may not make up an 
equal or reasonable proportion of the dataset. For exam-
ple, the prevalence of HIV, AIDS, or Rabies may be sig-
nificantly low across the general population. A 
classification model may not have enough ‘signal’ in the 
training data to deliver adequate predictive performance 
in such a scenario. Two sampling methods may be consid-
ered to address class imbalance; oversampling (supple-
menting the minority class/es with copies of minority 
instances) and undersampling (removing instances of the 
majority class at random to improve class balance).

�Model Training, Evaluation, and Validation

Researchers may select from multiple model training 
approaches based on the availability of data. Below are three 
training methods; train and test, cross-validation and train, 
validation, and test (Fig. 16.2).

�Model Training Approaches

•	 Train and test method A dataset is randomly split into 
two sets, a larger training dataset used to train a decision 
model and a smaller test dataset used to test the newly 
trained model. Based on dataset size and quality, a train-
ing dataset could range from 70–90% of the original 
dataset.

•	 Cross-validation A resampling approach where the data-
set is split into k many randomly selected subsets, where 
the user defines the size (k). We randomly choose one of 
the k subsets as the test dataset while the remaining sub-
sets as training datasets. A model is trained using the (k–1) 
training datasets and evaluated using the test datasets. This 
process is carried out k-many times, and performance 

Table 16.2  Potential clinical informatics-related use cases and hypo-
thetical analytical solutions

Use case Potential solution
Predict patient-level 
hospital 
readmission rates

Patient-level hospital readmissions may be 
predicted using existing clinical, behavioral, 
and demographic datasets and supervised 
learning [29] or neural network-based 
methods.

Identifying types of 
patients most likely 
to develop opioid 
addictions.

To effectively address the causes of opioid 
addiction, it may be useful to identify different 
subpopulations of patients at most risk. A 
variety of basic descriptive statistics, risk 
stratification methods, or more complex 
predictive modeling approaches may be used 
for this purpose.

Identification of 
notifiable 
conditions for 
public health 
reporting

Free text reports may be searched for evidence 
of notifiable conditions using basic string 
search functions, regular expressions, or other 
more complex NLP-driven methods.

Support clinicians 
in cancer detection

Deep learning models can be trained to detect 
a variety of cancers using patient CT scans.

Detect drug-drug 
interactions

A variety of methods ranging from basic 
rule-based systems to deep learning models 
and neural networks can be applied to identify 
potentially harmful drug-drug interactions

16  Analytics



234

results for each iteration are averaged to produce less vari-
able performance results. k = 10 is widely used, but values 
as small as five may be used based on the dataset at hand. 
Cross-validation methods are traditionally used on smaller 
datasets that require optimal use of data for training. 
However, this approach is vulnerable to overfitting.

•	 Train, validation, and test sets. This newer approach is 
more suitable for situations where a significant quantity 
of data is available. The dataset is randomly split into 
train, validation, and test sets. The training dataset is 
used to train the decision model. The validation dataset is 
then used to iteratively test the decision model and update 
its parameters for optimal performance. Once model 
parameters have been configured for optimal results, the 
model is evaluated using the holdout test dataset.

�Performance Metrics

It is essential to evaluate the performance of a decision model 
using a variety of performance metrics.

•	 Sensitivity (AKA recall): Proportion of actual positives 
that are correctly identified.

•	 Specificity (AKA true negative rate): Proportion of actual 
negatives that are correctly identified.

•	 Precision (AKA positive predictive value): Proportion of 
positive identifications that are correct.

•	 F1-score: Accuracy measure representing the harmonic 
mean (an average used for numbers that represent rate or 
ratio) between precision and recall

•	 The Area Under the Receiver Operator Characteristic 
curve (AUC ROC): The Receiver Operator Characteristic 
(ROC) is a graphical plot that demonstrates the diag-
nostic performance of a classification model across 
various threshold configurations. The AUC ROC score 
measures the two-dimensional space underneath the 
ROC curve. Thus, the AUC ROC score can range 
between 0 (minimum) and 1 (maximum). An AUC ROC 
of 0.5 indicates that a model has no discrimination 
power.

It is also essential to identify the most appropriate perfor-
mance metrics to evaluate model performance given a spe-
cific use case. For example, analytical methods that seek to 
predict the probability of high risk or high-cost events such 
as mortality or permanent injury should optimize sensitivity 
to increase the chances of identifying as many patients in 
need as possible. In contrast, solutions to identify the likeli-
hood of a less risky event may focus on optimizing precision 
to reduce the burden of false positives on clinicians. Often it 
is helpful to compare tradeoffs between different perfor-

a

b

c

Fig. 16.2  Comparison of various training, validation, and testing methods for maching learning. (a) the dataset is divided into training and test 
subsets. (b) the dataset is resampled multiple times using random subsets of data. (c) the dataset is divided into training, validation, and testing 
subsets [1]
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mance measures to select the optimal model. Precision-recall 
curves compare variations in each metric across different 
cutoff thresholds, thereby enabling researchers to identify 
optimal thresholds based on the predictive performance of 
their choice. The sample precision-recall curve in Fig. 16.3 
(a) presents variations of precision against recall. For exam-
ple, this plot informs a researcher that 0.65 is the maximum 
precision achievable for a recall of >  =  0.7. However, the 
maximum precision for a recall of > = 0.3 is 0.9.

�Feature Selection Techniques

Feature selection, alternatively known as attribute selection 
or variable selection, is the process of selecting the most rel-
evant features with the potential to contribute most towards a 
machine learning task. Proper feature selection can lead to 
numerous benefits, including reduced risk of overfitting, 
improved model accuracy, and reduced model training time 
and hardware requirements. Primary feature selection can be 
performed via manual review. A human expert with knowl-
edge on a particular topic manually reviews a list of features 
and selects a subset of potentially relevant features based on 
their expertise. However, manual review becomes challeng-
ing with larger feature sets and also when investigating a 
lesser-known domain. Automated feature selection methods 
can be applied to address these situations. Automated feature 
selection methods can be classified as filter, wrapper, and 
embedded methods.

•	 Filter methods: Approaches that apply statistical mea-
sures to assign a score to each feature.
–– Univariate selection: Selects features with the stron-

gest relationships to the outcome variable.
–– Information gain (AKA Kullback-Leibler divergence) 

[31]: Evaluates a feature’s worth by measuring the 
information gain to the outcome of interest.

•	 Wrapper methods: Approaches that consider feature 
selection as a search problem using various combinations 
of features. Recursive Feature Elimination (RFE) is a 
greedy optimization (an approach that seeks to make a 
locally optimal choice at each stage) to identify the fea-
ture set with the best model performance by iteratively 
creating models.

•	 Embedded methods: Approaches that identify which fea-
tures contribute most to the model’s accuracy during its 
training process. Learning algorithms that support embed-
ded feature selection perform feature selection as part of the 
model development process. Regularization or penalization 
methods such as the least absolute shrinkage and selection 
operator (LASSO), Elastic Net, and Ridge Regression com-
monly use embedded feature selection methods.

An example of automated feature selection would be when 
clinical data elements collected from an Electronic Health 
Record system or Health Information Exchange are being used 
to perform syndromic surveillance. In such an event, these filter 
methods can be applied to identify a smaller subset of the most 
relevant features to be used in machine learning, thereby ren-
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Fig. 16.3  (a) Precision-Recall curve demonstrating tradeoff between precision and recall at different cutoff thresholds, and (b) feature importance 
scores for each feature (ranked from the most important to least important). Adapted from [1]
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dering the models more simplistic, with a lesser risk of overfit-
ting. Further, a model that requires a limited number of features 
would be easier to operationalize in a clinical setting.

Figure 16.3(b) plots the importance of each feature, as 
identified by the feature selection method being used. How 
would a researcher identify the optimal number of features 
for model development? This depends on the ability to reach 
suitable performance metrics and considerations on model 
complexity. Assume that a model trained using the top 25 
features (point A in Fig.  16.3(b)) does not yield adequate 
performance. In that case, expanding to include the top 55 
features (point B in the plot) may do so. Alternatively, 
expanding further to include the top 85 features (point C in 
the plot) may be necessary. However, the inclusion of addi-
tional features results in a more complex model and may risk 
overfitting. Does the performance increase achieved by 
expanding to include extra features justify the risk of overfit-
ting and increased complexity for the use case under study?

�Model Validation

The core purpose of developing analytical models is to lever-
age them to predict outcomes for unseen populations. To do 
so, a model must demonstrate reasonable validity. A model is 
said to be valid if it demonstrates both internal validity and 
external validity.

•	 Internal validation: Testing a model’s ability to replicate 
its predictions across the same population used to train 
the model. Internal validation can be performed by apply-
ing a model to a holdout dataset extracted from the origi-
nal population and evaluating it using the performance 
metrics listed previously.

•	 External validation: Evaluate model performance against 
a dataset sampled from an alternative population not used 
in the initial training process. External validation serves 
as the gold standard for evaluating decision model perfor-
mance. Unfortunately, external validation methods are 
rarely used due to the lack of access to datasets and the 
cost of performing such validation in the clinical domain.

�Risk Stratification and Adjustment

Risk stratification is where clinicians assign patients to differ-
ent tiers based on factors contributing to adverse health out-
comes [31]. Different stratification methods may be selected 
based on each use case; as an example, one method might 
prioritize patients in most need (are sickest), while another 
may prioritize patients who are most likely to improve with 
care. Stratification methods result in distinct groups of 

patients with similar complexity and care needs. They help 
providers identify and mitigate patients’ risks, effectively 
allocate healthcare delivery resources, and prioritize care for 
the right patients. In the most basic terms, risk stratification 
can be performed by using descriptive statistics to identify 
levels of risks and care needs based on patient demographics 
and the presence of chronic conditions. However, more suc-
cessful approaches to risk stratification rely on complex pre-
dictive analytics [32] and phenotyping methods [33]. Risk 
stratification approaches are critical given value-based health-
care, which seeks to improve care outcomes while eliminat-
ing inefficiencies and reducing costs.

�Data Visualization

Health systems process and analyze vast quantities of diverse 
datasets at a rapid pace. Effective mechanisms are needed to 
communicate the results of such analysis in a concise, easily 
understandable manner. Data visualization is an interdisci-
plinary field that integrates statistical and computing skills 
with design skills to enable the graphic representation of data 
and information. It helps reduce the burden of decision-
making using complex datasets.

Basic types of health data visualization methods include 
various types of charts, tables, maps, scatter plots, timelines, 
and infographics created using various office application 
packages such as Microsoft Office or Apache Open Office. 
Alternatively, 3-Dimensional (3D) visualization techniques 
are widely used in clinical informatics to offer a clear render-
ing of the functionality of complex organs such as the human 
heart and aid in the diagnosis and effective delivery of vari-
ous oncology, cardiology, and neurology procedures. 
Alternatively, geospatial visualization techniques can inte-
grate relevant clinical or health information to geographic 
locations such as latitude and longitude, census tract, zip 
code, county, state, or country [34].

Data dashboards that incorporate one or many of these 
methods are used to visualize more complex datasets and 
interpretations in an easily accessible manner. Such dash-
boards may represent operational data (operational dash-
boards), presenting a real-time assessment of the use case 
under test, or strategic dashboards, representing trends or 
changes over time. Powerful, specialized tools such as Tableau 
or Power BI are widely used to create interactive dashboards 
or may be updated in real-time or at regular intervals. Notably, 
a variety of such dashboards were developed in response to the 
COVID-19 pandemic. Examples include dashboards built 
atop Indiana’s statewide health information exchange for pop-
ulation-level surveillance and in support of pandemic response 
efforts across communities [35], as well as dashboards devel-
oped by Johns Hopkins University to provide timely informa-
tion on COVID-19 cases and deaths worldwide [36].
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�Emerging Trends

The future of AI, particularly in the healthcare domain, con-
tinues to evolve in response to significant technological 
advances, uptake of tools and information systems, and 
emerging awareness of its value in driving healthcare 
delivery and outcomes. We highlight several notable trends 
in the clinical analytics domain.

�Democratizing Access to Datasets for Effective 
Analytical Efforts

Widespread adoption of HIS has resulted in increased efforts 
to collect and curate clinical data. However, regulatory 
frameworks enforced by many countries limit the sharing of 
protected health information outside healthcare organiza-
tions. Limited or burdensome data access hinders the repro-
duction, sharing, and re-use of machine learning solutions 
across larger audiences and restricts inter-organizational col-
laboration addressing various healthcare challenges and 
building generalized machine learning models targeting 
diverse populations.

Efforts to enable better access to data include creating 
standardized data lakes with tools for effective access, 
use, and analytical efforts. Such attempts include the 
Observational Health Data Sciences and Informatics 
(OHDSI) initiative [37], a multi-stakeholder collaborative 
which seeks to improve health by empowering a commu-
nity to collaboratively generate evidence that promotes 
better health decisions and better care, and currently 
boasts access to 600 million patients spread across 30 
countries [38], as well as the National COVID Cohort 
Collaborative (N3C), which seeks to bring together clini-
cal data and expertise from across the US to answer criti-
cal research questions to address the COVID-19 pandemic 
[39]. Other efforts involve using advanced analytical 
approaches such as Generative Adversarial Network 
(GAN) models to create large, realistic synthetic datasets 
that mimic original data sources but offer limited risk of 
re-identification [40, 41].

�Awareness of Biases Present in Analytical 
Models

Most datasets used in healthcare research are not originally 
collected for research purposes [42, 43]. Such datasets are 
susceptible to biases, defined as systematic errors caused by 
prejudiced decision-making, poor representation of vulnera-
ble populations, and incomplete data collection errors [44, 
45]. Biases place privileged groups at a systematic advantage 
over unprivileged groups [44].

If used for analytics, such datasets may lead to the gar-
bage in - garbage out problem [46], resulting in biased mod-
els harmful to vulnerable populations such as racial and 
ethnic minorities, older adults, or persons with special 
healthcare needs [47–49]. Biases can also be harmful to indi-
viduals with negative Social Determinants of Health (SDoH), 
defined as conditions in which people are born, grow, live, 
work, and age [50]. Such biases may present significant 
harm to patients and result in legal penalties and negative 
attention to healthcare systems [44]. There is increased 
awareness of the need to effectively identify and mitigate 
biases present in analytical models via effective data collec-
tion and curation methods that improve data quality and 
other analytical methods that improve fairness in models 
trained using messy data.

�Summary

The popularization and adoption of analytical approaches 
for the healthcare domain continues at a rapid pace. To 
keep up with these advances, clinical informaticians must 
obtain a firm grounding in the fundamentals of analytics 
and the potential limitations and challenges that must be 
overcome to build and maintain robust analytical solutions. 
This chapter provided (a) a detailed description of the 
nature of data, information, wisdom, and knowledge, (b) 
key definitions associated with data analytics, (c) introduc-
tion to various machine learning algorithms, their advan-
tages, and limitations, and (d) various evaluation methods 
to assess analytical performance. To support clinical infor-
maticians in leveraging these lessons for practical use, it 
also included content on practical considerations, limita-
tions, and challenges that may impede the implementation 
of AI tools in support of clinical care delivery. These les-
sons serve as steppingstones for researchers who wish to 
become familiar with the current analytics domain and sup-
port self-learning to keep up with the latest advances.

�Questions for Discussion

	1.	 Contrast various predictive performance metrics and 
identify clinical scenarios where you may favor one over 
the others. How would you explain these choices to your 
clinical team?

	2.	 Contrast neural networks, classification algorithms, and 
clustering algorithms. In which use cases would you pre-
fer each of these methods over the others? Why?

	3.	 Identify common pitfalls and challenges of applying data 
science and analytics in clinical practice. How are emerg-
ing trends in clinical analytics addressing or bypassing 
these limitations?
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