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Information Technology Systems

Shawn N. Murphy and Jeffrey G. Klann

Learning Objectives
At the end of the chapter, the reader will be able to:

• Describe the difference between structured and unstruc-
tured data

• Understand how data typically need to be changed to fit 
into a database

• Define the ACID concept of a database
• Describe the differences and tradeoffs between relational 

and non-relational systems, as well as cloud vs. on-prem-
ise databases

• Discuss the essential components of data interoperability, 
including Common Data Models and Health Information 
Exchange

• Identify the basic concepts behind Knowledge Discovery 
and Data Mining

• Cite various types of network topology
• Understand how a system architecture is represented
• Describe a three-tier software architecture
• Explain the design considerations in choosing a program-

ming language, including compiled vs. interpreted and 
object-oriented vs. procedural

• List three software design considerations
• List four safeguards that HIPAA describes
• List three types of security attacks
• Describe how FISMA moderate compliance helps pre-

vent security attacks

Practice Domains: Tasks, Knowledge, and Skills

• K006. Computer programming fundamentals and compu-
tational thinking

• K007. Basic systems and network architecture
• K060. Enterprise architecture (databases, storage, appli-

cation, interface engine)
• K062. Network communications infrastructure and proto-

cols between information systems
• K076. Approaches to knowledge repositories
• K077. Data storage options and their implications
• K089: Data life cycle
• K090. Transactional and reporting/research databases
• K091. Techniques for the storage of disparate data types
• K092. Techniques to extract, transform, and load data
• K094. Data management and validation techniques
• K096. Types and uses of specialized and emerging data 

sources (e.g., imaging, bioinformatics, internet of things
• K098. Information architecture
• K099. Query tools and techniques
• K100. Flat files, relational and non-relational/NoSQL 

database structures, distributed file systems

Case Vignette
Jane is the CMIO of a large healthcare system and wants her 
enterprise to invest in a new electronic medical record 
(EMR) system. She will need to make a convincing argu-
ment, hoping to keep the technically-oriented CIO happy by 
showing the new system will indeed scale to the require-
ments of an upcoming merger with another health system. 
She would like to justify some of the claims made in the 
sales-oriented, splashy presentations of the EMR companies 
with her hard- hitting, factual presentation. It turns out the 
EMR companies are different in several ways. First, they 
use different types of databases. The first company uses a 
MUMPS hierarchical database, while the other companies 
use relational databases. The first company also uses a 
waterfall programming methodology, while the other com-

10

S. N. Murphy 
Department of Neurology, Massachusetts General Hospital, 
Boston, MA, USA 

Department of Biomedical Informatics, Harvard Medical School, 
Boston, MA, USA
e-mail: snmurphy@partners.org 

J. G. Klann (*) 
Department of Medicine, Massachusetts General Hospital,  
Boston, MA, USA

Harvard Medical School, Boston, MA, USA
e-mail: jeff.klann@mgh.harvard.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93765-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-93765-2_10#DOI
mailto:snmurphy@partners.org
mailto:jeff.klann@mgh.harvard.edu


136

panies use agile programming methodologies. One of the 
EMR companies is pushing a novel NoSQL-based system 
as part of its platform, but she doubts it can handle the trans-
action flow and wants to make that point to the 
CIO. Ultimately, Jane would like her health system to adopt 
an EMR with agile programming practices and a standards-
based Application Programming Interface that uses a rela-
tional database system. How could she best present her 
arguments to the CIO? See if you can help Jane build her 
presentation as you navigate this chapter.

 Introduction

The events of clinical practice can be represented in an 
Information Technology (IT) system. Medical software is at 
the pinnacle of all IT system development in many ways, 
because these systems have a great responsibility towards the 
patient. Therefore, systems must be carefully designed to 
embody the following characteristics: sharing, proper formu-
lation, quality measures, and fulfillment of use cases. Sharing 
includes proper authorization practices for those assessing 
the system, distinctions between data types that can be 
shared, and harmonization methods that allow sharing. The 
proper formulation includes focusing on data sources and 
data types, accounting for temporal aspects of clinical data, 
and accounting for various levels of data granularity and 
missingness in IT systems design. Quality measures for IT 
systems include working under many failure situations 
regarding data, code, and system security. This chapter will 
introduce practical decisions that must be made to formulate 
the components of a health IT system, including data, net-
works, and programs. We will carefully consider these char-
acteristics as we discuss each component.

 Data and Databases

Data is at the heart of every health IT (HIT) system. The 
purpose of all HIT systems is gathering, storing, sharing, and 
utilizing data. This section will discuss the data itself, which 
will allow us to dive into further topics on building HIT sys-
tems, such as programming and system architecture, in later 
sections.

 Getting Data

 Data Sources
HIT systems constantly generate data, which in the context 
of medical practice are pieces of information, especially 
those that are part of a collection to analyze a problem. In 
HIT parlance, these data fall into three broad categories:

• Structured data make up most of the information clini-
cians, and technicians enter into electronic health record 
(EHR) systems for record-keeping and billing purposes. 
Structured data are stored in various standard formats and 
terminologies (as discussed in Chap. 13) that computers 
can interpret and manipulate. As a rule, structured data 
come at the cost of clinicians’ time and effort; these are 
not part of normal communication between clinicians that 
normally occurs with written unstructured discourse. 
However, structured data are much more useful to HIT 
systems for data processing.
 – Examples of structured data: billing data (e.g., diagno-

sis codes, procedure codes), demographic data, labora-
tory results, vital signs, and coded medication and 
problem lists.

• Unstructured data refer to data not stored in an easily 
computable format. Primarily this includes all the notes 
about a patient—from reports to discharge summaries, 
including data that may not be stored in a computer system 
at all (such as, in many environments, daily nursing notes). 
Images are often considered unstructured, as well as lab 
results that are supplied as fax documents. This category 
also includes some financial and legal data that are not 
readily available in computable format (such as consent 
forms, DNR orders, etc.). Unstructured data tend to be 
much richer than structured data, but they usually cannot 
be used directly in a computable environment such as a 
decision support system. Natural language processing 
(NLP) [1] is a way to extract computable meaning from 
this text. However, due to the many variations of how 
things can be said in human languages and how text is 
structured, NLP is fraught with difficulty and error-prone.
 – Examples of unstructured data: patient notes, financial 

and legal documents.
• “Big” data is an emerging category of data that are gener-

ally unstructured but is put in this separate category because 
it is difficult to process [2]. It is difficult, because the data 
has either an extremely large storage footprint (like radiol-
ogy images or genomics from sequencing machines) or is 
so extraordinarily complex that it takes enormous comput-
ing resources. Sometimes these are data collected by con-
tinuous-monitoring machines. Home health monitoring 
(such as home blood glucose monitors) is an example of 
continuous monitoring data working into medical records.
 – Examples of “big” data: radiological images, genomic, 

and exomic data.

Another source of data besides HIT is patient-reported data 
and community information, as elaborated in Chaps. 24 and 
25. Patient-reported data is used to reconcile the medical 
record with patient experiences and collect subjective infor-
mation on patient perception of disease burden. Community 
information (such as public data about the number of parks in 
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a city) is becoming more important as medical data is used for 
public health. Understanding local health policy, regional 
socioeconomic statuses, communicable diseases, and disease 
trends are becoming integrated into health data analysis.

 Interoperability: Mapping and ETL
Data are stored in many different systems throughout the 
hospital. To be retrieved or used for analysis, data must be 
extracted from their source system. Typically, when data are 
retrieved on a single patient, software interfaces exist that 
allow the clinician to browse their patients’ information 
using a combination of proprietary and standard solutions. 
Many of these interfaces are based on standards developed 
by Health Level Seven (HL7). Data retrieval becomes more 
difficult when gathering cohorts of patient data for research 
or quality improvement. Data retrieved for this purpose 
undergo a three-step process known as Extract, Transform, 
and Load (ETL). Chapter 14 discusses interoperability in 
more detail. Here, we provide a brief overview of the ETL 
steps and major stumbling blocks [3].

• Extract. Data must be retrieved from the source system 
using available programming interfaces. The biggest 
stumbling block in this step is knowing what data resides 
where and what it means. For example, an ambulatory 
EHR system might be separate from billing systems, and 
thus the data from these systems must be merged to 
understand patient encounters. Diagnosis codes that rep-
resent billing diagnosis might not represent a patient’s 
actual disease, so these would need to be stored separately 
from the problem list. For example, the billing diagnosis 
code for a visit to rule out diabetes is the same as a billing 
diagnosis code to manage diabetes.

• Transform. Because data are stored in various proprie-
tary formats, it is necessary to align all these formats so 
that the data can be analyzed together. This task, known 
as data mapping, is often quite complex and is discussed 
at length in Chap. 13.

• Load. This step involves transferring data in large quanti-
ties into a data warehouse, which requires careful atten-
tion to some of the performance concerns discussed in 
“storing data” below.

 Data Representation
When data is in transit or being processed, structured data is 
often represented in one of the following formats: XML, 
JSON, or CSV [4]. These are largely interchangeable ways 
of organizing data. Text data (notes) often also have some 
structure in the header section, which defines to whom the 
note belongs, who transcribed it, and on what date, among 
other “metadata” fields (data about the data).

• XML uses tags, or text within brackets, to separate pieces 
of the document. Tags can be embedded in other tags, 
thus creating a hierarchy of information with a 
document.

• JSON is a similar format that uses colons, commas, and 
tabs instead of brackets and has become popular as it is 
generally more readable.

• CSV is a nonhierarchical structured format that essen-
tially represents data as a spreadsheet, with columns and 
rows—commas separate columns, and each row appears 
on a separate line. A simple example of information in all 
three formats is below.

A sample data structure represents a patient’s weight at an 
encounter as XML, JSON, and CSV in Table 10.1.

Chapter 13 will discuss data exchange standards, which 
define the specific tags, element names, and headings used to 
transit various data in these three formats. These data 
exchange standards build on the underlying structures of 
XML, JSON, and CSV. Most notable among these are the 
Fast Healthcare Interoperability Resources (FHIR), which 
describe EMR data in a standard way using these data struc-
tures [5]. FHIR’s use is being accelerated by the 21st Century 
Cures Act, which mandates that EMR vendors support this 
standard in some circumstances [6]. These include serving 
Medicare patients and getting a certification from the US 
Office of the National Coordinator for Health Information 
Technology (ONC).

 Storing Data (Databases)

In enterprise systems, data are stored in databases.

Table 10.1 Data representation of patient’s weight in XML, JSON, and CSV

XML JSON CSV
<encounter id=‘111’>
<vitals>
<weight units=“lbs”>140</weight>
</vitals>
</encounter>

{
“encounter”: {
“id” : “111”,
“vitals”: {
“weight”: {
“units” : “lbs”,
“weight”: “140”
} } } }

(This “vitals” csv would be one of several csv files needed to represent these data.)
Encounter,weight,units
111,140,lbs
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 Relational Databases
The gold standard for database storage is the relational 
database [7]. These are also known as SQL databases 
because database programming is done in the Structured 
Query Language (SQL) [8]. SQL 92, the version of the lan-
guage released in 1992, is a standard across most database 
systems. Since then, many changes have been made to the 
standard language, but there is incompatibility across data-
base platforms concerning features introduced since SQL 92. 
Although database platforms implement the features intro-
duced in SQL 99 and some features found in even more 
recent versions, they all do so slightly differently. Therefore, 
database programmers tend to become experts in one plat-
form, such as Microsoft SQL Server or Oracle.

The most common relational database brands used in HIT 
systems are those from Oracle and Microsoft. They have a 
reasonable equivalence of features, though, as mentioned, 
their SQL dialects are quite different. Postgres is a popular 
open-source database used in smaller health IT projects 
(such as for research systems), which offers many of the 
same features as the commercial equivalents but without the 
same level of support or guarantee of functionality.

Database Schema Design
In SQL databases, data are stored in tables where each entry 
is a row with a predetermined set of columns. Conceptually, 
this is very similar to a spreadsheet. Like spreadsheets, vari-
ous aggregate functions can be performed on tables to char-
acterize the data. Unlike spreadsheets, tables can be joined to 
answer questions that cannot be gleaned from a single table. 
These joins are performed using the relationships between 
the tables, which is why these databases are relational.

The structure of the database tables for any particular appli-
cation is known as the database schema. These tables are usu-
ally designed to store data so that information is not duplicated 
across tables. This is known as normalizing the data [9]. For 
example, a patient table might contain the patient’s date of 
birth. A normalized schema would not duplicate the patient 
date of birth in, for example, the encounters table.

Structuring a database schema, so tables are normalized 
can be quite complex. Normalization should be done only up 
to the point that makes sense for the database application. 
There are more than six normal forms of data. However, the 
third normal form (3NF) is the level of normalization pro-
posed by relational database pioneer EF Codd and is the gen-
eral standard for minimizing data repetition [10]. 3NF 
specifies that every piece of data in a row only depends on 
the information in the primary key (the primary identifier for 
the table, such as a patient id or encounter id). For example, 
an encounter table might have a provider identifier. The 
encounter table should not also have the provider’s name and 
address, as these are properties of the provider and not the 
encounter. These should go in a separate provider table.

To understand how joins are used, consider how many 
encounters occurred in 2014 involving patients born in the 
1960s. A database programmer would issue a query that 
“joins” the patient and encounter tables. The power of rela-
tional databases is that these joins are dynamic and ad hoc 
and do not require a priori definition of relationship hierar-
chy. To join two tables, a common column must exist between 
these two tables. This is an exception to the “do not duplicate 
data” rule of normalization. These two columns are the pri-
mary key (the column[s] of the primary table to be joined) 
and the foreign key (the column[s] of the secondary table to 
be joined). In the above example of the patient and encounter 
table, both tables would include some type of patient identi-
fier. More technical details of SQL joins can be found in the 
section “Programming” below.

Schema designs are frequently visualized with an Entity 
Relationship Diagram (ERD). These simple diagrams use 
boxes to represent each table in the schema. Each box lists the 
columns in the table and their data types. Usually, the keys of 
the table are demarcated by boldfacing or otherwise highlight-
ing them. Lines are drawn between boxes where a relationship 
exists (i.e., indicating that the two tables can be joined). The 
lines are annotated with the type of relationship: one-to-one, 
many-to-one, or many-to-many. The patient-to- encounter rela-
tionship would be one-to-many because a single patient can 
have many encounters, but each encounter is about only one 
patient. A many-to-many relationship might be a provider and 
patient table. A provider has many patients, and a patient like-
wise has many providers. Many-to-many relationships are 
often shown on ERD diagrams as a pair of one-to-many rela-
tionships, with an intermediate table in the middle that provides 
the many-to-many linkage. In this case, the encounter table 
might be the intermediary table for the many-to-many linkage 
(assuming that a patient can have only one provider per encoun-
ter). A variety of schemes for annotating the relationship exists. 
An ERD diagram based on this discussion that uses the popular 
“crow’s foot” annotation method is shown in Fig. 10.1.

One complexity to consider when defining a database 
schema is balancing usability with resilience to future 
changes in that schema. It is generally faster and easier to 
access data with predefined columns (such as columns in a 
patient table, e.g., gender, race, and ethnicity). Still, suppose 
the available data could change dramatically over time. In 
that case, it is often better to use an entity attribute value 
(EAV) format, a special way of normalizing the data that pro-
vides great flexibility for schema changes [11]. In pure EAV 
format, a table has only three columns. In a patient table, the 
Entity column would be a patient identifier. The Attribute 
column would define what is being measured in that row 
(e.g., birthdate). The Value column would have the value of 
the measurement (e.g., January 1, 1960). Thus each patient’s 
data in the patient table would take up many rows. Without 
careful indexing, this can have poor performance.
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Furthermore, it is not particularly human-readable. 
However, it is immediately adaptable to new data types with-
out changing the underlying database schema. Because of 
this, EAV is used in many data warehouses. In practice, 
schema styles are used that combine EAV and standard 
tables. The star schema and the snowflake schema prototypes 
are most common, both of which involve one or more EAV 
tables and dimension tables that define additional attributes 
using standard normalized data. The dimensions are linked 
to the EAV table through additional columns (foreign keys). 
The Informatics for Integrating Biology and the Bedside 
(i2b2) database framework for clinical data warehousing, 
free and in use at over 200 sites worldwide, uses a star 
schema format [12].

Cloud Database Providers
Of increasing importance are cloud-based data storage pro-
viders. Although due to security concerns around clinical 
data, such data are traditionally stored on-premises (“on- 
prem”) on an institutionally managed database server, the 
flexibility of storing data in the cloud is attractive. It does not 
require institutional investment in and maintenance of data-
base servers, and database size can be “elastic” and dynami-
cally allocated by the hosting provider. All major cloud 
providers support healthcare data in some way, and it is 
becoming more commonplace for major institutions to sign 
BAAs (business associate agreements) with commercial 
cloud providers.

New variants of SQL and other query languages come 
with these cloud providers that informaticians must become 
familiar with. Google provides an implementation called 
BigQuery, which is compatible with SQL 2011 standards 
[13]. Amazon promotes a scalable database solution called 

RedShift, which implements its own dialect of SQL to sup-
port very large datasets and high-performance analytics [14]. 
Microsoft Azure suggests using Azure SQL, which uses a 
SQL language like Microsoft SQL Server [15]. Although all 
these companies offer more traditional databases on the 
cloud, they claim that the highest performance is achieved 
with one of their cloud-native approaches.

There are many cloud-based NoSQL solutions (i.e., data-
bases that provide programming interfaces not based on 
SQL). See the next section for a discussion of NoSQL.

Database Integrity and Performance
Because databases are often accessed by many systems 
simultaneously, it is critical that no two systems modify the 
database simultaneously. Furthermore, databases must be 
resilient to failures (such as power or hardware). Data integ-
rity in relational databases is achieved through the ACID 
principles [3]. In this framework, database operations that 
must occur together are said to be a single transaction. The 
elements of ACID are:

• Atomicity. If one part of a transaction fails, the entire 
transaction is reversed.

• Consistency. No transaction will violate the rules of the 
database (such as the schema and other constraints).

• Isolation. If transactions are run concurrently, the data-
base and results must be the same as if they were run con-
secutively. This can be achieved by configuring the system 
to run all transactions consecutively. Still, in practice, 
complex database scheduling programs determine which 
transactions can be run simultaneously (for example, 
read-only transactions can always be run 
simultaneously).

Fig. 10.1 Entity relationship 
diagram for a simple database 
schema
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• Durability. Once a transaction succeeds (is committed), the 
changes are resilient to failures and visible to all other run-
ning transactions. Database designers must balance this 
requirement with performance because true durability means 
that committed database changes must be immediately writ-
ten to permanent storage (i.e., they cannot be stored in mem-
ory), which is much slower than using memory.

Columns on tables can be indexed, which speeds up searches 
significantly. Defining indices depends on the intended 
application and the database’s query optimizer, which maxi-
mizes the performance of index use. Every database engine 
(e.g., Oracle or SQL Server) has a unique query optimizer, so 
index designs must be tweaked for each database engine sup-
ported. As a rule of thumb, the performance of a database 
table will not degrade until the relevant parts of the index are 
too large to fit into memory. Therefore, it is possible to have 
tables with hundreds of millions of queryable rows in milli-
seconds if the query optimizer uses indices. At that scale, 
index design and query optimization become very important, 
and there are many tutorials and technical documents on this 
subject. Unfortunately, the optimal query design also varies 
between database platforms. For example, Oracle often 
excels on complex, large queries, whereas SQL Server tends 
to do better when each step is computed separately and 
stored in a temporary table.

 Non-relational Databases (NoSQL)
Non-relational databases (collectively called NoSQL) are 
becoming popular for some specific tasks, although rela-
tional databases remain the highest performing systems for 
general use. However, NoSQL databases can be very power-
ful for in-memory and distributed querying (i.e., when there 
are extremely large amounts of memory and many compute 
nodes).

Popular NoSQL approaches include:

• Massachusetts General Hospital Utility Multi- 
Programming System (MUMPS): MUMPS is particu-
larly important to the medical informatics community 
[16]. This is a database format developed in the 1970s at 
the Massachusetts General Hospital before relational 
databases. It is still widely used in medical informatics. It 
is both a programming language and a database, and all 
data are stored in sparse matrices rather than in tables. 
(See the section “Knowledge Discovery and Data Mining 
(KDDM)” below for more information on sparse matri-
ces.) It is very efficient at complex data manipulation. 
Because MUMPS was developed when memory was 
costly, it tends to be very terse—all MUMPS commands 
can be reduced to a one-to-three letter abbreviation.

Additionally, spaces are important (which is not true in 
most languages). A space is used to separate commands, 

for example. Therefore, MUMPS programs tend to be 
more cryptic than SQL. Entire systems have been written 
in MUMPS, but many modern systems (such as Epic’s 
EHR platform) use MUMPS similarly to SQL and use a 
more traditional language for user interaction (see the 
section “Programming” below). MUMPS implementa-
tions include M and Caché®. The latter is the most popu-
lar MUMPS implementation, sold by InterSystems, Inc. 
Caché® is now part of the company’s suite of tools called 
IRIS, which exposes a multi-model datastore built on 
MUMPS and provides an approach to use SQL and no- 
SQL in the same environment [17].

• MapReduce databases: MapReduce is an algorithm devel-
oped by Google that allows optimized querying in “mas-
sively parallel” environments [18], where hundreds of 
computers execute portions of queries simultaneously. Each 
query is split into many small subtasks. When the hardware 
is available, parallelizing complex computing tasks into 
inexpensive computing nodes is very appealing. Hadoop is 
a popular open-source MapReduce database [19].

• Document databases: Whole-document storage and pro-
cessing is a feature of many NoSQL databases that sup-
port MapReduce. This simplifies the Load process of ETL 
because the data can be stored and queried as structured 
documents. Thus, the transformation from the transport 
format (e.g., XML) into a database schema becomes 
unnecessary. Document databases are computer- 
processing intensive, but in a massively parallel environ-
ment, this can be mitigated.

• Graph Databases: In cases where the relationships 
between tables can be predefined into a schema of linear 
relationships (such as “patients have encounters” and 
“encounters have data on medications”), a graph database 
allows such data to be traversed faster than the dynamic 
data relationships of a relational database. The difficulty is 
that the data relationships are static and must be traversed 
linearly. In this example, it is not possible to directly join 
patients and medications. This can create performance 
problems and limit query design when the data are not 
used as anticipated. On the other hand, the performance is 
very good if the schema fits these constraints. Neo4J is a 
popular open-source graph database [20].

NoSQL databases frequently relax some of the constraints of 
ACID to achieve high performance. Therefore, in many 
cases, NoSQL is better at analytics on massive, slow-to- 
update datasets than live systems that are continuously 
updated (e.g., an EHR).

Examples of NoSQL Databases Neo4J [20] (a popular 
open- source graph database); MongoDB, CouchDB, and 
Hadoop [19] (MapReduce Document databases); Caché® 
and Iris (a widely-used MUMPS database and its successor). 
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Many NoSQL databases are open source but frequently pro-
vide recovery and support contracts for commercial use. 
Additionally, cloud providers offer many NoSQL solutions, 
such as Amazon’s DynamoDB and Google Firestore (both 
document databases).

 Using Data

Data serve no purpose without a reason to use them. Here we 
briefly discuss some important uses of data in HIT systems.

 Health Information Systems
Health Information Systems (HIS) are the clinical systems 
used to retrieve patient data for review by their caregivers 
[21]. Structured data are presented in easy-to-understand for-
mats such as flow sheets. The data sometimes power useful 
applications that run alongside the health record, such as 
decision support systems, which provide helpful suggestions 
to improve patient care (e.g., reminders about vaccinations). 
Most systems can search within a patient chart to find key-
words in unstructured data or draft a patient note for a visit 
based on the structured data entered for that visit. Many 
innovations continue to emerge. Homegrown HIS used to be 
common. Commercial systems have largely replaced these. 
Still, recent government initiatives, such as the 21st Century 
Cures Act, are encouraging open standards for integrating 
smaller, single-purpose “apps” with larger HIS [22–24].

 Data Warehouses
Data warehouses are increasingly used within hospital sys-
tems for, among other uses, quality improvement, public 
health reporting, research, and clinical trial recruitment. The 
ETL process described earlier copies data into data ware-
houses out of production systems. These data warehouses 
may be refreshed as frequently as daily, or they might be 
created on a one-off basis (for a research project, for exam-
ple), depending on the applications for the warehouse and 
the amount of data. The COVID-19 pandemic motivated 
many healthcare organizations to develop faster data ware-
house refresh pipelines. Daily or weekly updates on COVID 
patients could occur to speed up research on the disease. This 
will have the effect of faster ETL pipelines post-pandemic.

Data warehouses define a Common Data Model (CDM) 
and may offer various data analytic tools that will run on the 
CDM. Several open-source clinical data warehouses are in 
widespread use. The most widely used freely available plat-
forms are i2b2, OMOP, and PCORnet. Additionally, EHR 
vendors frequently offer a data warehouse (Epic Caboodle), 
and home-grown data warehouses built by individual hospi-
tal systems are still widely used. Here we will briefly intro-
duce the freely available platforms.

Informatics for integrating biology in the bedside 
(i2b2) is the oldest, freely available data warehouse system, 
first developed over a decade ago and used at over 200 sites 
worldwide. It is also used in large data research networks, 
including NCATS’s national Accrual to Clinical Trials (ACT) 
network. In addition to a data model, it provides an 
Application Programming Interface (API) for query and data 
retrieval, supporting database-independent app design. It 
also offers a client tool for developing queries and viewing 
results [12, 25, 26]. i2b2’s greatest strength is its flexibility 
and ability to ingest and analyze new types of data without 
changing the core data model. Besides EHR data, i2b2 is 
used in many other unique domains, including patient- 
reported outcomes, genomics, and social determinants of 
health.

The Observational Health Data Sciences and 
Informatics (or OHDSI, pronounced “Odyssey”) 
Collaborative provides a CDM known as Observational 
Medical Outcomes Partnership (OMOP). The collabora-
tive offers a variety of analytic tools, from cohort design to 
regression analysis to data sharing. However, the platform's 
greatest strengths are probably its well-specified data model 
and comprehensive, regularly updated data dictionary of 
curated terms from many standard terminologies. These 
make OHDSI/OMOP very appealing for data analysts 
because SQL queries are readable and relatively easy to 
write. As of this writing, OMOP is implemented at over 100 
organizations worldwide [27, 28].

The Patient-Centered Outcomes Research Network devel-
ops the PCORnet CDM, an OMOP-like relational data model 
representing EHR data. It is used at PCORnet sites in the US, 
which currently encompasses 70 million patients’ data. 
Network participants gain access to data characterization 
and quality checking programs that run on the commercial 
SAS analytics platform and produce reports used for quality 
improvement [29].

 Health Information Exchange
Many initiatives to share information across health systems 
are collectively dubbed “health information exchange” or 
HIE. This can be as small-scale as electronically transferring 
a single patient’s records to a new hospital system, such as 
the Direct project from the National Coordinator’s Office for 
Health Information Technology [30]. HIE can also be as 
large-scale as distributed analytics across an entire state or 
country.

Early efforts in HIE took data from local sites and built 
regional data repositories (Regional Health Information 
Organizations, or RHIOs) for analytics. Several of these 
projects were successful, such as the Indiana Network for 
Patient Care operated by Indiana Health Information 
Exchange, which aggregates data on millions of patients 
from dozens of hospitals, as well as independent laboratories 
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and insurance companies for a comprehensive record of the 
patient’s medical history [31].

In general, however, regulatory issues around sharing 
patient data hamper the success of this approach. Therefore, 
in the past decade, the “federated network” has emerged as 
the most prominent modality of health information exchange. 
In this model, data stay at home institutions. Rather than cre-
ating central repositories of data, the “questions are brought 
to the data”—queries are distributed across networks of 
health systems, and only the results are aggregated. This 
solves a variety of privacy and security problems at the 
expense of performance. Many large government-sponsored 
national networks take this approach, such as PCORnet [32], 
the NIH ACT [25] network, and the Mini-Sentinel network 
[33]. The new NIH “Long COVID” research network 
(RECOVER DRC—Researching COVID to Enhance 
Recovery Data Resource Core) is also planning to use a fed-
erated approach [34]. Emerging advancements allow much 
more complex distributed analysis, taking advantage of new 
technologies like homomorphic encryption to exchange 
patient-level information while ensuring patient privacy [35].

 Knowledge Discovery and Data Mining (KDDM)
KDDM refers to using statistical methods on data to discover 
patterns that are not intuitively obvious upon inspection [36]. 
In practice, preliminary knowledge discovery frequently 
occurs through simple searches in databases of patient data 
(such as keyword searches in notes or “cohort finding que-
ries” on data warehouses). Still, KDDM can also be much 
more complex [37]. One popular use of KDDM is for predic-
tive analytics, such as predicting 30-day hospital readmis-
sions or risk of heart failure. This type of KDDM uses 
classification algorithms, such as regression analysis or sup-
port vector machines [38]. Classification algorithms are 
known as supervised learning because the correct outcome is 
known and supervises the algorithm as it trains its parame-
ters. Supervised learning involves a training set of data, 
meaning that the final statistical model is developed from a 
set of data where the true positives are known. Then the model 
is tested on a test set, where the true positives are unknown to 
the algorithm, and the algorithm’s accuracy is evaluated by 
how closely the algorithm correctly labels the test set.

A popular approach for robust testing involves repeatedly 
splitting the data into different training and test sets and com-
paring performance across all parameterizations of the algo-
rithm. This is known as cross-validation. A related technique, 
bootstrapping, creates additional training data by resampling 
the existing training set (i.e., creating additional simulated 
data based on the statistical properties of the training set). 
For algorithms where sensitivity can be varied, the algo-
rithm’s output is often presented as a Receiver Operator 
Curve (ROC), which is a plot of sensitivity against one- 
specificity for each parameterization of the algorithm.

Unsupervised learning is also becoming popular in medi-
cal KDDM. Unsupervised learning looks for patterns or rela-
tionships in data where there is no known “goal”. The most 
popular example of unsupervised learning is recommenda-
tion algorithms used in consumer e-commerce platforms 
such as Netflix and Amazon to suggest purchases to custom-
ers based on the previous purchase history [39]. This type of 
algorithm has been used, e.g., to generate drafts of decision 
support, suggest ontological relationships among data ele-
ments in standardized vocabularies, and find the most impor-
tant variables in a dataset (feature selection) [40–42]. One of 
the most recent popular unsupervised techniques is the auto-
encoder, which essentially uses a single dataset for training 
and testing. The goal is an algorithm that can efficiently 
reproduce the input data from a smaller set of parameters. 
These smaller representations of the original data can then be 
used in a variety of ways, such as data compression, noise 
reduction, synthetic data creation, etc. [43] Autoencoders are 
a form of Deep Learning, which is becoming an important 
term of art in medical informatics [44]. Deep Learning net-
works are essentially complex, multilayer neural networks (a 
classic machine learning technique that dates back to the 
1960s). However, today’s extremely powerful computing 
resources allow very complex networks, inspiring a revolu-
tion of new KDDM tools and applications.

The data format required for KDDM is somewhat differ-
ent than data transport or storage. Whereas databases store 
information in normalized tables and transport formats tend 
to store data hierarchically, KDDM usually requires data in a 
sparse matrix, in which there are perhaps hundreds of col-
umns, each representing a parameter that could be predictive 
of the desired outcome. This is the same format used by 
MUMPS. These matrices are known as sparse because most 
of the entries in the matrix are empty.

 Data Quality
It is important to remember that representing data efficiently 
and with semantic standards does not guarantee sufficient 
quality to be used in KDDM algorithms and large-scale 
HIE. Because EHR data are entered by busy humans whose 
primary goal is to provide healthcare, the documentation of 
such healthcare can at times be lacking. Moreover, EHR 
documentation is largely driven by billing needs, so informa-
tion needed for analytics (a secondary use of the data) is 
often inadequately recorded. A range of problems are possi-
ble, from the use of unexpected (albeit standard) codes to 
information not being present at all. The core elements of 
data quality are: conformance (does data adhere to the 
required standards?), completeness (are data present?), and 
plausibility (are data believable?) [45]. It is possible to ensure 
conformance through well-written ETL, but completeness 
and plausibility are much more difficult. For this reason, 
CDMs like OHDSI and PCORnet have made quality checks 
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a cornerstone of their tools. Still, data quality is a major lim-
iting factor in the use of EHR data for research. It is, there-
fore, very important to validate the accuracy of algorithms 
and data-based discoveries across multiple locations to 
detect potential differences in information entry and coding 
[46]. Data Quality is covered in more detail in Chap. 16.

 Networks and Network Architecture

In this section, we will discuss how computers communicate 
with each other and with various devices that may be instru-
mental in collecting medical data, such as imaging and labo-
ratory machines.

 Networks

Computer systems connect to each other via networks. 
Networks operate over various physical media, including 
copper wire, fiber optic cable, and wireless radio transmis-
sion. Networks convey various information, including text, 
sound, and video, over the Internet, medical orders within a 
health care system, and the exchange of medical data between 
care providers.

Enterprise networks, sometimes called corporate net-
works, link computer systems within an organization to sup-
port the organization’s business processes. Networks or 
subnetworks within a building or campus are known as Local 
Area Networks (LAN). The characteristics of a LAN include 
high network speeds, routing at lower layers of the network, 
local ownership, and a high degree of trust between nodes.

LANs contrast with Wide Area Networks (WANs), which 
employ different technologies than LANs to connect cam-
puses or buildings across longer distances. 
Telecommunications refers to the technologies employed to 
send data, voice, or video over distances of more than a few 
hundred meters. Telecommunication technology is highly 
specialized, and most organizations rent either shared or pri-
vate long-distance connections from telecommunications 
companies.

As one might imagine, a private telecommunication con-
nection is more secure than a shared connection. However, a 
Virtual Private Network (VPN) achieves something similar 
to a private connection by encrypting all communications 
between two locations over a shared network.

 Network Topology
Network topology is an abstract representation of the way 
computer systems connect. Computer systems are visualized 
as nodes on a graph in network topology and network con-
nections as lines between nodes. Simple network topologies 
in include:

• Point-to-point, in which two computers connect directly 
to each other.

• Star topology, a central system such as a large computer 
or router connects to each of the other computer systems. 
The satellite systems communicate with each other 
through the central node.

• Backbone topology, in which a shared communications 
channel such as an Ethernet cable serves as a backbone 
linking nodes at multiple drop points. The Internet Cloud 
is a variant of a Backbone topology—the essential feature 
being multiple drop points from a communication medium 
into which we have no visibility.

• Ring topology, a backbone circles around to connect its 
ends to form a large ring. The ring topology provides 
increased reliability since cutting the ring at any point 
produces a backbone that can continue communications.

• Hybrid topology, in which multiple backbones, stars, 
and rings connect. An enterprise network is likely a 
hybrid.

In a hybrid topology, the constituent network segments con-
nect via specialized network devices. Network devices may 
boost the physical signal to allow networks to extend over 
longer distances.

 Seven-Layer Network Model
Another way to think about networks is by looking at how 
atomic data (binary 0’s and 1’s) are organized and trans-
ferred. We categorize network devices as hubs, switches, 
routers, and firewalls by the network layer at which the 
device connects subnets. Table 10.2 shows the network lay-
ers of the seven-layer Open Systems Interconnection (OSI) 
network model [47] of the International Standards 
Organization (ISO). Note that HL7 was aptly named as it 
focuses on the 7th layer of the OSI model.

Firewalls are a special case in that they are security 
devices that operate at multiple network layers. The firewall 
passes approved network packets, and it blocks unapproved 
or suspicious network packets, per a list of approved network 
addresses, application port numbers, and network protocols. 
Firewalls may also scan network traffic for known viruses or 
leaks of confidential information.

 Network Speed
As any user of the Internet knows, network speed matters. 
Several factors affect network speed. Network speed is the 
time it takes for a fixed amount of data, such as a message or 
a file, to cross the network from one computer system to 
another. The raw network speed, known as bandwidth, is the 
rate at which binary 0’s and 1’s (bits) cross the network (bits 
per second). Modern networks transfer megabits (millions of 
bits per second) or gigabits (billions of bits per second).
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However, there is much more to network speed than band-
width. Any modestly large data set, say a web page, is broken 
down into smaller data packets to cross the network. A packet 
header of routing information is added to each data packet 
for the network to correctly route and reassemble the packets 
at the destination. Therefore, the actual number of bits trans-
ferred increases by some amount, typically in the 5–10% 
range.

In addition to the packet-header overhead, there will be 
some delay in getting the first byte of the packet transferred, 
called network latency. Network latency usually results from 
(1) the time it takes a network device (hub, switch, router, or 
firewall) to receive the packet, process its header for the rel-
evant routing information, and then retransmit the packet 
toward the appropriate target; and (2) waiting time due to 
competition for network resources from other computer sys-
tems using the network.

Networks are fundamental to any modern enterprise com-
puter application, with LANs connecting local computer sys-
tems and WANs connecting the enterprise to other 
organizations. Network topology affects the reliability, scal-
ability, maintainability, and cost of a network. Network 
speed is influenced by different types of network devices 
(hubs, switches, routers, and firewalls), which operate at dif-
ferent network layers to route data packets and reassemble 
them at the correct destination.

 Network Architecture

Architecture is about the big picture—how the parts relate to 
the whole. In systems architecture, we break the computer 
system down into components and relationships among these 
components. There are multiple ways to divide a system into 
components, depending on what aspect is most important to 
the analysis or the target audience. The most common of 
these are network topology, application structure, the flow of 
data among components, and a summary of the most impor-
tant features of each breakdown.

 Architectural Diagrams
Let’s consider a hypothetical obstetrics system as an exam-
ple. This system collects and manages pregnancy informa-
tion during clinic visits, makes that information available to 
the hospital at the time of delivery, and eventually sends the 
data to a data warehouse for research.

Architectural diagrams are the most common way to rep-
resent a system of components and relationships. The ability 
to read and understand common architectural diagrams is a 
key to communicating with IT professionals.

Figure 10.2 shows a Network Architecture Diagram of the 
network used by our hypothetical system. This diagram con-
veys information about the hybrid network topology at the 
lower layers of the OSI network model:

• A star topology centered on the Internet cloud, connected 
via Firewalls to the Clinic, Hospital, and University 
networks

• A single Ethernet backbone at the University, connecting 
servers, data storage, and user devices

• Two Ethernet backbones connected with a (Layer 2) 
switch at the Clinic

• A wireless network at the Clinic, connecting to a wireless 
table for user interaction,

• A ring network connected to a (Layer 3) router at the 
Hospital

Note that a Network Diagram shows how the servers, data 
storage, and user interface devices are connected but doesn’t 
show what is happening at the application level (Layer 7).

Table 10.2 Network layers of the International Standards Organization 
(ISO) model

Layer Name Description and examples
7 Application The application layer defines the message 

format between computer systems or the 
human-machine interface. Examples are HTTP 
for web browsers or HL7 for communicating 
health information between servers

6 Presentation The presentation layer handles encryption and 
compression of data packets. Examples are 
SSL encryption, ASCII text or JPEG images

5 Session The session layer performs authentication, 
authorization and session restoration. An 
application connects to a session via a socket, 
which is assigned by port number

4 Transport The transport layer provides end-to-end error 
control, since data may pass over many 
physical layers and routers between ends. TCP 
is a common transport layer protocol. When 
combined with an IP Address, TCP/IP is the 
transport method used by the Internet

3 Network The network address is an external (unique 
globally) or internal (unique within the 
enterprise) address assigned by the network, 
such as an Internet Protocol Address (IP 
Address). The network layer connects via 
routers

2 Data Link The data link layer performs error detection 
and flow of control on the physical link, i.e. 
controls which end is transmitting and which is 
receiving. This layer uses physical device 
addresses known as Media Access Control 
(MAC) addresses. Each networked device has a 
unique MAC that does not change if you move 
the device to a different part of the network. 
Ethernet is a common data link protocol. The 
data link layer connects via switches

1 Physical Physical medium, such as copper wire, optical 
fiber or wireless radio transmission. Physical 
segments connect via hubs
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In Fig.  10.3, a UML Activity Diagram shows how the 
application logic works at Layer 7. The major features of the 
UML Activity Diagram are:

• Swimlanes are vertical boxes that group the activities 
according to who and where the actor is (Clinic Provider, 
Obstetrics Application, Hospital Provider, Data 
Warehouse, or University Researcher)

• Processes, boxes with rounded corners
• Datastores, boxes with less rounded corners
• Flow of control, represented as solid arrows
• Flow of data, represented as dashed arrows
• Split and join operations on the flow of control, shown as 

dark bars. In our system, this occurs where the clinic pro-
vider performs the sonogram and note & observation entry

UML stands for Unified Modeling Language, which 
Grady Booch, Ivar Jacobson, and James Rumbaugh devel-
oped in the mid-1990s [48]. In 2000, the ISO adopted UML 
as a software design standard. An activity diagram is only 
one type of diagram in the UML family, including many 
other diagrams for software structure, behavior, and 
deployment.

A Data Flow Diagram describes the movement of data 
through a system, with emphasis on data transformations. 
Circular nodes represent data transformation processes, and 
labeled lines show data flow from one process to another. 
The Data Flow Diagram in Fig. 10.4 shows:

• A starting point at a double circle
• Every line is labeled with the data elements in motion

Fig. 10.2 Network architecture diagram of sample obstetrics system
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Fig. 10.3 UML activity diagram of sample obstetrics system

Fig. 10.4 Dataflow diagram of sample obstetrics system
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• Every circle is labeled with a data transformation 
process

• Permanent data stores (obstetrics and data warehouse 
databases) are represented as open rectangles

• An ending point at the darkened circle

Sometimes the goal is to communicate the overall struc-
ture and behavior of a system with only the main features of 
each aspect of the system. An Enterprise Architecture 
Diagram, as in Fig. 10.5, shows how to accomplish this.

• The main feature of the network shown is the Internet 
cloud

• Additional network connections are shown as arrows 
labeled with the data elements being transported, empha-
sizing the data flow at the application layer (Layer 7) and 
not the underlying network topology, protocols, and phys-
ical structure

• The system users, Clinic Providers, Hospital Providers, 
and Researchers appear in all types of architecture dia-
grams. This is appropriate because these actors are essen-
tial in defining how the system interacts with the real 
world

• Computer servers and PCs show how the application is 
divided and distributed
 – The application displays information on PCs and tab-

lets, organizes information on application servers, and 
stores data on database servers.

 – The obstetrics application runs on two servers, one at 
the clinic and one at the hospital, and on multiple user 
workstations.

 Application Architecture
Application architecture refers to the way the software is 
broken down into components, especially on different serv-
ers. Software tiers are the layers from user interaction to the 
database and back. A three-tier architecture is common: (1) 
user interface (front end) on a PC or tablet, (2) application 
server, which may serve multiple users, and (3) database 
server, which may serve multiple applications.

If the user interface layer is simple, such as a web browser, 
we call it a thin-client application. We call it a thick-client 
application if some or all the application logic is encoded in 
the front-end tier. If the application resides on multiple serv-
ers, then it is called a distributed application, and similarly, 

Fig. 10.5 Enterprise architecture diagram of sample obstetrics system
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if the database resides in multiple locations, it is called a dis-
tributed database. Distributed systems are more reliable and 
scalable, but they come at a greater cost and add complexity 
to maintain and support.

 Non-functional Requirements
The decisions embodied in selecting system architecture 
have a significant impact on meeting non-functional require-
ments. Non-functional requirements are not features but 
things like usability, reliability, response time, maintainabil-
ity, security, disaster recovery, and system cost.

For example, in our diagrams, we represented servers as 
individual computers. This was always true when computers 
first came into wide use in the 1900s, but it is often no longer 
the case. Virtual servers, or, more precisely, guest virtual 
servers, are emulations of physical servers on a larger host 
virtual server. Virtual servers do everything a physical server 
does, but because they share resources with other virtual 
servers on the same host, they are more economical and 
maintainable. Cloud computing places the host virtual server 
on the internet, where a third party manages the host and 
sells guest computing capacity, capitalizing even further on 
economies of scale.

Other extensions of the simple physical server include par-
allel computing, in which multiple processing units share the 
computational load. This is very common in recent years, even 
on inexpensive PCs. Grid computing extends the parallel com-
puting notion to groups of physical servers, such as all the PCs 
in a building or all servers in a data center. Some applications 
can leverage parallel or grid computing to speed themselves 
up many times (such as MapReduce discussed earlier in this 
chapter) [18], but other applications may be a series of sequen-
tial steps that cannot benefit from parallel computing.

 Integration and Interfaces
Another key aspect of application architecture is whether the 
relationship between two components is tight and private 
(integrated) or loose and public (interfaced). Interfaced com-
ponents allow for interoperability. This is especially true for 
interfaces defined by public standards. For example, the 
World Wide Web (WWW) depends on two public standards: 
TCP/IP for transport and HTTP for formatting data for use 
by web browsers.

When computers provide services to other servers on a 
network via a standard application interface, it is sometimes 
called a Service-Oriented Architecture (SOA) [49]. Some 
common frameworks for general-purpose SOAs include 
SOAP (Simple Object Access Protocol) [49], REST 
(REpresentational State Transfer) [50, 51], CORBA 
(Common Object Request Broker Architecture) [52] and 
ICE (Internet Communications Engine) [53].

REST is heavily used in medical informatics, as it builds 
on Internet motifs and is simple to implement and operate. 

Many of the systems discussed in earlier sections utilize 
REST, including FHIR, i2b2, and OHDSI tools. Other com-
munications standards that typically rely on REST include 
HL7, CCD, and standard terminologies like ICD-10, LOINC, 
and RXNORM (detailed in Chap. 13).

 Software, Computer Languages, 
and Programming

Software is the command center that controls the compo-
nents in the system architecture. Like spoken language, the 
software can be written in a variety of programming lan-
guages. These vastly differ from one another. Most program-
ming languages are extensively documented in other 
reference books and online [54–57]. Here, we will cover the 
most important approaches from the perspective of medical 
informatics, focusing on data.

 Data Types

In programming languages, data are stored in variables. 
Variables are temporary holding cells for data that vary as a 
program executes. Data can be stored longer-term in files on 
disk or in relational database tables. In MUMPS, this distinc-
tion between database and variable is blurred—variables can 
be either in-memory holding cells or locations in a database.

No matter where data are stored, each variable or data-
base column has a specific data type that constrains the data 
type that can be stored. Languages can be strongly typed or 
weakly typed, depending on the degree of computer verifica-
tion that variables correctly match their defined data type. 
Weakly typed languages, which do not enforce such checks, 
are harder to debug and run less efficiently. Still, they offer 
more flexibility and the potential for data types to change as 
the program is running. Common data types include:

• Numbers: usually defined as integers or floating-point 
numbers (numbers with decimals)

• Letters: single characters and strings (sequences of char-
acters, or what we commonly think of as text)

• Dates and times: specialized storage of these temporal 
data, which supports computer interpretation and 
manipulation

• Lists and sets and other collections: groups of numbers 
or letters stored in a way conducive to performing itera-
tive operations

• Binary data: information such as image data that is not 
meant to be directly manipulated by a programmer but 
transported to specialized software. In databases, columns 
of this type are known as blobs. In programming lan-
guages, the name for binary data varies widely.

S. N. Murphy and J. G. Klann

https://doi.org/10.1007/978-3-030-93765-2_13


149

 Programming

In informatics, a distinction is frequently made between 
“software development” and “database programming”. The 
former are programs run directly on the computer and cor-
respond to either the user interface or application server lay-
ers in the three-tier architecture. In, for example, an EHR 
system, the software development component provides the 
user interface and control structure that guides the system’s 
functionality. The database programming involves subpro-
grams that process data, such as loading a patient’s record, 
pulling up today’s appointments, or analyzing quality defi-
cits in the treatment of diabetic patients.

 Database Programming
As discussed previously, relational database programming is 
done in SQL.

The core of all SQL code is the SELECT statement, which 
implements set theory to ask questions about the data. If we 
wanted to ask questions about the PATIENT table with one 
row per unique patient, we would use this format: SELECT 
<data elements> FROM PATIENT WHERE <constraint>. 
We can use aggregate functions, such as

SELECT avg(income) FROM PATIENT WHERE birth_ 
date>’01/01/1979’

This will return the average income of all patients born 
after January 1, 1979. We would use a join with a common 
column between the tables known as a “key” to answer ques-
tions involving multiple tables. A full discussion of SQL 
SELECT statements, including more complex joins and 
aggregate operators, is out of the scope of this chapter, but 
excellent online tutorials are readily available. SQL com-
mands can be collected into small programs that are more 
complex than a single statement. These are called stored 
procedures.

 Software Development
Traditional software development is done through impera-
tive languages, which issue a series of commands to the 
computer. There are a variety of styles, each with advantages 
and disadvantages. Broadly, these can be grouped into 
object-oriented and procedural styles.

Object-Oriented vs. Procedural Programming
In object-oriented programming, data structures can be 
built to have properties and methods. Properties are variables 
that the object holds, and methods are actions that one can 
perform on the variables. For example, there might be objects 
named Patient and Appointment. Patients could have a 
method named hasAppointment, which verifies whether the 
patient has a given appointment. This method would take an 

argument, a piece of data upon which the method operates. 
Our hasAppointment method’s argument is an appointment 
object. The appointment object might have various proper-
ties such as date, time, clinic, and physician ID. The object 
definitions are templates for actual appointments and 
patients. These object definitions are instantiated for each 
specific case.

Java is a very popular object-oriented language. The lan-
guage and many tools associated with it are freely available. 
Also, it is a cross-platform language, meaning that it will run 
on many types of machines. This is because Java runs on a 
virtual machine that interprets the Java program when it is 
run and converts it to the machine language of that particular 
machine.

Other notable object-oriented-only languages include: 
C++, which is the grandfather of all object-oriented lan-
guages and continues to remain the most efficient due to its 
native compilation; C#, Microsoft’s virtual-machine Java- 
like language, which is easier to develop in but only runs on 
Windows; Ruby, a popular more recent language which also 
improves upon Java and is popularly used for web applica-
tions using the “Ruby on Rails” framework.

Procedural programming is more straightforward: 
entire programs share methods and global variables, and 
there are no objects. This structure has a significant disad-
vantage: the object paradigm makes it easier to organize 
and conceptualize large programs. Therefore, most lan-
guages that support procedural programming also support 
some type of object-oriented programming. Procedural lan-
guages are particularly useful as scripting languages. 
Scripts are short programs that control the functionality of 
other computer programs, most frequently webpages. 
Popular procedural languages that also support object-ori-
ented programming and are widely used for scripting 
include Python (widely used in scientific programming), 
PHP, JavaScript (which powers the world wide web), and R 
(which is widely used in statistical modeling and data 
visualization).

A notable exception is the language C, a procedural lan-
guage that does not support object-oriented programming 
and is also not well suited to scripting. Many of today’s most 
complex software underpinnings (e.g., most operating sys-
tems) are written in some variant of C. C was developed long 
before object-oriented programming was invented or script-
ing was envisioned. Because it continues to be the most pow-
erful and efficient high-level language available (despite its 
complexity), it is still widely used today.

New languages continue to appear to address the prob-
lems of the modern era. For example, Google’s Go language 
(sometimes called Golang) is built around concurrency—
executing multiple tasks simultaneously. This is in many 
ways a response to the growing popularity and prevalence of 
parallel and grid computing.
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Other programming paradigms, such as functional pro-
gramming, are of primary interest to mathematicians and 
computer scientists and are therefore out of the scope of this 
chapter.

Control Structures
Programs don’t just issue commands in order. Most impera-
tive languages make extensive use of control structures to 
manipulate the flow of commands. SQL is an exception; 
SQL has control structures, but control structures are not a 
central component of the language because the primary 
motif is set theory. In imperative languages, control struc-
tures are central to the design of the program. Broadly, con-
trol structures can be broken down into looping and 
branching. A variant of looping is recursion, but the differ-
ences between these are out of the scope of this chapter.

A common programming design is to repeat some opera-
tion until a condition is true. This is done with a loop. A list 
of names could be looped over until all the names are pro-
cessed. This is known as a for loop because operations are 
performed for all elements in a collection. There are also 
other types of loops, such as while loops, which operate 
while a certain condition is true (such as accepting new 
patients until the clinic closes). Branching occurs when the 
program takes a different direction depending on the value of 
a variable. This is done through an if… then statement.

Compiled and Interpreted Languages
Languages are either compiled or interpreted. Compiled lan-
guages are converted into code that the computer can under-
stand before running the program. Interpreted languages are 
converted to this machine language from scratch each time 
the program is run. Languages that run on virtual machines 
are a special case. A language run on a virtual machine is first 
compiled to byte code, a pseudo-machine language that is 
quickly translatable into machine language.

Therefore, a performance hierarchy emerges among pro-
gramming languages: the fastest languages are natively com-
piled, the second-fastest languages run on virtual machines, 
and the slowest languages are interpreted. Of course, this 
hierarchy has some exceptions because of how specific fea-
tures in the language are implemented. For example, Jython, 
a version of Python that runs in the Java virtual machine, is 
generally slower than the interpreted language Python. As 
computer speeds increase, this hierarchy is becoming less 
important, at least for high-level application development. 
Although an operating system or other core computer code 
that is run constantly should be written in a compiled lan-
guage, many of today’s user-facing applications are written 
in Java or Python. It is typical in scientific code to use an 
interpreted or bytecode language for most of the application 
and then write core functions (like image processing) in a 
compiled language for speed.

 Software Design Considerations

 Code Modularity, Reuse, and Performance

Code Reuse The ability of a programmer to understand the 
programming code she or others on a team have written is 
imperative to the success of a project. Therefore, many soft-
ware development methodologies highly emphasize soft-
ware documentation. Also, there are frequently multiple 
approaches to solving computational problems. In a team- 
based environment, frequently, the approach that is most eas-
ily understood by others (the most readable approach) is 
preferred.

Modularity Self-contained software code can be distrib-
uted in “libraries” that other software developers can use. 
Thousands of these libraries exist for any given language; 
they provide the functionality to the programmer quickly 
without the programmer having to dive into the source code 
of another developer. Because the libraries do not require 
source code, many commercial products provide libraries 
while retaining the confidentiality of their proprietary soft-
ware code. Examples of libraries include packages to manip-
ulate Microsoft Office documents from within a software 
program, packages to perform statistical analysis of data, or 
packages for animation and visualization. One well-known 
source for quality, free libraries is the Apache Software 
Foundation at www.apache.org.

Performance Often code readability is more important than 
performance, but for computation-intensive tasks (such as 
KDDM), performance is very important. The performance of 
computer algorithms can be determined mathematically 
through complexity analysis. The practical performance of 
computer programs is often judged through profilers, which 
are special programs that measure the speed of software 
under a variety of conditions.

 Methodology and Quality Assurance

Software Development Methodology A variety of organi-
zational designs for developing software have been pro-
posed. These tend to be combinations of two overall types:

• Waterfall: this is the traditional method of software 
development. A phase of requirements gathering occurs 
before any software is developed and requirements docu-
ments are assembled. Then the software development 
commences, followed by testing. This is a very robust and 
thorough method, but the final product is often either not 

S. N. Murphy and J. G. Klann

http://www.apache.org


151

what was envisioned by those providing the requirements 
or changes during the product cycle.

• Iterative: This is the antithesis of the waterfall model, in 
which a minimum of planning occurs at the beginning of 
the project. Rather, the software is developed in short 
cycles of planning, development, and testing. The itera-
tive approach offers closer alignment with shifting user 
needs and complex changing environments. However, it 
also tends to focus on immediate needs instead of long- 
term goals. This can tend to make the developed software 
less thoroughly developed and less modular.

The two overall types are combined in many methodologies. 
The spiral method directly combines these two types. Each 
project is defined as a collection of many development 
cycles, some of which use more of a waterfall approach, and 
some are more of an iteration.

Agile methodologies collectively refer to a variety of 
rapid cycling software development, in which development, 
testing, and requirements gathering revision are closely 
fused [58]. Agile methodologies use the same approach as 
the spiral method (shifting between iterations and planning 
phases). Still, they try to be more flexible by doing less pre- 
planning of cycles and being more able to change as a project 
moves forward.

A popular agile approach is the scrum methodology, in 
which work is broken down into 30-day sprints, which begin 
with planning and requirements gathering and end with a 
new release of the product. The sprints are not defined before 
the sprint’s beginning, making this approach very resilient to 
changing needs. All these methods still have the danger of 
focusing too heavily on short-term development goals, 
however.

Quality Metrics and Testing Many methodologies exist 
for ensuring quality software and for subsequently testing 
that software. Popular methods to build software with quality 
from the outset include pair programming, code reviews, and 
software documentation before writing the code [58]. Also, 
there is some evidence that more readable languages tend to 
lead to higher-quality software. Software testing is funda-
mentally important, no matter how much a development 
methodology emphasizes up-front quality. One robust 
approach is that the software developer creates unit tests as 
they develop their software. Unit tests are tests of an indi-
vidual function of the software for a specific combination of 
inputs. A finished piece of software might have thousands of 
unit tests. If these tests are written as the software is devel-
oped, it is simple to perform regression testing, or running all 
the old unit tests, to verify that new features have not broken 
any old features. If a test that used to work no longer does, it 
becomes straightforward to find the change that broke that 
particular test.

Verification and Validation Software verification testing, 
like unit tests, compares the software to what it was designed 
to do and may be performed by the software developers or by 
dedicated testers. The end-users and requirements gatherers 
perform software validation testing. Validation makes sure 
that the software performs the function that it was originally 
intended to. Whereas verification finds bugs in the software, 
validation finds problems in design or requirements 
gathering.

 Other Considerations

Open-Source Much commercial software is closed source, 
meaning that the programming code used to develop the soft-
ware is not available to the licensees. In open-source soft-
ware, the code is made available [59]. However, the code 
could still be copyrighted and might have restrictions on 
changing or using it. Dozens of open-source licenses define 
exactly how to program code that can be used, changed, and 
redistributed in open-source software. Because the program 
code in commercial applications is often a trade secret, com-
mercial software is more frequently closed source. The com-
mercial software that is open source tends to have restrictive 
licenses to protect the copyright holders. For products where 
the goal is that their code is used for further innovation, 
licenses tend to be less restrictive, and the vendor company’s 
main financial gain is through support contracts.

Platform The computer platform on which the software 
runs is another important consideration in choosing or devel-
oping software. As discussed previously, software written in 
some languages, such as Java, can be run on multiple com-
puter platforms. Generally, however, the software is written 
for a particular operating system (such as Windows, 
Macintosh, or UNIX), a particular database platform (such 
as Oracle or SQL Server), or a particular web browser (such 
as Google Chrome or Microsoft Internet Explorer).

 Security

Computer security is a balance of two things: (1) preventing 
misuse of computer systems and data, and (2) enabling 
proper use of computer systems and data. We could ensure 
no misuse by turning off a computer and locking it in a vault, 
but that would defeat the second objective. The goal must be 
a balance of usability and minimal risk of misuse.

This section will frame the discussion of computer secu-
rity in terms of the HIPAA Security Rule, which is the law 
for all computer systems containing patient-specific medical 
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data. Still, the principles embedded in these regulations are 
good security practices for any type of data. Chapter 17 goes 
into much more detail on all the various considerations 
around cybersecurity.

 The Health Insurance Portability 
and Accountability Act

The Health Insurance Portability and Accountability Act of 
1996 (HIPAA) includes a Security Rule section to establish 
security standards for the protection of Electronic Protected 
Health Information (e-PHI). The HITECH Act of 2009 
extends HIPAA with additional penalties for e-PHI security 
breaches and additional rights for patients to view and limit 
access to their own data. The latest “Omnibus HIPAA Final 
Rule” was published in 2013 [60]. Many states have addi-
tional patient privacy regulations.

Here is the core of the Security Rule:
The HIPAA Security Rule [60] addresses the confidenti-

ality, integrity, and availability of e-PHI on any computer 
system that creates, receives, maintains, or transmits such 
information. Organizations handling e-PHI (referred to as 
Covered Entities and their Business Associates, with whom 
they exchange e-PHI) are required to

 1. Ensure the confidentiality, integrity, and availability of all 
e-PHI the covered entity creates, receives, maintains, or 
transmits.

 2. Protect against any reasonably anticipated threats or haz-
ards to the security or integrity of such information.

 3. Protect against any reasonably anticipated misuses or dis-
closures of such information.

 4. Ensure compliance by its workforce.

There are four types of technical safeguards to ensure the 
security of e-PHI: (a) access control, (b) audit controls, (c) 
integrity controls, and (d) transmission security. We will dis-
cuss each of these in turn.

 (a) Access Control determines who has access to the data 
and consists of two parts: authentication and 
authorization.

Authentication ensures that the user is who they say 
they are. Usually, this is by a username and password. 
Other options include smart cards and biometrics, such as 
fingerprint readers. Physical security, such as limiting 
access to selected workstations or smartphones, also aids 
authentication. Two-factor authentication means that two 
types of authentication are required in combination, such 
as a smart card plus a PIN (Personal Identification Number) 
or a password plus a controlled network location.

The second component of Access Control is 
Authorization, which enables the user to access the com-
puter systems, applications, and data necessary for their 
job function. A researcher is authorized to access data 
only for patients in their study. A physician is authorized 
to order lab tests and medications in a CPOE 
(Computerized Physician Order Entry) system for 
patients under his care.

 (b) Audit Controls require computer systems to log activity, 
such as who viewed or modified a patient record, protect 
the audit logs from alteration and make the audit logs 
available for inspection.

 (c) Integrity Controls consist of implementing policies and 
procedures to ensure that e-PHI is not improperly altered 
or destroyed.

 (d) Transmission security refers to measures taken to pre-
vent unauthorized access to e-PHI when transmitted 
over a network. Data encryption is a must, either by 
using a VPN (Virtual Private Network) or a point-to- 
point protocol such as SSL (Secure Sockets Layer). 
Computer systems first exchange encryption keys and 
then use those keys to scramble the data during transmis-
sion. Firewalls between organizations ensure that only 
authorized computer systems of Business Associates can 
receive e-PHI.

 The Common Rule

The Common Rule is a 1981 rule of ethics (revised in 2018) 
regarding biomedical and behavioral research involving 
human subjects in the United States [61]. It establishes the 
regulations governing Institutional Review Boards for over-
sight of human research through the Department of Health 
and Human Services Title 45 CFR 46 (Public Welfare) 
Subparts A, B, C, and D. The Common Rule is the baseline 
standard of ethics by which any government-funded research 
in the US is held; nearly all academic institutions hold their 
researchers to these statements of rights regardless of 
funding.

The main elements of the Common Rule [62] include 
requirements for assuring compliance by research institu-
tions, requirements for researchers’ obtaining, waiving, and 
documenting informed consent, and requirements for 
Institutional Review Board (IRB) membership, function, 
operations, review of research, and record keeping. The 
Common Rule includes additional protections for certain 
vulnerable research subjects: for pregnant women, in vitro 
fertilization, and fetuses, plus additional protections for pris-
oners and children.
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 Malicious Attacks

The HIPAA Security Rule obligates the organization to pro-
tect e-PHI against reasonably anticipated threats. One such 
threat is a brute force attack, which consists of the attacker 
trying to guess an encryption key or a password by trying 
many different combinations until one works. The length of 
the key or password determines how long it will take an 
unauthorized party to guess correctly—the longer the key, 
the better.

In the Man-in-the-middle attack, the attacker inserts a 
malicious computer system on the network somewhere 
between two systems exchanging data. The system in the 
middle acts as a router, receiving and retransmitting data, but 
it also copies or even alters the data packets as they pass 
through, potentially compromising e-PHI or stealing pass-
words, without either legitimate computer system realizing 
that anything is wrong.

Malicious actors may exploit weaknesses in computer 
applications and operating systems to place their own soft-
ware on a computer, which can open e-PHI to the intruder. 
Two of the most common exploits, buffer overflow, and code 
injection, are described below.

The buffer overflow attack sends the target system a larger 
data packet than it expects. The computer system accepts the 
packet into a reserved area of memory, called a buffer. The 
extra data in the super-sized packet exceeds the buffer size, 
writing the extra data past the end of the buffer into an area 
of memory used by executable code. Later, the computer 
executes the attacker’s code, thinking it is the original code 
that was overwritten, and the attacker’s code can do anything 
it wants to on the target system.

In the code injection attack, the malicious actor puts exe-
cutable code into the input data fields of an application. The 
attacker surrounds the code with special “escape characters” 
that cause subroutines within the computer application to 
end their intended operation prematurely and misinterpret 
the rest of the input as code to execute. For example, an 
application might insert user input directly into an SQL 
statement sent to the database for execution. An SQL injec-
tion attack might answer an MRN prompt with “; SELECT * 
FROM ALL_USERS;” The “;” tells the database query 
engine to start a new command, and the select statement 
returns a list of all database accounts to the attacker.

 The Federal Information Security Management 
Act (FISMA)

The Federal Information Security Management Act (FISMA) 
is a United States federal law passed as part of the 
E-Government Act of 2002 [63]. It set the requirements for 

each federal agency to create, document, and implement pro-
grams that ensure security for the agencies’ data and the sys-
tems that support the agencies’ operations and assets, 
creating documented programs to use for securing said agen-
cies’ data and the systems they use for their operations and 
assets. Many federal research programs must obtain FISMA 
Authority to Operate (ATO) when participating in govern-
ment Contracts or “Other Transaction” funding mechanisms. 
FISMA aims to prevent unauthorized access, use, disruption, 
modification, or destruction of information and information 
systems and requires a “FISMA boundary” around the soft-
ware systems managing the data for the federal research pro-
gram. By preventing misuse or attacks on the data and 
software, confidentiality, integrity, and availability are 
ensured. These systems must obtain an ATO to authorize sys-
tem processing before and after operations begin, signifying 
the systems have detailed security plans, assigned security 
responsibilities to appropriate officials, and regularly 
reviewed the systems’ security mechanisms.

 De-identified Data

The HIPAA Security Rule only applies to e-PHI, namely 
data that a third party can identify as belonging to a specific 
individual. HIPAA specifies 18 identifiers of an individual, 
such as name, social security number, address, certain dates, 
and implanted device serial numbers. You can anonymize or 
deidentify e-PHI by removing all of these identifiers. The 
modified data set is not e-PHI and is not subject to HIPAA 
regulations. As discussed in the HIE section earlier, this 
allows organizations to share de-identified data sets for 
research purposes.

When in doubt, seek out the advice of your organization’s 
HIPAA Compliance Officer or IT Security Officer. They can 
help interpret and advise on security regulations for 
e-PHI. The consequences of a mistake can be devastating. 
The HITECH Act of 2009 provides penalties for negligence 
leading to an e-PHI breach that can add up to millions of dol-
lars. Major breaches of security, defined as unauthorized 
access to 500 or more unencrypted patient records, requires 
notification of the local media and reporting the breach to the 
HHS, where the breach will be listed on the HHS public 
internet site, sometimes referred to as “The Wall of Shame” 
[64].

 Emerging Trends

As this chapter is being written, four emerging technologies 
appear to capture the most press and excitement. Only time 
will tell if they prove to be fruitful. The NoSQL database is 
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considered to be a cheap, scalable solution that will become 
highly competitive with the relational database that is cur-
rently the mainstay of data analytics. Although that destina-
tion is premature, it clearly will open new worlds for 
extracting data from documents that could not be performed 
in a scalable manner 10 years ago.

The “App store for health” is another emerging trend that 
holds promise for opening the user interface of the electronic 
healthcare system to novel ways of presenting data and pro-
viding decision support. Such marketplaces allow Apps to be 
bought and sold to accommodate niche needs throughout the 
system by a large workforce of developers.

Big Data represents a third emerging trend, with sensors 
on the body collecting massive amounts of data. The ability 
to sift through the data to extract insights will define much of 
how we view physiology in the future.

Data Enclaves, especially on the cloud, is a fourth 
emerging trend [65]. The Data Enclave provides a release 
of data, often with PHI, into a computing environment that 
has been pre-loaded with programming tools and libraries. 
However, the networking configuration does not allow the 
data to travel out of a firewall boundary around the Enclave. 
The data can be viewed (often on a Virtual Machine) but 
not removed.

 Summary

Information technology is how all clinical informatics is 
ultimately expressed. The knowledge one has on the 
details of IT will figure into many implementation deci-
sions. Data optimization, program efficiency, and atten-
tion to security will contribute greatly to the success of 
the informatician.

 Query Tools and Techniques: Resources

We have attempted to include relevant resources (includ-
ing websites, articles, and books) in the References section 
when possible. However, we also wanted to highlight the 
following resources for query tools and common data 
models:

• Patient-centered Outcomes Research Network: https://
pcornet.org/resources/

• National COVID Cohort Collaborative: https://covid.
cd2h.org/n3c

• Informatics for Integrating Biology and the Bedside: 
https://www.i2b2.org/software

• Observational Health Data Science and Informatics: 
https://www.ohdsi.org/software- tools/

 Questions for Discussion

 1. Clinical Data Warehouses store structured data in various 
Common Data Models (CDMs) and homegrown data 
models. What data models have your organization 
adopted or considered, and what economic and data con-
siderations led to that decision?

 2. If you were an informatics director tasked with develop-
ing software to build interactive reports on the various 
data facts in the hospital clinical data warehouse (e.g., the 
prevalence of uncontrolled diabetes over time), what pro-
gramming language and software development method-
ology would you choose? Would you instruct your team 
to write the program as a series of SQL queries or use a 
higher-level language like Java?

 3. In designing a physical network for a new informatics 
research lab, what key decisions must be made around 
network topology and network architecture? Draw sev-
eral possible network architecture diagrams and discuss 
the pros and cons of each.

 4. Imagine your organization wants to join a popular clinical 
data research network and participate in federated que-
ries. What do you think are the most important consider-
ations in ensuring that the shared data are appropriately 
de-identified and patient identity remains protected? 
What data sources would you use (e.g., notes, flowsheets, 
problem lists, etc.), and how would you think through 
designing an ETL process?

 5. You have been awarded a federal contract to manage the 
data from a new clinical study sponsored by the 
NIH.  What are the expected FISMA requirements you 
will need to adhere to within your “FISMA boundary?”
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