
135© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. T. Finnell, B. E. Dixon (eds.), Clinical Informatics Study Guide, https://doi.org/10.1007/978-3-030-93765-2_10

Information Technology Systems

Shawn N. Murphy and Jeffrey G. Klann

Learning Objectives
At the end of the chapter, the reader will be able to:

• Describe the difference between structured and unstruc-
tured data

• Understand how data typically need to be changed to fit
into a database

• Define the ACID concept of a database
• Describe the differences and tradeoffs between relational

and non-relational systems, as well as cloud vs. on-prem-
ise databases

• Discuss the essential components of data interoperability,
including Common Data Models and Health Information
Exchange

• Identify the basic concepts behind Knowledge Discovery
and Data Mining

• Cite various types of network topology
• Understand how a system architecture is represented
• Describe a three-tier software architecture
• Explain the design considerations in choosing a program-

ming language, including compiled vs. interpreted and
object-oriented vs. procedural

• List three software design considerations
• List four safeguards that HIPAA describes
• List three types of security attacks
• Describe how FISMA moderate compliance helps pre-

vent security attacks

Practice Domains: Tasks, Knowledge, and Skills

• K006. Computer programming fundamentals and compu-
tational thinking

• K007. Basic systems and network architecture
• K060. Enterprise architecture (databases, storage, appli-

cation, interface engine)
• K062. Network communications infrastructure and proto-

cols between information systems
• K076. Approaches to knowledge repositories
• K077. Data storage options and their implications
• K089: Data life cycle
• K090. Transactional and reporting/research databases
• K091. Techniques for the storage of disparate data types
• K092. Techniques to extract, transform, and load data
• K094. Data management and validation techniques
• K096. Types and uses of specialized and emerging data

sources (e.g., imaging, bioinformatics, internet of things
• K098. Information architecture
• K099. Query tools and techniques
• K100. Flat files, relational and non-relational/NoSQL

database structures, distributed file systems

Case Vignette
Jane is the CMIO of a large healthcare system and wants her
enterprise to invest in a new electronic medical record
(EMR) system. She will need to make a convincing argu-
ment, hoping to keep the technically-oriented CIO happy by
showing the new system will indeed scale to the require-
ments of an upcoming merger with another health system.
She would like to justify some of the claims made in the
sales-oriented, splashy presentations of the EMR companies
with her hard- hitting, factual presentation. It turns out the
EMR companies are different in several ways. First, they
use different types of databases. The first company uses a
MUMPS hierarchical database, while the other companies
use relational databases. The first company also uses a
waterfall programming methodology, while the other com-

10

S. N. Murphy
Department of Neurology, Massachusetts General Hospital,
Boston, MA, USA

Department of Biomedical Informatics, Harvard Medical School,
Boston, MA, USA
e-mail: snmurphy@partners.org

J. G. Klann (*)
Department of Medicine, Massachusetts General Hospital,
Boston, MA, USA

Harvard Medical School, Boston, MA, USA
e-mail: jeff.klann@mgh.harvard.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93765-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-93765-2_10#DOI
mailto:snmurphy@partners.org
mailto:jeff.klann@mgh.harvard.edu

136

panies use agile programming methodologies. One of the
EMR companies is pushing a novel NoSQL-based system
as part of its platform, but she doubts it can handle the trans-
action flow and wants to make that point to the
CIO. Ultimately, Jane would like her health system to adopt
an EMR with agile programming practices and a standards-
based Application Programming Interface that uses a rela-
tional database system. How could she best present her
arguments to the CIO? See if you can help Jane build her
presentation as you navigate this chapter.

 Introduction

The events of clinical practice can be represented in an
Information Technology (IT) system. Medical software is at
the pinnacle of all IT system development in many ways,
because these systems have a great responsibility towards the
patient. Therefore, systems must be carefully designed to
embody the following characteristics: sharing, proper formu-
lation, quality measures, and fulfillment of use cases. Sharing
includes proper authorization practices for those assessing
the system, distinctions between data types that can be
shared, and harmonization methods that allow sharing. The
proper formulation includes focusing on data sources and
data types, accounting for temporal aspects of clinical data,
and accounting for various levels of data granularity and
missingness in IT systems design. Quality measures for IT
systems include working under many failure situations
regarding data, code, and system security. This chapter will
introduce practical decisions that must be made to formulate
the components of a health IT system, including data, net-
works, and programs. We will carefully consider these char-
acteristics as we discuss each component.

 Data and Databases

Data is at the heart of every health IT (HIT) system. The
purpose of all HIT systems is gathering, storing, sharing, and
utilizing data. This section will discuss the data itself, which
will allow us to dive into further topics on building HIT sys-
tems, such as programming and system architecture, in later
sections.

 Getting Data

 Data Sources
HIT systems constantly generate data, which in the context
of medical practice are pieces of information, especially
those that are part of a collection to analyze a problem. In
HIT parlance, these data fall into three broad categories:

• Structured data make up most of the information clini-
cians, and technicians enter into electronic health record
(EHR) systems for record-keeping and billing purposes.
Structured data are stored in various standard formats and
terminologies (as discussed in Chap. 13) that computers
can interpret and manipulate. As a rule, structured data
come at the cost of clinicians’ time and effort; these are
not part of normal communication between clinicians that
normally occurs with written unstructured discourse.
However, structured data are much more useful to HIT
systems for data processing.
 – Examples of structured data: billing data (e.g., diagno-

sis codes, procedure codes), demographic data, labora-
tory results, vital signs, and coded medication and
problem lists.

• Unstructured data refer to data not stored in an easily
computable format. Primarily this includes all the notes
about a patient—from reports to discharge summaries,
including data that may not be stored in a computer system
at all (such as, in many environments, daily nursing notes).
Images are often considered unstructured, as well as lab
results that are supplied as fax documents. This category
also includes some financial and legal data that are not
readily available in computable format (such as consent
forms, DNR orders, etc.). Unstructured data tend to be
much richer than structured data, but they usually cannot
be used directly in a computable environment such as a
decision support system. Natural language processing
(NLP) [1] is a way to extract computable meaning from
this text. However, due to the many variations of how
things can be said in human languages and how text is
structured, NLP is fraught with difficulty and error-prone.
 – Examples of unstructured data: patient notes, financial

and legal documents.
• “Big” data is an emerging category of data that are gener-

ally unstructured but is put in this separate category because
it is difficult to process [2]. It is difficult, because the data
has either an extremely large storage footprint (like radiol-
ogy images or genomics from sequencing machines) or is
so extraordinarily complex that it takes enormous comput-
ing resources. Sometimes these are data collected by con-
tinuous-monitoring machines. Home health monitoring
(such as home blood glucose monitors) is an example of
continuous monitoring data working into medical records.
 – Examples of “big” data: radiological images, genomic,

and exomic data.

Another source of data besides HIT is patient-reported data
and community information, as elaborated in Chaps. 24 and
25. Patient-reported data is used to reconcile the medical
record with patient experiences and collect subjective infor-
mation on patient perception of disease burden. Community
information (such as public data about the number of parks in

S. N. Murphy and J. G. Klann

https://doi.org/10.1007/978-3-030-93765-2_13
https://doi.org/10.1007/978-3-030-93765-2_24
https://doi.org/10.1007/978-3-030-93765-2_25

137

a city) is becoming more important as medical data is used for
public health. Understanding local health policy, regional
socioeconomic statuses, communicable diseases, and disease
trends are becoming integrated into health data analysis.

 Interoperability: Mapping and ETL
Data are stored in many different systems throughout the
hospital. To be retrieved or used for analysis, data must be
extracted from their source system. Typically, when data are
retrieved on a single patient, software interfaces exist that
allow the clinician to browse their patients’ information
using a combination of proprietary and standard solutions.
Many of these interfaces are based on standards developed
by Health Level Seven (HL7). Data retrieval becomes more
difficult when gathering cohorts of patient data for research
or quality improvement. Data retrieved for this purpose
undergo a three-step process known as Extract, Transform,
and Load (ETL). Chapter 14 discusses interoperability in
more detail. Here, we provide a brief overview of the ETL
steps and major stumbling blocks [3].

• Extract. Data must be retrieved from the source system
using available programming interfaces. The biggest
stumbling block in this step is knowing what data resides
where and what it means. For example, an ambulatory
EHR system might be separate from billing systems, and
thus the data from these systems must be merged to
understand patient encounters. Diagnosis codes that rep-
resent billing diagnosis might not represent a patient’s
actual disease, so these would need to be stored separately
from the problem list. For example, the billing diagnosis
code for a visit to rule out diabetes is the same as a billing
diagnosis code to manage diabetes.

• Transform. Because data are stored in various proprie-
tary formats, it is necessary to align all these formats so
that the data can be analyzed together. This task, known
as data mapping, is often quite complex and is discussed
at length in Chap. 13.

• Load. This step involves transferring data in large quanti-
ties into a data warehouse, which requires careful atten-
tion to some of the performance concerns discussed in
“storing data” below.

 Data Representation
When data is in transit or being processed, structured data is
often represented in one of the following formats: XML,
JSON, or CSV [4]. These are largely interchangeable ways
of organizing data. Text data (notes) often also have some
structure in the header section, which defines to whom the
note belongs, who transcribed it, and on what date, among
other “metadata” fields (data about the data).

• XML uses tags, or text within brackets, to separate pieces
of the document. Tags can be embedded in other tags,
thus creating a hierarchy of information with a
document.

• JSON is a similar format that uses colons, commas, and
tabs instead of brackets and has become popular as it is
generally more readable.

• CSV is a nonhierarchical structured format that essen-
tially represents data as a spreadsheet, with columns and
rows—commas separate columns, and each row appears
on a separate line. A simple example of information in all
three formats is below.

A sample data structure represents a patient’s weight at an
encounter as XML, JSON, and CSV in Table 10.1.

Chapter 13 will discuss data exchange standards, which
define the specific tags, element names, and headings used to
transit various data in these three formats. These data
exchange standards build on the underlying structures of
XML, JSON, and CSV. Most notable among these are the
Fast Healthcare Interoperability Resources (FHIR), which
describe EMR data in a standard way using these data struc-
tures [5]. FHIR’s use is being accelerated by the 21st Century
Cures Act, which mandates that EMR vendors support this
standard in some circumstances [6]. These include serving
Medicare patients and getting a certification from the US
Office of the National Coordinator for Health Information
Technology (ONC).

 Storing Data (Databases)

In enterprise systems, data are stored in databases.

Table 10.1 Data representation of patient’s weight in XML, JSON, and CSV

XML JSON CSV
<encounter id=‘111’>
<vitals>
<weight units=“lbs”>140</weight>
</vitals>
</encounter>

{
“encounter”: {
“id” : “111”,
“vitals”: {
“weight”: {
“units” : “lbs”,
“weight”: “140”
} } } }

(This “vitals” csv would be one of several csv files needed to represent these data.)
Encounter,weight,units
111,140,lbs

10 Information Technology Systems

https://doi.org/10.1007/978-3-030-93765-2_14
https://doi.org/10.1007/978-3-030-93765-2_13
https://doi.org/10.1007/978-3-030-93765-2_13

138

 Relational Databases
The gold standard for database storage is the relational
database [7]. These are also known as SQL databases
because database programming is done in the Structured
Query Language (SQL) [8]. SQL 92, the version of the lan-
guage released in 1992, is a standard across most database
systems. Since then, many changes have been made to the
standard language, but there is incompatibility across data-
base platforms concerning features introduced since SQL 92.
Although database platforms implement the features intro-
duced in SQL 99 and some features found in even more
recent versions, they all do so slightly differently. Therefore,
database programmers tend to become experts in one plat-
form, such as Microsoft SQL Server or Oracle.

The most common relational database brands used in HIT
systems are those from Oracle and Microsoft. They have a
reasonable equivalence of features, though, as mentioned,
their SQL dialects are quite different. Postgres is a popular
open-source database used in smaller health IT projects
(such as for research systems), which offers many of the
same features as the commercial equivalents but without the
same level of support or guarantee of functionality.

Database Schema Design
In SQL databases, data are stored in tables where each entry
is a row with a predetermined set of columns. Conceptually,
this is very similar to a spreadsheet. Like spreadsheets, vari-
ous aggregate functions can be performed on tables to char-
acterize the data. Unlike spreadsheets, tables can be joined to
answer questions that cannot be gleaned from a single table.
These joins are performed using the relationships between
the tables, which is why these databases are relational.

The structure of the database tables for any particular appli-
cation is known as the database schema. These tables are usu-
ally designed to store data so that information is not duplicated
across tables. This is known as normalizing the data [9]. For
example, a patient table might contain the patient’s date of
birth. A normalized schema would not duplicate the patient
date of birth in, for example, the encounters table.

Structuring a database schema, so tables are normalized
can be quite complex. Normalization should be done only up
to the point that makes sense for the database application.
There are more than six normal forms of data. However, the
third normal form (3NF) is the level of normalization pro-
posed by relational database pioneer EF Codd and is the gen-
eral standard for minimizing data repetition [10]. 3NF
specifies that every piece of data in a row only depends on
the information in the primary key (the primary identifier for
the table, such as a patient id or encounter id). For example,
an encounter table might have a provider identifier. The
encounter table should not also have the provider’s name and
address, as these are properties of the provider and not the
encounter. These should go in a separate provider table.

To understand how joins are used, consider how many
encounters occurred in 2014 involving patients born in the
1960s. A database programmer would issue a query that
“joins” the patient and encounter tables. The power of rela-
tional databases is that these joins are dynamic and ad hoc
and do not require a priori definition of relationship hierar-
chy. To join two tables, a common column must exist between
these two tables. This is an exception to the “do not duplicate
data” rule of normalization. These two columns are the pri-
mary key (the column[s] of the primary table to be joined)
and the foreign key (the column[s] of the secondary table to
be joined). In the above example of the patient and encounter
table, both tables would include some type of patient identi-
fier. More technical details of SQL joins can be found in the
section “Programming” below.

Schema designs are frequently visualized with an Entity
Relationship Diagram (ERD). These simple diagrams use
boxes to represent each table in the schema. Each box lists the
columns in the table and their data types. Usually, the keys of
the table are demarcated by boldfacing or otherwise highlight-
ing them. Lines are drawn between boxes where a relationship
exists (i.e., indicating that the two tables can be joined). The
lines are annotated with the type of relationship: one-to-one,
many-to-one, or many-to-many. The patient-to- encounter rela-
tionship would be one-to-many because a single patient can
have many encounters, but each encounter is about only one
patient. A many-to-many relationship might be a provider and
patient table. A provider has many patients, and a patient like-
wise has many providers. Many-to-many relationships are
often shown on ERD diagrams as a pair of one-to-many rela-
tionships, with an intermediate table in the middle that provides
the many-to-many linkage. In this case, the encounter table
might be the intermediary table for the many-to-many linkage
(assuming that a patient can have only one provider per encoun-
ter). A variety of schemes for annotating the relationship exists.
An ERD diagram based on this discussion that uses the popular
“crow’s foot” annotation method is shown in Fig. 10.1.

One complexity to consider when defining a database
schema is balancing usability with resilience to future
changes in that schema. It is generally faster and easier to
access data with predefined columns (such as columns in a
patient table, e.g., gender, race, and ethnicity). Still, suppose
the available data could change dramatically over time. In
that case, it is often better to use an entity attribute value
(EAV) format, a special way of normalizing the data that pro-
vides great flexibility for schema changes [11]. In pure EAV
format, a table has only three columns. In a patient table, the
Entity column would be a patient identifier. The Attribute
column would define what is being measured in that row
(e.g., birthdate). The Value column would have the value of
the measurement (e.g., January 1, 1960). Thus each patient’s
data in the patient table would take up many rows. Without
careful indexing, this can have poor performance.

S. N. Murphy and J. G. Klann

139

Furthermore, it is not particularly human-readable.
However, it is immediately adaptable to new data types with-
out changing the underlying database schema. Because of
this, EAV is used in many data warehouses. In practice,
schema styles are used that combine EAV and standard
tables. The star schema and the snowflake schema prototypes
are most common, both of which involve one or more EAV
tables and dimension tables that define additional attributes
using standard normalized data. The dimensions are linked
to the EAV table through additional columns (foreign keys).
The Informatics for Integrating Biology and the Bedside
(i2b2) database framework for clinical data warehousing,
free and in use at over 200 sites worldwide, uses a star
schema format [12].

Cloud Database Providers
Of increasing importance are cloud-based data storage pro-
viders. Although due to security concerns around clinical
data, such data are traditionally stored on-premises (“on-
prem”) on an institutionally managed database server, the
flexibility of storing data in the cloud is attractive. It does not
require institutional investment in and maintenance of data-
base servers, and database size can be “elastic” and dynami-
cally allocated by the hosting provider. All major cloud
providers support healthcare data in some way, and it is
becoming more commonplace for major institutions to sign
BAAs (business associate agreements) with commercial
cloud providers.

New variants of SQL and other query languages come
with these cloud providers that informaticians must become
familiar with. Google provides an implementation called
BigQuery, which is compatible with SQL 2011 standards
[13]. Amazon promotes a scalable database solution called

RedShift, which implements its own dialect of SQL to sup-
port very large datasets and high-performance analytics [14].
Microsoft Azure suggests using Azure SQL, which uses a
SQL language like Microsoft SQL Server [15]. Although all
these companies offer more traditional databases on the
cloud, they claim that the highest performance is achieved
with one of their cloud-native approaches.

There are many cloud-based NoSQL solutions (i.e., data-
bases that provide programming interfaces not based on
SQL). See the next section for a discussion of NoSQL.

Database Integrity and Performance
Because databases are often accessed by many systems
simultaneously, it is critical that no two systems modify the
database simultaneously. Furthermore, databases must be
resilient to failures (such as power or hardware). Data integ-
rity in relational databases is achieved through the ACID
principles [3]. In this framework, database operations that
must occur together are said to be a single transaction. The
elements of ACID are:

• Atomicity. If one part of a transaction fails, the entire
transaction is reversed.

• Consistency. No transaction will violate the rules of the
database (such as the schema and other constraints).

• Isolation. If transactions are run concurrently, the data-
base and results must be the same as if they were run con-
secutively. This can be achieved by configuring the system
to run all transactions consecutively. Still, in practice,
complex database scheduling programs determine which
transactions can be run simultaneously (for example,
read-only transactions can always be run
simultaneously).

Fig. 10.1 Entity relationship
diagram for a simple database
schema

10 Information Technology Systems

140

• Durability. Once a transaction succeeds (is committed), the
changes are resilient to failures and visible to all other run-
ning transactions. Database designers must balance this
requirement with performance because true durability means
that committed database changes must be immediately writ-
ten to permanent storage (i.e., they cannot be stored in mem-
ory), which is much slower than using memory.

Columns on tables can be indexed, which speeds up searches
significantly. Defining indices depends on the intended
application and the database’s query optimizer, which maxi-
mizes the performance of index use. Every database engine
(e.g., Oracle or SQL Server) has a unique query optimizer, so
index designs must be tweaked for each database engine sup-
ported. As a rule of thumb, the performance of a database
table will not degrade until the relevant parts of the index are
too large to fit into memory. Therefore, it is possible to have
tables with hundreds of millions of queryable rows in milli-
seconds if the query optimizer uses indices. At that scale,
index design and query optimization become very important,
and there are many tutorials and technical documents on this
subject. Unfortunately, the optimal query design also varies
between database platforms. For example, Oracle often
excels on complex, large queries, whereas SQL Server tends
to do better when each step is computed separately and
stored in a temporary table.

 Non-relational Databases (NoSQL)
Non-relational databases (collectively called NoSQL) are
becoming popular for some specific tasks, although rela-
tional databases remain the highest performing systems for
general use. However, NoSQL databases can be very power-
ful for in-memory and distributed querying (i.e., when there
are extremely large amounts of memory and many compute
nodes).

Popular NoSQL approaches include:

• Massachusetts General Hospital Utility Multi-
Programming System (MUMPS): MUMPS is particu-
larly important to the medical informatics community
[16]. This is a database format developed in the 1970s at
the Massachusetts General Hospital before relational
databases. It is still widely used in medical informatics. It
is both a programming language and a database, and all
data are stored in sparse matrices rather than in tables.
(See the section “Knowledge Discovery and Data Mining
(KDDM)” below for more information on sparse matri-
ces.) It is very efficient at complex data manipulation.
Because MUMPS was developed when memory was
costly, it tends to be very terse—all MUMPS commands
can be reduced to a one-to-three letter abbreviation.

Additionally, spaces are important (which is not true in
most languages). A space is used to separate commands,

for example. Therefore, MUMPS programs tend to be
more cryptic than SQL. Entire systems have been written
in MUMPS, but many modern systems (such as Epic’s
EHR platform) use MUMPS similarly to SQL and use a
more traditional language for user interaction (see the
section “Programming” below). MUMPS implementa-
tions include M and Caché®. The latter is the most popu-
lar MUMPS implementation, sold by InterSystems, Inc.
Caché® is now part of the company’s suite of tools called
IRIS, which exposes a multi-model datastore built on
MUMPS and provides an approach to use SQL and no-
SQL in the same environment [17].

• MapReduce databases: MapReduce is an algorithm devel-
oped by Google that allows optimized querying in “mas-
sively parallel” environments [18], where hundreds of
computers execute portions of queries simultaneously. Each
query is split into many small subtasks. When the hardware
is available, parallelizing complex computing tasks into
inexpensive computing nodes is very appealing. Hadoop is
a popular open-source MapReduce database [19].

• Document databases: Whole-document storage and pro-
cessing is a feature of many NoSQL databases that sup-
port MapReduce. This simplifies the Load process of ETL
because the data can be stored and queried as structured
documents. Thus, the transformation from the transport
format (e.g., XML) into a database schema becomes
unnecessary. Document databases are computer-
processing intensive, but in a massively parallel environ-
ment, this can be mitigated.

• Graph Databases: In cases where the relationships
between tables can be predefined into a schema of linear
relationships (such as “patients have encounters” and
“encounters have data on medications”), a graph database
allows such data to be traversed faster than the dynamic
data relationships of a relational database. The difficulty is
that the data relationships are static and must be traversed
linearly. In this example, it is not possible to directly join
patients and medications. This can create performance
problems and limit query design when the data are not
used as anticipated. On the other hand, the performance is
very good if the schema fits these constraints. Neo4J is a
popular open-source graph database [20].

NoSQL databases frequently relax some of the constraints of
ACID to achieve high performance. Therefore, in many
cases, NoSQL is better at analytics on massive, slow-to-
update datasets than live systems that are continuously
updated (e.g., an EHR).

Examples of NoSQL Databases Neo4J [20] (a popular
open- source graph database); MongoDB, CouchDB, and
Hadoop [19] (MapReduce Document databases); Caché®
and Iris (a widely-used MUMPS database and its successor).

S. N. Murphy and J. G. Klann

141

Many NoSQL databases are open source but frequently pro-
vide recovery and support contracts for commercial use.
Additionally, cloud providers offer many NoSQL solutions,
such as Amazon’s DynamoDB and Google Firestore (both
document databases).

 Using Data

Data serve no purpose without a reason to use them. Here we
briefly discuss some important uses of data in HIT systems.

 Health Information Systems
Health Information Systems (HIS) are the clinical systems
used to retrieve patient data for review by their caregivers
[21]. Structured data are presented in easy-to-understand for-
mats such as flow sheets. The data sometimes power useful
applications that run alongside the health record, such as
decision support systems, which provide helpful suggestions
to improve patient care (e.g., reminders about vaccinations).
Most systems can search within a patient chart to find key-
words in unstructured data or draft a patient note for a visit
based on the structured data entered for that visit. Many
innovations continue to emerge. Homegrown HIS used to be
common. Commercial systems have largely replaced these.
Still, recent government initiatives, such as the 21st Century
Cures Act, are encouraging open standards for integrating
smaller, single-purpose “apps” with larger HIS [22–24].

 Data Warehouses
Data warehouses are increasingly used within hospital sys-
tems for, among other uses, quality improvement, public
health reporting, research, and clinical trial recruitment. The
ETL process described earlier copies data into data ware-
houses out of production systems. These data warehouses
may be refreshed as frequently as daily, or they might be
created on a one-off basis (for a research project, for exam-
ple), depending on the applications for the warehouse and
the amount of data. The COVID-19 pandemic motivated
many healthcare organizations to develop faster data ware-
house refresh pipelines. Daily or weekly updates on COVID
patients could occur to speed up research on the disease. This
will have the effect of faster ETL pipelines post-pandemic.

Data warehouses define a Common Data Model (CDM)
and may offer various data analytic tools that will run on the
CDM. Several open-source clinical data warehouses are in
widespread use. The most widely used freely available plat-
forms are i2b2, OMOP, and PCORnet. Additionally, EHR
vendors frequently offer a data warehouse (Epic Caboodle),
and home-grown data warehouses built by individual hospi-
tal systems are still widely used. Here we will briefly intro-
duce the freely available platforms.

Informatics for integrating biology in the bedside
(i2b2) is the oldest, freely available data warehouse system,
first developed over a decade ago and used at over 200 sites
worldwide. It is also used in large data research networks,
including NCATS’s national Accrual to Clinical Trials (ACT)
network. In addition to a data model, it provides an
Application Programming Interface (API) for query and data
retrieval, supporting database-independent app design. It
also offers a client tool for developing queries and viewing
results [12, 25, 26]. i2b2’s greatest strength is its flexibility
and ability to ingest and analyze new types of data without
changing the core data model. Besides EHR data, i2b2 is
used in many other unique domains, including patient-
reported outcomes, genomics, and social determinants of
health.

The Observational Health Data Sciences and
Informatics (or OHDSI, pronounced “Odyssey”)
Collaborative provides a CDM known as Observational
Medical Outcomes Partnership (OMOP). The collabora-
tive offers a variety of analytic tools, from cohort design to
regression analysis to data sharing. However, the platform's
greatest strengths are probably its well-specified data model
and comprehensive, regularly updated data dictionary of
curated terms from many standard terminologies. These
make OHDSI/OMOP very appealing for data analysts
because SQL queries are readable and relatively easy to
write. As of this writing, OMOP is implemented at over 100
organizations worldwide [27, 28].

The Patient-Centered Outcomes Research Network devel-
ops the PCORnet CDM, an OMOP-like relational data model
representing EHR data. It is used at PCORnet sites in the US,
which currently encompasses 70 million patients’ data.
Network participants gain access to data characterization
and quality checking programs that run on the commercial
SAS analytics platform and produce reports used for quality
improvement [29].

 Health Information Exchange
Many initiatives to share information across health systems
are collectively dubbed “health information exchange” or
HIE. This can be as small-scale as electronically transferring
a single patient’s records to a new hospital system, such as
the Direct project from the National Coordinator’s Office for
Health Information Technology [30]. HIE can also be as
large-scale as distributed analytics across an entire state or
country.

Early efforts in HIE took data from local sites and built
regional data repositories (Regional Health Information
Organizations, or RHIOs) for analytics. Several of these
projects were successful, such as the Indiana Network for
Patient Care operated by Indiana Health Information
Exchange, which aggregates data on millions of patients
from dozens of hospitals, as well as independent laboratories

10 Information Technology Systems

142

and insurance companies for a comprehensive record of the
patient’s medical history [31].

In general, however, regulatory issues around sharing
patient data hamper the success of this approach. Therefore,
in the past decade, the “federated network” has emerged as
the most prominent modality of health information exchange.
In this model, data stay at home institutions. Rather than cre-
ating central repositories of data, the “questions are brought
to the data”—queries are distributed across networks of
health systems, and only the results are aggregated. This
solves a variety of privacy and security problems at the
expense of performance. Many large government-sponsored
national networks take this approach, such as PCORnet [32],
the NIH ACT [25] network, and the Mini-Sentinel network
[33]. The new NIH “Long COVID” research network
(RECOVER DRC—Researching COVID to Enhance
Recovery Data Resource Core) is also planning to use a fed-
erated approach [34]. Emerging advancements allow much
more complex distributed analysis, taking advantage of new
technologies like homomorphic encryption to exchange
patient-level information while ensuring patient privacy [35].

 Knowledge Discovery and Data Mining (KDDM)
KDDM refers to using statistical methods on data to discover
patterns that are not intuitively obvious upon inspection [36].
In practice, preliminary knowledge discovery frequently
occurs through simple searches in databases of patient data
(such as keyword searches in notes or “cohort finding que-
ries” on data warehouses). Still, KDDM can also be much
more complex [37]. One popular use of KDDM is for predic-
tive analytics, such as predicting 30-day hospital readmis-
sions or risk of heart failure. This type of KDDM uses
classification algorithms, such as regression analysis or sup-
port vector machines [38]. Classification algorithms are
known as supervised learning because the correct outcome is
known and supervises the algorithm as it trains its parame-
ters. Supervised learning involves a training set of data,
meaning that the final statistical model is developed from a
set of data where the true positives are known. Then the model
is tested on a test set, where the true positives are unknown to
the algorithm, and the algorithm’s accuracy is evaluated by
how closely the algorithm correctly labels the test set.

A popular approach for robust testing involves repeatedly
splitting the data into different training and test sets and com-
paring performance across all parameterizations of the algo-
rithm. This is known as cross-validation. A related technique,
bootstrapping, creates additional training data by resampling
the existing training set (i.e., creating additional simulated
data based on the statistical properties of the training set).
For algorithms where sensitivity can be varied, the algo-
rithm’s output is often presented as a Receiver Operator
Curve (ROC), which is a plot of sensitivity against one-
specificity for each parameterization of the algorithm.

Unsupervised learning is also becoming popular in medi-
cal KDDM. Unsupervised learning looks for patterns or rela-
tionships in data where there is no known “goal”. The most
popular example of unsupervised learning is recommenda-
tion algorithms used in consumer e-commerce platforms
such as Netflix and Amazon to suggest purchases to custom-
ers based on the previous purchase history [39]. This type of
algorithm has been used, e.g., to generate drafts of decision
support, suggest ontological relationships among data ele-
ments in standardized vocabularies, and find the most impor-
tant variables in a dataset (feature selection) [40–42]. One of
the most recent popular unsupervised techniques is the auto-
encoder, which essentially uses a single dataset for training
and testing. The goal is an algorithm that can efficiently
reproduce the input data from a smaller set of parameters.
These smaller representations of the original data can then be
used in a variety of ways, such as data compression, noise
reduction, synthetic data creation, etc. [43] Autoencoders are
a form of Deep Learning, which is becoming an important
term of art in medical informatics [44]. Deep Learning net-
works are essentially complex, multilayer neural networks (a
classic machine learning technique that dates back to the
1960s). However, today’s extremely powerful computing
resources allow very complex networks, inspiring a revolu-
tion of new KDDM tools and applications.

The data format required for KDDM is somewhat differ-
ent than data transport or storage. Whereas databases store
information in normalized tables and transport formats tend
to store data hierarchically, KDDM usually requires data in a
sparse matrix, in which there are perhaps hundreds of col-
umns, each representing a parameter that could be predictive
of the desired outcome. This is the same format used by
MUMPS. These matrices are known as sparse because most
of the entries in the matrix are empty.

 Data Quality
It is important to remember that representing data efficiently
and with semantic standards does not guarantee sufficient
quality to be used in KDDM algorithms and large-scale
HIE. Because EHR data are entered by busy humans whose
primary goal is to provide healthcare, the documentation of
such healthcare can at times be lacking. Moreover, EHR
documentation is largely driven by billing needs, so informa-
tion needed for analytics (a secondary use of the data) is
often inadequately recorded. A range of problems are possi-
ble, from the use of unexpected (albeit standard) codes to
information not being present at all. The core elements of
data quality are: conformance (does data adhere to the
required standards?), completeness (are data present?), and
plausibility (are data believable?) [45]. It is possible to ensure
conformance through well-written ETL, but completeness
and plausibility are much more difficult. For this reason,
CDMs like OHDSI and PCORnet have made quality checks

S. N. Murphy and J. G. Klann

143

a cornerstone of their tools. Still, data quality is a major lim-
iting factor in the use of EHR data for research. It is, there-
fore, very important to validate the accuracy of algorithms
and data-based discoveries across multiple locations to
detect potential differences in information entry and coding
[46]. Data Quality is covered in more detail in Chap. 16.

 Networks and Network Architecture

In this section, we will discuss how computers communicate
with each other and with various devices that may be instru-
mental in collecting medical data, such as imaging and labo-
ratory machines.

 Networks

Computer systems connect to each other via networks.
Networks operate over various physical media, including
copper wire, fiber optic cable, and wireless radio transmis-
sion. Networks convey various information, including text,
sound, and video, over the Internet, medical orders within a
health care system, and the exchange of medical data between
care providers.

Enterprise networks, sometimes called corporate net-
works, link computer systems within an organization to sup-
port the organization’s business processes. Networks or
subnetworks within a building or campus are known as Local
Area Networks (LAN). The characteristics of a LAN include
high network speeds, routing at lower layers of the network,
local ownership, and a high degree of trust between nodes.

LANs contrast with Wide Area Networks (WANs), which
employ different technologies than LANs to connect cam-
puses or buildings across longer distances.
Telecommunications refers to the technologies employed to
send data, voice, or video over distances of more than a few
hundred meters. Telecommunication technology is highly
specialized, and most organizations rent either shared or pri-
vate long-distance connections from telecommunications
companies.

As one might imagine, a private telecommunication con-
nection is more secure than a shared connection. However, a
Virtual Private Network (VPN) achieves something similar
to a private connection by encrypting all communications
between two locations over a shared network.

 Network Topology
Network topology is an abstract representation of the way
computer systems connect. Computer systems are visualized
as nodes on a graph in network topology and network con-
nections as lines between nodes. Simple network topologies
in include:

• Point-to-point, in which two computers connect directly
to each other.

• Star topology, a central system such as a large computer
or router connects to each of the other computer systems.
The satellite systems communicate with each other
through the central node.

• Backbone topology, in which a shared communications
channel such as an Ethernet cable serves as a backbone
linking nodes at multiple drop points. The Internet Cloud
is a variant of a Backbone topology—the essential feature
being multiple drop points from a communication medium
into which we have no visibility.

• Ring topology, a backbone circles around to connect its
ends to form a large ring. The ring topology provides
increased reliability since cutting the ring at any point
produces a backbone that can continue communications.

• Hybrid topology, in which multiple backbones, stars,
and rings connect. An enterprise network is likely a
hybrid.

In a hybrid topology, the constituent network segments con-
nect via specialized network devices. Network devices may
boost the physical signal to allow networks to extend over
longer distances.

 Seven-Layer Network Model
Another way to think about networks is by looking at how
atomic data (binary 0’s and 1’s) are organized and trans-
ferred. We categorize network devices as hubs, switches,
routers, and firewalls by the network layer at which the
device connects subnets. Table 10.2 shows the network lay-
ers of the seven-layer Open Systems Interconnection (OSI)
network model [47] of the International Standards
Organization (ISO). Note that HL7 was aptly named as it
focuses on the 7th layer of the OSI model.

Firewalls are a special case in that they are security
devices that operate at multiple network layers. The firewall
passes approved network packets, and it blocks unapproved
or suspicious network packets, per a list of approved network
addresses, application port numbers, and network protocols.
Firewalls may also scan network traffic for known viruses or
leaks of confidential information.

 Network Speed
As any user of the Internet knows, network speed matters.
Several factors affect network speed. Network speed is the
time it takes for a fixed amount of data, such as a message or
a file, to cross the network from one computer system to
another. The raw network speed, known as bandwidth, is the
rate at which binary 0’s and 1’s (bits) cross the network (bits
per second). Modern networks transfer megabits (millions of
bits per second) or gigabits (billions of bits per second).

10 Information Technology Systems

https://doi.org/10.1007/978-3-030-93765-2_16

144

However, there is much more to network speed than band-
width. Any modestly large data set, say a web page, is broken
down into smaller data packets to cross the network. A packet
header of routing information is added to each data packet
for the network to correctly route and reassemble the packets
at the destination. Therefore, the actual number of bits trans-
ferred increases by some amount, typically in the 5–10%
range.

In addition to the packet-header overhead, there will be
some delay in getting the first byte of the packet transferred,
called network latency. Network latency usually results from
(1) the time it takes a network device (hub, switch, router, or
firewall) to receive the packet, process its header for the rel-
evant routing information, and then retransmit the packet
toward the appropriate target; and (2) waiting time due to
competition for network resources from other computer sys-
tems using the network.

Networks are fundamental to any modern enterprise com-
puter application, with LANs connecting local computer sys-
tems and WANs connecting the enterprise to other
organizations. Network topology affects the reliability, scal-
ability, maintainability, and cost of a network. Network
speed is influenced by different types of network devices
(hubs, switches, routers, and firewalls), which operate at dif-
ferent network layers to route data packets and reassemble
them at the correct destination.

 Network Architecture

Architecture is about the big picture—how the parts relate to
the whole. In systems architecture, we break the computer
system down into components and relationships among these
components. There are multiple ways to divide a system into
components, depending on what aspect is most important to
the analysis or the target audience. The most common of
these are network topology, application structure, the flow of
data among components, and a summary of the most impor-
tant features of each breakdown.

 Architectural Diagrams
Let’s consider a hypothetical obstetrics system as an exam-
ple. This system collects and manages pregnancy informa-
tion during clinic visits, makes that information available to
the hospital at the time of delivery, and eventually sends the
data to a data warehouse for research.

Architectural diagrams are the most common way to rep-
resent a system of components and relationships. The ability
to read and understand common architectural diagrams is a
key to communicating with IT professionals.

Figure 10.2 shows a Network Architecture Diagram of the
network used by our hypothetical system. This diagram con-
veys information about the hybrid network topology at the
lower layers of the OSI network model:

• A star topology centered on the Internet cloud, connected
via Firewalls to the Clinic, Hospital, and University
networks

• A single Ethernet backbone at the University, connecting
servers, data storage, and user devices

• Two Ethernet backbones connected with a (Layer 2)
switch at the Clinic

• A wireless network at the Clinic, connecting to a wireless
table for user interaction,

• A ring network connected to a (Layer 3) router at the
Hospital

Note that a Network Diagram shows how the servers, data
storage, and user interface devices are connected but doesn’t
show what is happening at the application level (Layer 7).

Table 10.2 Network layers of the International Standards Organization
(ISO) model

Layer Name Description and examples
7 Application The application layer defines the message

format between computer systems or the
human-machine interface. Examples are HTTP
for web browsers or HL7 for communicating
health information between servers

6 Presentation The presentation layer handles encryption and
compression of data packets. Examples are
SSL encryption, ASCII text or JPEG images

5 Session The session layer performs authentication,
authorization and session restoration. An
application connects to a session via a socket,
which is assigned by port number

4 Transport The transport layer provides end-to-end error
control, since data may pass over many
physical layers and routers between ends. TCP
is a common transport layer protocol. When
combined with an IP Address, TCP/IP is the
transport method used by the Internet

3 Network The network address is an external (unique
globally) or internal (unique within the
enterprise) address assigned by the network,
such as an Internet Protocol Address (IP
Address). The network layer connects via
routers

2 Data Link The data link layer performs error detection
and flow of control on the physical link, i.e.
controls which end is transmitting and which is
receiving. This layer uses physical device
addresses known as Media Access Control
(MAC) addresses. Each networked device has a
unique MAC that does not change if you move
the device to a different part of the network.
Ethernet is a common data link protocol. The
data link layer connects via switches

1 Physical Physical medium, such as copper wire, optical
fiber or wireless radio transmission. Physical
segments connect via hubs

S. N. Murphy and J. G. Klann

145

In Fig. 10.3, a UML Activity Diagram shows how the
application logic works at Layer 7. The major features of the
UML Activity Diagram are:

• Swimlanes are vertical boxes that group the activities
according to who and where the actor is (Clinic Provider,
Obstetrics Application, Hospital Provider, Data
Warehouse, or University Researcher)

• Processes, boxes with rounded corners
• Datastores, boxes with less rounded corners
• Flow of control, represented as solid arrows
• Flow of data, represented as dashed arrows
• Split and join operations on the flow of control, shown as

dark bars. In our system, this occurs where the clinic pro-
vider performs the sonogram and note & observation entry

UML stands for Unified Modeling Language, which
Grady Booch, Ivar Jacobson, and James Rumbaugh devel-
oped in the mid-1990s [48]. In 2000, the ISO adopted UML
as a software design standard. An activity diagram is only
one type of diagram in the UML family, including many
other diagrams for software structure, behavior, and
deployment.

A Data Flow Diagram describes the movement of data
through a system, with emphasis on data transformations.
Circular nodes represent data transformation processes, and
labeled lines show data flow from one process to another.
The Data Flow Diagram in Fig. 10.4 shows:

• A starting point at a double circle
• Every line is labeled with the data elements in motion

Fig. 10.2 Network architecture diagram of sample obstetrics system

10 Information Technology Systems

146

Fig. 10.3 UML activity diagram of sample obstetrics system

Fig. 10.4 Dataflow diagram of sample obstetrics system

S. N. Murphy and J. G. Klann

147

• Every circle is labeled with a data transformation
process

• Permanent data stores (obstetrics and data warehouse
databases) are represented as open rectangles

• An ending point at the darkened circle

Sometimes the goal is to communicate the overall struc-
ture and behavior of a system with only the main features of
each aspect of the system. An Enterprise Architecture
Diagram, as in Fig. 10.5, shows how to accomplish this.

• The main feature of the network shown is the Internet
cloud

• Additional network connections are shown as arrows
labeled with the data elements being transported, empha-
sizing the data flow at the application layer (Layer 7) and
not the underlying network topology, protocols, and phys-
ical structure

• The system users, Clinic Providers, Hospital Providers,
and Researchers appear in all types of architecture dia-
grams. This is appropriate because these actors are essen-
tial in defining how the system interacts with the real
world

• Computer servers and PCs show how the application is
divided and distributed
 – The application displays information on PCs and tab-

lets, organizes information on application servers, and
stores data on database servers.

 – The obstetrics application runs on two servers, one at
the clinic and one at the hospital, and on multiple user
workstations.

 Application Architecture
Application architecture refers to the way the software is
broken down into components, especially on different serv-
ers. Software tiers are the layers from user interaction to the
database and back. A three-tier architecture is common: (1)
user interface (front end) on a PC or tablet, (2) application
server, which may serve multiple users, and (3) database
server, which may serve multiple applications.

If the user interface layer is simple, such as a web browser,
we call it a thin-client application. We call it a thick-client
application if some or all the application logic is encoded in
the front-end tier. If the application resides on multiple serv-
ers, then it is called a distributed application, and similarly,

Fig. 10.5 Enterprise architecture diagram of sample obstetrics system

10 Information Technology Systems

148

if the database resides in multiple locations, it is called a dis-
tributed database. Distributed systems are more reliable and
scalable, but they come at a greater cost and add complexity
to maintain and support.

 Non-functional Requirements
The decisions embodied in selecting system architecture
have a significant impact on meeting non-functional require-
ments. Non-functional requirements are not features but
things like usability, reliability, response time, maintainabil-
ity, security, disaster recovery, and system cost.

For example, in our diagrams, we represented servers as
individual computers. This was always true when computers
first came into wide use in the 1900s, but it is often no longer
the case. Virtual servers, or, more precisely, guest virtual
servers, are emulations of physical servers on a larger host
virtual server. Virtual servers do everything a physical server
does, but because they share resources with other virtual
servers on the same host, they are more economical and
maintainable. Cloud computing places the host virtual server
on the internet, where a third party manages the host and
sells guest computing capacity, capitalizing even further on
economies of scale.

Other extensions of the simple physical server include par-
allel computing, in which multiple processing units share the
computational load. This is very common in recent years, even
on inexpensive PCs. Grid computing extends the parallel com-
puting notion to groups of physical servers, such as all the PCs
in a building or all servers in a data center. Some applications
can leverage parallel or grid computing to speed themselves
up many times (such as MapReduce discussed earlier in this
chapter) [18], but other applications may be a series of sequen-
tial steps that cannot benefit from parallel computing.

 Integration and Interfaces
Another key aspect of application architecture is whether the
relationship between two components is tight and private
(integrated) or loose and public (interfaced). Interfaced com-
ponents allow for interoperability. This is especially true for
interfaces defined by public standards. For example, the
World Wide Web (WWW) depends on two public standards:
TCP/IP for transport and HTTP for formatting data for use
by web browsers.

When computers provide services to other servers on a
network via a standard application interface, it is sometimes
called a Service-Oriented Architecture (SOA) [49]. Some
common frameworks for general-purpose SOAs include
SOAP (Simple Object Access Protocol) [49], REST
(REpresentational State Transfer) [50, 51], CORBA
(Common Object Request Broker Architecture) [52] and
ICE (Internet Communications Engine) [53].

REST is heavily used in medical informatics, as it builds
on Internet motifs and is simple to implement and operate.

Many of the systems discussed in earlier sections utilize
REST, including FHIR, i2b2, and OHDSI tools. Other com-
munications standards that typically rely on REST include
HL7, CCD, and standard terminologies like ICD-10, LOINC,
and RXNORM (detailed in Chap. 13).

 Software, Computer Languages,
and Programming

Software is the command center that controls the compo-
nents in the system architecture. Like spoken language, the
software can be written in a variety of programming lan-
guages. These vastly differ from one another. Most program-
ming languages are extensively documented in other
reference books and online [54–57]. Here, we will cover the
most important approaches from the perspective of medical
informatics, focusing on data.

 Data Types

In programming languages, data are stored in variables.
Variables are temporary holding cells for data that vary as a
program executes. Data can be stored longer-term in files on
disk or in relational database tables. In MUMPS, this distinc-
tion between database and variable is blurred—variables can
be either in-memory holding cells or locations in a database.

No matter where data are stored, each variable or data-
base column has a specific data type that constrains the data
type that can be stored. Languages can be strongly typed or
weakly typed, depending on the degree of computer verifica-
tion that variables correctly match their defined data type.
Weakly typed languages, which do not enforce such checks,
are harder to debug and run less efficiently. Still, they offer
more flexibility and the potential for data types to change as
the program is running. Common data types include:

• Numbers: usually defined as integers or floating-point
numbers (numbers with decimals)

• Letters: single characters and strings (sequences of char-
acters, or what we commonly think of as text)

• Dates and times: specialized storage of these temporal
data, which supports computer interpretation and
manipulation

• Lists and sets and other collections: groups of numbers
or letters stored in a way conducive to performing itera-
tive operations

• Binary data: information such as image data that is not
meant to be directly manipulated by a programmer but
transported to specialized software. In databases, columns
of this type are known as blobs. In programming lan-
guages, the name for binary data varies widely.

S. N. Murphy and J. G. Klann

https://doi.org/10.1007/978-3-030-93765-2_13

149

 Programming

In informatics, a distinction is frequently made between
“software development” and “database programming”. The
former are programs run directly on the computer and cor-
respond to either the user interface or application server lay-
ers in the three-tier architecture. In, for example, an EHR
system, the software development component provides the
user interface and control structure that guides the system’s
functionality. The database programming involves subpro-
grams that process data, such as loading a patient’s record,
pulling up today’s appointments, or analyzing quality defi-
cits in the treatment of diabetic patients.

 Database Programming
As discussed previously, relational database programming is
done in SQL.

The core of all SQL code is the SELECT statement, which
implements set theory to ask questions about the data. If we
wanted to ask questions about the PATIENT table with one
row per unique patient, we would use this format: SELECT
<data elements> FROM PATIENT WHERE <constraint>.
We can use aggregate functions, such as

SELECT avg(income) FROM PATIENT WHERE birth_
date>’01/01/1979’

This will return the average income of all patients born
after January 1, 1979. We would use a join with a common
column between the tables known as a “key” to answer ques-
tions involving multiple tables. A full discussion of SQL
SELECT statements, including more complex joins and
aggregate operators, is out of the scope of this chapter, but
excellent online tutorials are readily available. SQL com-
mands can be collected into small programs that are more
complex than a single statement. These are called stored
procedures.

 Software Development
Traditional software development is done through impera-
tive languages, which issue a series of commands to the
computer. There are a variety of styles, each with advantages
and disadvantages. Broadly, these can be grouped into
object-oriented and procedural styles.

Object-Oriented vs. Procedural Programming
In object-oriented programming, data structures can be
built to have properties and methods. Properties are variables
that the object holds, and methods are actions that one can
perform on the variables. For example, there might be objects
named Patient and Appointment. Patients could have a
method named hasAppointment, which verifies whether the
patient has a given appointment. This method would take an

argument, a piece of data upon which the method operates.
Our hasAppointment method’s argument is an appointment
object. The appointment object might have various proper-
ties such as date, time, clinic, and physician ID. The object
definitions are templates for actual appointments and
patients. These object definitions are instantiated for each
specific case.

Java is a very popular object-oriented language. The lan-
guage and many tools associated with it are freely available.
Also, it is a cross-platform language, meaning that it will run
on many types of machines. This is because Java runs on a
virtual machine that interprets the Java program when it is
run and converts it to the machine language of that particular
machine.

Other notable object-oriented-only languages include:
C++, which is the grandfather of all object-oriented lan-
guages and continues to remain the most efficient due to its
native compilation; C#, Microsoft’s virtual-machine Java-
like language, which is easier to develop in but only runs on
Windows; Ruby, a popular more recent language which also
improves upon Java and is popularly used for web applica-
tions using the “Ruby on Rails” framework.

Procedural programming is more straightforward:
entire programs share methods and global variables, and
there are no objects. This structure has a significant disad-
vantage: the object paradigm makes it easier to organize
and conceptualize large programs. Therefore, most lan-
guages that support procedural programming also support
some type of object-oriented programming. Procedural lan-
guages are particularly useful as scripting languages.
Scripts are short programs that control the functionality of
other computer programs, most frequently webpages.
Popular procedural languages that also support object-ori-
ented programming and are widely used for scripting
include Python (widely used in scientific programming),
PHP, JavaScript (which powers the world wide web), and R
(which is widely used in statistical modeling and data
visualization).

A notable exception is the language C, a procedural lan-
guage that does not support object-oriented programming
and is also not well suited to scripting. Many of today’s most
complex software underpinnings (e.g., most operating sys-
tems) are written in some variant of C. C was developed long
before object-oriented programming was invented or script-
ing was envisioned. Because it continues to be the most pow-
erful and efficient high-level language available (despite its
complexity), it is still widely used today.

New languages continue to appear to address the prob-
lems of the modern era. For example, Google’s Go language
(sometimes called Golang) is built around concurrency—
executing multiple tasks simultaneously. This is in many
ways a response to the growing popularity and prevalence of
parallel and grid computing.

10 Information Technology Systems

150

Other programming paradigms, such as functional pro-
gramming, are of primary interest to mathematicians and
computer scientists and are therefore out of the scope of this
chapter.

Control Structures
Programs don’t just issue commands in order. Most impera-
tive languages make extensive use of control structures to
manipulate the flow of commands. SQL is an exception;
SQL has control structures, but control structures are not a
central component of the language because the primary
motif is set theory. In imperative languages, control struc-
tures are central to the design of the program. Broadly, con-
trol structures can be broken down into looping and
branching. A variant of looping is recursion, but the differ-
ences between these are out of the scope of this chapter.

A common programming design is to repeat some opera-
tion until a condition is true. This is done with a loop. A list
of names could be looped over until all the names are pro-
cessed. This is known as a for loop because operations are
performed for all elements in a collection. There are also
other types of loops, such as while loops, which operate
while a certain condition is true (such as accepting new
patients until the clinic closes). Branching occurs when the
program takes a different direction depending on the value of
a variable. This is done through an if… then statement.

Compiled and Interpreted Languages
Languages are either compiled or interpreted. Compiled lan-
guages are converted into code that the computer can under-
stand before running the program. Interpreted languages are
converted to this machine language from scratch each time
the program is run. Languages that run on virtual machines
are a special case. A language run on a virtual machine is first
compiled to byte code, a pseudo-machine language that is
quickly translatable into machine language.

Therefore, a performance hierarchy emerges among pro-
gramming languages: the fastest languages are natively com-
piled, the second-fastest languages run on virtual machines,
and the slowest languages are interpreted. Of course, this
hierarchy has some exceptions because of how specific fea-
tures in the language are implemented. For example, Jython,
a version of Python that runs in the Java virtual machine, is
generally slower than the interpreted language Python. As
computer speeds increase, this hierarchy is becoming less
important, at least for high-level application development.
Although an operating system or other core computer code
that is run constantly should be written in a compiled lan-
guage, many of today’s user-facing applications are written
in Java or Python. It is typical in scientific code to use an
interpreted or bytecode language for most of the application
and then write core functions (like image processing) in a
compiled language for speed.

 Software Design Considerations

 Code Modularity, Reuse, and Performance

Code Reuse The ability of a programmer to understand the
programming code she or others on a team have written is
imperative to the success of a project. Therefore, many soft-
ware development methodologies highly emphasize soft-
ware documentation. Also, there are frequently multiple
approaches to solving computational problems. In a team-
based environment, frequently, the approach that is most eas-
ily understood by others (the most readable approach) is
preferred.

Modularity Self-contained software code can be distrib-
uted in “libraries” that other software developers can use.
Thousands of these libraries exist for any given language;
they provide the functionality to the programmer quickly
without the programmer having to dive into the source code
of another developer. Because the libraries do not require
source code, many commercial products provide libraries
while retaining the confidentiality of their proprietary soft-
ware code. Examples of libraries include packages to manip-
ulate Microsoft Office documents from within a software
program, packages to perform statistical analysis of data, or
packages for animation and visualization. One well-known
source for quality, free libraries is the Apache Software
Foundation at www.apache.org.

Performance Often code readability is more important than
performance, but for computation-intensive tasks (such as
KDDM), performance is very important. The performance of
computer algorithms can be determined mathematically
through complexity analysis. The practical performance of
computer programs is often judged through profilers, which
are special programs that measure the speed of software
under a variety of conditions.

 Methodology and Quality Assurance

Software Development Methodology A variety of organi-
zational designs for developing software have been pro-
posed. These tend to be combinations of two overall types:

• Waterfall: this is the traditional method of software
development. A phase of requirements gathering occurs
before any software is developed and requirements docu-
ments are assembled. Then the software development
commences, followed by testing. This is a very robust and
thorough method, but the final product is often either not

S. N. Murphy and J. G. Klann

http://www.apache.org

151

what was envisioned by those providing the requirements
or changes during the product cycle.

• Iterative: This is the antithesis of the waterfall model, in
which a minimum of planning occurs at the beginning of
the project. Rather, the software is developed in short
cycles of planning, development, and testing. The itera-
tive approach offers closer alignment with shifting user
needs and complex changing environments. However, it
also tends to focus on immediate needs instead of long-
term goals. This can tend to make the developed software
less thoroughly developed and less modular.

The two overall types are combined in many methodologies.
The spiral method directly combines these two types. Each
project is defined as a collection of many development
cycles, some of which use more of a waterfall approach, and
some are more of an iteration.

Agile methodologies collectively refer to a variety of
rapid cycling software development, in which development,
testing, and requirements gathering revision are closely
fused [58]. Agile methodologies use the same approach as
the spiral method (shifting between iterations and planning
phases). Still, they try to be more flexible by doing less pre-
planning of cycles and being more able to change as a project
moves forward.

A popular agile approach is the scrum methodology, in
which work is broken down into 30-day sprints, which begin
with planning and requirements gathering and end with a
new release of the product. The sprints are not defined before
the sprint’s beginning, making this approach very resilient to
changing needs. All these methods still have the danger of
focusing too heavily on short-term development goals,
however.

Quality Metrics and Testing Many methodologies exist
for ensuring quality software and for subsequently testing
that software. Popular methods to build software with quality
from the outset include pair programming, code reviews, and
software documentation before writing the code [58]. Also,
there is some evidence that more readable languages tend to
lead to higher-quality software. Software testing is funda-
mentally important, no matter how much a development
methodology emphasizes up-front quality. One robust
approach is that the software developer creates unit tests as
they develop their software. Unit tests are tests of an indi-
vidual function of the software for a specific combination of
inputs. A finished piece of software might have thousands of
unit tests. If these tests are written as the software is devel-
oped, it is simple to perform regression testing, or running all
the old unit tests, to verify that new features have not broken
any old features. If a test that used to work no longer does, it
becomes straightforward to find the change that broke that
particular test.

Verification and Validation Software verification testing,
like unit tests, compares the software to what it was designed
to do and may be performed by the software developers or by
dedicated testers. The end-users and requirements gatherers
perform software validation testing. Validation makes sure
that the software performs the function that it was originally
intended to. Whereas verification finds bugs in the software,
validation finds problems in design or requirements
gathering.

 Other Considerations

Open-Source Much commercial software is closed source,
meaning that the programming code used to develop the soft-
ware is not available to the licensees. In open-source soft-
ware, the code is made available [59]. However, the code
could still be copyrighted and might have restrictions on
changing or using it. Dozens of open-source licenses define
exactly how to program code that can be used, changed, and
redistributed in open-source software. Because the program
code in commercial applications is often a trade secret, com-
mercial software is more frequently closed source. The com-
mercial software that is open source tends to have restrictive
licenses to protect the copyright holders. For products where
the goal is that their code is used for further innovation,
licenses tend to be less restrictive, and the vendor company’s
main financial gain is through support contracts.

Platform The computer platform on which the software
runs is another important consideration in choosing or devel-
oping software. As discussed previously, software written in
some languages, such as Java, can be run on multiple com-
puter platforms. Generally, however, the software is written
for a particular operating system (such as Windows,
Macintosh, or UNIX), a particular database platform (such
as Oracle or SQL Server), or a particular web browser (such
as Google Chrome or Microsoft Internet Explorer).

 Security

Computer security is a balance of two things: (1) preventing
misuse of computer systems and data, and (2) enabling
proper use of computer systems and data. We could ensure
no misuse by turning off a computer and locking it in a vault,
but that would defeat the second objective. The goal must be
a balance of usability and minimal risk of misuse.

This section will frame the discussion of computer secu-
rity in terms of the HIPAA Security Rule, which is the law
for all computer systems containing patient-specific medical

10 Information Technology Systems

152

data. Still, the principles embedded in these regulations are
good security practices for any type of data. Chapter 17 goes
into much more detail on all the various considerations
around cybersecurity.

 The Health Insurance Portability
and Accountability Act

The Health Insurance Portability and Accountability Act of
1996 (HIPAA) includes a Security Rule section to establish
security standards for the protection of Electronic Protected
Health Information (e-PHI). The HITECH Act of 2009
extends HIPAA with additional penalties for e-PHI security
breaches and additional rights for patients to view and limit
access to their own data. The latest “Omnibus HIPAA Final
Rule” was published in 2013 [60]. Many states have addi-
tional patient privacy regulations.

Here is the core of the Security Rule:
The HIPAA Security Rule [60] addresses the confidenti-

ality, integrity, and availability of e-PHI on any computer
system that creates, receives, maintains, or transmits such
information. Organizations handling e-PHI (referred to as
Covered Entities and their Business Associates, with whom
they exchange e-PHI) are required to

 1. Ensure the confidentiality, integrity, and availability of all
e-PHI the covered entity creates, receives, maintains, or
transmits.

 2. Protect against any reasonably anticipated threats or haz-
ards to the security or integrity of such information.

 3. Protect against any reasonably anticipated misuses or dis-
closures of such information.

 4. Ensure compliance by its workforce.

There are four types of technical safeguards to ensure the
security of e-PHI: (a) access control, (b) audit controls, (c)
integrity controls, and (d) transmission security. We will dis-
cuss each of these in turn.

 (a) Access Control determines who has access to the data
and consists of two parts: authentication and
authorization.

Authentication ensures that the user is who they say
they are. Usually, this is by a username and password.
Other options include smart cards and biometrics, such as
fingerprint readers. Physical security, such as limiting
access to selected workstations or smartphones, also aids
authentication. Two-factor authentication means that two
types of authentication are required in combination, such
as a smart card plus a PIN (Personal Identification Number)
or a password plus a controlled network location.

The second component of Access Control is
Authorization, which enables the user to access the com-
puter systems, applications, and data necessary for their
job function. A researcher is authorized to access data
only for patients in their study. A physician is authorized
to order lab tests and medications in a CPOE
(Computerized Physician Order Entry) system for
patients under his care.

 (b) Audit Controls require computer systems to log activity,
such as who viewed or modified a patient record, protect
the audit logs from alteration and make the audit logs
available for inspection.

 (c) Integrity Controls consist of implementing policies and
procedures to ensure that e-PHI is not improperly altered
or destroyed.

 (d) Transmission security refers to measures taken to pre-
vent unauthorized access to e-PHI when transmitted
over a network. Data encryption is a must, either by
using a VPN (Virtual Private Network) or a point-to-
point protocol such as SSL (Secure Sockets Layer).
Computer systems first exchange encryption keys and
then use those keys to scramble the data during transmis-
sion. Firewalls between organizations ensure that only
authorized computer systems of Business Associates can
receive e-PHI.

 The Common Rule

The Common Rule is a 1981 rule of ethics (revised in 2018)
regarding biomedical and behavioral research involving
human subjects in the United States [61]. It establishes the
regulations governing Institutional Review Boards for over-
sight of human research through the Department of Health
and Human Services Title 45 CFR 46 (Public Welfare)
Subparts A, B, C, and D. The Common Rule is the baseline
standard of ethics by which any government-funded research
in the US is held; nearly all academic institutions hold their
researchers to these statements of rights regardless of
funding.

The main elements of the Common Rule [62] include
requirements for assuring compliance by research institu-
tions, requirements for researchers’ obtaining, waiving, and
documenting informed consent, and requirements for
Institutional Review Board (IRB) membership, function,
operations, review of research, and record keeping. The
Common Rule includes additional protections for certain
vulnerable research subjects: for pregnant women, in vitro
fertilization, and fetuses, plus additional protections for pris-
oners and children.

S. N. Murphy and J. G. Klann

https://doi.org/10.1007/978-3-030-93765-2_17

153

 Malicious Attacks

The HIPAA Security Rule obligates the organization to pro-
tect e-PHI against reasonably anticipated threats. One such
threat is a brute force attack, which consists of the attacker
trying to guess an encryption key or a password by trying
many different combinations until one works. The length of
the key or password determines how long it will take an
unauthorized party to guess correctly—the longer the key,
the better.

In the Man-in-the-middle attack, the attacker inserts a
malicious computer system on the network somewhere
between two systems exchanging data. The system in the
middle acts as a router, receiving and retransmitting data, but
it also copies or even alters the data packets as they pass
through, potentially compromising e-PHI or stealing pass-
words, without either legitimate computer system realizing
that anything is wrong.

Malicious actors may exploit weaknesses in computer
applications and operating systems to place their own soft-
ware on a computer, which can open e-PHI to the intruder.
Two of the most common exploits, buffer overflow, and code
injection, are described below.

The buffer overflow attack sends the target system a larger
data packet than it expects. The computer system accepts the
packet into a reserved area of memory, called a buffer. The
extra data in the super-sized packet exceeds the buffer size,
writing the extra data past the end of the buffer into an area
of memory used by executable code. Later, the computer
executes the attacker’s code, thinking it is the original code
that was overwritten, and the attacker’s code can do anything
it wants to on the target system.

In the code injection attack, the malicious actor puts exe-
cutable code into the input data fields of an application. The
attacker surrounds the code with special “escape characters”
that cause subroutines within the computer application to
end their intended operation prematurely and misinterpret
the rest of the input as code to execute. For example, an
application might insert user input directly into an SQL
statement sent to the database for execution. An SQL injec-
tion attack might answer an MRN prompt with “; SELECT *
FROM ALL_USERS;” The “;” tells the database query
engine to start a new command, and the select statement
returns a list of all database accounts to the attacker.

 The Federal Information Security Management
Act (FISMA)

The Federal Information Security Management Act (FISMA)
is a United States federal law passed as part of the
E-Government Act of 2002 [63]. It set the requirements for

each federal agency to create, document, and implement pro-
grams that ensure security for the agencies’ data and the sys-
tems that support the agencies’ operations and assets,
creating documented programs to use for securing said agen-
cies’ data and the systems they use for their operations and
assets. Many federal research programs must obtain FISMA
Authority to Operate (ATO) when participating in govern-
ment Contracts or “Other Transaction” funding mechanisms.
FISMA aims to prevent unauthorized access, use, disruption,
modification, or destruction of information and information
systems and requires a “FISMA boundary” around the soft-
ware systems managing the data for the federal research pro-
gram. By preventing misuse or attacks on the data and
software, confidentiality, integrity, and availability are
ensured. These systems must obtain an ATO to authorize sys-
tem processing before and after operations begin, signifying
the systems have detailed security plans, assigned security
responsibilities to appropriate officials, and regularly
reviewed the systems’ security mechanisms.

 De-identified Data

The HIPAA Security Rule only applies to e-PHI, namely
data that a third party can identify as belonging to a specific
individual. HIPAA specifies 18 identifiers of an individual,
such as name, social security number, address, certain dates,
and implanted device serial numbers. You can anonymize or
deidentify e-PHI by removing all of these identifiers. The
modified data set is not e-PHI and is not subject to HIPAA
regulations. As discussed in the HIE section earlier, this
allows organizations to share de-identified data sets for
research purposes.

When in doubt, seek out the advice of your organization’s
HIPAA Compliance Officer or IT Security Officer. They can
help interpret and advise on security regulations for
e-PHI. The consequences of a mistake can be devastating.
The HITECH Act of 2009 provides penalties for negligence
leading to an e-PHI breach that can add up to millions of dol-
lars. Major breaches of security, defined as unauthorized
access to 500 or more unencrypted patient records, requires
notification of the local media and reporting the breach to the
HHS, where the breach will be listed on the HHS public
internet site, sometimes referred to as “The Wall of Shame”
[64].

 Emerging Trends

As this chapter is being written, four emerging technologies
appear to capture the most press and excitement. Only time
will tell if they prove to be fruitful. The NoSQL database is

10 Information Technology Systems

154

considered to be a cheap, scalable solution that will become
highly competitive with the relational database that is cur-
rently the mainstay of data analytics. Although that destina-
tion is premature, it clearly will open new worlds for
extracting data from documents that could not be performed
in a scalable manner 10 years ago.

The “App store for health” is another emerging trend that
holds promise for opening the user interface of the electronic
healthcare system to novel ways of presenting data and pro-
viding decision support. Such marketplaces allow Apps to be
bought and sold to accommodate niche needs throughout the
system by a large workforce of developers.

Big Data represents a third emerging trend, with sensors
on the body collecting massive amounts of data. The ability
to sift through the data to extract insights will define much of
how we view physiology in the future.

Data Enclaves, especially on the cloud, is a fourth
emerging trend [65]. The Data Enclave provides a release
of data, often with PHI, into a computing environment that
has been pre-loaded with programming tools and libraries.
However, the networking configuration does not allow the
data to travel out of a firewall boundary around the Enclave.
The data can be viewed (often on a Virtual Machine) but
not removed.

 Summary

Information technology is how all clinical informatics is
ultimately expressed. The knowledge one has on the
details of IT will figure into many implementation deci-
sions. Data optimization, program efficiency, and atten-
tion to security will contribute greatly to the success of
the informatician.

 Query Tools and Techniques: Resources

We have attempted to include relevant resources (includ-
ing websites, articles, and books) in the References section
when possible. However, we also wanted to highlight the
following resources for query tools and common data
models:

• Patient-centered Outcomes Research Network: https://
pcornet.org/resources/

• National COVID Cohort Collaborative: https://covid.
cd2h.org/n3c

• Informatics for Integrating Biology and the Bedside:
https://www.i2b2.org/software

• Observational Health Data Science and Informatics:
https://www.ohdsi.org/software- tools/

 Questions for Discussion

 1. Clinical Data Warehouses store structured data in various
Common Data Models (CDMs) and homegrown data
models. What data models have your organization
adopted or considered, and what economic and data con-
siderations led to that decision?

 2. If you were an informatics director tasked with develop-
ing software to build interactive reports on the various
data facts in the hospital clinical data warehouse (e.g., the
prevalence of uncontrolled diabetes over time), what pro-
gramming language and software development method-
ology would you choose? Would you instruct your team
to write the program as a series of SQL queries or use a
higher-level language like Java?

 3. In designing a physical network for a new informatics
research lab, what key decisions must be made around
network topology and network architecture? Draw sev-
eral possible network architecture diagrams and discuss
the pros and cons of each.

 4. Imagine your organization wants to join a popular clinical
data research network and participate in federated que-
ries. What do you think are the most important consider-
ations in ensuring that the shared data are appropriately
de-identified and patient identity remains protected?
What data sources would you use (e.g., notes, flowsheets,
problem lists, etc.), and how would you think through
designing an ETL process?

 5. You have been awarded a federal contract to manage the
data from a new clinical study sponsored by the
NIH. What are the expected FISMA requirements you
will need to adhere to within your “FISMA boundary?”

Acknowledgements Thanks to Jim Meeks-Johnson, MA, for his
important contributions to the first edition of this chapter. His knowl-
edge of network architecture and software design were invaluable in
preparing both editions of the chapter.

References

 1. Ware H, Mullett CJ, Jagannathan V. Natural language processing
framework to assess clinical conditions. J Am Med Inform Assoc.
2009;16:585–9.

 2. Cook JA, Collins GS. The rise of big clinical databases. Br J Surg.
2015;102:e93–101.

 3. Kimball R. The data warehouse toolkit: practical techniques for
building dimensional data warehouses. New York: Wiley; 1996.

 4. Livne OE, Schultz ND, Narus SP. Federated querying architecture
with clinical & translational health IT application. J Med Syst.
2011;35:1211–24.

 5. Overview—FHIR v4.0.1 [Internet] [cited 11 Aug 2021]. Available
from: https://www.hl7.org/fhir/overview.html

 6. Health and Human Services Department. 21st Century Cures
Act: interoperability, information blocking, and the ONC Health

S. N. Murphy and J. G. Klann

https://pcornet.org/resources/
https://pcornet.org/resources/
https://covid.cd2h.org/n3c
https://covid.cd2h.org/n3c
https://www.i2b2.org/software
https://www.ohdsi.org/software-tools/
https://www.hl7.org/fhir/overview.html

155

IT Certification Program [Internet]. Fed Regist. 2020;25642–961.
Available from: https://www.federalregister.gov/d/2020- 07419

 7. Date CJ. An introduction to database systems: International edition.
8th ed. Upper Saddle River, NJ: Pearson; 2004.

 8. Chamberlin DD. Early history of SQL. IEEE Ann Hist Comput.
2012;34:78–82.

 9. Codd EF. A relational model of data for large shared data banks.
Commun ACM 1983;26:64–9.

 10. Codd EF. Further normalization of the data base relational model.
Data base systems, vol. 6. Englewood Cliffs, NJ: Prentice-Hall;
1972. p. 33–64.

 11. Nadkarni PM, Brandt C. Data extraction and ad hoc query of
an entity-attribute-value database. J Am Med Inform Assoc.
1998;5:511–27.

 12. Murphy SN, Weber G, Mendis M, Gainer V, Chueh HC, Churchill
S, et al. Serving the enterprise and beyond with informatics for inte-
grating biology and the bedside (i2b2). J Am Med Inform Assoc.
2010;17:124–30.

 13. BigQuery standard SQL [Internet] [cited 13 Aug 2021]. Available
from: https://cloud.google.com/bigquery/docs/reference/
standard- sql/migrating- from- legacy- sql

 14. Amazon Redshift SQL [Internet]. Available from: https://docs.aws.
amazon.com/redshift/latest/dg/c_redshift- sql.html

 15. Sack J. Azure SQL databases compatibility with
MSSQL Server [Internet] [cited 13 Aug 2021].
Available from: https://azure.microsoft.com/en- us/blog/
default- compatibility- level- 140- for- azure- sql- databases/

 16. Bowie J, Barnett GO. MUMPS—an economical and efficient time-
sharing system for information management. Comput Programs
Biomed. 1976;6:11–22.

 17. InterSystems IRIS Data Platform 2021.1 [Internet] [cited 23 Aug
2021]. Available from: https://irisdocs.intersystems.com/irislatest/
csp/docbook/DocBook.UI.Page.cls

 18. Ghemawat JDS. MapReduce: simplified data processing on large
clusters. In: 6th symposium on operating systems design and imple-
mentation. p. 137–49.

 19. Apache Hadoop [Internet] [cited 13 Aug 2021]. Available from:
https://hadoop.apache.org/

 20. Neo4J Graph Database Platform [Internet] 2020 [cited 13 Aug
2021]. Available from: https://neo4j.com/

 21. Van de Velde R, Degoulet P. Clinical information systems: a
component- based approach. New York: Springer; 2003.

 22. Mandl KD, Mandel JC, Murphy SN, Bernstam EV, Ramoni RL,
Kreda DA, et al. The SMART Platform: early experience enabling
substitutable applications for electronic health records. J Am Med
Inform Assoc. [Internet]. 2012. Available from: http://jamia.bmj.
com/content/early/2012/03/16/amiajnl- 2011- 000622

 23. Mandel JC, Kreda DA, Mandl KD, Kohane IS, Ramoni RB. SMART
on FHIR: a standards-based, interoperable apps platform for elec-
tronic health records. J Am Med Inform Assoc. 2016;23:899–908.

 24. Klann JG, Mendis M, Phillips LC, Goodson AP, Rocha BH,
Goldberg HS, et al. Taking advantage of continuity of care docu-
ments to populate a research repository. J Am Med Inform Assoc.
2015;22:370–9.

 25. Visweswaran S, Becich MJ, D’Itri VS, Sendro ER, MacFadden D,
Anderson NR, et al. Accrual to clinical trials (ACT): a Clinical and
Translational Science Award Consortium Network. JAMIA Open.
2018;1:147–52.

 26. Klann JG, Phillips LC, Herrick C, Joss MAH, Wagholikar KB,
Murphy SN. Web services for data warehouses: OMOP and
PCORnet on i2b2. J Am Med Inform Assoc. 2018;25:1331–8.

 27. OHDSI Data Network 2020 [Internet] [cited 13 Aug 2021].
Available from: https://www.ohdsi.org/web/wiki/doku.
php?id=resources:2020_data_network

 28. Hripcsak G, Duke JD, Shah NH, Reich CG, Huser V, Schuemie MJ,
et al. Observational health data sciences and informatics (OHDSI):
opportunities for observational researchers. Stud Health Technol
Inform. 2015;216:574–8.

 29. PCORnet Common Data Model (CDM) [Internet] [cited
14 Aug 2021]. Available from: http://www.pcornet.org/
pcornet- common- data- model/

 30. Klann JG, Buck MD, Brown J, Hadley M, Elmore R, Weber GM,
et al. Query health: standards-based, cross-platform population
health surveillance. J Am Med Inform Assoc. 2014;21:650–6.

 31. McDonald CJ, Overhage JM, Barnes M, Schadow G, Blevins
L, Dexter PR, et al. The Indiana Network for Patient Care: a
working local health information infrastructure. Health Aff.
2005;24:1214–20.

 32. Collins FS, Hudson KL, Briggs JP, Lauer MS. PCORnet: turning a
dream into reality. J Am Med Inform Assoc. 2014;21:576–7.

 33. Platt R, Carnahan RM, Brown JS, Chrischilles E, Curtis LH,
Hennessy S, et al. The U.S. Food and Drug Administration’s Mini-
Sentinel program: status and direction. Pharmacoepidemiol Drug
Saf. 2012;21 Suppl 1:1–8.

 34. NIH makes first infrastructure awards to support research on post
COVID conditions [Internet]. 2021 [cited 16 Aug 2021]. Available
from: https://www.nih.gov/about- nih/who- we- are/nih- director/
statements/nih- makes- first- infrastructure- awards- support- research-
post- covid- conditions

 35. Raisaro JL, Troncoso-Pastoriza JR, Misbach M, Sousa JS,
Pradervand S, Missiaglia E, et al. MedCo: enabling secure and
privacy-preserving exploration of distributed clinical and genomic
data. IEEE/ACM Trans Comput Biol Bioinform. 2019;16:1328–41.

 36. Witten IH, Frank E, Hall MA, Pal C. Data mining: practical
machine learning tools and techniques (Morgan Kaufmann series
in data management systems). 4th ed. San Francisco, CA: Morgan
Kaufmann; 2016.

 37. Hastie T, Tibshirani R, Friedman J. The elements of statistical
learning: data mining, inference, and prediction (Springer series in
statistics). 2nd ed. New York: Springer; 2016.

 38. Bramer M. Principles of data mining. 4th ed. London: Springer;
2020.

 39. Linden G, Smith B, York J. Amazon.com recommendations:
item-to-item collaborative filtering. IEEE Internet Comput.
2003;7:76–80.

 40. Klann J, Schadow G, McCoy JM. A recommendation algorithm for
automating corollary order generation. AMIA Annu Symp Proc.
2009;333–7.

 41. Carter JS, Brown SH, Erlbaum MS. Initializing the VA medication
reference terminology using UMLS metathesaurus co-occurrences.
Proc AMIA Symp. 2002;116–20.

 42. Estiri H, Strasser ZH, Murphy SN. Individualized prediction of
COVID-19 adverse outcomes with MLHO. Sci Rep. 2021;11:5322.

 43. Mantri N. Applications of autoencoders [Internet]. OpenGenus IQ:
computing expertise & legacy. 2019 [cited 16 Aug 2021]. Available
from: https://iq.opengenus.org/applications- of- autoencoders/

 44. Miotto R, Li L, Kidd BA, Dudley JT. Deep patient: an unsupervised
representation to predict the future of patients from the electronic
health records. Sci Rep. 2016;6:26094.

 45. Kahn MG, Callahan TJ, Barnard J, Bauck AE, Brown J, Davidson
BN, et al. A harmonized data quality assessment terminology and
framework for the secondary use of electronic health record data.
eGEMs [Internet]. 2016;4. Available from: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC5051581/

 46. Klann JG, Weber GM, Estiri H, Moal B, Avillach P, Hong C, et al.
Validation of an internationally derived patient severity phenotype
to support COVID-19 analytics from electronic health record data.
J Am Med Inform Assoc [Internet]. 2021. Available from: https://
doi.org/10.1093/jamia/ocab018

 47. The OSI model’s seven layers defined and functions explained
[Internet]. 2015. Available from: https://support.microsoft.com/
kb/103884.

 48. Booch G, Rumbaugh J, Jacobson I. The unified modeling lan-
guage user guide (Object technology series). 2nd ed. Boston, MA:
Addison-Wesley; 2005.

10 Information Technology Systems

https://www.federalregister.gov/d/2020-07419
https://cloud.google.com/bigquery/docs/reference/standard-sql/migrating-from-legacy-sql
https://cloud.google.com/bigquery/docs/reference/standard-sql/migrating-from-legacy-sql
https://docs.aws.amazon.com/redshift/latest/dg/c_redshift-sql.html
https://docs.aws.amazon.com/redshift/latest/dg/c_redshift-sql.html
https://azure.microsoft.com/en-us/blog/default-compatibility-level-140-for-azure-sql-databases/
https://azure.microsoft.com/en-us/blog/default-compatibility-level-140-for-azure-sql-databases/
https://irisdocs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls
https://irisdocs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls
https://hadoop.apache.org/
https://neo4j.com/
http://jamia.bmj.com/content/early/2012/03/16/amiajnl-2011-000622
http://jamia.bmj.com/content/early/2012/03/16/amiajnl-2011-000622
https://www.ohdsi.org/web/wiki/doku.php?id=resources:2020_data_network
https://www.ohdsi.org/web/wiki/doku.php?id=resources:2020_data_network
http://www.pcornet.org/pcornet-common-data-model/
http://www.pcornet.org/pcornet-common-data-model/
https://www.nih.gov/about-nih/who-we-are/nih-director/statements/nih-makes-first-infrastructure-awards-support-research-post-covid-conditions
https://www.nih.gov/about-nih/who-we-are/nih-director/statements/nih-makes-first-infrastructure-awards-support-research-post-covid-conditions
https://www.nih.gov/about-nih/who-we-are/nih-director/statements/nih-makes-first-infrastructure-awards-support-research-post-covid-conditions
https://iq.opengenus.org/applications-of-autoencoders/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5051581/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5051581/
https://doi.org/10.1093/jamia/ocab018
https://doi.org/10.1093/jamia/ocab018
https://support.microsoft.com/kb/103884
https://support.microsoft.com/kb/103884

156

 49. Hirsch F, Kemp J, Ilkka J. Mobile web services: architecture and
implementation. Chichester: Wiley; 2007.

 50. Richardson L, Ruby S. RESTful web services. Farnham: O’Reilly;
2008.

 51. Fielding RT. Architectural styles and the design of network-based
software architectures [PhD]. Taylor R, editor. University of
California, Irvine; 2000.

 52. Orfali R. Client server survival guide. New York: Wiley; 1999.
 53. An overview of the ice platform 2015 [Internet]. 2015. Available

from: http://zeroc.com/overview.html
 54. McConnell S, McConnell SM, McConnell SC. Code complete: a

practical handbook of software construction. Microsoft; 1993.
 55. Gamma E, Helm R, Johnson RE, Vlissides J. Design patterns: ele-

ments of reusable object-oriented software. New York: Addison-
Wesley; 2015.

 56. Hutton DM. Clean code: a handbook of agile software crafts-
manship. Kybernetes. 2009;38:1035. Available from: https://doi.
org/10.1108/03684920910973252.

 57. Martin RC. Clean code: a handbook of agile software craftsman-
ship. Upper Saddle River, NJ: Prentice-Hall; 2009. £27.99, ISBN:
9-780-13235-088-4

 58. Beck K, Andres C. Extreme programming explained: embrace
change. Upper Saddle River, NJ: Pearson; 2005.

 59. Raymond ES. The cathedral & the bazaar: musings on linux and
open source by an accidental revolutionary. Sebastopol, CA:
O’Reilly; 2001.

 60. Health and Human Services Department. Modifications to the
HIPAA privacy, security, enforcement, and breach notification

rules under the health information technology for economic and
clinical health act and the genetic information nondiscrimination
act; other modifications to the HIPAA rules [Internet]. Fed Regist.
2013;5565–702. Available from: https://www.federalregister.
gov/d/2013- 01073

 61. Department of Homeland Security, Department of Agriculture,
Department of Energy, National Aeronautics and Space
Administration, Department of Commerce, Social Security
Administration, et al. Federal policy for the protection of human
subjects. Final rule. Fed Regist. 2017;82:7149–274.

 62. Korenman SG, Shipp AC. Teaching the responsible conduct of
research through a case study approach: a handbook for instruc-
tors. Washington, DC: Association of American Medical Colleges;
1994.

 63. Rodrigues JJPC, de la Torre I, Fernández G, López-Coronado
M. Analysis of the security and privacy requirements of cloud-
based electronic health records systems. J Med Internet Res.
2013;15:e186.

 64. U.S. Department of Health & Human Services Breach Portal:
breach of unsecured protected health information [Internet] [cited
17 Aug 2021]. Available from: https://ocrportal.hhs.gov/ocr/breach/
breach_report.jsf

 65. Al-Qahtani MS, Farooq HM. Securing a large-scale data center
using a multi-core enclave model [Internet]. In: 2017 European
modelling symposium (EMS). 2017. Available from: https://doi.
org/10.1109/ems.2017.45.

S. N. Murphy and J. G. Klann

http://zeroc.com/overview.html
https://doi.org/10.1108/03684920910973252
https://doi.org/10.1108/03684920910973252
https://www.federalregister.gov/d/2013-01073
https://www.federalregister.gov/d/2013-01073
https://ocrportal.hhs.gov/ocr/breach/breach_report.jsf
https://ocrportal.hhs.gov/ocr/breach/breach_report.jsf
https://doi.org/10.1109/ems.2017.45
https://doi.org/10.1109/ems.2017.45

	10: Information Technology Systems
	Introduction
	Data and Databases
	Getting Data
	Data Sources
	Interoperability: Mapping and ETL
	Data Representation

	Storing Data (Databases)
	Relational Databases
	Database Schema Design
	Cloud Database Providers
	Database Integrity and Performance

	Non-relational Databases (NoSQL)

	Using Data
	Health Information Systems
	Data Warehouses
	Health Information Exchange
	Knowledge Discovery and Data Mining (KDDM)
	Data Quality

	Networks and Network Architecture
	Networks
	Network Topology
	Seven-Layer Network Model
	Network Speed

	Network Architecture
	Architectural Diagrams
	Application Architecture
	Non-functional Requirements
	Integration and Interfaces

	Software, Computer Languages, and Programming
	Data Types
	Programming
	Database Programming
	Software Development
	Object-Oriented vs. Procedural Programming
	Control Structures
	Compiled and Interpreted Languages

	Software Design Considerations
	Code Modularity, Reuse, and Performance
	Methodology and Quality Assurance
	Other Considerations

	Security
	The Health Insurance Portability and Accountability Act
	The Common Rule
	Malicious Attacks
	The Federal Information Security Management Act (FISMA)
	De-identified Data

	Emerging Trends
	Summary
	Query Tools and Techniques: Resources
	Questions for Discussion
	References

