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Abstract. The inductive programming system WILLIAM is applied
to machine learning tasks, in particular, centralization, outlier detec-
tion, linear regression, linear classification and decision tree classifica-
tion. These examples appear as a special case of WILLIAM’s general
operation of trying to compress data without any special tuning.
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1 Introduction

Machine learning (ML) techniques and applications have revolutionized the
world in recent decades, mostly promising to learn by themselves from data,
as opposed to hand-crafted algorithms and feature detectors from earlier times.
However, the term “learning”, just as many other Al terms, has turned out to
be euphemistic and exaggerating, referring mostly to parameter optimization
within a fixed representation, and only vaguely related to human learning whose
breadth and scope has remained unmatched. In the AGI context it therefore
appears to be important to make machine learning truly general, thereby boost-
ing its success even more.

Since various ML algorithms utilize different objective functions the first step
is to identify a common optimization goal. Indeed, the minimum description
length (MDL) principle has emerged to be a promising candidate [1,7]:

“The goal of statistical inference may be cast as trying to find regularity
in the data. ‘Regularity’ may be identified with ‘ability to compress.” MDL
combines these two insights by viewing learning as data compression: it
tells us that, for a given set of hypotheses H and data set D, we should try
to find the hypothesis or combination of hypotheses in H that compresses
D most.” (p. 8 in [1])

A. Franz—Independent researcher.

© Springer Nature Switzerland AG 2022
B. Goertzel et al. (Eds.): AGI 2021, LNAT 13154, pp. 75-85, 2022.
https://doi.org/10.1007/978-3-030-93758-4_9


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93758-4_9&domain=pdf
http://orcid.org/0000-0003-2255-2431
https://doi.org/10.1007/978-3-030-93758-4_9

76 A. Franz

Unfortunately, applications of MDL have been mostly limited to the selection
of ML models and parameter numbers, including meta-parameter selection as in
AutoML, failing to break out from a given representation space into a broader
set of algorithmic data descriptions. The fact that such a widening could be
important for the generalization of machine learning heading toward AGI has
long been suggested by the father of algorithmic probability, Ray Solomonoff
[8,9]. However, these suggestions did not go beyond theory, bringing forth a
long-standing central problem for AGI: the difficulty of making inference both
general and efficient. To the best of my knowledge, apart from the present paper,
the only attempt of going beyond theory and realizing machine learning by means
of a general compression algorithm was done just recently, using a novel set of
techniques for computing lower bounds on algorithmic probability based on the
Coding theorem and Block Decomposition methods [5].

This paper explores the abilities of WILLIAM [4] — an inductive program-
ming method based on the theory of incremental compression (IC) [3] — to deal
with a set of simple machine learning problems. In Sect.2 a short overview of
WILLIAM’s novel aspects is given followed by the discussion of its application to
data centralization, outlier detection, linear regression, linear classification and
decision tree classification.

2 Overview of the Algorithm

WILLIAM’s core functionality is given by an inductive programming algorithm
already described in [4], albeit with several major improvements. Most impor-
tantly, the data representation has moved up from trees to directed acyclic graphs
(DAGS), enabling the reuse of previously computed values. Further, the graph
is bipartite (see figures below), consisting of operator nodes and value nodes
(denoted by a box). Another innovation is the principle that any data used by
the algorithm has to be computed by the algorithm itself. For example, even
integers are not “given for free”, except for the integer 1 (called vacuum), all
other integers have to be computed using the given operators.

WILLIAM’s main operation is to implement IC, i.e. given a data string x
to find a description by a composition of functions, z = fi (f2 (--- fs (15))), by
searching for stacked autoencoders. In particular, for a given residuum r;,_1 a
pair of functions (f;, f/) is searched such that r;_1 = f; (r;), where r; := f! (r;_1)
and I (f;) +1(r;) <l(ri—1), i.e. compression is achieved at every step (z = ro).
The f; are called features and f! descriptive maps. One of the main results is
that the (prefix) Kolmogorov complexity K (z) can be approximated in this way,
when picking the shortest possible feature f at every step:

Zl )+ K (rs) + O (s-logl(x)) (1)

In practice, in order to bound the search for descriptive maps, the shortest
autoencoders, i.e. the shortest sum I (f;) + 1 (f/) is searched, in compliance with

computable IC (see Greedy-ALICE [3, Chapter 4.1]).
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In order to apply the introduced notions to a DAG, a residual is represented
by a cross section, defined as a set of value nodes separating the graph. The
algorithm takes a set of operators and tries to attach them to the current resid-
ual cross section (=target cross section at start), computing new values on the
way. Attaching nodes from above, i.e. using the residual in order to compute new
values from it, corresponds to the descriptive map (e.g. len, getitem, urange and
repeat operators in Figs. 3B and 1). Attaching nodes from below entails an inver-
sion of the involved operators and corresponds to parts of a feature (e.g. setitem
operator in Fig. 1). Cycles can be introduced in this way, but are removed once
the graph is cut at its so-called bottleneck, defined as the shortest cross section.
For example, the sum of description lengths (DLs) of the bottleneck nodes in
Fig. 1 is smallest compared to all other possible cross sections. The cutting is
performed as soon as the bottleneck has a lower DL than the current residual

18
DL=12

bottleneck
cross section
DL=44 bits

urange

Fig. 1. The directed bipartite graph is cut at the most narrow cross section, called
the bottleneck (red, DL = 44 bits), leading to the shortest description of the target
cross section (blue, DL = 251 bits). The descriptive map, i.e. the graph from target to
bottleneck containing the len, getitem and urange operators are removed. The result is
displayed in Fig. 3C. DL denotes the default description length defined in paragraph
Default descriptions. (Color figure online)
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(the blue nodes in Fig. 1). At this point the bottleneck becomes the new residual
and the algorithm continues iterating ad infinitum. Additionally, values in nodes
can be replaced by other values in other nodes and propagated through the graph
(see e.g. Fig. 4F-H). The search for the shortest compressing autoencoder in this
way is exhaustive, i.e. all directed graphs are being constructed ordered by their
size, even though only those combinations leading to the solution are shown in
the figures.

Default Descriptions. A positive integer n € N is described by the Elias delta
code [2]. The length I(n) of the (default) description is given by FE(n) =
[logy(n)]| + 2 [logs (|logs(n)| +1)] + 1 bits. Including zero and negatives, an
integer n € Z has DL I(n) = E (2|n| + 1). Rational numbers z are described
by a pair of mantissa m € Z and exponent a € Z, x = m - 10%. Chars take
the fixed amount of 8 bits relating to the ASCII table. Strings s carry the DL
I(s) = E(|s]) +8|s| by describing their length |s| and then each char separately.
Similarly, for arrays, lists, tuples and sets their lengths are described following
the elementwise description of their contents.

3 Results

3.1 Centralization

Consider a set of one-dimensional data, x = {z1,...,z,} sampled from a Gaus-
sian X ~ N (p,0). Centralization refers to the subtraction of the sample mean
T = % Yoi, x; from every x;: o, = x; — &. This preprocessing step is meaningful
if 0 < p, i.e. the cluster center is a large number relative to the standard devia-
tion. Centralization transforms n large numbers x; into one large number z and
n small numbers .

This example consists of the target cross section x being an array of n = 1000
i.i.d. samples taken from N (143,1) and a precision of 4 decimals (Fig.2). As
described Sect. 2, all sorts of operators are attached to the target from above
and from below, leading to the computation of the sample mean (z) in Fig. 2A,
followed by an inversion of the add operator using that target x and the just com-
puted mean (z), i.e. the “error” is F = x— (z) (denoting elementwise subtraction
of (z) ~ 143 from the array x, Fig. 2B). Since the significand of the entries in x
have 7 digits and the error merely 4 the DL of the error is much lower than that
of the target, [ (E) < I(z). Finally, the mean operator is removed since it is part
of the descriptive map (during bottleneck cutting as in Fig.1). It was merely
helpful in computing the residual but does not belong to the description of the
target (Fig. 2C). The residual cross section consisting of one big number (z) and
n smaller numbers x — (z) is shorter, i.e. compression has been achieved.
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(A) (C)

mean

Fig. 2. Data centralization z — x — (z) performed by WILLIAM, shown as a series of
operators attached to target data array x.

3.2 Outlier Detection

Figure 3 shows a target cross section consisting of a list of 25 chars ‘a’ and a
single char ‘b’ at index 18 in the first value node, and the number 1 in the
second value node, also called vacuum node, since it is merely a helper node and
not to be compressed. The final residuum consists of leaves in Fig. 3C, i.e. the
value nodes 1, 26, ‘a’, 18 and ‘b’. Since the residuum’s DL is shorter than that
of the target (see also Fig. 1), compression has been achieved and the outlier ‘b’
has been filtered out. Note how the description of the data becomes meaningful
and interpretable after proper compression: a verbal description of the target
as “a list with length 26 consisting of letters ‘a’ with a letter ‘b’ at index 18”
corresponds to the retrieved leaf values.

.
[U (B) ['a',...,'a'] H —
H
at :
compression epe 1 compression

rate: 0% len urange .  rate: 80%

setitem

:
i compression
1 rate: 0%

getitem

o ¥ repest

Fig. 3. Outlier detection. (A) and (B) show how various operators are applied to the
blue target cross section, leading to a “cleaned” list consisting of chars ‘a’ only. (C)
The cleaned list is used to invert operator setitem yielding the index 18 and thar char
‘b’. (Color figure online)
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3.3 Linear Regression

Figure 4 shows how the target cross section consisting of = and y is compressed
incrementally. Through a series of steps the value nodes of the target x and y are
connected, hence instead of both being described independently ¥ is described in
terms of = which reduces the DL. Subplots (A)—(D) show how the numbers 1, 2,
4 and 16 are subtracted from y in order to centralize the data. As we have seen
in Subsect. 3.1, this process leads to compression: the residual is shorter than
the target [ (2o +2 4 ¢€)+1(16.0)+1 (x) < I(y)+!1(z). x is also a leaf, describing

. .
H H
H H

2 e e
H H

compression | compression ! compression

rate: 0.4% Z rate: 0.9% | rate: 6.0%

add

_4\. VS

*III rer

compression i compression
rate: 1.6% | rate: 2.6% add

2+ 14+ ¢

(F)

compression i compression i compression
rate: 12.4% ad : rate: 15.6% rate: 19.6%

add

A ﬂ_

add

24 | H THlte

N

Fig. 4. Linear regression performed by WILLIAM. z is an array of length n = 1000
with values ranging between —10 and 10 in steps of 0.2, € is an array of n i.i.d. samples
from the standard normal distribution A (0, 1) and y given by 2z + 18+ ¢ (see Fig. 7A).
The target is incrementally compressed.
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“itself”, neglecting the comparatively short description of the operators. Note
that there is no specialized optimization involved here. The numbers 1, 2, 4 and
16 are computed by using the add-operator applied to the existing value nodes,
e.g. 16 = add(8, 8), starting with the vacuum 1 (not shown in the figure). Subplot
(E) uses the value node z and subtracts it from the residual node 2z + 2 + e.
Overall the residual cross section (leaves) is shorter than the previous residual:
l(z)+l(x+2+€)+1(16.0) <1 (22 + 2+ €)+1(16.0)+1 (x). Subplot (F) shows
that the target node x is compressed further by subtracting it from the x +2+¢€
node. Note that x and y are treated completely equally as target nodes that are to
be compressed. There is no special meaning of “dependent” and “independent”
variables involved here as usually in regression tasks. Subplots (G) and (H)
achieve even more compression by replacing 16 to 17 to 18 and propagating this
change through the graph. Figure 7A visualizes how the various estimates (red
dashed lines) incrementally fit the data. These estimates are obtained by setting
all leaf arrays (=“errors”) to 0.

3.4 Linear Classification

o) ®
compression compression

rate: 4.0% add rate: 9.6% add
© )

compression compression
rate: 10.5% rate: 21%

add xor
r—4<1 | | YXOR (r—1<1) | F

prediction '\ Classification error

lessthan

add

Fig. 5. Classification performed by WILLIAM. y is an array of 2 classes, True and
False, color coded in Fig.7B. z is an array of i.i.d. samples taken from A (3.5,1) for
class True and from A (6.5,1) for class False.

Figure5 shows how an array of data x is “fitted” the array of classes y (see
Fig. 7B for the distribution of x). As before, subplots (A)—(C) centralize x. In
(D) a prediction p = (z —4 < 1) is generated and subtracted from the class
array by the elementwise xor-operator. Compression is achieved due to the fact
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that the error y XOR p contains True values only if the prediction goes wrong,
i.e. a few times in a good classifier. A boolean array with significantly fewer
True than False values has a shorter description than an array with a balanced
number of True’s and False’s, due to the following reason. There are (2) ways of
distributing k& True’s in an array of length n hence providing an index i of the
permutation together with k and n constitutes a full description of the array.
This permutation-based method is part of the default descriptions in WILLIAM.
In sum, compression in classification is achieved by replacing array of classes y
containing a balanced number of True’s and False’s by an unbalanced error array
having a shorter description.!

3.5 Decision Tree Classification

(A) o E)

al's','s',....! a['s','s',...,"v']
y ! Y
compression ! compression I
rate: 0% ! rate: 6.5%
H insert
pofar ] [ermT Rl [alsts's] [ale e v
lessthan i lessthan
[a[0.2,0.2,...,1.8]] [ 10 | [a[0.2,0.2,...,1.8]] [ 1o |
€ ' T

Fig.6. A first step of decision tree classification. The data is taken from Python’s
scikit-learn Iris Dataset of three different types of flowers, see Fig. 7C. The target cross
section (blue) consists of the flower classes setosa (‘s’), versicolour (‘v’), and virginica
(‘¢’) in array y. The al...] notation stands for arrays. The float array x denotes the
petal width factor. By applying the threshold 1.0 the setosa types (leaf a['s’, ‘s’...,'s’])
are separated from the other two types (leaf a[‘'c’, ‘¢’,...,*v’]). (Color figure onhne)

Figure 6 shows the first step in decision tree classification. In subplot (A), lessthan
creates a boolean array denoting petal widths smaller than 1. In subplot (B) the
insert-operator is inverted: it inserts the array a[‘s’, ‘s’..., ‘s’] into array a[“,...,”] of
empty strings at the indices denoted by the boolen array a[T,T...,F]. The remain-
ing indices are filled by a[‘c’, ‘c’,..., “v’]. As can be glanced from Fig. 7C all setosa
flowers have petal width <1 and all the others have petal width >1. Therefore,
setosa is separated from the rest by this decision tree step. This constitutes com-

pression since the original target y consists of all three types of flowers and the

' It can be shown that I ((})) +1 (k) +1(n) <nif k < n.
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permutation-based description is therefore longer due to the larger multinomial
coefficient (klnk ) as compared to two types of flowers in a['c’, ‘c’,...,'v’] and a
single type in a[‘s’, ‘s’...,‘s’]. Here only the first decision tree separation is shown
but it can be continued using other factors to separate the a['c’, ‘c’,...,*v’] array.
Note that neither the Gini coefficient nor any other particularities of decision
tree classification are used to perform this “training” step. There is no need for
measuring the dispersion of values by the Gini coefficient since the permutation-
based code automatically becomes shorter if there are fewer different classes

present in an array and/or the classes are not represented uniformly.

(A) Linear regression (B) Linear classification

-15 -10 -5 0 5 10 15 -4 -2 0 2 4 6 8 10

(C) Decision tree classification
30 P

B setosa
I versicolor
I virginica

25

20

15 20 25 3.0
petal width

Fig. 7. (A) Estimates (red dashed lines) incrementally fit the linear regression data
(the letters (A)—(H) correspond the subplots of Fig. 4). (B-C) Distribution of data for
classification, the class is color coded. (Color figure online)

Discussion

In this paper we have demonstrated that various machine learning algorithms
can be viewed as performing data compression as has been suggested previously
in theory. In particular, their core functionality emerges as a special case of
WILLIAM’s general performance without being specifically tuned to these algo-
rithms. WILLIAM neither uses any specialized ML optimization nor any other
heuristics for that matter and is developed in a fully general fashion according
to IC theory. This generality enables WILLIAM to deal a wide range of tasks
beyond machine learning, as reported in [4]. Nevertheless, these examples had
to be rather simple mainly due to the following limitations.
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Limitations

Accumulation of description overhead Since IC proceeds greedily, there is no
mechanism for avoiding the accumulation of overhead, as discussed in [3]. In
particular, Eq. (1) entails an overhead of the order O (s-logi(zr)) where s is
the number of compression steps. For example, in the regression case, nothing
hinders the algorithm from keeping subtracting 1 from the target array achiev-
ing some compression at every step. Currently, such values are being replaced
by newly generated values and propagated through the graph (see Fig.4F-H,
where the value 16 is replaced by 17, since 17 has been previously generated by
add(16,1)). Even though this propagation solution helps combat the overhead
accumulation, it would be helpful to have theoretical guarantees for avoiding
overhead altogether.

Alternative Descriptions. In many cases, it is desirable to consider alternative
short descriptions of data. IC theory only shows how to search for some short
description, but not for several ones. One option is to search for many incremental
strands in parallel which would however put additional computational strain
on performance. A different option is to allow the lack of progress in further
compressing the first short description to guide the search for other descriptions
— a strategy apparently used by problem solving in the psychology of insight [6].
Again, theoretical guidance would be of great help in this endeavor.

No Reuse of Successful Functions. An important way of accelerating the algo-
rithm is to reuse successful, i.e. compressing combinations of operators. Cur-
rently, a DAG of operators can be used to define a composite operator, which
can be inserted an used just like a primitive operator. This makes our graph
a hypergraph — there can be graphs inside the nodes. However, it is unclear
which subgraph of a solution is to be encapsulated and how it is to be reused.
Essentially, this issue comes down to the non-trivial task of finding a theory of
memory and its retrieval.

Computing Power and Parallelization. On a positive note, while thinking
through many tasks over the last years, it appears that most interesting tasks do
not appear to demand steps requiring deeper graphs than 6 or 7 operators until
some compression is achieved. Currently, WILLIAM manages to search exhaus-
tively through graphs of depth 4-5 running on pure Python code. Rewriting core
parts on a faster language in the back end and parallelization could boost the
performance considerably.

Conclusion

If the discussed limitations can be overcome both in theory and practice the
results show a promising path to create a general algorithm for solving machine
learning problems and going beyond them.
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