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Abstract. AGI systems should be able to pursue their many goals autonomously
while operating in realistic environments which are complex, dynamic, and often
novel. This paper discusses the theory and mechanisms for goal generation and
management in Non-Axiomatic Reasoning System (NARS). NARS works to
accomplish its goals by performing executable actions while integrating feed-
back from its experience to build subjective, but useful, predictive and meaning-
ful models. The system’s ever-changing knowledge allows it to adaptively derive
new goals from its existing goals. Derived goals not only serve to accomplish
their parent goals but also represent independent motivation. The system deter-
mines how and when to pursue its many goals based on priority, context, and
knowledge acquired from its experience and reasoning capabilities.
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1 Introduction

Non-Axiomatic Reasoning System (NARS) is a general-purpose AI (AGI) system,
which means that it can accept and pursue arbitrary goals. The ability to pursue arbitrary
goals must be a fundamental aspect of AGI systems since they are meant to be capable
of “general” problem-solving similarly to humans; that is to say they should have the
ability to at least attempt to solve any problem they are presented with1. Indeed, a hall-
mark of any cognitive system’s intelligence is its capability to achieve its goals. In the
general sense, a system’s “goal” is simply a motivation for the orientation of its activi-
ties. The goal is an objective that the system is working towards, whether successfully
or not. It answers the question, “What is the system’s aim?”. Goals can be very specific
(e.g. “Pick up that apple”) or more general (e.g. “Be good”).

All AI systems may be considered as having at minimum one goal since each is
built to accomplish one or more tasks. AGI systems in particular will necessarily have
multiple different goals at the same time due to the complexity of their environments.
Although an AGI system’s initial “seed” goals are predefined by a user, the system will
invariably need to generate new goals (such as in subgoaling) in order to solve problems
autonomously. The system also needs to effectively manage its existing goal complex:
not all goals are equal, and certain goals may be more or less important depending on

1 A human (or other intelligent system) will not necessarily be able to achieve any arbitrary goal,
especially with limited knowledge and resources.
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context. Some goals will be actively pursued by the system, while others can lie dormant
for any period of time, depending on each goal’s desirability and relative priority. Goals
may be transient, existing in the system for only a short time (such as when the system is
completing a quick task), or persistent, existing in the system for a long time (possibly
eternally, over the system’s lifetime) [4,8].

2 Relevant Works

A useful AI system should exhibit autonomous behavior with respect to handling and
accomplishing its goals. In the simplest case, an automation program has a single goal
and one or more goal-specific actions available to it. Perhaps it responds to some stim-
ulus or is otherwise programmed to execute some action when a predefined condition
is met (e.g. “stamp the item when you detect it rolling past on the conveyor belt”), or
performs some domain-specific algorithm.

More sophisticated systems use subgoaling to deal with a goal that requires multiple
steps to achieve. When a goal cannot be achieved immediately, subgoals are derived
from it (using the system’s knowledge and backward chaining [4]) that may lead to its
achieving. This subgoaling process is recursive, creating a tree-structure of goals when
viewed graphically, as each subgoal may itself require further subgoaling [8]. The tree
bottoms out at its leaves, either with “atomic actions the system can execute, goals that
need no further subgoaling since they are already complete, or otherwise goals that
cannot be subgoaled further due to insufficient knowledge.

An AI should be able to handle multiple goals simultaneously, and that is where
things become complicated, since any cognitive system has only limited knowledge
and capabilities. While operating, the system needs to intelligently reason about both
its goals and what it knows about its environment to decide what actions to take. In
many system designs, goals are assumed to be orderable and/or compatible using some
priority ranking or planning, but this is not always a valid assumption to make as it is
not always possible to rank goals by “objective” importance. This autonomous goal-
managing capability of AI systems is a challenging problem and has been the target of
many efforts, some of which are addressed here.

Belief-Desire-Intention (BDI) systems are a classical approach towards modeling
autonomy with respect to goals. BDI is a term used to describe the separation of a
system’s internal knowledge: its beliefs (knowledge about itself and the world), desires
(latent goals), and intentions (active goals) [7]. This distinction is agreeable, but such
systems also tend to have the problem of assuming their goals to be static (in terms of
meaning) and orderable (in terms of priority).

Goal-Driven Autonomy (GDA) is a recent approach in AI where the system dynam-
ically selects, generates, and pursues novel (i.e. indirectly related) goals based on per-
ceived changes and discrepancies in its environment, ultimately helping the system to
achieve its goals more effectively. In [5], ARTUE escorts an ally in a strategy simulation
and derives a novel goal to fortify the area when an enemy appears. Although fortify-
ing the area is not a direct subgoal of escorting the ally, the goal is nonetheless useful
to the mission because it protects the AI system and the escortee; the goal is adap-
tively derived in response to unexpected environment changes (i.e. an enemy appearing
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nearby). MIDCA [6] is tasked to build houses in a block world, but a hidden arsonist
lights blocks on fire, hindering progress. The system derives goals to investigate and
eventually apprehend the arsonist, preventing further fires. The GDA systems’ ability
to reason about environment changes and generate goals in response to anomalous sit-
uations allows the systems to outperform traditional models not based on GDA.

MicroPsi [2] is an AGI system that executes actions based on its active motives,
which represent some events that the system desires to achieve or prevent. The system
creates its motives in response to its urge signals, which are produced internally by a
presupposed set of basic systemic needs (e.g. “competence”, “sustenance”, “rest”, etc.).
The system uses reward signals to indicate how the system’s current actions and the
changing state of the environment are impacting the satisfaction of the system’s urges,
providing feedback to the system about its success in the environment and allowing it
to plan its next actions accordingly.

3 NARS Overview

Non-Axiomatic Reasoning System (NARS) is a unified model of general intelligence,
where intelligence is defined by adaptation under an Assumption of Insufficient Knowl-
edge and Resources (AIKR). The system operates using a formal logic called Non-
Axiomatic Logic (NAL) which defines relationships between concepts and allows rea-
soning on them under uncertainty. The system is “non-axiomatic” in that its knowledge
does not represent the true and complete state of the world, but rather represents knowl-
edge about the world as based on the system’s accumulated experience. The represen-
tation language of NAL is called Narsese.

AIKR means NARS works in real-time with finite processing capacity while being
open to knowledge and tasks of any content. Under this assumption of resource and
knowledge restriction, NARS incrementally processes all of its many beliefs, goals, and
questions in parallel using its control mechanism. NARS absorbs information through
its input channels and revises its knowledge during the course of its operation to build
more reliable and useful internal models of the world. This can be considered a form of
adaptation and is usefully paired with executable operations that NARS can perform to
autonomously gain a richer understanding of its environment and pursue goals [9].

Similarly to the relevant works, NARS’ goals drive the operations it performs. The
system engages in common goal generation behaviors like subgoaling but is also unique
in that the system explores many potential goal solution paths in parallel and optimizes
these solution paths by reasoning on its existing beliefs and new incoming experience.
Additionally, there are not many restrictions on the content, meaning, and usefulness
of the goals themselves due to the flexibility of NARS’ logic and formal language. The
system can accept external goals via input, and also generates its own new goals based
on the content of its memory. As long as a goal remains desirable to the system and
there is no evidence to the contrary, it may continue to be pursued, while a completed
or very unimportant goal may be abandoned.

NARS’ goal complex changes throughout its lifetime as it adapts to its environment
and the system gains new experience. Indeed, throughout a very long lifetime, the sys-
tem may gain entirely new sets of goals and may no longer desire the goals with which
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it was initially programmed2. Successful self-control and autonomy in any AI system,
including NARS, depends on the system’s aptitude for generating and identifying useful
goals. The system must also holistically manage its overall goal complex, because goals
can interplay and in many situations it does not suffice to blindly pursue every goal at
the exact moment it arises. Some goals require long-term planning and execution, and
a NARS operating in an open environment could develop or acquire goals that conflict
with each other.

NARS’ internal memory can be visualized as a graph, where each node is some
concept, and edges between nodes are relationships between concepts. A concept is
named by a term (e.g. “cat”).

In NARS, a piece of information is represented by a Narsese sentence called judg-
ment, which consists of a statement and its corresponding truth-value. It has the follow-
ing format:

〈judgment〉 ::= [〈tense〉]〈statement〉. 〈truth-value〉

The statement represents a relationship between a subject concept and a predicate
concept (e.g. an inheritance statement “<S → P>” means S is a specialization of P ).
The truth-value is a pair of numbers (f, c) ∈ [0, 1] × (0, 1), where f is the frequency
(representing how positive or negative [true or false] the statement is according to the
system’s evidence), and c is the confidence (representing howmuch evidence the system
has to justify its assessment of frequency).

For example, to represent that you are very confident that “a dog is a type of ani-
mal”, a judgment can be written as “<dog → animal>. 〈1.0, 0.9〉”. This statement
is directly related to 3 concepts: dog, animal, and <dog → animal>. When a judg-
ment is first absorbed into NARS, new subject, predicate, and statement concepts are
created in the system’s memory (unless they already exist). Additional judgments of
the same content are accumulated as additional evidence within the corresponding con-
cept’s belief table and thus acquire stronger confidence values—the set of all these
accumulated judgments within the system’s memory make up the system’s beliefs.

A judgment is optionally associated with a timestamp representing when its truth-
value is valid; in that case, we can also call it an event. It represents temporal knowledge.

NARS operates by continually executing a working cycle, during which tasks and
beliefs are processed. Tasks are sentence containers, outside of the system’s memory in
a buffer. Sentence types that can be processed by NARS including judgment, question,
and goal. The exact mechanism depends on the specific NARS implementation, but in
general, during a given working cycle two sentences are selected for processing. Tasks
and other objects in the system’s memory have a decaying priority p ∈ [0, 1] value
that represents the object’s relative urgency compared to other objects of the same type;
priority can also be raised in various ways, allowing objects to compete for the system’s
time and resources. In each working cycle, the objects with the highest priority tend to
be selected for processing, whereas objects with the lowest priority are pruned from the
object container if it overflows [3].

2 This potential temporary nature of goals may be overcome by periodically re-inputting the
goals into NARS.



100 C. Hahm et al.

4 Goal Generation and Management

A goal in NARS is represented by a type of Narsese sentence called goal. It is essentially
a special piece of knowledge representing that NARS desires an event to occur (or not
occur) in the current moment. Similarly to how each concept in memory has a belief
table which holds accumulated judgments, every concept also has a desire table which
holds accumulated goals. A goal can either be contained in a task (in a buffer, ready to
be processed) or referred to as a desire (once it is integrated into the system’s memory).

New goals accumulate into desires of varying confidence which by extension drive
the executable operations that the system performs. A goal in NARS has the following
format:

〈goal〉 ::= 〈statement〉! 〈desire-value〉
Here, the statement is an event that is desired by the system to occur (or be pre-

vented) in the present moment, and NARS will actively work to achieve it.3

A desire-value is a pair of numbers (f, c) ∈ [0, 1]× [0, 1) that summarizes evidence
for and against the event being desirable to NARS (i.e. how desirable the event is).
Formally, desire-value is equivalent to the truth-value of a virtual judgment representing
the extent to which the event S implies NARS’ overall desired state D:

S ! 〈f, c〉 ⇐⇒ <S |⇒ D>. 〈f, c〉
Therefore, the frequency f represents the event’s desirability, and confidence c rep-

resents how confident the system is in its assessment of desirability.
A positive goal is an event (S) with a high desirability (near 1.0), where the system

wants to make S as positive (true) as possible in the present moment, because the event
S’s occurrence is sufficient for NARS’ overall desired state (D).

A negative goal is a negated event (¬S) with a high desirability (near 1.0), where
the system wants to make S as negative (false) as possible in the present moment. The
event S’s non-occurrence4 is sufficient for NARS’ overall desired state (D).

For example, if you wanted to give your NARS a goal to “open the door”, you could
express it as either a positive goal (“NARS wants the door to be open”) or a negative
goal (“NARS wants the door to be not closed”), respectively:

<{door} → [open]>! 〈1.0, 0.9〉 ¬<{door} → [closed]>! 〈1.0, 0.9〉
Given either of these goals, NARS will begin planning ways to open the door,

though positive goals are preferred since they are syntactically simpler.
Goal management in NARS is handled innately by the system’s design. The system

is constantly processing new information coming from its sensors and thinking about
what it already knows (i.e. reasoning on the information in its memory). The system’s
memory consists of concepts which contain collections of beliefs and desires. When
NARS selects a strong desire for processing, the system works to achieve it.

3 To represent events that are desired to occur in the future, we can simply add a temporal
condition to the goal.

4 Equivalently, the event ¬S’s occurrence.
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Like all tasks in NARS, goals have one of two origins: input or derived. An input
goal is assigned to the system from an external source (e.g. a user) through an input
channel, whereas a derived goal is derived internally by backward inference rules using
existing goals and beliefs as premises [8]. Either way, when a goal is selected for pro-
cessing for the first time by NARS, it undergoes initial processing in the form of revi-
sion. The content of the new goal is merged into its corresponding concept’s desire
table, keeping NARS’ overall assessment of the goal event’s desirability up-to-date (see
Algorithm 1).

Whenever it is subsequently selected by NARS again, the desire will undergo con-
tinued processing during which NARS may work to actively pursue it. A desire is
actively pursued by NARS according to the Decision-Making Rule:

d > Td

Where d ∈ (0, 1) is the event’s expected desirability, the expectation5 of its desire-
value (f, c) (where d = c×(f−0.5)+0.5). The system’s desire threshold, Td ∈ [0, 1.0],
is a personality parameter representing NARS’ cautiousness6.

When a desire exceeds the desire threshold, it may be considered an active goal that
NARS works to pursue - such a desire is like “intention” in BDI models, whereas those
which have low but non-zero desirability are like the latent “desire” in BDI. Usually, a
goal must be derived and accumulated many times before it reaches this threshold; that
is, the system has derived and accumulated lots of evidence that the goal in question
should be pursued, or alternatively the goal was input with high expected desirability
directly by a user.

During a given working cycle, when a desire should be pursued based on the
Decision-Making Rule, first the system checks if the goal event is already occurring
(as based on the value in its belief table) – in this case, the goal does not require fur-
ther action, and the system can move on to its next task. If the goal is not satisfied, the
system next checks if the goal itself is an executable operation (e.g. ⇑ walk, ⇑ jump,
⇑speak), and if so immediately executes that operation. If the goal is not an operation,
then the system will use related beliefs to derive new (potential) goals that, through
their achieving, may lead to the achieving of the original goal (see Algorithm 2).

The system derives new goals using the knowledge it has acquired from its lifetime
of experience, using a desire in backward inference with temporally related beliefs. If
NARS has an empirical belief that a desired event will occur after the occurrence of

Algorithm 1. Goal initial processing (Narsese pseudocode)
Require: NARS selects task G for processing for the first time
Require: G is a goal of form: 〈goal〉:: = 〈statement〉! 〈desire-value〉
1: SG ← 〈statement〉G
2: CG ← GetConcept(SG) � Get concept named by SG

3: Merge G into CG’s desire table � Keep concept’s desirability up-to-date

5 Expectation is an estimate of future frequency.
6 Although currently this threshold is a constant, in future implementations it can be treated as
a context-dependent variable.



102 C. Hahm et al.

some other events, then new goals for those precondition events will be derived. For-
mally, backward inference rule b derives new goal G′ from existing goal G and related
belief B, if and only if forward inference rule f derives JG (the judgment satisfying G)
from JG′ (the judgment satisfying G′) and B:

{G,B} 	bG
′ ⇐⇒ {JG′ , B} 	fJG

In this way, a derived goal G′ is derived initially as a potential subgoal of the orig-
inal goal G—the system derives G′ that, when achieved, may lead to achieving G.
However, the role of G′ in NARS is not restricted to subgoal of G. On the one hand,
it is possible that the achieving of G′ could also result in the achieving of other goals
or the discovery of new knowledge that could be helpful in the achieving of G. On
the other hand, G′ is derived using the system’s beliefs which (under AIKR) may be
incomplete or even incorrect, since the system can only know what it has learned so far
during its lifetime of experience; there is no guarantee that G′ is useful for G.

If the achieving of a derived goal G′ tends to garner outcomes that are favorable to
the system, G′ can be considered valuable in its own right, taking on a different role
independent from subgoal ofG. Conversely, the achieving ofG′ may ultimately end up
being irrelevant or even inhibitory to the achieving of G, but at the time of derivation it
is a reasonable guess. For these reasons, in NARS derived goal G′ is not managed as a
subgoal but is instead treated independently7 as a goal that must compete with the other
goals in the system for relevance and attention. Thus, derived goals are simply added to
the task buffer where they may be absorbed to compete with the system’s other goals.
This independent nature of motivations is referred to as the “functional autonomy of
motives” and is a phenomenon observed in humans [1].

Algorithm 2. Goal continued processing (Narsese pseudocode)
Require: G is a goal of form: 〈goal〉:: = 〈statement〉! 〈desire-value〉
Require: NARS selects desire G for continued processing
Require: Td is the system’s desire-threshold
1: d ← Expectation(〈desire-value〉G) � Get desirability of G
2: if d ≤ Td then return � Decision-Making Rule; stop if G is not desirable enough
3: SG ← 〈statement〉G
4: GN ← Answer (¬SG¿ ) � Get negative goal GN = ¬SG! 〈f1, c1〉
5: dN ← Expectation(〈desire-value〉GN ) � Get desirability of GN

6: if dN > d then return � Inhibition; stop if GN is more desirable than G
7: JG ← Answer (SG?); � Get judgment JG = SG. 〈f2, c2〉
8: e ← Expectation(〈truth-value〉JG) � Get truth expectation of JG

9: if e is positive then return � Stop processing if G is already achieved
10: if SG is an operation then Execute(SG) return � Execute if G is an operation
11: if No known sufficient precondition for SG then return � Stop if no beliefs related to G
12: B ← Predictive belief related to SG � e.g. <(E &/ ⇑op) /⇒ SG>.〈f3, c3〉
13: G′ ← Derive new goal {G, B} �b � e.g. (E &/ ⇑op)!〈f4, c4〉

7 Though a limited record is kept regarding its origins.
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The meaning and usefulness of each goal changes as a function of the system’s
experience, which continuously shapes the system’s many interacting conceptual rela-
tionships, goals, and activities. A system with tens of thousands changing conceptual
relations and constant streams of incoming sensorimotor experiences will derive and
accumulate many pieces of evidence for and against a goal. Evidence for goals should
be accumulated from across various beliefs, and kept up-to-date in the current moment
according to context and what is currently known.

This highlights the important distinction between treating a derived goal (G′) inde-
pendently versus treating it as a subgoal. When a derived goal is treated purely as a sub-
goal, its usefulness is limited in that the system manages it solely for the greater purpose
of achieving its corresponding supergoal. Many AI systems may try to pre-specify these
goals, or assume that achieving the subgoals is absolutely necessary or sufficient for the
achieving of the supergoal. However, under AIKR, the system cannot assume this is
always the case, since there may be a different solution path to achieving the supergoal
that doesn’t require the derived subgoal, and perhaps uses different subgoals entirely,
derived using very different concepts and knowledge. Conversely, treating derived goals
independently allows them to take on a usefulness (or uselessness) of their own, based
on their own merits. NARS treats goals independently by processing its many concepts
and goals in parallel using a probabilistic priority queue—every goal has a chance to
be processed in a given working cycle, and the system constantly takes in knowledge
from its experience buffers to keep its memory up-to-date. A derived goal’s usefulness
includes, of course, how well it helps to achieve the goal from which it was derived. If
the same goal is derived often without evidence to the contrary, it may gain extremely
high confidence and priority.

The types of goals that may be derived in NARS are also unique due to the system’s
extensive inference capabilities. Usually, the process of subgoaling is purely deduc-
tive, but NARS’ inference capabilities allow it to derive knowledge using induction,
abduction, and analogy between two statements. When using this type of knowledge in
backwards inference, the derived goal is essentially a guess – but an educated guess,
which can be justified by the system’s current knowledge.

NARS’ goal derivation capabilities allow the system to adaptively react to its envi-
ronment as a function of new experience gained. In the example in Fig. 1a, the NARS
begins with only one initial goal: touch the finish line. The system is given some back-
ground knowledge, including that it can jump to navigate around obstacles. During its
journey, the system encounters an obstacle and is obstructed. As a result, the system
generates and achieves a goal to jump over the obstacle, allowing the system to con-
tinue making progress towards its original goal of moving to the finish line.

As long as NARS was assigned some initial goal and has related knowledge to
infer new goals, the system will have multiple goals at any given time. Each goal’s
priority value denotes its urgency and is a factor in howmuch time the system will spend
trying to achieve it. Depending on the situation, certain goals should be prioritized over
others that may not be as relevant (e.g. when an AI robot’s battery is low, the goal to
find an electrical outlet to recharge is more relevant and should have high priority).
Furthermore, the system is finite and under AIKR does not have the time, resources,
or knowledge to achieve all goals fully or at once, especially as new goals can arrive
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Fig. 1. (a) NARS reaches the finish line by generating new goals to jump over obstacles. [https://
www.youtube.com/watch?v=iYHpk-JtIRQ], (b) A NARS vehicle dynamically handles goals that
suddenly become conflicting. [https://www.youtube.com/watch?v=sNLWVtfk5tA]

at any moment; instead, the system must efficiently pick from its many goals so as to,
over time, achieve them all to the system’s best extent.

The overall goal complex of NARS may be disjointed, in that some goals are quite
different from each other, and potentially even conflicting such achieving one makes it
more difficult or impossible to achieve another. In that case, NARS may be forced to
resolve conflicting goals at a moment’s notice. The example in Fig. 1b shows a NARS
car handling conflicting goals. The system is taught some simple background knowl-
edge and the fact that it can execute operations to drive forward (“⇑ drive”) and brake
(“⇑ brake”). The NARS is initially input with 2 reasonable goals: 1. drive forward,
and 2. don’t hit pedestrians. However, these goals become conflicting when NARS
encounters a pedestrian standing in the middle of the road. When the pedestrian appears
in front and NARS processes highly-desired goal #2, the system may derive evidence
that braking is desired (e.g.“⇑ brake! 〈1.0, 0.9〉”) since it will help the system to not hit
the pedestrian. The system could also derive evidence that preventing the execution of
⇑ drive is desired (e.g.“¬ ⇑ drive! 〈1.0, 0.9〉”), since executing ⇑ drive will result in
the failure of goal #2. These derivations working in tandem will encourage the NARS
to execute ⇑brake while inhibiting the NARS from executing ⇑drive.

5 Comparison and Conclusion

NARS is a real-time system that can accept and process new goals at any moment. How-
ever, AIKR implies there is no guarantee that a given goal can be achieved perfectly, or
at all. There may not be a way for the system to achieve the goal immediately, and the
path to achieving it may be uncertain (if the system lacks the knowledge) or impossible
(if the system lacks the resources or capabilities).

NARS works to achieve all of its goals to the best extent by combining and extend-
ing multiple aspects of AI goal management. Similarly to GDA, the system is goal-
driven and decides which goals to actively pursue based on desirability, priority, and the
system’s current beliefs. The system is adaptive, constantly incorporating new knowl-
edge into its memory, and the system’s goals change over time. NARS can also be
described as roughly following a BDI model, in that its beliefs are separate from its

https://www.youtube.com/watch?v=iYHpk-JtIRQ
https://www.youtube.com/watch?v=iYHpk-JtIRQ
https://www.youtube.com/watch?v=sNLWVtfk5tA
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goals, and its goals may be either actively pursued or latently desired. Such a distinc-
tion between active and latent desires becomes clearly necessary in the case of con-
flicting goals, where it may be necessary to suppress some goals for the achievement
of others. Similarly to MicroPsi’s appetitive and aversive goals [2], NARS also distin-
guishes between positive and negative goals, where the system desires to either achieve
or prevent an event respectively.

However, NARS is also quite different from other goal-driven AI. The system’s
flexible formal language and various logical inference rules give it the freedom to be
creative and adaptive in problem-solving situations. The system does not have any sin-
gle leading motive or supergoal but instead works to explore and achieve all of its many
goals in parallel, though to different extents depending on priority. Whether a given goal
is latently desired or actively pursued is not permanently decided, but instead changes
over time according to the system’s learned experience. Currently, every new instance of
NARS starts out empty with no goals, and instead acquires its initial goals at run-time.

Perhaps one of the more unique features of NARS is its independent treatment of
derived goals. Since a derived goal is prioritized independently, its time-resource budget
and length of existence may go beyond any of its ancestor goals and eventually play
its own larger role in the system. In humans, the functional autonomy of motives is
apparent and seems to be an integral aspect of adaptability. The meaning of goals is
not static, but changes as the system gains new experience and the holistic content
and organization of the memory changes. By virtue of its adaptive goal complex, the
system’s psychology can be compared to a human’s in that the system can be said to
develop its own dynamic traits, attitudes, and interests that evolve over its lifetime [1,8].
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