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Preface

This volume contains the papers presented at the 14th Conference on Artificial General
Intelligence (AGI 2021) held during October 15–18, 2021, both physically in Palo Alto,
California, and virtually via SingularityNET’s YouTube channel. This year’s conference
included three workshops (Scaling Up Neuro-Symbolic and Integrative AGI Architec-
tures; NARS Tutorial and Workshop; and Interpretable Language Processing), a day of
general audience sessions with AGI researchers and leaders held at the Computer His-
tory Museum (CHM) in Mountain View, California, in-person and online contributed
papers and talks, and 10 keynotes from 10 AGI luminaries.

Following the success of the 13th AGI conference, originally planned for St. Peters-
burg, Russia, but ultimately held strictly online due to the ongoing effects of the COVID-
19 pandemic, the hybrid format of AGI 2021 proved to be logistically challenging but
ultimately a resounding success. As one long-time contributor put it, “I think it was
the best (AGI conference) so far”. This year’s conference also featured presenters and
participants from a broader set of backgrounds and with more diverse perspectives than
ever before.

Researchers from at least 16 countries attended AGI 2021, either in-person or online.
Many deep, stimulating, and diverse papers and talks were given over the course of the
conference. Outdoor participant dinners followed the first two days of the conference
with wide-ranging and scintillating discussion spilling over well into each night.

This volume contains the contributed talks presented at AGI 2021. There were 50
submissions. Each submission was reviewed by at least two (on average 2.57) Program
Committee members. The committee decided to accept 36 long papers (72% acceptance
rate) for oral presentation, seven of which were presented in person with the remaining
via Zoom.

Once again the conference covered an astounding array of topics, from foundations
of AGI, through AGI approaches, and AGI ethics to the roles of systems biology, goal
generation, and learning systems, and so much more. The breadth and depth of ideas
disseminated, discussed, and argued was extraordinary.

Speakers and panelists for the general audience day at CHM included Janet Adams
from SingularityNET, Amara Angelica from SingularityNET and KurzweilAI, Joscha
Bach from Intel Labs, James Boyd from SingularityNET andWolfram Research, Nichol
Bradford from theWillowGroup andTransformativeTechnology,BenGoertzel andMatt
Iklé from the AGI Society and SingularityNET, Randal Koene from the Carbon Copies
Foundation, Julia Mossbridge from the California Institute of Integral Studies and the
Institute of Noetic Sciences, and Josef Urban from the Czech Institute of Informatics,
Robotics and Cybernetics.

Ten additional keynote speeches were presented by researchers from both academia
and industry. This year’s speakers and topics were as follows:
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• Francois Chollet— “The Missing Piece in the Quest for Greater Generality in AI”
• Yoshua Bengio— “Conscious Processing and Systematic Generalization with System
2 Deep Learning”

• Tomas Mikolov— “AGI: Why and how?”
• Jonathan Warrell— “Probabilistic Dependent Types and Semantics in AGI: Formal
and Philosophical Perspectives”

• David Hanson— “Artistic Social Robotics as a Path to Human-AI Co-Evolution and
Understanding”

• Nell Watson— “Machines for Moral Enlightenment”
• Gary Marcus— “Towards a Proper Foundation for Artificial Intelligence”
• Geordie Rose— “Robot Brains”
• Paul Rosenbloom— “Lumping and Splitting: Understanding Cognition via the
Common Model and Dichotomic Maps”

• Josef Urban— “Towards the Dream of Self-Improving Universal Reasoning AI”

We thank all the Program Committee members for their dedicated service to the
review process. We thank all of our contributors, participants, and tutorial, workshop
and panel session organizers, without whom the conference would not exist.

Finally, we thank our sponsors: the Artificial General Intelligence Society, Springer
Nature, the SingularityNET Foundation, TrueAGI, and the OpenCog Foundation.

November 2021 Ben Goertzel
Matt Iklé

Alexey Potapov
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Reward-Punishment Symmetric Universal
Intelligence

Samuel Allen Alexander1(B) and Marcus Hutter2

1 The U.S. Securities and Exchange Commission, New York City, USA
2 DeepMind & AMU, London, UK

https://philpeople.org/profiles/samuel-alexander/publications,

http://www.hutter1.net/

Abstract. Can an agent’s intelligence level be negative? We extend the
Legg-Hutter agent-environment framework to include punishments and
argue for an affirmative answer to that question. We show that if the
background encodings and Universal Turing Machine (UTM) admit cer-
tain Kolmogorov complexity symmetries, then the resulting Legg-Hutter
intelligence measure is symmetric about the origin. In particular, this
implies reward-ignoring agents have Legg-Hutter intelligence 0 accord-
ing to such UTMs.

Keywords: Universal intelligence · Intelligence measures ·
Reinforcement learning

1 Introduction

In their paper [11], Legg and Hutter write:

“As our goal is to produce a definition of intelligence that is as broad and
encompassing as possible, the space of environments used in our definition
should be as large as possible.”

So motivated, we investigate what would happen if we extended the universe of
environments to include environments with rewards from Q ∩ [−1, 1] instead of
just from Q∩ [0, 1] as in Legg and Hutter’s paper. In other words, we investigate
what would happen if environments are not only allowed to reward agents but
also to punish agents (a punishment being a negative reward).

We discovered that when negative rewards are allowed, this introduces a
certain algebraic structure into the agent-environment framework. The main
objection we anticipate to our extended framework is that it implies the negative
intelligence of certain agents1. We would argue that this makes perfect sense
1 Thus, this paper falls under the broader program of advocating for intelligence mea-

sures having different ranges than the nonnegative reals. Alexander has advocated
more extreme extensions of the range of intelligence measures [1,2]; by contrast, here
we merely question the assumption that intelligence never be negative, leaving aside
the question of whether intelligence should be real-valued.

c© Springer Nature Switzerland AG 2022
B. Goertzel et al. (Eds.): AGI 2021, LNAI 13154, pp. 1–10, 2022.
https://doi.org/10.1007/978-3-030-93758-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93758-4_1&domain=pdf
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2 S. A. Alexander and M. Hutter

when environments are capable of punishing agents: if the intelligence level of a
reinforcement learning agent is a measure of its ability to extract large rewards
on average across many environments, then an agent who instead extracts large
punishments should have a negative intelligence level.

This paper advances the practical pursuit of AGI by suggesting (in Sect. 4)
certain symmetry constraints which would narrow down the space of background
UTMs, thereby refining at least one approach to intelligence measurement. In
particular these constraints are one answer to Leike and Hutter, who asked: “But
what are other desirable properties of a UTM?” [13].

The structure of the paper is as follows:

– In Sect. 2, we give preliminary definitions.
– In Sect. 3, we introduce what we call the dual of an agent and of an environ-

ment, and prove some algebraic theorems about these.
– In Sect. 4, we show the existence of UTMs yielding Kolmogorov complexities

with certain symmetries, and show that the resulting Legg-Hutter intelligence
measures are symmetric too.

– In Sect. 5 we consider the absolute value of Legg-Hutter intelligence as an
alternative intelligence measure.

– In Sect. 6, we summarize and make concluding remarks, including remarks
about how these ideas might be applied to certain other intelligence measures.

2 Preliminaries

In defining agent and environment below, we attempt to follow Legg and Hutter
[11] as closely as possible, except that we permit environments to output rewards
from Q ∩ [−1, 1] rather than just Q ∩ [0, 1] (and, accordingly, we modify which
well-behaved environments to restrict our attention to).

Throughout the paper, we implicitly fix a finite set A of actions, a finite set
O of observations, and a finite set R ⊆ Q∩ [−1, 1] of rewards (so each reward is
a rational number between −1 and 1 inclusive), with |A| > 0, |O| > 0, |R| > 0.
We assume that R has the following property: whenever R contains any reward
r, then R also contains −r. We assume A, O, and R are mutually disjoint
(i.e., no reward is an action, no reward is an observation, and no action is an
observation). By 〈〉 we mean the empty sequence.

Definition 1 (Agents, environments, etc.).

1. By (ORA)∗ we mean the set of all finite sequences starting with an observa-
tion, ending with an action, and following the pattern “observation, reward,
action, ...”. We include 〈〉 in this set.

2. By (ORA)∗OR we mean the set of all sequences of the form s � o � r
where s ∈ (ORA)∗, o ∈ O and r ∈ R (� denotes concatenation).

3. By an agent, we mean a function π with domain (ORA)∗OR, which assigns
to every sequence s ∈ (ORA)∗OR a Q-valued probability measure, writ-
ten π(•|s), on A. For every such s and every a ∈ A, we write π(a|s) for
(π(•|s))(a). Intuitively, π(a|s) is the probability that agent π will take action
a in response to history s.
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4. By an environment, we mean a function μ with domain (ORA)∗, which
assigns to every s ∈ (ORA)∗ a Q-valued probability measure, written μ(•|s),
on O × R. For every such s and every (o, r) ∈ O × R, we write μ(o, r|s) for
(μ(•|s))(o, r). Intuitively, μ(o, r|s) is the probability that environment μ will
issue observation o and reward r to the agent in response to history s.

5. If π is an agent, μ is an environment, and n ∈ N, we write V π
μ,n for the

expected value of the sum of the rewards which would occur in the sequence
(o0, r0, a0, . . . , on, rn, an) randomly generated as follows:
(a) (o0, r0) ∈ O × R is chosen randomly based on the probability measure

μ(•|〈〉).
(b) a0 ∈ A is chosen randomly based on the probability measure π(•|o0, r0).
(c) For each i > 0, (oi, ri) ∈ O×R is chosen randomly based on the probability

measure μ(•|o0, r0, a0, . . . , oi−1, ri−1, ai−1).
(d) For each i > 0, ai ∈ A is chosen randomly based on the probability

measure π(•|o0, r0, a0, . . . , oi−1, ri−1, ai−1, oi, ri).
6. If π is an agent and μ is an environment, let V π

μ = limn→∞ V π
μ,n. Intuitively,

V π
μ is the expected total reward which π would extract from μ.

Note that it is possible for V π
μ to be undefined. For example, if μ is an

environment which always issues reward (−1)n in response to the agent’s nth
action, then V π

μ is undefined for every agent π. This would not be the case if
rewards were required to be ≥ 0, so this is one way in which allowing punishments
complicates the resulting theory.

Definition 2. An environment μ is well-behaved if μ is computable and the
following condition holds: for every agent π, V π

μ exists and −1 ≤ V π
μ ≤ 1.

Note that reward-space [0, 1] can be transformed into punishment-space
[−1, 0] either via r 	→ −r or via r 	→ r−1. An advantage of r 	→ −r is that it pre-
serves well-behavedness of environments (we prove this below in Corollary 7)2.

3 Dual Agents and Dual Environments

In the Introduction, we promised that by allowing environments to punish agents,
we would reveal algebraic structure not otherwise present. The key to this addi-
tional structure is the following definition.
2 It is worth mentioning another difference between these two transforms. The hypo-

thetical agent AIµ with perfect knowledge of the environment’s reward distribution
would not change its behavior in response to r �→ r − 1 (nor indeed in response to
any positive linear scaling r �→ ar + b, a > 0), but it would generally change its
behavior in response to r �→ −r. Interestingly, this behavior invariance with respect
to r �→ r − 1 would not hold if AIµ were capable of “suicide” (deliberately ending
the environmental interaction): one should never quit a slot machine that always
pays between 0 and 1 dollars, but one should immediately quit a slot machine that
always pays between −1 and 0 dollars. The agent AIXI also changes behavior in
response to r �→ r − 1, and it was recently argued that this can be interpreted in
terms of suicide/death: AIXI models its environment using a mixture distribution
over a countable class of semimeasures, and AIXI’s behavior can be interpreted as
treating the complement of the domain of each semimeasure as death, see [14].



4 S. A. Alexander and M. Hutter

Definition 3 (Dual Agents and Dual Environments).

1. For each sequence s, let s be the sequence obtained by replacing every reward
r in s by −r.

2. Suppose π is an agent. We define a new agent π, the dual of π, as follows:
for each s ∈ (ORA)∗OR, for each action a ∈ A,

π(a|s) = π(a|s).
3. Suppose μ is an environment. We define a new environment μ, the dual of

μ, as follows: for each s ∈ (ORA)∗, for each observation o ∈ O and reward
r ∈ R,

μ(o, r|s) = μ(o,−r|s).
Lemma 4 (Double Negation). If x is a sequence, agent, or environment, then
x = x.

Proof. Follows from the fact that for every real number r, − − r = r. ��
Theorem 5. Suppose μ is an environment and π is an agent. Then

V π
μ = −V π

μ

(and the left-hand side is defined if and only if the right-hand side is defined).

Proof. By Definition 1 part 6, it suffices to show that for each n ∈ N, V π
μ,n =

−V π
μ,n. For that, it suffices to show that for every s ∈ ((ORA)∗)∪((ORA)∗OR),

the probability X of generating s using π and μ (as in Definition 1 part 5) equals
the probability X ′ of generating s using π and μ. We will show this by induction
on the length of s.

Case 1: s is empty. Then X = X ′ = 1.
Case 2: s terminates with an action. Then s = t � a for some t ∈

(ORA)∗OR. Let Y (resp. Y ′) be the probability of generating t (resp. t) using
π and μ (resp. π and μ). We reason: X = π(a|t)Y = π(a|t)Y = π(a|t)Y by
definition of π. By induction, Y = Y ′, so X = π(a|t)Y ′, which by definition is
X ′.

Case 3: s terminates with a reward. Similar to Case 2. ��
Corollary 6. For every agent π and environment μ,

V π
μ = −V π

μ

(and the left-hand side is defined if and only if the right-hand side is defined).

Proof. If neither side is defined, then there is nothing to prove. Assume the
left-hand side is defined. Then

V π
μ = V π

μ (Lemma 4)

= −V π
μ , (Theorem 5)

as desired. A similar argument holds if we assume the right-hand side is defined.
��
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Corollary 7. For every environment μ, μ is well-behaved if and only if μ is
well-behaved.

Proof. We prove the ⇒ direction, the other is similar. Since μ is well-behaved,
μ is computable, so clearly μ is computable. Let π be any agent. Since μ is well-
behaved, V π

μ is defined and −1 ≤ V π
μ ≤ 1. By Corollary 6, V π

μ = −V π
μ is defined,

implying −1 ≤ V π
μ ≤ 1. By arbitrariness of π, this shows μ is well-behaved. ��

4 Symmetric Intelligence

Agent π acts as agent π would act if π confused punishments with rewards and
rewards with punishments. Whatever ingenuity π applies to maximize rewards,
π applies that same ingenuity to maximize punishments. Thus, if Υ measures
intelligence as performance averaged in some way3, it seems natural that we
might expect the following property to hold (∗): that whenever Υ (π) �= 0, then
Υ (π) �= Υ (π). Indeed, one could argue it would be strange to hold that π manages
to extract (say) positive rewards on average, and at the same time hold that π
(which uses π to seek punishments) extracts the exact same positive rewards
on average. To be clear, we do not declare (∗) is an absolute law, we merely
opine that (∗) seems reasonable and natural. Now, assuming (∗), we can offer an
informal argument for a stronger-looking symmetry property (∗∗): that Υ (π) =
−Υ (π) for all π. The informal argument is as follows. Let π be any agent. Imagine
a new agent ρ which, at the start of every environmental interaction, flips a coin
and commits to act as π for that whole interaction if the coin lands heads, or to
act as π for the whole interaction if the coin lands tails. Probabilistic intuition
suggests Υ (ρ) = 1

2 (Υ (π)+Υ (π)), so if Υ (ρ) = 0 then Υ (π) = −Υ (π). But maybe
the reader doubts Υ (ρ) = 0. In that case, define ρ′ in the same way except
swap “heads” and “tails”. It seems there is no way to meaningfully distinguish
ρ from ρ′, so it seems we ought to have Υ (ρ) = Υ (ρ′). But to swap “heads”
and “tails” is the same as to swap “π” and “π”. Thus ρ′ = ρ. Thus Υ (ρ) �= 0
would contradict (∗). In conclusion, while we do not declare it an absolute law,
we do consider (∗∗) natural and reasonable, at least if Υ measures intelligence
as performance averaged in some way. In this section, we will show that Legg
and Hutter’s universal intelligence measure satisfies (∗∗), provided a background
UTM and encoding are suitably chosen.

We write 2∗ for the set of finite binary strings. We write f :⊆ A → B to
indicate that f has codomain B and that f ’s domain is some subset of A.

Definition 8 (Prefix-free universal Turing machines).

1. A partial computable function f :⊆ 2∗ → 2∗ is prefix-free if the following
requirement holds: ∀p, p′ ∈ 2∗, if p is a strict initial segment of p′, then f(p)
and f(p′) are not both defined.

3 Note that measuring intelligence as averaged performance might conflict with certain
everyday uses of the word “intelligent”, see Sect. 5.
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2. A prefix-free universal Turing machine (or PFUTM) is a prefix-free partial
computable function U :⊆ 2∗ → 2∗ such that the following condition holds.
For every prefix-free partial computable function f :⊆ 2∗ → 2∗, ∃y ∈ 2∗ such
that ∀x ∈ 2∗, f(x) = U(y � x). In this case, we say y is a computer program
for f in programming language U .

Environments do not have domain ⊆ 2∗, and they do not have codomain
2∗. Rather, their domain and codomain are (ORA)∗ and the set of Q-valued
probability measures on O × R, respectively. Thus, in order to talk about their
Kolmogorov complexities, one must encode said inputs and outputs. This low-
level detail is usually implicit, but we will need (in Theorem 11) to distinguish
between different kinds of encodings, so we must make the details explicit.

Definition 9. By an RL-encoding we mean a computable function � :
(ORA)∗ ∪ M → 2∗ (where M is the set of Q-valued probability-measures on
O ×R) such that for all x, y ∈ (ORA)∗ ∪M (with x �= y), �(x) is not an initial
segment of �(y). We say � is suffix-free if for all x, y ∈ (ORA)∗ ∪ M (with
x �= y), �(x) is not a terminal segment of �(y). We write �x� for �(x).

Note that in Definition 9, it makes sense to encode M because O and R
are finite (Sect. 2). Notice that suffix-freeness is, in some sense, the reverse of
prefix-freeness. The existence of encodings that are simultaneously prefix-free
and suffix-free is well-known. For example, elements of the range of � could
be composed of 8-bit blocks (bytes), such that every element of the range of �
begins and ends with the ASCII closed-bracket characters [ and ], respectively,
and such that these closed-brackets do not appear anywhere in the middle.

Definition 10 (Kolmogorov Complexity). Suppose U is a PFUTM and � is an
RL-encoding.

1. For each computable environment μ, the Kolmogorov complexity of μ given by
U,�, written K�

U (μ), is the smallest n ∈ N such that there is some computer
program of length n, in programming language U , for some function f :⊆
2∗ → 2∗ such that for all s ∈ (ORA)∗, f(�s�) = �μ(•|s)� (note this makes
sense since the domain of � in Definition 9 is (ORA)∗ ∪ M).

2. We say U is symmetric in its �-encoded-environment cross-section (or simply
that U is �-symmetric) if K�

U (μ) = K�
U (μ) for every computable environment

μ.

Theorem 11. For every suffix-free RL-encoding �, there exists a �-symmetric
PFUTM.

Proof. Let U0 be a PFUTM, we will modify U0 to obtain a �-symmetric PFUTM.
For readability’s sake, write POS for 0 and NEG for 1. Thinking of U0 as a
programming language, we define a new programming language U as follows.
Every program in U must begin with one of the keywords POS or NEG. Outputs
of U are defined as follows.

– U(POS � x) = U0(x).



Reward-Punishment Symmetric Universal Intelligence 7

– To compute U(NEG � x), find s ∈ (ORA)∗ such that x = y � �s� for some
y (if no such s exists, diverge). Note that s is unique by suffix-freeness of �.
If U0(y � � s �) = �m� for some Q-valued probability-measure m on O × R,
then let U(NEG � x) = � m � where m(o, r) = m(o,−r). Otherwise, diverge.

• Informally: If x appears to be an instruction to plug s into computer
program y to get a probability measure μ(•|s), then instead plug s into
y and flip the resulting probability measure so that the output ends up
being the flipped version of μ(•|s), i.e., μ(•|s).

By construction, whenever POS � y is a U -computer program for a function f
satisfying f(�s�) = �μ(•|s)�, NEG � y is an equal-length U -computer program
for a function g satisfying g(�s�) = �μ(•|s)�, and vice versa. It follows that U is
�-symmetric. ��

The proof of Theorem 11 proves more than required: any PFUTM can be
modified to make a �-symmetric PFUTM if � is suffix-free. In some sense, the
construction in the proof of Theorem 11 works by eliminating bias: reinforcement
learning itself is implicitly biased in its convention that rewards be positive and
punishments negative. We can imagine a pessimistic parallel universe where RL
instead follows the opposite convention, and the RL in that parallel universe is
no less valid than the RL in our own. To be unbiased in this sense, a computer
program defining an environment should specify which of the two RL conventions
it is operating under (hence the POS and NEG keywords). This trick of using
an initial bit to indicate reward-reversal was previously used in [12].

Definition 12. Let W be the set of all well-behaved environments. Let W =
{μ : μ ∈ W}.
Definition 13. For every PFUTM U , RL-encoding �, and agent π, the Legg-
Hutter universal intelligence of π given by U,�, written Υ�

U (π), is

Υ�
U (π) =

∑

μ∈W

2−K�
U (μ)V π

μ .

The sum defining Υ�
U (π) is absolutely convergent by comparison with the

summands defining Chaitin’s constant (hence the prefix-free UTM requirement).
Thus a well-known theorem from calculus says the sum does not depend on which
order the μ ∈ W are enumerated.

Legg-Hutter intelligence has been accused of being subjective because of its
UTM-sensitivity [7,9,13]. More optimistically, UTM-sensitivity could be consid-
ered a feature, reflecting the existence of many kinds of intelligence. It could be
used to measure intelligence in various contexts, by choosing UTMs appropri-
ately. One could even use it to measure, say, chess intelligence, by choosing a
UTM where chess-related environments are easiest to program.

Theorem 14 (Symmetry about the origin). For every RL-encoding �, every �-
symmetric PFUTM U , and every agent π,

Υ�
U (π) = −Υ�

U (π).
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Proof. By Corollary 6,

Υ�
U (π) =

∑

μ∈W

2−K�
U (μ)V π

μ = −
∑

μ∈W

2−K�
U (μ)V π

μ .

By �-symmetry, we can rewrite this as

−
∑

μ∈W

2−K�
U (μ)V π

μ = −
∑

μ∈W

2−K�
U (μ)V π

μ .

By Corollary 7, W = W , so this expression equals −∑
μ∈W 2−K�

U (μ)V π
μ , which

is −Υ�
U (π) by Definition 13. ��

The following corollary addresses another obvious desideratum. This corol-
lary is foreshadowed in [12].

Corollary 15. Let � be an RL-encoding, let U be a �-symmetric PFUTM and
suppose π is an agent which ignores rewards (by which we mean that π(•|s) does
not depend on the rewards in s). Then Υ�

U (π) = 0.

Proof. The hypothesis implies π = π, so by Theorem 14, Υ�
U (π) = −Υ�

U (π). ��
Corollary 15 illustrates why it is appropriate, for purposes of Legg-Hutter

universal intelligence, to choose a �-symmetric PFUTM4. Consider an agent πa

which blindly repeats a fixed action a ∈ A. For any particular environment μ,
where πa earns total reward r by blind luck, that total reward should be cancelled
by μ, where that blind luck becomes blind misfortune and πa earns total reward
−r (Corollary 6). If K�

U (μ) �= K�
U (μ), the different weights 2−K�

U (μ) �= 2−K�
U (μ)

would prevent cancellation.
We conclude this section with an exercise, suggesting how the techniques of

this paper can be used to obtain other structural results.

Exercise 16 (Permutations).

1. For each permutation P : A → A of the action-space, for each sequence s, let
Ps be the result of applying P to all the actions in s. For each agent π, let
Pπ be the agent defined by Pπ(a|s) = π(Pa|Ps). For each environment μ,
let Pμ be the environment defined by Pμ(o, r|s) = μ(o, r|Ps). Show that in
general V π

μ = V Pπ
P −1μ and V Pπ

μ = V π
Pμ.

2. Say PFUTM U is �-permutable if K�
U (μ) = K�

U (Pμ) for every computable
environment μ and permutation P : A → A. Show that if � is suffix-free then
any given PFUTM can be transformed into a �-permutable PFUTM.

3. Show that if U is a �-permutable PFUTM, then Υ�
U (Pπ) = Υ�

U (π) for every
agent π and permutation P : A → A.

4. Modify this exercise to apply to permutations of the observation-space.

4 An answer to Leike and Hutter’s [13] “what are other desirable [UTM properties]?”.



Reward-Punishment Symmetric Universal Intelligence 9

5 Whether to Take Absolute Values

Definition 13 assigns negative intelligence to agents who consistently minimize
rewards. This is based on the desire to measure performance: agents who con-
sistently minimize rewards have poor performance. One might, however, argue
that |Υ�

U (π)| would be a better measure of the agent’s intelligence: if mathe-
matical functions could have desires, one might argue that when Υ�

U (π) < 0, we
should give π the benefit of the doubt, assume that π desires punishment, and
conclude π is intelligent. This would more closely align with Bostrom’s orthog-
onality thesis [3]. In the same way, a subject who answers every question wrong
in a true-false IQ test might be considered intelligent: answering every question
wrong is as hard as answering every question right, and we might give the sub-
ject the benefit of the doubt and assume they meant to answer wrong5. Rather
than take a side and declare one of Υ�

U or |Υ�
U | to be the better measure, we

consider them to be two equally valid measures, one of which measures perfor-
mance and one of which measures the agent’s ability to consistently extremize
rewards (whether consistently positively or consistently negatively).

If one knew that π’s Legg-Hutter intelligence were negative, one could derive
the same benefit from π as from π: just flip rewards. This raises the question:
given π, can one computably determine sgn(Υ�

U (π))? Or more weakly, is there
a procedure which outputs sgn(Υ�

U (π)) when Υ�
U (π) �= 0 (but, when Υ�

U (π) = 0,
may output a wrong answer or get stuck in an infinite loop)? One can easily
contrive non-�-symmetric PFUTMs where sgn(Υ�

U (π)) is computable from π—
in fact, without the �-symmetry requirement, one can arrange that Υ�

U (π) is
always positive, by arranging that Υ�

U (π) is dominated by a low-K environment
that blindly gives all agents +1 total reward. On the other hand, one can contrive
a �-symmetric PFUTM such that sgn(Υ�

U (π)) is not computable from π even in
the weak sense6. We leave it an open question whether there is any �-symmetric
PFUTM U where sgn(Υ�

U (π)) is computable (in the strong or weak sense).

6 Conclusion

By allowing environments to punish agents, we found additional algebraic struc-
ture in the agent-environment framework. Using this, we showed that certain
Kolmogorov complexity symmetries yield Legg-Hutter intelligence symmetry.

5 To quote Socrates: “Don’t you think the ignorant person would often involuntar-
ily tell the truth when he wished to say falsehoods, if it so happened, because he
didn’t know; whereas you, the wise person, if you should wish to lie, would always
consistently lie?” [15].

6 Arrange that Υ �
U is dominated by μ and μ̄ where μ is an environment that initially

gives reward .01, then waits for the agent to input the code of a Turing machine T ,
then (if the agent does so), gives reward −.51, then gives rewards 0 while simulating
T until T halts, finally giving reward 1 if T does halt. Then if sgn(Υ �

U (π)) were
computable (even in the weak sense), one could compute it for strategically-chosen
agents and solve the Halting Problem.
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In future work it would be interesting to explore how these symmetries man-
ifest themselves in other Legg-Hutter-like intelligence measures [5,6,8]. The pre-
cise strategy we employ in this paper is not directly applicable to prediction-
based intelligence measurement [2,4,10], but a higher-level idea still applies: an
intentional mis-predictor underperforms a 0-intelligence blind guesser.

Acknowledgments. We acknowledge José Hernández-Orallo, Shane Legg, Pedro
Ortega, and the reviewers for comments and feedback.
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AGI Brain II: The Upgraded Version
with Increased Versatility Index

Mohammadreza Alidoust(&)

Mashhad, Iran

Abstract. In this paper, an index for measuring the versatility of artificial
general intelligence (AGI) systems is proposed. The index called Versatility
Index (VI) is used to measure the versatility of an AGI system or for comparison
purposes between different AGI systems. Then, an upgraded version of the
original AGI Brain is proposed. In the new model, AGI Brain II, the explicit
memory (EM) is replaced with a modified Mamdani fuzzy inference associative
memory, called ProMem, which is able to estimate the consequences of a certain
action by estimating the probability density function (PDF) of the observed data
in a stochastic environment. The model was tested in a portfolio optimization
scenario as a stochastic environment. Simulation results demonstrate the accu-
racy of the novel explicit memory as well as the increased versatility index of
the upgraded model.

Keywords: Versatility index � AGI Brain � ProMem � Stochastic
environments � Explicit memory � State/output estimator � Fuzzy inference
system � Probability density function � Portfolio optimization

1 Introduction

Artificial General Intelligence (AGI) is the art of building thinking machines. These
machines are able to understand, learn and perform any intellectual task that human
can. In contrast to AI, AGI treats intelligence as a whole, resulting in the construction
of versatile and general-purpose intelligent systems that can learn, reason, plan,
communicate as well as any other tasks at the human intelligence level or perhaps
ultimately well beyond it.

The original version of AGI Brain which was proposed in 2019 [2], worked well in
a number of linear/nonlinear, continuous/discrete, single agent/multi agent determin-
istic environments, but it lacked the efficiency to perform in stochastic environments. In
this paper, an upgraded version of the model, called AGI Brain II, is proposed which
can also perform well in a stochastic environment. For testing the performance of the
upgraded model, it was tested in a portfolio optimization scenario as a stochastic
environment. In order to compare the two versions, an index called versatility index
(VI) is suggested, which is used to measure the versatility of AGI systems.
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https://doi.org/10.1007/978-3-030-93758-4_2

http://orcid.org/0000-0003-3712-0535
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93758-4_2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93758-4_2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93758-4_2&amp;domain=pdf
https://doi.org/10.1007/978-3-030-93758-4_2


2 Versatility Index

AGI systems are meant to be as versatile as possible. Versatility is a necessary con-
dition for an intelligent system to be called as an AGI system. According to Legg and
Hutter, AGI systems have to perform well in a very large range of environments [1].
Regarding this quote, if an intelligent system is going to be called an AGI system, these
two questions must be answered: How many environments that system can perform in?
And how well the system can perform in each environment? Therefore, the number of
different operating environments of an intelligent system in combination of its per-
formance wellness in each environment can be considered as the measure of the
versatility of the candidate system in order to be called as an AGI system. We call this
measure the versatility index (VI) which is defined as the summation of the perfor-
mances of an AGI system in each environment as follows:

VI ¼
XN
i¼1

ai ð1Þ

Where N is the number of different operating environments of the system, and ai is
the performance of the system in environment i. Since N and ai are positive real
numbers, the VI is also a dimensionless positive real number.

Since AI systems are problem-specific, their VI value will obviously be low
compared to AGI systems. So, the VI can be considered as a distinction between AI
and AGI system. The VI also provides a quantitative ground for comparison between
different AGI systems. Different AGI systems can be compared by their VIs. The more
versatile systems will have higher VI values and vice versa. The VI in combination
with other evaluation methods might also be considered as an alternative way to
measure the efficiency and intelligence level of AGI systems (or even of human brain),
which will be discussed in Sect. 6.

Example 1. AGI system A is able to perform 3 AI tasks such as speech recognition,
image processing, and intelligent control with performances a1 ¼ 85%, a2 ¼ 62%, and
a3 ¼ 93% respectively. Therefore, the VI for the AGI system A is calculated as
follows;

VIAGI system A ¼
XN
i¼1

ai ¼ 240

3 The Original AGI Brain

AGI Brain is a unified learning and decision-making framework for artificial general
intelligence systems based on modern control theory. It considers intelligence as a form
of optimality. In AGI Brain intelligence means and equals optimization; Optimization
of the surrounding world towards common goals. In AGI Brain the design is

12 M. Alidoust



emphasized on versatility, i.e., designing a general-purpose artificial brain. Figure 1
illustrates the general schematic world c consisting of the artificial agent x and the
object w.

At every time step n, the artificial brain C produces commands u (e.g. hormones or
neural signals) which change the states of x’s body, i.e. xx, which then leads to
performing action a on the object w. This action changes w’s states xw, which con-
sequently leads to w’s response r. Like a natural brain, the C can observe these actions
and states fully or partially by its sensors (Fig. 1).

By benefiting from powerful modelling capability of state-space representation, as
well as ultimate learning ability of the neural networks (NNs), AGI Brain tries to
duplicate intelligence using a unified strategy. The model emulates three learning
stages of human being for learning its surrounding world. In AGI Brain, these 3 stages
are called: 1) infancy stage (random actions), 2) decision making stage (action selection
via EM), and 3) expert stage (autonomous action via IM) (Fig. 2).

In its decision-making stage, the agent selects the best policy from its set of pos-
sible alternatives as follows;

U� ¼ uðnÞj ArgMax
u2@

Pnf
n¼n1
½R ¼ PTJ�

( )
s:t:

x̂ðnþ 1Þ
ŷðnþ 1Þ

� �
 �EM

xðnÞ
yðnÞ
uðnÞ

* + ð2Þ

Where U� is the optimal policy, uðnÞ is the possible action at time n, @ is the set of
all possible alternatives, R is the reward value, P is the personality vector, J is the
vector of objectives, xðnÞ is the vector of states, yðnÞ is the vector of outputs, and

Fig. 1. The world c consisting of the artificial agent x and its brain C, and the object w.
Observed feedbacks: (xx: vector of the bodily states of the agent x, a: action vector, xw: vector of
the states of the object w, r: response vector of the object w). The artificial brain C can observe
these actions and states fully or partially by its sensors.

AGI Brain II 13



x̂ðnþ 1Þ and ŷðnþ 1Þ are the estimated states and outputs which are estimated by the
agent’s explicit memory EM.

In the original version, the explicit memory EM is made up of neural networks
(NN) and works as a state/output estimator. The original model also benefits from some
other features like an implicit memory (IM) for autonomous policy selection as well as
emotions (stress) for moderating the exploration/exploitation behavior ratio.

In addition to these, the model benefits from shared explicit and implicit memories
for the multi agent problems, where the agents can easily share their experiences with
each other in order to improve their performances.

The original model was tested on three different continuous and hybrid (continuous
and discrete) Action/State/Output/Reward (ASOR) space scenarios in deterministic
single-agent/multi-agent worlds. Successful simulation results demonstrated the ver-
satile applicability of the original version of AGI Brain in deterministic worlds.

4 AGI Brain II

4.1 ProMem

Due to its neural network estimators, the original AGI Brain lacked the ability to
perform well in stochastic environments. In order to empower the original model with
stochastic capabilities, the state/output estimator of the original model was replaced
with a modified Mamdani fuzzy inference system which we call it ProMem. This
results in construction of the upgraded and more versatile version of the model, AGI
Brain II.

By estimating the Probability Density Function (PDF) of the observed data, Pro-
Mem is able to estimate the state/output of a certain action in stochastic worlds as well

Fig. 2. Working cycle of AGI Brain. Paths: 1) Infancy stage, 2) Decision making stage, and 3)
Expert stage
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as deterministic worlds. Applying ProMem to the decision-making problem of Eq. (2),
we have;

U� ¼ uðnÞj ArgMax
u2@

Pnf
n¼n1

R ¼ PTJ
� �( )

s:t:

x̂ðnþ 1Þ
ŷðnþ 1Þ

� �
 �PROMEM

xðnÞ
yðnÞ
uðnÞ

* + ð3Þ

The other components of AGI Brain II are the same as the original version. Fig-
ure 3 illustrates the architecture of AGI Brain II. The new model has been tested in a
portfolio optimization problem as a stochastic world as follows.

5 Simulation

5.1 Portfolio Optimization

Assume a world c which consists of a hypothetical stock market with three assets, A, B
and C as the objects w1, w2, and w3. The single AGI Brain II (ProMem estimator) agent
x has to maximize its net wealth by optimal allocation of its assets in its portfolio. The
set of possible actions of the agent are the number of shares placed at each time in the
various assets. The agent may sell, buy or hold some predefined portions of its shares at
each time step.

Fig. 3. Architecture of AGI Brain II (inside the artificial brain C of Fig. 1). Observed feedbacks:
(xx: vector of the bodily states of the agent x, a: action vector, xw: vector of the states of the
object w, r: response vector of the object w), P: personality vector, EM: explicit memory
(ProMem), IM: implicit memory, J: vector of objectives, Rnd:: random action generator, DM:
decision making unit (Eq. 3), @: set of all possible alternatives, Str:: stress simulator unit, u:
vector of output commands, 1: infancy stage, 2: decision making stage, 3: expert stage.
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The set of equations that govern the evolution of the system is as follows;

xAðnÞ ¼ 1þ sinð2pn100Þþ rAðnÞ
xBðnÞ ¼ 1þ cosð2pn100Þþ rBðnÞ

xCðnÞ ¼ 1þ 2 sinð2pn100Þ cosð2pn100Þþ rCðnÞ
;

8<
: 0� n� 1000 ð4Þ

Where xiðnÞ is the close price of asset i, and rðnÞ is a random number
0� rjðnÞ� 0:25 with mean lr ¼ 0:125 and standard deviation rr ¼ 0:0725.

For comparison purposes, a single agent with original AGI Brain (NN estimator)
was added to the system. The two agents start with 1000000 units (e.g., US Dollars) of
cash and zero shares at the start time n ¼ 800. Using their estimators ProMem and NN,
the two agents try to estimate the close price of the next time step xiðnþ 1Þ based on the
10 previous close prices, and allocate their assets in order to maximize their net wealth.
At every time step n� 800, they make decisions on whether to hold, buy or sell 1, 5,
10, 20, 50, 100, 1000, 10000, 100000 or 1000000 shares based on the predicted close
price value of the next time step. If the estimated close price value of the next time step
is higher than the close price value of the current time step, they decide to buy some
shares that would maximize their net wealth. If the estimated close price value of the
next time step is lower than the close price value of the current time step, they decide to
sell some of their shares, and if the estimated close price value of the next time step is
equal to the close price value of the current time step, they decide to hold their shares.
Please note that this is an overly simplified portfolio optimization scenario where the
agents make their decisions based on only one time step ahead, and they do not
incorporate real financial analysis tools in their decision-making process. Figures 4 and
5 show the performance of the two agents in this scenario.
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Fig. 4. Upper) Close prices (Asset values) of the three assets A, B and C. Middle) Net Wealth of
the two agents. Lower) Mean overall estimation error.
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6 Conclusion and Future Works

As illustrated in Fig. 4, at the final time step n ¼ 1000 the net wealth of the AGI Brain
agent is 62284014.51 units and the net wealth of the AGI Brain II agent is
85242829.95 units. The mean estimation error of the AGI Brain agent is 0.144 and the
mean estimation error of the AGI Brain II agent is 0.122. As illustrated in Fig. 5, the
average overall estimation accuracy of the AGI Brain agent is 73.83%, and the average
overall estimation accuracy of the AGI Brain II agent is 75.33%.

The simulation results show that the new model, AGI Brain II, performed much
better than the original one in the stochastic world. The new model’s net wealth is
higher than its antecessor. This is because of the higher estimation accuracy (leading to
the lower estimation error) of the ProMem compared to the estimation error of the NN.
In other words, ProMem could estimate the close price of the next time step more
accurately than NN. The reason for this accuracy is grounded in the ability of ProMem
in estimation of the probability density function of the observed data. In its training
stage, ProMem tries to form a PDF over the observed data as accurate as possible.

AGI Brain II has also been tested in the scenarios which the original model was
tested [2], and performed well in linear/nonlinear, continuous/discrete, single
agent/multi agent, deterministic/stochastic worlds. Table 1 contains the performances
of the two models in different scenarios:
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Fig. 5. Mean overall estimation accuracy of the two memories ProMem (blue) and NN
(red) (Color figure online)
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Thus;

VIAGI Brain ¼
X4
i¼1

ai ¼ 365:25

And,

VIAGI Brain II ¼
X4
i¼1

ai ¼ 370:78

So, based on their VI values, AGI Brain II is more versatile than its antecessor, the
original AGI Brain.

Although AGI Brain II is more versatile than its antecessor, it is still far from being
a real AGI. The next development stages would be augmenting the ability to perform
well in 1) delayed reward problems, and 2) the environments with intelligent opponents
(e.g., Games).
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Table 1. Performances of the two models in different environments

Scenario AGI
Brain

AGI
Brain II

Function Optimization (A Non-linear, Continuous, Deterministic,
Multi Agent, Immediate Reward, with Non-intelligent Opponents
environment)

*100% *100%

Intelligent Control (A Non-linear, Continuous, Deterministic, Single
Agent, Immediate Reward, with Non-intelligent Opponents
environment)

99.76% *100%

Animats (A Non-linear, Discrete, Deterministic, Multi Agent,
Immediate Reward, with Non-intelligent Opponents environment)

91.61% 95.45%

Portfolio Optimization (A Non-linear, Discrete, Stochastic, Single
Agent, Immediate Reward, with Non-intelligent Opponents
environment)

73.88% 75.33%
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Abstract. Tasks are of primary importance for artificial intelligence
(AI), yet no theory about their characteristics exists. The kind of task
theory we envision is one that allows an objective comparison of tasks,
based on measurable physical properties, and that can serve as a foun-
dation for studying, evaluating, and comparing learning controllers of
various kinds on a variety of tasks by providing principled ways for con-
structing, comparing, and changing tasks with particular properties and
levels of difficulty. In prior papers we have outlined an approach towards
this goal; in this paper we present further principles for its development,
including causal relations. We use these principles to expand our prior
ideas, with the aim of laying the groundwork for covering levels of detail,
prior knowledge of the learner/performer and task difficulty, to name
some of the complex issues that must be solved for a useful task theory.

Keywords: Tasks · Environments · Task theory · Artificial
intelligence · General machine intelligence · Evaluation

1 Introduction

Artificial intelligence (AI) systems are built to perform tasks. Whether primarily
hand-coded or based on machine learning techniques, intended to perform only a
single well-defined task or aiming for general machine intelligence (GMI), tasks
are center of stage in the design of all AI systems; tasks also play a key role
in their evaluation. In other fields of control engineering systems are evaluated
by constructing test batteries to ensure their proper performance, and tune task
parameters according to well-understood principles for their effective evaluation.

Despite their importance in AI, no methodology has widely been adopted
for the use of tasks in AI research, and no theory about the properties of tasks
exists [14]. A lack of a proper task theory in AI has persisted, possibly due to a
long-lived constructionist design tradition that relies on hand-crafted solutions1

that primarily relies on human domain knowledge. It is therefore not a huge
1 For a discussion on constructionist (allonomic) vs. constructivist (autonomic) design

methodologies in AI, see Thórisson et al. [11].
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surprise, perhaps, that after 70 years of AI research the only obvious solutions for
how to generalize narrow-AI systems are more domain-dependent hand-crafted
solutions.

The upshot is that scientific comparison of two AI systems built by two
separate teams, or the same team at different times, is currently costly and diffi-
cult at best, and impossible at worst. It is thus rarely done; most AI researchers
design specific tasks for their specific systems. Without a general theory of tasks,
comparing results of AI systems on various tasks is prohibited except through
costly experimental procedures. The situation may be survivable in narrow-AI
development, but for research in GMI this situation cannot persist if we want
to be able to ensure their proper design and safe operation. Domain knowledge
and tests (e.g. the Turing test or IQ tests) don’t nearly cover the breadth of
situations these systems could be facing. As progress towards GMI moves for-
ward, the need to evaluate them in a range of circumstances, tasks, and situations
increases. Without a general-purpose methodology that allows comparison along
relevant dimensions of variables, tasks, situations and environments, the problem
is only going to get worse.

In this paper we extend our prior work on this topic and present further
principles for moving towards the kind of task theory envisioned. The focus in
this paper is exclusively on the characterization of tasks based on their physical
properties, in particular, we aim to resolve some issues that must be addressed
to further the research towards e.g. measures of difficulty [2].

2 Related Work

Past research on task composition and analysis focuses quite heavily on perform-
ers, rather than the tasks. Task analysis for human tasks has been used since
the mid-1900s to make various judgments and design decisions by providing the
engineer with a “blueprint” of user involvement, unsurprisingly focusing rather
exclusively on it from a ‘human-level intelligence’ perspective [6]. The GOMS
(goals, operators, methods, and selection rules) task-analysis methodology, for
instance, is a framework that characterizes a system user’s procedural knowl-
edge and can be used to predict human learning and qualitatively describe how
a user will use an interface to complete a task [5]. Cognitive task analysis (CTA)
has a similar purpose and works in a similar way. CTA describes the basis of
skilled performance and, unlike GOMS, can explain what accounts for mistakes
[1]. Another way to describe tasks is through hierarchical task networks (HTN)
[4]. HTN are used to decompose high-level tasks into atomic actions to create
plans to achieve a goal. Strictly speaking, HTNs do not model the environment
but rather produce a list of actions for solving a task [4].

The existence of an intelligent performer is fundamentally assumed a-priori in
all these approaches, which makes them rather irrelevant in the design, training,
and evaluation of AI systems. For AI the aim must be a dissection and analysis
of tasks in such a way that the performer’s “IQ” is not given a-priori, and
conclusions about the performance of an agent, and thus its design, can result
from it, rather than the other way around, without the need for experimentation.
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Thórisson et al. [13,14] have proposed a set of necessary components to
describe measurable physical dimensions of tasks that must be adjustable by
an evaluator when the goal is to get insight into the different approaches to AI
and autonomous learning. The advantage of their proposed approach has been
demonstrated in part by Eberding et al. [3], providing experimental results of
the possibilities that a well-designed task theory could give developers and eval-
uators of AI systems. To describe tasks in such a way that they can directly
help across a wide range of AI research endeavors, further principles must be
developed.

3 Terminology and Background Assumptions

If the world is a closed system with no outside interference, the domains and
invariant relations can be implicitly fully determined by the dynamics functions
and the initial state. In an open system where changes can be caused exogenously,
the explicit definition of domains and invariant relations can restrict the range
of possible interactions [14].

An environment is a view on a world, typically inside a domain (like your
kitchen is one environment within the domain of kitchens)—a domain in this
view is thus a family of (related) environments [14]. We also may consider the
body of an agent to be part of the task, rather than the agent, because it nat-
urally constrains what the controller can do. Another thing to keep in mind is
that the boundary between task and environment isn’t always clear.

By controller we mean exclusively the mind of an embodied agent: The
controller is the complete cognitive architecture of the system, which can receive
inputs (observations) and produce outputs (commands) from the environment,
and has its own internal state and goals.

The body of an agent is the interface between a controller and external
world. The body itself, i.e. its transducers, belongs to the environment, following
the laws of the environment and interacting with it, directly constraining the
controller: Only variables which can be measured by the sensors of the body
can be observable at any time and only variables belonging to the body can be
directly manipulated by the controller. This body can be generally understood
as a set of sensors producing sensory information that is read by the controller
and a set of actuators that execute the controller’s commands that act as the way
the mind can affect the surrounding world. Therefore, different sets of sensors
and/or actuators also determine how a task may be affected and how its state
(values of variables) may be measured, including what is possible to do in the
given execution environment. As shown below, the body of the agent significantly
influences foundational principles of a task.

The variables in an environment, at any point in time, can be either
observable (to a degree) or non-observable, manipulatable (to a degree) or non-
manipulatable. Assignment of a variable in either pair is mutually exclusive, but
either value in one pair can have either value in the other pair (e.g. a manipulat-
able variable can be non-observable and vice versa). Which variables hold which
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property can vary in any domain, environment, and through time, depending on
their dominant relations at that time in that domain or environment.

A task is a problem assigned to an agent, T = 〈S0,Gt,Gs, G
−, B, tgo, tstop〉,

where S0 is the set of permissible initial states, Gt is the task’s set of top-
level goals, Gs is the set of given sub-goals, G− is its set of constraints, B is a
controller’s body, and t refers to the permissible start and stop times of the task
[12]. An assigned task will have all its variables bound and reference an agency
that is to perform it (accepted assignments having their own timestamp tassign).
This assignment includes the manner in which the task is communicated to the
agent, for example, whether the agent is given a description of the task a priori,
receives additional hints, only gets incremental reinforcement signals as certain
world sub-states are reached, or some mixture of these. A task is successfully
performed when the world’s history contains a path of states that matched the
task’s specification, and thus solved the problem it describes.

The problem space Sprob of a task describes all valid states of the task-
environment which can exist at any time within the temporal boundaries of the
task through any action or inaction of the controller. It is constrained by the
laws of the task-environment (like the speed of light in the physical world).

The solution space Ssol of a task is a subset of the problem space, defined
by the task’s goals 〈Gt,Gs〉 and constraints 〈G−〉. For a task T1, any (partial)
state is part of the solution space of T1 that 1) can be reached from an initial
state S1 ∈ S0 without violating the task specification and 2) from which at least
one path of states exists which matches the task’s specifications, leading to a
(partial) state that matches the task’s goal(s).

4 Foundational Principles for Task Theory

Based on the above background assumptions we can now turn to some unresolved
issues that we consider important for a proper task theory. These range from
the relationship between a controller’s body and the task-environment, to task
decomposition and level of detail (LoD). It should be noted that in the following
we take the designer’s viewpoint, which differs from the learner’s viewpoint in
that it assumes a complete overview of the task at hand.2

4.1 Causal Relations

A physical ‘mechanism,’ in our approach, is a directional function that deter-
mines the value of some world variables (the effect) from the values of other
variables (the causes). The underlying assumption is that actions produced by a
controller, via its body, are local ‘surgeries’ in the space of mechanisms [8], and
those mechanisms are, given certain conditions, invariant and independent of

2 In the physical world a complete overview of a task is theoretically prevented, but
we can nevertheless assume that critical differences exist between a teacher’s view
and a pupil’s.
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each other.3 By ‘causal knowledge’ is meant information that allows an agent to
take action that perturbs a mechanism (via it’s own body), causing predictable
changes in other mechanisms relevant to task goals, i.e. {At1 → Bt2} where
{A,B} are events at time t and t2 > t1. This means that an action affecting
a mechanism leaves other mechanisms in their place, and that the effects of
such actions can then be predicted using appropriate causal and other relational
knowledge (in the form of models). A chain of such causal relational knowledge
can represent a plan, an explanation, or a re-construction of a particular aspect
of a phenomenon. Achieving goals in the context of any phenomenon necessarily
requires knowledge of relevant causal relations, in particular, of the causal rela-
tions that relate manipulatable and observable variables of the phenomenon to
the goals of an assigned task.

§1 Getting things done means making use of (models of) causal relations.

The existence of any causal relations between relevant variables must either be
known by a performing agent or discovered by it in the process of performing
a task. Such information must be represented in some cognitively manipulat-
able way, so that the controller can retrieve relevant knowledge in particular
circumstances. Elsewhere, we have proposed causal-relational models (CRMs)
to represent such information [7,15]. Whichever representation is used, however,
any such representation aimed for tasks in complex domains must be able to
represent different levels of detail, since:

§2 Complex domains (like the physical world) contain more than one level of
detail (LoD).

Consider, for example, how the interior of a house can be seen at the atomic,
molecular or interior design level of detail. This means that the causal relations
in multi-LoD task-environments (e.g. the physical world) can be thought of as
forming (one or more) hypergraphs. One way to conceptualize the process of
learning about such a graph is to consider it a modeling process, whereby the
models formed need to mirror, in some useful way, these. Following Conant and
Ashby [10], a good controller of a system must reference a model of that system.
For causal relations, this implies that in any multi-LoD domain:

§3 The granularity of domain modeling must match the LoD of the causal rela-
tions at the lowest LoD relevant to a task’s goal(s).

If a task involves genetic engineering, the lowest relevant LoD is chemistry,
because that’s where the task’s success or failure will be measured; if a task
involves getting some furniture from one office to another office the relevant
LoD is object placement measured in centimeters. Let’s look further at princi-
ples related to LoDs.
3 While our approach is fundamentally non-axiomatic, cause-effect relationships are

probably appropriately considered Platonic. This neither diminishes nor prevents
their value or usefulness when dealing on a conceptual level with complex multi-
LoD systems like the physical world.



24 M. Belenchia et al.

4.2 Levels of Detail

Given that a task can be described at various levels of detail, which level of
detail may be most appropriate in a particular case for a particular learner?
Considering that the body of the controller, with its sensors and actuators, is
part of the task (see Sect. 3 above), and considering that the perception and the
interaction of the controller with the task-environment happens through this
body, then it is at least possible to set a lower bound to the possible level of task
abstraction. The body of the controller constrains the level of detail which is to
be used to describe the task: The actuators define the granularity of what can be
manipulated while the sensors define the granularity of what can be measured.

§4 A controller’s transducers define the finest level of relevant spatio-temporal
task detail.

Therefore, the finest possible level of detail for a task depends necessarily on what
the body allows the controller to observe and manipulate, and tasks described at
more fine-grained levels of detail than what the controller’s body allows would be
experienced by the controller at coarser level of detail, in accordance with what
is made possible by its body. For example, if a set of transducers operates at the
centimetric level of detail, a description of the molecular or atomic interactions
in the task is unnecessary, as they can’t be experienced by the controller.

Any phenomenon in the world can be described at different levels of detail,
from highly detailed fine-grained descriptions to more abstract, coarse-grained
ones. This also applies to tasks: Task specifications can vary and can be made
more or less abstract, arbitrarily, ranging from the very general high-level
instructions in everyday language to the overly complex descriptions that – at
least in theory – can be made at the atomic or even sub-atomic levels. This
presents a problem in evaluating an agent A1 on a task T1: Let’s say that T1 is
to change a spelling mistake in a word in a given electronic document; in one
task-environment is to be done by modifying the values of transistors on a CPU,
in the other the change is to be made using word processor software. To any
human the former will probably always be more difficult4 than the latter (even
experienced CPU designers). One way to address this issue in a task theory is
to introduce the idea of a level-of-detail operator that controls for the level of
description with respect to the performer’s body (sensors and actuators). This
has the potential benefit of homogenizing any task relative to its level of detail,
for a particular performer. However, how such an operator would produce this
result is unclear. Another way is to simply treat the level of detail as part of
the task’s constraints, 〈G−〉. While this is perhaps a less elegant solution, it is
exceedingly simple. This gives rise to the following principle:

§5 The level of detail (LoD) is part of the task.

4 Producing a useful measure of difficulty is the purview of a proper task theory; this
is addressed elsewhere [2].
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In other words, any task is limited to its level of detail, and if the “same” task
is presented at another level of detail, it is not the same task. For example, an
electronic circuit implementing a logic gates task can be described at the level
of its electronic components, at a yet lower level of the chemical reactions in
its circuits, or at the higher level of the implemented logic circuit. The task of
obtaining some output in such a circuit changes significantly according to the
level of description being used. This is because effectively, the variables and the
mechanisms changed together with the level of detail. Therefore, variations in
the level of detail result in different tasks.

4.3 Task Difficulty

The difficulty of executing any particular task is not uniquely determined by the
task itself. Some controller might be better or worse suited to perform the task
for a plethora of reasons: it could have trained on similar tasks or on tasks which
share some of the variables and relationships with this task, it could be quicker
(or slower) at learning associations and cause-and-effect relationships, and so
on. Controllers, and by controller we mean effectively the mind of the intelligent
system, might have either the experience or the architecture that is particularly
well-suited (or ill-suited) for the task at hand, or for a type of tasks in general, or
for any task at all, for reasons completely independent of the tasks themselves.
Difficulty must therefore be a cross product of a task and a controller:

§6 The difficulty of a task is a product of the features of the task T and the
features of the controller C; i.e. {T × C}.

This concept of difficulty includes end-effectors, dexterity, sensors, etc. Note that
all end-effectors in nature (extremities, skin, etc.) contain sensors as well that
tell about their status; and vice-versa, sensors also are paired with end-effectors
(ears on a movable head, rotating eyes, all mounted on a movable body). Thus,
it may be said that all effectors are also sensors and vice versa, the difference
being merely lie in the direction of information flow amplification. It should be
noted that by ‘task’ we mean task-environment, as variables other than those of
the task proper (‘task family’) may be essential for their completion.

A closely related problem is this: A task becomes easier the more we learn how
to do it. This complicates the potential comparison between two controllers that
we wish to compare, where one of them knows more about it than the other. How
does prior training/ and knowledge affect task analysis/ and task design? This is
solved by excluding any part of a task that a controller already knows how to do,
leaving only the parts that the controller must learn (to whichever extent). This,
however, requires separating the task designer’s viewpoint from the task learner’s
viewpoint: From the designer’s point of view it is assumed that everything about
the task is known and specified. The designer has complete knowledge of the
ground truth of the task, including variables, mechanisms, goals, constraints and
so on. The learner, on the other hand, has limited knowledge of the task, owing
to its limited perception and experience of the task and world. Its knowledge of
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the task comes with no certainty of correctness: It is defeasible knowledge which
could at any time be proven wrong by subsequent experience [9]. The upshot is
that we can include prior knowledge in any discussion of difficulty:

§7 Any measure of the difficulty of a task must take note of the performer’s
prior training and knowledge, and thus, prior knowledge is part of C in the
equation {T × C}.

Given the lower bound of useful granularity to describe a task, the question
arises which of the theoretically usable variables of the world influence the task.
It can be argued that all variables which are part of the environment necessarily
must be part of the task. However, to describe the task in relation to the agent’s
goals the focus should lie on variables which constrain the solution space of the
task. Non-constraining variables are those of no importance to solve the task.
Therefore they need not be modeled by a learner of the task.

§8 A task is unchanged by variables which do not constrain its solution space.

While such variables and relations are superfluous to the task when looking at it
from the designer’s perspective, they can influence the learning of an agent. Espe-
cially when such variables are observable to the agent they can lead to wrong or
misleading correlations with solution space constraining variables. When taking
the agent’s perspective these misleading correlations between superfluous and
non-superfluous variables becomes an issue of experience. If previous encoun-
ters with superfluous variables have lead to a knowledge generalization which
excludes these variables they do not influence the performance of the agent on
the task. If the agent has not yet learned about these elements they can prolong
learning times by making it more difficult to extract relevant causal structures
from the observations. For example, the presence of multiple switches does not
affect the task of turning on the lights (assuming only one such switch is needed).

5 Discussion

We consider the principles thus outlined still up for discussion, as there are
unforeseen implications for any of the suggested commitments. Many questions
remain to be answered, in particular with respect to whether some existing
paradigms or methodologies might be suited to either appropriately address the
issues raised here, or possibly explain them away. As far as we are able to see,
no particular theory exists, and no existing paradigm, addresses in a unified
manner the issues of level of detail, causal chains, and multi-goal achievement.
These, in our opinion, must be included for a proper theory of tasks. Let’s take
a brief look at some of the approaches mentioned in the Related Work section,
to see whether they could possibly challenge, address, or extend, our proposed
principles.

In hierarchical task networks (HTN, [4]), causality is considered, but only as
a high-level relation between tasks. When two tasks interfere with each other, a
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causal relationship is recorded indicating the two tasks te and tp and a predicate
q which is both an effect of te and a pre-condition of tp [4]. Also, when the goal e
of a task t results already achieved, by the effect of another task t′, a constraint
of the form (t′, e, t) is added to the network to record it as a causal relation [4].
In contrast, we consider causality in a more fine-grained way, as a relationship
between variables in the same task (§1). In this sense our approach to causality
is more general, because it can be also applied at coarser levels of detail to trace
causal relationships between the tasks themselves (e.g. the effect of executing
the task of “walking to the door” is also the pre-condition for starting the task
of “opening the door”.)

In the related work we surveyed, we found no discussion about the different
levels of detail in the physical world and how to deal with them. Usually, the
level of detail of the task is given and fixed from the start. Therefore the novelty
of our approach consists (1) in realizing that there are always multiple levels
of detail to deal with (§2), (2) that the level of detail is constrained by both
the goals of the task (§3) and the body of the controller (§4) and (3) that the
selected level of detail for the task is an intrinsic characteristic of the task itself,
which when changed also determines a change of the task (§5).

To the best of our knowledge, this is the first to attempt to formalize the
notion that the difficulty of a task depends on both the features of the task and
the controller (§6), as past approaches have mainly considered the characteristics
of the task alone. For example, typical attempts to AI evaluation use games like
chess or arcade games, which are considered interesting because of the purported
difficulty of the task itself (from the human point of view). The notion that a
task’s successful execution depends on prior training and knowledge (§7), on the
other hand, is the main premise of artificial intelligence.

We are not aware of any discussion about the effects of eventual ‘superflu-
ous’ variables in the task. This is mostly due to the fact that the tasks under
consideration were defined a-priori to include only variables that in some way
constrain the solution space. Therefore, the intuitive notion that ‘superfluous’
variables do not change a task is made explicit here (§8).

6 Conclusion

We summarized previous findings of our work and described foundational prin-
ciples of tasks. We expect that such a task-theory can help to understand the
pros and cons of different approaches to AI architecture design, help researchers
to evaluate their (and other’s) systems, compare them, and help developers of
GMI-aspiring systems focus on the task at hand: Building systems capable of
solving complex tasks in complex environments.

The introduced principles of task theory helps to avoid an anthropomorphic
view on tasks and agents, which we hope reduces bias in evaluation and design
of agents. We believe that by describing these principles, mistakes of the past
might be avoided (e.g. over-amplifying the importance of certain task such as
board games, video games, and others). Instead, by identifying task properties,
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describing them in causal structures and analyzing them thoroughly, the impor-
tance of a task being solved can be better understood and classified accordingly.

A future requirement for a task theory is to make changes in the level of detail
of a task inherently available to the analyst. While this changes the task (see §5),
the level of detail is of importance when analyzing different learners. If a learner
is able to group relational models and task variables in order to change the level
of detail of interaction by itself (hierarchical learners are the most promising
ones for that) it is necessary to represent these changes when analyzing the
task. Future work also includes the construction of tasks at multiple different
levels of detail.
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Abstract. The following defines intent, an arbitrary task and its solu-
tions, and then argues that an agent which always constructs what is
called an Intensional Solution would qualify as artificial general intel-
ligence. We then explain how natural language may emerge and be
acquired by such an agent, conferring the ability to model the intent
of other individuals labouring under similar compulsions, because an
abstract symbol system and the solution to a task are one and the same.
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1 Introduction

We begin by briefly examining how intent may be defined and communicated.
First, one may state intent generally and without context. For example, one may
intend to acquire money. To make such a statement is to describe a goal [14], and
so we define it as that. Second there is contextual intent, a rationale. For exam-
ple, if one observes a family member of an addict confiscating their drugs, one
may infer that the family member intends to prevent the addict from overdosing.
To do so is to assume the family member is compelled by an attachment to the
addict. We imbue their behaviour with specific purpose by assuming the goal it
serves in general, constructing a rationale. Conversely, one may provide context
for one’s own decisions. It is here that the relationship between intent and causal
reasoning becomes apparent; if an action was taken in service of a goal then in a
sense that goal caused the action. To state or infer a rationale, one must define
the goal in service of which a decision was made, and a chain of causal rela-
tions [1,2] indicating how that goal was to be served (whether successful or not).
However, possession of a rationale is not the ability to communicate it. Humans
communicate in terms of loosely defined abstractions, tailored to express what is
most important both to ourselves and those to whom we are speaking. Human
comprehension is not limitless. Absent such tailoring and simplifying abstrac-
tions, a rationale of even moderate complexity may be uninterpretable [16,25].
In a programming language meaning is exact, specified in the physical arrange-
ment of transistors. Natural language is an emergent phenomenon [5] in which
meaning is not limited to exact instruction [6]. Such a language must be inter-
preted, which suggests it is a means of encoding, transmitting and decoding more
c© Springer Nature Switzerland AG 2022
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complex information. What is this complex information, what is the interpreter,
and how would we build it?

Symbolic Abstraction: Symbolic approaches to intelligence often adopt as
their premise a Physical Symbol System [7,8] grounded in hardware, yet actually
implementing such a system is no trivial matter. This is known as The Symbol
Grounding Problem [9]. Before continuing we must define what a symbol is. A
computer scientist might define it as a dyadic relationship between a sign and
an thing to which it refers (called a referent). This makes sense in the context of
a programming language where an exact definition is necessary. We know how
to implement such a thing using hardware, and so we’ll call such dyadic symbol
systems “physically implementable languages”. However, dyadic symbols are not
abstractions akin to symbols in natural language. Yes, ambiguity could be intro-
duced in a dyadic symbol by linking a sign to a set of possible referents instead
of one, and context could be captured by simply embedding contextual informa-
tion in referents. Such symbols can and have been learned using existing machine
learning methods [4,5,11]. As we will argue the problem lies in the construction
of an abstract symbol system as a whole (not piece-wise), in what constitutes a
symbol and the nature of messages communicated in natural language. Symbols
determine about what one may reason, and so one symbol system may facili-
tate success in a given task better than another. We will describe how symbolic
abstractions may be constructed to describe a specific task. As to the nature of
messages, Peircean semiosis [4] attempts to describe natural language on a con-
ceptual level, defining a symbol as a triadic relationship in which the sign and
referent are connected by an interpretant, which determines the effect upon the
interpreter. What exactly an interpretant is and how it is implemented is part
of what this paper seeks to clarify. Recall that in the example above we inferred
the rationale of the hypothetical drug addict’s family member’s behaviour by
assuming their goal. The family member’s behaviour was a signal, and the goal
served to decode that signal into a message; their rationale. We will argue that
understanding natural language is not merely the result of clustering sensorimo-
tor stimuli, but of imbuing stimuli with significance in terms of a goal. We could
hardly claim to do all this by describing a goal using abstract symbols, and so
it must be constructed in a physically implementable language. For simplicity
of explanation we will describe a goal as a statement which has a binary truth
value. Such a statement is true of a subset of possible the hardware (sensori-
motor system) states, and false of others, however we see no reason goals with
more degrees of truth would not suffice. Hard coding such a goal is impractical,
and so it must be learned by interacting with the world. We draw upon enactive
cognition [10], in which cognition is embodied, situated and extending into an
environment. If a goal is to be learned then the question remains; which goal?
The question is which is most plausible, most likely to generalise, and herein lies
the connection to AGI. Ockham’s Razor is the notion that the simplest expla-
nation is the most likely to be true. AIXI [21] is a theoretical artificial general
intelligence which employs a formalisation of Ockham’s Razor [22,23] to decide
which model of the world is most plausible. Solomonoff Induction formalises this
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notion by measuring the complexity of a program by it’s Kolmogorov Complex-
ity [19]; the smallest self extracting archive which (in this case) reconstructs the
agent’s past experiences of the world. As a result, AIXI will learn the most accu-
rate predictive models possible given what it has observed of the world. While
such a model deals with programs rather than goal constraints, and is incom-
putable, it illustrates what the simple notion of Ockham’s Razor is capable of;
it not only bears out in anecdotal experience, but is of a deeper mathemati-
cal significance. To decide which goal is most plausible, we can follow a similar
line of inquiry to formalise Ockham’s Razor in terms of statements. We draw
upon preceding work for the formalisation of an arbitrary task and intent (using
The Mirror Symbol Hypothesis) [15–17], but differ in our characterisation of the
solutions to an arbitrary task, how tasks can be subdivided or merged, and the
relevance of AIXI. We have also abandoned notions such as perceptual symbols,
introduced physically implementable languages, redefined abstract symbols and
their relation to tasks and briefly addressed the emergence of normativity [26].

2 An Arbitrary Task

In order to examine goals, we must define an arbitrary task. We do so by drawing
upon boolean satisfiability problems to represent the task in terms of hardware
states (not abstract symbols).

– A finite set X = {X1,X2, ...,Xn} of binary variables.
– A set Z of every complete or partial assignment of values of the variables in

X , where
• an element z ∈ Z is an assignment of binary values zk, which is 0 or

1, to some of the variables above, which we regard as a sequence 〈Xi =
zi,Xj = zj , ...,Xm = zm〉, representing a hardware or sensorimotor state.

– A set of goal states G = {z ∈ Z : C(z)}, where
• C(z) means that z satisfies, to some acceptable degree or with some

acceptable probability, some arbitrary notion of a goal.
– A set of states S = {s ∈ Z : V (s)} of initial states in which a decision takes

place, where
• V (s) means that there exists g ∈ G such that s is a subsequence of g, in

other words for each state in S there exists an acceptable, goal satisfying
supersequence in G.

The process by which a decision is evaluated is as follows:

1. The agent is in state s ∈ S.
2. The agent selects a state r ∈ Z such that s is a subsequence of r and writes

it to memory.
3. If r ∈ G, then the agent will have succeeded at the task to an acceptable

degree or with some acceptable probability.
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For the sake of brevity, we will call s which is given a situation (which may
include memories of past experience), and r which is selected a response. The
distinction between situation and response is that a situation provides context
for a decision, while a response is the result of one. We make no comment about
any state following r, of which r may not be a subsequence. The point is to
model a decision, not a chain of events. A response may describe anything, from
complex plans to simple instructions for actuators or memory read/write opera-
tions. Context alone does not tell us which response r ∈ G is correct for situation
s ∈ S; we need a goal constraint, a statement whose truth value determines cor-
rectness. Such a statement is necessary to determine whether any response given
a situation is correct, and sufficient to reconstruct G from S (it need not recon-
struct S). There may be many statements which meet these criteria, but not all
of them are what we might intuitively label the goal. We will name this set of
statements the domain of solutions to a task, and each such statement a solution.

The Solutions to Any Task: A solution can be written using any physically
implementable language L such as the aforementioned arrangements of tran-
sistors. To distinguish between possible solutions, we draw upon the notion of
intensional and extensional definitions to be found in the philosophy of language
[12]. For example, the extensional definition of the game chess is the enumer-
ation of every possible game of chess, while the intensional definition could be
the rules of chess. However, any statement could be a rule. In what way are the
constraints we call the rules of chess any different from simply listing every legit-
imate game of chess? There is more than one set of rules which amount to the
game chess. What we choose to call the rules of any given game intuitively tend
to be the weakest, most general individual rules necessary to verify whether any
given example of a game is legal, and sufficient to abduct every possible legal
game. Conversely, enumerating all valid games is just a means of describing chess
in terms of the strongest, most specific rules possible. The rules of chess describe
the task “how to play chess”. However, there’s no reason we can’t extend the
notion of rules from merely “how to play game t” to any arbitrary task, such as
“how to play game t such that your chance of winning is maximised”. To reiter-
ate, a rule is just a statement written in a physically implementable langauge. A
statement is a solution if it is necessary and sufficient to reconstruct G from S.
For every statement, there exists a set of hardware states of which it is true. The
greater the cardinality of this set, the weaker the statement. To say one state-
ment is weaker than another is to say it is true of more hardware states. Given
a physically implementable language of any practical use, there will exist con-
nectives which can join two or more statements to form one stronger statement
(for example “and”), and connectives which can join two or more statements
to form one weaker statement (for example “or”). In either case, the resulting
statement will be longer. Just as statements can be joined, a statement can be
split into shorter separate statements by deleting a connective. The splitting of
statements could continue until only atomic statements remain. At every split
we could measure the weakness of the resulting statements, then the weakness
of statements that result from the dissection of those and so on, to measure the
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overall statement by the weakness of its constituent parts. How specifically to go
about measuring this is a matter for a much longer and more technical paper,
but for now this suffices to illustrate how two solutions might be equivalent, but
formed from very different constituent parts. As we are concerned with find-
ing the most plausible statement, we’ll consider two extremes of the domain of
solutions:

1. The Extensional Solution to the task, formed from the strongest, most
specific rules necessary and sufficient to abduct G from S:
(a) This is a statement D enumerating every member of G as a long dis-

junction “a or b or c or ...”. It is the longest solution possible without
introducing redundant statements.

(b) It stipulates exactly each correct response for every situation, with no
generalisation. It does not state what responses share in common.

(c) There is one and only one Extensional Solution given L and a task.
2. The Intensional Solution to the task, formed from the weakest, least spe-

cific rules necessary and sufficient to abduct G from S:
(a) This is a statement C stipulating what the largest possible subsets of G

share in common.
(b) It stipulates what is necessary to verify the correctness of any response

given a situation, but need not state the responses themselves.
(c) Its form depends upon L, the physically implementable language

employed, but if it were written in propositional logic in disjunctive nor-
mal form, then an Intensional Solution would be a disjunction of the
shortest possible conjunctions necessary and sufficient to reconstruct G
from S.

(d) It adheres to Ockham’s Razor in that it need not assert anything not
strictly necessary to verify correctness (the rules it describes are together
no stronger than is absolutely necessary).

(e) The above guarantees that any merely correlated variables will be elim-
inated from consideration, leaving only those relations most likely to be
causal.

(f) Just as there may be many functions which can interpolate a set of points,
there may be many Intensional Solutions to a task given L (it may not
be unique).

Intent Revisited: Earlier we defined intent as a goal, and it is certainly not
the case that humans prefer to describe goals by enumerating every example of
success. We try to describe what successes of a certain type share in common,
we generalise. We will subsequently name an agent that always constructs Inten-
sional Solutions an intentional agent, and one that always constructs Extensional
Solutions a mimic.

Relationship to Ockham’s Razor and AIXI: Given a task and an appro-
priate choice of physically implementable language, if we bundle each solution
with a SAT solver and S, then for each solution we have a self extracting archive
that reconstructs G. We will name this a solution archive. The length of such a
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self extracting archive varies only with the length of the solution it employs (S
being uncompressed, and the SAT solver being the same for all solutions). For
each task there exists a unique value given L; the length of the smallest solution
archive. Note that this is not the Kolmogorov Complexity of G, because we are
not allowing S to be compressed, and we are only considering SAT solvers as
decoders. However, we can interpret Ockham’s Razor as stating that an expla-
nation should not assert anything more specific than absolutely necessary [24].
A stronger statement is one that asserts more than a weaker statement in the
sense that it is false in more hardware states than the weaker statement. This
is what is important about Ockham’s Razor, why it works; it minimises the
possibility that the resulting statement is false. By this definition any Inten-
sional Solution, not merely the shortest, should be sufficient to guarantee the
most accurate prediction of goal satisfying responses possible. In contrast, the
Extensional Solution is made up of statements each of which is false in all hard-
ware states but one (because each one describes a unique g ∈ G), minimising
the plausibility of the solution’s constituent parts. Among the shortest solution
archives there would exist an Intensional Solution, because a longer statement
using a strengthening connective is less plausible than a shorter one, and at
least one Intensional Solution must employ no more weakening connectives than
strictly necessary (minimising length without losing necessary information). If
we modified AIXI to consider only solution archives as models of the world, then
it would be likely to find an Intensional Solution (because one must exist among
the shortest solution archives it prefers). However, the shortest solution archive
is not necessary to maximise predictive accuracy. If the reader accepts our char-
acterisation of Intensional Solutions as being the most plausible according to
Ockham’s Razor, then any Intensional Solution will suffice. Just as AIXI max-
imises reward across all computable environments, an intentional agent is one
that attempts to maximise accuracy across all possible tasks. This is to say that
in a specific task an agent possessed of a more specific inductive bias may out-
perform an intentional agent, but may not match an intentional agent in general.
Just as lossless compression isolates causal relations [20], so does an Intensional
Solution. If we accept Chollet’s [18] definition of intelligence as the ability to gen-
eralise, then these Intensional and Extensional Solutions represent the product of
its extremes. If, given a task, we choose a physically implementable language of
such limited expressiveness that only a finite number of solutions exist, then an
Intensional Solution is computable (by iterating through all possible solutions
and comparing them). Of course, this only transfers the difficulty involved in
constructing an AGI from the design of the AGI, to the design of the physically
implementable language.

Learning a Solution: Learning typically relies upon an ostensive [13] definition;
a small set of examples (hardware states, in this case) serving to illustrate what
correctness is. An ostensive definition is defined as follows:

– A set Go ⊂ G of goal satisfying states, which does not contain a supersequence
of every member of S.
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– A set So = {s ∈ S : B(s)} of situations (initial states) in which a decision
takes place, where

• B(s) means that there exists g ∈ Go such that s is a subsequence of g.

Using this ostensive definition an agent could construct a solution which is nec-
essary and sufficient to reconstruct Go from So. A solution is more general if,
given S, it implies goal satisfying responses to a larger subset of G than another
solution. We’ll examine Do, the ostensive Extensional Solution constructed by
a mimic, and Co, an ostensive Intensional Solution constructed by an inten-
tional agent. The mimic makes no attempt to generalise, and will eventually
encounter a state s ∈ S where s �∈ So for which it knows no response. However,
it may be possible for an intentional agent to construct Co = C, meaning it
learns the rules of the task as a whole. We say that an ostensive definition is
sufficient if the ostensive Intensional Solutions it implies are necessary and suf-
ficient to reconstruct G from S. If an ostensive definition is not sufficient, then
the Intensional Solutions it implies are to a different task. An intentional agent
would subsequently achieve optimal predictive accuracy for a task if given a suf-
ficient ostensive definition. Among the possible solutions to a sufficient ostensive
definition some will be more like an Intensional Solution than the extensional.
An agent that learns such solutions will always generalise better than an agent
that constructs solutions formed of stronger statements for the same reason an
intentional agent generalises better than a mimic. If one can generalise more
effectively from an ostensive definition, then one learns faster; every example
added to the ostensive definition would convey a greater increase in predictive
accuracy for the intentional agent than any agent that only constructs solutions
closer to mimicry.

Redemptive Qualities of a Mimic: The ability to generalise does not always
serve a purpose. To illustrate, given a task to model a uniform distribution
of goal satisfying responses, the Intensional and Extensional Solutions would
both need to enumerate all goal satisfying states, and the entire contents of G
would be required for a sufficient ostensive definition. While an intentional agent
may be faced with computationally expensive abduction every time it needs to
construct a response, a mimic’s response would require minimal computation.
It is akin to rote learning or human intuition, the ability to form a correct
response without understanding what makes it correct. Fitting a function to
a set of points may have more in common with mimicry than intent, which
would explain why commonly employed machine learning methods require so
much data yet struggle to generalise [3]. Perhaps to combine generalisability
with computational efficiency, the best approach is to seek both Extensional
and Intensional Solutions, the former to construct a heuristic.

Constructing an Ostensive Definition using Objective Functions: Bio-
logical organisms are not usually given an ostensive definition with which to
construct a solution to a task. Instead, we are compelled by primitives of cog-
nition such as hunger and pain. These are, for all practical purposes, objective
functions. By selecting those responses which resulted in favourable reward, we
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seem to construct ostensive definitions which we can then reason about and
decompose into rules, identifying what members of an ostensive definition share
in common.

3 Natural Language

The interpretant of an abstract symbol, as we defined it, must not only cluster
sensorimotor information but imbue it with significance in terms of a goal. By
this definition, an Intensional Solution is playing the role of an interpretant,
determining the effect stimuli has upon the interpreter’s decisions. All incoming
stimuli relevant to success in a task can then be perceived as a signal the agent
must interpret. The Intensional Solution together with a SAT solver acts as
a decoder, to compose an internal representation of a referent (a response).
Conversely, any response which results in the agent taking an observable action
could be perceived as emitting a signal. A solution may be split into shorter
statements, each one of which may be perceived in isolation as the interpretant
of an abstract symbol. The boundaries of a symbol are therefore fluid, as in
natural language, dependent upon context. A sign or referent is any stimuli to
which the interpretant refers, categorising stimuli in the same way it clusters
sensorimotor states. The Intensional Solution may therefore be seen as both an
abstract symbol itself, and a learned symbol system constructed specifically to
efficiently describe what is important in a task.

Communication: For a signal to facilitate communication it must be imbued
with similar meaning by both sender and receiver, what is called a normative def-
inition. We posit that normativity emerges when interacting agents labour under
similar compulsions, similar tasks (where a task may be defined so broadly as to
encompass the human condition). This is because, in order to construct compat-
ible symbol systems as we have described, two agents must construct approx-
imately the same Intensional Solution, so that stimuli is imbued with similar
meaning by both. Such a solution must account for the existence of other agents
operating under the similar compulsions (otherwise an agent would never be
compelled to respond to a situation by transmitting a signal), and so it must be
learned in an environment where such other agents are present. If said agents
have any significant impact on each others’ ability to satisfy their compulsions,
then solutions will imbue the observable behaviour of other agents with meaning.
If co-operation is advantageous, then repeated interaction will produce conven-
tions that facilitate complex signalling. As described earlier, a solution may be
constructed using an ostensive definition, which may be constructed using objec-
tive functions. The task with which an agent engages is then determined by these
objective functions. We will conclude this paper with an illustrative example of
an agent learning an existing normative definition by interacting with others.
For now, we illustrate what might be involved in encoding and decoding signals.
To decode:
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1. Construct an Intensional Solution or something akin to it.
2. Observe another agent responding to a situation, and apply one’s own Inten-

sional Solution to construct a rationale for their behaviour.

In doing so an agent interprets what a signal means, what immediate sub-goals
are being pursued. A signal in this form is not limited to spoken words but any
behaviour, as in normal human interaction. However, if one’s Intensional Solution
provides no valid rationale for the observed behaviour of another individual,
then the other agent’s solution may be different from one’s own. In this case,
one must hypothesise modified Intensional Solutions that do permit a rationale,
and in doing so simulate the possible goals of a creature different from one’s
own self. To meaningfully transmit is to affect change in the sensorimotor state
of another individual. One may convey or request information pertaining to
sub-goals in order to co-operate, or perhaps to deceive in order to obtain some
competitive advantage. In any case, the intentional agent is treating the other
individual as part of the environment to be affected, then choosing a response
which it predicts will satisfy its goals to some acceptable degree or with some
acceptable probability. To encode:

1. Decode the behaviour of others, predict their immediate sub-goals.
2. How might they respond to your potential responses? Choose the response

that you predict will result in their responding favourably.

An Example: Assume we have an intentional agent compelled by objective
functions akin to those of a dog. We situate this agent within a community of
dogs, and give it a body akin to a dog. Each day a human owner rings a bell
when food is available, and each day the agent observes the sound of the bell,
then the running of the other dogs to the location where food is placed, and then
the food itself. Just as a statement may be split into shorter statements, so can
a task be subdivided. The construction of a solution to an ostensive definition of
the subtask we might call “satisfy hunger” will associate the bell, the behaviour
of the other dogs and the sight of food all with the satisfaction of the hunger
compulsion, and so imbue them with meaning. These become symbols in an
emergent language. Now consider the subtask “avoid pain”. A human approach-
ing holding a stick, or a larger dog growling, will all be associated with pain
after a few bad experiences. These are messages that convey the hostile intent
of those other individuals. Having learned that a growl conveys hostile intent
and the prospect of pain, the agent may attempt to reproduce this behaviour
in order to obtain food claimed by a smaller dog, combining the rules of two
subtasks in order to satisfy the goal of one.

A Final Remark: Perhaps the most significant thing left to be said, which
by now we hope is obvious, is that the solution to a task specifies an abstract
symbol, and the solution to any subtask of that task also specifies an abstract
symbol, and so an abstract symbol and symbol system amount to the same
thing. The above is an argument, not experimental proof. In future work we
plan to construct experiments to test this idea, as well as the theory of tasks
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upon which it is based. At the time of writing we have constructed an agent that
learns Intensional Solutions to binary arithmetic and other trivial tasks. Results
pertaining to a more meaningful benchmark, which required the specification of
a more expressive physically implementable language, are forthcoming. Finally,
it is interesting to note that, because an Intensional Solution may be learned
from only positive examples, it facilitates construction of a one-class classifier.
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Abstract. The following briefly discusses possible difficulties in com-
munication with and control of an AGI (artificial general intelligence),
building upon an explanation of The Fermi Paradox and preceding work
on symbol emergence and artificial general intelligence. The latter sug-
gests that to infer what someone means, an agent constructs a rationale
for the observed behaviour of others. Communication then requires two
agents labour under similar compulsions and have similar experiences
(construct similar solutions to similar tasks). Any non-human intelligence
may construct solutions such that any rationale for their behaviour (and
thus the meaning of their signals) is outside the scope of what a human
is inclined to notice or comprehend. Further, the more compressed a
signal, the closer it will appear to random noise. Another intelligence
may possess the ability to compress information to the extent that, to
us, their signals would appear indistinguishable from noise (an explana-
tion for The Fermi Paradox). To facilitate predictive accuracy an AGI
would tend to more compressed representations of the world, making
any rationale for their behaviour more difficult to comprehend for the
same reason. Communication with and control of an AGI may subse-
quently necessitate not only human-like compulsions and experiences,
but imposed cognitive impairment.

Keywords: Compression · Symbol emergence · Communication

1 Introduction

When examining what problems may arise in the pursuit of AGI, it may
behoove us to consider explanations for The Fermi Paradox [17], the contra-
diction between the apparent absence of extra-terrestrial life and its high prob-
ability. After all, both involve communication with a nonhuman intelligence.

So, let us assume for the sake of argument that a non-human intelligence
exists in our region of space, emitting signals in a similar medium to us (such as
radio) neither attempting to contact nor hide from us; why might we have failed
to identify or interpret the meaning of such signals, and what does this suggest
for the pursuit of AGI?
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2 Symbolic Abstraction

First, let us consider what is necessary to infer the meaning of something. Natural
language is a means of encoding and transmitting certain information between
members of a species. What this information is, is debatable. A natural language
model such as GPT-3 is trained only on text data [2], implicitly endorsing the
idea that meaning is just relations between words. While GPT-3 is capable of
learning correlations in syntax to the extent that it can plausibly mimic human
writing, it lacks any of the other sensorimotor information we might typically
associate with words. Attempts to train models on multimodal sensorimotor data
have yielded some success, with agents able to associate the sensory information
of an object such as a cup with the signals that represent it [7–9]. Yet abstract
notions such as “politics” or “ex-wife” would seem to require more than mere
clustering of sensorimotor information.

One theory [10] (the mirror symbol hypothesis), posits that the informa-
tion encoded in natural language is not just sensorimotor stimuli but intent.
Drawing on ideas from embodied and enactive cognition [16], an organism’s
environment, sensors and actuators, the compulsions an organism labours under
(such as hunger and pain) and so forth together specify an arbitrary task. Utility
is replaced by a statement (a logical expression) characterizing sets of more or
less desirable sensorimotor states (including the state of memory) - represent-
ing histories or situations from which plans and subsequently subgoals may be
abducted. It is written in a physically implementable language such as arrange-
ments of transistors or neurons, necessary and sufficient to reconstruct past
experience given appropriate stimuli. If treated as a constraint to be satisfied,
a solution or any subgoal derived thereof, expresses intent. Given an ostensive
definition of a task (examples of successful task completion) there may be many
apparently valid solutions, which vary in how well they generalise to unfore-
seen situations. The weaker and more general the solution, the closer it is to an
idealised notion of intent (called an intensional solution).

In order to predict the intent of other agents, one agent assumes others con-
ceive of the world as they do. It asks what subgoals might motivate the behaviour
of other agents, given they are assumed to pursue a similar solution in general.
It constructs a rationale for specific observed behaviour, to explain what another
agent means to do (a subgoal, the pursuit of which would explain the observed
behaviour). Subsequently, in order for communication to be possible two agents
must possess approximately the same solution. Not only must they experience
similar stimuli with which to construct symbolic abstractions, but imbue that
stimuli with similar significance in terms of satisfying their compulsions. The
solutions they construct then facilitate encoding and decoding of signals inter-
pretable by both agents [11]. Any information not relevant to satisfying compul-
sions is not only meaningless but may be entirely ignored, which is consistent
with observations of human behaviour [5,6] (i.e. one may be unable to perceive
something in the stream of sensorimotor stimuli because it is filtered out).

This raises a few issues. The scope of a task is arbitrary, and so living as
a typical human may be framed as such. Any nonhuman intelligence may face
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an entirely different task, to which they construct an entirely different solution.
The difficulty this introduces is not only failure to understand what is meant,
as in human language translation. Given two different solutions to two different
tasks, stimuli may be imbued with either the same meaning, different meaning,
or no meaning at all by one of those solutions (meaningful to one but not the
other). The latter is particularly interesting, because such signals may not be
recognised as intelligent behaviour (i.e. appear insane or mindless) or may per-
haps be unnoticeable (i.e. the solution informs attention). In short, we may not
realise something is a signal because what it conveys falls outside the scope of
what humans are predisposed to notice or consider meaningful. While by defi-
nition we would be disinterested in such information, it may imply something
which we would be consider meaningful (e.g. destroying the humans because of
incomprehensible reasons).

3 Compression

Allowing for the above, one may still mechanically assess information content and
decode signals [1], to glean something of potential meanings by correlation, even
if they are incomprehensible. However, the same information can be represented
in many different ways, compressed to different extents. As the volume of digital
information exchanged and stored by humans each day has increased, so has the
utility of compression. Streaming services such as Youtube make extensive use of
compression to reduce the cost of transmission and storage. Another intelligence
may also wish to reduce the cost of transmission and storage by employing the
most effective compression they possess. Taking into account the decoder which
reconstructs a signal, the greatest extent to which a signal may be compressed
is its Kolmogorov Complexity [12]; the length of the smallest self extracting
archive capable of reproducing that signal. Such a compressed signal contains
no discernible pattern of which we might take advantage to more efficiently rep-
resent the signal without discarding information. Uniformly distributed, random
noise is also not compressible. There is no pattern. A highly compressed signal
may appear to be nothing more than random noise to any observer lacking the
appropriate decoder. Any advanced intelligence may compress information to
the extent that we mistake their signals for noise [3].

The ability to generalise is closely related to compression [14,15], with more
compressed representations yielding better accuracy [13] for the same reason that
there is only one straight line interpolating any two points, but infinitely many
polynomials of higher degree. As stated earlier, solutions to a task may vary in
how well they generalise, with an intensional solution being the most general. A
super-intelligent AGI would construct such a solution [10], which is likely to be
among the most compressed [13], meaning any rationale for its decisions may be
uninterpretable for the same reason a highly compressed signal is. Subsequently
the onus is on the more intelligent agent to communicate in terms that the a less
intelligent agent comprehends. Given human-like sensors, actuators, compulsions
and so forth, situated in a human environment, an AGI may construct a solution
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similar enough to humans to facilitate communication. However, to guarantee
interpretability and control of an AGI may require restricting how it constructs
solutions such that it is, on some level, cognitively impaired [4].
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Abstract. We attempt to define what is necessary to construct an Arti-
ficial Scientist, explore and evaluate several approaches to artificial gen-
eral intelligence (AGI) which may facilitate this, conclude that a unified
or hybrid approach is necessary and explore two theories that satisfy this
requirement to some degree.
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1 Introduction

Among the proposed means of verifying AGI, Goertzel’s 2014 survey [1] listed
The Artificial Scientist Test [2], which stipulated that AGI will have been
achieved when an artificial intelligence (AI) independently produces research
sufficient to win a Nobel prize. While there is a wealth of research on AGI in
general, and the automation of science has been explored to some extent [26],
what would be required to satisfy this test remains unclear. This paper attempts
to clarify what exactly is necessary to create an Artificial Scientist, and how this
fits within existing approaches to AGI.

A scientist may be many things, but for our purposes a simple and unam-
biguous definition is best. The Royal Society’s motto, “nullius in verba”, serves
nicely. Translated as “take nobody’s word for it”, it emphasises that a scientist
establishes truth through experiment, not testimony. For this, our agent must
possess certain qualities.

2 What is Required of an Artificial Scientist?

This is not a list of every quality an Artificial Scientist ought to posses, but an
attempt to identify what is necessary.

Representation of Hypotheses: We’ll define a hypothesis as a statement
which has a truth value. A subset of such statements are readily testable, suit-
able subjects of scientific enquiry. We’ll not concern ourselves with the specific
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language used to represent a hypothesis beyond stating that an Artificial Scien-
tist must possess a means of representing any particular hypothesis.

Inductive Inference: The Royal Society’s motto is an explicit rejection of
testimony as the basis of any claim. An Artificial Scientist must not rely on tes-
timony. Without testimony, what is true must be inferred through observation,
and so the ability to perform inductive inference seems necessary.

Deductive and Abductive Reasoning: Having inferred something of what is
an agent may transform this information, without speculation, through deductive
reasoning. Then, from what is, our agent could abduct all that may be true, but
uncertain. A testable hypothesis is one such thing, abducted from what is known.
It seems necessary then for our agent to engage in deductive and abductive
reasoning.

Causal Reasoning and Explainability: The purpose of an experiment is
to test a hypothesis, identifying cause and effect [19]. Arguably this is desired
in order that humans may develop the technology to reproduce or prevent that
effect at will. A provisionally accepted hypothesis explains phenomena. An expla-
nation is only useful if it can be understood by its intended audience, and so
a scientist must be able to communicate their hypotheses and the significance
of their results in terms of what its audience values and understands. Mere
interpretability is insufficient for more complex phenomena, as interpreting even
simple symbolic models of well understood subject matter requires a great deal
of technical expertise. Pushing forward the boundaries of scientific achievement
would produce models of such complexity as to be beyond the capabilities of
human interpretation. Fluency in natural language is desirable.

Evaluation of Hypotheses: A hypothesis must at least be falsifiable, positing
cause and effect. If we assume computational resources are finite, then there
is a cost to consider in the search for hypotheses. The question then is which
hypotheses ought to be abducted. Hume’s Guillotine tells us one cannot derive
an ought from an is, and so we must give our agent an ought by which to judge
hypotheses. If one is to choose between several hypotheses, the truth of any one
of which would serve to explain observed phenomena, then it seems reasonable
to assert that one should start by testing the most plausible, the most likely to
be true. One must also consider what is gained by proving or disproving any
hypothesis. Yes, one may choose to investigate with scientific rigour problems of
no interest to anyone, but we would hesitate to claim this is accepted practice
for contemporary scientists. Hence we assert that an Artificial Scientist must
have a means of judging the plausibility of, and potential profit in any line of
inquiry; a heuristic to inform its search of the space of possible hypotheses.

Experimental Design, Evaluation and Planning: To test a hypothesis one
must design an experiment that isolates and tests the hypothesised cause of an
effect, ideally controlling for all other variables. Each experiment costs resources,
and the information gained should be evaluated in terms of expected benefit
across hypotheses and future experiments. For example, a valuable experiment
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may not entirely confirm or disprove any one hypothesis, but may provide infor-
mation allowing an agent to more efficiently select future experiments that will
confirm or disprove many high priority hypotheses. There are also risks to con-
sider in an experiment. An experiment with a high expected utility may threaten
the agent’s continued existence, and so some form of risk aversion may be neces-
sary (for example, when planning future experiments the geometric mean may be
more appropriate than the arithmetic mean when computing utility, because the
utility of future experiments depends upon the outcome of preceding experiments
and their impact on available resources and capability). An agent must identify
what novel information would confirm or disprove those abducted hypotheses of
the greatest expected utility. It must design experiments that will convey said
novel information and compare and plan experiments based on opportunity cost
and risk.

Enactivism: To perform experiments, an agent must possess a means of inter-
acting with the environment. The process of experimentation could be perceived
as enactive cognition, which posits cognition arises through the interaction of an
organism with its environment. It assumes cognition is embodied, embedded to
function within the confines of a specific environment, enacted through what an
organism does and, finally, extending into that environment to store and retrieve
information. All of this seems obviously necessary to conduct experiments in the
environment. We are not offering an unqualified endorsement of embodied cog-
nition; after all it is arguable that even a laptop has a body [15]. However,
experimentation has certain physical requirements, and if one is able to perform
targeted experiments that obtain specific novel information and isolate causal
relations, the process of learning may proceed much faster than if one is forced
to wait until that same novel information is observed by chance.

3 Three Relevant Approaches to AGI

For the following we draw heavily upon Goertzel’s 2014 survey of the field [1],
deviating slightly to include recent developments and adjust the categories to suit
our purposes. To standardise the terms with which we compare these approaches
we employ a model of an arbitrary task, we treat the application of intelligence as
prediction, and so define each of these approaches as trying to predict the appro-
priate response r given a situation s. For the sake of brevity appropriateness,
situation and response can be read using their common language definitions, but
more concrete definitions are available if the reader is curious [16,17].

Logicist: We’ll use the term logicist as a catch all for approaches that employ
symbolic knowledge representation and inductive logic programming for learn-
ing. A finite set of symbols are used to describe discrete environment states,
actions and so forth. Symbols may be joined by logical connectives to specify
statements that have a truth value within any given state. Degrees of belief in
the truth of a statement, probabilities, may be assigned to statements where
the environment is stochastic or partially observable. Statements may also be
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employed as constraints to define what behaviour is permitted; the rules of a
task. An agent may infer such constraints from examples through what is called
inductive logic programming. As with Goertzel’s symbolic category [1] a logi-
cist approach typically subscribes to The Physical Symbol System Hypothesis
[18,22], meaning the abstract symbols it employed are assumed to be grounded
in hardware, but how is a matter left for implementation. We go a step further
and say that a logicist approach is perhaps better characterised as employing a
constant and unchanging vocabulary of symbols which are in some manner spec-
ified by a human. Such an agent typically learns rules that determine whether
a chosen response r is correct in a situation s, from which a correct response r
may then be derived for a given a new situation s, allowing the agent to gener-
alise. This is as opposed to modelling r as a function of s directly. As a result
the choice of response is technically interpretable, but only in a limited sense,
because the meaning of symbols is dyadic, exact, and parasitic on the meanings
in the head of the human interpreter [23]. This is as opposed to emergent natural
language, in which meaning is fluid and open to interpretation.

Emergentist: Emergentist approaches take as their premise that complex
behaviour and what we call abstract symbol systems may emerge through sub-
symbolic processes, such as the interaction of neurons. This process is called
symbol emergence [10], and typically uses approaches such as latent dirichlet
allocation to cluster multi-modal sensorimotor stimuli into perceptual [24] or
sensorimotor [25] symbols with fluid definitions akin to natural language. For
example, researchers created an agent able to associate the sound of the word
“cup” with the image and other characteristics of a cup as experienced by that
agent [11], but success in constructing more complex symbols such as “opera”
or “belief” remains elusive. Such an emergent symbol system could be used in
conjunction with a logicist approach, which could then learn the rules of a given
task in terms of these symbols. However, we extend this category to encompass
approaches that bypass the construction of an abstract symbol system entirely
in favor of directly modelling correct responses as a function of situations. For
example, a neural network performing image classification. This is assumed to
implicitly model the rules that determine the correctness of responses, but as a
result is not as readily interpretable as logicist methods.

Universalist: In the context of an arbitrary task, an agent must map situa-
tions to responses. Such an agent could be conceived of as a program. A uni-
versalist approach assumes quite reasonably that for each environment (or task)
there exists at least one program that always chooses the best possible responses
(maximising reward), and so there must exist a program that maximises reward
across all environments (or tasks). To define this program Hutter [6] employed
a formalisation of Ockham’s Razor named Solomonoff’s Universal Prior [13,14]
which assigns a weight to every program which reconstructs what the agent has
experienced of the environment thus far. The same model could be expressed by
programs of varying length, and so each program is evaluated by its Kolmogorov
complexity [12]; the smallest self extracting archive in a specific language. This
theoretical agent, named AIXI, has been proven to perform such that there is
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no other agent which outperforms it in one environment that can also equal
its performance in all others (in other words, AIXI may be outperformed in a
specific environment by a more specialised agent employing inductive bias that
prevents it performing as well across at least some other environments). While
such an approach encompasses both logicist and emergentist approaches because
it searches the space of all programs, it is distinct in that it begins with a guar-
antee of optimal performance in terms of an arbitrary reward function. The
downside; Solomonoff Induction is incomputable. However, working approxima-
tions of AIXI have been constructed and this theoretical model provides useful
insights about the significance of compression for intelligence.

4 Are Any of These Approaches Alone Sufficient?

In the following we discuss whether any of these is sufficient or not.

4.1 Universalist

For: By choosing the smallest self extracting archive as its model of the world,
AIXI is in effect choosing from among possible hypotheses the most plausible
according to what it has experienced so far. Certainly AIXI is capable of infer-
ence, and in extracting predictions from its highly compressed representation of
the environment it seems reasonable to assume there must be something analo-
gous to deduction or abduction taking place. Finally and most importantly, by
finding the most compressed representation it must isolate causal relations [7].

Against: Assuming AIXI could be approximated well enough, behaviours such
as explainability must all somehow be specified by the reward function. Creat-
ing a function that guarantees such complex behaviour may not be any more
achievable than AGI in general.

4.2 Emergentist

For: The utility, or at least popularity, of emergentist methods such as deep
learning in narrow industrial applications seems almost indisputable. Models
such as GPT-3 demonstrate that even complex writing tasks are not beyond
reach with existing technology. While such models tend to be difficult to inter-
pret, if they can be made to infer the ambiguous rules underlying natural lan-
guage then perhaps they can eventually be made explainable to a layman. Cer-
tainly an emergentist method is easily implemented in a physical robot, because
there is no abstraction required. If human language in all its inconsistency is to
be acquired by an AI, then emergentist methods seem a promising approach.

Against: An agent that mimics plausible explanations is of no more practical
use as a scientist than an agent that gives no explanation at all. We can only
trust explanations as far as we can interpret and verify them. Further, those
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explanations may be closer to mimicry than reasonable hypotheses. For example,
the aforementioned GPT-3 seemed to acquire basic arithmetic, but as soon it
was presented with less common sums it started giving responses that were
wrong [21]. It appears to mimic arithmetic whilst having failed to grasp its
rules. This may also be why many popular emergentist methods require so much
data to learn in comparison to existing logistic or universalist methods; an agent
that only mimics must learn all correct responses by rote, while an agent that
understands what determines the correctness of all responses will be equipped to
identify the correct one in any situation [17]. All of these issues must be addressed
before emergentist methods alone might result in an Artificial Scientist.

4.3 Logicist

For: A hypothesis represented as a statement within a predefined symbol system
is interpretable. Though SAT is NP-Hard, a suite of existing solvers allows one to
search the space of possible hypothesis fairly efficiently and with guaranteed opti-
mality. Constraints are easily specified in comparison to other methods, allowing
one to tailor agent behaviour to better suite specific tasks such as experimental
design and planning. Finally, not only is the technology to deduct, abduct and
infer with symbolic representations mature, but causal relations and their com-
putation are typically defined in terms of symbols, and remain easily verifiable
after the fact.

Against: Abstract symbols must somehow connect to low level sensorimotor
stimuli [23]. Even if this is solved, a fixed set of symbols chosen by a human may
be far from suitable to express explanations for which we require an Artificial
Scientist. Even if it were, such explanations are unlikely to be understood by
even the most qualified of humans [4,17]. What is less obvious about cognition
is why symbols are formed as they are. Which abstractions are best? This may
be the most significant aspect of symbol emergence, that what emerges is part
of the solution to a task, expressing specifically those things of relevance in
solving it [17]. What of extending cognition into parts of the environment never
conceived of in the specification of the symbol system? While logicist methods
may surpass emergentist in terms of interpretability, causal reasoning, data-
efficiency and our ability to control, emergentist methods remain the state of the
art by a large margin in terms of computer vision, natural language processing
and so on. More, the simple act of representing a hypothesis symbolically does
not mean it is the most accurate hypothesis explaining the data. Something
akin to the formalisation of Ockham’s Razor employed in universalist methods
remains necessary.

5 A Unifying Perspective

None of the above appear sufficient in isolation, at least in the near term, for the
purpose of constructing an Artificial Scientist. However, together they address
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all characteristics we deemed necessary. A universalist approach reveals what
hypotheses are most plausible [6,8,9] and, by virtue of optimal lossless com-
pression, isolate causal relations [7]. A logicist approach facilitates interpretable
representation of hypotheses, planning, causal reasoning [3–5,16,17,19,20] and
the ability to tailor behaviour to our needs with ease. An emergentist approach
facilitates enactivism and the possibility of an emergent symbol system which is
efficient [16,17], fluid and comparable to natural language [10,11,25]. Two com-
plimentary bodies of research may provide a foundation for future work along
these lines; the formalisation of an arbitrary task and its solutions (named “The
Solutions to Any Task”) [17], and a formalisation inspired by the work of Kant
[5] (named “Kant’s Cognitive Architecture”). These approaches are similar but
based on different premises, providing different insights. We will now briefly
summarise and compare them as they pertain to developing an Artificial Sci-
entist. Both attempt to infer a hypothesis which explains observed data, from
which correct responses to every situation may be abducted. Combined with a
SAT solver to decode responses, such an hypothesis qualifies as lossless com-
pression. Finally, neither approach relies upon abstract symbols, learning from
sequences of sensory data in the case of Kant’s Cognitive Architecture, and a
set of sensorimotor sates in the case of The Solutions to Any Task.

Kant’s Cognitive Architecture: Taking Kant’s Critique of Pure Reason as
its inspiration, this approach asserts that there is no such thing as a specific
judgement. Subsequently every rule is universally quantified, “doomed to gen-
eralise” as the authors put it [4, p. 31]. Evans introduced notions of unity, a
form of inductive bias that specifies which constraints are acceptable in terms
of spacial, temporal and causal relations, along with object permanence (static
unity). The solution is then made more general by choosing weak constraints.
Such notions are well suited to explain all sensory data in general terms, and
their implementation in the form of The Apperception Engine performs as one
would expect (extremely well). The resulting hypotheses are general, perhaps not
the most general, but enough that we can say that to some extent it accounts
for the universalist’s notion of plausibility (similar to Kolmogorov Complexity).
It is arguably embodied to some extent, being concerned with sensory data, but
does not account for the motor part of the sensorimotor system as is reflected
by its specific form of inductive bias.

The Solutions to Any Task: The notion of an arbitrary task attempts to
formalise anything we might call a task in terms of its solutions (the assumption
being that it must be possible to succeed or fail at a task to some degree, however
the task need not be computable). In the domain of possible solutions to a
given task there exist two extremes; an Intensional Solution (which may not
be unique) and an Extensional Solution (which is unique). Because the task is
defined in terms of a set of sensorimotor states, situation and response pairs
rather than sequences of sensory data, the solution is more general, pertaining
to interactive sensorimotor control rather than just the prediction of sensory
input, with a much simpler inductive bias. The Intensional Solution is formed
of the weakest, least specific rules necessary and sufficient to reconstruct the
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aforementioned set of sensorimotor states given the complete set of situations, a
formalisation of Ockham’s Razor which maximises the ability to generalise and
identifies causal relations. The Extensional Solution is formed of the strongest,
representing perfect mimicry with no generalisation. The Intensional Solution
or a solution close to it represents intent, and is used to explain both symbol
emergence [17] and the modelling of intent in other agents [16]. The Intensional
Solution is incomputable in general, but computable if restricted to a specific
hardware language (a further inductive bias).

Comparison with Respect to Hypotheses: These two approaches are not
mutually exclusive, but complimentary. Given a subset of possible tasks per-
taining to specific types of sensory input, the inductive bias implemented in
the Apperception Engine will result in an Intensional Solution. For some other
tasks, it may result in something more intensional than extensional, but for the
remainder of tasks it may produce nothing useful (because it assumes “there is
no such thing as a specific judgement” [4, p. 31]). Consider a task to reproduce
a set of random binary sequences, drawn from a uniform distribution, given only
part of each sequence. The Apperception Engine would attempt to find what
all sequences in the set share in common, and fail. There are no universal rules
by which the sequences may be reproduced. In contrast, the Intensional Solu-
tion to the task would specify each sequence in detail, effectively rote-learning
the set (the Intensional and Extensional Solutions would be one and the same).
Ultimately, our Artificial Scientist should prefer hypotheses which are the most
plausible regardless of task, meaning the Intensional Solution based on Ock-
ham’s Razor rather than the more restrictive inductive bias towards the afore-
mentioned class of sensory sequences. However, a working implementation of the
Apperception Engine is publicly available. It is not an abstract promise of future
capability.

Comparison with Respect to Experimentation: The specifics of experi-
mental design are not addressed in either case. To illustrate why observational
data alone may be insufficient, consider a task to either multiply two binary
numbers, or add them. There are now two correct responses when presented
with any two binary numbers. A set of situation-response pairs is observed, stip-
ulating one and only one correct response for each situation. A response here is
the result of either addition, or multiplication, the choice of which being made by
a fair coin flip (uniformly distributed). This last part is important, as knowing
a situation is observed with addition, or with multiplication, would not convey
any useful information which would allow one to form two universally applicable
mutually exclusive rules based on aspects of the situation. The Apperception
Engine would fail because there is no single universal rule which is mutually
exclusive with all others (there are in fact two concurrent rules). In contrast, the
Intensional Solution would specify both correct rules, albeit restricted to specific
rote memorised situations (it would be more specific than necessary because it
would state that addition is necessary in some specific situations, and multipli-
cation in all others). To find an Intensional Solution that properly describes the
task (as two separate concurrent and universally applicable rules) would require



The Artificial Scientist 53

the agent experiment, to test whether each rule holds in specific situations, or if
both apply in all situations. An Intensional Solution alone is insufficient, because
the information necessary to confirm that two mutually exclusive responses are
valid in any given situation is not present in the existing set of observations.
A hypothesis must be formed, abducted from the data, and tested to confirm
whether the rules apply concurrently or in an alternating pattern. As illustrated
by the above task with two solutions, regardless of inductive bias experiment
remains necessary to guarantee the most data-efficient mode of learning (to find
the most correct hypothesis).

Comparison with Respect to Symbol Emergence and Explainability:
While Kant’s Cognitive Architecture does not attempt to address symbol emer-
gence, Evans has proposed the integration with subsymbolic methods such as
neural networks to ground abstract symbols [4], similar to the aforementioned
work on symbol emergence in robotics [11]. These could then be composed
into concepts by the Apperception Engine, albeit limited by the inductive bias
towards sensory input. This would also seem to imply a constant and unchanging
set of abstract symbols specified by a human (where the exact meaning of those
symbols is determined by learning algorithm), but it is a step in the direction
of an emergent symbol system. However, The Solutions to Any Task posits that
not all symbol systems are equal, that some are better suited to describe what is
relevant to a task than others. As such a symbol system is implicit in the solution
to a task, clustering sensorimotor stimuli in terms of what is relevant to success
in that task [17]. The distinction between any two symbols is then fluid, depen-
dent upon context. This theory attempts to address not only the emergence of a
symbol system, but the modelling of intent in other agents, empathy [16], in aid
of constructing explanations in natural language tailored to what the audience
understands and considers important. To learn such a symbol system requires
that symbols are not learned separately from one’s model of the world, but as
part of it so that they have meaning (“significance in terms of a goal”) beyond
their relation to other symbols. This is a fundamentally different approach to
symbol emergence to the one proposed for the Apperception Engine, sharing
in more in common with the notion of concepts discussed in Kant’s Cognitive
Architecture, but perhaps requiring a fundamentally different inductive bias to
that of the Apperception Engine.
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Abstract. The solution methods used to realize artificial general intelli-
gence (AGI) may not contain the formalism needed to adequately model
and characterize AGI. In particular, current approaches to learning hold
notions of problem domain and problem task as fundamental precepts,
but it is hardly apparent that an AGI encountered in the wild will be
discernable into a set of domain-task pairings. Nor is it apparent that the
outcomes of AGI in a system can be well expressed in terms of domain
and task, or as consequences thereof. Thus, there is both a practical
and theoretical use for meta-theories of learning which do not express
themselves explicitly in terms of solution methods. General systems the-
ory offers such a meta-theory. Herein, Mesarovician abstract systems
theory is used as a super-structure for learning. Abstract learning sys-
tems are formulated. Subsequent elaboration stratifies the assumptions
of learning systems into a hierarchy and considers the hierarchy such
stratification projects onto learning theory. The presented Mesarovician
abstract learning systems theory calls back to the founding motivations
of artificial intelligence research by focusing on the thinking participants
directly, in this case, learning systems, in contrast to the contemporary
focus on the problems thinking participants solve.

Keywords: Artificial intelligence · Systems theory · Learning theory

1 Notation

The Cartesian product is denoted ×. Given system S ⊂ ×{Vi} for i = 0, ..., I,
S denotes the component sets of S, i.e., S = {V0, ..., VI}.

2 Introduction

Artificial intelligence (AI) was initiated as a field to study the realization of
thinking in computers [10]. Over the years, however, AI’s focus has drifted away
from thinking in general towards problem solving in particular. In learning, this
is epitomized by the near-universal precepts of problem domain and problem
task [14]. Typically, the domain and task are formalized as D = {X , P (X)} and
T = {Y, P (Y |X)} where X and Y are the inputs and outputs of a function that
an AI is approximating. This view, taken to the extreme, posits intelligence as
c© Springer Nature Switzerland AG 2022
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https://doi.org/10.1007/978-3-030-93758-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93758-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-93758-4_7


56 T. Cody

a problem-solving phenomenon to be measured by integrating an error function
over a complexity-weighted set of domain-task pairings [5].

Artificial general intelligence (AGI) is more than problem-solving, however.
And, in engineering AGI, the problems AGI solves are merely part of broader
systems concerns. Viewing learning through the lens of problems makes sys-
tems concerns at least secondary. And, moreover, relying on domain and task
as precepts greatly limits the extent to which formalism can be carried through
into general elaborations. As AI is largely a mathematical construct, the use of
metaphors and analogies in the stead of axoims and first principles is unneces-
sary for its basic systems characterization—and a basic systems characterization
may be all one can hope to achieve as the influence and outcomes of AGI will
likely not be readily discernable, let alone discernable into domain-task pairings.

While perhaps parsimonious for describing solution methods, notions of
domain and task lack the formalism needed for extensive elaboration at a general
level and are insufficient for characterizing AGI as a system or the roles AGI plays
in systems. Mesarovician abstract systems theory (AST) can be used to address
these short-comings by treating learning as a system, as opposed to as a problem-
solving procedure. This manuscript contributes a Mesarovician abstract learning
systems theory (ALST) that builds upon previous work in transfer learning [6]
with notions of hierarchy. Namely, abstract learning systems are stratified in
order of the generality of their assumptions and such stratification is projected
onto learning theory.

The manuscript is structured as follows. First, relevance to AGI is motivated
and preliminaries on AST and ALST are given. Then, learning systems are strat-
ified, that stratification is projected onto learning theory, and, before concluding,
remarks are made on scope and practical use.

3 Motivation

There are a number of fundamental challenges to modeling AGI.

– Perhaps AGI will be realized by a well-formulated problem domain and task
coupled with an explicit solution method [14]. But, even if this is the case,
requisite variety [2] and chaos [9] suggest that any solution method capable
of realizing AGI will require an abstraction mechanism burdened by nearly
unbounded variety and irreducible complexity. So, one will not be able to reli-
ably look at a solution method and foretell its outcomes or look at outcomes
and discern the solution method.

– It may also be that AGI is an emergent phenomena among a system of systems
[8], incompressible into individual solution methods, let alone domain-task
pairings. In such a case, AGI phenomena exist at a higher level of abstraction
than the individual solution methods themselves.

– AGI is expected to influence and to be influenced by the system within which
it operates. This coupling suggests that even if AGI can be relegated to a
sub-system at conception, the borders between the “intelligent” sub-system
and those under its influence face dissolution as the AGI and its context
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Fig. 1. Observation is an active process influenced by the values of the observer [1].

intertwine. Thus, it may be that, after a period of integration, an AGI’s
solution method is not representative of the form the AGI comes to take.

And so, for these reasons, it seems natural to study learning in AGI in terms
of general systems phenomena. The high level of abstraction allows for a strat-
ification in the specification of assumptions when modeling learning, thereby
allowing for significant, formal elaboration without explicit reference to solu-
tion methods. This stratification allows for addressing uncertainty in modeling
by choice of perspective view. It supports modeling the AGI phenomena one
observes, i.e., the phenomena one’s values lead them to perceive [1], as depicted
in Fig. 1. Thus, the presented theory provides a far-reaching, formal framework
for learning that observers and engineers of AGI can use to scope their field of
view.

4 Preliminaries

4.1 AST

General systems theory is concerned with the study of phenomena that apply to
systems in general [15]. AST is a mathematical general systems theory born out
of systems engineering [12]. However, it quickly found cross-disciplinary appli-
cation, notably, in fields of information, computation, and cybernetics [11,13].

In the realm of general systems theory, it holds the formal-minimalist world-
view that systems are a relation on sets [7]. Mesarovic and Takahara posit AST
as an attempt to formalize block-diagrams without a loss of generality—that is,
as a formal, intermediate step between verbal descriptions and detailed mathe-
matical models [11]. Abstract learning systems theory is depicted in context in
Fig. 2.

Fig. 2. Venn diagram contextualizing the presented theory.
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In AST, a system is defined as a relation S ⊂ ×{Vi} where Vi for i ∈ I
are termed component sets. Theory is developed by adding structure to the
component sets, their elements, and the relation among them. Two fundamental
systems in AST are input-output systems and goal-seeking systems. An input-
output or elementary system is a relation S ⊂ X × Y where X ∩ Y = ∅ and
X ∪ Y = S. When, S : X → Y, S is termed a functional system.

A goal-seeking system is an input-output system S ⊂ X × Y with internal
feedback. The internal feedback is specified by a set of consistency relations
G : X × Y × Θ → V and E : X × Y × V → Θ. G is termed the goal relation and
is responsible for assigning values v ∈ V to input-output pairs (x, y) ∈ X × Y.
E is termed the search or seeking relation and is responsible for selecting the
internal control parameter θ ∈ Θ. Importantly, G and E cannot be composed
to form S—in other words, goal-seeking systems are input-output systems at
their highest level of abstraction, but cannot be specified as a composition of
input-output systems.

4.2 ALST

Recent work has extended AST into transfer learning [6]. There, transfer learn-
ing was modeled as a relation on learning systems, and notions of transferability,
transfer distance, and transfer roughness were defined in systems theoretic terms.
In contrast, this manuscript establishes ALST as a general systems theory con-
cerned with learning broadly.

Learning systems are formulated as a cascade connection of a goal-seeking
system and an input-output system. Learning systems are defined as follows [6].

Definition 1. Learning System.
A learning system S is a relation

S ⊂ ×{A,D,Θ,G,E,H,X ,Y}

such that

D ⊂ X × Y, A : D → Θ,H : Θ × X → Y
(d, x, y) ∈ P(S) ↔ (∃θ)[(θ, x, y) ∈ H ∧ (d, θ) ∈ A]

G : D × Θ → V,E : V × D → Θ

(d,G(θ, d), θ) ∈ E ↔ (d, θ) ∈ A

where
x ∈ X , y ∈ Y, d ∈ D, θ ∈ Θ.

The algorithm A, data D, parameters Θ, consistency relations G and E, hypothe-
ses H, input X , and output Y are the component sets of S, and learning is
specified in the relation among them.
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Learning systems can be decomposed into two systems SI and SF . The induc-
tive system SI ⊂ ×{A,D,Θ} is responsible for inducing hypotheses from data.
The functional system SF ⊂ ×{Θ,H,X ,Y} is the induced hypothesis. SI and
SF are coupled by the parameter Θ. Learning is hardly a purely input-output
process, however, and, to address this, the goal-seeking nature of SI , and, more
particularly, of A is specified. A is goal-seeking in that it makes use of a goal
relation G : D ×Θ → V that assigns a value v ∈ V to data-parameter pairs, and
a seeking relation E : V × D → Θ that assigns a parameter θ ∈ Θ to data-value
pairs. Again, note, these consistency relations G and E specify A, but are not a
decomposition of A. Also note that D is specified as a subset of X ×Y following
convention, not necessity.

5 Stratification

In the following, the hierarchy of assumptions in this formulation of learning
systems as well as the hierarchy it projects onto learning theory are investigated.

5.1 Levels in Abstract Learning Systems Theory

Each component set of a learning system can be modeled with considerable
depth. But, when taking a top-down view, there are three key levels of abstrac-
tion implicit in Definition 1.

Elementary Level. The elementary level treats learning as an input-output
system S ⊂ ×{D,X ,Y}. Specifically, S : D × X → Y. This level is already
sufficient to characterize a learning system in terms the fundamental properties
that AST is built upon. For example, the stability of S(D) : X → Y, whether X
or D is anticipatory of Y, or whether S(D) : X → Y is controllable by D. Also,
this level admits consideration of the composition or interaction of S with other
systems in its context. This level, however, is restricted to little more than the
analysis of correlation between inputs and outputs.

Cascade Level. The cascade level treats learning as a cascade connection of
input-output systems, particularly, a cascade connection of an inductive system
SI and the hypotheses it induces SF , i.e., S ⊂ SI × SF where SI ⊂ ×{A,D,Θ}
and SF ⊂ ×{Θ,H,X ,Y}. More specifically, S ⊂ ×{A,D,Θ,H,X ,Y} where
A : D → Θ and H : Θ × X → Y. Learning systems are still input-output
systems, as at the elementary level, but now the model of learning distinguishes
the inductive part as cascading into the functional part.

Goal-Seeking Level. The goal-seeking level treats learning as a cascade con-
nection of a goal-seeking system and an input-output system. The inductive sys-
tem is extended to specify its goal-seeking nature, i.e., SI ⊂ ×{A,D,Θ,G,E}
where G : D × Θ → V and E : D × V → Θ. The explicit consideration of the



60 T. Cody

Fig. 3. The three stratified levels in terms of their component sets and block-diagrams.

goal-seeking nature of learning distinguishes this level from higher levels as it
specifies that SI is not decomposable into input-output systems. As such, this
level acknowledges that the traditional engineering practice of engineering by
aggregation, of following the mantra, “If the parts work, the whole will work”,
will not necessarily work for engineering learning.

5.2 Remarks on Levels

The goal-seeking level may seem in conflict with the higher levels of abstraction.
It is not. At the elementary and cascade levels, learning is appropriately address-
able as an input-output system. Such a view, of course, treats goal-seeking as
a black-box. Unpacking the black-box, goal-seeking nature of learning can be
done at a lower level of abstraction, but not without sacrificing the simplicity of
learning as an elementary system or as a cascade of elementary systems (Fig. 3).
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5.3 Projection of Levels onto Learning Theory

This stratification of learning systems projects a stratification onto the many
concerns of learning theory. We demonstrate this using the 11 concerns listed
in the right column of Fig. 4. In Fig. 4, the component sets of each level are
associated with each of these learning theoretic concerns.

Elementary Level. The elementary level, concerning D,X and Y, allows for
the most general phenomena to be considered. Learning problems have a hard-
ness associated with what the learning system is tasked to do given X . If X
are paths in a graph and Y is the longest path in the set of paths X , then the
learning problem is NP-complete. Given D in addition to X and Y, the basic
properties of monotonicity can be investigated and information complexity can
be estimated, along with other basic considerations of distribution. Learning the-
ory at the elementary level gives a sense of how hard a learning problem is and
how much there is to learn, but no particulars regarding the inner-workings of
the learning system itself.

Cascade Level. The cascade level introduces hypotheses H and its parameter-
ization Θ, which gives a sense of the terms in which a learning system interprets
the world, or at least gives a sense of the form of its explanations of worldly
phenomena. Given H and Θ, notions of falsifiability, flexibility, and capacity can
be considered. Falsifiability refers to whether the hypotheses are suited for scien-
tific induction. Flexibility refers to the rate at which the relation between X and
Y specified by H(Θ) can change when Θ is varied. And capacity refers to the
variety with which a set of hypotheses can partition X , i.e., capacity concerns
how many different labelings of X by Y are possible using H(Θ). Additionally, at
the cascade level, sample complexity can be modeled as a distribution-free prop-
erty of hypotheses H(Θ) or, using distribution information from the elementary
level, can be modeled as a property of hypotheses H(Θ) and the distribution
over which they are induced. Capacity and sample complexity see particularly
widespread use in learning theory. Some of the most important theorems con-
cerning a learning systems ability to adapt to change are given in terms of sample
complexity, capacity, and distributional divergence [3].

Goal-Seeking Level. Although the cascade level introduces the algorithm A,
A is left as black-box. The goal-seeking level, however, allows for a detailed
characterization of a learning systems goal-seeking nature. This includes some of
the most common interests of learning theory, e.g., non-asymptotic convergence,
i.e., whether a system can learn a function approximation in the short or medium
term, and error, i.e., the similarity between the approximated function and the
induced hypothesis. Convergence is a statement made using A,G, and E, as well
as the hypotheses H and how they are parameterized by Θ. Error concerns the
set of values V and the goal relation G that relates data D and parameters Θ
to those values. And, knowing how the search problem is formulated via G and
E, statements can be made on the algorithmic complexity of A.
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Fig. 4. The three stratified levels in terms of their block-diagrams, the additional com-
ponent sets they consider, and the relationship between those component sets and
learning theoretic concerns.

5.4 Remarks on Projection of Levels

While one can model learning directly using any individual or combination of the
stratified component sets, there is always a systems theoretic structure implicit.
By specifying that the hypotheses and error take a certain form, for example,
one is also specifying, implicitly, something regarding X ,Y, Θ,A, and G.

Capacity as a cascade level notion is worth elaborating with a particular
example. Bottou and Vapnik define a notion of local learning algorithms using
capacity [4]. There, they define local algorithms as those that, “...attempt to
locally adjust the capacity of the training system to the properties of the training
set in each area of the input space.” In ALST terms, local learning systems
are those that, informed by D, adjust the capacity of H(Θ) during training in
accordance with X . Thus, local learning is a cascade level notion.

6 Scope

ALST provides a mechanism for scoping the field of view with which AGI is
modeled. The scene of grey input-output systems horizontally surrounding the
black input-output system S at the top of Fig. 5 depicts a learning system being
contextualized by other system-level, input-output phenomena. The ability to
scope a model of AGI outward into the AGI’s context is inherited from AST.
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Fig. 5. A depiction of the horizontal and vertical scoping of models of AGI afforded
by ALST.

The vertical descent in Fig. 5 from the input-output system S to the elementary
level, then the cascade level, and so on, depicts the top-down scoping of depth in
a model of AGI. This top-down descent from the general systems level towards
solution methods is provided by ALST.

By stratifying learning systems with respect to the generality of their mathe-
matical structure, learning systems can be specified at varying levels of abstrac-
tion. This can serve as a useful mechanism for engineering practice. A formal
understanding of hierarchy allows for an ordering of design decisions, for the
structuring of operational and mission performance models, and for modeling a
learning system with various degrees of precision and uncertainty.

In engineering AGI, these are important capabilities. AGI solutions are over-
whelmingly bottom-up, but the outcomes we associate with the success of AGI
will occur at higher-levels of abstraction. And so, from the perspective of an
engineer trying to build or use AGI towards satisfying the needs and goals of a
stakeholder, the presented framework allows for the outcomes of AGI, the gen-
eral characteristics of AGI, and the needs and goals of its stakeholders to be
modeled in a common language and at a common level of abstraction.

7 Conclusion

The general systems theory approach to learning presented herein calls back to
the principal concerns of AI’s founding, with a perspective view on learning in
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favor of the thinking participants themselves, not the problems they solve. It does
this by shifting from a view of learning as problem solving to a view of learning as
a system. And, in doing so, it provides a means of mathematically characterizing
learning in AGI in terms of its general phenomena—without explicit reference
to solution methods.

In addition to stratification, AST offers a number of other promising uses for
AI. AST is largely a theory of category, and thereby provides a non-conventional
means of applying category to AI. Also, AST provides the foundational math-
ematics for efforts in model-based systems engineering and digital engineering.
AST may be a means of connecting AI to large-scale, formal models of systems
developed by engineers. Lastly, while 3 key, hierarchical levels were emphasized
herein, there are also a variety of heterarchical relationships to explore. A top-
down understanding of these varied relationships may serve well as a latticework
about which to structure best practices for the engineering of AI.
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Abstract. Without a concrete measure of the “complicatedness” of
tasks that artificial agents can reliably perform, assessing progress in AI
is difficult. Only by providing evidence of progress towards more com-
plicated tasks can developers aiming for general machine intelligence
(GMI) ascertain their progress towards that goal. No such measure for
this exists at present. In this work we propose a new measure of the
intricacy of tasks, especially designed to describe their physical compo-
sition and makeup. Our intricacy is a multi-dimensional measurement
that depends purely on objective physical properties of tasks and the
environment in which they are to be performed. From this task intricacy
measure, a relation to the knowledge of learners can allow calculation of
the difficulty of a particular task for a particular learner. The method is
intended for both narrow-AI and GMI-aspiring systems. Here we discuss
some of the implications of our intricacy measure and suggest ways in
which it may be used in AI research and system evaluation.

Keywords: Tasks · Environments · Intricacy · Difficulty · Task
theory · Artificial intelligence · General machine intelligence ·
Evaluation · Training

1 Introduction

To better understand tasks and their role in research in general machine intel-
ligence (GMI), we have been deepening our understanding of tasks and envi-
ronments in the past few years, with an aim of developing a theory of tasks
(cf. [5,15]). This research has highlighted the requirement for proper analysis
of tasks, including an objective measurement of a task’s “complicatedness” or
convolutedness. By this – and only by this – the difficulty of a particular task for
a particular learning controller could be calculated, assuming that the difficulty
of a task is a function of the task-environment (TE) and the controller perform-
ing the task. In this paper we introduce such an objective measure, called the
intricacy of tasks, place it in the context of a causality-based task theory, and
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show the implications that such an intricacy measurement may have for progress
in AI, and in particular, towards GMI.

Assuming there exist regularities in an agent’s task-environment – which
is a necessary requirement for any learning to be possible – these regularities
can be expressed in the form of causal mechanisms. From these we may derive
different measures of complexity1 which can be used to calculate the level of
intricacy of the task-environment. In past work we have described different com-
plexity dimensions of tasks [14] and introduced an evaluation platform where
these dimensions can be tuned by the analyst [7]. Our new approach to task
intricacy is based on – and compatible with – this prior work.

The paper is structured as follows: In the first section we will show related
work which indicates why such a measure of intricacy is of importance for AI
research. Then we continue with causal principles of tasks as used to determine
the level of intricacy of tasks. In the third section we place the intricacy measure
in the context of agents and learning, describing its impact on the difficulty of
tasks. Lastly we discuss the implications of this intricacy measure for AI, and
conclude by listing some future work to be done using intricacy as a guide for
better evaluation and AI system design.

2 Related Work

There exist different milestones in the history of artificial intelligence (AI) which
were thought to have a decisive role in the research towards human-like, general
machine intelligence (GMI). As the past has shown, most of these milestones
did not necessarily lead towards more general AI systems. Solutions to the prob-
lems were rather more efficient and effective narrow AI systems. This discrep-
ancy between expectations and actual results points towards the conclusion that
the choosing of tasks for milestones might be flawed. The problem of choosing
appropriate tasks for progress evaluation has been described before [1,5,7,9,14].
Each newly suggested milestone towards GMI systems can be argued against
due to, for example, restricted context (Lovelace Test 2.0 [12]), human-centered
approaches (e.g. Turing Test [17]), or too domain specific knowledge necessary
for it (e.g. General Game Playing; cf. [13]).

One of the major evaluation platforms used nowadays – the Arcade Learning
Environment (ALE) [4] – has been shown to have issues regarding the evalua-
tion of progress of AI. Mart́ınez-Plumed and Hernández-Orallo [10], for example,
showed that some of the games of ALE do not indicate any progress towards
better AI systems. This claim is supported by the findings of the developers of
ALE: a brute-force tree search algorithm outperformed state of the art reinforce-
ment learning algorithms in some of the games [4]. We argue here that the main
reason for these problems is an insufficient understanding of the tasks them-
selves to fully understand the implications of agents solving different tasks. This
coincides with the argument that tasks must be analyzed more thoroughly to
1 With complexity we mean the intuitive concept as used in every-day language, not

the concept as used in computer science.
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support progress in the field of AI [8,9,15]. The SAGE (Simulator for Autonomy
and Generality Evaluation) platform was developed particularly for this purpose
and has shown the advantages a deeper insight into the task’s complexity dimen-
sions can have for the evaluator [7]. But again, there currently does not exist
a measure of difficulty of the tasks presented to the agents and no measure of
change in difficulty, if complexity dimensions are adjusted.

3 Causal Principles of Tasks

The aim of general machine intelligence (GMI) research is to create systems
which are able to cope with highly complex worlds, like the physical world, and
to be able to do a multitude of (unrelated) tasks in these highly complex environ-
ments. For this regularities of the world must be learned and knowledge about
the environment accumulated. These regularities can be seen as ‘mechanisms’,
representing functions which determine the value of effect-variables by using the
values of cause variables. This knowledge of any learner is the result of a com-
position process, pieced together incrementally from experience with the world
over time, accumulating in a semi-systematic way. This kind of learning is a
constraint on any autonomous learner that doesn’t have complete information
at birth. If an agent is to learn independently, without help from teachers or
some other source, its knowledge acquisition processes must be self-guided—it
must have a capacity for cumulative autonomous learning. Achieving goals in the
context of any phenomenon necessarily requires knowledge of causal relations,
in particular of the causal relations that relate manipulatable and observable
variables of the phenomenon to the goals of an assigned task. The existence of
any causal relations between relevant variables must either be known by a per-
forming agent or discovered by it in the process of performing a task.2 These
causal-relational models therefore are at the center of any task description. The
intricacy measure introduced here relies specifically on these models using their
interconnections as a measure of the “complicatedness”.

Aside from the internal cause-effect-structures of the environment, the body
of the agent, including sensors and actuators, must be taken into account. The
noise that can take place when measuring/observing variables and interacting
on them needs to be modeled in the causal structure of the tasks. Therefore,
manipulatables and observables are treated differently to other internal vari-
ables of the environment. Variables which are theoretically measureable are the
causal parents to the actually observed variable, which is used as input to the
controller, and includes observation noise. Manipulatable variables of the envi-
ronment, on the other hand, are causal children of the controller’s chosen action
(again, including the noise of actuators).

From the causal connections between causes and effects – as in “A leads
to B” – causal relational models can be derived.3 In the following sections we
2 For a more detailed description of our understanding of causal knowledge and its

implications see [3].
3 While we take the non-axiomatic approach we still assume that the underlying envi-

ronment follows certain rules, i.e. causal structures.
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adapt the notion of such causal relational models for the purpose of obtaining
an objective measure of a task’s “complicatedness” (complication) based on this
kind of models. This is the most fundamental assumption that we can make
about any task-environment in which learning is possible: The assumption of
the existence of causal relations—AECR: Only then, prediction, planning, and
directed interventions are possible, and only then tasks can be executed at all.

3.1 Causal-Relational Models

Causal-relational models (CRMs) are representational construct for general
learning. CRMs encode actionable information, in the sense that they can be
used to get things done (taking action with foreseeable results), predicting future
states, derive the causes of observed events, explain observed phenomena, and
act as re-creation of the causal relation [16]. The kind of models that we are talk-
ing about are causal-relational bi-directional models, where by bi-directional is
meant that they can be used in forward-chaining to produce predictions of future
states and in backward-chaining to produce paths towards goals. By causal-
relational is meant that they encode procedural (causal) knowledge, where the
left-hand side (LHS) is a pattern representing the cause and the right-hand
side (RHS) is a pattern representing the effect. The CRMs represent a rela-
tion between the two patterns such that we can forward- and backwardchain
from causes to effects and vice versa. Additionally there exists a separate set of
the required conditions under which the relation between LHS and RHS holds,
thereby specifying in which situations a certain CRM is relevant. The RHS rep-
resents the post-conditions of the LHS pattern. In forward-chaining, when the
LHS pattern is observed, a prediction based on the RHS can be generated by a
process of deduction. In backward-chaining, when the RHS pattern is observed
and it is a goal, a sub-goal based on the LHS can be generated. Sub-goals can
be further backward-chained until a manipulatable variable is reached. This way
models can be used to produce effective plans to achieve goals and help to ana-
lyze tasks for their inner causal structures including manipulatables, observables,
goals, and sub-goals. Causal relational models are therefore ideal to be used as
the underlying principles of intricacy. They describe the task fully, and give
insight into what needs to be known by an agent to perform well in the task
(i.e. observe the environment, do correct planning, and take actions to achieve
a goal).

3.2 Causal Diagrams

A task can be described, from its designer’s perspective,4 as weakly-connected
causal chains. When this is done, a task is reduced to a deterministic form
that can be represented by the bi-directional models, capturing the whole task’s
dynamics. Additionally, inaccuracy of actions and measurements must be taken

4 We assume that the “designer’s perspective” includes a complete access and overview
to a task’s full set of variables.
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Fig. 1. Three examples of different levels of intricacy for similar tasks. Goals are to
reach a certain X/Y position on a grid. The learning/performing agent can execute
actions of moving left/right or up/down. Colors in all tasks: Red: actions as executed by
the controller; Green: Observables as inputted to the controller (including observation
noise, if applicable); Blue: Goal variables; Grey: Other variables. Task 1.1: Task of
moving to a certain position in an open space; Task 1.2: Task of moving to a certain
position with walls which can be seen; Task 1.3: Task of moving to a certain position
with invisible walls. The level of intricacy rises from left to right. Colored arrows
indicate transitions of data between controller and environment (Color figure online)

Fig. 2. Task 2: A more complex example of a task represented using causal-relational
models. The goal is to reach a certain X/Y position. The environment is continuous
rather than a grid and the agent has the control to either turn on the spot or move
forward/ backward. Same color coding as in Fig. 1.

into account. Therefore, in this description of tasks, variables are not directly
observable or manipulatable but instead a noisy causal child or parent acts as an
observable or manipulatable, respectively. In Fig. 1 three similar tasks are shown.
The task is to move to a certain goal position inside a grid-world. Figure 2 shows
the same goal in a continuous world where a learning/performing agent can
rotate on the spot or drive forward. Intuitively speaking, it is easy to describe
the “complicatedness” of these four tasks. With larger causal relational model-
networks this becomes a much harder problem. It is for this reason that we
propose our measurement of intricacy.
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4 Intricacy

We define the intricacy of a task as the measure of a task’s “complexity” based
purely on objective parameters. This way we can rank tasks by their intricacy
and have an objective way to assess the progress of AI systems. Additionally,
our notion of intricacy gives other implications for the design of GMI-aspiring
systems. The definition and implications are presented in the following section.

4.1 Definition

Intricacy is an objective multi-dimensional measure consisting of the following
physically-based, measurable properties of a task (ordered by their weight on
the intricacy value):

1. The minimal number of causal-relational models needed to repre-
sent the relations of the causal structure related to the goal(s).
This minimal number of models is an objective measure which depends solely
on the particular specification of the task (inclusive of the controller’s body),
and captures all the relevant parts of the task proper, leaving out possi-
bly unnecessary details and relations that are superfluous for the task. This
means that, for example, tasks which contain superfluous variables and rela-
tions have the same intricacy of the same task abridged of all superfluities.
The steps to obtain this minimal number of models entail the identification
of all the relevant causal chains, turning them into relational models and then
quantify them. This additionally means that a task’s intricacy is dependent
on the level of detail in which the task is performed.5

2. The number, length and type of mechanisms of causal chains that
affect observable variables on a causal path to at least one goal.
The three parameters of concern to this definition are (a) how many dis-
tinct causal chains there are, (b) how long are they in terms of number of
variables involved and, (c) the complexity of the functions that define the
mechanisms on these causal chains. As a measure for this dimension we sug-
gest the Vapnik-Chervonenkis dimensions [6] or the Rademacher complexity
[2], which includes the Vapnik-Chervonenkis dimension bound. (In the con-
text of statistical learning, the class of functions with a lower Rademacher
Complexity can be understood to be easier to learn.)

3. The number of hidden confounders influencing causal structures
related to the goal.
Other things being equal, hidden confounders should make the learning of pre-
viously described relational models of causal structures much harder. There-
fore we include the number of unobservable variables influencing goal-related
causal structures and chains in our intricacy measurement.

5 For further information on the level of detail see [3]. How knowledge representation
of the agent affects the intricacy by changing the level of detail is a problem that
still needs to be addressed.
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Table 1. The four different properties describing the intricacy of tasks for the given task
examples from Figs. 1 and 2. As expected the results show, that the task in continuous
space (Task 2) is the most, and the grid-task in an open space (Task 1.1) is the least
intricate.

Task Relational Mdl. Causal Mech. Confounders

1.1 2 2, linear 0

1.2 4 4, linear & non-linear 0

1.3 4 4, linear & non-linear 2

2 5 5, linear & non-linear 0

Intuitively, the intricacy of a task is a measure of what physical mechanisms are in
place that need to be known by any intelligent being, whatever is its architecture,
knowledge or capabilities, to perform the task in the given environment (inclusive
of the controller’s body). The task’s intricacy is invariant on the initial values
of the task’s variables. From the definition of intricacy it follows that the higher
the intricacy, the lower the size of the solution space6 and vice versa.

Coming back to Figs. 1 and 2 we can now argue the different levels of intricacy
of the four tasks (see Table 1). For simple tasks as shown in the two figures the
level of intricacy is easy to determine intuitively. For more complex tasks such
a measure, however, becomes more important due to its implications for the
evaluation of AI systems.

To use this measure of intricacy for AI evaluation, or as a support in AI sys-
tem design, it needs to be connected to the learning agent. For this we introduce
the effective intricacy, which not only takes task features into account but also
connects the task to the experience of the learner.

4.2 Effective Intricacy

The effective intricacy of a task is an agent-dependent version of intricacy, as
defined above, where an agent’s previously acquired knowledge that it brings
to the task is taken into account. Effective intricacy is thus a measure of intri-
cacy minus any intricacy that is known by the agent, and thus made irrele-
vant to the computation of difficulty. It uses almost the same properties of the
task-environment as the intricacy measure. However, the effective intricacy only
depends on unknown (to the agent) properties.

1. The minimal number of unknown causal-relational models needed to repre-
sent the causal relations related to the goal(s).

2. The number, length and type of unknown mechanisms of causal chains that
affect observable variables on a causal path to at least one goal.

3. The number of unknown, neither directly, nor indirectly (through causal
children) observable variables directly influencing the causal chain(s) between
manipulatables and goal variables.

6 For a more detailed view on the solution space of tasks see [3,15].
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4.3 Difficulty

While effective intricacy represents the physical aspects of a task that are rel-
evant to how difficult it may be for a particular agent, the difficulty of a task
includes the agent’s ability to learn relational models. Additionally, the precision
of the agent’s transducers and available resources – including time and energy
– must be taken into account (especially if assuming the assumption of insuf-
ficient knowledge and resources (AIKR; [18])). Additive noise, for instance on
observations and actions, can make a task more difficult. When actuators do
not generate reliable interventions, or sensors reliable observations, the usage
of causal models becomes more unreliable, making accidental mistakes possible.
The difficulty D can therefore be expressed as the cross product of controller C
and task-environment TE: D = (C×TE). Or more precisely the task’s intricacy
I, resources R, and transducer noise NT : D = (C × I ×R×NT ).

5 Learning and Performing

Aside from the possibilities an intricacy measure opens for AI evaluation, it also
brings strong implications for other areas of AI research including the learning
and doing of tasks, and the design of AI systems.

Learning a Task. The process of learning a task can be thought of as the search
for relational models that can bring about a satisficing solution to the task.
This search for models is driven by looking for associations in observable vari-
ables, finding which of these associations is of causal nature and growing the
understanding of how each of these variables map onto the goal variables.

– By learning the causal structure of a task, a learner decreases the effective
intricacy, since that knowledge allows it to find effective ways of controlling
and achieving the goals. The more spurious associations are removed, the
more useful the causal-relational models and thus, the lower the effective
intricacy becomes.

– The importance of variables is revealed when the causal relations are dis-
covered. Reciprocally, detecting the important variables enables the learner
to find causal relations that are useful for performing a task and therefore
reduces the effective intricacy.

– If a learner discovers all causal relations in the state space (without taking
the importance of variables into account), changing the goals does not affect
the effective intricacy, since the learner is already aware of how to conduct a
new task within the same environment.

– When the learner is aware of the complete causal structure of a task, the
deadline of the task and the energy required to perform it become the decisive
measures for difficulty.

– When the learner knows all causal structures of the task-environment and
has sufficient available resources, the only remaining part of the computed
difficulty is the noise in the transducers.
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Performing a Task. A good controller of a system (performer of a task) is one
that already knows how to achieve the task under a range of environmental
conditions. The agent’s performance on the task allows us to draw conclusions
on the effective intricacy, and the difficulty of the task.

– To a controller that performs a task perfectly repeatedly, the effective intri-
cacy is zero.

– The higher the effective intricacy of a task – or the lower the amount of
experience related to the task – the more difficult a task becomes to do, other
things being equal.

– If the effective intricacy is equal to the task’s intricacy an agent must rely
on random interactions until it has learned enough, reducing the effective
intricacy.

6 Conclusion

In this paper we introduced a new measurement to describe the “complicat-
edness” of tasks [3]. With our intricacy measure we are able to describe the
effective intricacy, producing a concrete definition of task difficulty in relation to
GMI-aspiring agents. We believe that through this measure, a more sophisticated
choice for tasks to evaluate and compare AI systems is possible.

While we have provided evidence for the usage of this intricacy measure there
still is work to be done to automatically calculate the intricacy of a wide variety
of different tasks to evaluate the scalability and applicability of our approach.
For this, the GMI aspiring system AERA (Autocatalytic Endogenous Reflective
Architecture) [11] could be adapted, as it already provides the ability to extract
causal relational models by interacting with the world. It could therefore be a
good starting point for automatic intricacy calculation of more complex tasks.
Another future idea would be to calculate the intricacy values of different tasks
of the Arcade Learning Environment (ALE) and compare the results with the
conclusions drawn by [10] using Item Response Theory (IRT) to determine the
usefulness of different ALE tasks for progress evaluation.

From there we hope to be able to draw a connection between the intricacy of
tasks, which an agent is able to solve, and the system’s generality. This would
provide researchers an additional measure of generality independent of the task-
environments used for evaluation.
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Abstract. The inductive programming system WILLIAM is applied
to machine learning tasks, in particular, centralization, outlier detec-
tion, linear regression, linear classification and decision tree classifica-
tion. These examples appear as a special case of WILLIAM’s general
operation of trying to compress data without any special tuning.
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1 Introduction

Machine learning (ML) techniques and applications have revolutionized the
world in recent decades, mostly promising to learn by themselves from data,
as opposed to hand-crafted algorithms and feature detectors from earlier times.
However, the term “learning”, just as many other AI terms, has turned out to
be euphemistic and exaggerating, referring mostly to parameter optimization
within a fixed representation, and only vaguely related to human learning whose
breadth and scope has remained unmatched. In the AGI context it therefore
appears to be important to make machine learning truly general, thereby boost-
ing its success even more.

Since various ML algorithms utilize different objective functions the first step
is to identify a common optimization goal. Indeed, the minimum description
length (MDL) principle has emerged to be a promising candidate [1,7]:

“The goal of statistical inference may be cast as trying to find regularity
in the data. ‘Regularity’ may be identified with ‘ability to compress.’ MDL
combines these two insights by viewing learning as data compression: it
tells us that, for a given set of hypotheses H and data set D, we should try
to find the hypothesis or combination of hypotheses in H that compresses
D most.” (p. 8 in [1])

A. Franz—Independent researcher.
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Unfortunately, applications of MDL have been mostly limited to the selection
of ML models and parameter numbers, including meta-parameter selection as in
AutoML, failing to break out from a given representation space into a broader
set of algorithmic data descriptions. The fact that such a widening could be
important for the generalization of machine learning heading toward AGI has
long been suggested by the father of algorithmic probability, Ray Solomonoff
[8,9]. However, these suggestions did not go beyond theory, bringing forth a
long-standing central problem for AGI: the difficulty of making inference both
general and efficient. To the best of my knowledge, apart from the present paper,
the only attempt of going beyond theory and realizing machine learning by means
of a general compression algorithm was done just recently, using a novel set of
techniques for computing lower bounds on algorithmic probability based on the
Coding theorem and Block Decomposition methods [5].

This paper explores the abilities of WILLIAM [4] – an inductive program-
ming method based on the theory of incremental compression (IC) [3] – to deal
with a set of simple machine learning problems. In Sect. 2 a short overview of
WILLIAM’s novel aspects is given followed by the discussion of its application to
data centralization, outlier detection, linear regression, linear classification and
decision tree classification.

2 Overview of the Algorithm

WILLIAM’s core functionality is given by an inductive programming algorithm
already described in [4], albeit with several major improvements. Most impor-
tantly, the data representation has moved up from trees to directed acyclic graphs
(DAGs), enabling the reuse of previously computed values. Further, the graph
is bipartite (see figures below), consisting of operator nodes and value nodes
(denoted by a box). Another innovation is the principle that any data used by
the algorithm has to be computed by the algorithm itself. For example, even
integers are not “given for free”, except for the integer 1 (called vacuum), all
other integers have to be computed using the given operators.

WILLIAM’s main operation is to implement IC, i.e. given a data string x
to find a description by a composition of functions, x = f1 (f2 (· · · fs (rs))), by
searching for stacked autoencoders. In particular, for a given residuum ri−1 a
pair of functions (fi, f ′

i) is searched such that ri−1 = fi (ri), where ri := f ′
i (ri−1)

and l (fi) + l (ri) < l (ri−1), i.e. compression is achieved at every step (x ≡ r0).
The fi are called features and f ′

i descriptive maps. One of the main results is
that the (prefix) Kolmogorov complexity K(x) can be approximated in this way,
when picking the shortest possible feature f∗

i at every step:

K (x) =
s∑

i=1

l (f∗
i ) + K (rs) + O (s · log l(x)) (1)

In practice, in order to bound the search for descriptive maps, the shortest
autoencoders, i.e. the shortest sum l (fi) + l (f ′

i) is searched, in compliance with
computable IC (see Greedy-ALICE [3, Chapter 4.1]).
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In order to apply the introduced notions to a DAG, a residual is represented
by a cross section, defined as a set of value nodes separating the graph. The
algorithm takes a set of operators and tries to attach them to the current resid-
ual cross section (=target cross section at start), computing new values on the
way. Attaching nodes from above, i.e. using the residual in order to compute new
values from it, corresponds to the descriptive map (e.g. len, getitem, urange and
repeat operators in Figs. 3B and 1). Attaching nodes from below entails an inver-
sion of the involved operators and corresponds to parts of a feature (e.g. setitem
operator in Fig. 1). Cycles can be introduced in this way, but are removed once
the graph is cut at its so-called bottleneck, defined as the shortest cross section.
For example, the sum of description lengths (DLs) of the bottleneck nodes in
Fig. 1 is smallest compared to all other possible cross sections. The cutting is
performed as soon as the bottleneck has a lower DL than the current residual

Fig. 1. The directed bipartite graph is cut at the most narrow cross section, called
the bottleneck (red, DL = 44 bits), leading to the shortest description of the target
cross section (blue, DL = 251 bits). The descriptive map, i.e. the graph from target to
bottleneck containing the len, getitem and urange operators are removed. The result is
displayed in Fig. 3C. DL denotes the default description length defined in paragraph
Default descriptions. (Color figure online)
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(the blue nodes in Fig. 1). At this point the bottleneck becomes the new residual
and the algorithm continues iterating ad infinitum. Additionally, values in nodes
can be replaced by other values in other nodes and propagated through the graph
(see e.g. Fig. 4F-H). The search for the shortest compressing autoencoder in this
way is exhaustive, i.e. all directed graphs are being constructed ordered by their
size, even though only those combinations leading to the solution are shown in
the figures.

Default Descriptions. A positive integer n ∈ N is described by the Elias delta
code [2]. The length l(n) of the (default) description is given by E(n) =
�log2(n)� + 2 �log2 (�log2(n)� + 1)� + 1 bits. Including zero and negatives, an
integer n ∈ Z has DL l(n) = E (2 |n| + 1). Rational numbers x are described
by a pair of mantissa m ∈ Z and exponent a ∈ Z, x = m · 10a. Chars take
the fixed amount of 8 bits relating to the ASCII table. Strings s carry the DL
l(s) = E (|s|)+8 |s| by describing their length |s| and then each char separately.
Similarly, for arrays, lists, tuples and sets their lengths are described following
the elementwise description of their contents.

3 Results

3.1 Centralization

Consider a set of one-dimensional data, x = {x1, . . . , xn} sampled from a Gaus-
sian X ∼ N (μ, σ). Centralization refers to the subtraction of the sample mean
x̂ = 1

n

∑n
i=1 xi from every xi: x′

i = xi − x̂. This preprocessing step is meaningful
if σ � μ, i.e. the cluster center is a large number relative to the standard devia-
tion. Centralization transforms n large numbers xi into one large number x̂ and
n small numbers x′

i.
This example consists of the target cross section x being an array of n = 1000

i.i.d. samples taken from N (143, 1) and a precision of 4 decimals (Fig. 2). As
described Sect. 2, all sorts of operators are attached to the target from above
and from below, leading to the computation of the sample mean 〈x〉 in Fig. 2A,
followed by an inversion of the add operator using that target x and the just com-
puted mean 〈x〉, i.e. the “error” is E = x−〈x〉 (denoting elementwise subtraction
of 〈x〉 ≈ 143 from the array x, Fig. 2B). Since the significand of the entries in x
have 7 digits and the error merely 4 the DL of the error is much lower than that
of the target, l (E) � l(x). Finally, the mean operator is removed since it is part
of the descriptive map (during bottleneck cutting as in Fig. 1). It was merely
helpful in computing the residual but does not belong to the description of the
target (Fig. 2C). The residual cross section consisting of one big number 〈x〉 and
n smaller numbers x − 〈x〉 is shorter, i.e. compression has been achieved.
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Fig. 2. Data centralization x → x − 〈x〉 performed by WILLIAM, shown as a series of
operators attached to target data array x.

3.2 Outlier Detection

Figure 3 shows a target cross section consisting of a list of 25 chars ‘a’ and a
single char ‘b’ at index 18 in the first value node, and the number 1 in the
second value node, also called vacuum node, since it is merely a helper node and
not to be compressed. The final residuum consists of leaves in Fig. 3C, i.e. the
value nodes 1, 26, ‘a’, 18 and ‘b’. Since the residuum’s DL is shorter than that
of the target (see also Fig. 1), compression has been achieved and the outlier ‘b’
has been filtered out. Note how the description of the data becomes meaningful
and interpretable after proper compression: a verbal description of the target
as “a list with length 26 consisting of letters ‘a’ with a letter ‘b’ at index 18”
corresponds to the retrieved leaf values.

Fig. 3. Outlier detection. (A) and (B) show how various operators are applied to the
blue target cross section, leading to a “cleaned” list consisting of chars ‘a’ only. (C)
The cleaned list is used to invert operator setitem yielding the index 18 and thar char
‘b’. (Color figure online)
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3.3 Linear Regression

Figure 4 shows how the target cross section consisting of x and y is compressed
incrementally. Through a series of steps the value nodes of the target x and y are
connected, hence instead of both being described independently y is described in
terms of x which reduces the DL. Subplots (A)–(D) show how the numbers 1, 2,
4 and 16 are subtracted from y in order to centralize the data. As we have seen
in Subsect. 3.1, this process leads to compression: the residual is shorter than
the target l (2x + 2 + ε)+ l (16.0)+ l (x) < l (y)+ l (x). x is also a leaf, describing

Fig. 4. Linear regression performed by WILLIAM. x is an array of length n = 1000
with values ranging between −10 and 10 in steps of 0.2, ε is an array of n i.i.d. samples
from the standard normal distribution N (0, 1) and y given by 2x+18+ε (see Fig. 7A).
The target is incrementally compressed.
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“itself”, neglecting the comparatively short description of the operators. Note
that there is no specialized optimization involved here. The numbers 1, 2, 4 and
16 are computed by using the add-operator applied to the existing value nodes,
e.g. 16 = add(8, 8), starting with the vacuum 1 (not shown in the figure). Subplot
(E) uses the value node x and subtracts it from the residual node 2x + 2 + ε.
Overall the residual cross section (leaves) is shorter than the previous residual:
l (x)+ l (x + 2 + ε)+ l (16.0) < l (2x + 2 + ε)+ l (16.0)+ l (x). Subplot (F) shows
that the target node x is compressed further by subtracting it from the x+2+ ε
node. Note that x and y are treated completely equally as target nodes that are to
be compressed. There is no special meaning of “dependent” and “independent”
variables involved here as usually in regression tasks. Subplots (G) and (H)
achieve even more compression by replacing 16 to 17 to 18 and propagating this
change through the graph. Figure 7A visualizes how the various estimates (red
dashed lines) incrementally fit the data. These estimates are obtained by setting
all leaf arrays (=“errors”) to 0.

3.4 Linear Classification

Fig. 5. Classification performed by WILLIAM. y is an array of 2 classes, True and
False, color coded in Fig. 7B. x is an array of i.i.d. samples taken from N (3.5, 1) for
class True and from N (6.5, 1) for class False.

Figure 5 shows how an array of data x is “fitted” the array of classes y (see
Fig. 7B for the distribution of x). As before, subplots (A)–(C) centralize x. In
(D) a prediction p = (x − 4 < 1) is generated and subtracted from the class
array by the elementwise xor-operator. Compression is achieved due to the fact
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that the error y XOR p contains True values only if the prediction goes wrong,
i.e. a few times in a good classifier. A boolean array with significantly fewer
True than False values has a shorter description than an array with a balanced
number of True’s and False’s, due to the following reason. There are

(
n
k

)
ways of

distributing k True’s in an array of length n hence providing an index i of the
permutation together with k and n constitutes a full description of the array.
This permutation-based method is part of the default descriptions in WILLIAM.
In sum, compression in classification is achieved by replacing array of classes y
containing a balanced number of True’s and False’s by an unbalanced error array
having a shorter description.1

3.5 Decision Tree Classification

Fig. 6. A first step of decision tree classification. The data is taken from Python’s
scikit-learn Iris Dataset of three different types of flowers, see Fig. 7C. The target cross
section (blue) consists of the flower classes setosa (‘s’), versicolour (‘v’), and virginica
(‘c’) in array y. The a[...] notation stands for arrays. The float array x denotes the
petal width factor. By applying the threshold 1.0 the setosa types (leaf a[‘s’, ‘s’...,‘s’])
are separated from the other two types (leaf a[‘c’, ‘c’,...,‘v’]). (Color figure online)

Figure 6 shows the first step in decision tree classification. In subplot (A), lessthan
creates a boolean array denoting petal widths smaller than 1. In subplot (B) the
insert-operator is inverted: it inserts the array a[‘s’, ‘s’..., ‘s’] into array a[“,...,”] of
empty strings at the indices denoted by the boolen array a[T,T...,F]. The remain-
ing indices are filled by a[‘c’, ‘c’,..., ‘v’]. As can be glanced from Fig. 7C all setosa
flowers have petal width <1 and all the others have petal width ≥1. Therefore,
setosa is separated from the rest by this decision tree step. This constitutes com-
pression since the original target y consists of all three types of flowers and the
1 It can be shown that l

((
n
k

))
+ l (k) + l (n) < n if k � n.
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permutation-based description is therefore longer due to the larger multinomial
coefficient

(
n

k1 k2

)
as compared to two types of flowers in a[‘c’, ‘c’,...,‘v’] and a

single type in a[‘s’, ‘s’...,‘s’]. Here only the first decision tree separation is shown
but it can be continued using other factors to separate the a[‘c’, ‘c’,...,‘v’] array.
Note that neither the Gini coefficient nor any other particularities of decision
tree classification are used to perform this “training” step. There is no need for
measuring the dispersion of values by the Gini coefficient since the permutation-
based code automatically becomes shorter if there are fewer different classes
present in an array and/or the classes are not represented uniformly.

Fig. 7. (A) Estimates (red dashed lines) incrementally fit the linear regression data
(the letters (A)–(H) correspond the subplots of Fig. 4). (B–C) Distribution of data for
classification, the class is color coded. (Color figure online)

Discussion

In this paper we have demonstrated that various machine learning algorithms
can be viewed as performing data compression as has been suggested previously
in theory. In particular, their core functionality emerges as a special case of
WILLIAM’s general performance without being specifically tuned to these algo-
rithms. WILLIAM neither uses any specialized ML optimization nor any other
heuristics for that matter and is developed in a fully general fashion according
to IC theory. This generality enables WILLIAM to deal a wide range of tasks
beyond machine learning, as reported in [4]. Nevertheless, these examples had
to be rather simple mainly due to the following limitations.
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Limitations
Accumulation of description overhead Since IC proceeds greedily, there is no
mechanism for avoiding the accumulation of overhead, as discussed in [3]. In
particular, Eq. (1) entails an overhead of the order O (s · log l(x)) where s is
the number of compression steps. For example, in the regression case, nothing
hinders the algorithm from keeping subtracting 1 from the target array achiev-
ing some compression at every step. Currently, such values are being replaced
by newly generated values and propagated through the graph (see Fig. 4F–H,
where the value 16 is replaced by 17, since 17 has been previously generated by
add(16,1)). Even though this propagation solution helps combat the overhead
accumulation, it would be helpful to have theoretical guarantees for avoiding
overhead altogether.

Alternative Descriptions. In many cases, it is desirable to consider alternative
short descriptions of data. IC theory only shows how to search for some short
description, but not for several ones. One option is to search for many incremental
strands in parallel which would however put additional computational strain
on performance. A different option is to allow the lack of progress in further
compressing the first short description to guide the search for other descriptions
– a strategy apparently used by problem solving in the psychology of insight [6].
Again, theoretical guidance would be of great help in this endeavor.

No Reuse of Successful Functions. An important way of accelerating the algo-
rithm is to reuse successful, i.e. compressing combinations of operators. Cur-
rently, a DAG of operators can be used to define a composite operator, which
can be inserted an used just like a primitive operator. This makes our graph
a hypergraph – there can be graphs inside the nodes. However, it is unclear
which subgraph of a solution is to be encapsulated and how it is to be reused.
Essentially, this issue comes down to the non-trivial task of finding a theory of
memory and its retrieval.

Computing Power and Parallelization. On a positive note, while thinking
through many tasks over the last years, it appears that most interesting tasks do
not appear to demand steps requiring deeper graphs than 6 or 7 operators until
some compression is achieved. Currently, WILLIAM manages to search exhaus-
tively through graphs of depth 4–5 running on pure Python code. Rewriting core
parts on a faster language in the back end and parallelization could boost the
performance considerably.

Conclusion

If the discussed limitations can be overcome both in theory and practice the
results show a promising path to create a general algorithm for solving machine
learning problems and going beyond them.
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Abstract. This paper was first drafted in 2001 as a formalization of the
system described in U.S. patent U.S. 7,392,174. It describes a system for
implementing a parser based on a kind of cross-product over vectors
of contextually similar words. It is being published now in response to
nascent interest in vector combination models of syntax and semantics.
The method used aggressive substitution of contextually similar words
and word groups to enable product vectors to stay in the same space
as their operands and make entire sentences comparable syntactically,
and potentially semantically. The vectors generated had sufficient rep-
resentational strength to generate parse trees at least comparable with
contemporary symbolic parsers.

1 Motivation

1.1 Basic Intuition

The basic intuition underlying our formalisation is that a word can be charac-
terised by enumerating words that occur in similar contexts, e.g. Menno van
Zaanen [21] attributes to Harris [4] the “notion of interchangeability”:

constituents of the same type can be replaced by each other

There are variations on this (c.f. if constituents are not of the same type
they involve a change of meaning and cannot be replaced), but it involves a
comparison, and we will refer to it in general as the “contrastive method”.

This intuition is implicitly present in almost all linguistic classifications. E.g.
the definition of a part of speech such as determiners is based on the observation
that there is a group of words that exhibit similar behaviour in a range of
contexts:

– preceeding {“cat”, “dog”, “car”, “wardrobe”. . . }
– preceeding {“big”, “small”, “blue”, “bright”. . . }
– following {“take”, “put”, “see”. . . }
– . . .

Of course, in the traditional way of classifying language units such observations
are followed by very strong generalisations. But is this reasonable?
c© Springer Nature Switzerland AG 2022
B. Goertzel et al. (Eds.): AGI 2021, LNAI 13154, pp. 86–95, 2022.
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1.2 Idiosyncratic Usage

A strong theme in linguistics for many years has been the idiosyncrasy of lan-
guage use defying classification. For an example which appears to date to Halli-
day [6], “strong” and “powerful” can be used interchangeably in many contexts,
but not in the context of “tea”, viz. “strong tea”/“*powerful tea”. Pawley and
Syder [5] present long lists of examples which defy codification in rules under
the title of “native-like selection”, which they characterize as a “puzzle” for
linguistics.

In fact the Applied Linguistics literature is full of observations that language
appears to have no rules without exceptions, and indeed in some senses to con-
sist of exceptions only. Nattinger [18], Weinert [20], and Lewis [17] provide a
sampling, reaching an extreme with Lewis’s “Lexical Approach”.

This is addressed less often in a machine learning context, but even here
Dagan, Marcus, Markovitch note, Dagan [3]:

It has been traditionally assumed that ... information about words should
be generalized using word classes... However, it was never clearly shown
that unrestricted language is indeed structured in accordance with this
assumption.

1.3 The Phoneme

But we can go further than the lack of proof noted by Dagan et al. It was shown
not to be so. In fact, you could characterize this is as the central dilemma of
linguistics for the last 50 years. It is behind the major divisions which have
characterized the subject during that time. Put more strongly, what we find
when we try to abstract language structure from observation is that it contradicts
itself. And this was shown to be so a long time ago for the first category, and
great success of the contrastive method, the phoneme.

The crisis was catalysed by the polarizing figure of 20th century linguistic
theory, Noam Chomsky. Chomsky brought a fresh perspective to many issues in
linguistics, but while it has been largely forgotten it is fair to say his attack on
the phoneme was one of the most important at the time. E.g. Hill [15]:

I could stay with the Transformationalists pretty well, until they attacked
my darling, the phoneme.

Contrastive methods along the lines attributed to Harris above were the
standard method of linguistic analysis. The phoneme was the major success
of the method. Chomsky pointed out that these contrastive methods led to
contradictory results, and linguistics shattered. As Newmeyer [19] says while
discussing Chomsky’s Logical Basis of Linguistic Theory [1]

Part of the discussion of phonology in ’LBLT’ is directed towards showing
that the conditions that were supposed to define a phonemic representation
(including complementary distribution, locally determined biuniqueness,
linearity, etc.) were inconsistent or incoherent in some cases and led to (or
at least allowed) absurd analyses in others.
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So abstracting language categories from observation led to “inconsistent or
incoherent ... analyses”. Or equivalently that elements of language combine non-
linearly. Lamb [12] says of Chomsky:

He correctly pointed out that the usual solution incorporates a loss of gen-
erality, but he misdiagnosed the problem. The problem was the criterion
of linearity.

See also Lamb 1966 [9], Lamb 1967 [8], Lamb 1976 [10], Lamb 1998 [11].

1.4 The (Very) Short History of Machine Learning in Theoretical
Linguistics

This was shown to be the case for the phoneme, but it was not seriously contested
for other categories. The contrastive method never got beyond the phoneme.
Instead linguistics moved beyond abstraction of categories by contrastive anal-
ysis, fragmenting into schools which on the one hand continued to respect con-
trastive analysis but rejected structure as a meaningful parameter, like Func-
tionalism, or on the other hand continued to respect language structure, but
rejected the idea it could be learned from observations, Generativism. Genera-
tivism hypothesized that the contradictions observed when you tried to abstract
categories from observations were not relevant to the system of language at all.
It was still assumed structure was relevant, and objective, but because learnable
categories had been observed to contradict (among other reasons), structure was
assumed to be innate.

Unfortunately, having split the field, this key issue of contradictions in learn-
able categories was largely forgotten and unavailable to those outside linguistics
seeking insights. So when rapid developments in computing made large amounts
of data available, non-linguists started trying to learn from it. Non-linguists
in the main, because to reiterate, theoretical linguistics had already split into
schools which assumed language structure was unlearnable, or irrelevant, making
the issue disappear. It is ironic that for this very reason the non-linguists per-
haps felt linguistics was irrelevant and ignored it, in its turn, because it did not
address the issue which interested them viz. learning categories from observable
data.

1.5 Contradiction in Language Categories

This then is our motivation for seeking to model grammar as a vector product
of word similarity vectors, most forcefully that abstractions from observations
were shown to lead to contradictions, or in the case of Lamb “non-linearity”.
That this is so is actually a rare point of agreement in theoretical linguistics, it
is only interpretations which have varied: Universal Grammar, Functionalism,
Cognitivism.

Unfortunately for a rare point of agreement in linguistics, it is widely ignored.
Notably it appears to be ignored in the field of machine learning. It might be
seen to render the entire field of grammatical induction moot.
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Chomsky concluded that if a coherent language structure could not be
learned from observations, then it must be innate. Functionalists (and vari-
ous schools of Cognitivism) concluded it was irrelevant. But unlearnable need
not mean innate or irrelevant. It may simply mean generalizations can only be
ad-hoc. We have a better understanding of complexity in formal systems now.
Unlearnable, random (in a specific technical sense e.g. Kolmogorov [7], Chaitin
[2]), or even chaotic, systems are starting to seem more like the norm. As far
as the author is aware these kinds of complexity issues were first suggested, at
least in the context of computational solutions, in an earlier discussion of the
motivations surrounding this parser in Freeman 2000 [14]. But it is possible to
find similar ideas in linguistics, notably Hopper’s Emergent Grammar 1987 [16]:

The notion of emergence is a pregnant one. It is not intended to be a stan-
dard sense of origins or genealogy, not a historical question of ’how’ the
grammar came to be the way it ’is’, but instead it takes the adjective emer-
gent seriously as a continual movement towards structure, a postponement
or ’deferral’ of structure, a view of structure as always provisional, always
negotiable, and in fact as epiphenomenal, that is at least as much an effect
as a cause.

Possibly Lamb’s “non-linearity” is the same.
As suggested in that 2000 paper, this ad-hoc character should by no means

be regarded as a bad thing. Rather it hints at a far greater richness of structure
available to language.

2 Formalization

According to the method of this paper then, in order to prevent relevant infor-
mation from being lost in the task of modelling natural language, we need a
concept of overlapping classes that can be constructed, ad-hoc, on the fly as
opposed to having to be pre-defined.

2.1 Similarity

Thus we stop at the primary observation that “word w is similar to the words
w1, ..., wk because it appears in similar contexts” and treat w,w1, ..., wk as class
label for w.

To put this more formally, we need to define two things: what is actually a
context and what similar contexts means. A simple initial approximation to the
former question is to define the context of a word (or word group) w as the set
of all word pairs w′, w′′ such that there is at least one occurence of the triplet
w′, w, w′′ in the available corpus.

Con(w) := {(w′, w′′) : ∃i : Xi = w′,Xi+1 = w,Xi+2 = w′′}
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Now the similarity of two words w and w′ can be measured by the percentage of
common contexts relative to all contexts they appear in. Dekang Lin provides a
principled measure [13]:

sim(w,w′) :=
2 × I(Con(w) ∩ Con(w′))
I(Con(w)) + I(Con(w′))

Where I is the information.
With the two definitions formulated above, the class a word belongs to can

be defined as a set of similarity values between words as below. For convenience
we limit the set to include only words similar beyond a threshold C:

class(w) := {w′ : sim(w,w′) > C}
e.g. A segment from the entry from “somewhat” estimated for one of our corpora
is:

somewhat {somewhat,1 significantly,0.047 slightly,0.043

considerably,0.036 substantially,0.025 far,0.025 a&lot,0.024

more&and,0.024 one&or,0.024 much,0.022 becoming,0.021

likely&to&be,0.021 a&little,0.02 considered,0.018 nothing,0.017

rather,0.017 so&much,0.016 relatively,0.016 something,0.015

certainly,0.014 quite,0.014 generally,0.014 getting,0.014 still,0.012

therefore,0.011 done,0.011 often,0.011 of&course,0.01 even,0.0097

very,0.0083 always,0.0082 a&very,0.008 once,0.0073

further,0.0072 little,0.0071 less,0.007 really,0.0066...}

Where the vector is made up of a set of (word, score) pairs, and the score
is the value of the chosen similarity function between the pair “somewhat” and
the other words in the vocabulary.

For practical reasons it is more convenient to represent the class of word w as
a vector of real numbers, each representing the similarity of a vocabulary word
to w. So if w1, ..., wN is the vocabulary of our language, then the class of w is
defined by the following function φ:

φ(w) := (φ1(w), ..., φN (w))

2.2 Application to Trees

We now extend the formalization to estimate representations for potentially
unobserved sequences of words. We say “potentially” unobserved, because the
sequences may in fact be observed, however we seek to extend the representation
in the absence of observation. Essentially we seek to represent syntax, specifying
which new combinations of words are acceptable to the language.

We will call these potentially unobserved sequences t for “trees”, because
the formula is non-associative. Different orders give different products, so the
product has structure, like a tree. This can be seen as an advantage of the
method, it predicts phrase structure.
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In the vector formulation, we have a vocabulary V: w1, ..., wN of words and
word sequences. Let the function δ(i, j) → {0, ..., N} map a pair of elements in
V to another entry in V. Simply put, let it map a pair into an entry for the pair
together, if they are observed to occur together (δ(i, j) = 0 means that no such
entry exists, i.e. i and j are not observed to occur together.)

Formally, the extension of the word class function to binary trees is defined
recursively, if t is a word, then φi(t) reduces to sim(t, wi), if t is a binary tree
consisting of subtrees t1 and t2, then we define the components of a new vector
representing the combination of trees to be:

φk(t) :=
∑

i,j

MI(wi, wj) · φi(t1) · φj(t2) · φk(δ(i, j))

In words: if a pair of words between the components of the operand trees are
observed to occur together (δ(i, j) �= 0), the components for their observed com-
bination (φk(δ(i, j))) contribute to a new component for the combination of the
operand trees (φk(t).) Note: MI is the common “mutual information” between
two words occurring in sequence, which was used in this case to scale the signif-
icance of an observed pairing. We in no way regard this choice as exhaustive or
exclusive. In much the same way as the similarity measure described in Sect. 2.1
above, many scalar association measures might be considered.

Essentially we seek to generate product vectors by an aggressive substitution
of contextually similar words and word groups (all the φk(δ(i, j))).

2.3 Scoring a “Parse”

It was assumed that at each stage of association the most grammatical grouping
would generate the greatest number or greatest concentration of grammatically
similar elements, and an order of association, branching, or the best phrase
structure tree, was selected on that basis. Broadly speaking, for each order of
association of words t the greatest of:

max{
∑

k

φk(t)}

It can be seen as a kind of energy maximum clustering for the path of branch-
ing which resulted in the largest substitution groupings.

Selection of a pair as a parse was not based on pairwise co-occurrence of the
pair itself, but looking outside the pair, at its context, and counting the number
of substitution groupings which could be made for that pair, in that context.
It was based on the extent to which a pair could be substituted for by other
sequences, as observed in a corpus, and especially the extent to which it could
be substituted for by single words.

What was new to the method was not the use of such substitution group-
ings, however. Such substitution groupings can actually be seen as somewhat
standard in machine learning of grammar, indeed dating back to the “notion
of interchangeability” attributed to Harris, earlier, which was applied with such
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early success to the phoneme. What was different with the vector parser was
the assumption that such groupings needed to be generated anew for each new
sentence presented to the system. That such groupings might be an expansion
rather than a compression of structure in a corpus.

It is that such substitution groupings might need to be seen as an expansion,
rather than a compression as hitherto assumed in the history of machine learning,
which is the central conjecture of this paper.

The vector parser was an early attempt at an implementation of that central
conjecture.

More detail, and actual segments of early code, can be found in the technical
specification for patent US7392174B2.

3 Discussion

The system described in Sect. 2 was the vector parser system as originally for-
mulated between 1998–2001. It was not picked up at the time, although tests
were done comparing performance quantitatively for the task of parsing Chinese
in 2003. We hope to present these results in a later paper. In general the parser
performed on a level comparable with a contemporary symbolic parser, but not
greatly better (see Appendix for a sample of results.)

It now seems apparent that while classes are not abstracted until runtime in
this formulation, important details are lost when word similarity is assessed. Not
only class, but similarity between words can, and typically does, vary between
contexts. What is needed are vectors of contexts, not similarity based on context.

This should be a fruitful direction for further investigation.
However the method of generating product vectors by an aggressive substi-

tution of contextually similar words and word groups (all the φk(δ(i, j)) above)
was quite successful. It enables product vectors to stay in the same space as their
operands and makes entire sentences comparable syntactically, and potentially
semantically. The vectors generated had sufficient representational strength to
generate parse trees at least comparable with contemporary symbolic parsers.

In the context of contemporary explorations of vector combination for seman-
tic representation, this approach of aggressive substitution of contextually similar
words and word groups is recommended as a possible solution to problems which
present themselves of expansion of representation space, representation strength
and comparability.

Acknowledgements. Many thanks to Wojciech Skut (wojciech@google.com) for the
formalism in this paper and more recent comments. His formalization was what made
me first realize the “ad-hoc arrangements of examples” model I was proposing could
be seen as a kind of vector product.
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A Appendix - Evaluation Sample

A.1 Disclaimer

A formal evaluation of the vector parser was carried out for Chinese by Hu
Guoping of iFlytek, China in 2003. A sample of results as reported by him
are included here, with his permission. They are provided on an as is basis,
for information purposes. For fuller detail inquiries should be directed to Hu
Guoping.

A.2 Evaluation Methodology and Results

Word similarity vectors were generated from a Chinese corpus sample of 200Mb.
Some pre-processing was done for the Chinese text. Because Chinese is not nor-
mally segmented into words a dictionary was used to segment the texts. In
principle this should not be necessary, but it was an expedient to make Chinese
processing as closely comparable as possible to English. Parsing results were
compared for several hundred test sentences with a reference tree-bank.

The reference tree-bank was multi-branching.
E.g.

(并 同)(美国总统 克林顿)(正式 进行 会谈)

Because the vector parser attempts to label all pairwise associations it was
not possible to score matches exactly. It was decided to score matched phrases
as correct if their first and last characters matched, independently of internal
structure. In addition the direction of association of the matched phrases was
scored. So并 has a right direction because it is combined with the right word,同
has a left direction because it is combined with the left word, 进行 has a middle
direction: because it is combined with both left and right words.

E.g.

Vector parser: (((促进 ((社会 全面) 进步)) 的) 迫切需要)
Tree-bank: (促进 社会(全面 进步)的 迫切需要)
The Result is 1 correct result, 1 error result, 2 Unknown
Vector parser: (致以 (节日 (的 (诚挚 (问候 ((和 良好) 祝愿))))))
Tree-bank: (致以(节日 的(诚挚 问候)和(良好 祝愿)
The Result is 2 correct result, 2 error result, 2 Unknown
Vector parser: (截止到 (去年 (十一月 底)))
Tree-bank: (截止到(去年(十一月 底)))
The Result is 2 correct result, 0 error result, 0 Unknown result
Vector parser: (各项 (外汇 (存款 (已 (达 (二十五 (点 (三 (二亿 美
元)))))))))
Tree-bank: (((各项 外汇)存款)((已 达)(二十五 点 三 二亿)美元))
The Result is 2 correct result, 4 error result, 2 Unknown result
Vector parser: (全行 (国际业务 (((效益 (创 历史)) 最高) 水平)))
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Tree-bank: ((全行 国际业务 效益)(创(历史(最高 水平))))
The Result is 1 correct result, 3 error result, 1 Unknown result
Vector parser: (在 (国际 (银 (坛 (的 (知名度 (和 (声望 (也 越来越
高)))))))))
Tree-bank: ((在(国际(银 坛))的(知名度 和 声望))(也 越来越高))
The Result is 4 correct result, 2 error result, 2 Unknown result
Vector parser: (再次 (超过 (捕捞 产量)))
Tree-bank: (再次(超过(捕捞 产量)))
The Result is 2 correct result, 0 error result, 0 Unknown result

The differences in annotation system meant scored precision was decreased,
because generally it was impossible to match all branchings, but this was con-
sidered adequate for purposes of comparison.

Table 1. Evaluation with Symbolic Parser

Compared Parser Setting Precision1 Recall2 Precision2 F-Score2

Symbolic Parser 基于整句解释的语法分析系统
265 Sentence Single
POS input

53.39% 53.48% 67.36% 59.62%

基于整句解释的语法分析系统,

265 test Sentences
All Possible POS input

56.74% 54.90% 69.43% 61.31%

Vector Parser 200M Corpus, -li 60,
Original Indextable,
265 test Sentences

73.06% 64.30% 63.15% 63.72%

Corpus, -li 60,
2nd Indextable,
265 test Sentences

72.96% 63.98% 62.84% 63.41%

200M Corpus, -li 60,
3rt Indextable,
265 test Sentences

72.37% 63.51% 62.37% 62.94%

200M Corpus, -li 60,
4th Indextable,
265 test Sentences

76.70% 67.30% 66.10% 66.69%
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Abstract. AGI systems should be able to pursue their many goals autonomously
while operating in realistic environments which are complex, dynamic, and often
novel. This paper discusses the theory and mechanisms for goal generation and
management in Non-Axiomatic Reasoning System (NARS). NARS works to
accomplish its goals by performing executable actions while integrating feed-
back from its experience to build subjective, but useful, predictive and meaning-
ful models. The system’s ever-changing knowledge allows it to adaptively derive
new goals from its existing goals. Derived goals not only serve to accomplish
their parent goals but also represent independent motivation. The system deter-
mines how and when to pursue its many goals based on priority, context, and
knowledge acquired from its experience and reasoning capabilities.

Keywords: Goal · Motivation · Task · Aim · Objective · Drive · Intention ·
Desire · Target

1 Introduction

Non-Axiomatic Reasoning System (NARS) is a general-purpose AI (AGI) system,
which means that it can accept and pursue arbitrary goals. The ability to pursue arbitrary
goals must be a fundamental aspect of AGI systems since they are meant to be capable
of “general” problem-solving similarly to humans; that is to say they should have the
ability to at least attempt to solve any problem they are presented with1. Indeed, a hall-
mark of any cognitive system’s intelligence is its capability to achieve its goals. In the
general sense, a system’s “goal” is simply a motivation for the orientation of its activi-
ties. The goal is an objective that the system is working towards, whether successfully
or not. It answers the question, “What is the system’s aim?”. Goals can be very specific
(e.g. “Pick up that apple”) or more general (e.g. “Be good”).

All AI systems may be considered as having at minimum one goal since each is
built to accomplish one or more tasks. AGI systems in particular will necessarily have
multiple different goals at the same time due to the complexity of their environments.
Although an AGI system’s initial “seed” goals are predefined by a user, the system will
invariably need to generate new goals (such as in subgoaling) in order to solve problems
autonomously. The system also needs to effectively manage its existing goal complex:
not all goals are equal, and certain goals may be more or less important depending on

1 A human (or other intelligent system) will not necessarily be able to achieve any arbitrary goal,
especially with limited knowledge and resources.
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context. Some goals will be actively pursued by the system, while others can lie dormant
for any period of time, depending on each goal’s desirability and relative priority. Goals
may be transient, existing in the system for only a short time (such as when the system is
completing a quick task), or persistent, existing in the system for a long time (possibly
eternally, over the system’s lifetime) [4,8].

2 Relevant Works

A useful AI system should exhibit autonomous behavior with respect to handling and
accomplishing its goals. In the simplest case, an automation program has a single goal
and one or more goal-specific actions available to it. Perhaps it responds to some stim-
ulus or is otherwise programmed to execute some action when a predefined condition
is met (e.g. “stamp the item when you detect it rolling past on the conveyor belt”), or
performs some domain-specific algorithm.

More sophisticated systems use subgoaling to deal with a goal that requires multiple
steps to achieve. When a goal cannot be achieved immediately, subgoals are derived
from it (using the system’s knowledge and backward chaining [4]) that may lead to its
achieving. This subgoaling process is recursive, creating a tree-structure of goals when
viewed graphically, as each subgoal may itself require further subgoaling [8]. The tree
bottoms out at its leaves, either with “atomic actions the system can execute, goals that
need no further subgoaling since they are already complete, or otherwise goals that
cannot be subgoaled further due to insufficient knowledge.

An AI should be able to handle multiple goals simultaneously, and that is where
things become complicated, since any cognitive system has only limited knowledge
and capabilities. While operating, the system needs to intelligently reason about both
its goals and what it knows about its environment to decide what actions to take. In
many system designs, goals are assumed to be orderable and/or compatible using some
priority ranking or planning, but this is not always a valid assumption to make as it is
not always possible to rank goals by “objective” importance. This autonomous goal-
managing capability of AI systems is a challenging problem and has been the target of
many efforts, some of which are addressed here.

Belief-Desire-Intention (BDI) systems are a classical approach towards modeling
autonomy with respect to goals. BDI is a term used to describe the separation of a
system’s internal knowledge: its beliefs (knowledge about itself and the world), desires
(latent goals), and intentions (active goals) [7]. This distinction is agreeable, but such
systems also tend to have the problem of assuming their goals to be static (in terms of
meaning) and orderable (in terms of priority).

Goal-Driven Autonomy (GDA) is a recent approach in AI where the system dynam-
ically selects, generates, and pursues novel (i.e. indirectly related) goals based on per-
ceived changes and discrepancies in its environment, ultimately helping the system to
achieve its goals more effectively. In [5], ARTUE escorts an ally in a strategy simulation
and derives a novel goal to fortify the area when an enemy appears. Although fortify-
ing the area is not a direct subgoal of escorting the ally, the goal is nonetheless useful
to the mission because it protects the AI system and the escortee; the goal is adap-
tively derived in response to unexpected environment changes (i.e. an enemy appearing
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nearby). MIDCA [6] is tasked to build houses in a block world, but a hidden arsonist
lights blocks on fire, hindering progress. The system derives goals to investigate and
eventually apprehend the arsonist, preventing further fires. The GDA systems’ ability
to reason about environment changes and generate goals in response to anomalous sit-
uations allows the systems to outperform traditional models not based on GDA.

MicroPsi [2] is an AGI system that executes actions based on its active motives,
which represent some events that the system desires to achieve or prevent. The system
creates its motives in response to its urge signals, which are produced internally by a
presupposed set of basic systemic needs (e.g. “competence”, “sustenance”, “rest”, etc.).
The system uses reward signals to indicate how the system’s current actions and the
changing state of the environment are impacting the satisfaction of the system’s urges,
providing feedback to the system about its success in the environment and allowing it
to plan its next actions accordingly.

3 NARS Overview

Non-Axiomatic Reasoning System (NARS) is a unified model of general intelligence,
where intelligence is defined by adaptation under an Assumption of Insufficient Knowl-
edge and Resources (AIKR). The system operates using a formal logic called Non-
Axiomatic Logic (NAL) which defines relationships between concepts and allows rea-
soning on them under uncertainty. The system is “non-axiomatic” in that its knowledge
does not represent the true and complete state of the world, but rather represents knowl-
edge about the world as based on the system’s accumulated experience. The represen-
tation language of NAL is called Narsese.

AIKR means NARS works in real-time with finite processing capacity while being
open to knowledge and tasks of any content. Under this assumption of resource and
knowledge restriction, NARS incrementally processes all of its many beliefs, goals, and
questions in parallel using its control mechanism. NARS absorbs information through
its input channels and revises its knowledge during the course of its operation to build
more reliable and useful internal models of the world. This can be considered a form of
adaptation and is usefully paired with executable operations that NARS can perform to
autonomously gain a richer understanding of its environment and pursue goals [9].

Similarly to the relevant works, NARS’ goals drive the operations it performs. The
system engages in common goal generation behaviors like subgoaling but is also unique
in that the system explores many potential goal solution paths in parallel and optimizes
these solution paths by reasoning on its existing beliefs and new incoming experience.
Additionally, there are not many restrictions on the content, meaning, and usefulness
of the goals themselves due to the flexibility of NARS’ logic and formal language. The
system can accept external goals via input, and also generates its own new goals based
on the content of its memory. As long as a goal remains desirable to the system and
there is no evidence to the contrary, it may continue to be pursued, while a completed
or very unimportant goal may be abandoned.

NARS’ goal complex changes throughout its lifetime as it adapts to its environment
and the system gains new experience. Indeed, throughout a very long lifetime, the sys-
tem may gain entirely new sets of goals and may no longer desire the goals with which
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it was initially programmed2. Successful self-control and autonomy in any AI system,
including NARS, depends on the system’s aptitude for generating and identifying useful
goals. The system must also holistically manage its overall goal complex, because goals
can interplay and in many situations it does not suffice to blindly pursue every goal at
the exact moment it arises. Some goals require long-term planning and execution, and
a NARS operating in an open environment could develop or acquire goals that conflict
with each other.

NARS’ internal memory can be visualized as a graph, where each node is some
concept, and edges between nodes are relationships between concepts. A concept is
named by a term (e.g. “cat”).

In NARS, a piece of information is represented by a Narsese sentence called judg-
ment, which consists of a statement and its corresponding truth-value. It has the follow-
ing format:

〈judgment〉 ::= [〈tense〉]〈statement〉. 〈truth-value〉

The statement represents a relationship between a subject concept and a predicate
concept (e.g. an inheritance statement “<S → P>” means S is a specialization of P ).
The truth-value is a pair of numbers (f, c) ∈ [0, 1] × (0, 1), where f is the frequency
(representing how positive or negative [true or false] the statement is according to the
system’s evidence), and c is the confidence (representing howmuch evidence the system
has to justify its assessment of frequency).

For example, to represent that you are very confident that “a dog is a type of ani-
mal”, a judgment can be written as “<dog → animal>. 〈1.0, 0.9〉”. This statement
is directly related to 3 concepts: dog, animal, and <dog → animal>. When a judg-
ment is first absorbed into NARS, new subject, predicate, and statement concepts are
created in the system’s memory (unless they already exist). Additional judgments of
the same content are accumulated as additional evidence within the corresponding con-
cept’s belief table and thus acquire stronger confidence values—the set of all these
accumulated judgments within the system’s memory make up the system’s beliefs.

A judgment is optionally associated with a timestamp representing when its truth-
value is valid; in that case, we can also call it an event. It represents temporal knowledge.

NARS operates by continually executing a working cycle, during which tasks and
beliefs are processed. Tasks are sentence containers, outside of the system’s memory in
a buffer. Sentence types that can be processed by NARS including judgment, question,
and goal. The exact mechanism depends on the specific NARS implementation, but in
general, during a given working cycle two sentences are selected for processing. Tasks
and other objects in the system’s memory have a decaying priority p ∈ [0, 1] value
that represents the object’s relative urgency compared to other objects of the same type;
priority can also be raised in various ways, allowing objects to compete for the system’s
time and resources. In each working cycle, the objects with the highest priority tend to
be selected for processing, whereas objects with the lowest priority are pruned from the
object container if it overflows [3].

2 This potential temporary nature of goals may be overcome by periodically re-inputting the
goals into NARS.
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4 Goal Generation and Management

A goal in NARS is represented by a type of Narsese sentence called goal. It is essentially
a special piece of knowledge representing that NARS desires an event to occur (or not
occur) in the current moment. Similarly to how each concept in memory has a belief
table which holds accumulated judgments, every concept also has a desire table which
holds accumulated goals. A goal can either be contained in a task (in a buffer, ready to
be processed) or referred to as a desire (once it is integrated into the system’s memory).

New goals accumulate into desires of varying confidence which by extension drive
the executable operations that the system performs. A goal in NARS has the following
format:

〈goal〉 ::= 〈statement〉! 〈desire-value〉
Here, the statement is an event that is desired by the system to occur (or be pre-

vented) in the present moment, and NARS will actively work to achieve it.3

A desire-value is a pair of numbers (f, c) ∈ [0, 1]× [0, 1) that summarizes evidence
for and against the event being desirable to NARS (i.e. how desirable the event is).
Formally, desire-value is equivalent to the truth-value of a virtual judgment representing
the extent to which the event S implies NARS’ overall desired state D:

S ! 〈f, c〉 ⇐⇒ <S |⇒ D>. 〈f, c〉
Therefore, the frequency f represents the event’s desirability, and confidence c rep-

resents how confident the system is in its assessment of desirability.
A positive goal is an event (S) with a high desirability (near 1.0), where the system

wants to make S as positive (true) as possible in the present moment, because the event
S’s occurrence is sufficient for NARS’ overall desired state (D).

A negative goal is a negated event (¬S) with a high desirability (near 1.0), where
the system wants to make S as negative (false) as possible in the present moment. The
event S’s non-occurrence4 is sufficient for NARS’ overall desired state (D).

For example, if you wanted to give your NARS a goal to “open the door”, you could
express it as either a positive goal (“NARS wants the door to be open”) or a negative
goal (“NARS wants the door to be not closed”), respectively:

<{door} → [open]>! 〈1.0, 0.9〉 ¬<{door} → [closed]>! 〈1.0, 0.9〉
Given either of these goals, NARS will begin planning ways to open the door,

though positive goals are preferred since they are syntactically simpler.
Goal management in NARS is handled innately by the system’s design. The system

is constantly processing new information coming from its sensors and thinking about
what it already knows (i.e. reasoning on the information in its memory). The system’s
memory consists of concepts which contain collections of beliefs and desires. When
NARS selects a strong desire for processing, the system works to achieve it.

3 To represent events that are desired to occur in the future, we can simply add a temporal
condition to the goal.

4 Equivalently, the event ¬S’s occurrence.
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Like all tasks in NARS, goals have one of two origins: input or derived. An input
goal is assigned to the system from an external source (e.g. a user) through an input
channel, whereas a derived goal is derived internally by backward inference rules using
existing goals and beliefs as premises [8]. Either way, when a goal is selected for pro-
cessing for the first time by NARS, it undergoes initial processing in the form of revi-
sion. The content of the new goal is merged into its corresponding concept’s desire
table, keeping NARS’ overall assessment of the goal event’s desirability up-to-date (see
Algorithm 1).

Whenever it is subsequently selected by NARS again, the desire will undergo con-
tinued processing during which NARS may work to actively pursue it. A desire is
actively pursued by NARS according to the Decision-Making Rule:

d > Td

Where d ∈ (0, 1) is the event’s expected desirability, the expectation5 of its desire-
value (f, c) (where d = c×(f−0.5)+0.5). The system’s desire threshold, Td ∈ [0, 1.0],
is a personality parameter representing NARS’ cautiousness6.

When a desire exceeds the desire threshold, it may be considered an active goal that
NARS works to pursue - such a desire is like “intention” in BDI models, whereas those
which have low but non-zero desirability are like the latent “desire” in BDI. Usually, a
goal must be derived and accumulated many times before it reaches this threshold; that
is, the system has derived and accumulated lots of evidence that the goal in question
should be pursued, or alternatively the goal was input with high expected desirability
directly by a user.

During a given working cycle, when a desire should be pursued based on the
Decision-Making Rule, first the system checks if the goal event is already occurring
(as based on the value in its belief table) – in this case, the goal does not require fur-
ther action, and the system can move on to its next task. If the goal is not satisfied, the
system next checks if the goal itself is an executable operation (e.g. ⇑ walk, ⇑ jump,
⇑speak), and if so immediately executes that operation. If the goal is not an operation,
then the system will use related beliefs to derive new (potential) goals that, through
their achieving, may lead to the achieving of the original goal (see Algorithm 2).

The system derives new goals using the knowledge it has acquired from its lifetime
of experience, using a desire in backward inference with temporally related beliefs. If
NARS has an empirical belief that a desired event will occur after the occurrence of

Algorithm 1. Goal initial processing (Narsese pseudocode)
Require: NARS selects task G for processing for the first time
Require: G is a goal of form: 〈goal〉:: = 〈statement〉! 〈desire-value〉
1: SG ← 〈statement〉G
2: CG ← GetConcept(SG) � Get concept named by SG

3: Merge G into CG’s desire table � Keep concept’s desirability up-to-date

5 Expectation is an estimate of future frequency.
6 Although currently this threshold is a constant, in future implementations it can be treated as
a context-dependent variable.
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some other events, then new goals for those precondition events will be derived. For-
mally, backward inference rule b derives new goal G′ from existing goal G and related
belief B, if and only if forward inference rule f derives JG (the judgment satisfying G)
from JG′ (the judgment satisfying G′) and B:

{G,B} 	bG
′ ⇐⇒ {JG′ , B} 	fJG

In this way, a derived goal G′ is derived initially as a potential subgoal of the orig-
inal goal G—the system derives G′ that, when achieved, may lead to achieving G.
However, the role of G′ in NARS is not restricted to subgoal of G. On the one hand,
it is possible that the achieving of G′ could also result in the achieving of other goals
or the discovery of new knowledge that could be helpful in the achieving of G. On
the other hand, G′ is derived using the system’s beliefs which (under AIKR) may be
incomplete or even incorrect, since the system can only know what it has learned so far
during its lifetime of experience; there is no guarantee that G′ is useful for G.

If the achieving of a derived goal G′ tends to garner outcomes that are favorable to
the system, G′ can be considered valuable in its own right, taking on a different role
independent from subgoal ofG. Conversely, the achieving ofG′ may ultimately end up
being irrelevant or even inhibitory to the achieving of G, but at the time of derivation it
is a reasonable guess. For these reasons, in NARS derived goal G′ is not managed as a
subgoal but is instead treated independently7 as a goal that must compete with the other
goals in the system for relevance and attention. Thus, derived goals are simply added to
the task buffer where they may be absorbed to compete with the system’s other goals.
This independent nature of motivations is referred to as the “functional autonomy of
motives” and is a phenomenon observed in humans [1].

Algorithm 2. Goal continued processing (Narsese pseudocode)
Require: G is a goal of form: 〈goal〉:: = 〈statement〉! 〈desire-value〉
Require: NARS selects desire G for continued processing
Require: Td is the system’s desire-threshold
1: d ← Expectation(〈desire-value〉G) � Get desirability of G
2: if d ≤ Td then return � Decision-Making Rule; stop if G is not desirable enough
3: SG ← 〈statement〉G
4: GN ← Answer (¬SG¿ ) � Get negative goal GN = ¬SG! 〈f1, c1〉
5: dN ← Expectation(〈desire-value〉GN ) � Get desirability of GN

6: if dN > d then return � Inhibition; stop if GN is more desirable than G
7: JG ← Answer (SG?); � Get judgment JG = SG. 〈f2, c2〉
8: e ← Expectation(〈truth-value〉JG) � Get truth expectation of JG

9: if e is positive then return � Stop processing if G is already achieved
10: if SG is an operation then Execute(SG) return � Execute if G is an operation
11: if No known sufficient precondition for SG then return � Stop if no beliefs related to G
12: B ← Predictive belief related to SG � e.g. <(E &/ ⇑op) /⇒ SG>.〈f3, c3〉
13: G′ ← Derive new goal {G, B} �b � e.g. (E &/ ⇑op)!〈f4, c4〉

7 Though a limited record is kept regarding its origins.
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The meaning and usefulness of each goal changes as a function of the system’s
experience, which continuously shapes the system’s many interacting conceptual rela-
tionships, goals, and activities. A system with tens of thousands changing conceptual
relations and constant streams of incoming sensorimotor experiences will derive and
accumulate many pieces of evidence for and against a goal. Evidence for goals should
be accumulated from across various beliefs, and kept up-to-date in the current moment
according to context and what is currently known.

This highlights the important distinction between treating a derived goal (G′) inde-
pendently versus treating it as a subgoal. When a derived goal is treated purely as a sub-
goal, its usefulness is limited in that the system manages it solely for the greater purpose
of achieving its corresponding supergoal. Many AI systems may try to pre-specify these
goals, or assume that achieving the subgoals is absolutely necessary or sufficient for the
achieving of the supergoal. However, under AIKR, the system cannot assume this is
always the case, since there may be a different solution path to achieving the supergoal
that doesn’t require the derived subgoal, and perhaps uses different subgoals entirely,
derived using very different concepts and knowledge. Conversely, treating derived goals
independently allows them to take on a usefulness (or uselessness) of their own, based
on their own merits. NARS treats goals independently by processing its many concepts
and goals in parallel using a probabilistic priority queue—every goal has a chance to
be processed in a given working cycle, and the system constantly takes in knowledge
from its experience buffers to keep its memory up-to-date. A derived goal’s usefulness
includes, of course, how well it helps to achieve the goal from which it was derived. If
the same goal is derived often without evidence to the contrary, it may gain extremely
high confidence and priority.

The types of goals that may be derived in NARS are also unique due to the system’s
extensive inference capabilities. Usually, the process of subgoaling is purely deduc-
tive, but NARS’ inference capabilities allow it to derive knowledge using induction,
abduction, and analogy between two statements. When using this type of knowledge in
backwards inference, the derived goal is essentially a guess – but an educated guess,
which can be justified by the system’s current knowledge.

NARS’ goal derivation capabilities allow the system to adaptively react to its envi-
ronment as a function of new experience gained. In the example in Fig. 1a, the NARS
begins with only one initial goal: touch the finish line. The system is given some back-
ground knowledge, including that it can jump to navigate around obstacles. During its
journey, the system encounters an obstacle and is obstructed. As a result, the system
generates and achieves a goal to jump over the obstacle, allowing the system to con-
tinue making progress towards its original goal of moving to the finish line.

As long as NARS was assigned some initial goal and has related knowledge to
infer new goals, the system will have multiple goals at any given time. Each goal’s
priority value denotes its urgency and is a factor in howmuch time the system will spend
trying to achieve it. Depending on the situation, certain goals should be prioritized over
others that may not be as relevant (e.g. when an AI robot’s battery is low, the goal to
find an electrical outlet to recharge is more relevant and should have high priority).
Furthermore, the system is finite and under AIKR does not have the time, resources,
or knowledge to achieve all goals fully or at once, especially as new goals can arrive
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Fig. 1. (a) NARS reaches the finish line by generating new goals to jump over obstacles. [https://
www.youtube.com/watch?v=iYHpk-JtIRQ], (b) A NARS vehicle dynamically handles goals that
suddenly become conflicting. [https://www.youtube.com/watch?v=sNLWVtfk5tA]

at any moment; instead, the system must efficiently pick from its many goals so as to,
over time, achieve them all to the system’s best extent.

The overall goal complex of NARS may be disjointed, in that some goals are quite
different from each other, and potentially even conflicting such achieving one makes it
more difficult or impossible to achieve another. In that case, NARS may be forced to
resolve conflicting goals at a moment’s notice. The example in Fig. 1b shows a NARS
car handling conflicting goals. The system is taught some simple background knowl-
edge and the fact that it can execute operations to drive forward (“⇑ drive”) and brake
(“⇑ brake”). The NARS is initially input with 2 reasonable goals: 1. drive forward,
and 2. don’t hit pedestrians. However, these goals become conflicting when NARS
encounters a pedestrian standing in the middle of the road. When the pedestrian appears
in front and NARS processes highly-desired goal #2, the system may derive evidence
that braking is desired (e.g.“⇑ brake! 〈1.0, 0.9〉”) since it will help the system to not hit
the pedestrian. The system could also derive evidence that preventing the execution of
⇑ drive is desired (e.g.“¬ ⇑ drive! 〈1.0, 0.9〉”), since executing ⇑ drive will result in
the failure of goal #2. These derivations working in tandem will encourage the NARS
to execute ⇑brake while inhibiting the NARS from executing ⇑drive.

5 Comparison and Conclusion

NARS is a real-time system that can accept and process new goals at any moment. How-
ever, AIKR implies there is no guarantee that a given goal can be achieved perfectly, or
at all. There may not be a way for the system to achieve the goal immediately, and the
path to achieving it may be uncertain (if the system lacks the knowledge) or impossible
(if the system lacks the resources or capabilities).

NARS works to achieve all of its goals to the best extent by combining and extend-
ing multiple aspects of AI goal management. Similarly to GDA, the system is goal-
driven and decides which goals to actively pursue based on desirability, priority, and the
system’s current beliefs. The system is adaptive, constantly incorporating new knowl-
edge into its memory, and the system’s goals change over time. NARS can also be
described as roughly following a BDI model, in that its beliefs are separate from its

https://www.youtube.com/watch?v=iYHpk-JtIRQ
https://www.youtube.com/watch?v=iYHpk-JtIRQ
https://www.youtube.com/watch?v=sNLWVtfk5tA
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goals, and its goals may be either actively pursued or latently desired. Such a distinc-
tion between active and latent desires becomes clearly necessary in the case of con-
flicting goals, where it may be necessary to suppress some goals for the achievement
of others. Similarly to MicroPsi’s appetitive and aversive goals [2], NARS also distin-
guishes between positive and negative goals, where the system desires to either achieve
or prevent an event respectively.

However, NARS is also quite different from other goal-driven AI. The system’s
flexible formal language and various logical inference rules give it the freedom to be
creative and adaptive in problem-solving situations. The system does not have any sin-
gle leading motive or supergoal but instead works to explore and achieve all of its many
goals in parallel, though to different extents depending on priority. Whether a given goal
is latently desired or actively pursued is not permanently decided, but instead changes
over time according to the system’s learned experience. Currently, every new instance of
NARS starts out empty with no goals, and instead acquires its initial goals at run-time.

Perhaps one of the more unique features of NARS is its independent treatment of
derived goals. Since a derived goal is prioritized independently, its time-resource budget
and length of existence may go beyond any of its ancestor goals and eventually play
its own larger role in the system. In humans, the functional autonomy of motives is
apparent and seems to be an integral aspect of adaptability. The meaning of goals is
not static, but changes as the system gains new experience and the holistic content
and organization of the memory changes. By virtue of its adaptive goal complex, the
system’s psychology can be compared to a human’s in that the system can be said to
develop its own dynamic traits, attitudes, and interests that evolve over its lifetime [1,8].
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1 Introduction

The current agenda of artificial general intelligence research is focused on neuro-
symbolic architectures (NSA) [1, 2] with reinforcement learning (RL) capabilities [3].
There are studies concentrated on how the graph-based approaches can be combined
with artificial neural networks and deep learning, particularly, deep reinforcement
learning [4]. The latter involves variations end extensions of learning based on local
feedback [5] such as Q-learning [6], involving incremental feedback or error propa-
gation across the states of a studied behavioral program.

In this work we attempt to bridge the gap between symbolic and symbolic
approaches within representation-agnostic cognitive architecture. This architecture is
considered to be invariant to whether the operational space of an agent possessing it is
represented by unstructured raw discrete data or a structured system of functions
describing the state of an agent’s environment.

From a practical standpoint, we anticipate that it might be plausible to build so
called “horizontal neuro-symbolic integration” systems capable to perform both
“System 1” (“slow”) and “System 2” (“fast”) thinking [7] – depending on the stage of a
learning process and the explainability requirements for the system. In this work we
suggest something rather different compared to the modern “vertical neuro-symbolic
integration” systems with neural networks and knowledge graphs residing at different
levels of cognitive architecture [8].

At the same time, we are considering the perspective of replacing the so-called
“local feedback” (and local “error propagation”) [9, 10] with the so-called “global
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feedback” known in neuroscience and psychology [11–13] to see if it enables rein-
forcement learning and what are the conditions and circumstances that make it possible.

For the purpose of the above, we will first consider an overall approach to neuro-
symbolic integration; next, describe our view on the global feedback, then draft
principal architecture of an elementary module of a cognitive system and, finally,
experimentally explore the reference implementation of the described architecture,
discuss the results and draw some practical conclusions.

It worth noticing that the widely used RL term seem too much associated with only
a limited scope of what can be called experiential learning (EL) [14] which involves
any forms of learning, including unsupervised learning based on observing the states of
the environment from an agent’s standpoint, self-supervised learning [15] based on
guidance and feedback provided by an agent to itself relying on different performance
metrics possessed innately or inferred during the life-cycle, semi-supervised learning
involving different forms of guidance given by an external agent being a teacher, and
finally reinforcement learning per se – based on explicit feedback provided by a
reinforcing instructor or an environment.

Fig. 1. An example of “horizontal neuro-symbolic integration”. A symbolic representation of
knowledge about the properties of a horse is presented on the left, with the semantic knowledge
graph with labeled vertices performing either abstract concepts referring to specific properties and
their values and edges performing as weighted links maintaining the probabilistic predicate logic
structure. The sub-symbolic representation of the same knowledge is on the right, with the same
knowledge stored in a distributed form as parameters connecting artificial neurons across layers
in a deep neural network being an unlabeled weighted graph.
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2 Neuro-Symbolic Integration

The “horizontal neuro-symbolic integration” framework concept is rendered on Fig. 1.
While the same knowledge may be represented in a form on the right or on the left,
different phases of acquisition (learning) and execution (application) of knowledge may
be performed using either of the two representations or both of them concurrently. The
left (Fig. 1) “symbolic” representation corresponds to Kahneman’s “System 2” of
reasonable, explainable [16] and interpretable [17] “slow thinking” mode while the
right “sub-symbolic” one corresponds to “System 1” associative and intuitive unex-
plainable “fast thinking” [7] modality.

The system implementing both of such knowledge representations would be able to
learn acquiring new knowledge and perform applying this knowledge – using any of
the two systems. “System 1” would be capable to learn more slowly but perform faster
and “System 2” would be learning faster but acting more slowly [7].

At the same time, there would be possibility to “transfer” knowledge from the
“interpretable” representation fast acquired earlier (“System 2”) into an “intuitive”
representation to be applied fast when needed (“System 1”). In some cases, knowledge
acquisition in the “symbolic” form may be inferred in the course of conventional
probabilistic reasoning [18] and in some cases it can be obtained by symbolic input
obtained from outer agents of external knowledge storage systems using a symbolic
knowledge representation language such as “Aigents Language” [19].

The other way around, knowledge learned in the course of experiential learning by
“System 1” during the training process could be “explained” being translated into a
reasonable representation of “System 2” for either verification by means of proba-
bilistic reasoning or communication of knowledge to external agents and knowledge
storage systems via a symbolic language (Fig. 2).

Fig. 2. Global feedback and local feedback loops in artificial cognitive architecture (left) and
neuro-cortical architecture (right) with uncertain multi-modal perception and reinforcement.
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3 Global Feedback Versus Local Feedback

The most of RL works referenced above [6, 9, 10] are focused on feedback propagation
over a series of states probabilistically associated with eventual reinforcement. The
reinforcing feedback is propagated step by step across the preceding behavioral tra-
jectory which makes the latest steps collect more feedback even if they are irrelevant to
delayed reinforcement. This can be called “local feedback” as it is propagated on a step-
by-step basis so the reward of the next step is locally shared with the previous step. Also,
this makes training longer because of slow incremental propagations of reinforcements.

We explore the alternative scheme of the “global feedback” [11–13] with full
amount of reward shared evenly with all steps being in the attention focus at the time of
reinforcement. Then the main problem becomes how to figure out the time span of the
attention focus so it captures the complete sequence of steps leading to either rein-
forcement or failure. In the following experiments we were considering an event of
either a positive or a negative stimulus to set a boundary of the attention interval. In
turn, positive and negative stimuli were considered as a source of either positive
(reinforcement or reward) or negative (punishment) feedback.

4 Cognitive Architecture

Cognitive architecture of an elementary agent is inspired by the task-driven approach
[18, 20] implementing the theory of functional systems (TFS) of P. Anokhin. It is
shown on the bottom of Fig. 3, where the agent possesses three processes acting upon

Fig. 3. Cognitive architecture and operational space for experiential learning in an arbitrary
operational space represented by domain ontology – an example for a simplified “self-pong”
game. Agent memories and cognitive processes – at the bottom. Sample operational space – at
the top.
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four different memories, extending the cognitive model described in our earlier
work [21].

The four types of memory are: a) “Base Values” or fundamental goals like
avoidance of negative stimuli (“Sad”) and searching for positive ones (“Happy”); b)
“Models” keeping probabilistic relationships between different state transitions expe-
rienced by an agent, with every state transition keeping the input environmental state
and output action; c) “Evidence Log” of environmental states; d) “Action Log” of
actions directed toward the environment.

Three types of processes are: 1) “Predictor” inferring the “Models” based on the
“Evidence Log” and “Action Log” experiences, 2) “Decider” intended to make a
choice relying on probabilities obtained based on the experience state and predictions
evaluated by the “Predictor”; 3) “Compressor” which is supposed to keep the amount
of stored memories in a reasonable range eliminating occasional and irrelevant models
and logs to keep consumption of resources under control.

An example of an operational space for an agent with such cognitive architecture is
provided for a simplified “self-pong” game at the top of Fig. 3. The goal of a player in
this game is to reflect the ball with the racket. The agent is provided a negative stimulus
(“Sad”) if the ball hits the “floor”. The agent is given a positive stimulus (“Happy”) if
the ball hits either the racket or the ceiling right after being reflected by the racket
successfully – depending on the game setup. Both stimuli may be considered as
boolean predicates with time t as an argument. In turn, the action space of an agent is

Fig. 4. Operational space – “functional”. Domain ontology – at the top. Representation of a
sequence of states and actions by means of respective predicates – at the bottom.
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limited to the choice between moving the racket “Left” or “Right” or keeping it in place
(“Stay”), which are other predicates with t as an argument as well. Other predicates of
the environment can be coordinates of the ball (“Xball”, “Yball”) and the racket
(“Yracket”), in case of the “functional” representation discussed further.

While the example above describes the operational space as a specific domain
ontology including environmental variables (coordinates and stimuli) and agent
actions, the cognitive architecture itself is assumed to be agnostic in respect to par-
ticular domain ontology as long as the ontology is described by any consistent set of
predicates.

5 Operational Spaces

An attempt has been made to evaluate possibility of experiential learning for the same
physical problem applied to different operational spaces and corresponding domain
ontologies. For this purpose, we have represented the above-described “self-pong”
game using two completely different representations - “functional” and “discrete”.

In the first case, illustrated on Fig. 4, we consider a “functional” operational space
where behaviors of the ball and the racket are expected to be known and represented by
distinct functions for different coordinates of the two. That could be a typical case for
using a symbolic probabilistic reasoning system that operates conventional predicates
describing the properties of identified concepts and objects and makes predictions on
that basis.

Fig. 5. Operational space – “discrete”. Domain ontology – at the top. Representation of
sequence of states and actions by means of respective predicates – at the bottom.
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In the second case, illustrated on Fig. 5, we consider a “discrete” operational space
where functional behaviors of the ball and the racket are expected to be unknown so
everything is represented by “pixels” of a virtual display where any pixel could be
corresponding to either the ball or the racket. That could be a typical case for using a
neural network architecture with input from a raster display like Atari Breakout RL test
from Open AI Gym framework resembling the “self-pong” discussed here [6].

6 Learning Model

Three different learning models were explored during the following experiments.
First, “Sequential” - “symbolic” matching of the sequences of experienced states

leading to positive or negative feedback since the last known feedback event. The
model is represented by a set of successful sequences of states and actions ended up
with either positive or negative feedback. Making a decision, the currently perceived
sequence in the evidence log is used to find the nearest successful sequence in the
model memory and apply it executing the corresponding action, or a random action is
made if no match is found. The extended version of it called “SequentialAvoidance” is
different so when no successful sequence is found and a random choice is being made,
the unsuccessful sequences ended up with a negative feedback are discarded. Both
versions may be extended with an option to make “fuzzy matching” so if no exact
match for a successful sequence is found, the most similar one in the model memory is
considered, based on the specified threshold in the range 0.0–1.0.

Second, “State-Action” model - the “sub-symbolic” one - was employed as a three-
layer network connecting states to actions, with the input layer corresponding to the
values of input predicates and a hidden layer representing compound states. The state-
to-action connection weights were updated on every positive feedback event with
positive correction. Optionally, if configured so, the weights could be updated also in
case of any negative feedback with negative correction. Based on the “global feedback”
principle, the state-action weights in a network were updated for every state and action
pairs contained in the scope of the attention focus. The attention focus scope was being
accumulated with every new state transition and reset upon any feedback arrival. When
a decision was necessary, this model was operating in either a) the “non-fuzzy” mode
when an action was selected only in case if the current state was perfectly predicting an
action or b) the “fuzzy” mode when an action was selected only in case if it was
predicted with certainty above the specified threshold in the range 0.0–1.0.

Third, the “Change-Action” model was a variant of the “State-Action” model where
each state in a model was actually a “state transition” or a change between the previous
and the current state, so the actions were associated not with states per se but with state
transitions including the previous state and the current state.
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7 Experimental Results

All three learning models were applied to a simplified version of the Atari Breakout
game [6] called “self-pong” as described above. The results are presented on Fig. 6.
The experiments were run for the same agent employing the same learning models with
the inputs consisting of predicates representing environmental states in either a
“functional” or a “discrete” operational space accordingly to the respective domain
ontologies.

All models were explored with different sizes of the game field (2 � 4, 4 � 6,
6 � 8, 8 � 10) under the conditions of experiencing negative and positive feedbacks.
In the simplest case, the “Immediate feedback” was assumed so the positive stimulus
(“Happy”) was directed to the Agent by the environment at the point when a racket is
successfully meeting the ball. In a more complex case of “Delayed feedback”, the
positive feedback was communicated only upon the ball hitting the ceiling being
successfully reflected by a racket earlier.

Evaluation of the learning process success has been made based on success rate in
percent during the training phase. The success rate was identified as the total number of
positive feedbacks denominated by the sum of all positive and negative feedbacks. The
training phase duration was selected as a number of epochs spent till an agent can play
totally avoiding perception of negative feedback. The training phase duration was
adjusted to be the same across all the learning models (“Player Algorithm” on Fig. 3)
for specific size of the game field and sort of feedback (immediate or delayed).

Fig. 6. Experimental results with columns: Environment: a “functional” or a “discrete”
operational space and the respective domain ontology; Player Algorithm: a learning model, with
0.5 indicating fuzziness threshold. Numbers indicate the success rates (%) during the training
period till the Agent is capable of playing without failures, so they correspond to the speed of
learning. The “Avg” column indicates the average success rate across different game field sizes
(2 � 4, 4 � 6, 6 � 8, 8 � 10) for each of the kinds of the feedback (“immediate” or “delayed”).
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The code implementing the cognitive architecture, the models, the game environ-
ment and all of the experiments may be found on GitHub: https://github.com/aigents/
aigents-java/tree/master/src/main/java/net/webstructor/agi.

A video featuring the process of learning can be watched on YouTube: https://
www.youtube.com/watch?v=2LPLhJKh95g.

For all or the experimental conditions discussed above, the Agent was able to learn
the game without failures, eventually. The presented approach has turned out to be
practical in terms of shortening the learning times and implementing the “one-shot”
learning concept. As it would be expected, expanding the game field and replacing
immediate feedback with delayed feedback increased the learning times and decreased
the success rates. The following conclusions were made.

1) Both “Functional” and “Discrete” representations of the environment are close to
be equivalent from the accuracy (the learning speed on epochs) perspective.
2) Functional representation is much better from the run-time performance (re-
sponse time and energy saving) perspective.
3) Both avoidance of negative feedback and fuzzy matching of experiences are
helpful for increasing accuracy and learning speed.
4) Delayed reward decreases learning speed to the extent of *10–15%.
5) Replacing explicit “symbolic” memories of successive behaviors with global
feedback on combinations of “sub-symbolic” state-action contexts effects in: a) a
dramatic increase in run-time performance, b) a minor decrease in learning speed.
6) Negative “global feedback” significantly worsens accuracy; learning may get
impossible in some cases.

Still, the delayed reward problem is not solved in full, so an increase of the game
field along with further delay of either positive or negative reinforcement was making it
impossible to get reasonable learning results in the limited scope of this research. This
is assumed to take place due to the inability to bound attention focus clearly so
occasional positive feedbacks were allocated to multiple random state-action transitions
loosely relevant to the eventual sparse feedback.

8 Conclusion

We have evaluated both “interpretable” functional representation and “non-
interpretable” discrete representation of operational environment. We have done it
using both “interpretable” symbolic representation and “non-interpretable” sub-symbolic
versions of behavioral processes and their underlying models. Based on the study, we
conclude that interpretable “one-shot” reinforcement learning is achievable to the same
extent in all explored configurations and can be successfully done in both “interpretable”
space and “non-interpretable” one. It has been found that acting within an “explainable”
operational space saves memory and computing resources due to its more “structured”
compact functional representation.

Converting a “non-explainable” discrete space to an “explainable” functional one,
remains a challenge, however, which can potentially be solved with hybrid neuro-
symbolic architectures. For this purpose, further studies on both “vertical” and “hori-
zontal” neuro-symbolic integration architectures are necessary.
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Abstract. Edward C. Tolman found reinforcement learning unsatisfac-
tory for explaining intelligence and proposed a clear distinction between
learning and behavior. Tolman’s ideas on latent learning and cognitive
maps eventually led to what is now known as conceptual space, a geomet-
ric representation where concepts and ideas can form points or shapes.
Active navigation between ideas – reasoning – can be expressed directly
as purposive navigation in conceptual space. Assimilating the theory
of conceptual space from modern neuroscience, we propose autonomous
navigation as a valid approach for emulated cognition. However, achiev-
ing autonomous navigation in high-dimensional Euclidean spaces is not
trivial in technology. In this work, we explore whether neoRL naviga-
tion is up for the task; adopting Kaelbling’s concerns for efficient robot
navigation, we test whether the neoRL approach is general across nav-
igational modalities, compositional across considerations of experience,
and effective when learning in multiple Euclidean dimensions. We find
neoRL learning to be more resemblant of biological learning than of RL
in AI, and propose neoRL navigation of conceptual space as a plausible
new path toward emulated cognition.

1 Introduction

Edward C. Tolman first proposed cognitive maps for explaining the mechanism
behind rats taking shortcuts and what he referred to as latent learning [25].
Tolman was not satisfied with behaviorists’ view that goals and purposes could
be reduced to a hard-wired desire for reward [4]. Experiments showed that unre-
warded rats would perform better than the fully rewarded group when later
motivated by reward [26]. Arguing that a reinforcement signal was more impor-
tant for behavior than for learning, Tolman proposed the existence of a cogni-
tive model of the environment in the form of a cognitive map. The mechanisms
behind neural representation of Euclidean space (NRES) has later been identi-
fied for a range of navigational modalities by electrophysical measurements [3].
Further, the NRES mechanism has been implied for navigating conceptual space
[5], a Euclidean representation where betweenness and relative location makes
sense for explaining concepts [7]. Results from theoretical neuroscience indicate
NRES’ role in social navigation [17], temporal representation [6], and reasoning
[2]. Cognitive maps for representing thought have received much attention in
c© Springer Nature Switzerland AG 2022
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neurophysiology in the recent five years [2,5,17]. Navigating conceptual space
as an analogy of thought could explain generalization and reasoning based on
locality [7].

Fig. 1. Evidence for latent learning by Tolman and Honzik (1930). (after [26], from
Systems and theories of psychology [4]).

Autonomous navigation is difficult to reproduce in technology. Autonomous
operation implies a decision agent capable of forming decisions based on own
desires and experience. A well-renowned approach to establish experience-based
behavior is reinforcement learning (RL) from AI. Via trial and error based on a
scalar reward signal R, a decision agent is capable of adapting behavior accord-
ing to the accumulation of R. Considering robot path planning as Euclidean
navigation, we look toward robot learning for inspiration on autonomous navi-
gation. However; whereas RL powered by deep function approximation has been
demonstrated for playing board games at an expert level, requirements to sample
efficiency combined with high Markov dimensionality in temporal systems makes
deep RL difficult in navigation learning [10]. Leslie Kaelbling (2020) points out
key challenges for efficient robot learning, apparently concerned with the current
direction of deep RL. Navigation has to be efficient (require few interactions for
learning new behaviors), general (applicable to situations outside one’s direct
experience), and compositional/incremental (compositional with earlier knowl-
edge, incremental with earlier considerations). The current state-of-the-art deep
RL for robotics struggles on all three points [9].

Inspired by neural navigation capabilities, Leikanger (2019) has developed an
NRES-oriented RL (neoRL) architecture for online navigation [12]. Via orthog-
onal value functions (OVF) formed by off-policy learning toward each cell of an
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NRES representation, the neoRL architecture allows for a distinction between
learning and behavior. Inspired by animal psychology, the neoRL framework
allows purposive behavior to form based on the desire for anticipated reward [13].
However, navigating a multi-dimensional conceptual space of unknown dimen-
sionality in real-time would be impossible for any current learning algorithm. In
this work, we adopt Kaelbling’s three concerns when testing whether neoRL nav-
igation allows for autonomous navigation in high-dimensional Euclidean space.

2 Theory

Central to all navigation is knowledge of one’s current navigational state. Infor-
mation about relative location, orientation, and heading to objects that can
block or otherwise affect the path is crucial for efficient navigation. When such
knowledge is represented as vectors relative to one’s current configuration, neu-
roscientists refer to this representation as being egocentric. When represented
relative to some external reference frame, coordinates are referred to as being
allocentric. Vectors can be expressed as Cartesian coordinates, e.g. the vector
�a = [1.0, 3.0] represent a point or displacement in a plane, one unit size from the
origin along the first dimension, and three units along a second dimension. Vec-
tors can also be represented in polar coordinates �a = [r, ϕ], a point with distance
r from the origin in the allocentric direction ϕ. In order to apply RL for naviga-
tion, all this information must be represented according to the Markov property;
each instance of agent state must contain enough data to define next-state dis-
tribution [20]. Combined with temporal dynamics, the number of such instances
becomes prohibitively expensive for autonomous navigation by RL [10]. Neural
state representation, on the other hand, appears to be fully distributed across
individual neurons and parts of the hippocampal formation [18]. NRES cod-
ing for separate navigational modalities (as should be represented in separate
Euclidean spaces) have been located in different structures in the hippocam-
pal formation [3]. Navigational state representation for the only system capable
of true autonomous navigation seems to be decomposed across multiple NRES
modalities. This section introduces theory and considerations on how state is
represented in the animal and the learning machine, an important inspiration
for neoRL mechanisms for navigation and problem solving.

2.1 Neural Representation of Euclidean Space

The first identified NRES neuron was the place cell [16]; O’Keefe and Dostrovsky
discovered that specific neurons in the hippocampus became active whenever the
animal traversed a specific location in the test environment. Reflecting the allo-
centric position of the animal, the individual place cell could be thought of as a
geometric feature detector on the animal’s location; the place cell is active when-
ever the animal is located within the receptive field of the cell. Other NRES cells
have later been identified, expressing information in various parameter spaces.
Identified NRES modalities for navigation includes: one’s allocentric location
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Fig. 2. Some identified NRES modalities of importance for navigation, with reference
to the original publication. All NRES modalities could be important for autonomous
spatial navigation. The place cell and the object vector cell will be of particular impor-
tance in the examples and experiments of this text. (Illustration adopted from [1]

[16], allocentric polar vector coordinates to external objects [8], and one’s cur-
rent heading [24]. A selection of relevant NRES modalities is listed in Table 1 or
in Fig. 2. A more comprehensive study on NRES modalities in neurophysiology
has been composed by Bugress and Bicanski [3].

Table 1. Neural representation for different Euclidean spaces of importance for nav-
igation: Head-direction cells reflect the current allocentric (ac.) angle of the head (a
scalar parameter). The place cell and border cell respond to a proximal allocentric
location (2D). The remaining NRES reflect conditions represented in other Euclidean
spaces – listed as NRES modalities.

Location Tuning Direction NRES modality

Place cell Ac. [proximal] 2D – Current position [16]

Border cell Ac. [proximal] 2D – Location of borders [19]

Object vector cell Polar c. [spectrum] 2D Ac. Location of objects [8]

Boundary vector cell Polar c. [spectrum] 2D Ac. Location of boundaries [14]

Head-direction cell – [angular] 1D Ac. Head direction [24]

Speed cell – [rate code] 1D – Current velocity [11]

Neuroscientists assume that populations of NRES neurons map Euclidean
vectors by neural patterns of activation. A simple mapping could be formed by
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a population of NRES cells responding to mutually exclusive receptive fields.
One could visualize this representation as a chessboard; exactly one cell (tile)
would be satisfied for any point on the board. Referred to as one-hot encoding1

in computing sciences, a mutually exclusive map structure is defined by the
resolution and the geometric coverage of the map’s tiles. This intuitive map is
appropriate for demonstrative purposes: All examples and experiments in this
text are encoded by a comprehensive one-hot mapping as illustrated in Fig. 3,
where, e.g., N13 signifies a 13 × 13 tile set in �2.

2.2 Autonomous Navigation by neoRL Agents

One can separate navigation into two distinct aspects; the desired location – the
objective of the interaction – and how this objective can be reached. When both
aspects are governed by one’s own inclinations and experience, we refer to this as
an autonomous operation. A most accomplished approach to experience-based
behavior is RL from AI; a decision agent can be thought of as an algorithmic
entity that learns how better to reach an objective by trial and error. The decision
process of the agent can be summarized by 3 signals: the state of the system
before the interaction, the action with which the agent interacts with the system,
and a reward signal that reflects the success of the operation with regard to an
objective. Experience can be expressed via the value function, reflecting the
expected total reward from this state and forward under the current policy.
Since behavior (policy) is based on the current value function, and the value
function is defined under one policy, an alternating iterative improvement is
required for learning. The resulting asymptotic progress is slow, requiring many
interactions by RL learning. Although RL has proven effective for solving a
range of algorithmic tasks, autonomous control for robotics remains a challenge
[10]. Even RL powered by deep function approximation (deep RL) has limited
applicability for online interaction learning in Euclidean spaces [9].

A neoRL agent, on the other hand, is composed by a set of sub-agents learning
how to achieve different NRES cells for the corresponding NRES representation
[12]. The whole set of learning processes constitutes the (latent) learning aspect
of the agent; behavior can later be harvested as a weighted sum over the OVFs
according to priorities [13]. Learning OVFs as general value functions [21] with
R defined by NRES cell activation, the value function of the whole neoRL agent
resembles Kurt Lewin’s fieldt theory of learning [15]. Leikanger (2021) demon-
strated how emulated NRES for agent state allows for autonomous navigation in
a single Euclidean space [13], however, multi-modal navigation and combining
experience across NRES modalities remains to be tested. As multi-modal NRES
capabilities would bring neoRL state representation closer to navigational state
representation in the brain, compositionality across NRES modalities would be
important for making neoRL a plausible candidate for conceptual navigation.

1 Note for computing scientists: NRES is not concerned with the Markov state. Any
similarity to RL coarse coding and CMAC can therefore be considered to be an
endorsement of these AI techniques, not grounds for direct comparison.
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Fig. 3. (A) The allocentric WaterWorld environment: Blue entity is governed by inertia
dynamics, with a desire for green (R = +1) and aversion for red (R = −1). (B) An
N5 mapping of NRES: Each axis is divided into N = 5 equal intervals, resulting
in N2 = 25 NRES cells. An OVF represents the value function toward one NRES
activation. (C) Learned NRES maps can form behaviors via anticipated reward: When
an NRES tile contains an element associated with reward, the corresponding OVF is
weighted accordingly. Anticipated rewards are illustrated using the same colors as in
(A); one aversive NRES cell in red and two desirable NRES cells associated with various
anticipation are represented in shades of green. (Color figure online)

3 Multi-modal neoRL Navigation

Adopting Kaelbling’s three concerns for Euclidean navigation, we next explore
how neoRL navigation scales with increasing (Euclidean) dimensionality. First,
it is crucial that NRES-oriented navigation can operate based on different
Euclidean spaces; with little knowledge of the form or meaning of conceptual
spaces, neoRL must be capable of navigation by other information than location.
Further, we are interested in how neoRL navigation scales with additional param-
eters or across multiple NRES modalities. Any exponential increase in training
time with additional states would make conceptual navigation infeasible. NeoRL
navigation must be general across NRES modalities, compositional across con-
ceptual components, without any significant decline in learning efficiency. In this
section, we explore neoRL capabilities for hi-dimensional navigation by experi-
ments inspired by Kaelbling’s concerns for efficient robot navigation.

All experiments are conducted in the allocentric version of the WaterWorld
environment [23], illustrated in Fig. 3A. An agent controls the movement of the
self (blue dot), with a set of actions that accelerate the object in the four direc-
tions N , S, E, W . Three objects of interest move freely in a closed section of
a Euclidean plane. When the agent encounters an object, it is replaced by a
new object with a random color, location, and speed vector. Green objects are
desirable with an accompanying reward R = +1.0, and red objects should be
avoided with R = −1.0. No other rewards exist in these experiments, making
R a decent measure of an agent’s navigation capabilities. Note that the agent
must catch the last green in a board full of red before the board can be reset
and continue beyond (on average) 1.5 points per reset.
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The PLE [22] version of WaterWorld reports the Cartesian coordinates of
the agent and elements of interest; thinking of the Euclidean plane in Fig. 3A
as representing location facilitates later discussion. A direct NRES encoding of
this information will be referred to as place cell (PC) NRES modality in the
remainder of this text. One can also compute a simple object vector cell (OVC)
interpretation by vector subtraction:

�oiOVC = �oiPC − �sPC

where �s is the location of self and �oi is the location of object i in PC or OV C
reference frame. Note that this OVC interpretation allows for a modality similar
to OVC with the self in the center and allocentric direction to external objects,
but not with polar coordinates as reported for OVC [8]. However, the two Carte-
sian representations of location still give different points of view due to different
reference frames. Information is encoded in NRES maps as described in Sect. 2.1;
the neoRL agent is organized across multiple NRES maps of different resolutions
as described in [13]. Multi-res NRES modalities cover resolutions given by primes
up to N13, i.e., with layers N2, N3, N5, N7, N11, and N13. For more on multi-
resolution neoRL agents and the mechanism behind policy from parallel NRES
state spaces, see [13]. All execution runs smoothly on a single CPU core, and the
agent starts with no priors other than described in this section. Referring to the
NRES modalities as PC and OVC for WaterWorld is only syntactical to facil-
itate later discussions; 2D Euclidean coordinates are general and can represent
any parameter pair.

Learning efficiency is compared by considering the transient proficiency of
the agent as measured by the reward received by the agent during 0.2s inter-
vals. Any end-of-episode reward is disabled in the WaterWorld settings; the only
received reward is R = +1 when encountering green elements and R = −1 when
encountering red elements. The simple reward structure makes accumulated R

a direct measure of how well the agent performed during one run. However,
observing the transient proficiency – real-time learning efficiency – of the agent
requires further analysis: in all experiments, a per-interval average or received
reward is computed over 100 independent runs with additional smoothing by a
Butterworth low-pass filter. All runs are conducted in isolation; the agent is ini-
tiated before each run and deleted after the run – without any accumulation of
experience between runs. The x-axis of every plot represents minutes since agent
initiation. The y-axis represents proficiency as computed by the per-interval
average of received reward, scaled to reflect [R/s]. Proficiency thus measures
how many more desirable (green) encounters happen per second than unwanted
(red) ones.

3.1 NeoRL Navigation: NRES Generality

First, we examine the generality of the neoRL architecture by comparing naviga-
tional proficiency for an agent exposed to a PC modality to one exposed to an OVC
modality. We are interested in the generality of neoRL navigation; can neoRL nav-
igate the PC modality by different Euclidean information, and at what cost?
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Fig. 4. The neoRL architecture is general across NRES modalities: (A) an original
place cell (PC) NRES modality, implemented by applying NRES code directly on an
allocentric location of the agent or elements of interest. (B) an emulated object vector
cell (OVC) NRES modality, implemented by vector subtraction. OVC is centered on
the self with an allocentric representation of other objects.

Results are presented in Fig. 4: agent proficiency from the original PC modal-
ity (Fig. 4A) can be compared with agent proficiency when navigating by the
OVC modality (Fig. 4B). The immediate proficiency of several mono-resolution
neoRL agents is plotted alongside the proficiency of a multi-resolution neoRL
agent. There is no loss in sample efficiency when utilizing the OVC modality
compared to PC modality. The multi-res neoRL agent performs better than
mono-res neoRL agents for both the PC and the OVC modality. NeoRL naviga-
tion performs well across both aspects of experience, indicating that the neoRL
architecture is general across navigational modalities.

3.2 NeoRL Navigation: NRES Compositionality

Secondly, we are interested in how neoRL scales with additional navigational
information. Experiment 1 showed how a neoRL agent is capable of reactive
navigation based on an auxiliary NRES modality. In this experiment, we explore
the benefit of combining experience across more than one NRES modality. A
multi-modal neoRL agent is exposed to both the PC and the OVC modality
from experiment 1, effectively doubling the number of NRES states for the agent
to consider. We are anxious about how well the neoRL architecture scales with
the additional information, both for final proficiency and learning time.
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Fig. 5. Multi-modal neoRL navigation leads to higher proficiency and quicker learning
than mono-modal agents, despite having twice as many NRES states.

Compare the proficiency of the neoRL agent when exposed to PC, OVC, and
multi-modal information in Fig. 5. Combining information across multiple NRES
modalities significantly improves navigational performance. The final proficiency
of the multi-modal neoRL agent approaches 0.55[R/s] while the PC neoRL agent
barely reaches 0.29[R/s]. The multi-modal neoRL agent reaches final proficiency
after 15 min, whereas the PC neoRL agent uses more than 160 min. In terms of
learning efficiency, i.e., how fast the agent reaches final proficiency, and in terms
of trained performance, the multi-modal neoRL agent performs better than both
mono-modal neoRL agents.

4 Discussion

Contrary to RL in AI, neoRL navigation learns quicker, to higher proficiency,
when more information is available to an agent. The neoRL agent is capable
of multi-modal navigation, making multi-dimensional Euclidean navigation by a
digital agent plausible.

Moving on from reinforcement learning and classical behaviorism, Tolman
made a clear distinction between learning and performance after his latent learn-
ing experiments (see Fig. 1). Observing how an animal could learn facts about
the world that could subsequently be used in a flexible manner, Tolman proposed
what he called purposive behaviorism. When motivated by the promise of reward,
the animal could utilize latent knowledge to form beneficial behavior toward
that objective. Mechanisms underlying orientation have further been implied in
cognition, a conceptual space where ideas are represented as points in a multi-
dimensional Euclidean space. Technological advances have allowed new evidence
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from modern neuroscience, supporting Tolman’s hypotheses on cognitive maps’
involvement in thought. Inferring that active navigation of such a space corre-
sponds to reasoning and problem solving, we here propose autonomous navi-
gation of conceptual space as an interesting new approach to artificial general
intelligence. However, navigating conceptual space – with high dimensionality,
an unknown form, and possibly an evolving number of Euclidean dimensions, is
no trivial challenge for technology. Based on neural representation of space, the
neoRL architecture is distributed and concurrent in learning, capable of sepa-
rating between latent learning and purposive behavior, and a good candidate for
emulated cognition by autonomous navigation of conceptual space.

Adopting Kaelbling’s concerns for efficient robot learning to account for
multi-modal navigation, we have methodically tested neoRL navigation in the
WaterWorld environment. Firstly, it is crucial that neoRL navigation can oper-
ate in other Euclidean spaces than its primary navigation modality. Our first
experiment verifies that the neoRL architecture is general across Euclidean
spaces; a neoRL agent that navigates by the location modality is compared to
one exposed to a relative-vector representation of external objects. Both NRES
modalities perform admirably at this task, indicating that neoRL navigation is
not restricted to one NRES modality. Secondly, we explore how neoRL naviga-
tion scales with additional NRES modalities; an agent based on both a place-cell
and an object-vector-cell representation is compared to the two mono-modal
neoRL agents from experiment 1. Navigation, both in training efficiency and
final proficiency, improves significantly when more information is available to
the agent. High-dimensional Euclidean navigation appears to be plausible with
neoRL technology, formed by the basic principles from neuroscience and NRES.

In this work, we have collected evidence from theoretical neuroscience and the
psychology of learning to propose a new direction toward emulated cognition. We
have shown how online autonomous navigation is feasible by the neoRL architec-
ture; still, the most interesting steps toward conceptual navigation in machines
remain. What are the implications of autonomous navigation of conceptual space
for AGI? Could latent spaces from deep networks be used for neoRL navigation?
Should desires (elements of interest) propagate across NRES modalities based
on associativity? Many important questions are yet to be asked. In showing that
neoRL is up for the task of multi-modal navigation, we hereby propose a novel
approach to AGI and present a plausible first step toward conceptual navigation
in machines.
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Abstract. Statistical artificial intelligence based upon machine learning
is facing major challenges such as machine bias, explainability, and verifi-
ability problems. Resolving them would be of the utmost importance for
ethical, safe, and responsible AI for social good. In this paper we propose
to address these problems with the (recently rapidly developing) method-
ology of category theory, a powerful integrative scientific language from
pure mathematics, and discuss, in particular, the possibility of the cat-
egorical integration of statistical (inductive) with symbolic (deductive)
artificial intelligence. Categorical artificial intelligence arguably has the
potential to resolve the aforementioned urgent problems, thus being ben-
eficial to make artificial intelligence more ethical, verifiable, responsible,
and so more human, which would be crucial for AI-pervasive society.
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1 Introduction

The currently predominant paradigm of AI, namely Statistical AI based upon
the inductive methods of machine learning, is facing two types of critical chal-
lenges, i.e., the problem of machine biases and the problem of verifiability or
explainability (see, e.g., [1,5,29,32,35,36,39]). Resolving these problems in cur-
rent AI research is crucial for Ethical, Responsible, and Trustworthy AI for Social
Good. In this paper we aim to discuss the possibility of addressing these urgent
problems in AI with the novel mathematical methodology of category theory
[16], a new kind of structural mathematics applied as a powerful integrative
language in a broad variety of sciences, including symbolic logic and program-
ming language theory [20,25,26,42, ?,?], theoretical physics and quantum com-
putation [2,11,27,28,31], mathematical linguistics and NLP (natural language
processing) [9,19,33,34,41], database theory and circuit theory [16], biology and
chemistry [3], cognitive science and psychology [40], and more recently, machine
learning [12,15,31]. In particular, we propose the structural category-theoretical
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integration of Statistical AI with Symbolic AI (based upon the deductive meth-
ods of symbolic logic), i.e., the categorical integration of Inductive AI with
Deductive AI. Categorical Integrated AI arguably allows us to resolve the afore-
mentioned major problems that AI research is currently facing, thereby making
AI more ethical, more verifiable, more responsible, and thus more human and
human-friendly, which would be of the utmost importance for AI-pervasive soci-
ety.

Neil Thompson at MIT and his collaborators recently published an intriguing
article “The Computational Limits of Deep Learning” [47], arguing as follows:

[P]rogress along current lines is rapidly becoming [...] unsustainable. Thus,
continued progress [...] will require dramatically more computationally-
efficient methods, which will either have to come from changes to deep
learning or from moving to other machine learning methods.

In addition to the computational efficiency problem, there are many other prob-
lems in Statistical AI, such as verifiability, explainability, and machine bias issues
as mentioned above. How can we address those issues? We consider Integrated
AI to be the next-generation paradigm of AI that allows us to resolve those
urgent issues in current AI research. The idea of Integrated AI has been around
for some time. One of the earliest ideas of Integrated AI comes from Minsky,
the 1969 Turing Award winner and co-founder of MIT’s AI Lab, who proposes
the integration of Symbolic and Connectionist AI in particular (aka. Logical and
Analogical AI, or Neat and Scruffy AI) as a form of Integrated AI in his 1991
article [43]:

Our purely numerical connectionist networks are inherently deficient in
abilities to reason well; our purely symbolic logical systems are inherently
deficient in abilities to represent the all-important “heuristic connections”
between things—the uncertain, approximate, and analogical linkages that
we need for making new hypotheses. The versatility that we need can be
found only in larger-scale architectures that can exploit and manage the
advantages of several types of representations at the same time [...] each
can be used to overcome the deficiencies of the others.

Minsky was not able to mathematically embody the idea of Integrated AI, pre-
sumably because suitable mathematical tools were not available at that time, but
mathematics today is more advanced, and category theory in particular gives a
scientific methodology for integration, as it has successfully integrated different
scientific theories indeed (which shall be explained in more detail below).

2 Category Theory Across the Sciences

What is category theory? It is the abstract structural mathematics that has
allowed for solutions to major concrete problems in pure mathematics, such as
the Weil conjectures, on the basis of Grothendieck’s category-theoretical alge-
braic and arithmetic geometry [22]. It was born during the development of alge-
braic topology in the mid-twentieth century, and soon thereafter employed by
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Lawvere [23] and others as the structural foundation that liberates mathematics
from material set theory (or its ‘pernicious idioms’ as Wittgenstein calls them
[51]). It has been applied successfully beyond mathematics, in particular, in
physics, computer science, and beyond, as mentioned above. Roughly speaking,
a category is a structural network of objects and arrows (which specify relations
between objects). There are different categories in different sciences. In logic,
there is a category of propositions and proofs (deductions from one proposition
to another). In computer science, there is a category of data types and programs.
In physics, there is a category of quantum systems and quantum processes. Since
they are all categories, we can compare and relate their categorical structures.
Category theory thus enables transdisciplinary knowledge transfer across differ-
ent fields of science. It was initially structural foundations of mathematics, and
yet it is gradually becoming structural foundations of various sciences as follows:

A striking feature of category theory consists in its graphical calculus (aka.
string diagrams; see, e.g., [11,45]). It allows for both efficient computation of
various tasks and mathematically verifiable and intuitively transparent design
of protocols and algorithms. Categorical artificial intelligence enjoys these merits
enabled by the graphical string diagram calculus of category theory. Especially,
it provides an efficient methodology for linear algebraic (vector-based) computa-
tion, and most AI systems represent objects as feature vectors, the computation
of which can be performed efficiently in categorical graphical calculus. Let us give
a simple example of graphical computation. The commutativity of matrix com-
position (ordinary matrix product) and tensor product must be proven through
complex computation in standard multilinear algebra, but it is topologically
obvious in graphical calculus (f, g below are linear maps; sequential composition
represents ordinary matrix product, and parallel composition tensor product;
tensoring after ordinary composition is different in formula from composition
after tensoring, but they are exactly the same in the graphical language) [8,11]
(the picture below is due to Bob Coecke [8]):

In analogy with the classification of programming languages, category theory
gives a high-level language (like Lisp and Haskell) whereas the standard formal-
ism of linear algebra is a low-level language (like assembly languages). Categori-
cal graphical calculus is not an informal heuristic, but supported by the rigorous
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completeness theorem: an equation is derivable in categorical graphical calculus
as above if and only if it holds for standard models (i.e., vector space models in
the case of linear algebra) [45]. There are many different versions of graphical
calculus available to express computation in different categories including both
discrete/algebraic and continuous/probabilistic ones as used in machine learn-
ing (see, e.g., [17]). Even automated reasoning systems for graphical calculus are
available (see, e.g., [7,13]). Categorical graphical calculus is thus mathematically
rigorous and practically applicable and efficient, providing a useful, mathemat-
ical language for AI applications. It allows, moreover, for generalising exisiting
frameworks beyond ordinary categories; e.g., neural networks expressed in cate-
gorical graphical calculus can be instantiated to categories other than ordinary
vector space models, allowing us to generalise deep learning beyond vector-based
representation spaces, and unifying, e.g., ordinary neural networks (RNN, CNN,
etc.) and graph neural networks (Graph RNN, Graph, CNN, etc.; see, e.g., [53]),
just as categorical quantum mechanics allows for non-standard toy models, which
represent the essential features of quantum theory in a computationally more
tractable, simpler manner, and categorical NLP unifies continuous/contextual
and discrete/compositional models of language as represented by statistical vec-
tor space semantics and logical Montague semantics, respectively (see, e.g., [9]).
We shall discuss categorical models of NLP in more detail below.

3 The Categorical Paradigm of Integrative NLP

Applications of category theory to quantum computation and communication
have been especially successful, giving a significant simplification of quantum
teleportation and other protocols [8,11], and allowing us to design novel quantum
algorithms with categorical graphical calculus, such as a vast generalisation of
the Grover algorithm [50], and even leading to novel applications in NLP [9,19].
The upper half of the following figure is a graphical (topological) verification of
the quantum teleportation protocol by Coecke [8]; it is significantly simpler than
the ordinary Hilbert space based verification (see also [10,11]; the picture below
is due to Bob Coecke [10]):

The lower half of the figure illustrates an application of categorical graphical
calculus to NLP [8]. The standard statistical distributional model of NLP does
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not take into account the formal mathematical structure of language such as
grammar (e.g., the bag-of-words model as broadly used in Google and elsewhere
does not reflect the grammatical structure of language; see, e.g., [49]). Yet we
can combine Statistical AI with Symbolic AI via category theory [9,19] to obtain
the language model that reflects the compositional structure of grammar (the
picture below is due to Dimitry Kartsaklis [21]):

The symbol F above denotes what is called a strong monoidal functor map-
ping grammatical structure as represented by Lambek’s formal grammar into
semantic structure as represented by compact closed categories, an instance of
which is the category of vector spaces and another instance of which is the
category of sets and relations, which allows us to represent Montague seman-
tics within the unified categorical framework. Categorical NLP thus counts as a
structural integration of Symbolic and Statistical AI in the context of language
processing, allowing us to compose meaning vectors for complex text from mean-
ing vectors for words. Categorical integrated NLP has been successful and signif-
icantly impacted the field (as pioneering papers [9,19] have been cited hundreds
of times).

Categorical Integrative NLP has broad possibilities for applications as well as
theoretical advtanges. It can, e.g., be expected to improve scientific knowledge
discovery from the past (purely linguistic) data of scientific papers, a successful
prototype of which was given in a recent Nature paper [48]. Yet it is still based
upon the statistical model that ignores the structure of language, and thus the
Categorical Integrative NLP that takes the structure of language into account
allows us to improve its performance; since learning from the existing literature
is an indispensable task of Science AI (as well as the human scientist), it con-
tributes to Science AI in general as well as Science NLP in particular. In order
to address the machine bias issue in the context of NLP as discussed in a recent
Science paper [5], we would further have to combine it with a rule-based system
in Symbolic AI so as to correct inappropriate biases learned from (potentially
contaminated) empirical data, i.e., it corrects inductively learned bottom-up
biases with top-down rules expressing ethical principles; this is achieved math-
ematically by exploiting the common categorical structure that underlies the
NLP system and the rule-based system axiomatising relevant ethical principles.
To address the verifiability issue, we can use a formal system for categorical
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program verification, namely categorical Floyd-Hoare logic unifying previously
known program logics (see, e.g., [18], which can be adapted for various concrete
systems). In the way explained above, we can resolve all the aforementioned
issues in current AI research within the specific context of NLP.

The categorical approach not only integrates Symbolic and Statistical AI,
but also interlace diverse fields across mathematics, artificial intelligence, and
quantum physics, giving an integrative perspective on the sciences through the
lens of the unificatory language of category theory. In the following we discuss
a more general form of Categorical AI beyond NLP and its significance.

4 Categorical Artificial Intelligence: Four Objectives,
Their Significance, and Theoretical Methodology

The general objectives of categorical artificial intelligence as have been men-
tioned above may be summarised as follows:

– Objective 1: A structural integration of Symbolic and Statistical AI, which
arguably lays a theoretical foundation for the next-generation paradigm of
AI, and in particular, for applications below.

– Objective 2: Ethical AI and AI for Social Good, which are enabled by correct-
ing bottom-up machine biases in Statistical AI with the top-down rule-based
methods of Symbolic AI (as explained in the NLP context above).

– Objective 3: Verifiable AI and AI for the Logic of Science, which are enabled
by combining Statistical AI for Hypothesis Discovery with Symbolic AI for
Verification or Justification (as in the following picture).

– Objective 4: Strengthening the unity and networking of science whilst keep-
ing its plurality and diversity; category theory arguably gives an integrative
methodology to address the contemporary fragmentation of science.

The overall picture can be summarised as follows:

It should be remarked that Reichenbach distinguished between the context
of discovery and the context of justification (or verification) in science, and that
in the above picture, Statistical AI is considered to be in charge of the context



Categorical Artificial Intelligence 133

of discovery and Symbolic AI the context of justification (and Integrated AI
interweave them as a coherent whole, giving the integrated logic of science).

We elaborate upon the significance of each objective in the following.
Objective 1 is of the following significance (as we have discussed in the above

as well). Statistical AI, i.e., AI for Inductive Inference, and Symbolic AI, i.e., AI
for Deductive Reasoning, give the full-fledged form of intelligence when interlaced
together; induction and deduction are the two fundamental wheels of intelligence
(cf. the faculty of sensibility as perceptual pattern recognition and the faculty of
understanding and reasoning in Kantian epistemology). Integrated AI is useful
for applications as below (allowing for the best of both worlds).

Objective 2 is concerned with the machine bias problem, the significance of
which is articulated in the aforementioned Science paper demonstrating “Seman-
tics derived automatically from language corpora contain human-like biases” [5].
Purely Inductive AI naively learns biases existing in empirical real-world data
(which is often contaminated in various ways), and for the very reason we have
to combine it with Symbolic AI, which makes it possible to correct bottom-
up learned biases with top-down logical rules expressing moral principles, as
explained above in the specfiic context of NLP.

Objective 3 is concerned with the problem of verifiability, which is especially
important for the logic of science (by contrast, things like recommender systems
do not really require logical verifiability). As shown in the aforementioned Nature
paper [48], Statistical AI is good at generating scientific hypotheses whilst being
bad at verifying them; this is a common problem in Statistical AI. Symbolic AI,
by contrast, is good at verification and justification whilst being bad at efficient
discovery (and the computational cost for verification, e.g. proof verification, is
significantly lower than the cost for discovery, e.g. proof discovery, which is more
efficient in Statistical AI although not completely precise). By integrating the
two, thus, we can make AI verifiable whilst keeping computational efficiency.

Objective 4 may be regarded as a more general conceptual goal for the future
of science; it could be the key to sustainable science, since the fragmentation of
science could lead to the fragmentation of technology, which could, in turn,
lead to disastrous consequences in our heavily technology-laden society, such as
the uncontrollable explosion of intelligence that would extinguish the human
race altogether, as illustrated in the technological singularity scenario. Cate-
gory theory would, hopefully, allow for an integration of scientific knowledge
and technology to avoid such dystopian scenarios (e.g. the minimum amount of
safety constraints can be hard-coded in Integrated AI as the absolute principles
that must always be followed; otherwise AI might do some extreme harm to
humanity).

We finally briefly explain the methodology of categorical artificial intelligence
beyond NLP as discussed above. Firstly, the graphical calculus of category the-
ory can be adapted for neural networks [52], thus giving a universal modelling
language for deep learning and its categorical generalisation, where it should
be remarked that abstract neural networks formalised in graphical calculus, as
noted above, can be instantiated in different concrete categories, and deep learn-
ing can be generalised in such a way. In particular, both CNN and Transformer
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(as applied in BERT and GPT-3) can be formalised within the graphical string
diagram language for neural networks [52]. Secondly, DisCoPy [13] provides a
Python-based implementation of graphical calculus for categorical universal logic
(which has been applied especially for distributional compositional categorical
models named DisCoCat and their quantum computing implementation [24]),
and DisCoPy can be integrated further with Pyro, a general probabilistic mod-
elling language. The integration of DisCoPy and Pyro is DisCoPyro [46], which
may be regarded as a general framework for the integration of symbolic cate-
gorical logic and probabilistic generative modelling. DisCoPyro is particularly
useful for different sorts of structure optimisation via the categorical principle
of symbolic compositionality; for example, it has been successfully applied for
the structural optimisation of VAE (variational autoencoder) for deep learn-
ing of image data [46], and can be applied for many other tasks [46], such
as the ARC (Abstraction and Reasoning Corpus) [6] to measure conceptual
intelligence. DisCoPyro allows for effective implementations of categorical rep-
resentation learning via symbolic compositionality, being successfully applied
for categorical latent space construction for chemical material design based on
SMILES (simplified molecular-input line-entry system; this is the author’s joint
work with Eli Sennesh, the originator of DisCoPyro [46]). Graphical calculus
for categorical deep learning can be implemented in DisCoPyro as well. Thirdly,
symbolic composition of representations in latent space, such as the aforemen-
tioned grammatical composition of word embeddings in Categorical Integrative
NLP, is enabled by the categorical principle of compositionality, and thus the cat-
egorical artificial intelligence framework allows for compositional representation
learning. Both representation space construction and complex representation
composition can be systematised in the categorical artificial intelligence frame-
work. Fourthly, there are yet another sort of integration required in AI robotics
(rather than pure AI), which the methodology of category theory arguably helps
to address. It is pivotal in intelligent robotics to integrate task planning and
motion planning, which could be achieved by utilising the functorial correspon-
dence between the discrete categorical structure of task planning structure and
the continuous categorical structure of motion planning. The categorical inte-
gration of AI and robotics would contribute to the development of Embodied
AGI (artificial general intelligence) or 4E AGI (embodied, embedded, enacted,
and extended AGI).

5 Conclusions: Beyond the Chomsky Vs. Norvig Debate

In the Chomsky versus Norvig (Google’s Research Director) debate on the nature
of intelligence, Chomsky on the side of Symbolic AI criticises Statistical AI;
Norvig recapitulates Chomsky’s criticism as follows [44]:

Statistical language models have had engineering success, but that is irrel-
evant to science [...] Accurately modeling linguistic facts is just butter-
fly collecting; what matters in science (and specifically linguistics) is the
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underlying principles [...] Statistical models are incomprehensible; they
provide no insight.

Norvig, by contrast, argues for the necessity of statistical methods on the grounds
of the contingent nature of language and its evolution subject to complex cultural
transformations, which is difficult to model by symbolic methods [44]:

[L]anguages are complex, random, contingent biological processes that are
subject to the whims of evolution and cultural change. What constitutes a
language is not an eternal ideal form, represented by the settings of a small
number of parameters, but rather is the contingent outcome of complex
processes. Since they are contingent, it seems they can only be analyzed
with probabilistic models.

What Chomsky wants is the eternal ideal form as mentioned above. The debate
between Norvig and Chomsky is analogous to the traditional debate between
empiricism and rationalism (or probabilism/contingentism and universalism).
Integrative AI would arguably reconcile the two camps, allowing us to go beyond
the Chomsky-Norvig debate. Conceptually, the two views may be unified in such
a way that the surface structure of language is contingent as Norvig maintains,
and yet the depth structure of language is universal as Chomsky contends.

Integrative AI, as we have argued above, makes AI more verifiable, more
ethical, and thus more human; this is crucial for trust, transparency, security,
and safety in AI-pervasive society. The integrative approach via category theory,
moreover, contributes to the networking of science and knowledge, and in the
long run, to the sustainability of knowledge and society; without an integra-
tive view of science and knowledge, we could not address the transdisciplinary
problems that the society (will) face; one such problem in the future may be
the technological singularity via intelligence explosion. Unlike an ad hoc, task-
specific treatment to improve empirical performance, Categorical AI is guided by
broadly applicable systematic mathematical principles, paving the way for trans-
disciplinary knowledge transfer across different domains as discussed above.

Our hope is ultimately that the category-theoretical approach eventually
shifts the paradigm of artificial intelligence, and the emerging paradigm of Cate-
gorical Integrative AI with the best of both symbolic and statistical worlds gives
a unifying foundation for Next-Generation Artificial Intelligence.

It should be noted that we have not been able to discuss related approaches
to Integrative AI due to the limitation of space (for which, see, e.g., [4,14,37]).
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Abstract. The European Parliament recently proposed to grant the
personhood of autonomous AI, which raises fundamental questions con-
cerning the ethical nature of AI. Can they be moral agents? Can they
be morally responsible for actions and their consequences? Here we
address these questions, focusing upon, inter alia, the possibilities of
moral agency and moral responsibility in artificial general intelligence;
moral agency is a precondition for moral responsibility (which is, in turn,
a precondition for legal punishment). In the first part of the paper we
address the moral agency status of AI in light of traditional moral phi-
losophy, especially Kant’s, Hume’s, and Strawson’s, and clarify the pos-
sibility of Moral AI (i.e., AI with moral agency) by discussing the Ethical
Turing Test, the Moral Chinese Room Argument, and Weak and Strong
Moral AI. In the second part we address the moral responsibility status
of AI, and thereby clarify the possibility of Responsible AI (i.e., AI with
moral responsibility). These issues would be crucial for AI-pervasive tech-
nosociety in the (possibly near) future, especially for post-human society
after the development of artificial general intelligence.

Keywords: Ethical intelligence · Artificial moral agency · Strong and
weak moral AI · Artificial moral responsibility · Responsible AI

1 Introduction

The European Parliament recently proposed to grant the personhood of
autonomous AI [4], which is concerned with traditional issues in moral philoso-
phy, such as agency and moral responsibility, and leads us to a reconsideration
of them in the contemporary context of AI. The possibility of artificial agency
and responsibility is not obvious by themselves. To be intelligent, agents would
have to be ethical in particular; morality is arguably an indispensable ingredi-
ent of intelligence. There are various questions concerning the ethical nature of
AI. Can artificial agents be moral agents? Can they be morally responsible for
their actions and consequences? In this paper we address these questions from
multiple angles while referring to closely related discussions in traditional moral
philosophy.

Underlying these questions is the possibility of the freedom to act and the
capacity to intend to act (in artificial systems; cf. the issue of intentionality as
c© Springer Nature Switzerland AG 2022
B. Goertzel et al. (Eds.): AGI 2021, LNAI 13154, pp. 139–150, 2022.
https://doi.org/10.1007/978-3-030-93758-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93758-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-93758-4_15


140 Y. Maruyama

has been problematised in philosophy of mind by Searle [33,34] and others; see
also [19,21,23]). Without the freedom to act or the capacity to intend to act,
there may be no such thing as moral responsibility to be attributed to AI; even
if AI committed a crime, it might be that AI committed the crime as it was
programmed to do so by humans or other agents. Does AI have the freedom to
act? Does it have the capacity to intend to act? We elucidate these issues in
this paper in light of traditional moral philosophy, such as Kant’s, Hume’s, and
Strawson’s.

The role of emotion in artificial morality is another relevant issue. Some
thinkers in moral philosophy, as we shall explain below, contend that morality
is grounded upon emotion rather than reason; in contrast, others argue that it
is grounded upon reason. Broadly speaking, there are two kinds of morality in
human nature, namely rational morality and emotional morality. AI can presum-
ably be programmed to follow rational moral principles, and could be regarded
as having some sort of rational morality in that sense, but can AI have emotional
morality? This question leads us to a reconsideration of the nature of emotion
and emotional morality within the contemporary context of AI research.

In this paper we especially focus upon the possibilities of moral agency and
moral responsibility in AI; moral agency is a precondition for moral responsibility
(which is, in turn, a precondition for punishment). The paper consists of two
parts as follows. In the first part, namely Sect. 2, we address the moral agency
status of AI in light of Kant’s, Hume’s, and Strawson’s moral philosophy, and
clarify the possibility of Moral AI (i.e., AI with moral agency) by discussing
the Ethical Turing Test, the Moral Chinese Room Argument, and Weak versus
Strong Moral AI. In the second part, Sect. 3, we address the moral responsibility
status of AI, and thus clarify the possibility of Responsible AI (i.e., AI with
moral responsibility). We conclude the discussion in Sect. 4.

2 Moral Agency: Can AI be a Moral Agent?

Here we address the moral agency status of AI, clarifying the possibility of Moral
AI; moral agency counts as a precondition for moral responsibility.

2.1 Two Conceptions of Morality: Rational and Emotional Morality

In order to be a moral agent, AI must be able to make moral judgments on
the basis of some conception of good and bad. What is the origin of our moral
judgements? Where do they come from? Broadly speaking, there are two views
regarding the origin or nature of morality in the context of traditional moral phi-
losophy, namely Kant’s and Hume’s. Kant’s moral philosophy is often contrasted
with Hume’s. Dennis [3] explains as follows:

The ethics of Immanuel Kant (1724-1804) is often contrasted with that of
David Hume (1711-1776). Hume’s method of moral philosophy is experi-
mental and empirical; Kant emphasizes the necessity of grounding morality
in a priori principles.
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According to Kant, moral judgments, ultimately, come from the nature of human
reason; referring to Kant’s moral philosophy, Williams [40] indeed argues that
“our rationality is at the centre of his picture of moral agency.” According to
Hume, by contrast, moral judgments originate from the nature of human emo-
tion such as empathy and sympathy; Hume [9] indeed asserts that “morality is
determined by sentiment.” And sentiment is based upon our feeling, as Hume [9]
contends that “what each man feels within himself is the standard of sentiment.”
In contrast to the Kantian conception of morality, Hume [8] argues as follows:
“Reason is wholly inactive, and can never be the source of so active a principle
as conscience, or a sense of morals.”

Kauppinen [12] explains Humean moral sentimentalism as follows: “our emo-
tions and desires play a leading role in the anatomy of morality” and “the key
mechanism of sympathy is imaginatively placing oneself in another’s position.”
Kauppinen [12] also remarks that there is a renewed interest in Humean moral
philosophy in the context of contemporary psychology: “Recent psychological
theories emphasizing the centrality of emotion in moral thinking have prompted
renewed interest in sentimentalist ethics.”

In the Kantian conception of moral agency, it suffices for AI to have reason
in order to be a moral agent; in the Humean conception of moral agency, AI, if
it is to be a moral agent, must have emotion such as empathy and sympathy.
Put another way, in the Kantian conception, morality presupposes reason; in the
Humean conception, it presupposes emotion. We call the Kantian and Humean
concepts of morality rational morality and emotional morality, respectively; in
the context of moral philosophy, the Kantian and Humean views are generally
referred to as moral rationalism and moral sentimentalism. As to the opposition
between rationalism and sentimentalism, Hume [9] argues as follows:

There has been a controversy started of late, much better worth examina-
tion, concerning the general foundation of Morals; whether they be derived
from Reason, or from Sentiment; whether we attain the knowledge of them
by a chain of argument and induction, or by an immediate feeling and finer
internal sense; whether, like all sound judgement of truth and falsehood,
they should be the same to every rational intelligent being; or whether,
like the perception of beauty and deformity, they be founded entirely on
the particular fabric and constitution of the human species.

In the following we discuss the possibilities of Moral AI, namely AI with moral
agency, and of Responsible AI, namely AI with moral responsibility (in addition
to moral agency), on the basis of these moral philosophies.

2.2 The Possibility of (Rational) Moral AI: The Ethical Turing Test
and Weak Versus Strong Moral AI

AI, by definition, is more or less intelligent, and thus arguably has some reason,
which could be trained to make moral judgements. Yet in the Humean con-
ception, this does not really suffice for the status of moral agency, and moral
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judgements must be rooted in emotion such as empathy and sympathy, with-
out which they are vacuous, inadequate, or merely ‘artificial’ moral judgements,
rather than genuine ones. Here we focus upon the rational aspect of Moral AI
first, and then address the sentimental aspect separately in the next subsection.

From a technical point of view, the methods of Symbolic AI (i.e., AI based
upon symbolic representation and logical reasoning) would allow us to make
AI follow rational moral principles in a top-down manner; and the methods of
Statistical AI (AI based upon statistical machine learning) would even allow
us to make AI gradually learn what is morally good and what is morally bad
on the basis of empirical data about human moral judgements (and behaviours)
[14,16,22,25,26,28,29]. The latter approach faces challenges on how to overcome
machine biases, i.e., how to avoid learning biases exisiting in human practice. In
a recent Science article, for example, Caliskan et al. [1] have confirmed this in the
context of natural language processing: “Semantics derived automatically from
language corpora contain human-like biases.” Yet the statistical approach could
be combined with the symbolic approach to remedy this problem, so that sta-
tistically learned empirical biases are rectified via logically formulated, rational
moral principles [13,15,17,18,20,24,27].

In light of these, it would not be too difficult to have AI able to simulate
human moral judgements (or morally good human judgements). Morality, how-
ever, is not just about one’s judgements, but also about one’s deeds. The Ethical
Turing Test (i.e., the Turing Test for Morality), therefore, must be concerned
with deeds as well as judgements, whilst the Original Turing Test was only con-
cerned with judgements or linguistic responses. Even so, it would still be possible
to simulate deeds as well as judgements; anything observable can in principle be
simulated. Yet a question still arises: Is simulated morality genuine morality?

It is not that obvious whether AI passing the Ethical Turing Test is genuinely
ethical, just as it has been debated whether AI passing the Original Turing Test
is genuinely intelligent, thinking, or has an understanding of what is going on
in the world. The Chinese Room Argument [2] is a philosopher’s counter to the
(Original) Turing Test, suggesting that (computationally) simulated intelligence
or imitated intelligence is not intelligence. Searle [32] indeed asserts, “Instanti-
ating a computer program is never by itself a sufficient condition of intentional-
ity.” Searle [33] puts a strong emphasis on the intentionality of the mind, which
concerns the “directedness, aboutness, or reference” of thinking, according to
Siewart [35], and the behavioural simulation of intelligence, even if it passes the
(Original) Turing Test, does not necessarily yield intentionality. We then have
to differentiate between behavioural intelligence and intentional intelligence, and
just likewise, between behavioural morality and intentional morality.

Imperfect simulations of morality, moral judgements, or moral behaviours,
have already been made possible to certain degrees, and we could assume that
even the perfect simulation is achieved as an ideal limit of imperfect approxi-
mations. Even so, that is still behavioural morality. Intentionality concerns the
internal content of thinking whereas simulation only concerns the externally
observable behaviour of it. We do not yet know how to reconstruct the inter-
nal content of thinking beyond the externally observable behaviour (and how to
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verify the existence of it). Even if behaviourally moral AI is possible, intention-
ally moral AI may not be possible. Searle would indeed argue that intentionally
moral AI is impossible, presumably by means of the Moral Chinese Room Argu-
ment (or the Moral Room Argument), which makes an agent lacking any kind
of morality look like being moral in terms of its behaviour (it could even make
an immoral person look like moral, if the person follows the Moral Book in
the room, an analogue of the Chinese Book/Dictionary in the original thought
experiment).

These considerations lead us to the distinction between Weak and Strong
Moral AI (Weak and Strong MAI, for short) which is analogous to the distinc-
tion between Weak and Strong AI; Weak MAI only has behavioural morality
whilst Strong MAI has intentional morality (and any other intrinsic features of
morality). Weak AI is merely a tool to solve tasks, as Searle [32] argues:

According to weak AI, the principal value of the computer in the study of
the mind is that it gives us a very powerful tool. For example, it enables us
to formulate and test hypotheses in a more rigorous and precise fashion.

Strong AI, by contrast, actually embodies a genuine mind with internal under-
standing and cognitive states, as Searle [32] argues as follows:

But according to strong AI, the computer is not merely a tool in the study
of the mind; rather, the appropriately programmed computer really is a
mind, in the sense that computers given the right programs can be literally
said to understand and have other cognitive states.

Whilst the Chinese Room concerns linguistic understanding, the moral version
of it concerns moral understanding, telling that even the complete, behavioural
simulation of morality does not necessarily give moral understanding, which
Strong MAI is required to have.

Just as there is no realistic evidence that Strong AI is possible, there is no
convincing evidence that Strong MAI is possible, either. Yet if simulation suffices
for moral agency, Weak MAI does have moral agency. At the same time, moral
agency can be a matter of our perceptions; if we regard AI as a moral agent, AI
practically functions as a moral agent in our society. That is to say, moral agency,
in a practical sense, can be socially constructed by us humans, i.e., members of
the society. If AI makes moral judgements and behaves morally, we may well
regard it as a moral agent; from a practical point of view, moral agency could
be such a social construct. Weak AI, then, would suffice for the social status of
moral agency. This may be called a social constructivist view of moral agency.

2.3 The Possibility of Emotional Moral AI

Morality in the Humean conception requires sentiments such as empathy and
sympathy. To be Humean Moral AI, AI must have sentiments, which gives an
even higher hurdle for AI; how could AI have sentiments as humans have? To
address this question, it would be necessary to differentiate between behavioural
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sentiments and intentional sentiments, which would lead to a distinction between
Weak Humean Moral AI and Strong Humean Moral AI, but here we don’t com-
plicate the terminology any more, and instead refer to Strawson’s conception of
morality, which arguably allows some possibility for Humean Moral AI. Talbert
[38] characterises Strawson’s moral philosophy in the following manner:

Strawson focuses directly on the emotions — the reactive attitudes — that
play a fundamental role in our practices of holding one another responsible.
Strawson’s suggestion is that attending to the logic of these emotional
responses yields an account of what it is to be open to praise and blame
that need not invoke the incompatibilist’s conception of free will. Indeed,
Strawson’s view has been interpreted as suggesting that no metaphysical
facts beyond our praising and blaming practices are needed to ground
these practices.

Let us focus upon the notion of attitudes in Strawson’s moral philosophy, for
sentiments manifest as attitudes, which are what socially matters in real-world
practice. Certain attitudes are empirical equivalents to certain sentiments, which
per se we cannot really observe. Strawson [37] emphasises the “very great impor-
tance that we attach to the attitudes” himself. (Hume was a moral philosopher
within the tradition of British empiricism, and thus he would agree with the
empiricist conception of moral sentiments.) Attitudes can in principle be sim-
ulated (although complex context dependency in human attitudes has to be
modelled in a suitable manner). So without actually having Emotional AI, we
can have Humean (or rather Strawsonian) Moral AI based upon the conception
of morality as rooted in sentiments, whose metaphysical commitment can be
reduced in terms of reactive attitudes, which are entirely physically observable.

3 Moral Responsibility: Can AI be Morally Responsible
for Its Actions and Their Consequences?

Here we discuss whether AI can be morally responsible for its actions and their
consequences or not. According to Noorman [31]:

Moral responsibility is about human action and its intentions and conse-
quences [...]

Both intentions and consequences do matter in the attribution of moral respon-
sibility. If someone did something harmful, and yet if the person did not intend
to do so, the person’s responsibility for that action may be reduced; this is legally
the case in most countries. In case the person had no choice but to do so, no
responsibility may be attributed to the person. There is a dual of this as follows.
If someone intended to do something harmful, and yet if that did not lead to any
substantial consequence (e.g., the person just failed to do so), then the person’s
responsibility or severity of punishment for that action may be reduced.

What if, however, the person is an AI agent rather than a human agent?
What does it mean that AI did or did not intend to do something? Does AI
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have any choice to do anything in the first place if it is anyway programmed to
behave in a certain manner? Here again we have to differentiate between Weak
and Strong MAI (i.e., Moral AI) as we did in the last section. Weak MAI does
not have any internal intention. We could, then, simply argue that where there
is no intention, there is no responsibility. Yet human agents do not completely
escape from their responsibilities even when they did not directly intend to do
harm. So regardless of AI’s capacity of intention, arguably, AI agents must take
responsibilities for their actions. But what if AI really had no choice but to do
harm because they are programmed and thus forced to do so by humans? This is
a subtler question than it may seem at first sight, and at the same time, crucial
for the possibility of Responsible AI (i.e., AI with Moral Responsibility). We
shall discuss more on this below.

3.1 The Possibility of (Morally) Responsible AI

Concerning moral responsibility, Noorman [31] argues as follows:

Moral responsibility is generally attributed to moral agents and, at least in
Western philosophical traditions, moral agency has been a concept exclu-
sively reserved for human beings.

In the last section we have discussed the possibility of artificial moral agency.
Moral agency, in general, does not necessarily entail moral responsibility, and yet
there are different possibilities for AI to have moral responsibility. In order to
explicate them, we have to clarify preconditions for moral responsibility. Noor-
man [31] argues as follows:

The freedom to act is probably the most important condition for attribut-
ing moral responsibility and also one of the most contested. We tend to
excuse people from moral blame if they had no other choice but to act in
the way that they did. We typically do not hold people responsible if they
were coerced or forced to take particular actions.

Does AI have the freedom to act? It would be possible, at least, to make AI look
like having the freedom to act. We humans do look like having the freedom to
act, but the truth is not clear at all, since physical reality is generally considered
deterministic at the macroscopic level (i.e., there is no indeterminacy in macro-
scopic physical theories such as general relativity theory; even quantum theory
allows for deterministic interpretations such as Bohm’s). So humans are judged
to have the freedom to act just because they phenomenally look like having it.
Why does the same not apply to AI agents? We could apply the same principle
to AI as well. Then, what truly matters in the freedom to act in the context of
moral responsibility is the possibility of the phenomenal freedom to act, rather
than that of the metaphysical freedom to act. Even if the world is completely
deterministic, there can be the phenomenal freedom to act, and moral responsi-
bility is arguably grounded upon the phenomenal freedom. This is related to the
issue of free will in general. Let us recall the following account of Talbert [38]:
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Strawson focuses directly on the emotions — the reactive attitudes — that
play a fundamental role in our practices of holding one another responsible.
Strawson’s suggestion is that attending to the logic of these emotional
responses yields an account of what it is to be open to praise and blame
that need not invoke the incompatibilist’s conception of free will. Indeed,
Strawson’s view has been interpreted as suggesting that no metaphysical
facts beyond our praising and blaming practices are needed to ground
these practices.

Strawson regards the phenomenal practices of praising and blaming as grounding
moral responsibility, and there is no need to appeal to metaphysical free will
to do so. From the Strawsonian point of view, AI has moral responsibility if
it allows for the aforementioned reactive attitudes or phenomenal practices of
praising and blaming, which is quite a light requirement to satisfy. Emotions
in the Strawsonian sense have no metaphysical implications, grounded upon the
phenomenal practices of praising and blaming. This may be called a phenomenal
freedom account of moral responsibility, which applies to AI as well as humans.

It is possible to argue that AI is not morally responsible because it is pro-
grammed by humans and so does not have the freedom to act. The programmed
nature of AI nevertheless does not cause any genuine problem in the Strawsonian
phenomenal account of moral responsibility. If AI is programmed to phenome-
nally look like having the freedom to act, there is no more requirement for the
attribution of moral responsibility. Another argument is available to clarify this
point. Humans may be programmed as well as AI, even if the programming is
implemented biologically rather than electronically. It is conceivable, for exam-
ple, that some humans may be biologically programmed to show morally bad
behaviour (cf. the controversial XYY syndrome hypothesis [6]). Genes may be
the codes that program the nature and fate of humans. We are still considered
to be morally responsible for our actions, and just likewise, AI may be regarded
as morally responsible for its actions, even if it is completely programmed and
hard coded to show certain (immoral) behaviours.

Noorman [31] discusses Dennett’s related idea as follows:

Dennett, for example, suggests that holding a computer morally responsi-
ble is possible if it concerned a higher-order intentional computer system
(1997). An intentional system, according to him, is one that can be pre-
dicted and explained by attributing beliefs and desires to it, as well as
rationality. In other words, its behavior can be described by assuming the
systems has mental states and that it acts according what it thinks it ought
to do, given its beliefs and desires. Many computers today, according to
Dennett, are already intentional systems, but they lack the higher-order
ability to reflect on and reason about their mental states. They do not have
beliefs about their beliefs or thoughts about desires. Dennett suggests that
the fictional HAL 9000 that featured in the movie 2001: A Space Odyssey
would qualify as a higher-order intentional system that can be held morally
responsible. Although current advances in AI might not lead to HAL, he
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does see the development of computers systems with higher-order inten-
tionality as a real possibility.

A crucial question is whether the attribution of beliefs and desires to the com-
puter system is of metaphysical nature or of phenomenal nature. Dennett is
known to be a physicalist, and thus would not have any strong metaphysical
commitment. If beliefs and desires are only required to exist phenomenally rather
than metaphysically, there is arguably no fundamental problem in attributing
moral responsibility to artificial intelligence systems.

Reactive attitudes have a Humean origin as Williams [40] explains:

Hume himself stressed our tendency to feel sympathy for others and our
tendency to approve of actions that lead to social benefits (and to disap-
prove of those contrary to the social good). Another important class of
feelings concern our tendencies to feel shame or guilt, or more broadly, to
be concerned with how others see our actions and character. A Humean
analysis of responsibility will investigate how these emotions lead us to be
responsive to one another, in ways that support moral conduct and pro-
vide social penalties for immoral conduct. That is, its emphasis is less on
people’s evaluation of themselves and more on how people judge and influ-
ence one another. Russell (1995) carefully develops Hume’s own account.
In twentieth century philosophy, broadly Humean approaches were given
a new lease of life by Peter Strawson’s “Freedom and Resentment” (1962).
This classic essay underlined the role of “reactive sentiments” or “reactive
attitudes” – that is, emotional responses such as resentment or shame – in
practices of responsibility.

If moral responsibility is grounded upon reactive attitudes as in the Hume-
Strawson’s account of responsibility, AI may well have them, and thus be morally
responsible. It should be noted that sentiments such as sympathy for others are,
in the present context, practically equated with attitudes, and so they can be
understood phenomenally rather than metaphysically.

4 Concluding Remarks

In this paper we have elucidated the possibilities of moral agency and moral
responsibility in AI. There are both descriptive and normative dimensions of
these issues; the possibilities of them obviously hinge upon what sorts of AI
we will create in future technosociety. If we implement the strongest possible
regulation of AI technology, there will be no such AI as with moral agency or
responsibility. What type of AI systems will be developed in the future is really
a matter of our decision. If we create superintelligence without any restriction of
its power, it would become impossible to punish it even when it is appropriate
to do so, and the AI or AGI civilisation would really be able to replace the
human civilisation, as discussed in the technological singularity scenario. There
are however different levels of post-humanity, and up to some points, AI robots
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replacing humans, e.g. for hard manual labour, can be considered beneficial for
humanity, and yet beyond those points, it will turn harmful. It would, therefore,
be one of the central challenges in AI ethics (or AGI ethics) to identity where
exactly those points are, which is not so obvious and yet to be explored further.
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The Piagetian Modeler
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Abstract. A multi-agent cognitive system is explained wherein each agent
functions as an independent knowledge manipulation mechanism. Collectively
the mechanisms observe the environment via connected devices, coordinate
inferences, reflect upon and modify the system’s behavior, and consolidate the
memory network comprised of neuro-symbolic elements. The theories under-
lying the modeler are discussed, along with the modeler’s actual and expected
developmental trajectories.

Keywords: Piagetian Modeler � Cognitive architecture � Neuro-symbolic �
Neural propositions � Intelligent mechanisms � Equilibration

1 Introduction

The goal of artificial general intelligence is to build systems which match human level
abilities in reasoning and decision making. Human level performance has already been
achieved and surpassed in certain narrow domains, but has not yet been fully realized
across a broad range of domains. Since Laird, Newell, and Rosenbloom built the
SOAR cognitive architecture [1], cognitive architectures have proven to be an
important organizing tool in the construction of complex computer software systems.

In the recent past, Paul Rosenbloom [2] has noted that there are two approaches to
building cognitive architectures: uniformity first and diversity first. Uniformity first
approaches seek to build architectures comprised of homogenous elements and few
algorithms. The uniformity first approach is generally characterized by neural network
approaches to artificial intelligence, wherein an algorithm acts upon uniform network
node elements to perform classification or other tasks. The diversity first approach
seeks to build architectures comprised of heterogenous elements and many algorithms.
The diversity first approach is generally characterized by multi-agent systems acting
upon a shared environment or shared knowledge store. Since neither approach has as of
today yielded any system objectively recognized as generally intelligent, it seems at
this point that both approaches are still equally viable.

The Piagetian Modeler [3, 6–8, 10] is a cognitive architecture comprised of mul-
tiple heterogenous elements, called mechanisms, which manipulate a knowledge base
and communicate with external devices. The Modeler is in the diversity first cognitive
architecture paradigm. Key to the architecture are the mechanisms (Table 5) which are
grouped into four categories. Observation mechanisms communicate with devices
ensconced in the real (or a virtual) world. These mechanisms assert observables to the
knowledge base. Coordination mechanisms perform simple and complex associations,
belief propagation, planning, and reasoning in order to add inferences to the knowledge
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base. Reflection mechanisms perform motivation, simulation, regulation, compensa-
tion, discovery, exploration, imitation, and play in order to affect the behavior of the
Modeler. Consolidation mechanisms perform automaticity, knowledge compression,
and forgetting.

2 Theory

2.1 Processes

Jean Piaget believed that the processes of concept formation, repeated action, regula-
tion, compensation, imitation, and play occur simultaneously within the individual and
spurs mental development through activities which become progressively complex as a
person progresses through sensorimotor, egocentric, and operational stages of human
development [11–14]. (See Table 4 for a more comprehensive list of processes)
(Fig. 1).

Piaget theorized human development as the building of cognitive structures.
Humans are endowed with primitive skills such as grasping, gazing, and listening,
which integrate into combined skills over time. According to his theory of develop-
ment, people form the concepts of space, time, causality, and objects through repetition

Fig. 1. Piagetian development.
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of actions. Initially infant actions are spontaneous, and they soon become deliberate
and experimental as infants seek to replicate phenomena in their environment such as
noises they’ve heard, images they’ve seen, or sensations they’ve felt. Repetition of
action creates physical object displacements, which gradually firms the child’s notion
of objects, and leads to the creation of representations, and to the externalization of the
self as an object in the world, and eventually, to the formation of the concept of others
as objects (viz., theory of mind).

At the same time, the world is assimilated into the child’s understanding (i.e.,
mental model) by the child’s playful interaction with the world, and the child’s
understanding of how the world works is adjusted by her imitation of things in the
world. Since imitation occurs in at least two modalities simultaneously, a recognitive
modality and a reproductive modality (e.g., hearing and phonation) the child’s models
are thereby integrated and extended in a multi-modal manner. The combination of play
and imitation serve to both assimilate features of the world into the child’s under-
standing, and, conform the child’s understanding to the world.

As the child interacts with the world, she encounters contradictions, which are
prediction failures. Contradictions are partial adaptations which motivate the child to
search for “improved coherent knowledge.” Correcting contradictions creates distur-
bances: obstacles (external impediments to an objective), knowledge gaps, and dis-
tinctions (new ideas or relationships). These disturbances are resolved through
corrective or reinforcing modifications to the knowledge, called “regulations.”

The mental categories that the child constructs are partial, and do not account for
many of the features of the world. Using partial categories often leads to misclassifying
things in the world because important features are unknown. Compensation is the
process of adjusting categories so that they correctly represent entities in the world and
their predictable behaviors. Alpha compensations deform new knowledge entities to fit
into existing categories by ignoring salient features. For example, a child may mis-
classify an oval as a circle because both are round, and she may deliberately ignore the
elongation of the oval to make them be the same. Ignoring features of an entity is called
“centration.” Beta compensations form new categories by considering features formerly
ignored: for example, when a child creates an oval category in her mind to distinguish
ovals from circles. Gamma compensations allow a person to recognize two or more
categories as equivalent. for example, when a person says “X is tantamount to Y.”

2.2 Equilibration

Piaget posited that when an individual is completely in harmony with her environment,
there is nothing to learn. It is only when disturbances arise that learning can ensue [16,
18]. Therefore, Piaget believed the processes underlying human development (concept
formation, repeated action, regulation, compensation, imitation, and play) continuously
worked together performing assimilative and accommodative modifications to build
mental structures in the mind [14]. For Piaget, this construction is continuous and
lifelong. Only periodically is equilibrium (or quiescence) momentarily achieved—a
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state when no modifications need to be made. The cognitive system quickly resumes its
work when a prediction failure or some other disturbance necessarily throws the
cognitive system back into another round of “equilibration.”

An equilibration cycle as described by Piaget involves the cognitive system per-
ceiving observables in the world through the senses. The observables may be extero-
cepts (sensations of the outside world such as smells, tastes, sights, or sounds),
interocepts (internal bodily sensations), or propriocepts (knowledge of what the body is
doing). Additional inferences, called coordinations, are also activated by the obser-
vations. The opportunity to create more coordinations always exists as new experiences
can be spatially and temporally pooled to create new internal situations. Logical and
physical contradictions may be detected [13, 15, 17, 19]. Logical contradictions are
often category errors while physical contradictions are usually failed predictions about
the environment. These contradictions need to be mitigated through various internal
cognitive modifications. In addition to the partially mitigated contradictions, knowl-
edge gaps, external obstacles, and new environmental or mental elements may be
detected as well. These are all disturbing to the individual. To resolve these distur-
bances, the individual will compensate and regulate (make modifications to) the dis-
turbances. Piaget did not go into detail about the specific modifications that need to be
made, and therefore left open a wide architectural question (Fig. 2 and Table 1).

Fig. 2. An equilibration cycle.
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3 Application

3.1 Architecture

The Piagetian Modeler cognitive architecture embraces Piaget’s theory of human
development. It is comprised of four interacting processing areas: observation, which
communicates with external devices and stores observables in a shared memory;
coordination, which adds inferences to memory; reflection, which alters the behavior of
the system; and consolidation, which compacts the memory. Each processing area is in
turn comprised of mechanisms, agent processes which perform specific tasks. The
mechanisms work together in overlapping functional groups to synergistically realize
design patterns developed by Miller [4, 5] (Table 2).

3.2 System

The first cognitive system instantiated from the architecture is named GIL (an acronym
for Generally Intelligent Learner). The GIL system is written in The Premise Pro-
gramming Language [9] which was invented by Miller and Linker in 2013. The lan-
guage is a domain specific language (DSL), akin to Lisp, that facilitates multi-tasking,
data persistence, and messaging. Using the language, parallel mechanisms were crafted
that act upon a shared knowledge base and communicate with a NAO robot.

At this time the GIL system can only look, phonate, hear, and move its limbs and
head. Multimodal coordination has not yet been observed in GIL’s internal structures
nor its exhibited behaviour (Fig. 3). The system is expected, however, to pass through
many human developmental milestones (see Fig. 4 and Table 3) but most likely in an

Table 1. Equilibration cycle components.

Compensate
disturbances

Attempt alpha, beta, and gamma compensations on the disturbances

Regulate
contradictions

Create modifications to correct or reinforce contradictions

Disturbances A repository of problems to be resolved
Regulate
disturbances

Create modifications to correct or reinforce the disturbances

Contradictions A repository of prediction or other failures
Detect disturbances Identify obstacles, gaps, and distinctions to be reconciled
Detect
contradictions

Find defective identity, incomplete compensation, and unnecessary
inference failures

Create
coordinations

Create new associations among observables and other inferences

Activate
coordinations

Propagate activation from observables to associated inferences

Perceive
observables

Receive exteroceptive, interoceptive, and proprioceptive stimuli

The Piagetian Modeler 155



Fig. 3. The piagetian modeler architecture (left), and GIL’s NAO robot (right).

Table 2. Cognitive system design patterns.

Area Pattern Purpose

Observation Observation Storing somatosensory percepts and features in memory
Mind-Body Getting exterocepts, interocepts, proprioceps, & sending

actuations
Reminding Retrieving cases, situations, and episodes from memory

Coordination Coordination Doing activation, association, belief propagation,
planning, reasoning, clustering, etc

Reaction Reflexive responses to situations via reliable actions
Deliberation Deliberate responses to situations via useful actions

Reflection Motivation Using device capabilities to satisfy endowed homeostatic
needs

Simulation Using daydreaming to play out imagined or recalled
scenarios

Meta-Control Monitor mechanisms and modify their configuration as
needed

Regulation Modifying actions based on success or failure
Compensation Modifying means goals based on success or failure
Coping Modifying original goals based on failure
Exploration Choosing actions to determine and elaborate their effects
Discovery Hypothesis formation and testing
Imitation Model construction, recognition, and reproduction
Play Generation of ludic goals

Consolidation Automaticity Automating repeating action chains through abstraction
Forgetting Removing old and useless memory elements
Compression Creating shared structures
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order and at a pace different from humans. As the system ages, its development will be
assessed using the Bayley Scales of Infant Development, in addition to Piagetian
Developmental Milestones. When the system displays sufficient abilities, additional
assessments using the CHC Model of General Intelligence will also be performed.

4 Conclusions

To date the Modeler has not achieved the expected human developmental milestones
outlined by Jean Piaget, but we remain confident this is a sound theoretical path, and
our work continues, despite the lack of initial progress. The value in this paper resides
in the exposition of Piagetian theory as it applies to cognitive architectures. Piagetian
theory is not very well understood from a systems design approach. The GIL system is
continually monitored.

Appendix

Table 3. Piagetian developmental milestone abbreviations.

Milestone Description Milestone Description

Reflexes Pure Reflexes ROFAVF Reconstructing Objects
from a Visible Fraction

Sucking Sucking E&OoC Externalization &
Objectification of
Causality

Looking Looking IoKMNVttC Imitation of Known
Movements Not Visible
to the Child

Phonation Phonation IoNA&VM Imitation of New
Auditory and Visual
Models

Hearing Hearing SfVOUVD Searching for Vanished
Objects using Visible
Displacements

FPDGWM Forming Practical
Displacement Groups within
Modalities

FOG Forming Objective
Groups

SfOWM Searching for Objects within
Modalities

DNMvE Discovering New Means
via Experimentation

PCR Primary Circular Reactions
(Spontaneous Repetition)

INMvMC Inventing New Means
via Mental Combinations

(continued)
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Table 3. (continued)

Milestone Description Milestone Description

EH Elementary Habits O&SoC Objectfication and
spatialization of
Causality

SI Sporadic Imitation SIoANM Systematic Imitation of
All New Models

Prehension Prehension FV First Verbalizations
SCR Secondary Circular

Reactions (Deliberate
Repetition)

RID Representing Invisible
Displacements

Recognition Recognition FRG Forming Representative
Groups

MPC Magico-Phenomenalistic
Causality

RC Representative Causality

AStNS Applying Skills to New
Situations

PA Primitive Artificialism

CPGAM Coordinating Practical
Groups across Modalities

DI Deferred Imitation

IP Interrupted Prehension Preconcepts Preconcepts
FSG Forming Subjective Groups MP Magico-Phenomenism
SfDOAM Searching for Displaced

Objects across Modalities
FR First Reasonings

SIoKMUKM Systematic Imitation of
known models using known
movements

DA Diffused Artificialsm

SfVOw/oUVD Searching for Vanished
Objects without using
Visible Displacements

Animism Animism

RS Recognizing Signs LA Ludic Artificialsm
ENO Exploring New Objects MA Mythical Artificialsm
TCR Tertiary Circular Reactions

(Experimental Repetition)
CoV Coordination of

Viewpoints
OoPiDP Ordering of Planes in Depth

Perception
Intution Intuitive Notions

DOfs Dissociating Objects from
Supports
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Table 4. Piagetian processes.
Re

gu
la

to
ry

Action Reinforcement Generalizes the situations to which an action applies.

Action Correction Adds negations to prevent execution and refine applicability.

Correspondence Identification Creates mappings between actions, situations, and results.

Correspondence Generalization Forms hierarchical groupings of correspondences.

Seriation Observables can be sequenced based on time.

Classification Observables are put in hierarchical categories based on time.

Habituation Integrates new actions with reflexes.

Conditioning Splits schemes into cue scheme and reward scheme. 

Intermodal Association Joins concurrent actions involving different modalities.

Planning (aka, Conscious regulation) Selecting means to achieve goals. 

Cycle Association Identifies common subsystems to join action cycles.

Distinction Creation Identifies elements excluded from subsystems. 

Co
m

pe
ns

at
or

y

Action Inversion Adds actions that completely negates existing actions. (Reverses actions)

Action Reciprocation Adds new actions from the current state to the goal state by negating 
differences between the current and initial states. (Creates detours)

Loop Reinforcement Modifies an action so it repeats.

Objective Appraisal Maintains progress to a goal by reinstating a failed goal. 

Anomaly Distortion Use only most prominent aspects to categorize anomalies.

Anomaly Rejection Ignores anomalous schemes by eliminating their disturbances.

Anomaly Incorporation Converts an anomaly into an acceptable variation.

Variation Prediction Predicts a variation.

Cancel Prediction Applies inverse transformations to variation predictions.

Reverse Prediction Applies reciprocal transformations to variation predictions.

Symmetric Prediction Creates direct and inverse predictions using negations. 

Reflective Abstraction Groups elements into a novel hierarchical unit.

Cue Creation Constructs cue elements to signal impending events.

Eq
ui

lib
ra

to
ry

Action-Object Equilibration Creating actions and operations using new causal and logical relationships to 
incorporate resistances (e.g., failures, mismatches, problems). 

Collateral Equilibration Integrating disjoint collateral subsystems.

Hierarchical Equilibration Integrating disjoint hierarchical subsystems.

O
th

er

Practice Trying skills spontaneously and repeatedly without objectives.

Decentration Incorporating ignored features into a situation. 

Recognition Selecting or modifying actions to match a model. 

Reproduction Performing analogous actions to mimic a model.

Image Creation Creating subsystems that summarize an imitation.

Signifier Creation Using indexes (indicators) as signifiers for symbolisms.

Representative Imitation Performing analogous actions to mimic an image.

Reproductive Imagination Reproducing elements of the world using symbolic combinations.

Fortuitous Combinations Actions are accidentally combined in novel ways.

Intentional Combinations Actions are combined to achieve a ludic goal.

Symbolization Reproduction of a skill outside its context and without its objective.

Symbolization Projection Projecting symbolizations onto new objects or people.

Imitated Skill Projection Projecting prior imitated skills onto new objects or people. 

Symbolic Combinations Reproducing real life with imagined beings or objects.

Compensatory Combinations Correcting reality with imagination. 

Cathartic Combinations Neutralize fear or distress through play. 

Liquidating Combinations Replays unpleasant episodes by dissociating unpleasant aspects. 

Anticipatory Combinations Anticipating the consequences of rejecting a command or advice.

Creative Imagination Constructing concepts through both recall and current active context. 

Constructional Games Reproduce a symbolized model in detail.
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Table 5. Piagetian modeler mechanisms.
O

bs
er

ve
rs

Executor Schedules action trials; sends actuation attempts to devices.

Perceiver Receives observables from devices. 

Co
or

di
na

to
rs

Activators Makes observables and coordinations contextually relevant. 

Associators Correspondence generalization; classification; seriation;  intermodal association; reflective 
abstraction; distinction creation; cycle association; cue creation; image creation; signifier creation;

Chunkers Correspondence generalization;  classification; 

Reasoners Correspondence identification; anomaly distortion; anomaly incorporation; decentration;  anoma-
ly rejection; anticipatory combinations; 

Propagators Belief modification;

Solvers Planning; habituation; intentional combinations; 

Reactor Anomaly rejection;

Deliberator Anomaly rejection;

Inhibitor Inhibits objectives that lead to undesirable outcomes; anomaly rejection;

Terminator Sets objective resolution to achieved or expired. 

Re
fle

ct
or

s

Ameliorator Creates objectives to ameliorate urges. 

Supervisor Toggles daydreaming;

Simulator Starts or resumes daydreaming;

Correlators Match results with trials . 

Regulators Action reinforcement; action correction; conditioning;  action-object equilibration; collateral 
equilibration; hierarchical equilibration; fortuitous combinations; symbolization projection; 
imitated skill projection; 

Compensators Action inversion; action reciprocation; variation prediction; cancel prediction; reverse prediction; 
symmetric prediction; compensatory combinations; 

Explorers Tries actions to see the effects. 

Practicer Practice; symbolization; 

Symbolizer symbolization; 

Perseverator Loop reinforcement;

Recognizers Recognition;

Reproducers Reproduction; representative imitation; reproductive imagination; symbolic combinations; 
creative imagination; constructional games;

Ascriber Formulates hypotheses;

Designer Creates experiments to test hypotheses.

Experimenter Selects experiments to attempt.

Predictor Updates predictions. 

Evaluator Generates appraisals; objective appraisal; cathartic combinations;

Aggregator Converts appraisals to emotions; 

Attentor Selects coping responses for appraisals; cathartic combinations; liquidating combinations;

Co
ns

ol
id

at
or

s

Amneator Reclaims unused and useless propositions;

Automator Compresses hypotheses and actions; 

Compressor Identifies and eliminates repeating structure;
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Epistolution: How a Systems View of Biology
May Explain General Intelligence

C. S. Munford(&)

1610 Robert E. Lee Blvd., New Orleans, LA 70122, USA

Abstract. The genes-first view of life provides a theory of traits interacting
with ecological niches, and of genes as determinants of these traits, but fails to
link the two with a logic of physiology. How are genes selected for expression?
It is on this level of physiology that intelligence appears. In this paper, I propose
a formula by which epistemology, the sources of knowledge, and evolution
might be united—an “epistolution” that offers in principle a testable synthesis to
predict organismic behavior. Perhaps organisms and their microbiota, through
allostasis, mediate between their ecological niches and their DNA. Perhaps they
form networks nested within networks that are sensitive enough to synchronize
with their niches using the formula: if used, then reinforce; else mutate
stochastically.

Keywords: Epistolution � Downward causation � Sleep � Synchrony � Niche �
Allostasis � Artificial general intelligence

1 Downward Causation

In the mid-twentieth century, evolutionary biology arrived at the DNA-centered view
of life known as Neo-Darwinism. The theory of evolution since Darwin’s time had
described organisms as bundles of traits and noticed that the traits can be selected by
differing rates of survival and reproduction inside an ecological niche. After the
mechanisms of DNA inheritance were worked out, these traits were conceptually
linked back to genes, that is, to sequences of DNA that code for specific proteins. But
this linkage, although rational, still skips a level. We still have not worked out the logic
of the middle level, physiology. How do we get from a protein to a trait? Even more
mysteriously, how does the cell determine which genes to express, and when? The
selection of which DNA to use to solve a cellular problem appears almost purposive;
the cell “knows” as if by magic. I will argue in this paper that this physiological logic is
in fact where purposiveness resides, that intelligence consists in the sensitivity of all the
parts of a complex system to its larger contextual niche.

This middle level, physiology, is where we can observe general intelligence in
humans who react to their circumstances by building knowledge. The study of the
sources of knowledge is called epistemology. In order to explain life, epistemology
must be linked to evolution without skipping any levels, so that the consequences of
both big situations (niches) and small molecules on the configuration of living bodies
can be predicted. We need a testable synthesis—an epistolution—a logic of physiol-
ogy. Ingesting a new experimental medicine comprises a tiny alteration of the body
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system as a whole, yet the consequences are often quite unknown. Currently, the only
way around this is to conduct randomized controlled trials. Imagine if small, molecule-
level alterations to an airplane’s design required launching thousands of trial airplanes
to determine safety and efficacy. The difference is that we know the logic of the
airplane’s “physiology,” so we can predict the effects of small changes to the complex
system, and we can build airplanes by designing them from scratch. Not so with
organisms—even simple single-cellular life forms operate by principles that baffle us.

A gene has never expressed itself; it requires a cell and a regulatory network. It is
true that DNA sequences are often held in such a way as to make them easier or harder
to express given the architecture of regulatory networks, and expression levels can
often be partially predicted from such positioning [1]. This does not isolate causation
because the regulatory networks are themselves never isolated from their environment,
and that environment also partially predicts gene expression. A good example is the sex
determination of crocodilians through egg temperature [2]. The production level of a
given protein in adjacent cells of the same type can vary by as much as three orders of
magnitude [3]. What makes one cell overexpress the protein and the adjacent one
underexpress it? How do the cells determine the right average level of production?

In order to work together as a coordinated multicellular organism, cells must exert
influence on one another. A typical cell must interact with others in a way that pro-
motes the survival of the organism as a whole and not its destruction from, say, cancer.
But the nature of this causal influence is still murky. The possibilities of gene
expression are nearly endless. If a trait can arise from any number of genes, the number
of ways that the 30,000 or so genes in human cells could be combined to produce traits
amounts to a number near 2 � 1072403 [4, 5]. But the total number of particles in the
universe is estimated at only 3.28 � 1080 [6]. This shows that it is impossible, even in
the long history of life, for evolution to have explored even a tiny fraction of all traits.
Instead, the cell is exercising what a naïve observer would be tempted to call “choice”
in deciding what genes to express.

None of these facts fit the “blueprint” metaphor which has sometimes been used in
biology. If life is an emergent consequence of DNA, why are organisms not system-
atically interpreting their DNA codes one by one, like a carpenter with a blueprint? Or
alternately, why are cells not randomly exploring these possibilities for gene expres-
sion? If a trait can arise from any combination of genes, then there must be some
systematic logic at work that selects combinations of genes. As the math I’ve just
referenced suggests, the possibilities for expression are far too vast to be unguided.

If this logic of gene expression were encoded quite inflexibly in the genes, then
cells couldn’t influence one another at all. If it were encoded in the genes such that it
might be expressed in many different ways given a variety of triggers, then these
triggers would control every functional pattern. I presume that this is the working
assumption of many biologists today. In this case the physiological logic of gene
expression may be a vast field of meta-instructions other than the laws of physics, built
up by the DNA into the structure of its regulatory network. In this case, in order for us
to fully understand the logic of the human body, we would have to map out all the
possible internal states of each epigenetic regulatory network, and then map all the
possible physical conditions faced by each cell that might lead to these internal states.
We would have to do this in all the 35 trillion or so human cells in the body. Bear in
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mind these cells diversify into roughly 200 cell types…skin, blood, neurons, bones,
muscle, and so on, and that they change as they undergo all the phases of growth,
development, and senescence. This is indeed the work of the sciences of genomics,
transcriptomics, proteomics, and metabolomics, but they have so far not produced a
model of the system as a whole. If we miss just a few of these meta-instructions in
building our map, it seems possible that these unaccounted-for codes might throw the
whole model off.

The explosion of complexity does not end there. Research over the past two dec-
ades has revealed that the human body is really a superorganism, composed not only of
human cells but also of many trillions of prokaryotes, viruses, and very small
eukaryotes that may outnumber human cells [7]. This microbiota functions not only as
a digestive organ and regulator of metabolism, but as an integral part of a healthy
immune system, and as a vital component of the cognitive process [8–12]. This
community of nonhuman cells with unique genes is not inherited along with the germ
cell from the parent, but acquired from the environment after birth in a somewhat
haphazard way, resulting in significant differences in microbiota even in identical twins
[13]. Dethlefsen et al. write that “at the species and strain level the microbiota of an
individual can be as unique as a fingerprint [14].” There are internal organelles in
eukaryotic cells with their own genetic material that are inherited from the germ cell,
but the symbiogenesis thesis suggests that these were once separate organisms that
have long ago been incorporated [15]. This may be evidence that this flexible part-
nership with external cells with foreign DNA is not only very ancient indeed, but that it
is nearly ubiquitous among eukaryotes, and is vital to normal function [16].

The existence of a microbiome means trouble for the promise of understanding
physiological function through the genes-first view of life. If it were correct that gene
expression was determined by a meta-program that was encoded in the DNA, then
compatible programs would also be required in the tens of trillions of diverse cells of
the microbiota as well. These microbiota might be expected to contain wildly different
genomes and meta-instructions, yet as a community they would have to instruct
macroconditions that supported the survival of the host. And in order to understand that
host and its survival we would have to map all these microbiotic genes and meta-
instructions just as precisely as the host cell genome and meta-instructions. The fact
that the microbiome of an individual is reorganized by diet, sleep, exercise, and other
variables [17], yet maintains its long-term stability [18], suggests that another level of
logic is present. Organisms spontaneously assemble themselves into functional
ecosystems, as the species-area curve in the biogeography of islands attests [19].

There is one plausible alternative, testable in principle, that might suffice. Unfor-
tunately in order to understand it one has to rearrange most of the philosophical
furniture of Western civilization. This is the idea that ecological niches may structure
the interactions of organisms directly. In order to entertain this hypothesis, we have to
set aside the aversion to downward causation that has accompanied serious biology
since the nineteenth century. I should say that this is not an argument for intelligent
design. This idea is compatible with a materialistic cosmology, and with the empirical
observations that have underpinned Neo-Darwinism. I have no doubt that DNA
evolves by natural selection, and that having the right DNA is vital for life. I am only
suggesting that on the level of physiology, organisms may be sets of interlocking
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networks that are sensitive enough to their niches that they take their instructions from
those niches. Just as the upward logic of Neo-Darwinism requires only mutation and
differential selection, this downward logic may only require a similar basic universal
formula.

2 Finding a Niche

What is a niche, exactly? A niche is a set of orderly physical patterns that allow an
organism to remain intact to live and reproduce. A human can live only in a narrow
band of conditions, in air with sufficient oxygen, at mild temperatures, in regular cycles
of light and dark, with gravity of a certain strength, with fresh water and nutritional
solids, in areas free from large predators, parasites, viruses, storms, and excessive
radiation. All these conditions are vital for our survival and are not ubiquitous in the
universe but highly concentrated in a very delicate area between the sea, land, and sky
of one particular planet. How do we know where a niche is and where it is not? We can
guess, but we do not know precisely, because we cannot see niches directly…the only
niche-detection device ever invented is an organism. There may be many more niches
than there are organisms to fill them. Jakob von Uexküll called it the Umwelt [20].
A niche is a place with a special form of order; a niche is not just anywhere.

How do we stay in this niche and not drift into deadly hazard, drowning in the
bathtub or falling off the balcony? We do this by our actions. It is intuitive for us to see
ourselves as independent intelligent agents in the world we live in. When we reflect on
ourselves, we see a loose part, an “I”, that drives the whole system by our choices,
rather than being driven by it. But if we say that a human, as part of the larger system in
a human niche, acts independently, this description separates what flows from our
minds from what contributed to it. When we attempt to investigate this empirically, we
get caught in an infinite regress trying to find the “I” in the neurons. It's as if we are
asking of a clock, “What part of the clock keeps the time?” We are looking at each
spring and gear, noticing which of them impairs timekeeping most when removed, and
deriving from this a reductive account of where the essential timekeeping function
lives. We describe actions as purposive at the level of the organism, rather than at the
level of brain cells or at the level of the biosphere as a whole. But our body system is is
completely enmeshed in interaction with both the environment and with itself at all
times. The whole clock mechanism keeps the time, of course.

This illusion of agency is reinforced by the fact that there are a tremendous number
of possible ways a human organism could interact with its niche. The environment can
change markedly without impacting the health of the organism, a fact which suggests it
may have little causal influence. But surprisingly, research suggests that many genes
can also be deleted with no harmful effect. For example, 80% of roughly 6000 gene
knockouts in an entire yeast genome were found to be silent under normal conditions
[21]. So there appears to be considerable buffering in either direction. One possible
conclusion we can draw from this is that the causal chain in an organism runs from the
DNA up to the niche and back down again, in a continual loop. This is what the authors
of the Santiago theory of cognition called “a circular form of organization [22].” In this
case the organism could be seen as a process mediating between its genes and its niche.
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Claude Shannon wrote of information that “the important aspect is that it be a
message selected from a set of possible messages” [23]. This could describe the A,G,T,
and C of the nucleobases. Cells may be using genes much as we use memes in the
human niche, as tools drawn from a library of possible templates for solving problems.

3 Niche Synchrony

One well-known natural process that takes chaotic materials and assembles them into
orderly structures is synchrony [24]. This process has proved very difficult to study,
perhaps because mathematical models of the nonlinear phenomena involved are hard to
develop. But nevertheless the phenomenon exists in many forms in Nature, from the
orbits of moons to the chirping of crickets to the formation of crystals. Synchrony
brings chaotic energy and matter into orderly or rhythmic motion. Many metronomes,
placed on a tabletop but set to different rhythms, gradually synchronize [25]. In this
example, it is easy to see that there are only two forms of change that matter, either
changes toward synchrony or away from it (Fig. 1).

The pressure of the metronomes on the left as they swing exert a strong pull on the
metronome on the right, which gradually forces it to accede to their same rhythm. In
this case, and in all cases of synchrony, an object caught in the synchronizing system
only has two ways to change, either away from the system’s rhythm or towards it. The
physical dynamics of synchrony simply make it a bit harder for the object to move out
of synchrony and a bit easier to move into it. This is what gives synchrony its eerie
“drift” that can be so beautiful to observe. The result is the coordination of forces that
seemed disconnected into a seamless dance of elegant fluid motion.

Fig. 1. Positive and negative feedback drives synchronization of connected networks
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Perhaps organisms do much the same. Homeostasis is the process by which
organisms maintain their physiology within certain parameters…salinity, temperature,
pH, and so forth, by interacting with their environment, and allostasis is a term which
recognizes that there is a “drift” to this process. These are the actions that every living
cell carries out to solve its problems by selecting genes for expression. Perhaps we can
think of the allostatic process as a form of intelligent “agency,” keeping the organism
inside its niche. At a basic level, all matter is a network of dynamic energy quanta held
in a certain pattern by physical interactions. This means that everything living, too, is
made of networks. Organic molecules are networks, proteins are networks, organs are
networks, and whole animals are networks. Matter-energy passes in and out of these
networks, but the networks cycle and reconfigure themselves.

If we keep in mind that there are only two cardinal forms of change in a syn-
chronizing system, then it follows that the only thing necessary to produce approximate
synchrony would be some active process in each network that distinguished between
them. If a network is moving toward synchrony it must take some form of reinforce-
ment, and if it is moving away from synchrony it must take discouragement or undergo
degradation or mutation or some kind. What cue would there be when a network is
approaching synchrony? The network would be stimulated or triggered by the niche. It
would be used. If it remained unused, then it may be departing from synchrony over
time.

As a general rule, all structures in the body experience some breakdown or atrophy
if they are both unused and alive for a long period of time. With disuse muscles,
tendons, even organs like the heart and brain become gradually weaker and shrink in
size [26]. Structures that are used vigorously, on the other hand, become stronger. We
can keep ourselves more physically fit through exercise, a fact that is hard to explain
from the perspective of Neo-Darwinism. Likewise, neural pathways that are exercised
become more active, and those that are disused fall into degradation more rapidly. We
forget far more than we remember. The epistolution formula for adjusting the networks
to drive niche synchrony might simply be: If used, then reinforce; else mutate
stochastically. Perhaps organisms have no explicit, inalterable instructions for function
anywhere, any more than the dust particles in the rings of Saturn have special-purpose
algorithms. Instead of algorithms, organisms may have habits influenced by the genetic
tools available to them but structured by the niche.

4 Artificial General Intelligence

One way to experimentally refute the causal theory of Neo-Darwinism would be to
show that lifelike behavior could be produced by a niche without an organism inside it,
and without strictly coded instructions, simply through epistolution. We suspect that
naked DNA alone in a petri dish remains inert forever; it never produces life. But
perhaps niches can produce lifelike activity without cells.

How would we know if an experimental device was interacting with a niche in a
lifelike way? If the niche and the device were created in a computer simulation, the
niche itself would be highly artificial and bear little resemblance to the chaotic con-
ditions of the real world. It would be impossible to tell if the device was really behaving
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as a living cell would, solving problems, or instead in a way that just superficially
resembled problem-solving. How would we determine what comprised real problems
for this simulated device?

In practice the easiest niche to examine empirically may be the niche of the entire
human being, simply because this is the niche of the examiner. Behavior that is lifelike,
if it appeared in a nonhuman or artificial niche, would be hard to recognize as such.
This is because if this conjecture is correct, the key feature of lifelike behavior is not
any particular set of actions but rather the quality of using actions to solve problems
using creativity. This quality could only really be recognized by an observer who was
himself sensitive to the contextual problems of a similar niche. Since the device would
have, in many particulars, slightly different problems than a human no matter how
carefully it was constructed, the evaluation of those solutions by the examiner would
always be a matter of some intuitive judgement. We may recognize intelligence, for
example in an octopus, though we can’t currently say precisely what intelligence is.

The premise that intelligence consists in exquisite sensitivity to and synchrony with
a niche may be supported by the observation that higher intelligence seems to require
organisms to sleep. The function of sleep is no longer considered to be rest, or torpor,
but rather comprehensive repair [27]. Why should maintenance of the networks of
higher animals require a holistic repair cycle in which the animal is prone, unconscious,
and vulnerable for hours at a time? Why can we not repair on-the-go? Evolution should
have surely selected against this dangerous adaptation unless there were a tremendous
benefit involved. Sleep has convergently evolved both in bilaterians like us (fish,
reptiles, mammals) and also in intelligent mollusks, further suggesting that it is
indispensable to intelligence [28, 29]. The primary symptom of sleep loss is cognitive
impairment. Without any sleep at all, cognition eventually becomes impossible.

I propose that sleep may be the cycle within which highly complex multicellular
organisms make a concerted effort to apply the first command of the epistolution
formula to their networks: if used, reinforce. Stochastic mutation can happen in many
ways, including the passive degradation of complex particles at body temperature, but
repair and reinforcement requires coordinated effort. This might explain sleep.

5 Testing Epistolution

If an artificial network could be designed which was a) complex enough to store as
much knowledge as the human body, b) adjustable according to the epistolution for-
mula, and c) sensitive to many of the same stimuli with which a human body interacts,
the device might serve as an empirical test both of Neo-Darwinist causation and of
inductivist epistemology. Inductivism holds that learning occurs by building theories
from observations, but some theorists, such as the physicist David Deutsch, advance
the contrary view of Karl Popper that knowledge is built through conjecture and
refutation [30]. A Popperian view of the body might suggest that our thoughts could be
considered anticipatory hallucinations, punctuated by corrections from our niche.
Expectations are conjectures, in other words, while surprises are refutations. For
example, one might never notice the skin on the outside of one’s left pinky for years
until one day one finds that a glove has a hole in it in just that tiny location. The skin in
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that little patch had been sending sensory signals continually for years, but they only
reached one’s awareness when those signals violated a hallucinatory set of expectations
(Fig. 2).

Advances in hardware and soft-
ware have only recently brought this
test into the range of technical feasi-
bility. In order for a human-like niche
to be engaged, it would be necessary
for the test device to possess the
robotic equivalent of arms and fingers
to handle objects, temperature, vibra-
tion and pressure sensors, and robotic
eyes, ears and larynx. It is our general
body design and sensitivities that
activate the human niche. This pro-
vides the frame of reference within
which our individual problems make
sense to one another as humans,
allowing communication and coordi-
nated problem-solving.

To model a Popperian nervous
system in software, a complex set of
nodes might be linked to sensory
input and to motor output. A flow of
energy moving down a pathway
between nodes could serve both as
anticipation of the patterns of excite-
ment coming from the niche and also
as an impulse to motor action. Since
motor action would cause sensory
input to change, the flows of energy
through the system would be causally

linked to the rhythms of the niche. They would be both expectations and actions, or
“expect-actions.” New motions would be triggered only when surprises occurred,
otherwise patterns of energy would simply repeat.

Rhythms require timing. This may be why every known cell has at least one
internal oscillator, why organ systems have peripheral clocks, why all large organisms
have a coordinating circadian rhythm, and why brain activity manifests as “waves.
These myriad biological rhythms are very sensitive to stimulation such as light, tem-
perature, feeding, exercise, and hypoxia [19]. Each of the test nodes should possess,
like neurons, both a set of adjustable connections to other nodes and an adjustable
endogenous clock that allows the system as a whole to evolve synchrony. Picture the
neural network as complex strings of dominoes that fall in rhythmic patterns but reset
themselves after a few milliseconds. If each domino didn’t have an adjustable clock,
they could not sync with the rhythmic patterns of input emerging from the niche. After
it fires, a neuron has a recovery period during which it cannot fire again [31]. Though

Fig. 2. Expect-actions take on the rhythms of a
niche because they are causally connected.
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imprecise at first, over time this type of network should evolve into a better anticipation
of the stimuli in the niche, simply by mutating away errors and reinforcing successes.
Like heritable genetic evolution, this process would select functional connections and
more accurate rhythms over time, which may comprise creativity.

This form of embodied cognition would not be statistical prediction, Bayesian or
otherwise. Motor interactions would be necessary to incorporate causal knowledge into
the training dataset; statistics is not enough. As the computer scientist Judea Pearl puts
it, experiment is necessary to rise higher on the “ladder of causation,” [32]. A human is
not simply an inductive statistical machine; we expect and act on many things we have
never encountered before, such as our own death, or marriage, or climate change. In
this network, learning would arise from surprises to the hallucinatory expectations
embedded in the pattern of connections and their rhythmic firing. These interactions
may be universally translatable in a way that Bayesian predictive computations are not.
Consider words like “light” and “heavy.” They are metaphorical. As Nietzsche sug-
gested, all our truths may be of this sort [33].

Would this device have motivations? Yes. It would have mismatches between its
hallucinatory expect-actions and the flow of its sensory input, and these would drive
new interactions to develop. These may be the same sort of contextual problems that
we experience in trying to understand our world. The evolution of new interactions that
more correctly synchronize to anticipate those problems may be the source of creativity
in all higher animals. If this robotic niche synchrony worked approximately at a high
level in the human niche, this would provide one possible explanation for the physi-
ological logic of gene expression in all living organisms.

This experiment might also resolve the AI control problem [34]. If human-
recognizable knowledge consists in rhythmic responses developed in the context of the
human niche, then only machines trained with that human-niche-like dataset could be
recognizably generally intelligent to human observers. If the epistolution conjecture is
correct, any such device would be as sensitive to the moral norms of humans as we are.

In this view of life, an organism would be a mediator that adjusts between two vast
reservoirs of possibility, one above and one below, by applying the epistolution for-
mula to its networks in cycles of periodic adjustment, through sleep. It would be a
process that harmonizes the possibilities of its genome with the possibilities of its
niche. As a result, its solutions would always be approximate solutions, adjusting
between vast opportunities in either direction. This might be the source of our spon-
taneity, our impetuous, inventive creativity. In this world, there would be no such thing
as a final correct answer. Far from an abstract search for absolute truth in Plato’s cave,
life would be revealed as a dynamic contest of embodied contingent truths, a struggle
between the body and the inherently partial world it can sense. As Heraclitus said, “the
way upward and downward are the same.”
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Abstract. We explain the relevance of operator and set induction to
machine learning theory as universal models of supervised and unsuper-
vised learning. We propose a new informal definition of general intelli-
gence based on prediction. We propose that operator induction serves
as an adequate model of perception. We discuss the application of oper-
ator induction in AGI and analyze potential objections to it. We show
how to construct a discrete-time reinforcement learning agent model with
operator induction serving as a perception module. We propose a univer-
sal measure of intelligence based on operator induction goodness-of-fit.
We discuss the close relevance of our intelligence measure to intelligent
agent theory suggesting that our proposal may contribute to AI unifica-
tion.

1 Introduction

The ultimate intelligence research program is inspired by Seth Lloyd’s work on
the ultimate physical limits to computation [13]. We investigate the ultimate
physical limits and conditions of intelligence. This is the third installation of the
paper series, the first two parts proposed new physical completeness arguments,
complexity measures, priors and limits of inductive inference [15,16]. We framed
the question of ultimate limits of intelligence in a general physical setting, for this
we provided a general definition of an intelligent system and a physical perfor-
mance criterion; we proposed minimum machine volume, minimum energy, and
universal priors based on volume and energy [15]. The same paper suggested
optimizing the number of bits extracted per watt as a measure of intelligent
system performance based on Solomonoff’s theoretical work on the Alpha AGI
architecture [22]. We also introduced the notion of stochastic algorithmic com-
plexity, in terms of space-time (volume of computation), energy expended, space
required to simulate a stochastic source; we proposed measures of transfer learn-
ing and logical depth in our physical re-formulation of AIT, and we have further
analyzed the connections among these new resource-based measures and their
limits, as well [16].

In this paper, we continue our exposition by discussing set and operator
induction problems relating them to general-purpose machine learning. We intro-
duce a new informal definition of intelligence based on prediction and introduce
c© Springer Nature Switzerland AG 2022
B. Goertzel et al. (Eds.): AGI 2021, LNAI 13154, pp. 174–183, 2022.
https://doi.org/10.1007/978-3-030-93758-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93758-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-93758-4_18


Measuring Intelligence 175

a universal measure of intelligence using operator induction goodness-of-fit. We
discuss potential objections to operator induction in AGI. We then show how
to construct a reinforcement learning (RL) agent model using operator induc-
tion with a simple control program. We conclude with a discussion of the new
universal intelligence measure and AI unification research.

The manuscript was previously submitted to AGI 2017 conference and the
main text was shared on preprint servers in 2015–2017. The present manuscript
contains corrections and improvements based on suggestions from reviewers, to
clear some misunderstandings about the interpretation of the theoretical argu-
ments, whereas the theoretical arguments themselves remain mostly unchanged.
There have appeared some proposals on preprint servers that are similarly con-
ceived to the main contributions in this report; the present manuscript has his-
torical priority.

2 Notation and Background

2.1 Universal Induction

Let us recall Solomonoff’s universal distribution [21]. Let U be a universal com-
puter which runs programs with a prefix-free encoding like LISP; y = U(x)
denotes that the output of program x on U is y where x and y are bit strings.1

Any unspecified variable or function is assumed to be represented as a bit string.
|x| denotes the length of a bit-string x. f(·) refers to function f rather than its
application.

The algorithmic probability that a bit string x ∈ {0, 1}+ is generated by a
random program π ∈ {0, 1}+ of U is:

PU (x) =
∑

U(π)=x∗
2−|π| (1)

which conforms to Kolmogorov’s axioms [11]. PU (x) considers any continuation
of x, taking into account non-terminating programs. PU is also called the uni-
versal prior for it may be used as the prior in Bayesian inference, for any data
can be encoded as a bit string. We also give the basic definitions of Algorithmic
Information Theory (AIT) [12], where the algorithmic entropy, or complexity of
a bit string x ∈ {0, 1}+ is

H∗
U (x) = − log2 PU (x) (Solomonoff) (2)

HU (x) = min({|π| | U(π) = x}) (Chaitin) (3)

We use some variables in overloaded fashion in the paper, e.g., π might be a
program, a policy, or a physical mechanism depending on the context.

1 A prefix-free code is a set of codes in which no code is a prefix of another. A com-
puter file uses a prefix-free code, ending with an EOF symbol, thus, most reasonable
programming languages are prefix-free.
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2.2 Operator Induction

Operator induction is a universal form of supervised machine learning where
we learn a stochastic map from n question and answer pairs D = {(qi, ai)}
sampled from a (computable) stochastic source μ. Operator induction can be
solved by finding in available time a set of m computable operators Oj(·|·),
each a conditional probability density function (cpdf), such that the following
goodness of fit is maximized

Ψ =
∑

j

ψj
n (Goodness of fit) (4)

for a stochastic source μ where each term in the summation is the contribution
of a model:

ψj
n = 2−|(Oj(·|·)|

n∏

i=1

Oj(ai|qi). (5)

qi and ai are question/answer pairs in the input dataset drawn from μ, and Oj is
a computable cpdf in Eq. 5. We can use the found m operators to predict unseen
data with a mixture model from D [23]

PU (an+1|qn+1) =
m∑

j=1

ψj
nOj(an+1|qn+1) (Inference) (6)

The goodness of fit in this case strikes a balance between high a priori proba-
bility and reproduction of data like in minimum message length (MML) method
[25,26], yet uses a universal mixture like in sequence induction. The convergence
theorem for operator induction was proven by Solomonoff in [23] using Hutter’s
extension to arbitrary alphabet, and it bounds total error by HU (μ) ln 2, which
is as good as sequence induction. See [23] for details. Note that we have changed
Solomonoff’s notation only slightly; strictly maximizing goodness of fit and prac-
tical inference are different problems. A practical solution uses a finite number
of large terms, instead of infinitely many terms which plain maximization sug-
gests, which is why we assume that there are m operators instead of infinitely
many. Operator induction can model classical machine learning problems such
as classification (e.g. face recognition, sentiment detection), but also learning
mappings such as learning text labels from images and learning semantic image
segmentation. Since the questions and answers are untyped, it can be any data
type, from any domain, covering most supervised learning problems.

2.3 Set Induction

Set induction generalizes unsupervised machine learning where we learn a prob-
ability density function (pdf) from a set of n bitstrings D = {d1, d2, ..., dn}
sampled from a stochastic source μ. We can then inductively infer new members
to be added to the set with:

P (dn+1) =
PU (D ∪ dn+1)

PU (D)
(Inference) (7)
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Set induction may be regarded as a restricted case of operator induction where
we set Qi’s to null string, and it also has a corresponding convergence theorem
[23]. Set induction is a universal form of unsupervised machine learning and it
can model classical unsupervised machine learning problems like clustering (e.g.,
webpage clustering) as well as arbitrary representation learning problems such
as learning to represent protein-to-protein interaction networks, and inferring
new interactions from incomplete data. It is also reasonable to expect that set
induction can achieve an ideal model of perception. If we apply set induction
over a large set of 2D pictures of a room – modelling an eye, it may yield a 3D
representation of it. If we apply it to physical sensor data, it may infer the right
physical theory through a general, universal process with infinite domains that
can capture the stochastic features of the data as in quantum mechanics. Percep-
tion is merely a specific case of scientific theory inference in this case, though set
induction works both with deterministic and non-deterministic problems. Recent
advances in unsupervised deep learning research confirms this interpretation. For
instance, representation learning can learn implicit vectorial representations of
complex data structures like graphs, and the approach can even learn to rep-
resent 3D objects from video input [24]. A recent study proposed using graph
networks to learn to simulate complex physics, which shows the power of unsu-
pervised learning approaches [19]. Although many additional inductive biases
such as gauge invariance and temporal relations are required in practice for
solving complex scientific problems, these constraints may be inferred by a uni-
versal induction engine due to the convergence theorems, via a meta-learning
approach, which is arguably how humans acquire such domain-specific biases.
In other words, the set here may model almost any dataset in classical machine
learning tasks, and as usual the data type is not limited, any additional tags
such as location, time, and metadata may be appended to data items, only the
data is unordered as in most machine learning and perceptual problems.

2.4 Universal Measures of Intelligence

There is much literature on the subject of defining a measure of intelligence.
Hutter has defined an intelligence order relation in the context of his universal
reinforcement learning (RL) model AIXI [6], which suggests that intelligence cor-
responds to the set of problems an agent can solve. Also notable is the universal
intelligence measure (AIQ) [7,8], which is again based on the AIXI model. Their
universal intelligence measure is based on the following philosophical definition
compiled from their review of definitions of intelligence in the AI literature.

Definition 1 (Legg & Hutter). Intelligence measures an agent’s ability to
achieve goals in a wide range of environments.

It implies that intelligence requires an autonomous goal-following agent. The
intelligence measure of [7] is defined as

Υ (π) =
∑

μ∈E

2−HU (μ)V π
μ (8)
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where μ is a computable reward bounded environment, and V π
μ is the expected

sum of future rewards in the total interaction sequence of agent π. V π
μ =

Eμ,π [
∑∞

t=1 γtrt], where rt is the instantaneous reward at time t generated from
the interaction between the agent π and the environment μ, and γt is the time
discount factor.

3 Perception as General Intelligence

Since we are chiefly interested in stochastic problems in the physical world, we
propose a straightforward informal definition of intelligence:

Definition 2. Intelligence measures the ability of a mechanism to solve predic-
tion problems.

Mechanism is any physical machine as usual, see [3] which suggests likewise.
Therefore, operator induction, which is one of the three basic universal induction
models proposed by Solomonoff, might serve as a model of general intelligence,
as well [23]. Note that operator induction can infer any physically plausible
cpdf, thus its approximation may solve any classical supervised machine learn-
ing problem. The only slight issue with Eq. 8 might be that it seems to exclude
classical AI systems that are not agents, e.g., expert systems, machine learn-
ing tools, knowledge representation systems, search and planning algorithms,
and so forth, which are somewhat more naturally encompassed by our informal
definition although they may also be reduced to RL problems. Conversely, RL
problems over environments can be represented as usual online machine learning
problems, which suggests equivalence.

The definition of intelligence based on goal following agents or on predic-
tion as in ours relate strongly to the common sense of intelligence as well as
the scientific, psychometric definitions of inelligence. In particular, AIQ can be
approximated practically using a restricted set of environments in which case
it would behave a lot like an IQ test that is defined over a specific curricu-
lum, although such a restricted definition would yield a weaker proof of general
intelligence.

3.1 Is Operator Induction Adequate?

A question naturally arises as to whether operator induction can adequately solve
every prediction problem we require in AI. There are two potential objections to
operator induction that we know of. It is argued that in a dynamic environment,
as in a physical environment, we must use an active agent model so that we can
account for changes in the environment, as in the space-time embedded agent
[14] which also provides an agent-based intelligence measure. This objection may
be answered by the simple solution that each decision of an active intelligent
system may be considered a separate induction problem. The second objection
is that the basic Solomonoff induction can only predict the next bit, but not
the expected cumulative reward, which its extensions can solve. We counter
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this objection by stating that we can reduce an agent model to a perception
and action-planning problem as in OOPS-RL [20]. In OOPS-RL, the perception
module searches for the best world-model given the history of sensory input
and actions in allotted time using OOPS, and the planning module searches
for the best control program using the world-model of the perception module
to determine the action sequence that maximizes cumulative reward likewise.
OOPS has a generalized Levin Search [10] which may be tweaked to solve either
prediction or optimization problems. Hutter has also observed that standard
sequence induction does not readily address optimization problems [6]. However,
Solomonoff induction is still complete in the sense of Turing, and can infer any
computable cpdf; and when the extension to Solomonoff induction is applied
to sequence prediction (problem transformations discussed in [1]), it does not
yield a better error bound, which suggests equivalence. On the other hand, Levin
Search with a proper universal probability density function (pdf) of programs can
be modified to solve induction problems (sequence, set, operator, and sequence
prediction with arbitrary loss), inversion problems (computer science problems in
P and NP), and optimization problems [22]. The planning module of OOPS-RL
likewise requires us to write such an optimization program. In that sense, AIXI
implies yet another variation of Levin Search for solving a particular universal
optimization problem, however, it also has the unique advantage that formal
transformations between AIXI problem and many important problems including
function minimization and strategic games have been shown [6]. Nevertheless,
the discussion in [22] is rather brief.

Proposition 1. A discrete-time universal RL model may be reduced to operator
induction.

More formally, the perceptual task of an RL agent would be inferring from a
history the cumulative rewards in the future, without loss of generality. Let
the chronology C be a sequence of sensory, reward, and action data C =
[(s1, r1, a1), (s2, r2, a2), . . . , (sn, rn, an)] where Ci accesses ith element, and Ci:j

accesses the subsequence [Ci, Ci+1, . . . , Cj ]. Let rc be the cumulative reward
function where rc(C, i, j) =

∑k≤j
k=i rk. After observing (sn, rn, an), we con-

struct dataset DC = {(Q,A)} as follows. For every unique (i, j) pair such that
1 < i ≤ j ≤ n, we append a new (Q,A) ∈ DC as follows: we concatenate history
tuples C1:(i−1), and we form a question string that also includes the next action,
i and j, Q = (C1:(i−1), ai, i, j), and an answer string which is the cumulative
reward A = rc(C, i, j). Solving the operator induction problem for this dataset
DC will yield a cpdf which predicts cumulative rewards in the future. After that,
choosing the next action a is a simple matter of maximizing predicted cumula-
tive reward in the future: arg maxa{r(C1:n, a, n + 1, λ)} where λ is the planning
horizon, extrapolating from data seen so far. The reduction causes quadratic
blow-up in the number of data items. This elementary reduction suggests that
the bulk of intelligence here comes from prediction; the argmax function, and the
summation of rewards help define it by building reasonable constraints into the
prediction task. In other words, we interpret that the intelligence in this agent
model is mostly provided by inductive inference, combined with a minimalist
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application of decision theory; a simple control program is enough. Nevertheless,
as reviewers have pointed out, the control problem in intelligent agent design
is non-trivial and with this model we barely refer to the most minimal models
possible, and not realistic engineering models which would have to address issues
such as on-policy/off-policy prediction [9], and safe exploration vs. exploitation
issues, which are important considerations even at a purely theoretical level.
Note also that this simple model has a planning horizon which is a limitation in
RL models.

Recent empirical work confirms our theoretical predictions in this regard as
competent agent models that depend mostly on a prediction engine have been
recently proposed such as the world models agent [5] which uses a generative
unsupervised perceptual model (much like our proposal) to train a simple policy,
and an agent that simply uses the transformer model to predict the next action
[2], which might sound crude to seasoned RL theorists, but performs quite well
in practice, exceeding the state-of-the-art in many experiments, and construed in
a similar fashion to our model, strongly justifying our theoretical analysis. This
model shows that a predictive model can learn the essential parts of percep-
tion and control simultaneously as we propose, using a simple control program,
affirming the significance of our prediction based definition of intelligence. We
have immediately noticed this excellent paper that demonstrates their indepen-
dent discovery because it is similar to the practical agent we have been designing
based on the analysis in this manuscript. Note that both papers have been writ-
ten subsequent to our analysis, our predictions were published long before these
models and any intelligence measure based solely on prediction.

4 Physical Quantification of Intelligence

Definition 1 corresponds to any kind of reinforcement-learning or goal-following
agent in AI literature quite well, and can be adapted to solve other kinds of prob-
lems. The unsupervised, active inference agent approach is proposed instead of
reinforcement learning approach in [4], and the authors argue that they did not
need to invoke the notion of reward, value or utility, even further simplifying
the control problem with regards to aforementioned new reinforcement learn-
ing agent models. The authors in particular claim that they could solve the
mountain-car problem by the free-energy formulation of perception. We thus
propose a perceptual intelligence measure.

4.1 Universal Measure of Perception Fitness

Note that plain Solomonoff induction is considered to be insufficient to describe
universal agents such as AIXI, because basic sequence induction is inappropri-
ate for modelling optimization problems [6]. However, a modified Levin search
procedure can solve such optimization problems as in finding an optimal control
program [20]. In OOPS-RL, the perception module searches for the best world-
model given the history of sensory input and actions in allotted time using
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OOPS, and the planning module searches for the best control program using the
world-model of the perception module to determine the control program that
maximizes cumulative reward likewise. In this paper, we consider the perception
module of such a generic agent which must produce a world-model, given sensory
input.

We can use the intelligence measure Eq. 8 in a physical theory of intelligence,
however it contains terms like utility that do not have physical units (i.e., we
would be preferring a more reductive definition). We therefore attempt to obtain
such a measure using the more benign goodness-of-fit (Eq. 4). Let the universal
measure of the fitness of operator induction be defined as:

Φ(π) �
∑

μ∈S

2−HU (μ)Eμ,πΨ(μ, π) (9)

where S is the set of possible stochastic sources in the observable universe U
and π is a physical mechanism, and Ψ is relative to a stochastic source μ and a
physical mechanism (computer) π. The intelligence measure is the weighted sum
of the expected goodness-of-fit of all possible stochastic sources μ, weighed by the
negative binary exponent of algoritmic complexity HU (μ). The first summation
corresponds to generation of sources, and the second to generation of datasets.
Therefore, Φ(π) ∈ (0, 1) due to Kraft inequality and the fact that Ψ(μ, π) ∈ (0, 1)
likewise. Φ would be maximum if we assume that operator induction were solved
exactly by an oracle machine. Note that HU (μ) is finite; Ψ(μ, π) is likewise
bounded according to the amount of computation π will spend on approximating
operator induction.

If we expand Ψ , the universal intelligence measure is defined as:

Φ(π) �
∑

μ∈S

2−HU (μ)Eμ,π

⎡

⎣
∑

j

2−|(Oj(·|·)|
n∏

i=1

Oj(ai|qi)

⎤

⎦ (10)

4.2 Discussion and Future Work

Our analysis that universal machine learning models naturally abstract both
classical machine learning tasks like classification and clustering, and advanced
deep learning tasks like representation learning and modeling scientific problems,
such as physical simulation, with deep learning models, has been supported by
recent advances. We believe that our prediction that an effective agent design can
be built around a prediction engine has also been confirmed by recent empirical
studies. The validation of our theoretical predictions supports the relevance of
our definition of intelligence as the ability to make predictions, and the new
universal intelligence measure Φ based on operator induction.

While we either optimize perceptual models or choose an action that would
befit expectations, it might be possible to express the optimal adaptive agent
policy in a general optimization framework. An in-depth analysis of unsuper-
vised intelligent agents will be presented in a subsequent publication. A more
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general reductive definition of intelligence may also be researched. The new defi-
nition of intelligence suggests more aspects per ability than accuracy, for instance
the self-improvement measure in [15] and the stochastic process model of trans-
fer learning in [17] may be relevant. Proper implementation of these measures
could aid in benchmarking AGI architectures like Omega [18] and making them
more robust and reproducible. These theoretical developments could eventu-
ally contribute towards the unification of AI theory continuing in the spirit
of Solomonoff’s research program, Hutter’s book on Universal AI, and Alexey
Potapov’s research program of AI unification.
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Abstract. We consider homotopy type theory (HoTT) as a possible basis for
Artificial General Intelligence (AGI) and study how it will frame the traditional
problems of symbolic Artificial Intelligence (AI), which are not avoided, but can
be addressed in a constructive way. We conclude that HoTT is suitable for
building a language of a cognitive architecture, but it is not sufficient by itself to
build an AGI system, which should contain grounded types and operation,
including those that alter already defined types in a not strictly provable (within
available types themselves) way.

Keywords: AGI � HoTT � Symbol grounding � Subsymbolic

1 Introduction

Artificial Intelligence (AI) in general and Artificial General Intelligence (AGI) in
particular have deep connections with foundations of mathematics and computer sci-
ence (models of computation, formal languages, etc.). Traditional foundations of
mathematics based on set theory and predicate logic heavily influenced the mainstream
of XX century AI with Prolog as a prominent example of simultaneous intersection
between foundations of mathematics, AI, and programming languages. More broadly,
Good Old-Fashioned AI (GOFAI) is referred to as symbolic due to the physical symbol
system hypothesis (PSSH) [1]. For instance, Lisp relies not on a predicate calculus, but
on lambda calculus, which is in essence a formalism for manipulating symbols.

One of the main branches in the field of AGI is that of ‘cognitive architectures’
(CAs). Development of CAs typically leads to (or even starts with) choosing or
inventing a computational formalism (which can turn into a full-fledged yet domain-
specific programming language), a sort of ‘language of thought’. This opens up ample
possibilities for bringing fundamental mathematics and computer science to AGI.

However, symbolic AI is considered to be fragile, prone to the frame and symbol
grounding problems, and is opposed to subsymbolic AI, which includes most notably
deep neural networks (DNNs) that have begun to dominate the AI field – in particular
for machine learning, computer vision and natural language processing. The share of
DNNs in AGI is also increasing. But do they reject (symbolic) foundations of math-
ematics and build on something different and novel? Apparently, they rely on areas of
traditional mathematics with set-theoretic and predicate logic foundations. One may
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also note that both PSSH and its criticism consider computers as such to be physical
symbol systems (and even DNNs are split into logical operations at the bottom).

Meanwhile, there are new candidates to the foundations of modern mathematics.
For example, the author of [2] cites Bertrand Russell: “Modern logic, as I hope is now
evident, has the effect of enlarging our abstract imagination, and providing an infinite
number of possible hypotheses to be applied in the analysis of any complex fact. In this
respect it is the exact opposite of the logic practised by the classical tradition,” and
proposes homotopy type theory (HoTT, [3]) as “philosophy’s new new logic”. If “new
logic” was so fruitful for philosophy, AI, and computing, couldn’t “new new logic”
contribute to AGI?

Indeed, category theory and type theories (which can serve as alternatives to set
theory as a foundation of mathematics) already contributed a lot into computer science
and the design of programming languages. They are also far from being ignored in AGI
(e.g. [4, 5]), but they are no close to being mainstream as well. Apparently, since the
existing incarnations of dependent and homotopy type theories as programming lan-
guages such as Agda, Idris, Coq have the most straightforward use as proof assistants,
they may seem too GOFAI-ish in the context of AI.

At the same time, the necessity for neural-symbolic integration has been recently
recognized even in the deep learning community. “A sound reasoning layer”, “certain
manipulation of symbols” is necessary even for applied AI systems (see, for example,
[6]), so symbolic AI is regaining attention.

We are rethinking the design of the OpenCog cognitive architecture (e.g., [7]),
which contains essentially symbolic components like the Atomspace knowledge base,
the metagraph Pattern Matcher, the Unified Rule Engine, but which was also suc-
cessfully used to build neural-symbolic systems (e.g. [8]). In this paper, we explore the
possible role of HoTT in AGI and discuss symbolic/subsymbolic dichotomy as it
relates to this example.

2 Symbolic Systems and Mathematics

Any calculus is typically considered as a bunch of rules for manipulating symbols
syntactically without relying on their meaning (semantics). But what do we really
imply by this? For example, lambda calculus has a few rules for manipulating symbolic
expressions of form

<expr> ::= <constant> | <variable> | <expr> <expr> | λ<variable>.<expr> | (<expr>)

This description of syntax already involves some meta-symbols. If we try to
describe syntactically the lambda calculus rules such as b-reduction, we will have some
difficulties. Typically, it is written as ((kx.M) E) ! (M[x: = E]). But as a purely
symbolic expression it means nothing and does nothing. We can try to describe the
content of this rule in more detail, but we will inevitably end up with some symbols, for
which we suppose some meaning. While calculi deal with symbols syntactically, they
themselves rely on semantics. Even if we describe a calculus formally as a collection of
syntactically defined rules, this description will rely on symbols of meta-language with

Univalent Foundations of AGI are (not) All You Need 185



semantic grounding. This grounding can reside in the minds of humans, who under-
stand what these symbolic descriptions of, say, lambda calculus means, or it can take
the form of a piece of code running on a certain computer (or another physical device).

It is impossible to completely get rid of grounded symbols in mathematics, but
mathematicians have tried to reduce their usage as much as possible (and represent
them in the form of alternative foundations of mathematics). The bare minimum is a set
of instructions for a certain computer or non-reducible operations of any equivalent
definition of the algorithm. Whether this minimum is really enough is disputable.
Mapping theorem proofs into, say, Turing machines is not convenient in practice.
Working mathematicians don’t always use this level of strictness. Also, classical
foundations of mathematics are not constructive. This doesn’t necessarily mean that the
mentioned minimum is not enough, since we hope to implement AGI as a computer
program. It may also mean that the semantics even of foundational mathematical
concepts are not clear enough and not fully understood by humans themselves.

Indeed, both the notion of sets in set theory and the notion of truth in predicate logic
(in the sense of both their computational and semantic groundings) are problematic,
which was shown by numerous paradoxes (especially, for naïve set theory). These
paradoxes in turn, served to motivate constructive mathematics. However, constructive
mathematics was too restrictive, and didn’t allow for many proofs that looked natural in
traditional mathematics.

HoTT doesn’t completely reject useful but non-constructive axioms such as the law
of excluded middle or the axiom of choice, but determines circumstances in which they
hold constructively. HoTT attempts to formalize mathematics with computer proof
assistants readily providing a computational framework for representing mathematical
statements and manipulating with them. Thus, it is an interesting candidate for novel
foundations of at least symbolic AI. A few attempts have already been made to adopt
dependent and HoTT for knowledge representation (e.g. [9, 10]), but no work has
considered the implications of HoTT for symbolic AI and cognitive architectures in the
AGI context.

3 HoTT and Symbol Grounding

HoTT Primitives
In HoTT, we cannot introduce a symbol (variable), without indicating its type. a:A is a
judgement in HoTT, while a2A is a proposition in set theory. Of course, a:A is not
just a meaningless symbolic expression. It has a predefined interpretation in HoTT
(both computational and semantic). Definitional (judgmental) equality is another
primitive in HoTT. The symbol � for defining equality has also a predefined special
meaning.

There is also propositional equality written as x = A y, which implies that we can
chain definitional equalities (within type A) together and transform x to y. An inter-
esting aspect is that propositional equality is itself a type, whose elements are proofs of
equality of x and y (if this type is inhabited).

However, in order to get non-trivial equalities, some computation rules are nec-
essary. For example, in order to infer that (kx.x + x)(2) � 2 + 2 we need to have
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b-reduction, which can be treated as a definitional equality (kx. U)(a) � U′, but
with U′ represented not symbolically, but computed by a grounded function, which
replaces all occurrences of x in U by a avoiding name collisions.

In the AGI context, it is natural to ask where these judgements and definitions come
from. Application of HoTT to Automated Theorem Proving (ATP) supposes that they
are provided by mathematicians. They pick judgements interesting to them as true a
priori, by human’s definition. HoTT can be used to define arbitrary theories and deduce
consequences from them. However, the question of adequacy of such theories to reality
is not considered. While it is not a (notable) problem in ATP, it becomes very
important if we consider HoTT for knowledge representation in AGI.

Constructable = Existent
The book [2] discusses the possibility of using (modal) HoTT as a new logic for
philosophy, and natural language especially, pointing out the controversy regarding
whether each common noun should denote a type or whether they should be formed by
predication on some master type Entity. Consider a very simple sentence “John is a
man”. It is natural to consider Man as a type and John as its instance defining John:
Man. However, it will not be a proposition in such a form and cannot be negated or
appear in conditionals. Representing this expression as a dependent sum (John, r)∶P

x∶Entity Man(x), where r∶ Man(John) doesn’t have this problem.
The author of [2] extends this idea by considering such intermediate dependent

types as AnimatedObject, which provide additional context for propositions like
“John is a man” and prohibit reference to John as, say, a meteorological event.
However, even flexible use of dependent types doesn’t eliminate the presence of
judgements and doesn’t answer the question of where these judgements come from.
How are r∶ Man(John) and John: AnimatedObject different from just John:
Man in terms of necessity for introducing new members of types in runtime? Let us
consider this question on the fully constructive level of program code (using Idris-like
syntax).

Consider the classical syllogism as a slightly more complex example: All humans
are mortal. Socrates is a human. Therefore, Socrates is mortal. What are the types in
this case? Should Socrates be a type, a type constructor, a variable, a function?

If we write Socrates: Human, which seems natural, it implies that Socrates
is a variable of type Human, and we need to construct its value. We could have one
constructor data Human = HumanC and write Socrates = HumanC. However,
any two such variables will be equal (due to refl x:x = A x). In fact, there will be only
one member of Human and this isn’t what we want. Rather, we would prefer to have
Socrates as a type constructor. This can be a question of syntax, but in dependently
typed languages we cannot write Socrates: Humanseparately. Instead, we should
collect all type constructors together:

data Human : Type where 
Socrates : Human 
Plato : Human
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or, with syntactic sugar, data Human = Socrates | Plato |…, which will be the
simplest sum type. Then, we can write x: Human, x = Socrates, and two variables
with values Socrates and Plato will not be equal.

But what should be done in a situation where a previously unknown person
appears? We will have to extend the existing type with a novel constructor so that we
will be able to distinguish this person from other persons. Distinctions can be con-
sidered as one of very basic ontological notions [11], which has quite an interesting
connection to equality in HoTT, although we will not explore this connection here. The
issue we consider here is that type theories don’t provide computational operations for
altering types. But do we need these operations with dependent types?

Even if Humanis defined as a dependent type, it still needs to have constructors:

data Human : Entity -> Type where 
 SocratesIsHuman : Human Socrates 
 PlatoIsHuman : Human Plato 

together with data Entity = Socrates | Plato. Any new entity or witness will
require new constructors.

We can try avoiding enumeration of all members of Entity or Human types by
building them on top of some infinite type, whose members will serve as features of
entities (e.g. name strings). Will it work?

We can either have a parameterized constructor or a dependent type.

data Human : Type where 
 HumanName : String -> Human 
socrates : Human 
socrates = HumanName "Socrates" 

or

data Human : String -> Type where 
 HumanName : Human s 
socrates : Human "Socrates" 
socrates = HumanName 

In the first case, we can construct any number of members of Human, while in the
second case, we can construct any number of types Human x for some concrete x.

Such representations are convenient for databases. However, the question is how
we interpret these definitions. Do we assume that all possible instances of Human with
all possible names really exist, or do they exist in possible worlds?

Let us consider a proposition “All humans are mortal”. Such propositions are
expressed via functional types. For our simple types, it should look like

f : Human -> Mortal 
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but it will be trivially true for inhabited types independent of connections between
Human and Mortal. If we directly map this proposition to a type, it should look like

f : Human x -> Mortal x 

The proposition expressed in this type is true if we can provide an implementation
of a total function, which will work for any x. Let us proceed with the representation in
which Human x is a dependent type also.

If Mortal x is defined similarly to Human x, then such function trivially exists:

f : (Human x) -> (Mortal x) 
f HumanName = MortalName 

Then, we can write

socrates = HumanName 
socrates : Human "Socrates" 

and we can prove, by declaring and providing an instance of type Mortal
“Socrates”:

y : Mortal "Socrates" 
y = f socrates 

It follows from our definitions that “all humans are mortal” is a mathematical rather
than empirical truth. If we consider only created instances as existent and creatable
instances as potentially existent, then we should not consider the possibility of con-
structing a proof as a proof. Rather, we should consider something like
f HumanName = MortalName not as a proof, but as a possible knowledge base
entry, which we shouldn’t arbitrarily add to our knowledge base, but should prove it
empirically before adding. This doesn’t correspond to semantics of dependent types.

Thus, an attempt to declare types in such ways that we can create their instances,
which factual existence is not provided a priori, forecloses the possibility of consid-
ering types as propositions, whose inhabitants are their proofs.

Let us note that modal HoTT doesn’t avoid the necessity of alteration of types,
because propositions can change, say, from possible to necessary with new
information.

Syllogism Example
If we define Human by enumerating all known humans, then implementation of f will
be total only if mortality of all these humans is already known. It can be done via
enumerating all facts of all mortal entities as constructors of Mortal. However, we
can have a general definition of human mortality as prior knowledge.

In this context, it doesn’t matter too much if Human is defined as a plain sum type,
or dependent sum over Entity or String. In all cases we should enumerate all
humans known to the system, e.g.
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data Human : String -> Type where 
 SocratesIsHuman : Human “Socrates” 

PlatoIsHuman : Human “Plato” 

It looks conceptually better to have an Entity type with distinct entities as
members, and Name as one of the dependent types describing their properties. It might
be a minor point, but let us stick to this option.

data Entity = Socrates | Plato 
data Human : Entity -> Type where 
 SocratesIsHuman : Human Socrates 
 PlatoIsHuman : Human Plato 
data EntityName : Entity -> String -> Type where 
 SocratesIsSocrates : EntityName Socrates “Socrates” 
 PlatoIsPlate : EntityName Plato “Plato” 

Let us note that we could define a more restrictive HumanName type, and
EntityName could have a constructor that utilizes HumanName in a general way.
More interesting are the constructors that the type Mortal should have. They can be
defined as

data Mortal : Entity -> Type where 
 SocratesIsMortal : Mortal Socrates 
 PlatoIsMortal : Mortal Plato 

Then, the proposition that all humans are mortal can be proven by listing all mortal
humans, because there is no other way to construct Mortal x other than by providing
a concrete constructor:

f : Human x -> Mortal x 
f SocratesIsHuman = SocratesIsMortal 
f PlatoIsHuman = PlatoIsMortal 

A dependently typed language compiler will check that the function is total and that
we didn’t miss any case. Alternatively, we can have the rule that all humans are mortal
as a constructor

data Mortal : Entity -> Type where 
HumanIsMortal : Human x -> Mortal x
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Therefore, the proof of the corresponding proposition is trivial (and redundant)

f : Human x -> Mortal x 
f = HumanIsMortal 
y : Mortal Socrates 
y = f SocratesIsHuman 

Thus, we can prove that Mortal Socrates is populated given the evidence
(minor premise) Human Socrates and the major premise Human x - > Mortal x.
Everything is represented by type constructors.

Our representation of the syllogism looks natural, but it implies that meeting any
new person (or acquiring new information) as well as generalizing particular facts will
require altering types. This situation is not essentially different from the problem of
closed worlds in other logical systems. However, a conceptually interesting question
arises – if there is a mathematically sound way of introducing new types or their
constructors, shouldn’t it be expressible in HoTT and implementable in a corre-
sponding programming language?

Distinction and Identification
Many dependently typed languages inherit Haskell syntax in declaring types that
obscures their nature. Why do we need special syntax and data keyword? We would
like just to declare Entity: Type, and then to use definitional equality, e.g.,
Entity = Socrates | Plato. This looks natural because we define one type using
such operations over types as a sum or product (which can also be dependent sums and
products). But sum operands are types. Socrates and Plato are not types. In
category-theoretic interpretations, they are (names of) functors () – > Entity, which
correspond to certain elements of Entity. Entity is a sum of unit types, which is
mathematically sensible, but not adequately expressive for knowledge representation.

In Coq, which is used concretely for HoTT, type definitions look like

Inductive nat : Type :=
  | O : nat 
  | S : nat → nat. 

The above looks more like a definitional equality. However, type nat is not
defined via other members of Type and expressions over them. Symbols O and S are
directly introduced as just having types nat and nat ! nat correspondingly.

nat: Type is not definitionally equal to anything else, although it could be
defined as a sum of () and nat ! nat, which would indeed reduce to primitive
operations on types. An inductive definition constructively (finitely) defines an infinite
type, for all members of which we can prove common properties. However, it will
obscure the fact that we want to construct expressions like O or (S (S O)) as having
the type nat. Let us forget mathematical interpretations for a moment and look at these
as symbols. We introduce symbols O: nat and S: nat ! nat, for which there are
no definitional equalities. If there were an interpreter of symbolic expressions, it could
interpret these symbols only to themselves.
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We can compose various expressions from symbols. We have this capability prior
to types and their constructors. Expression typing imposes restrictions on valid
expressions. For example, nat: Type allows nat to appear on right-hand sides of
colon expressions (and some other places, where Type members are valid, e.g. as an
argument of a symbol, which type is Type - > _).

What is the difference between S: nat ! nat as «a constructor» from a function
with the same signature? S doesn’t have a body. There is no definitional equality for it.
It is not further reducible.

Functional languages with type systems use constructors also for checking totality
of functions. For example, if we write

f : nat → nat
f O = (S O)

we can conclude that f is not total. We could make no distinction between a type
constructor and a non-total function. Such a function does not reduce further in such
cases, e.g. f (S O) would be well-typed but non-reducible, similarly to S (S O). In
the context of AGI, this may make sense. A toddler can know that 2 + 2 = 4, but can
have no idea about 4 + 4, although knowing that 4 is also a number and can be added,
and knowing that 4 apples and 4 apples are 4 + 4 apples, so + will act both as a
function and as a constructor. However, separating a complete inductive definition of a
type from variables and functions is very convenient for constructing proofs by
induction, which is one of the main features of HoTT.

Nevertheless, in an open system, what is initially a constructor can get a definitional
equality. For example, the system is told about some Jonny, and it introduces new
entity Jonny: Entity, JonnyName: EntityName Jonny “Jonny”. Then, it
appears that Jonny is John, whom it already knew. It just needs to identify them
Jonny = John. This definitional equality can be propagated to various propositional
equalities. Thus, two basic operations are distinguishing and identification of symbols
and expressions.

Grounded Types and Non-Provability
Information doesn’t come from nowhere. Rather, it is communicated to the system via
certain interfaces, which might be good to formalize. Functional languages typically do
so by using IO Monad. However, it separates pure code from side effects rather than
answers the question of how pure code emerges from external information.

Instead of talking about arbitrary program I/O, let us consider an agent with some
sensors. We may try supposing that we know the type of data coming from these
sensors. Can we indeed know? Suppose that we have a video sensor. An observation at
moment t will be xt: ℝN�M. However, as we articulated, everything constructible is
not just possible, but existent. It is incorrect to say that any member of ℝN�M of exists
as sensory input, so the type of sensory input cannot be equal to ℝN�M. It differs from
the set-theoretic representation, in which xt2ℝN�M would be a valid proposition.

Thus, it seems more correct to have a type Observation, whose constructors are
not known to the agent, and instances of this type are constructed outside the agent. We
refer to such types as grounded. Receiving a new observation can be thought of as
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adding a new constructor or member to such a type, which can be generalized. Either
the type system of our agent will contain no types corresponding to real-world entities
besides prior knowledge (and a dependently typed language would just serve for
interpreting another language to work with runtime information), which will suffer
from the symbol grounding problem, or the agent must be capable of the act of forming
a new type and populating it with new members and functorial constructors. What is a
proposition at some level of reasoning can become a judgment at another level.

Impossibility of an absolute proof of inductive generalizations based on a finite
number of arguments was realized already by Bacon. We can construct absolute proofs
within consistent definitions of types, but they will be model assumptions, whose
correspondence to reality will never be perfect. Such is the case for the scientific
methodology in general, in which theories are constructed on the basis of available
information and then experimentally verified together with their consequences. Inter-
estingly, the criterion of falsifiability says that scientific theories should admit the
possibility to be proven to be false in principle by new evidence. But shouldn’t it be
true about the scientific method itself? It cannot be formally proven, but it is supported
by a huge corpus of knowledge and predictions resulting from its usage meaning its
high degree of adequacy to reality.

Of course, we would like to have justified methods for machine learning. All such
methods (including deep learning) are expressed mathematically and/or as program
code. For some of them we have proofs of optimality, although under strong
assumptions, making these methods narrowly applicable and inadequate to reality in
general case. There are proofs of optimality for universal methods like Solomonoff
induction, but these are, unfortunately, not constructive. There are also proofs that
universal computable predictors cannot exist [12], though interpretation of such the-
orems in the context of building AGI is also debatable. Nevertheless, neither a uni-
versal and practically applicable induction method nor a constructive method of
synthesis of efficient specialized algorithms is currently known.

Generally, AGI will unavoidably have a heuristic or non-axiomatic (in sense of
[13]) element. This implies not only that it is not provably reducible to some deductive
system, but also that it should contain some collection of algorithms (or, rather, sub-
programs, which are not necessarily provably terminating), which can be justified only
partially, with the choice between them ultimately being empirical. Both the design of a
language for CAs with the choice of base formalism (such as HoTT) and the amount of
prior information (including built-in algorithms) are heuristic in nature.

There is some content of intelligence that cannot be derived a priori by ‘pure
reason’. This is obviously the case for concrete knowledge about the world, but it may
not be as obvious that the methods of reasoning and learning also cannot strictly be
provably optimal. While any prior judgement or axiom built into an AGI system should
be falsifiable in principle, that can be considered as a possibility of this system to
rewrite any piece of its code as in the Gödel machine [14], we believe that most non-
trivial acts of self-improvement are not strictly provable (in terms of increase in
expected future rewards). Rather, such improvements should be put forward and tested
in practice, similarly to scientific hypotheses. It should be underlined that total func-
tions, which type-check as members of types, which, in turn, serve as provable
propositions, are not Turing-complete.
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4 Conclusion

Homotopy type theory is attractive, because instead of using sets and meta-language of
logic separately, it uses only types, which encompass both objects and propositions,
which are also objects of higher types. This is convenient for AGI in terms of uniformly
and constructively representing and reasoning about knowledge both of the external
world and reasoning itself. Besides, type theories in the form of programming lan-
guages provide the convenient tool of pattern matching, which, combined with
knowledge retrieval queries, could provide a basis for “language of thought”.

However, such languages themselves cannot get rid of a few meta-language
symbols for primitive grounded operations that cannot be described declaratively
within languages themselves (besides directly referring to these symbols). For a real-
world AGI, which doesn’t work in a purely abstract domain, there should be additional
grounded types, which stand for interactions with the environment. Definitions of such
types are unknown a priori, and since constructability implies existence, constructors of
grounded types should be added through observations. This implies that more abstract
concepts as derived types can change as well. Any collection of types should be
considered as a model that can be more or less applicable to reality rather than an
absolute truth about it.

Methods for altering types can utilize available knowledge presented in already
defined types, and can be described in the same language, but will unavoidably refer to
some grounded symbols, which will make their use not strictly provable. Such
grounded operations can be regarded as subsymbolic, although their granularity and
quantity are research questions.
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Abstract. This short paper provides a novel perspective on natural intelligence,
stemming from the following observation that holds for all spatial scales from
the subatomic to the cosmological: physical (material) structures, solely by
virtue of their arrangement and constitution, result in appropriate natural phe-
nomena. Such a physical structure-oriented view is shown to account for a
variety of natural intelligence exhibited by living systems that include, but are
not limited to, viruses, flora, insects, groups/colonies, and for sure, humans. It is
hypothesized that artificial agent designs that incorporate appropriate physical
structures would result in their displaying intelligent behavior similar to bio-
logical forms, a radical departure from designs that are centered on digital
computation - such embodied agents might be capable of robust, flexible
behavior in the real-world, which has thus far eluded AI.

Keywords: Philosophy of AGI � Natural intelligence � Agent architectures �
Analog computation

1 Introduction

The quest for AGI has been ongoing, stemming from our desire to create synthetic
agents that would think, feel and act like ourselves. But, the ongoing quest has not been
quite fruitful - it is almost as if the right paradigm to approach this, might be missing.
This short paper is an attempt to provide a plausible route to AGI.

In the following sections, an argument is presented, for intelligent behavior to be
regarded as emanating from appropriate physical structures, rather than exclusively via
digital computation (as implemented the type of AI we have today).

2 Structures

The universe can be regarded as being comprised of matter and energy (which are
themselves equivalent, but we keep them distinct for our purposes), ‘embedded’ in
space and time. From the distant galaxies to individual sub-atomic particles we can
image in a bubble chamber, it is all, matter, set in motion by energy (including via
forces they generate).

Matter and energy, while being valid descriptors of ‘what is’, do not capture the
fascinating, multitude forms in which matter and energy interact, transform and be
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transformed. For that we look at ‘what does’, related to matter and energy - the
distinction between being and doing. In other words, how do matter and energy
behave?

Matter and energy (most commonly, matter - so from here on we mostly refer to
matter, although the discussion would apply to energy as well) are organized into
structures, which are physical configurations in space and time. Specifically, the
structures are not abstract/mathematical, but rather, physical with point, line, plane and
volume extents.

Structures exist, literally from cosmological scales (e.g. spiral arms in galaxies) to
the microscopic (e.g. mitochondria in cells) to subatomic (e.g. nanoparticle assem-
blies). Energy is structured as well, e.g. electromagnetic energy, via frequencies.

Structures exist in the inorganic world, as well as in biological forms. We humans
are quite adept, via our scientific advances and shared knowledge in general, at creating
structures that are beneficial to us - e.g. houses, bridges, semiconductor lattices, tele-
scope arrays. Animals and insects are also capable to creating structures that benefit
them: spider webs, beehives, nests, etc.

3 Phenomena

Phenomena (usually referred to as natural phenomena) is how matter ‘behaves’, as a
response to energy input. E.g. heating water causes it to boil, flicking a marble sets in
rolling motion, etc. The response in turn could induce phenomena elsewhere, possibly
of a different type (e.g. an explosion could cause dents or fracture).

4 Structures ! Phenomena

Structures exhibit phenomena.
Holes in a flute create pleasing sound waves, fluid flow past an obstacle leads to

turbulence, mirrors reflect, wires conduct, protein molecules fold and vibrate, Velcro
sticks due to mechanical entanglement, elastic materials stretch (and break or tear if
stressed beyond capacity), syringes puncture skin, etc. Phenomena occur in an aston-
ishing variety, stemming from the various ways by which matter and energy interact:
mechanical, acoustic, electrical, chemical, nuclear, quantum mechanical, etc. Engi-
neering, by humans as well as nature, involves harnessing various phenomena for
gainful purposes, by creating (inventing/evolving) structures that exhibit them.

Vibration, fracture, dissolution, sedimentation, filtration, heat conduction, diffusion,
reflection, polarization, acoustic transmission… practically every phenomenon could
be put to use, via design and construction of appropriate structures. Structures do not
need to be explicitly constructed - inorganic matter structures, e.g. single crystals,
pulsars, snowflakes, eddies in fluids etc. are structures that occur naturally, without
explicit design or its adaptation.

Structures exhibiting phenomena is indeed the ‘connective tissue’ that spans
inanimate matter, organic matter including us humans and animals, and the inorganic
structures that we humans and animals create in turn. Life and its environment is
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considered a closed system in this view, operating via phenomena that involves mutual
exchange of matter and/or energy.

5 Life’s Structures and Phenomena

The amazingly wide variety of life forms are comprised of structures at the organ,
cellular and sub-cellular levels that display an equally amazing diversity of phenomena
that are of mechanical, optical, thermal, acoustic, electrical, magnetic, etc. nature.

Indeed, evolution appears to act like an expedient engineer that chooses just the
right structure that exploits a certain phenomena in order to help with survival and
reproduction [1]. Examples abound, here are just a few. Animal eyes (corneas) are
curved convex outwards, to focus light at the retina. Cats’ eyes contain a retro reflective
coating behind the retina, to reflect incoming light back on to the ambient environment,
to help them see better. Animals exhibit mimicry to resemble other animals in order to
mislead predators, or use camouflage to blend in with the environment to avoid
detection. Many types of birds’ upper beaks are curved just right in order to act like a
lever, working with the lower beak; in waterfowl, beak curvature helps prevent escape
of fish that the birds catch with their mouths. Homing pigeons’ beaks contain magnetic
particles that help them detect the earth’s magnetic field. Electric eels generate elec-
tricity to ward off prey. Sea stars move by squeezing water out from their tube feet,
generating pressure waves that proper the creatures; they have nerve nets, analogous to
nervous systems in animals. In humans, heart muscle undergoes rhythmic contractions,
nerves conduct electrical signals, bones provide mechanical support. Structures at the
sub-organ level are implicated in how tropisms are exhibited by plants (e.g. helio-
tropism) where they respond to stimuli, and the various -ceptions in animals that are
related to sensing (e.g. graviception, proprioception).

Also, discussing life in terms of structures and phenomena, is not as reductionist as
stating that they are comprised of matter/chemicals - that is too low of a level, which
entirely misses the utility of structures and their phenomena. For example, a poisonous
snake does not merely contain chemicals that harm its prey - it also contains fangs, the
‘delivery structures’ that make the poison be administered effectively.

As is clear from the above discussion, every form of life can be regarded as
comprised of ‘nothing but structures’, whose phenomena serve to keep the life form
alive - ‘what is life?’ [2] can be informally answered this way: a collection of structures
whose purpose (via their intrinsic phenomena) is to provide homeostasis (i.e. maintain
a stable internal environment). It is as if ‘structural biology’ is a tautology, since
structures are central to biological function; likewise, the biophysics and biochemistry
disciplines can also be viewed as the study of phenomena that arise from appropriate
structures. Indeed, medicine, medical technologies, and medical devices and pros-
thetics, are also related to structures and phenomena.
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6 Intelligence

A simple but widely applicable definition of intelligence, is ‘considered response’ [3] -
this stems from the fact that intelligence can be considered a biological function. This
would mean that life forms contain structures that exhibit phenomena that lead to their
exhibiting intelligent behavior (that helps them survive and reproduce). Again,
examples are plenty. In cacti, adaptations such as thorns and thick leaves help them
ward off predators and store water. Slime mold is able to migrate towards a food source
by sensing chemical gradients. A variety of offense and defense related structures help
predators and prey respectively, to hunt or defend respectively. Animal brains contain
specific structures that process and integrate sensory information and provide motor
functions. In higher animals, chemicals (molecular structures) and their receptor sites
(structures on cell surfaces, which are themselves structures) carry out emotional
response and regulation; place cells provide spatial orientation. Also, increasing evi-
dence points to consciousness - a mysterious, explanation-defying phenomenon in
humans and other animals - possibly emerging from the interactions between different,
specialized brain regions.

The notion of emergent group behavior (such as consciousness as we just noted) is
a natural outcome of the ‘considered response’ theory. When a group of interacting
individuals each respond by considering their respective inputs, the collective con-
siderations could be regarded as occurring at the group level, whose collective response
would be considered ‘emergent’ (because the response emerges from the lower-level
ones, as opposed to being directed generated at the group level - not possible, since the
group is incapable of considering). Regarded as group-level considered response,
emergence is not a mysterious, or placeholder, phenomenon; rather, it is expected
behavior that is bound to result on account of individual behavior. Emergence in a
beehive, ant colony, flock of birds [4], traffic, economic markets, and the brain, all
result from individual structures’ phenomena.

7 Intelligence via Digital Computation (PSSH)

The Physical Symbol System Hypothesis (PSSH) states [5]: ‘A physical symbol
system has the necessary and sufficient means for general intelligent action’. This
hypothesis underlies almost all AI to date, which is implemented via digital compu-
tation (algorithmic, Turing-computable). Rule-based manipulation (symbolic logic),
data-based statistical inference (connectionist, i.e. neural architectures, including Deep
Learning), and reward maximization (reinforcement learning, i.e. RL), all employ a
wide variety of digital processing, that involve data structures and computation using
von Neumann stored-program architecture (clock cycles, fetch-decode-execute, arith-
metic logic units, hardware registers, memory/processor distinction). When applied to
AI, this implies that the form of the hardware (specific processor architectures), or the
choice of programming language or compiler etc. is immaterial, since it is all about the
(digital) computation which is expected to lead to intelligent behavior: expert systems
processing knowledge, ML generating an essay with perfect grammar and meaning, RL
agents learning to play hide and seek, etc.
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8 Intelligence via Analog Computation (SPSH)

Complementary to digital computation, there is a different form of intelligence, the kind
routinely exhibited even by the simplest of animals (e.g. fruit fly, worms such as C.
Elegans). Biological life forms do not carry out digital computation, the kind outlined
in the previous section (this is not to say they do not employ binary logic - just not
digital computation). Instead, their computation is entirely analog-based, involving
structures at various scales that have evolved to carry them out. Animals, including
humans ‘experience’ the world - directly, physically, interactively. Such experience is
not via processing symbols, employing data, or computing rewards, the way current AI
does. The directness of experience stems from interactions between an agent and the
environment, occurring via phenomena interchange, stemming from relevant structures
that are present in the agent as well as the environment.

Surely, humans and some other species do carry out symbolic computation (in-
cluding math and language processing), humans collect and employ data, animals
including humans learn via reinforcement. But underneath is analog machinery that
does it all using physical structures and phenomena, not logical structures and digital
computation as the bottom layer.

If the agent interacts with animate structures (e.g. a dog pushes open a door), those
structures respond, but not ‘intelligently’ (no active consideration); on the other hand if
the environment consists of living matter, the response would be ‘considered’ (e.g. a fly
evading being swatted, a human countering a chess move, etc.), involving exchanges of
considered response feedback loops.

Analog computation occurring via physical structures exhibiting phenomena in
brains and other devices (e.g. mechanical clocks, sundials, player pianos, World War II
gun fire control systems (rangekeepers), and a host of others), inspires the following
‘Structured Physical System Hypothesis’ (SPSH): ‘A structured physical system has
the necessary and sufficient means for specific intelligent response’.

9 Implications of the SPSH

Animals, including humans, experience the world, embodied - where the body (in-
cluding the brain) is comprised of structures, via which experience is acquired, stored
as experiential (including episodic) memory, recalled, modified, etc. (all involving
physical structures as well). Such direct experiencing makes it possible to deal with
multiple, simultaneous phenomena in the environment - e.g. by perceiving them as
sights, sounds as well as touch, motion etc. - there is no ‘limit’ on the number of
phenomena, given that the agent is part of its ambient environment and has no control
over it. And, the multiple phenomena, if occurring in inorganic structures, have zero
‘computational’ cost - they are simply responses, not considered.

If it is indeed the case that experience for an agent can only be acquired via
embodied structures directly interacting with its environment, it has implications on
how we would design artificial agents to do likewise. It might be that artificial agents,
using suitable body and ‘brain’ structures designed by us, would need to be analog-
based as well (which would be a form of biomimetics, where we humans utilize
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nature’s structures to achieve similar functionality, i.e. phenomena). Not considering
embodiment, or not using an embodied analog ‘core’ for considering and responding,
might be why, for today’s AI, ‘easy things are hard and hard things are easy’ [6]. In
other words, the worlds of analog computation and digital computation might be
distinct, with virtually no overlap - each being good at what they provide, but not
interchangeable with each other.

What about simulating the world, and embodied agents, in VR? Doing so has clear
advantages such as simplification, repeatability, explicit control over the environment,
etc. [7], but, there is a serious issue, which is that the complexities of simultaneous
structure ! phenomena interactions with the agent, and the agents own composition,
cannot be adequately modeled, simulated and rendered in VR. For example, simulating
an agent stepping on something sharp and ‘experiencing’ pain VR, is not equivalent to
a similar agent being able to exhibit nociception (pain perception), via direct embodied
experience in the real world. The computation of the simulation is not the issue, the
issue is about the need to compute in the first place. Such a distinction is not merely
pedantic, it has real implications - it has been proposed that real-life robots be able to
feel emotions so that they may take better care of themselves [8]. It is not clear that
simulating agents in VR, then instantiating them as real-life embodiments would lead
to a seamless ‘transfer’ of experiencing.

As another twist, what if we built a suitably designed embodied agent (with
appropriate physical structures with which to negotiate the environment), that employs
digital computation at its core? Doing so would be based on the rationale that any
input/signal reaching the brain could be processed digitally if it is sampled adequately
(above its Nyquist limit). This would indeed work - but the hypothesis would be that its
experience would not be as genuine as a similar agent where the processing occurs via
analog physical structures! In the words, the agent would be a ‘zombie’ of sorts, being
able to sense, perceive, display intelligent behavior, all without direct experience. To
take this further, agents with complex-enough brain architectures that operate entirely
in the analog realm, might even be hypothesized to experience consciousness that
would arise on account of the agent being able to experience the world with a sense of
‘Self’ - e.g. a recent study proposes that consciousness could arise when the brain
cycles between two states that involve the default mode network (DMN) and the dorsal
attention network (DAT) [9].

Philosophical musings aside, a practical takeaway from the SPSH (if it is indeed
true) would be that in addition to AI agents carrying out digital computations for tasks
involving symbol processing, data-based inferencing and reward maximizing, they
might also, in complementary fashion, need to do embodied analog computation in
order to operate in the world by directly dealing with it in a model-free manner [10].

Braitenberg vehicles [11] might serve as further inspiration for this line of thought.
Such vehicles are conceptual experiments that involve simple analog computing, where
sensors (for light, sound etc.) directly control a vehicle’s wheels - the vehicles are
reactive automatons, capable of displaying rather sophisticated behavior, especially for
an observer unfamiliar with the vehicles’ internals. If relatively-simple setups can
produce complex behavior (as has been repeatedly verified via their construction), it
might be worth investigating what behavior might result from more complex setups
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(e.g. using neuromorphic hardware for analog processing [12], soft-skin bodies,
sophisticated sensors and actuators etc.).

Analog embodiments do not need to only be anthropomorphic, i.e. there is reason
to limit ourselves to human-like agents. Instead, it would fascinating to explore designs
wildly different from that of human bodies, e.g. arrays of eyes (that respond to a wider
spectrum of wavelengths compared to human eyes) along multiple limbs, senses that go
beyond sight, sound, smell, taste and touch, etc. (e.g. sonar, perception of electrical
fields). The hypothesis is that such designs would result in ‘alien’ beings that, on the
one hand, experience the world fundamentally similar to how biological life does, and
on the other, experience it differently enough to result in novel, useful (to humans)
functionalities.

10 Conclusions

Structures ! phenomena being universally applicable, including to life forms, is the
notion that is explored in this paper. This is argued to encompass intelligence as well,
which then leads to the structured physical system hypothesis (SPSH). Consider-
ing SPSH to be plausible, suggests that embodied agents that carry out analog pro-
cessing their brains, might be able to experience the world in addition to being able to
digitally compute aspects of intelligence, leading to more capable architectures com-
pared to those that only digitally compute.
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Abstract. We propose an architecture for algorithmic trading agents for liq-
uidity provisions on centralized exchanges. These implement what we call an
adaptive market making multi-strategy, which is based on a limit order grid with
continuous experiential learning. The concept exploits definitions of artificial
general intelligence (AGI) as an ability to “reach complex goals in complex
environments given limited resources”, and is treated as a universal multi-
parameter optimization. We present basic reference on implementation of the
architecture being back-tested on historical crypto-finance market data and
capable of providing almost 1000% excess return (“alpha”) under evaluated
market conditions.

Keywords: Adaptive agent � Back-testing � Centralized exchange �
Continuous learning � Experiential learning � Liquidity provision � Market
making

1 Introduction

The subject of algorithmic trading is attracting attention of investors, developers, and
scientists due to high potential financial returns, high demand for implementation of
automated business applications for investments, and liquidity provision and trading
across all sorts of financial markets, including crypto-currencies. One of the popular
applications of that is so called “yield farming” in the crypto-industry, which makes it
possible to create investment portfolios consisting of crypto-assets being used for
automated liquidity provision also called market making. Yield farming can be per-
formed either on centralized exchanges (CEX) such as Binance or decentralized ones
(DEX) with smart contracts on Uniswap or Balancer on the Ethereum blockchain.
Respectively, there is are a lot of studies on how machine learning and artificial
intelligence can be applied to it, such as attempts to learn efficient market making
strategies [1–4]. Unfortunately, the known results are not that exciting so far with
demonstrated ability to learn some basic principles of trading using limit book orders,
and some ability to outperform “hodling” strategies (buy and hold on rising market) in
very specific conditions. So more effort is required to take in this area.

The important part of automated trading is a price prediction [5, 6] which can take
form of either predicting price change direction as a classification problem or prediction
of specific price level as a regression problem. The latter appears more critical for
market making activity. That is because conventional trading with market orders could
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accept predicted price direction change as a trading signal for either sell or buy. In turn,
market making with limit book orders on CEX don’t necessarily need to sell or buy,
they just needs to set the appropriate price levels on bid and ask limit orders on CEX,
according not just to anticipated price movement, but the actual target level of its move.
Unfortunately, high volatility and the manipulative nature of the crypto market
provides challenges even for the former, let alone the latter, so even more work is
needed in this direction, if the problem can be solved at all.

In this paper we extend our earlier work on the matter [7], focusing on method-
ology and architecture for algorithmic trading agents for liquidity provision on cen-
tralized exchanges implementing what we call adaptive market making multi-
strategy based on limit order grid with continuous experiential learning. The
concept exploits a definition of artificial general intelligence (AGI) as an ability to
“reach complex goals in complex environments given limited resources” [8], being
treated as universal multi-parameter optimization. Below we present basic reference
implementation of the architecture being back-tested on historical crypto-finance
market data capable to provide almost 1000% excess return (“alpha”) under evaluated
market conditions. Along the way, we assess the value of the ability to predict the price
during such activity as well as drawbacks of not being able to do it properly.

2 Adaptive Market Making Methodology

For the initial experiment we have designed and implemented a market making
methodology of limit order grid market making “macro-strategy”, where individual
market making agents create a grid of limit orders with each individual order in the grid
representing a specific “micro-strategy”. In turn, each of the micro strategies may have
their individual parameters. The agent executing the “macro-strategy” has an option to
revise the set of different “micro-strategy” sub-agents, as they were controllable sub-
personalities in a scope of a single super-person being in total control of its own “multi-
personality” - that is why we call this a “multi-strategy”.

The classical approach for using experiential or reinforcement learning would be
creating an action space for a market making agent with actions such as creating bid
and ask orders with different spreads [1–3] and learning the behavioral model based on
historical data. Significant performance results have been obtained with this approach
from studies on historical and live crypto-trading data. We presume that might be due
to the following factors. First, the stochastic nature of the crypto market might not
make it possible to learn a single model on long historical intervals covering a variety
of market conditions, so that a single model would work well for such conditions.
Second, building an operational space of agents based on order-level actions might be
too fine-grained where no statistically confident experience associated with corre-
sponding feedback might be collected for any specific order creation or canceling in
corresponding market situations.

The following consideration has lead us to a few decisions for simplifying the
methodology of the initial experiments discussed further and making it more efficient
and risk-tolerant. First, we have replaced operational space of actions with operational
space of strategies being executed for determined time intervals. Second, the feedback

Adaptive Multi-strategy Market Making Agent 205



or reward for using the strategy was evaluated as profit or loss for the period of strategy
execution. Third, in order to speed-up the learning curve and mitigate the risk, we made
it possible for an agent to execute a certain number of strategies at a time, having its
“personality” split in several “sub-persona” child agents, with each of them running
their own “micro-strategy”, while the parent agent “macro-strategy” was designated to
control and manage the child agents. Fourth, each of the child “micro-strategy” agents
could be run either in “real mode” trying to make real trades on the market, or in
“virtual mode” just watching the live structure of the limit order book on the Exchange
aligned with the stream of trades being closed and performing “virtual market making”
like we are doing in our backtesting framework [7].

In our current architecture evaluated in the course of presented work, each of the
“micro-strategy” child agents has ability to create only one limit order at a time, where
the position of the order on bid or ask sides is defined by price dynamics, spread is
asserted to be one of the “micro-strategy” parameters. The order cancelling policy of
such agents is defined by conservatism parameters of the “micro-strategy”, where
orders can be either never cancelled until completion, or canceled if there is a need to
create an order on the other side of the mid price, or if there is just a mid price change
which needs the current bid or ask price to be updated. That is, the operational space of
a child agent can be denoted as P(s,c), where P is a point in parameter space, s is a
spread in percents and c is order cancellation conservatism.

The “macro-strategy” of a parent agent is designed to start its market-making
activity with all of its child “micro-strategy” agents with each of them placed in an
individual point P(s,c) in the operational space having the space covered evenly by a
grid of unique N configurations. Each of the child N agents is given 1/N share of the
parent agent’s budget so they can invest in their orders. The first round of trading from
starting time t0 during period T and order refresh rate dt is executed, and then the parent
agent evaluates losses and returns of all of its children. For the next round of trading
starting time t1 during the same period T, the top M most profitable agents are selected
and given a much larger budget as 1/M share of the parent agent budget. At the same
time, while M winners are doing the “real” market making with real budget, all of the
remaining agents keep market making in “virtual mode” against the live market data.
At the end of the next round, the returns and losses of all of the agents are collected and
the new M winners are selected for the subsequent round starting t1 while the “real”
profits and losses are accumulated.

The profitability of an agent is assumed to mean positive returns as well as positive
excess returns (“alpha”) compared to a “hodler” strategy agent which just holds the
same budget as given to a market making agent. If the number of agents with positive
excess return is less than M for a certain round then only that number of agents is
selected for “real” operations in the next round with the real budget shared between
them. If no agents have positive return exceeding the “hodler” return, the next round is
skipped for “real” market making but “virtual” operations are continued in order to
attempt to find suitable “micro-strategies” for subsequent rounds.

Optionally, each of the child agents may be making decisions relying not on the
current market price (mis price), but rather on its future projection predicted for every
new time point past refresh rate dt by a machine learning algorithm. In the current work
we used only the simple linear regression algorithm relying just on the historical price
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data. For the “ground truth” prediction baseline we were using the historical data
looked up in the following data point past dt in course of back-testing.

3 Preliminary Experimental Results

The methodology described above has been implemented and tested relying on back-
testing framework described in our earlier work [7] with results presented art Fig. 1.

The experiments have been run or based on BTC/USDT data from Binance for
6 days period starting 2021-6-21 17:00, relying on per-minute snapshots of the limit
order book data and full scope of trades data. The N of “micro-strategy agents” was 18,
so there were 6 different spread settings (0.0%, 0.2%, 0.4%, 0.6%, 0.8%, 1.0%) and 3
different order cancellation conservatism settings as described above. The M of win-
ning agents for “real trading” was 3. The strategy evaluation period T was taken as
2 days, so only three rounds have been executed in each of the experiments. The
experiments were run for order refresh period 1 h (left side of Fig. 1) and 1 min (right
side of Fig. 1). The first set of experiments for the two refresh rates were run without
predictions (top on Fig. 1). The second set of experiments were run with “ground truth”
predictions to evaluate baseline - what would be the maximum returns given the
ultimate predictive abilities (middle on Fig. 1). The third set of experiments were run
using basic Linear Regression (see https://scikit-learn.org/stable/modules/generated/
sklearn.linear_model.LinearRegression.html) on price data, with mean absolute per-
centage error (MAPE) about 9% better than just using the “last known price” (from)
previous data point on given price data for historical interval.

Each of the 6 experiments (with 2 refresh rates and three prediction setups)
involved assessments of three kinds of returns based on the same initial budget given to
an agent executing specific “macro-strategy”: “hodler” - just holding investments into
base currency during the entire period of testing; all “micro-strategies” being executed
together with 1/N of allocated budget; “macro-strategy” described in the previous
section being the subject of a given study.

The results on Fig. 1 (top) clearly show about 800–1000% (8–10 times) excess
return compared to “hodler” if using the suggested “macro-strategy” for any refresh
rate. At the same time, if using market making with all possible “micro-strategies” at
once, it can provide significant (350%) “alpha” compared to “hodling” in case of
hourly refresh rate but also underperform the “hodler” in case of minutely refresh rate.
This is thought to be the key result of given work deserving further attention and
exploration.

The other two experiments have shown that the ability to predict the price during
such activities is a key to high returns as well as a point that not being able to do it
properly leads to rather high losses. That is, using the “ground truth” level of price
prediction (not achievable in real life) makes the “alpha” skyrocket to 5000–20000%
(5–20 times) excess returns as seen in the middle of Fig. 1. On the other hand, price
prediction with high MAPE is causing straight losses which are still substantially less if
using the adaptive “macro-strategy” suggested in this work.
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Fig. 1. Overall returns using different “macro-strategies”. Top – not using predictions, middle –
using “ground truth” predictions, bottom – using predictions by Linear Regression. Left three
bars – hourly refresh rate (dt = 1 h), right three bars – minutely refresh rate (dt = minute).
Groups of three bars indicating overall returns/losses by strategies (left to right): hodler, all
“micro-strategies” acting together with no selection, “macro-strategy” described above.
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4 Conclusion

The proposed algorithmic market making methodology is designed for liquidity pro-
vision architecture at https://www.autonio.foundation/ and https://www.singularitydao.
ai/. The preliminary results point at potential business value of using the adaptive
market making multi-strategy based on a limit order grid with continuous experiential
learning in the area of decentralized finance, automatically generating significant excess
returns without of manual interventions for ongoing adjustment of market making
strategy parameters depending on constantly changing market conditions.

Apart from that, the results point at the need or extra care to be taken in regard of
using machine learning for price predictions and the need of careful assessment of the
prediction quality results before integrating it into production pipelines.

Our future work will be dedicated to a) testing the developed methodology and
architecture against extended time intervals covering different market conditions for
different assets and trading pairs. This will be done by testing it with different strategy
evaluation periods, parameter space discretization winner selection; b) improving the
adaptive experiential learning to more intelligent navigation of the operational space of
greater dimensionality involving more complex “micro-strategies” with a greater
number of parameters; c) involving evolutionary/genetic programming in “micro-
strategy” selection and evolution; d) incorporating the latest developments of the price
prediction domain in the agent “micro-strategies”.
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Abstract. While general conversational intelligence (GCI) can be considered
one of the core aspects of artificial general intelligence (AGI), there currently
exists minimal overlap between the disciplines of AGI and natural language
processing (NLP). Only a few AGI architectures can comprehend and generate
natural language, and most NLP systems rely either on hardcoded, specialized
rules and frameworks that cannot generalize to the various complex domains of
human language or on heavily trained deep neural network models that cannot
be interpreted, controlled, or made sense of. In this paper, we propose an
interpretable “Contextual Generator” architecture for question answering (QA),
built as an extension of the recently published “Generator” algorithm for sen-
tence generation, that produces grammatically valid answers to queries struc-
tured as lists of seed words. We demonstrate the potential for this architecture to
perform automated, closed-domain QA by detailing results on queries from
SingularityNET’s “small world” POC-English corpus and from the Stanford
Question Answering Dataset. Overall, our work may bring a greater degree of
GCI to proto-AGI NLP pipelines. The proposed QA architecture is open-source
and can be found on GitHub under the MIT License at https://github.com/
aigents/aigents-java-nlp.

Keywords: General conversational intelligence � Interpretable natural language
processing � Natural language generation � Question answering � Link grammar

1 Introduction

General conversational intelligence (GCI) can be considered one of the core aspects of
artificial general intelligence (AGI); however, there currently exists minimal overlap
between the disciplines of AGI and natural language processing (NLP). Only a few
AGI architectures can comprehend and generate natural language, and most NLP
systems rely on either hardcoded, specialized rules and frameworks that cannot gen-
eralize to the various complex domains of human language or on heavily trained deep
neural network models that cannot be interpreted, controlled, or made sense of [1].
Moreover, the majority of AGI frameworks that do possess some level of natural
language comprehension (NLC) or natural language understanding (NLU) cannot
convey such knowledge (e.g., a response to a query posed by a human) in natural
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language without template-based customization or similar manual, labor-intensive
procedures (Goertzel et al. 2010; Goertzel and Yu 2014).

In this paper, we propose a question answering (QA) architecture, founded upon an
extension of the sentence generation system described in Sect. 2.1, that serves as an
interpretable natural language processing (INLP) method. INLP, as proposed in [2], is
an extension of interpretable AI (IAI)—which expands upon explainable AI (XAI) by
calling for an interpretable model/knowledge base as well as explainable results—to
NLP; INLP enables the acquisition of natural language, comprehension of text-based
messages, and production of linguistic content in a reasonable and transparent manner
[3]. The proposed method of QA satisfies the criteria for interpretability by providing
both explainable results as well as an interpretable model for NLP in general and QA in
particular, since we rely on Link Grammar (LG) as our formal grammar which itself is
comprehensible [4]. To this end, our QA architecture may bring a greater degree of
GCI to proto-AGI NLP pipelines.

1.1 Natural Language Generation

Natural language generation (NLG) is the task of producing linguistic content (most
often in the form of grammatically and morphologically valid text) from semantic
and/or non-linguistic data [5]. Even the process of producing simple sentences—a sub-
problem of NLG known as sentence generation, which we will treat as synonymous
with NLG for the purposes of this paper—requires significant grammatical, syntactical,
morphological, and phonological knowledge. While the integration of semantic
knowledge could improve our results and warrants future research, the NLG compo-
nent of our current QA pipeline focuses on the use of solely grammatical knowledge.

Within the sentence generation process is the task of surface realization, which is
concerned with the construction of sentences from the underlying content of a text,
usually structured as an unordered set of tokens (words, punctuation, etc.) [6]. As we
explain in Sect. 2.2, the same tokens can often be arranged into multiple grammatically
and morphologically valid sentential forms that an NLG system must disambiguate in
context, a process known as semantic disambiguation [7].

1.2 Question Answering

QA, a branch of computer science integrating information retrieval and NLP, refers to
the ability for machines to automatically answer questions posed in the form of human
language. As discussed in [8], an explainable QA pipeline involves components for
both NLC and NLG. During NLC, the question, or input query, is parsed and then
semantically interpreted (the pipeline determines the underlying “themes” or “topics”
of the question and then computes relationships between each component of the parsed
query). During NLG, the query is then semantically executed (the semantic relation-
ships obtained during NLC are used to find the answer to the question), and finally, a
formal grammar is utilized to construct a grammatically valid sentence from words
associated with the non-linguistic answer obtained in the query execution step. Below
is a diagram of an interpretable QA pipeline (Fig. 1).

Unsupervised Context-Driven Question Answering 211



Our current work is concerned with a more basic version of QA, in which the query
is proposed as a list of seed words (in natural language) and the answer is a gram-
matically valid sentence that correctly captures the relationships between the seed
words. In this sense, our work replaces the semantic interpretation and query execution
components of the described QA pipeline with an extended version of sentence gen-
eration based on the context of the question and scope of textual data to search for an
answer. That is, we treat the context of the question as a constraint for the generation
phase of QA; in the perspective of the above pipeline, it is as if the words needed to
answer the query are already known based on prior semantic query execution and must
simply be arranged into a grammatically valid response. Given that most modern
search queries online (e.g., Google, Bing, Yahoo) are performed only with keywords
rather than properly structured sentences, we anticipate that our work would be prac-
tical for human-computer interactions.

1.3 Link Grammar

LG is founded upon the fact that each word is defined by a set of connectors and
disjuncts associating those connectors. Connectors serve as either the left or right half
of a grammatical link of a given type, and disjuncts are sets of connectors that define
the valid grammatical context of a given word [1]. Rules—which represent lexical
entries or grammatical categories—describe the sets of defining disjuncts for clusters of
grammatically equivalent words. From our perspective, NLG is the process of fol-
lowing rules to construct sentences by matching connectors between words to form
links.

LG also imposes two additional constraints: the planarity metarule, which specifies
that links must not cross, and the connectivity metarule, which dictates that all links
and tokens in a sentence must form a connected graph. Furthermore, unlike most

Fig. 1. QA workflow
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alternative grammar rule dictionaries and APIs (spaCy1, Universal Dependencies2,
etc.), LG does not require grammar rules to be hardcoded into client-side architectures;
LG rules can also be learned dynamically as has been shown in our previous work [3].
Overall, the human-readable and editable nature of LG allows our grammar induction
algorithm to comprehend and process text under the premise of unsupervised language
learning, and thereby better serve as an INLP method for the purposes of the QA task.

1.4 Prior Work

Sentence Generation. The proposed NLG and QA methods can be called unsuper-
vised since they do not require prior training on supervisedly prepared corpora.
However, the majority of published natural language generation methods are super-
vised and/or rely on deep learning models that require extensive training on labeled
data; as such, they are “black box” algorithms that are neither explainable nor inter-
pretable (Ratnaparkhi, 2000; Wen et al., 2015; Dathathri et al., 2020). There are only a
few notable unsupervised (yet often not interpretable) NLG systems.
Lian et al. proposed SegSim, an approach based on the OpenCog NLGen software that
constructs sentences by satisfying constraints posed by inverse relations of hypergraph
homomorphisms. SegSim performs surface realization by matching the subsets of an
Atom set in need of linguistic expression against a datastore of (sentence, link parse,
RelEx relationship set, Atom set) tuples produced by OpenCog’s NLC software. This
matching allows SegSim to determine the syntactic structures that have previously been
used to generate relevant Atom subsets, and these structures are then pieced together to
form overall syntactic structures corresponding to one or more sentences. The sentence
is solved for as a constraint satisfaction problem from the Atom set semantics [1].
SegSim constructs simple sentences unproblematically but becomes unreliable for
more syntactically complex sentences (e.g., those involving conjunctions).

Freitag and Roy proposed an unsupervised NLG system in which denoising
autoencoders are used to construct sentences from structured data interpreted as “corrupt
representations” of the desired output. The denoising autoencoders can also generalize to
unstructured training samples to which noise has already been introduced [9].

Question Answering. There exist a variety of well-known, large, supervised language
understanding models that have been applied to the QA task. BERT (Bidirectional
Encoder Representations from Transformers), a pre-trained language representation
model that learns bidirectional representations from unlabeled text, can be fine-tuned
on token sequences representing labeled question-answer pairs to perform the down-
stream task of QA [10]. DistilBERT, a distilled version of BERT, implements
knowledge distillation during the pre-training phase to reduce the size of BERT by
40% while retaining 97% of its language understanding capabilities and being 60%
faster [11]. LUKE (Language Understanding with Knowledge-based Embeddings), a
multi-layer bidirectional transformer utilizing a novel entity-aware self-attention

1 https://spacy.io.
2 https://universaldependencies.org.
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mechanism, is trained by predicting randomly masked words and entities in the input
corpora. When fine-tuned to perform both cloze-style and extractive QA, LUKE
achieves state-of-the-art results [12]. ELECTRA, RoBERTa, and BART are among
other popular machine reading comprehension models [13–15].

However, all such models are supervised and uninterpretable; there are only two
notable published methods for unsupervised QA. Lewis et al. proposed an unsuper-
vised QA method whereby (context, question, answer) triples are generated unsuper-
visedly and then used to synthesize extractive QA training data in “cloze” format [16].
Perez et al. developed an unsupervised QA approach focused on decomposing a single
hard, multi-hop question into several simpler, single-hop sub-questions that are
answered with an off-the-shelf QA model and recomposed into a final answer [17].

2 Methodology

2.1 Generator Architecture for NLG

To perform QA in an unsupervised and interpretable manner, we adopt and extend the
Generator architecture proposed in [2]. After calling the Loader, utility infrastructure as
shown in Fig. 2, to store the LG dictionary in memory, the Generator performs surface
realization as follows:

1. Given a list of words, computes a subset of all orderings of those words that satisfies
initial checks of the planarity and connectivity meta-rules.

2. Determines if each ordering is grammatically valid; that is, ensures that every pair
of consecutive tokens can be linked via a pair of “connectable” disjuncts.

3. Returns all grammatically valid orderings as sentences.

2.2 Contextual Generator Architecture for QA

Fig. 2. INLP architecture involving a sentence parsing algorithm (the “Parser”) and QA
framework (the “Contextual Generator”) built upon an NLG algorithm (the “Generator”), all
relying on the same Loader infrastructure.
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In this paper, we propose a Contextual Generator (CG) architecture which extends
our prior NLG architecture in two major ways:

1. The surface realization model described in Sect. 2.1 is expanded recursively to
build grammatically and morphologically valid sentences from two or more seed
words that comprise only a subset of the total list of words needed to construct the
final sentence (see “Contextual Generator”).

2. To allow for semantic disambiguation—determining which of multiple sentential
answers to a given query is most appropriate in the given context—the revised
Loader architecture, besides loading the LG dictionary and corpus lexicon, also
loads context lexicons. Each word in the context lexicon is supplied with a weight
denoting its contribution to the context in accordance with Zipf’s Law (see “Zipfian
Calculations”). Note that the Loader creates the corpus lexicon only once, but builds
a new lexicon for each unique context.

Two sample question-answer pairs, with answers generated by our CG architecture,
are shown below. The CG generates correct answers but, as seen in the first question-
answer pair, succumbs to the grammatical ambiguity problem described in Sect. 3.

Contextual Generator. The CG performs closed-domain QA on queries structured as
lists of seed words. It operates as follows:

1. The CG calls the Loader to store the LG dictionary and corpus lexicon as well as
extract a context lexicon from a given document as described above.

2. The CG then recursively calls the Generator to determine valid sentence con-
structions from a list containing all seed words and n additional words from a subset
of words in the context lexicon that satisfy initial checks of the planarity and
connectivity meta-rules (e.g., one partial connectivity check confirms that the first
and last tokens in a potential sentence can form links to the right and left,
respectively). The n-addition permutations are tested in order of decreasing Zipfian
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frequency corresponding to the current context. If a valid sentence is found, the CG
returns that sentence and stops running. When step 2 is first executed, n = 1,
imposing the constraint that the answer is of minimum length.

3. If no sentences have been generated after testing all valid subsets and the runtime
has not exceeded a limit specified to avoid combinatorial explosions (3 min in our
experiments), the CG increases n by 1 and repeats step 2.

Zipfian Calculations. In the previous subsection, it was specified that the CG checks
n-addition permutations in order of decreasing Zipfian frequency. To motivate this,
consider the sample query “mom cake” along with a context specifying the food
preferences of family members. If the CG were to use context word frequencies without
modification rather than Zipfian frequencies, it would perceive the sentence “Cake was
a mom” as more contextually appropriate than “Mom likes cake,” which is the ground
truth answer. This is due to a phenomenon known as Zipf’s law [18], which states that
the rank-frequency distribution of words in a given lexicon is an inverse relation;
determiners and linking verbs (“a,” “the,” “was,” “is,” etc.) are more common in any
corpus, regardless of context, than more semantically appropriate words (such as
“likes” in the context of food preferences as in the motivating example above). To
account for Zipf’s law, we use the Zipfian frequency, which is calculated as follows:

Zw ¼ log 1þFXðwÞð Þ
log 1þFCðwÞð Þ ; ð1Þ

where w is the given word, FXðwÞ is the frequency of w in the context document, and
FCðwÞ is the frequency of w in the corpus. Because the Zipfian frequency divides the
logarithm of the context frequency by that of the corpus frequency, more contextually
appropriate words receive higher scores than do determiners and similarly common
words. For multiple-word additions, we sum individual Zipfian frequencies.

3 Results

Our algorithmwas primarily tested on 60 queries with words all part of SingularityNET’s
“small world” POC-English corpus.3 For this purpose, we have used a corresponding
“small world” LG dictionary (automatically inferred from high quality LG parses created
by SingularityNET’s ULL pipeline).4 To evaluate the proposed architecture, we report
four scores: the bigram variant of BLEU (Bilingual Evaluation Understudy), a measure
of the number of matching bigrams in two sentences [19]; WVCS (Word2Vec cosine
similarity), calculated as the cosine of the angle between the vector encodings of the
candidate and reference sentences [20]; WER (Word Error Rate), a measure of the edit
distance between two sentences [21]; and TER (Translation EditRate), another measure
of edit distance [22]. Note that higher BLEU and WVCS scores as well as lower WER

3 http://langlearn.singularitynet.io/data/poc-english/poc_english.txt.
4 http://langlearn.singularitynet.io/test/nlp/poc-english_5C_2018-06-06_0004.4.0.dict.txt.

216 V. Ramesh and A. Kolonin

http://langlearn.singularitynet.io/data/poc-english/poc_english.txt
http://langlearn.singularitynet.io/test/nlp/poc-english_5C_2018-06-06_0004.4.0.dict.txt


and TER scores indicate more accurate language models. Each metric is calculated for
each (answer, ground truth answer) pair and then averaged over all 60 queries.

Our QA architecture significantly outperforms prior state-of-the-art models on the
POC-English dataset for the task of QA from short lists of seed words. As baselines, we
implemented BERT, ELECTRA, DistilBERT, and RoBERTa models that were pre-
trained on the Stanford Question Answering Dataset (SQuAD2.0) and then fine-tuned
on the POC-English corpus [23]. Our QA system attains superior BLEU, WVCS, and
TER scores and competitive WER scores, demonstrating an 0.11 increase in BLEU,
0.15 increase in WVCS, and 0.08 decrease in TER from the best baseline results
(Table 1).

Our results were mainly affected by the issue of grammatical ambiguity, a problem
whereby the same word can take on different roles in a sentence (e.g., subject-object
ambiguity, where a noun can be either the subject or object of a sentence). While both
sentences are grammatically valid, only one is semantically correct; implementing
semantic disambiguation as part of the NLG component of our pipeline beyond that
described in Sect. 2.2 will be part of our future work.

We additionally tested our algorithm on three samples randomly obtained from
SQuAD2.0 using the complete LG; all samples were cleaned (questions were restated
as sets of seed words and proper nouns/phrases not present in LG were removed):

Table 1. Results when tested on 60 queries from SingularityNET’s POC-English corpus.

Metric Results
Ours BERT ELECTRA DistilBERT RoBERTa

BLEU 0.878 0.639 0.712 0.604 0.767
WVCS 0.944 0.606 0.741 0.595 0.799
WER 0.645 0.924 0.550 1.095 0.150
TER 0.166 0.381 0.342 0.457 0.245
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Samples 1, 2, and 3 show the benefits and drawbacks of QA using Zipfian fre-
quencies. While Samples 1 and 2 correctly and partially correctly identify the addi-
tional word needed to answer the question in context, respectively, Sample 3
incorrectly chooses the word “tradition” over “Italy” since “tradition” appears twice in
the context document while “Italy” appears once. Fine-tuning our QA architecture to
account for such inconsistencies between Zipfian frequency and contextual appropri-
ateness—potentially by building an integrated LG schema containing semantic
knowledge that augments the CG’s grammatical and lexical frequency knowledge—
will be our next task.

4 Conclusion

We propose a novel CG architecture to perform basic QA from lists of seed words. Our
algorithm is an INLP method and largely outperforms current state-of-the-art QA
models on the POC-English corpus. Because the proposed architecture uses LG to
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enable machines’ understanding of text, it contributes to the reconciliation of NLP and
AGI.

Our QA architecture will primarily be applied to the Aigents Social Media Intel-
ligence Platform [24]. If integrated into the Aigents cognitive architecture—which
currently depends on artificially controlled language similar to oversimplified “pidgin”
English—our algorithm could provide GCI to Aigents chatbots.

Our future work will involve: 1) testing our algorithm on queries from arbitrary
English documents using the complete LG dictionary; 2) implementing grammatical
disambiguation; 3) expanding our algorithm’s QA capabilities by building an inte-
grated LG schema containing semantic as well as grammatical knowledge; 4) imple-
menting the full QA pipeline including semantic interpretation and query execution
preceding response generation; and 5) adding support for languages other than English
(including languages such as Russian that require heavy morphology usage).
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Abstract. Many digital devices and systems that interact with humans can be
expected to become emotional in the coming years. This transition will help them
achieve trust and mutual understanding in establishing contacts at the social level,
which is necessary for their integration into human society. The main problem is
the ability to understand emotions and adequately respond to them: i.e., emotional
intelligence, both verbal and non-verbal, which today is fully realized only in
biological systems. In this work, four experimental paradigms were used for the
development and study of a general model of social-emotional intelligence: a
virtual dance partner, a virtual clown improvisation, a virtual pet, and a virtual
interlocutor. The virtual actor model implemented the basics of the eBICA cog-
nitive architecture. Characteristics of the virtual actor behavior were evaluated
and, when possible, compared against the characteristics of human behavior in the
same settings. Preliminary results support the idea of one universal cognitive
model applicability to a variety of domains and interaction paradigms involving
human and virtual actors. Practical implications of the concept are discussed.

Keywords: Emotional AI � Cognitive modeling � BICA � Social intelligent
agents � Virtual actors � Semantic mapping � Moral schemas

1 Introduction

What do we lack in order to “breathe the soul” into the computer, if we are talking only
about the impression produced, and not about the authenticity? This question is of
relevance today, as it becomes clear that digital models of social emotionality will soon
be in demand in a wide variety of areas [1]: from personal assistants and virtual tutors
to collaborative robots and smart things. Indeed, in many emergent areas and para-
digms of human-machine interaction, achieving success is impossible without estab-
lishing rapport, that is, stable social contact based on mutual understanding, empathy,
and mutual trust [2]. Therefore, a machine must be able to understand human emotions,
quickly and adequately respond to them, convincing a person with its actions that it is
thoughtful, comprehensible, sensitive, generous, and reliable, and on this basis be able
to maintain rapport. A large number of studies were undertaken recently in this
direction [3–6]. Ideally, the machine should not only be socially acceptable, but also
socially attractive and charismatic, regardless of whether its interaction with a human is
verbal or non-verbal. This is the challenge that humanity is facing today.
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The answer to this challenge should be the creation of a universal module capable
of endowing a given intelligent agent or robot with the aforementioned qualities. The
basis for binding the module to the agent should be a system of values and emotional
appraisals specific to the paradigm and represented by a semantic map [7], while the
principles of operation of the module itself can be based on a universal cognitive model
of social emotionality, applicable in a wide range of domains and paradigms.

Therefore, the development of a general-purpose model of emotional intelligence
represents an important overarching challenge [3, 8–11]. But this challenge is only
possible to solve by working out specific examples, which do not necessarily have to be
immediately practically useful. Many great inventions and discoveries began with
“toys”, and this property cannot be considered their disadvantage. “Toy” tasks are
important because, with their simplicity, they can just meet the requirements of the
overarching task, allowing one to quickly create a prototype that proves the concept.

This is why in the present work several “toy” paradigms are considered, including a
virtual dance partner, a virtual clown improvisation, a virtual pet, and a virtual interlocutor
based on one and the same approach. The cognitive model of virtual actor behavior is
based on the eBICA cognitive architecture [12, 13] and adapted to each specific case.

The paper is organized as follows: first, key elements of the general approach are
outlined. Then results of case studies are summarized, followed by general conclusions.

2 General Model of Virtual Actor Behavior Based on eBICA

The general eBICA model used here was introduced in [12] and described in detail in
[13]. The architecture (Fig. 1) includes seven memory systems. Dynamic variables
(fluents) include appraisals [9, 10], somatic markers [14, 15], feelings, mood, emotion,
behavioral bias and reaction.

Fig. 1. A bird-eye view of the eBICA cognitive architecture, including seven memory systems.
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Appraisals A of actors are calculated based on behavior by summing the contri-
butions of all actions with some “forgetting”, using a leaky integrator model [13]:

AðauthorÞ :¼ ð1� rÞ � AðauthorÞþ r � Aðaction authorj Þ; ð1Þ
AðtargetÞ :¼ ð1� rÞ � AðtargetÞþ r � Aðaction targetj Þ; ð2Þ

Here r is a small positive constant. The labels “author” and “target” indicate the
perspective from which the action is perceived. Appraisals in turn determine Feelings
and action likelihoods, as described in [12]. Initial appraisals of actions are given by the
semantic map, which can be constructed using several methods: human participant or
expert ranking, optimization, back-propagation of reward, and more. Semantic map
determines the binding of the model to a specific paradigm. Moral schemas determine
the agent behavior according to general, paradigm-independent principles.

3 Summary of Case Studies

3.1 Virual Dance Partner

The selected paradigm of a virtual partner dance is shown in Fig. 2A. There are three
actors (1 human and 2 virtual) that control dancing avatars in the virtual environment.
The avatars are located at the vertices of an equilateral triangle in such a way that each
can see all the others. Freedoms include selection of a partner and a dance pattern.

Several types of dancer characters were used in this study [16]: Timid, Ringleader,
Dancer, and Naïve. They differ in the frequency and threshold of their activation of the
moral schema of partnership, that changes rules of behavior and its appraisal. Results
show that participants tend to select virtual actors and establish relations with them.

3.2 Virtual Clown Improvisation

The paradigm is a two-clown ad hoc improvisation on a virtual stage (Fig. 2B), with
human participation as spectators or scriptwriters only. The output of the simulation
was produced as text, and the action was not visualized. The virtual clown action was
not scripted and developed naturally. In parallel, several scenarios were written by a
group of human experts using the same paradigm and available actions. The two sets of
scenarios were analyzed and compared to each other on a number of characteristics.
Results show that human and machine-generated scenarios are similar and could be
indistinguishable. The model version with dynamical feelings produced better results.

The author is not aware of any exact match in the literature. A robot-comedian was
studied by Vilk and Fitter [17]; however, its behavior was purely verbal. Many studies
address teleclowning and virtual clownery used in health care [18, 19].
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3.3 Virtual Pet and Virtual Interlocutor

These two additional paradigms (Fig. 2C, D) were implemented in Unity and in Unreal
Engine 4 and used in experiments with human participants. Results [20] confirm the
applicability of the model. In particular, in our study of the virtual pet (a penguin:
Fig. 2C) it was found that all participants of the experiment believed that the penguin
understands them. It is also remarkable that among all the 12 scales on which penguin’s
behavior quality was evaluated by participants there was no single one on which the
average result went in the negative direction. In the course of a 10-min interaction,
friendly relationships developed between the penguin and the participant. Details of
this study can be found elsewhere [20].

4 Taking the Model to a Next Level by Deep Learning

In all “toy” paradigms described above, one and the same general eBICA model [13]
was used after some adaptation to the specific paradigm. A disadvantage of this
approach is the necessity to program the algorithm by hands, and then to adjust its
parameters in order to get a socially acceptable behavior. In the future, this should not
be the case: we believe that AGI should grow cognitively, learn and evolve by itself,
with the involvement of humans as mentors and instructors, not as programmers. But
how this level can be achieved?

On the one hand, the deep learning revolution [21] has changed paradigms in AI,
providing developers with an extremely powerful learning device [22]. On the other
hand, this device has limitations in its autonomous cognitive growth. To train a neural

Fig. 2. Studied paradigms. A: virtual dance partner, implemented in Unreal Engine 4. B: virtual
clown improvisation, a PowerPoint sketch. C: virtual pet, implemented in Unity 3D: a screenshot
taken during experiment, with participant’s face. D: virtual interlocutor, implemented in UE4.
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network behave like a human, we need human behavioral data in a big volume, that
may not be available for a particular domain. This is why researchers around the world
rack their brains trying to solve the puzzle: how to combine a statistical neural network
approach with a biologically-inspired cognitive modeling approach? One solution was
recently found by the group of Greg Trafton [23]. Following their ideas, we tried a
combination of the two methods applied to the virtual clownery paradigm, as follows.

Scenarios of virtual clown improvisations (Fig. 2B) were constructed from 72
predefined action primitives, represented as sentences. Therefore, each human-
generated or machine-generated scenario is a sequence of given sentences. An LSTM
network was pre-trained on a large (595 scenarios) dataset generated by the eBICA
model. After that, the training continued using a small number of human-generated
scenarios. Here we illustrate the difference between outcomes, presenting first a typical
scenario generated by LSTM after the pre-training session. The logical and artistic
quality of this example is not noticeably different from the quality of scenarios generated
by eBICA.

Whiteface paces the floor. Whiteface takes the bouquet of flowers. Whiteface brushed his hair.
Whiteface opens the trash container. Whiteface walks to the mirror, makes smart faces at the
mirror. Whiteface paces the floor. Whiteface takes the bouquet of flowers, puts bouquet of
flowers in the center of the table. Whiteface walks to the mirror, makes smart faces at the
mirror. Whiteface walks to the mirror, makes funny faces at the mirror. Whiteface sits down on
the chair. Redhead enters the room. Redhead greets Whiteface. Whiteface greets Redhead in
response. Redhead takes the hammer, hits the mirror with the hammer, makes it a false mirror.
Redhead leaves the room. Whiteface tips the vase with flowers. Whiteface brushed his hair.
Redhead enters the room. Redhead greets Whiteface. Whiteface greets Redhead in response.
Redhead takes the hammer, offers hammer to Whiteface. Whiteface declines the hammer offered
by Redhead. Whiteface points finger at Redhead and laughs. Redhead hits the mirror with the
hammer, makes it a false mirror. Redhead paces the floor.

And here is a typical scenario generated by the same LSTM after additional training
on human data (none of the human-generated sequence fragments were replicated).

Redhead enters the room. Redhead greets Whiteface. Whiteface greets Redhead in response.
Redhead tips the vase with flowers. Whiteface points finger at Redhead and laughs. Redhead
makes a long nose at Whiteface. Redhead shows middle finger to Whiteface. Whiteface ignores
Redhead. Whiteface arranges flowers in the vase. Redhead tips the vase with flowers. Whiteface
arranges flowers in the vase. Redhead walks to the rake, rips the rake off the hanger. Redhead
throws the rake on the floor. Redhead opens the trash container. Whiteface paces the floor.
Whiteface takes the hammer. Redhead makes a long nose at Whiteface. Whiteface [dropped the
hammer and] paces the floor. Redhead makes a long nose at Whiteface. Whiteface stumbled on
the hammer, screams of pain. Whiteface stumbled on the bottle of vodka, the bottle rolls.
Whiteface takes the hammer, breaks the rake teeth with the hammer.

Comparison of the two examples indicates that it is possible to improve the per-
formance of a cognitive model (in this case, eBICA) using human data and deep
learning.
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5 General Conclusion

In all studied paradigms, virtual actors were implemented using the eBICA cognitive
architecture. The model was adapted to the paradigm in two ways: (1) a semantic map
of object and action appraisals was constructed using human ranking; (2) moral
schemas were formulated taking into account the paradigm specifics. General princi-
ples of the model operation were the same in all cases. Results confirm model appli-
cability to selected paradigms and therefore suggest its usability in practically
important cases. An additional study indicates that results can be further improved with
a combination of a cognitive model and a statistical neural network model trained on
behavioral data.
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Abstract. Any machine targeted for human-level intelligence must be
able to autonomously use its prior experience in novel situations, unfore-
seen by its designers. Such knowledge transfer capabilities are usu-
ally investigated under an assumption that a learner receives training
in a source task and is subsequently tested on another similar target
task. However, most current AI approaches rely heavily on human pro-
grammers, who choose these tasks based on their intuition. Another
largely unaddressed approach is to provide an artificial agent with meth-
ods for transferring relevant knowledge autonomously. One step towards
effective autonomous generalization capabilities builds on (autonomous)
causal modeling and inference processes, using task-independent knowl-
edge representations. We describe a controller that enables an agent to
intervene on a dynamical task to discover and learn its causal relations
cumulatively from experience. Our controller bootstraps its learning from
knowledge of correlation, then removes non-direct-cause correlations –
correlations that are due to a common (external) cause, be spurious, or
invert cause and effect – through strategic causal interventions, while
learning the functions relating a task’s causal variables. The effective-
ness of knowledge transfer by the proposed controller is tested through
simulation experiments.

Keywords: Generalization · Learning · Cumulative learning ·
Knowledge transfer · Control · Causality · Autonomy

1 Introduction

Any agent with general intelligence must be able to deal with novel situations
[17]. Since novelty is always relative to a learner’s knowledge, one way a controller
may handle it is to use priorly-experienced situations for guidance. This calls for
models that are generalizable to a variety of scenarios. Conventional machine
learning methods typically learn many spurious correlations, which may cause
unpredictable performance – possibly catastrophic – when facing new tasks. Also,
current ‘transfer learning’ methods heavily depend on human programmers to
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choose the tasks between which the knowledge transfer must occur. The auton-
omy of artificial intelligence (AI) systems, in knowledge acquisition and transfer,
allowing effective and efficient handling of a variety of scenarios, remains largely
unaddressed. No general solution to causal model learning exist, as of yet.1

Here we introduce an autonomous controller that cumulatively [19] learns
and uses causal models of tasks that are transferable to novel scenarios. The
design is based on three major principles of constructivist AI [16], which are
knowledge transparency, temporal grounding, and feedback loops. Given this app-
roach, an autonomous agent can autonomously learn causal models that are
invariant across variations of tasks. Causal modeling and inference go beyond
the limitations of current machine learning (ML) methods via their testability
and task-independence [7,19], allowing an agent to use it in scenarios it has never
encountered before. Our approach is compatible with Pearl’s structural causal
models and directed acyclic graphs [6]. We adapt the principles of causation
such that they meet the aforementioned principles of a constructivist methodol-
ogy [16]. Our causal models of a task are formed by considering the assumption of
insufficient knowledge and resources (AIKR) [20], according to which the agent
must rely only on a limited set of sampled data and resources. An important
factor to limit the scope of learning, and prevent incorrect generalizations, is to
consider time explicitly in knowledge representation.

The approach builds on – and is compatible with – prior work on cumulative
learning [17,19]. The controller starts its causal discovery process by learning
an initial correlational model. Then, it removes non-direct-cause correlations
through causal interventions until it identifies the causal structure. It continu-
ally updates its model as it collects more data. In short, we introduce an online
autonomous controller that initially learns a correlational model through ran-
dom search (worst case), discovers task-independent invariant relations between
variables of a dynamical task, learns the functions relating the variables, and
tests the model in transfer scenarios every time it learns the model.

2 Related Work

Generalization has made an appearance in various machine learning (ML) para-
digms to date, usually under the heading of ‘transfer learning’ (TL), invariably
with the shared goal of increasing learning rate and improving flexibility. In
supervised learning, deep transfer learning (DTL) has been applied to overcome
the problem of insufficient training data in the target task. The approaches to
DTL differ between domain-based and feature-space-based methods [14], but
they lack properties necessary for a general, autonomous AI system, since 1)
DTL methods rely on human programmers to choose source and target domains
based on their intuition, and 2) an agent that interacts with the environment
changes the data distribution in an unknown way. Reinforcement learning (RL),
however, is an instance of algorithms by which the agent learns via taking actions,

1 By ‘general solution’ we mean that the learning is largely independent of the task-
environment and can be used to transfer learned skills between different task types.
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changing the world’s states, and receiving rewards. TL methods in RL (reinforce-
ment transfer learning, RTL) are based on an agent that receives training in a
task and reuses the learned knowledge in another, similar task, and the trans-
ferred knowledge is usually in the form of policies, reward functions, and/or
value functions [15]. However, not only human intuition is part of many RTL
methods, the aforementioned forms of knowledge are goal-entangled and thus,
task-dependent. The same TL limitation holds for deep reinforcement learning
(DRL) approaches when the target tasks change in an unpredictable way [4,13].

The ‘covariate shift’ concept results from the assumption that conditionals
between variables are invariant between domains [2] and occurs due to the dis-
tributions’ change after intervention. Recently, Rojas-Carulla et al. [11] proved
that a subset of conditionals that is limited to the causal parents of a variable
can be used to build an optimal predictor of that in the transfer domain, prov-
ing Pearl’s statement about causal relations being invariant physical mechanisms
[6]. In general, explicit representation of causation goes beyond the limitations of
current ML due to its transparency, testability, intervention reasoning (predict-
ing the outcomes of actions), and capability of dealing with missing data [7,18].
However, since the approach has attracted researchers’ attention recently, causal
discovery and generalization have still been limited to observation-based meth-
ods, which are not proper for an agent that learns by doing [11,12]. A recent
paper introduced a causal discovery algorithm based on intervention [1], how-
ever, the algorithm does not learn a causal model in an online manner and is
limited to obtaining a causal structure. Our learning controller is an improved
version of [1], relying on principles of cumulative learning [18] and AERA system
[5], in which a model is learned and gets updated while the agent collects data.

3 Problem Formulation

We start by formulating knowledge representation and intervention. In a deter-
ministic world, the initial condition acts as a ‘cause’ of the particular unfolding
world dynamics when there is no autonomous agent affecting its physical pro-
cesses. Although a dynamical mechanism that moves a task from one state to
another is independent of the initial state2 [9], different initial conditions lead to
different outcomes. Thus, we stick to a discrete-time representation of a dynam-
ical task that has a special focus on initial state, as follows3

X(t) := f(X(0), NX(0), ..., NX(t))), (1)

2 This is a special case of the ‘Independence of Cause and Mechanism’ principle, which
states that the mechanism that connects the cause to the effect is independent of
the cause itself; i.e. X causes Y if and only if P (Y | X) is independent of P (X) [12].

3 Our physical formalization is compatible with event-based causality, where an event
causes another event to happen. An event can be defined as a set of manipulable
variables with changing values in a time interval that apply forces and causes changes
in values of another set of variables in a subsequent time interval.
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with augmented state vector X ∈ Rn+m, where n and m are the dimensions of
the world’s observables and manipulables, respectively. Also, X(0) represents the
initial state, and NX ∈ Rn+m is the noise on both observables and manipulables.
The terms NX(0), ..., NX(t)) show the applied noise in different time steps.

By assuming there is an autonomous agent that can manipulate (intervene
on) some observables at any time t, we can break up the vector X into two parts,
where U ∈ Rm is the control input vector (vector of manipulables) and X ∈ Rn

is the vector of observables. Then, Eq. (1) can be written in the form of

X(t) := g(X(0), U(0), ..., U(t − 1), NX(0), ..., NX(t)) (2)

Equation (2) can also be written as a difference equation as follows

X(t) := g̃(X(t − 1), U(t − 1), NX(t)) and X(0) := β0 (3)

where β0 indicates the vector of initial values of Eq. (3). Now we can formulate
intervention in dynamical tasks as follows

– Input interventions: This set of interventions does not change the causal
structure of the task. It has two forms:

• Changing the initial conditions of Eq. (1), and
• Setting the value of manipulables in Eq. (2).

– Structural interventions: Replacing Eq. (1) with another function, which is
equivalent to having a different ordinary difference equation and may change
the causal structure.

3.1 Causal Generalization

To formulate generalization, we assume that the controller is trained during
D tests, having D different probability distributions. We also assume that the
control input trajectory U is identical over all D tests. Every Pk represents a
distribution in kth test (k ∈ 1, ...,D), generating U and Xk given initial condi-
tions Xk(0). Over these tests, it learns a function h that maps X(0) and U to
X. Then, the prediction of h is tested in a novel test D + 1th, which the agent
has not experienced before. In other words, the test D + 1th is the transfer test
with distribution PD+1, in which the generalizability of the function h is tested.
The controller wishes to learn the function h with small L2 loss, that is

εPD+1(h) = E(XD+1,U |XD+1(0))∼PD+1(XD+1 − h(U |XD+1(0)))2 (4)

This statement also holds for identical initial conditions X(0) over D tests with
different input trajectories Uk. Then, every P̃k represents a distribution in kth

test, generating the input trajectory Uk and Xk given initial conditions X(0).
Over these tests, the agent must learn a function h̃ that maps X(0) and U to X.
Then, the prediction of h̃ is tested in a novel test D + 1th (transfer test), which
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the agent has not experienced before. In fact, the controller wishes to learn the
function h̃ with small L2 loss, that is

εPD+1(h̃) = E(XD+1,UD+1|X(0))∼P̃D+1(XD+1 − h̃(UD+1|X(0)))2 (5)

The difference between the two aforementioned equations is that in Eq. (4)
the predictability of function h is tested for a new initial condition XD+1(0),
while the predictability of function h̃ in Eq. (5) is tested for a new control input
trajectory UD+1. We will see that h and h̃ are identical after learning the causal
structure. In other words, we need to learn a model that is generalizable to
scenarios where there may exist new control input trajectories and/or new initial
conditions.

4 Causal Discovery and Learning

This work is done within the methodological frameworks of neo-
constructivism ([16]; see also [3,10]) and causation (cf. [6,9,11]). Via the
constructivist approach an AI system can autonomously acquire knowledge and
use it in multiple different but similar situations/tasks. To that end, feedback
loops are used that enable the controller to perform causal interventions (inter-
ventions with the purpose of causal discovery).

Learning a Correlational Model: In the first phase of learning, a random
search in the observation space occurs, which makes the agent learn correlations
between the variables. This correlational modeling is not generalizable but it
enables the agent to gain prior knowledge about tasks. Our method removes
non-direct-cause correlations and updates the model over training.

Causal Structure Identification: The agent discovers the causal relations by
intervening on some variables and inspecting the distribution changes in other
variables. By adapting the definitions provided by [1], we can write the following
definition that allows an agent detect the causal relations between observables.
Assume ∀j xj �⊥ xi, then xj → xi if

∀ l �= j xk
l (0) = xk′

l (0) xk
j (0) �= xk′

j (0), ∀ l, t uk
l(t) = uk′

l(t)

⇒ P(xk
i (t)) �= P(xk′

i(t))
(6)

In other words, given there is a correlation between xj and xi, xj causes xi

if the following statement holds: If the agent generates the same control input
trajectory for two different initial conditions of observable xj and then it finds
distribution changes in observable xi, it concludes that xj causes xi.

The agent can also find the causal relations between manipulables and observ-
ables. Assume ∀j uj �⊥ xi, then uj → xi if

∀ l xk
l(0) = xk′

l(0), ∀ l �= j, t uk
j(t) �= uk′

j(t) ∀ t uk
l(t) = uk′

l(t)

⇒ P(xk
i (t)) �= P(xk′

i(t))
(7)
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In other words, given there exists a correlation between uj and xi, then uj

causes xi, if the following statement holds: If the agent generates two different
input control trajectories uj(t) for identical initial conditions and then it finds
distribution changes in observable xi, it concludes that uj causes xi.

Causal Model Learning: Equations (6) and (7) only allow obtaining the causal
structure. However in our method, the initial function (model) that was learned
through correlational modeling is constantly updated by removing non-direct-
cause correlations after every intervention. Also, the function is updated accord-
ingly (after every intervention) through a grey-box modeling method.

4.1 Using Invariant Functions for Generalization

According to [11], causal generalization is only possible through an invariant
function that is learned over a set of training tests {1, ...,D} with various control
inputs and initial conditions. Via the following assumptions, we will conclude
that the invariant function is the causal model of a task, for which we will
introduce a discrete linear state-space equation.

Assumption 1: There exists a function of observable and manipulable vari-
ables that predicts the observables in the next time step, by assuming the same
control input trajectory U for all D tests, such that

h(U |Xk(0)) = h(U |Xk′
(0)) ∀k, k′ ∈ {1, ...,D} (8)

and, by assuming the same initial conditions for all D tests, such that

h̃(Uk|X(0)) = h̃(Uk′ |X(0)) ∀k, k′ ∈ {1, ...,D} (9)

Since the function h and h̃ are invariant in all tests, according to the fact
that input interventions do not change the causal structure (as mentioned in
Sect. 3), we can conclude that

h(U |Xk(0)) = h̃(Uk|X(0)) ∀k, k′ ∈ {1, ...,D} (10)

Assumption 2: The invariance of function h also holds in transfer test D + 1.

Assumption 3: Let us assume that h is a linear function so that for all D tests
and for any initial condition X(0) and/or any input trajectory U , we have

h(t) := X(t) = AX(t − 1) + BU(t − 1) + N(t), X(0) := β (11)

Assumptions 2 and 3 imply that the function h is also linear in transfer test.
We will see if h is not causal, new initial conditions and/or new input trajectories
lead to covariate shift problem. Thus, learning an invariant function (i.e. a causal
model) solves the problem. In other words, for prediction error minimization in
D + 1th test, the following L2 error should be minimal, for any X(0) and any
input trajectory U ,
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εPD+1(A,B) =

E(XD+1,UD+1)∼PD+1(XD+1(t) − AXD+1(t − 1) − BUD+1(t − 1))2.
(12)

where εPD+1(A,B) shows the squared error over predictions in transfer test. Now
we propose the following optimal prediction model, which can be obtained from
minimizing Eq. (12):

[A∗, B∗] := arg min
A,B

εPD+1(A,B). (13)

The left side of Eq. (13) is a matrix specifying the causal structure of a dynamical
task (causal relations between observables and manipulables), which provides
minimal squared error in transfer test. Here is the introduced model;

(X(0), U(0), ..., U(t − 1)) −→ X(t) (14)

such that

X(t) = A∗X(t − 1) + B∗U(t − 1). (15)

Algorithm 1: Pseudocode of learning the invariant causal model
Input: sample (Uk, Xk|Xk(0))
Output: Estimated model (A and B matrices)
Initial correlational model calculation;
Move the task to arbitrary initial conditions;
while True do

for i = 1:n do
Do intervention 1 (Eq. 6) on xi;
Remove non-direct-cause correlations;
Update the model, while moving to new initial conditions;

end
for j = 1:m do

Do intervention 2 (Eq. 7) on uj ;
Remove non-direct-cause correlations;
Update the model, while testing new control input trajectories;

end
if averaged squared prediction error in a new test ≤ ε then

Break;
end

end

Based on sufficient conditions for causal discovery in the linear Gaussian
settings given by [8], A∗ and B∗ provide a function h∗ that consists only
of causal relations. In other words, the function h∗ satisfies Assumptions (1)
and (2), which lead to invariant predictions in the transfer test.
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4.2 Learning Invariant Causal Model

The proposed algorithm for causal discovery (Algorithm1) identifies the causal
structure through D different tests until it computes a model that is invariant.
In other words, the algorithm converges to the optimal A∗ and B∗ matrices for
causal generalization. The controller continues the training process until it is
successful in controlling the task with new initial conditions and new control
input trajectories it has never seen over training process.

5 Experimental Evaluation

For evaluation of the proposed method, two dynamical tasks were created in the
same simulated environment: the Rendezvous task including four mobile robots
on a two dimensional plane and a path following task. The causal structure of the
environment is thereby independent of the task. We will show in this section that
the same holds for the learned causal model. In the first test (Rendezvous task)
the robots (R1, ..., R4) have to meet at the same location in the x-y plane, using
the learned causal model. In the second test, we evaluate the same causal model’s
prediction ability by assigning a single robot to follow a predefined circular path.
In both experiments, the robots are given novel control input trajectories and
initial locations to test the model’s capability in dealing with covariate shift
problem. Each robot’s movement follows discrete linear equations of

x(t) := x(t − 1) + Tsu
x(t − 1) (16)

y(t) := y(t − 1) + Tsu
y(t − 1) (17)

where Ts is the sampling time. There exists 8 observables: x1...4 and y1...4 (loca-
tion of R1...4) There also exists 8 manipulables: u1...4

x and u1...4
y (velocity of

R1...4). Thus, we can augment all the equations into a single state-space equation
(in the form of Eq. 15) that shows the causal structure of the task-environment
as follows

X(t) := IX(t − 1) + ITSU(t − 1). (18)

where I is an 8 * 8 identity matrix, U = [u1
x, u1

y, ..., u4
x, u4

y] is the control
input vector, and X = [x1, y1, ..., x4, y4] is the state vector. Equation (18) simply
means that the current position of a robot is only caused by previous position
and previous velocity (applied control input) of that robot. In other words, the
movement of a robot has no causal influence on the movement of other robots. We
expect our algorithm to learn this invariant causal model while it intervenes on
variables. Before the controller starts its learning process, it estimates an initial
correlational model. The estimated model is A and B matrices of Eq. (11), in
which all matrix elements are correlated (e.g. x1 is correlated with x2, which
must not be the case, due to the fact that the movement of R1 is independent of
the movement of R2). Thus, the controller must perform causal interventions to
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remove those non-direct-cause correlations from A and B matrices by replacing
zeros with relevant non-zero values, and eventually converge to causal A and B,
which both are identity matrices in this example.

5.1 Results

Using Algorithm 1, the robots perform intervention 1 (Eq. 6) and intervention
2 (Eq. 7) to discover the aforementioned causal structure. Detecting a causal
influence of an intervened variable - which could be either an observable or a
manipulable - on other observable variables is done by inspecting the distribu-
tion changes of trajectory of observables, through maximum mean discrepancy
(MMD) method proposed by [1]. If after an intervention, MMD of an observ-
able becomes zero, then there is no causal influence from intervened variable on
the observable, which makes the algorithm remove the related non-direct-cause
correlation from A and B matrices and update the matrices via grey-box mod-
eling method. The utilized grey box modeling is nonlinear least squares with
automatically chosen line search method. Eventually, when all non-direct-cause
correlations are removed and matrices are updated accordingly, the controller
ends up having an invariant causal model of the task that is generalizable to
different scenario/tasks. In other words, the learned causal model is successful
when it is tested not only by novel initial conditions and input trajectories, but

Fig. 1. Left: Performance of the four robots in performing the Rendezvous task, using
a learned causal model. The robots start from novel locations in the observation space
and reach (x, y) = (0, 0), showing successful transfer. Right: A comparison between
predictions of causal and correlational models for a single robot, showing the former’s
superiority; the robot uses both to trace a circular path.
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also by different tasks in the same environment. Figure 1(left) shows the Ren-
dezvous task, in which the robots move from novel locations (initial conditions)
to (x, y) = (0, 0), by a feedback controller that uses the obtained causal model.
As can be seen, the causal model enables the robots to achieve the goal of the
task in a scenario that was not experienced over training. Figure 1(right) shows
a circular path followed by one of the robots via the same causal model that
was learned in experiment 1 and a correlational model that was learned in the
beginning of the training. The path requires a novel input trajectory and thus,
correlational model is considerably less capable of making correct predictions
compared to the causal one. The figure in the bottom shows squared prediction
errors of both models. To sum up, the experimental results show that the causal
model is a task-independent knowledge representation that is more transferable
to novel situations/tasks and can also solve the covariate shift problem.

6 Conclusions

We have proposed a causal learning and generalization method for dynamical
tasks. The algorithm performs causal interventions on observable and manip-
ulable variables, based on which it removes non-direct-cause correlations and
updates the controller’s model after every intervention. The results in different
dynamical tasks show that the algorithm enables the controller to learn a task-
independent causal model, which can be generalized to novel scenarios.
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Abstract. The gradient descent ideas in the backpropagation error (BPE) form
with some additional algorithms development allowed to realize deep learning
of neural networks and led to a revolution in machine learning. A huge learning
parameters number made it possible to replace discrete concepts with a vector
description. There are some other ideas that are no less profound than gradient
descent. Such as memory localization, decomposition of complex objects, and
transformations linearization. The transition from internal vectors to maps of
simple objects is considered as the promising direction for neural network
algorithms development that can implement these ideas. It seems possible with
states subspaces maps to overcome some of the problems that deep learning
cannot cope without new ideas. A general plan for constructing an interacting
maps hierarchical structure is considered, which can work in the Systems 1 and
2 modes according to Kahneman. Mathematical ideas for the linear approxi-
mation implementation using neural network maps are given. Other aspects of
the general plan also have been preliminary worked out, but a significant amount
of work remains to be done to improve the algorithms, ensure the stability of
their convergence and confirm their performance by modeling. It will take time
and funding. Nevertheless, the success in each of other ideas implementation:
localization, decomposition, and linearization can lead to progress in the
development of AI, comparable to the introduction of the gradient descent idea
into the deep neural networks training, which caused a revolution in machine
learning.

Keywords: Neural networks � Mapping � Decomposition � Localization �
Linearization

1 Introduction

1.1 AI Successes, Achievements, and Problems to Be Solved

In July 2021, Yoshua Bengio, Yann LeCun, and Geoffrey Hinton (recipients of the
2018 ACM A.M. Turing Award for breakthroughs that have made deep neural net-
works a critical component of computing) published an article “Deep Learning for AI”
[1]. They described the main events that led to the neural network revolution in
machine learning and pointed out that one of the reasons for the success was the
transition from symbolic to vector description of concepts. Specifically, they wrote:
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“In the logic-inspired paradigm, a symbol has no meaningful internal structure: Its
meaning resides in its relationships to other symbols which can be represented by a set
of symbolic expressions or by a relational graph. By contrast, in the brain-inspired
paradigm the external symbols that are used for communication are converted into
internal vectors of neural activity and these vectors have a rich similarity structure”.

The article describes a number of other reasons that made it possible to achieve
success: attention, contrastive learning [2], and variational approaches. And this is only
a selective overview, there are many more reasons. Altogether, these achievements
made it possible to get significant success in solving the problems of perception, system
1 according to Kahneman [3]. There are also successes in solving the problems of
system 2, but less commerce significant [4].

Looking ahead, Yoshua Bengio, Yann LeCun, and Geoffrey Hinton have identified
a number of challenges that need to be addressed. They wrote: “there are fundamental
deficiencies of current deep learning that cannot be overcome by scaling alone”, new
ideas and approaches are needed. They also note that humans are capable of faster
learning and more robust behavior in changing conditions than modern deep learning
algorithms. Ways to approach human capabilities are also indicated: hierarchical
processing, improving attention mechanisms, using multiple time scales, developing
the ability to solve unfamiliar problems, identify causal relationships and, most
importantly, link high-level concepts with low-level perception and actions
(grounding).

An important article [1] conclusion is the assertion that the selection of concepts is
the more significant property that AI should have than the ability to perform logical
operations. New ideas and approaches are needed to develop the important property.

1.2 Simple Objects States Subspaces Maps – A Way to Solve a Lot
of Problems

No less important than the step from symbolic to vector concepts description [1] should
be the next step: the transition from vector description to state spaces maps.

The formation of neural network maps is an old idea that T. Kohonen began to
develop in 1982 [5]. But the widespread adoption of this approach was hampered by
the lack of a theory describing the importance of mapping in the general information
processing system in the brain. Kohonen's mapping algorithm worked only for simple
model objects with a predetermined number of degrees of freedom. There were tasks
where the algorithm worked less correctly, but it was also useful. For example, visu-
alization of multidimensional data and some others.

This report proposes a system of a hierarchical representation of information about
the external world observed with the help of sensors, based on neural network map-
ping. To do this, you should slightly change the Kohonen mapping algorithm, add the
detection of nonlinear axes in the constructed maps and create “screens” on which the
current values of the revealed nonlinear coordinates will be selectively displayed (with
an attention mechanism). The main thing is to build hierarchical maps and screens
structure, in which the input signal doesn’t oblige to get to the upper hierarchy levels. If
the lower levels cope with the construction of behavior in the current situation, then the
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upper ones can be used to model the options for the processes development that are not
directly related to the actions being performed.

Such a structure will allow solving a number of problems, including those high-
lighted in [1]: acceleration of learning, robustness, cause-and-effect relationships
identification, and, most importantly, explaining the cooperation in the work of systems
1 and 2 according to Kahneman.

2 Maps

2.1 From Internal Vectors to Internal Maps

The sensory perception vectors of different objects can coincide, but the vectors state
spaces of different objects are different. Spaces are what are described by maps,
including neural networks. The map will give a much more complete object description
than just the vector of its current state.

It takes more effort to build a map than to memorize a few vectors. But imagine that
you are driving to an unfamiliar city. Which will be more useful: a few photos or a city
map ?! The cost of building maps is repaid many times over by the benefits they bring.
It is important to understand how to incorporate neural network maps into the overall
structure of information processing, from sensory perception to action control.

2.2 The Difference Between a Map and a Tensor

A neural network map, like a tensor, is a set of vectors (input signal or activity of the
previous layer). But a tensor is a training signals collection that may be disordered. In
order to describe well the sub-space of states of the input signal, a huge number of
input vectors are needed. The map vectors are the result of training, they are distributed
over the map and provide a more compact description.

But if due to the input signal states subspace ordered description it is possible to
reduce the required number of vectors several times, then due to the decomposition of a
complex signal (scene) into simpler components - in thousands and millions of times!
Since a neural network map is the result of input signals processing, decomposition
based on maps is possible, but for tensors of raw input signals isn’t.

2.3 Why Maps Are Needed

Maps are the observed objects models, more precisely, the changes in their states
dynamics maps - phase portraits. There may be no dynamics for static objects, but there
are very few such objects. In addition to the nose, which is always in one place in front
of our eyes, the rest of the observed objects can move relative to us. The converting
process of input into an output signal in deep neural networks (an approximation is
carried out in some way) remains poorly understood. We do not know any good,
generally accepted theories. The backpropagation error (BPE) learning process leads to
local minima of the approximation error estimate. It is hypothesized that hundreds of
layers in modern deep networks work well because the likelihood of forming a
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hierarchical processing structure increases in proportion to the number of layers. But
building an effective hierarchy is not guaranteed.

In neural network maps, the input signal vector is converted into one or several
neighboring neurons’ activity of the competitive layer. The activity of these neurons
forms the activity center, which can be considered as the reading head of a multi-
channel tape recorder, which reads consistent (like pixels in a reproduced frame) data
that forms output signals. The tape is not one-dimensional, but multidimensional and,
depending on the goal, the reading head can be displaced in different directions.

For example, to pick up a ball, you need to move your hands towards it. In the
hand's phase portrait map it is necessary to read the control commands recorded there
to move the center of activity (and the position of the hands that it displays) to the
required (relative to the ball) position. The reading takes place along the trajectory of
movement of the activity center, the place of which in the phase portrait is determined
by the real position and speed of the hands movement, and the change in the direction
of movement is defined by the goal (on the map!).

In this case, commands are not instructions, but numbers vectors characterizing the
necessary changes in efforts. Which are reproduced as the output connections weights
values multiplied by the activities of the elements included in the center of activity.

This is not a one-level input signal (the current position of the hands) transfor-
mation into the output (control actions for their movement). Goal setting and the
success of its achievement tracking is carried out by the upper levels, which form a
hierarchical structure. To do this, we need not only to have the ball dynamic model
(map!), but also a higher-level map of hands interaction with the ball. Even higher
levels of hierarchical processing are needed to form the goal of “picking up the ball”.

2.4 Non-linear Axes Extraction

Hierarchical mapping assumes that the activity of the lower-level maps is an input for
the formation and operation of the higher-level maps. You can, of course, use the
directly changing position of the activity center. Something like this happens in modern
deep networks, in which the input signal for hidden layers is the previous layer ele-
ments activity. But even there it is possible to select latent variables corresponding to
the observed (or generated) properties. In the neural network maps case, the essential
latent variables selection can be more deterministic, since these variables correspond to
the nonlinear axes of the state subspace maps. The axes number is determined by the
subspace dimension (and the corresponding map), but if the independent axes cannot
be greater than the dimension, then the number of dependent ones can.

The nonlinear axes injection into subspace maps should be aimed not only at
reducing the information amount describing the activity center current position but at
linearizing the map representation, which, in fact, is a way to separate variables.

Theoretically, there are no restrictions on the dimension of maps, but in practice,
building maps with more than 10 independent nonlinear axes is an expensive com-
putational task. More than 20 is beyond modern computing capabilities. More than 30
axis is beyond the next 50 years computing technologies capabilities.

Of course, there are tasks that require high-dimensional maps for their solution.
And we have to wait for the technique to develop enough before we can solve them.
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But most of the practical tasks accessible to humans allow their decomposition into
low-dimensional maps (with the number of independent nonlinear axes less than 10)
and can be solved using modern devices.

2.5 Hierarchical Structure

Complex objects decomposition into simpler ones can be carried out not only hori-
zontally, but also vertically, that is, hierarchically. If a cat consists of a body, head, paws,
and tail, then each of these parts is simpler than the entire cat. But there are parameters
that describe the properties of the whole cat, such as position in space, speed of
movement, direction, gait, etc. Knowing these parameters simplifies the individual
components description of the cat. That is, the hierarchical description allows the
decomposition of a high-dimensional single state space map into several low-
dimensional, but interconnected maps. Decomposition is not an end in itself, but
allows not only to reduce by many decimal orders the amount of information describing
complex objects but also by about the same number of times (if the decomposition
process is not taken into account) reduces the time for maps building (training).

The hierarchy levels number can be much greater than 2. A person has such levels,
according to various estimates, 7–15, which noticeably distinguishes the nature of a
living brain functioning from modern deep networks, where the number of layers is
measured in hundreds and can exceed 1000. But a person's capabilities are not limited
by his brain morphology: the results of information hierarchical processing can be
displayed by the speech channel and again subjected to hierarchical mapping. Speech-
to-brain directing can be performed repeatedly. This possibility serves as the main
difference that distinguishes humans from the rest of the animal world.

It should be noted that not only a multi-level hierarchical decomposition is useful
for constructing behavior, but also the hierarchies division into 3 parts: a) describing
the properties of external (including their own body observed by external sensors)
objects, b) the control of complex movements and c) forming estimates of various
states (Q-learning analog).

3 Screens - Attention, Novelties, and More

3.1 Limited Use of Knowledge and Perception

The interaction between the hierarchical mapping levels is a complex process that can
occur in different modes. Interaction management and switching modes are better to
extract into a separate structure, which is similar in function to the so-called constant
screen in psychology. We will simply call it a screen, but we are not talking about a
projector with a bedsheet, but about the surrounding reality modeling process (the
neurons’ activity), not only based on current perception but also using already
developed objects maps of various hierarchy levels.

To solve any problem, there is no need to use all the memorized and processed
information. All modern neural network architects that have gates in their composition
actively exploit this property. What to pay attention to and what to ignore is one of the
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learning outcomes. But some knowledge that is not currently coming from the sensors
is usually useful to use as well. This allows us, using a flat picture on the retina (even
without binocular vision, which only facilitates the process), to form a three-
dimensional model of the world around us with the generation of the invisible side of
volumetric objects and to solve many other problems. Reducing the monitored prop-
erties of objects (essential variables) displayed on the screen and filtering out those that
do not affect the control, allows reducing noise effects from properties that are
insignificant for the problem being solved. But the main thing is that reducing the
number of the parameters displayed on the screen makes it easier to build new maps.

3.2 Novelty Filter

The screen function is also to extract the novelty from the incoming sensory signals (at
different hierarchy levels). Simple objects phase portraits maps make possible a short-
term forecast of changes in their states. If the forecast and real screen activity differ
significantly, then we should try to build a new map for this difference.

Depending on how complex the object (or its new properties) is, the process of
building a new map may be successful or not. Only for a simple object in a reasonable
time, it will be possible to build a new map. Reducing the attention function to some
variables displayed on the screen can facilitate the process of building a new map. The
best help in extracting simple objects in complex scenes is having models (maps) for
almost all the objects that make up the situation. The novelty in sensory perception is
more likely to correspond to a simple object, rather than a combination of several
simple ones. Even if there are 2–3 new objects, it is much easier to single out one of
them with the attention function than to select one from 5–10 such new objects.

3.3 Switching Modes

No less important screens function is to switch interaction modes between hierarchy
levels. Each of the levels receives information about the activity centers position in the
maps located below and, on the basis of this and the goal set from above, forms new
goals for the lower level. If the moving towards a goal process at the lower level does
not proceed as expected, then the upper level should form a new goal (or leave the old
one). But in any case, at the same time, the upper level participates in the control
process contour, albeit indirectly, through the formation of a goal.

Also often happens, achieving the set goal process at the lower level can be suc-
cessful. The center of activity shifts lengthwise along the map in the right direction,
along the planned trajectory. There's no need to set new goals yet, achieving the goal
process takes some time. Should upper levels of the hierarchy be idle for this time?!

In the function of screens (different hierarchy levels), it is useful to have the mode
switch. If everything at the bottom goes according to plan, then you can turn off control
from the upper levels and give them the opportunity to perform a different function. In
cases where the process of plans successful implementation for achieving goals is
disrupted, the screens should return the upper levels to operational control (by forming
new goals). The two operation modes of screens correspond to Systems 1 and 2
according to Kahneman [2]. System 1 works intuitively and processes information
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almost instantly. System 2 is associated with the selection and options comparison. The
new thing that the structure introduces, the hierarchy levels in which are divided by
screens, is that System 1 always works, and different parts of the upper levels can go to
the mode of System 2, depending on the successfully solved problem complexity by
the lower levels and the degree of revision of goals.

4 How to Form Maps from Neural Networks

States subspaces maps are neural network algorithms, on the basis of which it is
possible to build Systems 1 and 2 for making decisions according to Kahneman.
Hierarchical mapping structures have been developed so far only conceptually, there
are no software implementations that solve applied problems. But some mathematical
models are available. The description of all the available results in this direction
significantly exceeds the report scope, only some ideas are presented below.

4.1 Kohonen Mapping and Threshold Mapping

Neural network maps constructing methods originate from Kohonen self-organizing
maps (SOM) [5]. Kohonen developed the ideas behind k-means algorithm (1):

D ~Mi ¼ g ~X� ~Mi

� �
; g\\1 ð1Þ

where ~Mi is i-th element input connections weights vector and ~X – input vector.
When presenting an arbitrary~x the closest ~Mi is chosen (according to Fig. 1a) - the

Voronoi-Dirichlet tiling,). The difference ~X � ~Mi

� �
is calculated and the vector ~Mi is

slightly shifted towards ~X. Such a simple algorithm is sufficient for the uniform dis-
tribution of the vectors ~Mi over the subspace of states of the vector ~X (from arbitrary
initial positions inside the subspace).

x2
x3

x1a) b)

Fig. 1. a) Voronoi-Dirichlet tiling and b) scheme for changing the vector ~Mi according to (1).
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Topologically correct Kohonen mapping [5] is only slightly more complicated:

D~Mj ¼ g1 ~X � ~Mj

� �
; j : ~X � ~Mj

�� �� ¼ min

D~Mk ¼ g2 ~X � ~Mk

� �
; for neighbors of j; g2\g1

ð2Þ

The K-means algorithm can be changed for neural networks in another way:

D~Mj ¼ g1 ~X � ~Mj

� �
; j : ~X � ~Mj

�� ��þ bj
� �

¼ min
Dbj ¼ g3
Dbk ¼ �Dbj

�
N � 1ð Þ; 8k 6¼ j; gi ! 0;

P
gi ! 1when t ! 1

ð3Þ

4.2 Relationship with Radial Basic Functions

Most often, to approximate low-dimensional functions formal neurons with a radial
base function (RBF) are used. The ideas for applying RBF are close to the traditional
approximation ideas. The linear part of RBF is calculated as the difference
ai ¼ ~X � ~Mi, then it is transformed into a radius r ¼ aik k and a positive decreasing

function U rð Þ is taken. The most common Gaussian function U rð Þ ¼ e� rð Þ2 is used.
Mapping algorithms and k-means also use ~X � ~Mi not only to “highlight” the

activity center but also to change the vectors ~Mi – the element's connections weights.
The “Winner take all” (WTA) principle can be used only for a zero-order

approximation. To approximate higher orders, it is necessary to select several most
active elements and to execute the weighted calculation of a value approximated
function.

The possibility of linear replacement of the quadratic radius calculation
r2i ¼ ð~X � ~MiÞ2, has long been known, for example, [6], but this possibility has not yet
found a worthy application. The expression Di ¼ ~X2 � r2i will be maximum for an

element with minimum r2i , while Di ~X
� �

is calculated linearly:

Fig. 2. Changes Di X
!� �

: a) general view and b) switching M
!

2 к M
!

3 и M
!

3 к M
!

4.
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Di ~X
� �

¼ ~X2 � r2i ¼ 2~X~Mi � ~M2
i ð4Þ

The change linearity Di X
!� �

is convenient for approximation purposes, while the

regions where the i-th element has the highest (among the elements of the layer)
activity coincides with the Voronoi-Dirichlet partition and can have any convex shape
(not just an ellipsoid, as in RBF). Moreover, the free term in (4) does not have to be
considered as bj ¼ ~M2

i , it can be obtained by adaptation according to (3).

4.3 Approximation Based on Mapping

Mapping allows to select and to remember vectors ~X from the subspace where they are
defined and use them to approximate the transformation ~X ! ~Y. The zero-order
approximation can be used, but only in low-dimensional cases. If the vectors ~X sub-
space has dimension l, to reduce the approximation error by N times, it will be nec-
essary to increase the number of control points of the approximation by Nl times, which
even with N ¼ 10 и l ¼ 7� 10 leads to unjustifiably large costs for approximation, an
increase in the required memory amount and an increase in training time.

Piecewise linear approximation (first order) allows to save significantly on the
memory amount and reduce the training time. Shown in Fig. 2 switching from ~M2 to ~M3

and ~M3 to ~M4 are perfect for implementing piecewise linear approximation, but it is
necessary not only to select several elements with large Di, but also to subtract from all
selected Di some D0, the choice of which at first glance is not obvious. Also important is
the question of how many elements should participate in the approximation. If the

dimension of the subspace ~X
n o

¼ R, then one should take Rþ 1 element. But the

subspace ~X
n o

dimension is not known in advance. For dimension R ¼ 1, 2 elements

should be selected and the approximation will look as shown in Fig. 3:

The activity Ai ~X
� �

of each element has a maximum value gi, while it is not

difficult to show that in the area of activity of one set of elements for any ~X tð Þ a very
important relationship is fulfilled:P

i

Ai
gi
¼ 1, for Fig. 3(b) the sum has two members

Fig. 3. Activities Ai ~X
� �

¼ Di � D0 for a) regular and b) irregular lattices.
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A2

g2
þ A3

g3
¼ 1 ð5Þ

The importance of relation (5) can hardly be overestimated, since it allows not only

to calculate D0 (the same for all Ai ~X
� �

), but to determine how many terms should be

included in the sum in (5). That is, find out the dimension R of the subspace ~X
n o

.

Of course, it is necessary to know the gi values, but they are also available for
calculation, both by analytical geometry methods and statistically. The limitations on
the report volume do not allow us to present these formulas, as well as some analysis of
the topological features of the approximation in multidimensional cases. But such
evaluations and analysis were made and confirmed the efficiency of this approach.

5 Conclusions

The significant and growing advances in deep learning should not block the devel-
opment of other neural network areas. Even the godfathers of deep learning have
written about this more than once and repeated this idea in their last article [1]. New
ideas are needed to accelerate the progress of AI.

Transformations linear approximation based on neural network mapping of input
signal state subspaces may be such a new idea. This allows in the future to solve a
number of difficult problems for deep learning, including the allocation of concepts and
the implementation of the connection of high-level concepts with low-level perception
and actions.

The idea behind gradient descent is at the heart of deep learning and has great
results. No less obvious is the idea of learning outcomes localization, which can be
implemented by a competitive learning mechanism in mapping. This idea makes it
possible to ensure the almost complete safety of previously acquired knowledge when
teaching new ones.

Complex scenes decomposition into simple objects is an equally important
approach that is used by mankind in solving almost all problems. Namely, the phase
portraits of the subspaces of the simple components of the input signals that can serve
as an algorithmic basis for the object's notions selection in the continuous world.
Advancement towards a complex world more compact description can be carried out
due to decomposition and linearization by introducing nonlinear axes into subspace
maps.

The report describes only a general plan for building a hierarchical structure of
interacting maps, which can work in the modes of Systems 1 and 2 according to
Kahneman. Some formulas for the idea implementation of the linear approximation
based on threshold mapping are given. The report's limited volume does not allow to
reveal more details about the general plan.

But this does not mean that all aspects of the general plan implementation for
constructing a hierarchical structure of interacting maps have already been worked out
in detail. For this, a significant amount of work remains to be done, both on improving
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the algorithms, ensuring the stability of their convergence, and confirming their per-
formance by modeling. It is necessary to overcome the orientation of investors and
their advisory managers to invest exclusively in deep learning. Let us express the hope
that the article by the luminaries of deep learning [1] with another call to develop new
ideas will help break down the financial barriers standing in the way of new ideas,
including linear approximation based on neural network mapping.
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A Thousand Brains and a Million
Theories
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Abstract. Jeff Hawkins theorizes that multiple predictions via the den-
drites into the somas of neurons are used to alert and activate action pro-
cesses. This report considers if and how Ray Solomonoff’s general theory
of induction, Solomonoff Induction, using algorithmic probability, would
a good tool for his or other neural prediction organizing. Two other
early Artificial Intelligence (AI) scientists, Marvin Minsky and Oliver
Selfridge also had ideas that are relevant to Hawkins’ neural multiple
prediction concept, one via Hawkins’ map-models, the other via recogni-
tion. Solomonoff’s is the most impactful to my report, so the main focus
is on his general theory of inductive inference.

1 Introduction

Jeff Hawkins, in 2016 describes how the dinner-napkin thick covering of our
brain, the neocortex, which does our highest level thinking, has as its fundamen-
tal operation learning and recalling sequences of patterns. We have thousands of
thinking elements made up of neurons in our neocortex. Individual dendrites of
the neurons in these tiny segments code different predictions. There are many,
many dendrites each with many synapses delivering predictive information into
the soma, the body of each neuron. The neuron receives these many predictions
so they are available for the neuron and groups of neurons to predict and then
act or not act. The neuron may get in a state of readiness or may actually ini-
tiate action for receptor cells, culminating in seeing something, speaking about
something, picking up a cup, turning the corner, all the daily activities we do
[HA16].

When I read this article, the dendrites of my neurons all together caused
spikes which turned cortical light bulbs on which culminated in me saying, “For
Hawkins’ and other theories that use many small predictions both individually
and together, Solomonoff Induction can be a good guide.”

It’s useful in several ways: by helping understand better the little predic-
tions of individual and multiple dendrites using their multiplicity of synaptic
connections on a single neuron, by being the algorithmic guide when multiple
predictions are used and compared in the basal part of the neuron, and when
many neurons act in concert. It’s two pronged, one weighs each individual pre-
diction, the other gives the probability that the predicted event exists at all
by weighing all the predictions together. It emphasizes the innate predictive
c© Springer Nature Switzerland AG 2022
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power of neocortical agents and agented areas, which is a different focus from
that of many types of reinforcement learning agents. Resilience and stability
while changing to a new level is important, but prediction is most important for
purposeful activity, according to Solomonoff. It emphasizes future, present, and
past, helps us focus on causes, not just aggregations.

A thousand brains can have a million theories but never get paralyzed by
a tsunami of indecision. This may be real world evidence of Solomonoff type
induction, because his theory, applied to Hawkin’s theory helps understand that
the inputs from the dendritic codes are already a probability distribution of
explanations of something, each of which predicts something with a probability
that it will be the best prediction given the situation the owner of the brain is
experiencing. The codes aren’t random, each has a probabilistic weight. Different
groups of dendrites or their synapses together also provide another probabilistic
weight. The point is that Solomonoff’s algorithmic probability provides a way
to imagine how a multitude of different theories can have a logical and useful
order.

In talking about this connection with the earlier mathematician, Solomonoff,
it’s fair to mention briefly two other scientists, as they represent some connec-
tions. The recognition of more emphatic dendritic messages was analyzed in
Oliver Selfridge’s Pandemonium. Hawkins’ view of how a neuron makes a model
of a person’s world, using it to act with the community of cortical columns are
foreshadowed by the Agents hypothesized in Marvin Minsky’s book, Society of
Mind.

These three Scientists, Ray Solomonoff, Oliver Selfridge, and Marvin Minsky
were three of the original 11 scientists invited by John McCarthy to spend the
summer at the first extended gathering of Artificial Intelligence scientists: They
all attended the Dartmouth Summer Workshop in 1956, when machine thinking
first got the name Artificial Intelligence.

The Dartmouth Summer of 56, Photo by Gloria Minsky.
In back: Oliver Selfridge, Nat Rochester, Marvin Minsky, John McCarthy.

In front: Ray Solomonoff, Leon Harmon, Claude Shannon.

The great neuroscientist Mitch Glickstein wrote: “The historical approach is
valuable in and for itself; as much as the history of wars, art or politics... It is of
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value to understand how [neurocience] came about ...The average neuroscientist
may know a thousand or a hundred thousand things to be true about the nervous
system. But often they do not know how we know it, and often seem delighted
when they learn...” [Gli14].

2 The Cortical Columns and the Neurons

Hawkins’ best known works are two books, On Intelligence, 2005, and A thou-
sand Brains, 2021, and an article in 2016, “Why Neurons Have Thousands of
Synapses,” more mathematically detailed.

He writes that in the multilayered human brain, on top is the main thinking
level of the brain, the neocortex, a thin layer covering the entire brain, spread
over the older matter in various folds and plains. This layer is packed with per-
haps 150,000 ‘units of intelligence’ called cortical columns, side by side. Though
the columns don’t have strict borders, they can be distinguished by their sepa-
rate kinds of actions. Within the cortical column are minicolumns, each with a
little over 100 neurons spanning layers [Haw21].

Each neuron has many dendrites, each dendrite has many changing synapses.
From synapses via dendrites many predictions at once go the neuron. Hawkins’
2016 article discusses how the neuron may encode new information and efficiently
carry several possible predictions at once. Imagine a minicolumn with many
rows of little input elements. New information may stimulate one whole stack
of elements, while other sorts of information may impact only a few of the
elements but at different positions. A set of these minicolumns could produce
many combinations this way [HA16].

Here are two key insights Hawkins focuses on. The first is the action of the
individual neurons; the second is the communal action of groups of columns
working together. The multitude of dendrites carry a multitude of predictions,
the communal action is based on what predictions are chosen.

So I’ll mention Minsky, Selfridge, then focus on how the brain might use
algorithmic probability and Solomonoff induction.

3 Marvin Minsky’s Agents

In Minsky’s proposal for his research during the Dartmouth Workshop he dis-
cusses how the machine would have an internal mapping. It would pair sensory
abstractions with actual motor abstractions in such a way that it could pro-
duce new sensory abstractions representing changes in the environment that are
expected to happen [MS55]. The first paper Minsky read at the Workshop in
1956 was “A Framework for AI” describing little ‘boxes’ that make up the brain.
Each box can be a member of a group, and each box might learn or have dif-
ferent activities. The boxes contain all kinds of different information. Clearly
separated, no one box would end up being a repository of ‘intelligence’ – “you
wouldn’t end up with the final box having all the information” [Min56].
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Minsky developed them into ‘Agents’ all working together in what he called
the ‘Society of the Mind.’ Agents, many small processes of the mind, connect
by pulling up connections that he called K-lines, which would control a group.
K-lines, for example might connect agents that can decide: that’s a cup, when
the hand holds a handle and the eye sees a bowl shape. Agents can also organize
methods of learning, one of the most important things we do. In fact in this
system, a new way of thinking can develop in a new group, while the old way is
used for a while until the new establishes itself successfully [Min87].

Couldn’t this view be useful now? For example, successful predictions from
groups of dendrites, could continue to be stored in some of the basal cellular
area of some neurons, and continue to act on the environment ‘in the good old
fashioned way,’ while the new set is becoming more and more accepted. That
way, if the new system fails, the whole thought process does not collapse. This
is a very Solomonoffian way to act, for it’s a way of replacing one theory with
a new improved theory. Solomonoff noted how learning a video-game suggests
that. The score stays the same for a long time, then makes a leap – that is when
the new theory kicks in.

4 Oliver Selfridge’s Pandemonium

Oliver Selfridge always had a flare for drama so of course he called his AI system
“Pandemonium.” and his version of agents, ‘Demons.’ He focused on ‘closeness,’
making one group more important than another. He designed a program of a
series of patterns that generates descriptive points. The descriptive points may
be minimal, just as the descriptive points in Hawkins’ dendritic predictions may
be minimal, though he does not have the idea of loading minimal points of several
patterns together, a very key idea of Hawkins. Those that fit well are used more,
build more and more accurate descriptions. Successful sequences may be tweaked
in to get new useful criteria [Sol56a].

In his major program, “Pandemonium” (1959), he envisioned small agents
in the mind, demons. When a demon recognizes something similar to what it
knows, it ‘calls out;’ the loudest are used [Sel59]. Whatever pattern matching
‘shouts’ the loudest is the one that the neuron will act on in its search for a
problem’s solution [Sel59].

5 Ray Solomonoff’s Theory of Inductive Inference

In his new book, A Thousand Brains, Hawkins writes: “My brain, specifically my
neocortex, was making multiple simultaneous predictions of what it was about
to see, hear, and feel. ... At that time, (1980s), few neuroscientists described
the brain as a prediction machine. Focusing on how the neocortex made many
parallel predictions would be a novel way of attacking the cortical column’s
mysteries. I could ask specific questions about how neurons make predictions
under different conditions...”
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In his earlier book On Intelligence he used the phrase ‘the memory prediction
framework’ to describe it. In his new book, he describes the same idea by saying
that the neocortex learns a model of the world, and it makes predictions based
on its model. Hawkins writes “I prefer the word ‘model’ because it more precisely
describes the kind of information that the neocortex learns” [Haw21, pp. 30–31].

Solomonoff would prefer the phrase ‘memory prediction framework,’ because
his inductive inference stresses prediction as an extrapolation of past solved
problems or other forms of sequences. However both systems use the idea of
multiple predictions based not just on past information but on its revisions, and
use this multiplicity in similar ways.

Hawkins feels information comes via movement and place in modeling the
world. Predictions occur via the dendrites. Different dendrites send different
predictions using similar data, analyzed in different ways, or using different data
with a relationship of some kind, the many synapses of dendrites send different
levels of spiking influence to the neuron; spikings that have various amounts of
strength, if weak but sensible, neurons may go into predictive mode, if there
is enough dendritic proximal input to create an action potential spike, the cell
spikes sooner, if it is in a predictive state. (Oliver Selfridge would call these
varying strengths loudness of shouting.) The basal area of the neuron compares
new predictions with old. Actions are based on that. Many dendrites predicting
in different ways, means that there are multiple predictions, that the spiking
energies are not all the same, means some predictions have more weight than
others, and the weight impacts the ‘decision’ of the neuron of whether to act or
not.

Solomonoff writes: “One common method of devising a short code uses defi-
nitions. If a certain subsequence occurs many times in the data, we can shorten
the data description by defining a specially designed short code for that sub-
sequence whenever it occurs. The “bit cost” of this encoding is not only the
accumulation of the many occurrences of the special code—we must add in the
bit cost of the definition itself. In general a sequence must occur at least twice
before we can save any bits by defining it.

More generally, suppose there are several subsequences of symbols in the
data, each with its own frequency of occurrence. We can assign an equivalent
code length of exactly − log2 f to a subsequence whose relative frequency is f .
Huffman coding obtains somewhat similar results” [Sol96].

In this concept predictions act via the law of algorithmic probability, and
Solomonoff induction is the method the neuron uses to act. Even in 1956, Ray had
the idea of analyzing a problem in different ways AND using probabilities of suc-
cess of older methods. He writes that the work he is doing “involves the application
of some special statistical techniques to learning simple arithmetic. In particular,
the problems involve the weighting of statistical conclusions drawn from different
methods of analysis of the same problem. Also, of much importance, is the devising
of new methods of statistical analysis of reasonable probability of success drawn
from older methods known to be useful” [Sol56b, p. 3].

This became algorithmic probability which uses multiple predictions in a
probability distribution of each one’s likelihood; the likelihoods based on a mea-
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sure of simplicity of how each prediction is described (explained, programmed).
According to Hawkins, multiple predictions via the dendrites is the method used
for cortical success. It enables us to decide when a cup is a cup, how to open a
door when the handle is higher than we expected, how to cross the street safely
and how to invent new theories.

6 Solomonoff’s Universal Prior

What is Solomonoff’s Universal Prior? Why is it important for analysis of brain-
like neural nets? First, we need to emphasize that in Solomonoff’s theory, the
word Universal doesn’t mean universality. They are two different things. The
universal prior is descriptions contained in the universe of a domain using the
language of the domain. Even so there are impossibly many possible explanations
extending into the future. So it is contained by using all the predictions that you
have time for, not infinite predictions. Right from the start the prior contains
the idea of Occams’ Razor plus weighted longer codes. Second, right from the
start the prior contains the idea of efficiency. Efficiency in Ray’s prior is based
on shortness of the code.

In conditional probability, not frequentist, the prediction is updated based
on the expansion of past data. It expresses a degree of belief in a hypothesis
(explanation, theory). As new data comes in, you revise the probability based
on all the data, both old and new. The famous formula expresses this [McG11]

Pr(Y |X) =
Pr(Y )Pr(X|Y )

Pr(A)Pr(X|A) + Pr(B)Pr(X|B) + · · · + Pr(N)Pr(X|N)
(1)

where Y has all the elements A,B, . . . N . In this case A, B, N are hypotheses,
and Bayes rule gives the Posterior, namely the inferred probability of hypothesis
Y after the event X has occurred. Pr(Y) is the prior probability of hypothesis Y
before the occurrence of event X [LV19, p. 20].

A philosophical problem is what do you do if you have no original A? Dividing
by zero makes any result meaningless. Solomonoff devised a default prior he
could substitute to prevent this problem. The shortest input computer programs
describing a sequence x are more likely than the longer ones. But there will
always be at least one that can describe any finite sequence of observations:
this input simply duplicates every observation one by one, which, as a program
translates to “print <x>” for any given sequence. None of the sequences will have
a zero probability. It avoids the problem of having to select something randomly.
Ray writes, “When little or no prior information appears to be available, this
technique enables us to construct a default prior based on the language used to
describe the data” [Sol99].

The beauty of this is that, used in the Solomonoffian way, things aren’t
random though they may be simple, and there is an orderly progress of theories.
Hawkins writes that the information basis of the action of neurons is a reference
frame of place and movement. The individual neuron is a reference frame, there
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is a multitude of them [Haw21, pp. 46–55]. The neocortex uses these reference
frames to make predictions. (Think of Marvin Minsky’s Agents). No matter what
the specific attributes are, the neurons need a way to give a degree of merit to
different hypotheses. The predictions still need a prior. The prior for Bayes rule
used in algorithmic probabilistic activity in the cortical columns of the brain
could easily default to the original language of the body.

In the situation of a sentient being there are several concepts that are useful:
First, there is the operating language. In Hawkins it is the language of the body,
in particular, language of movement. So you can imagine a kind of input language
available to the foetus itself: open, sensing, close, push, extend out, feel, hey?
Hey! and so on... There is the added information which provides more input,
information like how many mouths, male, female, genetic elements etc.; with a
sentient being you have to include many constraints.

Ray had a type of computation called Resource Bounded Probability. This
informs learning systems in the real world. In a 1996 report he describes it as
the best approximation to algorithmic probability that we can get with stated
limitations on computing time and/or memory. He writes, “There are four factors
that Learning and Prediction systems must address: 1. The prediction itself. 2.
The reliability of that prediction. 3. The sample size. 4. Computation cost”
[Sol96].

Ray later used a search procedure including computer cost, Lcost. These
factors have to be addressed in any real world learning system.

Even before birth a being has a good working prior. There’s a body that does
lots of stuff, sensory data, a mouth that opens and closes, feet that move.

Hawkins described two important things he developed from Vernon Mount-
castle’s The Mindful Brain about the parts of the neocortex: one is that the
different parts are doing different things – vision, analyzing, etc. The other is
that they are all doing something the same, using the same method, principles
to make predictions and to map the world [Haw21, pp. 21–24].

Side note: Though randomness is usually the wrong direction, the actual use
of randomness is an interesting idea. Ray once mentioned that we do use it, when
we are unable to use our weighting ability. When someone panics, the neocortex
cleverly reverts to random action, because that action might do something to
save them!

7 Algorithmic Probability and Multiple Theories

Hawkins thinks dendrites send predictions, many predictions, sending a kind of
spiking to the soma, the body of the neuron. Some may prime the neuron, but
not cause it to act, Hawkins uses the analogy of saying “On your mark, Get
set...”. Then others may cause the spike that triggers action.

Solomonoff writes that the simplest explanation of something tends to be the
best, the one you usually would act on. But usually it’s not the only explanation.
There may be several that are almost as good. Given new experiences they may
prove to be better. The weights of the individual predictions would then change.
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In early computer terminology Ray figured it via the shortness of the explana-
tion as derived via a Universal Turing machine. In everyday use, the concept of
‘Occam’s razor’ would mean the simplest or even most efficient explanation. If
you usually have a cup of coffee, then even without looking, when you grab a
handle, you predict it’s the cup of coffee. But there are lots of other possibilities,
and as Hawkins might say, your dendrites are predicting many other possibil-
ities – handle possibilities: a saucepan, a drawer handle... coffee possibilities:
espresso, a flavored candy bar... lots of possibilities with different probabilities.
Your neurons won’t be bent out of shape if you find out it’s tea. Maybe a new
event occurred, the coffee imports failed, making the ‘tea theory’ now the best
one. But your dendrites will give low spiking to a coffee flavored sidewalk, or a
cup without sides.

Solomonoff uses that in his mathematical formula of multiple explanations
of something. The trick that Solomonoff introduces is that each explanation has
a certain likelihood. He describes this mathematically, and uses Bayes rule to
decide its value as a prediction. An important result is that all the explanations
together give the total probability for a particular event while the top one is
most specific. Thus you find you are holding a coffee cup.

PM (x) =
∞∑

i=1

2−|si(x)| (2)

The probability of x via machine M is the sum of all the explanations from one
to infinity weighted by their length. In the real world the probability event you
are considering via the neocortex machine is the sum of explanations you have
time to think of. You will not encounter the coffee flavored sidewalk, because it is
too complicated. It would take years and years to explain it, and the connections
would never be encountered in the real world.

Ray writes in his 1997 autobiography:

The correspondences between probability evaluation and human learning
are very close: (1) Both involve prediction of the future based on data
of the past. (2) In both of them, prediction alone is of little value. The
prediction must have an associated quantitative precision before it can
be used to make decisions - as in statistical decision theory. (3) In both
cases the precision of prediction is critically dependent upon the qual-
ity and quantity of data in the past. (4) In both cases, the precision of
the prediction is critically dependent on the quality and quantity of the
computational resources available. Human decisions improve considerably
if people have much time to organize data and try various theories in
attempts to understand it. That probability has to be defined in terms of
the computational resources necessary to calculate it, is a relatively recent
development [Sol97].
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Ray notes,

(I) described algorithmic probability with respect to a universal Turing
machine with random input. An equivalent model considers all prediction
methods, and makes a prediction based on the weighted sum of all of these
predictors. The weight of each predictor is the product of two factors: the
first is the a priori probability of each predictor.—It is the probability
that this predictor would be described by a universal Turing machine with
random input. If the predictor is described by a small number of bits, it
will be given high a priori probability. The second factor is the probability
assigned by the predictor to the data of the past that is being used for
prediction. We may regard each prediction method as a kind of model
or explanation of the data. Many people would use only the best model
or explanation and throw away the rest. Minimum Description Length
(Ris 78), and Minimum Message Length (Wal 68) are two commonly used
approximations to ALP (Algorithmic Probability) that use only the best
model of this sort. When one model is much better than any of the others,
then Minimum Description Length and Minimum Message Length and
ALP give about the same predictions. If many of the best models have
about the same weight, then algorithmic probability gives better results.
However, that’s not the main advantage of algorithmic probability’s use
of a diversity of explanations. If we are making a single kind of predic-
tion, then discarding the non-optimum models usually has a small penalty
associated with it. However if we are working on a sequence of prediction
problems, we will often find that the model that worked best in the past,
is inadequate for the new problems. When this occurs in science we have
to revise our old theories. A good scientist will remember many theories
that worked in the past but were discarded—either because they didn’t
agree with the new data, or because they were a priori “unlikely”. New
theories are characteristically devised by using failed models of the past,
taking them apart, and using the parts to create new candidate theories.
By having a large diverse set of (non-optimum) models on hand to create
new trial models, algorithmic probability is in the best possible position
to create new, effective models for prediction [Sol11].

At the Dartmouth summer in 1956 he wrote: “Idea of working on many
humanly solvable problems litely, to find out what they have in common, rather
than initial intense work on any one problem. Emphasize how human works
problem rather than easy trick ways to work problems that may be peculiar
to that set of problems.” There has been “a great overemphasis of difficulties
peculiar to the particular set of problems worked on rather than difficulties
peculiar to all problems. Use of computers is, I think, usually going in more
deeply than is good at the present time” [Sol56a, pp. 8–9].

The only specific suggestion of this report might be to consider Hawkins’
coding method for the mini-cortical columns that side by side make up one
cortical column. Since they contain layers (rows) they are a matrix. Use any
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Solomonoffian Induction process you can use with matrices. Here is an example.
I’m not sure, but I think Hawkins does it differently. Suppose you have a suite of
nine mini-columns each with six layers. Suppose five dendrites send codes, which
are put in this matrix of 9 by 6. Two of the codes share the same address on three
adjacent mini-columns, but no other part of their codes or any of the other codes
use those three addresses. Using a single symbol (plus you have to define overall
instructions) instead of three symbols shortens the code. The more overlap the
shorter the code and therefore the more predictive power it has. Shorter is more
efficient and more likely. This is before reinforcement or anything. It is finding
something to compress that will guide your next prediction because it’s put
into the Bayesian conditional structure. The whole neocortex is then considered
another large, possibly single row, matrix that might be frequentist Bayesian,
which may vary in different sections of the neocortex. In his latest years Ray
was developing what he called the “Guiding Probability” and I think this is an
example of guiding. Regretfully he died before he completed papers on this topic.
Hopefully we will read more about it.

This report includes the work of Ray Solomonoff, Oliver Selfridge and Marvin
Minsky. Their work foreshadows Jeff Hawkins’ work. When scientists look back
over some of the older works, their new hypotheses get enriched, just like Ray
Solomonoff always predicted.
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Abstract. One goal of general intelligence is to learn novel information
without overwriting prior learning, i.e. catastrophic forgetting (CF). The
utility of preserving knowledge across training tasks is twofold: first, the
system can return to previously learned tasks after learning something
new. In addition, bootstrapping previous knowledge may allow for faster
learning of a novel task. Current approaches to learning without for-
getting depend on strategically preserving weights that are critical to a
previously learned task. However, another potential factor that has been
largely overlooked is leveraging the initial network topology, or archi-
tecture. Here, we propose that the topology of biological brains likely
evolved certain features that are designed to achieve knowledge preser-
vation. In particular, we consider that the highly conserved property of
anatomical modularity may offer a solution to weight-update learning
methods that leverages learning without catastrophic forgetting for gen-
eral bootstrapping to novel circumstances. Final considerations are made
on how to combine these two objectives in a general learning system.

Keywords: Architecture · General learning · Modularity

1 Introduction

1.1 Knowledge Preservation

A basic goal of most approaches to artificial general intelligence is the ability
to learn multiple tasks without overwriting what has previously been learned
(i.e. catastrophic forgetting, or CF). The potential utility of learning without
forgetting, or ‘knowledge preservation’, is twofold: first, the system can return
to previously learned tasks after learning something new. Secondly, bootstrap-
ping previous knowledge may allow for faster learning of a novel task. Both of
these potential benefits of preserving learned information may serve to conserve
resources. Allowing the same computational hardware to be ‘multiplexed’ for
another task, rather than requiring allocation of distinct resources, reduces the
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required energy resources involved in the learning process. Multiplexed infor-
mation is stored in such a way that the system can switch between previously
learned tasks while retaining performance. Information can then be accessed for
learning new tasks in a contextually relevant manner. Multiplexed information
is thus stored and retrieved in a way that facilitates the conservation and use
of prior learning, broadening the ability of a learning system to multiple task
domains.

1.2 Previous Approaches

A significant body of recent work has explored approaches to CF and boot-
strapping in relation to multi-layer neural networks or deep learning (DL) [43].
Learning in these systems consists of updating the weights between nodes accord-
ing to their respective partial derivatives calculated from a loss function (i.e.
backpropagation). With the recent implementation of auto-differentiation and
parallel computing devices, progress in backpropagation-based DL has rapidly
emerged as the dominant approach in AI [29]. Previous approaches to overcom-
ing CF in DL models have involved strategies with regard to the learning process
itself. Most commonly in the case of bootstrapping, ensemble networks are re-
trained on resampled datasets with little improvement [25]. Transfer learning is
also used as a bootstrapping method in which previously-learned features are
imported as the starting weights for later update [41]. CF approaches are more
diverse, mostly involving modification to the weight update methods. Notably,
Elastic Weight Consolidation has shown promising results in overcoming CF in
sequences of Atari tasks by slowing down updates on previously encoded weights
[1,17]. However, these approaches have not been widely adopted, likely because
the techniques do not demonstrate knowledge preservation on a level necessary
for general intelligence. We suspect this is in part due to the fundamental nature
of backpropagation in DL models to rewrite learning; where weights are updated
most heavily towards current learning at the expense of weights learned in more
distant tasks. The result of backpropagation, even when assuaged by CF mitiga-
tion, is narrow feature learning that will eventually reach a resource constraint
asymptote as learning increases throughout the model’s lifetime.

1.3 Network Topology

Another potential approach that has thus far been largely neglected is to consider
the topology of the learning system - that is, its ‘architecture’. While there is a
significant body of work on architecture optimization for other metrics of learning
[5,9,22,23,30,38,42], to date there has been little work considering architectural
choices in relation to CF and/or bootstrapping. Fortunately, hundreds of million
years of evolution has generated highly conserved, vertebrate and mammalian
brain architectures that have been optimized with regard to intelligent functions
including, it is reasonable to assume, the preservation of learning without CF.

One potentially promising property of biological nervous system architec-
tures, which may serve to overcome the pitfalls of CF, is the presence of modular
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architectures such as the cortex and subcortical structures. Modularity is a highly
conserved property that is present across many organisms with general learning
abilities. Complex neural architectures are thought to have emerged in the Cam-
brian explosion, 540 million years ago, with records of both camera eyes and the
emergence of animals with complex behaviors [35]. In contemporary species, the
four basic brain structures (Telencephalon, Cerebellum, Diencephalon, Mesen-
cephalon) have been preserved across nearly all mammalian species and most
avian, reptile, shark brains, and some fish brains [2,18,21,26,44]. Insects have
their own highly preserved modular nervous-system structures as well [16].

In humans, modularity is highly pervasive. For example, the cortex processes
incoming sensory information while the basal ganglia controls behavior selec-
tion in goal-directed learning [27,33]. These structures are specialized not only
with regard to the types of information they process (e.g. photon patterns for
V1 stream vs. layers 5/6 cortical output from cortex), but also with regard to
their neuron types as well as their morphological structures. Communication
between the two structures occurs in limited routes, cortico-basal ganglia net-
works, which serve to integrate information between the two regions [20]. The
result of this particular organization is a cortex that is optimized for encoding
sensory information as general features, while the basal ganglia is optimized to
interpret cortical information for behavior selection (e.g. motor movement) [4].

Here, we propose that modular architectures may also serve to preserve learn-
ing during the update process by separating different types of computation (spe-
cialization) and storing the learning across un-updatable boundaries (segrega-
tion). In artificial systems, modularity may be modeled in the form of specialized
weight updates based on local rules within a module (i.e. segregation), which
can be used to preserve prior learning by distributing the information encoding
throughout the system such that during one module’s update processes, prior
learning is preserved in other modules. In segregation, weight updates become
more localized. In the case of specialization, weight updating becomes diversi-
fied. As seen in GANs [8], optimizing segregated networks using different loss
functions increases the generalization capacity of the model. Both biological
segregation and specialization are largely genetically and developmentally pre-
determined. The effect, for example in the human brain, is that the basal ganglia
learns to interpret the general feature learning of the cortex. It is proposed in [3]
that consequence feedback from the environment aids the basal ganglia in learn-
ing how to produce behaviors in response to cortical outputs. While it is still
somewhat unknown how the cortical module is learning (i.e. weight updating),
its segregation and specialized functioning from the BG allows generally use-
ful features to emerge and be preserved, independent of current tasks feedback.
Modularity extends beyond the current methods of strategic weight preservation
by allowing computational units to diversely encode learning in a manner that
affords later multiplexing.

Previous work on artificial systems has looked at the effects of modular-
ity for generalization, but using different learning metrics [10,11,24]. Promising
results on the effects of modularity for generalizing to out-of-distribution data
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has been shown in the Badger architecture, which relies on nested self-sufficient
computational units which communicate for a shared objective [28]. Badger is an
agent based model in the sense that each agent, or small self-sufficient network,
updates independently in an internal loop, while the outer loop optimizes the
total collection of homogeneous agents towards a goal. However, badger does not
incorporate within-agent specialization, which we believe is essential to solving
the knowledge preservation problem.

While we have attempted to make the specific case for modularity as an
example of a potentially important design principle in natural systems, we pro-
pose that knowledge preservation should serve as a general guiding framework
in architecture design that may give rise to dynamical learning systems capable
of some level of generality. The key idea is modeled from the human brain where
it is likely that network topology is at least, if not more important than later
learning algorithms in achieving this goal. This allows us to avoid ending up with
a system that is doing the bulk of the learning process after it has been config-
ured. In a system that prioritizes initial connectivity, this manifests as selecting
appropriate modularity during a variety of different domain tasks. Rewriting
existing learning prevents sharing of computational resources for novel tasks.
This is often the problem in designing AGI from theoretical systems that don’t
take resource constraints into account, such as universal Turing machines and
AIXI [15,37].

2 Possible Implementation Approaches

Many methods could be conceived for discovering the inductive biases that dif-
ferent modular architectures have to offer general learning systems. Crucially,
there is a tradeoff between initial connectivity and later weight modification. A
strong dynamical learning system would utilize initial topology search as a prior
learning experience to later be exploited during the weight modification learning
phase.

Consider regions separated by un-updatable boundaries that delineate the
extent of backpropagation. These modules could optimize without overwriting
each other, while still being able to share resources when relevant (i.e. boot-
strapping). This approach also limits rewriting prior learning for the sake of the
current learning, where modules are activated at different times depending on
their relevance to the current tasks. Furthermore, modules dedicated to compu-
tational tasks (e.g. memory, sensory, self-activation, etc.), instead of behavioral
tasks serve as a more biologically inspired approach, since this is largely what
we observe between cortical and subcortical structures.

Evolutionary searches are particularly useful in discovering unique solutions
to optimization problems, which can be extended here. Although computation-
ally extravagant, one promising candidate would be an evolutionary approach
that couples network topology and embodiment search to different learning envi-
ronments that also evolve over time. Derivatives of this approach would be use-
ful, especially those focusing on modularity and learning. The advantage to this
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method is that appropriate submodules will likely be paired with the particular
sensory receptors given to the agent and the types of learning updates that need
to be delegated throughout the system in ways that may not be currently known.

Other approaches include intelligently designed architectures where architec-
ture is random, learned, and/or selected by an operator. Random networks, such
as [6], have seen interesting results and may offer some potential insights into
the core properties of learning, however they will likely have to be harnessed in
a constructive way to get desired behavior, as in [23]. Similar to random learn-
ing, methods exist for crystallizing order from disorder in unorganized networks
as in the case of [12,14], leading to module-like structures. Still, there are other
conceivable approaches involving learning functions that select sequences of com-
putational architecture pathways and more. More extensive studies could itera-
tively search through all possible configurations of N-node networks to discover
what modularity benefits particular learning environments. Even hand-designed
simple models that start to test the questions of module design and learning
without forgetting would be useful in answering the questions presented here.

3 Benchmarking Generality

In order to assess a model’s knowledge preservation, it must be able to demon-
strate that it can learn a sequence of tasks in a variety of domains and return
to those tasks with improvements in computational costs and/or learning time.
Below we describe initial tests to measure generality in terms of learning with-
out forgetting and bootstrapping capacities. However, as generality scales, more
advanced testing is likely necessary.

Knowledge Preservation Metrics. Learning without catastrophic forgetting
is typically measured by performance on a sequence of tasks. Here, we propose
that it is imperative to test on sequences in different domains (e.g. vision clas-
sification and time-series forecasting) to demonstrate generality over narrow-
learning.

Boostrapping A-Priori Knowledge Metrics. Measuring bootstrapping a-
priori knowledge is slightly more challenging due to the effects seen in transfer
learning. The goal here is to see an increased speed in learning task B after
learning task A. Again, in trying to capture generality, it is useful to compare
tasks from different domains so the distribution of features in the data is different
enough that it’s possible to measure the use of contextual knowledge instead of
the re-use of features. This later point is what occurs in transfer learning. As in
the case of the popular technique of using pre-trained ResNet on Imagenet and
vision based tasks, the transferred weights capture many features which would
have to have been learned in the secondary network either way [41]. Here, we also
want to be able to use learned features to aid in learning a new task, but we want
to ensure that these are general features that can be maximally shared across all



266 R. A. StClair et al.

tasks the system may be expected to learn. Teasing out this difference is aided
in investigating how data flows through different parts of the system’s topology.
For example, the Fusiform Face Area is shown to activate when distinguishing
between faces and also in bird experts for distinguishing between birds [34].
This multi-use activation of the same subnetwork is one example of bootstrap
learning. We might expect similar submodules to be redeployed across different
kinds of learning domains.

Challenges. We recognize that adding modularity alone will probably not
multiplex information in a way that provides human-level general intelligence.
The works of Coward, Buszaki, and Turing suggest algorithms employed by
the human brain may give rise to this generality based on eliciting sequences
of computation across different modules [4,13,36]. Furthermore, special message
passing algorithms between modules would benefit from that of publish and sub-
scribe models; that regions in the system can communicate with each other when
necessary. Thus, the system must employ other learning methods for generating
such sequences when appropriate. Other challenges involve the large search space
of possible architectures and their respective inductive biases in learning different
tasks and pairing the correct learning algorithms within modular architectures.

4 Conclusion

We have highlighted topology as an important topic for future research, as well
as the need for algorithms that allow for learning without rewriting previous
learning. We suspect modularity in biological intelligent systems plays a cru-
cial role in achieving this need while conserving resources. This paper also con-
tributes to discussions on AGI agent architectures by suggesting some useful
considerations on how to test for generality in regards to CF and bootstrapping.
Works from [1,19,28,32,40] have attempted to tackle these issues separately,
while others [31,39] have come from the angle of single-use systems, all of which
overwrite prior learning to a unsatisfactory degree. Still, some works have come
from the position of down-scaling theoretical models without resource constraints
[7,15,37]. While these approaches are useful, we find the proposed approach is
more appropriate for the pursuit of general intelligence. We believe this paper
provides a framework for investigating computationally tractable general learn-
ing systems. Promising directions involve evolutionary and intelligent topology
design that utilizes modularity to minimize rewriting prior learning. We hope
this paper serves as a tool for those interested in benchmarking early progress
in generality. There is room for many future works to provide insight into the
approach presented here as well as how to measure generality in terms of boot-
strapping and learning new without forgetting old. We have tried to clarify how
modularity may offer a method of learning without rewriting and the role it plays
in topology design. Much work needs to be done to improve that understanding
and find ways to appropriately incorporate modularity in AGI frameworks.
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Abstract. We start by discussing the link between ecosystem simulators
and artificial general intelligence (AGI). Then we present the open-source
ecosystem simulator Ecotwin, which is based on the game engine Unity
and operates on ecosystems containing inanimate objects like mountains
and lakes, as well as organisms, such as animals and plants. Animal
cognition is modeled by integrating three separate networks: (i) a reflex
network for hard-wired reflexes; (ii) a happiness network that maps sen-
sory data such as oxygen, water, energy, and smells, to a scalar happi-
ness value; and (iii) a policy network for selecting actions. The policy
network is trained with reinforcement learning (RL), where the reward
signal is defined as the happiness difference from one time step to the
next. All organisms are capable of either sexual or asexual reproduction,
and they die if they run out of critical resources. We report results from
three studies with Ecotwin, in which natural phenomena emerge in the
models without being hardwired. First, we study a terrestrial ecosystem
with wolves, deer, and grass, in which a Lotka-Volterra style population
dynamics emerges. Second, we study a marine ecosystem with phyto-
plankton, copepods, and krill, in which a diel vertical migration behav-
ior emerges. Third, we study an ecosystem involving lethal dangers, in
which certain agents that combine RL with reflexes outperform pure RL
agents.

Keywords: Ecosystem · Neural networks · Happiness · Reflexes ·
Reinforcement learning

1 Animal Cognition

All organisms in nature are subject to natural selection and, where applicable,
also sexual selection [1]. These forces operate on physical as well as cognitive
properties of the organisms. One factor that contributes to the selection pressure
on animal intelligence is other organisms. In fact, organisms coevolve with each
other and are part of each other’s environment. Intelligence may be an advantage
in the “arms race” between predators and prey, in the competition for scarce
resources, in collaborations with mutual benefits, and in sexual selection pro-
cesses. Another factor that contributes to the selection pressure on intelligence
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is the terrain. In fact, animals must continuously handle challenges imposed by
the terrain and adapt their behavior to local conditions when migrating, forag-
ing, approaching prey, escaping predators, mating, and parenting.

To survive and reproduce, animals need to deal with a continuous stream
of challenges in their lives. They must find food, avoid predators, navigate, and
mate. Solving these challenges requires efficient information processing, in par-
ticular perception, decision-making, and action. Nervous systems are present in
almost all taxa of the animal kingdom and play a key role in animal information
processing. They are typically far from monolithic. For example, in humans, the
complex nervous system that controls digestion is essentially separated from the
brain and may operate even in a brain-dead person. The human brain itself is
highly modular, with its anatomically distinct lobes and regions, such as the
Brain stem which controls reflexes—positive, e.g., the knee reflex, and nega-
tive, e.g., the diving reflex; the Prefrontal cortex, which maps sensory signals
to actions; and the Insula, which combines internal signals, such as blood sugar
level and external signals, such as smells, into signals linked to happiness and
reward [2].

Reflexes are critical to many animals [3]. For example, a newborn lamb might
not have the time to find its way to its mother’s udder through random trial
and error. Instead, its early life hinges on an instinct that draws it to the smell
of milk and a positive suck reflex that causes it to drink. The lamb might also
benefit critically from negative reflexes that prevent it from eating lethal objects,
inhaling liquid, or jumping from high cliffs. From an evolutionary perspective,
one of the great advantages of nervous systems is that they enable learning,
i.e., physical modification, and thereby efficient adaptation to the dangers and
resources of the local environment. A prominent example of learning is rein-
forcement learning (RL), which is used across the animal kingdom [4,5]. Many
animals combine untrainable reflex circuits with circuits that are trainable with
RL. For instance, humans have hundreds of hardwired reflexes, e.g. the knee
reflex, but we can also learn via RL. This enables us to combine the benefits of
reflexes with the benefits of RL.

2 Models of Animal Cognition

There is a great number of computational models of animal cognition. In the
“reflex tradition”, animals are modeled as reflex agents, without the ability to
learn. Such models might be adequate for animals with hardwired nervous sys-
tems that remain essentially unchanged during their lifetime. An example could
be the famous nematode C. elegans [6]. Many biologically inspired algorithms,
such as cellular automata, swarm algorithms, and ant algorithms, belong to this
tradition and so does the subfield that studies populations of reflex agents pow-
ered by evolutionary algorithms.

In the “RL tradition”, animals are modeled as RL agents. This field includes
physical animal robots that get rewarded for fast crawling, running, swimming,
or flying. It also includes homeostatic agents that get rewarded for keeping a set
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of homeostatic variables—like energy, water, and oxygen—close to their target
values, or sweet spots [7,8]. RL algorithms have been shown to have a great
potential for AI. For instance, they outperform humans at several video games
and strategic board games [9]. There are also several agent-based ecosystem
simulators that are based on RL [10–12].

In analytic approaches to ecosystem modeling, organisms are typically mod-
eled with numbers representing population size or biomass and the interaction
dynamics is modeled with systems of differential equations. There is no model
of individual animals, no model of animal cognition, and no model of the ter-
rain. Examples include the well-known Lotka-Volterra predator-prey dynamics
[13]. The Ecopath (with Ecosim and Ecospace) simulator for marine ecosystems
[14] divides maps of ecosystem into geographical cells, where each cell contains
populations, for example, given as tonnes of phytoplankton, zooplankton, plank-
tivores, and pescivores.

3 AI via Models of Animal Cognition

Nervous systems provided the original inspiration for the neural network model
and its applications to supervised learning [15] and RL [5]. Some researchers
try to copy animal brains in wetware or reproduce their connectome in software
[6], others build computational models of the brain, sometimes called cognitive
architectures [16]. Rather than aiming directly for a model of the brain, one may
aim for a model of the process that led to the development of the brain. Since
natural general intelligence emerged as the result of an evolutionary process that
took place in an ecosystem, a natural strategy for creating AGI is to construct an
ecosystem simulator that exploits the natural selection pressure on intelligence.
This strategy is in line with Wilson’s “animat path to AI” [17] and it enables a
gradual approach to AI that starts with relatively simple ecosystems.

Section 4 of this paper presents the theoretical framework of the ecosystem
simulator Ecotwin, which combines RL and reflexes. Section 8 presents simula-
tion results, in which well-known patterns from population dynamics and ethol-
ogy emerge. Section 12, finally, draws some conclusions.

4 Ecosystem Simulator

In this section, we present the theoretical framework of the ecosystem simula-
tor Ecotwin. Ecotwin uses the game engine Unity with ML-Agents [10], which
provides a graphical user interface, a physics engine, and several RL algorithms.
More details about Ecotwin, including its open source code, can be found at
www.ecotwin.se.

5 Ecosystems

We model space with a set S ⊆ R3 and time with the numbers 0, 1, 2, . . . .
The building blocks of our ecosystems are called objects. For instance, we could

www.ecotwin.se
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introduce cat objects, dandelion objects, and rock objects. Each object is
assigned a set of object properties.

Definition 1 (Object properties). The object properties are:

– Physical properties (measured in their respective SI units) such as Temper-
ature, Mass, Pressure, Electric current, and Luminous intensity. Moreover,
each object has a conformation, which is a subset of S.

– Chemical properties (measured in the SI unit molarity) are concentrations
of chemical substances such as Oxygen, Nitrogen, Water, Carbon dioxide,
Glucose, Salt, Sulfur, Fat, Protein, Estrogen, Testosterone, and Oxytocin.

– Biological properties such as Age (seconds), Sex (none, female, or male), and
Fertility (a real number in [0, 1]).

Note that the conformation of an object describes its shape and position in S.
The physical and chemical properties of objects may be defined as aggregations
of the properties of the points inside their conformations, e.g., the average tem-
perature of a rock object. It is sometimes convenient to introduce additional
properties. For example, to talk about cat objects, one may want to introduce
properties such as Eye color, Paw size, Blood pressure, and Blood sugar.

Definition 2 (Inanimate objects). An inanimate object in S consists of

– A type: for example Rock, Water, Road, Building
– A set of physical and chemical properties

Definition 3 (Organisms). An organism in S consists of

– A type: for example a particular species of bacteria, fungus, plant, or animal
– A genome consisting of a string over a finite alphabet
– A set of physical, chemical, and biological properties
– A nervous system consisting of a set of sensors S, where each sensor has a

location in the conformation and a sensitivity to some physical or chemical
property; a set of actions A, and three disjoint networks: a reflex network
with input nodes S and output nodes A; a policy network with input nodes S
and output nodes A; and a happiness network with input nodes S and a single
output node for representing a scalar happiness value.

– A set of hyperparameters. These may include hyperparameters for training
the policy network and for regulating reproduction and death. An example of
a hyperparameter is age max, which controls the maximum lifetime.

– A set of update rules:
• Update rules for physical properties, e.g. how locomotion actions influence
the conformation.

• Update rules for chemical properties, e.g. how ingestion and locomotion
actions influence the Glucose property.



The Ecosystem Path to AGI 273

• Update rules for biological properties specifying (i) the reproduction pro-
cess, which may be sexual or asexual and involve mutation and crossover;
and (ii) the physical and chemical properties that must be met for the
organism to stay alive. For example, if Temperature is not inside a cer-
tain interval, or if Age > age max, then the organism will die and thus
become an inanimate object.

The genome has two roles: (1) It encodes the organism at the start of its “life”, in
particular, it could encode its initial conformation (body shape), nervous system,
and hyperparameters; (2) It is the input to the reproduction process, in which
one or two genomes give rise to a new genome.

This definition of organism encompasses pure reflex agents (with an empty
policy network), pure RL-agents (with an empty reflex network), and agents that
combine reflexes with RL. By leaving the nervous system empty, we can also
model agents lacking nervous systems altogether, such as bacteria and plants.
It is often convenient to represent the reflex and happiness networks as hand-
coded functions. If desired, these functions can easily be converted into neural
networks, by using supervised learning. This step might be useful when applying
mutations that add noise to connection weights.

Definition 4 (Ecosystem). An ecosystem consists of

– A space S ⊆ R3

– A set of inanimate objects in S
– A set of organisms in S.
Several examples of ecosystems will be given in Sect. 8. The ecosystem is updated
at each tick, using the physics mechanisms of Unity and the update rules of the
organisms.

6 Decision-Making

This is how the nervous system is used for making decisions at time t:

1. For each sensor, read off its physical or chemical property at its current posi-
tion. This produces a vector x that encodes the sensory input at t.

2. Give the input x to the Reflex network, which then outputs some vector y,
with component values −1, 0, or 1. The intended meanings of these values
are, respectively, to block, accept, and force the corresponding action.

3. Also give the input x to the Policy network, which then selects an action a.
Represent this action as a one-hot vector z, where 1 is in the position of a.

4. Finally, compute the vector H(y + z). Here, H((v1, . . . , vn)) is defined as
(h(v1), . . . , h(vn)), where h(vi) is 1 if vi > 0 and 0 otherwise. This produces a
multi-hot vector that constitutes the decision at t. Thus, the decision might
be no action, one action, or many actions.
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Now that we have seen how nervous systems are used for decision-making, let us
consider a concrete example of a nervous system of a lamb model. The sensors,
actions, and reflex network are shown in Fig. 1. The happiness network maps
Glucose and Oxygen to a happiness value, so that ingestion and breathing are
encouraged. An additional input could be Sheep smell, so that the animal is
encouraged to approach sheep: a hardwired social instinct. The policy network
is trained using RL and updated at each time step. Thus, the animal might
learn to breathe when Oxygen is low and move toward the strongest smell of
milk when Glucose is low.

Fig. 1. A Reflex network. This network has sensors for touch (pressure) at two different
locations of the conformation. It also has sensors for glucose and oxygen concentration
in the blood stream, and for smell at different locations. The actions are for home-
ostatic regulation and locomotion. Only two connections have non-zero weights: one
with weight +1 (green) and one with weight −1 (red). This produces a positive sucking
reflex and a negative reflex that is similar to a diving reflex and prevents inhalation of
liquid. (Color figure online)

7 Learning

The reflex and happiness networks develop through evolution only, and not
through learning. In contrast, the policy network is updated at each time step
via RL. The reward signal at time t is defined as happiness(t)−happiness(t−1),
where happiness is computed by the happiness network. In the simulations dis-
cussed in this paper, we use the standard RL algorithm PPO [18] together with
the animals’ individual hyperparameters.

8 Results

We will present several results that were obtained using Ecotwin simulations.
Videos of the simulations are available at www.ecotwin.se. Ecotwin can run on
ecosystems populated with models of real organisms, imaginary organisms, or
robots. In this section, we will consider simple models of real organisms. The
properties and the mechanisms of our model organisms will be taken from the
corresponding real organisms. In order to find a reasonable starting point, we
initialize the policy networks randomly and then pre-train them with RL in
Ecotwin, before turning on reproduction and starting the simulations.

www.ecotwin.se
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9 Emergence of Predator-Prey Dynamics

Previous work in predator-prey dynamics has shown that a two-species predator-
prey system, with agents trained through RL, exhibited Lotka-Volterra cycles
under certain choices of parameters [12]. We wanted to explore whether a three-
species system would also exhibit such cycles.

Our study concerns a three species predator-prey ecosystem with grass, deer,
and wolves, as illustrated in Fig. 2 (Left). Deer and wolves have vision, which is
modeled via Unity’s ray casts, and gives the direction and distance to the closest
visible objects of each type, within a certain radius [10]. Moreover, the deer can
smell grass and wolves, while the wolves can smell deer. At each time step, each
animal decides whether it should stand still, walk, or run forward. It also decides
whether it should rotate left, right, or not at all. The happiness of the deer is
determined by their Energy and Wolf smell sensors, whereas happiness of the
wolves is determined by their Energy and Deer smell sensors. The deer obtains
energy by eating grass and wolves by eating deer. The consumption of energy
depends on the velocity of the animal. A simplified reproduction mechanism was
used, where each animal had a probability of giving birth to a new agent, which
was then spawned at a random unoccupied location in the ecosystem.

We ran two simulations with Ecotwin, starting with the same ecosystem.
The result is shown in Fig. 2 (Right). As expected, given the dependence on
randomness, the two simulations are different. In both simulations we see Lotka-
Volterra cycles, with an increase in grass, followed by an increase in deer, followed
by an increase in wolves, and similar decreases. More details about the study
can be found in [19].

Fig. 2. Left: A three-species predator-prey ecosystem, with grass, deer and wolves.
The red bars show happiness values. Right: Population dynamics from two different
simulations. (Color figure online)

10 Emergence of Diel Vertical Migration

In this study, we consider a marine ecosystem with krill, copepods and phyto-
plankton, illustrated in Fig. 3 (Left). A diel light cycle was simulated, with the
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sun going up and down. We also simulated decreasing light intensity at greater
depths. Three behaviors observed in real Copepods [20] were studied: (1) Diel
Vertical Migration (DVM): a cyclic behavior in which Copepods migrate to the
surface at night (enabling them to graze phytoplankton that are near the sur-
face where the light is) and go down to greater and darker depths in the daytime
(where the vision of predators such as krill is less efficient). (2) Quick escape reac-
tions that enable Copepods to escape from predators. (3) Chemotaxis causing
Copepods to avoid the smell of predators.

The Copepod models have a simple form of vision, by which they can perceive
a rough direction and distance to near-by phytoplankton. Moreover, they can
perceive light intensity, their own energy level, and whether they are touching
food, krill, the environment’s boundaries, or another Copepod. Their happiness
value, yielding their reward, depends on energy and light intensity.

The Copepods and krill were pre-trained with RL for 1 million time steps.
Then an Ecotwin simulation was run, starting with the ecosystem shown in
Fig. 3 (Left). The behavioral patterns (1)–(3) were observed in the simulations.
In particular, a clear DVM pattern was observed, as shown in Fig. 3 (Right).
More information about the study can be found in [21].

Fig. 3. Left: A marine environment with krill (orange), Copepods (yellow), and phyto-
plankton (green). The light intensity at different depths varies over time. This snapshot
was taken at simulated daytime, when the Copepods are relatively far from the sur-
face. Right: Mean vertical position of the copepods (red curve) over time. The light
intensity is indicated by the background color. (Color figure online)

11 Emergence of Critical Reflexes

This study concerns the interplay between RL and reflexes. We consider a terres-
trial ecosystem with goats and grass, illustrated in Fig. 4 (Left). There are three
types of grass in the environment: green, yellow and red. The green grass is good
for the goats to eat, the yellow grass is bad, but not deadly, whereas the red grass
is deadly. The goats reproduce sexually and have a genome that encodes their
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policy networks and reflex networks. Thus, they may pass on genomes, includ-
ing genes that code for reflexes, to their offspring. The goats have four different
genes that we call red, yellow, green, and blue, for convenience. These genes
correspond to a reflex which prevents a goat from eating red, yellow and green
food objects, respectively. The blue gene does not affect a goat’s reflexes.

An Ecotwin simulation was run with these organisms and the result is shown
in Fig. 4 (Right). We can see several patterns: (1) The red gene eventually dom-
inates the population. This is expected, as a reflex to avoid lethal food gives
them a clear advantage. (2) The domination of the red gene suggests that the
combination of reflexes and RL is more effective than RL alone when there are
lethal dangers in the environment. Avoiding lethal food cannot be learned during
a goat’s life. (3) The yellow gene does not have a clear advantage over the blue
gene. This suggests that the combination of reflexes and RL gives no advantage,
that cannot be learned, over pure RL-agents when the dangers are not lethal. (4)
The goats with the green gene keep dying out and then reappearing because of
the mutation in the inheritance mechanisms. (5) A goat’s genome may include
multiple genes. This explains why the superior red gene does not dominate the
population completely.

More details about the study can be found in [22].

Fig. 4. Left: An ecosystem with goats, and three different types of grass objects: green
= good, yellow = bad but non-lethal, and red = lethal. Right: The number of goats
that have the red, yellow, green, and blue genes. (Color figure online)

12 Conclusion

We have presented the open source ecosystem simulator Ecotwin. It was run
on three ecosystems, on which it reproduced certain population dynamics and
behavioral patterns that can be observed in real ecosystems. Agent-based ecosys-
tem simulators can be used for predicting the consequences of human interven-
tions, e.g., via fishing, forestry, or urbanization. They might also be used as
“general AI gyms”, in which populations of agents coevolve in a fully automatic
process, while taking advantage of the built-in selection pressure on intelligence.
This research path toward general AI seems to be worthy of further exploration.
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Abstract. We consider two cognitive architectures which are designed to
proceed goal-directed behavior. One of them, Theory of Functional Systems, is
developed on the basis of the eponymous biological theory. The other, Non-
Axiomatic Reasoning System or NARS, utilizes the formal logic apparatus and
weighted probabilistic choice to proceed its inference. The architectures were
scrutinized and decomposed and a number of conclusions have been drawn
about their advantages and disadvantages regarding the goal-directed behavior
processing.
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1 Introduction

Theory of Functional Systems (hereafter referred to as TFS) is a rule-based cognitive
architecture that is based on the eponymous biological theory. The main concepts of
this theory are goal, goal-directed behavior, result and criterion of achievement. The
architecture is designed to be used for controlling agents’ behavior in various
environments.

A set of corresponding experiments that were conducted in the last few years shows
that TFS is quite effective both when it performs tasks by itself and when compared
with other control methods, such as neural networks and Q-learning [1].

We have given a talk, describing inner mechanisms and details of TFS architecture
along with biological considerations that inspired it, at the AGI-2020 conference. After
the conference we were contacted by Pei Wang, the lead developer of NARS. That is
another cognitive architecture that is in development for nearly two decades and is
rather well-known in the AGI community. After this, while considering possible
options for the next steps in our scientific work, we decided that we should do a
comparative analysis of TFS and NARS architectures.
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This might serve several purposes. To begin with, NARS is mostly an
“engineering-based” system, whose underlying ideas are based mostly on formal logic.
Foundations of TFS, in turn, encompass a strong biological theory that describes the
nature of behavior and reasonable action. Direct comparison of “biological” and
“engineering” approaches should be a worthy and interesting study by itself.

At the same time some parallels can be seen in architectures’ internal structure. The
working algorithm of both systems can be decomposed into parts, and some of the parts
that perform the same functions theoretically might be interchangeable between the
systems. Considering both systems are still in active development, analysis of such
architecture details might help both systems see their actual flaws and become an
inspiration for algorithm modifications and improvements. And, of course, such work
might bring attention of the community to both architectures.

2 NARS Architecture

The comprehensive description of internal structure of TFS was given in the corre-
sponding article last year [2].

Let us propose a brief description of NARS architecture. The main concept that
underlies NARS is the so-called Assumption of Insufficient Knowledge and Resources.
It states that “an intelligent system should be able to solve problems using insufficient
knowledge and resources” [3]. So, the whole system is designed to work with com-
putational resources of any scarcity, including CPU power and disk space. For
example, every operation in the inference cycle is designed to be executed in nearly
constant time.

The system language, Narsese, supports four types of sentences, which are state-
ments, questions, goals and quests. Statements represent system knowledge about the
environment and thus have truth-values. Questions represent knowledge that the sys-
tem does not possess but which is crucial for it to solve its tasks. Questions do not have
a truth-value, but the answer to the question is a statement with corresponding truth-
value. Goals are some events that the system wants to become true; instead of truth-
values these sentences have desire-values, which are a sort of “measure of desire” for
the system. At last, quests are in fact a sort of questions that seek for a goal as an
answer.

The base unit of information in NARS is so-called concepts, which are stored in a
special data structure named bag. Bag is a set of objects with a priority value assigned
to each object. This data structure supports three operations: put a new item into it, take
the exact item from it and take non-specific item. When the system performs the third
operation, the choice is made probabilistically with accordance to priority values of the
items. The maximum number of elements is set for the bag; if this number is reached,
the item with the least priority is removed from the bag whenever a new item is put into
it. If the system identifies the freshly-put item as a copy of an item already existing in
the bag, they are merged together and the priority value of the ancestor is increased.

NARS consists of a bag of concepts, where each concept is named by some term of
Narsese (e.g. <cat –> animal>, which can be translated into English as “cats are
animals”). Each concept comprises a bag of task-links (which are links to some Narsese
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sentences that system processes depending on sentence type), a bag of term-links (bi-
directional links that connect concepts depending on its content) and, if a concept
corresponds to compound (non-atomic) term, two lists that contain actual beliefs and
goals corresponding to the concept. For example, a concept <cat –> animal> will
have a task-link to task <cat –> animal>. (the dot at the end means the task is a
statement), term-links to concepts cat and animal and tables for goals and beliefs, while
concept cat will have a task-link to task <cat –> animal> a term-link to concept <cat –
> animal> and no tables since it corresponds to atomic term.

The lifecycle of NARS consists of a sequence of repeating steps:

• get a concept from the memory,
• get a task and belief from the concept,
• derive new tasks from the selected task and belief,
• put the involved items back and new tasks into the corresponding bags.

When two premises are taken by the inference engine, NARS looks through the
logic inference rules that might be applied depending on the properties of the premises.
Depending on the form, each rule has its own way to calculate the priority value of the
conclusion (for example, the deduction rule conclusion would have much more priority
than the induction, other things being equal). All of the possible results are produced
and processed; if their priority value goes beyond threshold, they are introduced into
the system and put into the corresponding data structures.

3 Comparison

After exploring the inner structure and principles of NARS, we have proceeded to
compare two systems. Since TFS is designed to carry out nothing but purposeful
action, while NARS is positioned as a “wide profile” system, we have compared the
ways each system processes the goal-directed activity in particular.

The most noticeable difference between two approaches is their attitude towards
randomness. TFS does not include it in its system; actually, it performs random actions
only during the initial stage of its life cycle, when the agent does not have any
experience about the environment. From the ending of this stage, the system operates
purely in accordance with the rules it had discovered to the moment, always choosing
the action that has the highest “success rate” in the actual situation.

NARS, in its turn, uses random choice at every iteration of its working cycle. This
applies not only to the ways of achieving the goal, but even to the current goal choice.
NARS can process multiple tasks simultaneously: since on every iteration of the
inference cycle the working concept is chosen anew, there might be another task
chosen or another goal pursued. While this “wideness of choice” might give the system
additional flexibility in its choices, it also might cause a problem: if there exists a single
specific way to achieve a goal, the system might find it hard to “concentrate” on it,
spending its resources on multiple secondary observations and conclusions.

While these nuances and their handling might become a debatable moment, there is
one single aspect in which TFS is significantly ahead of NARS. An intellectual system
should be able to efficiently discover causal relationships based on its experience.
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In NARS this feature is realized the same way as other inference: that is, when the
event A is followed by the event B, the system might mark them as cause and effect via
induction rule, the sentence of form <A=/>B>. being derived. However, any two
events that happen to occur one after another might be connected this way; if the stream
of incoming information is broad, there might be a high rate of “false positive” con-
clusions. At the same time, already discovered relations do not affect this process; they
can only be merged together if the same result is derived more than one time.

TFS, in turn, utilizes Fisher’s exact test to discover statistically significant coin-
cidences. This is done by analyzing the history of the agent’s actions and what has
happened as their result. After the initial set of rules is discovered, the agent’s behavior
becomes goal-oriented as it uses the rules to achieve its goal; whenever the rule is
applied, the results of action are evaluated and the “success rate” of the rule is adjusted
depending on it.

Considering all the reasoning above, we come to conclusion that TFS is more
suitable for goal-directed behavior processing at the given moment. However, the
decomposition of systems has shown that it is possible to transfer some mechanisms
from one system to another, thus creating somewhat of a “hybrid architecture”.

For example, the idea of transferring the bag structure to TFS is of great interest to
us. The idea of weighted probability choice might somehow change the behavior of
TFS agents in experiments and it would be interesting to compare the results. Also,
while the main advantage of NARS is its high computational efficiency, some elements
of the architecture might be adapted for usage in TFS to reduce its computational costs.
We look towards such experiments in the nearest future.

Vice versa, while studying NARS, we have come up with several ideas for potential
improvements of its architecture with already existing TFS features. The simplest idea
is modifying the NARS agents oriented for procedural inference via adding the “ran-
dom steps” stage in the beginning of agents’ life cycle. We also consider more complex
ideas, such as implementing parts of probabilistic law detection algorithm from TFS to
NARS: that might be useful in cases where the system can “buy” some efficiency for
the cost of computational costs.

Considerations above are mostly theoretical; as two systems have revealed much
unlikeness in their nature, the empiric comparison via correct and fair experiment
remains a complex task. We look towards it among other activities and probably will
publish some result regarding such research in the future.
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Abstract. An implementation of a Non-Axiomatic Reasoning System-
inspired system is presented in this paper. This implementation features
a goal system which features deep derivation depths, which allows the
system to solve moderately complicated problems. The reasoner is utiliz-
ing Non-Axiomatic Logic for procedural and non-procedural reasoning.
Most of the internal tasks are done under the Assumption of Insuffi-
cient Knowledge and Resources fulfilling various timing and resource
constraints.

1 Introduction

This paper presents a Non-Axiomatic Reasoning System (NARS) implementa-
tion named 20NAR1. The system is operating in real-time [1] and always open to
new stimulus and knowledge, making it able to adapt to changes in its environ-
ment (R4 in [2]). Planning, and the ability to do so effectively, is a core part of
this system. It is performed continuously, incrementally and in real-time (R5 in
[2]), utilizing a layered structure (a grouping by derivation depths and involved
terms) which allows for deeper planning depths. This allows this implementa-
tion to tackle problems which need deeper planning depths than the problems
previous NARS implementations have been tried on, leading to better perfor-
mance especially in board games. All of the systems capabilities are respecting
the Assumption of Insufficient Knowledge and Resources (AIKR, [1,3,4]) as a
key working assumption to keep computational resources (both storage capacity
and processor time demands per inference step) in bounds during operation.

2 Assumptions

20NAR1’s design is heavily inspired by the non-axiomatic reasoning system
(NARS). Representation of the procedural knowledge, more fundamentally the
truth value of beliefs, differs from OpenNARS for Applications (ONA) [5] and
OpenNARS for Research (ONR) [6] in fundamental ways. The system utilizes a
non-axiomatic representation for the beliefs of procedural knowledge as done in
Autocatalytic endogenous reflective architecture (AERA) [7,8], where the evi-
dence is explicitly counted. The confidence of the truth value of the belief is com-
puted by the formula c = |e|

|e|+1 as in [7] on demand. This allows exact recording
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of the evidence without resorting to an explicit representation of the frequency
and confidence as done in all publicly accessible NARS implementations such as
ONR and ONA.

The process of the design of this system was inspired by the need of the system
to be able to plan and execute plans in complicated and complex environments.
The non-temporal mechanisms were added shortly after a basic prototype of the
temporal mechanisms were working in a Pong environment.

The reasoning processes for temporal and non-temporal inference are strictly
separated. This is different to a “true” unified reasoner, where both responsibil-
ities are carried out by the same reasoning machinery.

One reasoner deals only with non-temporal inference (NAL1-6, [9,10]), while
another deals only with temporal inference and procedural learning (NAL7-
9, [9,10]). This design decision was chosen to make the reasoning more effi-
cient than in other implementations [5,6]. Another reason was that a unified
approach wasn’t necessary for the tested problems, which are inspired by the
expected uses of this system. Another advantage is that the two processes may
run with true concurrency side by side. This property will be maintained, even
if the two processes need knowledge from the other or have to exchange knowl-
edge. Examples for the exchange of knowledge is a non-temporal rule such as
<(a && b) ==> d>>, where the predicate is temporal knowledge and has
to get stored in the temporal memory. Inference on temporal knowledge where
premises are non-temporal has to retrieve the knowledge from the non-temporal
memory. This will be the case in tasks such as the toothbrush “problem solving”
[11] problem as demonstrated in ONA and ONR.

Further separation of concerns (SOC) was done in the design of the tem-
poral reasoner. Different parts are responsible for perception, revision, decision
making, forward planning and backward planning. Please note that the utilized
logic is NAL, which implies that all the knowledge is derived according to NAL
inference rules and stored in a way that term structure is exploited.

The system is currently completely implemented in the Rust language1.
Requirements for the language were a modern language, comparatively fast
development, fast run-time execution, modern non-manual memory manage-
ment.

Overall, the system is constructed with these key assumptions in mind:

– AIKR The system has to fully work under Assumption of insufficient knowl-
edge and resources (AIKR) realtime operation
reasoning cycles don’t take more time than a given soft limit

– interactive operation the cycles happen relatively fast on a machine avail-
able today2 (100 ms, sub 100 ms).

1 Source code is available at https://github.com/PtrMan/20NAR1.
2 In 2021 on a quad-core CPU.

https://github.com/PtrMan/20NAR1
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3 Memory System

Temporal. The memory system used to store temporal beliefs (which allows
for the easy retrieval of knowledge for planning purposes) follows the ALANN
[12] memory model: Beliefs are stored in concepts by term and sub-terms. The
policy to manage memory to keep its resource requirements bounded is to sort
concepts by maximum truth expectation (whereby truth expectation fexp(f, c) =
c ∗ (f − 1

2 ) + 1
2 ), keeping only the top N concepts.

Non-temporal. The memory system used to store non-temporal (seman-
tic/declarative) beliefs follows the ALANN memory model as well: beliefs are
stored in concepts, whereby the concept’s term has to be a sub-term (or the
term itself) of the belief’s stored within. This allows for easily sub-term-based
retrieval of a second premise, as for this kind of inference it’s required to share
a term with the first. The policy for memory management is: sort concepts by
maximum of truth expectation of their beliefs, again only keeping the top N
concepts.

4 Temporal Deriver

Goal System

Memory Management
A set of active goals is maintained by the goal system. This set is bound to
be below a maximum count of goals by throwing irrelevant goals (of low desire
value) away in fixed time intervals, to keep the system under AIKR.

Goal Derivation
Goals are sampled with a probabilistic bag-like mechanism where access fre-
quency is positively correlated with the priority of the items stored within. Goals
are then combined with beliefs to derive goals, which are fed back as goals into
the goal system.

Goal System Bias
Goals are grouped by derivation depth (amount of inference steps from input)
for more uniform derivation of deeper or shallow goals. Goals in these groups
are grouped by term, and sampled by depth, to bias derivation to deeper goals.
Else it would sample more shallow goals if this grouping and sampling wouldn’t
exist.

Desire Value (DV) of goals is stored as an explicit frequency and confidence
tuple as done in all NARS implementations [5,6], whereby the desire value is the
truth value of the belief that the fulfillment of the goal leads to a desired virtual
state [10].

Planning is done by deriving goals by the deduction rule with a goal and a
predictive implication as premises [13]. This planning process is different from a
question-driven planning process, as discussed in [14].
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Temporal Representation and Inference

– The time interval between an antecedent and consequent of a predictive
implication is represented as a exponential interval, as done in OpenNARS
(ONR) [6].
Multiple such beliefs exist for different intervals, all with possibly different
evidence and truth value [8].
Justification: exponential intervals were chosen because the evidence for dif-
ferent delays can be stored separately in different beliefs. This makes the
reasoner able to disambiguate situations which only differ in timing.

– Events from which predictive implications are derived are assumed to be of
binary truth (happening or not happening, or f ∈ {0.0, 1.0}, c < 1.0) in the
current implementation.
This is similar to the handling in AERA, where only predictive implications
have a truth value of Non-Axiomatic Logic [8] attached to them.
Justification: Confidence of the events is assumed to be 1.0, because the con-
fidence isn’t utilized in any environment so far. Future implementations can
store a confidence of the events, the confidence of the predictive implication
can get multiplied by the products of all confidence values of all events of its
premises (by deduction rule [1]).

– The procedural reasoner only does revision for beliefs where the term of the
sentence is equal and the interval is equal as well.

Prediction-Based Decision Making

– Forward depth first planning until either a goal is hit or the maximum depth
limit (as defined by a system parameter) is reached [8].

– Decision is based on first predictive implication sequence evidence which truth
expectation is above decision threshold (a system parameter). It is computed
on the result of the whole planned event chain computed with deduction [1]
Justification: prediction based decision making was added to the system,
because the backward deriving process usually doesn’t have enough resources
(time, memory space) to derive and store the temporal knowledge necessary
for decision making, represented as predictive implications <(a, ˆop) =/>b>,
in complicated environments.

– Decision making is implemented in the procedural reasoner where the system
has to react to incoming events [15]. The mechanism of decision making is
explained in more detail in a later chapter.

FIFO. Events are stored in a first in, first out (FIFO) data structure as
done in ONA [5]. The FIFO is sampled to build predictive implications
whereby the antecedent is always an (event, operation) sequence, for example
<(a, ˆx) =/>b>. A sampling strategy selects the premises by some (dynami-
cally adjusted) distribution over the observed time-distance to the current “now”
and other factors, such as the truth value of the event, frequency of occurrence,
current goals etc. The current implemented sampling strategy is sampling events
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with a uniform distribution, which is independent on the truth value of the event,
frequency of occurrence and current goals. This design decision was made to keep
the system as simple as necessary for the tested environments and expected envi-
ronments of its operation in the near future.

Procedural/Q&A Bridge. The most recent implementation3 of 20NAR1 has a
bridge which allows that knowledge from the non-temporal reasoner is used from
the temporal reasoner for decision making. This is realized by adding questions
when a goal with a condition has to be realized to query the non-temporal
reasoner for the required information. An answer to the question is interpreted
as a “virtual” (virtual as not really happened in the environment) event to trigger
the operation. And example:

// Goal which i s added to the goa l system
(<#1 −−> A>, ˆX) ! : | :
// Question which i s der ived from the cond i t i on o f the goa l
<?1 −−> A>?
// Answer found by non−temporal Q\&A system
<B −−> A>.

5 Non-temporal Deriver

Q&A. Question Answering is supported by reasoning on declarative knowledge.
The reasoner supports the processing of multiple concurrent questions, which are
processed in a time sharing manner4. Reasoning on the declarative knowledge
is done with NAL-rules as described by the NARS-theory, while utilizing the
common-term property of premises by exploiting the structure of the memory.
This part is also most similar to the other implementations, even though some
details do vary. For instance, whether implications form nodes in memory to
allow for a uniform design of the derivation pipeline (such as in OpenNARS),
or whether they form links for efficient subgoaling and planning, such as in
ONA and 20NAR1. Additionally, the chosen set of inference rules differs between
implementations, though the most fundamental ones (such as NAL-1 syllogistic
rules and NAL-7 temporal induction) are included in all complete ones.

6 Overall System

Cognitive mechanisms in this work capture several “complex functional adap-
tations” [16], that is, complicated methods which implement some crucial cog-
nitive capability of the agent.

3 At the time of writing. This may be implemented with a more unified approach as
done in ONA.

4 This functionality was added to help external AI with Q&A, else the external AI
has to keep track of it’s own questions and ask NAR again for a question which it
is processing.
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– Anticipation Anticipation is a mechanism to collect negative evidence for
procedural knowledge [6], which attributes negative evidence to such when
the antecedent happens but the consequent does not occur.

– Motor babbling Especially initially, the agent has to be able to gather
information about what happens as a consequence when it invokes operators
under the currently observed conditions. This is done with motor babbling,
which is a mechanism which picks a random operator after a precondition
was observed. The effects are recorded and may later be used for realizing
particular matching goals [5].

– Decision making Decision making is realized with the decision rule. It states
that the decision is made by calling the operation of the sequence if the
expectation of the operation goal is above the system’s decision threshold
[15].

– Predictive decision making Predictive decision making is decision making
which is invoked when creating a prediction which “hits” a (derived) goal.
Checking for a hit of a goal may be implemented with a hash table lookup.
It is currently implemented with a scan of a table of all goals to keep the
complexity of the implementation low.

– Adaptive resource scheduler A big problem in any design, because of
AIKR, is how to distribute resources (which can be CPU cycles or memory)
among the different processes. One requirement is that the time of a reasoning
cycle is not longer than a given (soft) limit. This supports a system to work
in real-time with a given interactivity (a system that finishes a cycle is more
responsive and thus more interactive).
An adaptive scheme is used in the latest published version of 20NAR1. A
scheduler has a time quota (which is similar to the quota as described for
EURISKO [17]) which can be “filled up” till the end of the cycle. This is
implemented with an arg-max utility based decision procedure where the
utility measures how urgent a given compute procedure is [18]. Ending the
cycle is always given a utility of 1.0. The utility functions of the procedures to
select take the remaining time of the cycle into account. An advantage of this
mechanism is that the selection of the internal action is not predetermined
by the program. Pseudocode for the algorithm is below.

whi le True {
double dt = ( t imeStart . e l apsed ( ) . a s mic ro s ( ) as f32 )/1000000 .0

// dec ide about r e sou r c e d i s t r i b u t i o n with max u t i l i t y
( f32 , S t r ing ) winner = (1 . 0 , ‘ ‘CYCLEFIN” . t o s t r i n g ( ) )

// compute u t i l i t i e s o f i n t e r n a l a c t i on s
f o r i a c t i o n in a c t i on s { // i t e r a t e over a l l a c t i on s

l e t u t i l i t y : f32 = i a c t i o n . c a l cU t i l i t y ( ) ;
i f u t i l i t y > winner . 0 {

winner = ( u t i l i t y , i a c t i o n . name)
}

}

// execute ac t i on which won t h i s round
i f &winner . 1 == ‘ ‘CYCLEFIN” {

// f i n i s h the cy c l e because we inve s t ed enough r e s ou r c e s
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break ;
}
e l s e i f &winner . 1 == ‘ ‘GOALDERIV” { // de r i v e goa l

NarGoalSystem : : sampleAndInference ( nar . goalSystem , otherARGS ) ;
}

}

Commands. Commands are implemented to give instructions to the interface
between user-input and the NAR itself. Commands are indicated with a ! sign
at the first position of the line. Such a functionality was first implemented in
OpenNARS, but the basic idea is similar to the commands in GDB or radare25,6.
NAL-9. NAL-9 [10] is largely concerned about mental operations the system can
invoke, which give the system the ability to influence its inference control process
actively. Mental operations can be considered a special case of operation which
influence the system itself rather than some actuator (such as a motor). Cur-
rently only a helper operator, n̂al9 exeAndInject, is implemented. This operator
executes other operators, which are given as a parameter in a sequence, followed
by a event to indicate the completion of the sequence of operators.

7 Experiments

Experiments were carried out to evaluate how well the implemented mechanisms
perform when they interact with each other. This chapter lists most of the experi-
mental results and corresponding evaluation scores, which were obtained in Pong
and Tic Tac Toe (Fig. 1).

Fig. 1. Tic Tac Toe and Pong

Pong. The tested Pong environment was taken from the ONA Pong environment
without a stop action. The result reaches a success ratio of 0.5–0.61, which is
way better than random (0.05) but worse than what ONA can achieve.

Tic Tac Toe. Tic Tac Toe (TTT) was chosen as a simple and yet complicated
environment where the agent has to learn and plan deep enough to consistently
win the game. The test consisted of a game of TTT in each epoch. Only a fixed
number of epochs were done till the test was terminated. A goal to win was fed
5 It is a reverse engineering tool https://rada.re/n/radare2.html.
6 Important here is that the commands have a nested structure to specify categories

of commands.

https://rada.re/n/radare2.html
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into the system at the beginning of every epoch. All operations of TTT have a
high evidence value, which leads to a high evidence value with confidence close
to 1.0 of the derived predictive implication sentences. This was done, because
long chains of temporal relations lead to a low confidence, possibly below the
decision threshold, which prevents a NARS to use knowledge for long chains.
Another reason is that a NARS has to observe the observation just once to use
the procedural knowledge even for deep goal planning. Anticipation was disabled,
because only positive knowledge was considered in this particular experiment.
Also, an event (f = 1.0, c = 1.0) with the term equal to the goal was fed to the
system when the epoch was won. No event was fed to the system if the epoch
was either lost or when it ended in a draw.

Results: 13 Full games were done with 500 games each. The NAR was config-
ured to keep 1000 active goals in memory. A success ratio was computed utilizing
the number of won games and the number of total games. The minimum of the
ratio was 1.48837, maximum 3.85714, average 2.26294, median 2.15441, variance
0.49854 and standard deviation 0.70607171.

Natural Language Processing. NLP is not directly supported in the cur-
rent code-base. A script to parse simple relationships is provided in the current
master branch of the codebase. Inputs are in the form of relations similar to
predicates in first order logic. One example is can (Tim, dance). Every rela-
tion get transformed to narsese sentences which represent the relationship, ex:
<(Tim * dance) → can>. The “is” relationship has a special handling to emit
both an “is” relation and the → (inheritance) copula. The “is” relationship is
emitted in addition, because it allows the NAR to perform specific inferences uti-
lizing this relationship, which is not possible when inheritance is emitted alone.

This functionality can later be used to build more complex NLP/NLU chan-
nels on top of it.

8 Conclusion

A new NARS implementation was presented. Its mechanisms, most of which were
not present in any previous implementation, or described in the literature7, were
implemented in the program and described in this paper. An evaluation on two
benchmark environments, Pong and Tic Tac Toe, was presented. Also, the impor-
tance of a goal system with the ability for deep planning was highlighted and
evaluated. This is also a key contribution of this work, and having a goal system
which features resource-sparing deep goal derivation paths can potentially also
be beneficial for other NARS implementations.

In the future, more focus will be put on the capability to alienate important
derived goals (allowing them to become permanent long-term goals), since it
allows the agent to develop a goal system from experience which allows it to
tackle more complex environments under resource constraints. This will be a core
part of next research and development. Other potentially missing mechanisms
to deal with complicated environments will get examined as well.
7 Referring to proto-AGI systems in accordance to the beliefs of the author.



20NAR1 - An Alternative NARS Implementation Design 291

References

1. Wang, P.: Non-axiomatic reasoning system: exploring the essence of intelligence.
Citeseer (1995)

2. Nivel, E., et al.: Bounded recursive self-improvement. arXiv preprint
arXiv:1312.6764 (2013)

3. Wang, P.: Insufficient knowledge and resources-a biological constraint and its func-
tional implications. In: AAAI Fall Symposium: Biologically Inspired Cognitive
Architectures. Citeseer (2009)

4. Wang, P.: The assumptions on knowledge and resources in models of rationality.
Int. J. Mach. Conscious. 3(01), 193–218 (2011)

5. Hammer, P., Lofthouse, T.: ‘OpenNARS for applications’: architecture and control.
In: Goertzel, B., Panov, A.I., Potapov, A., Yampolskiy, R. (eds.) AGI 2020. LNCS
(LNAI), vol. 12177, pp. 193–204. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-52152-3 20

6. Hammer, P., Lofthouse, T., Wang, P.: The OpenNARS implementation of the non-
axiomatic reasoning system. In: Steunebrink, B., Wang, P., Goertzel, B. (eds.) AGI
-2016. LNCS (LNAI), vol. 9782, pp. 160–170. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-41649-6 16
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Abstract. The feeling (quale) brings the “Hard Problem” to philosophy
of mind. Does the subjective feeling have a non-ignorable impact on Intel-
ligence? If so, can the feeling be realized in Artificial Intelligence (AI)?
To discuss the problems, we have to figure out what the feeling means,
by giving a clear definition. In this paper, we primarily give some main-
stream perspectives on the topic of the mind, especially the topic of the
feeling (or qualia, subjective experience, etc.). Then, a definition of the
feeling is proposed through a thought experiment, the “semi-transparent
room”. The feeling, roughly to say, is defined as “a tendency of changing
input representations by representing its inner state”. Also, a formalized
definition is given. The definition does not help to verify “having the
feeling”, but it helps to provide evidence. Based on the definition, we
think these are the hard problems of intelligence – whether the “innate”
feeling plays an important role in Intelligence, whether the difference
between the “simulated” feeling and the “innate” feeling will have a
significant influence on Artificial General Intelligence (AGI), and, if so,
where the “innate” feeling comes from and how to make an artificial agent
possess it.

Keywords: Intelligence · Feeling · Definition · Adaptability · Mind

1 Background

There may be a gap between intelligence and mind, that is, the feeling – how
can an objective agent have the subjective feeling?

We must primarily clarify on the related concepts involved. The mind in this
paper refers to the conscious mind, and the consciousness refers in particular to
phenomenal consciousness or called subjective experience that has qualia [11].
The feeling discussed in this paper is a kind of phenomenal consciousness. It is
emphasized that the feeling in this paper is subjective, which means it is private,
unable to represented, and truly experienced by us – that is, the feeling per se
and representations of the feeling are distinguished (see Sect. 3).
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We are concerned about the general laws and principles of intelligence. An
AGI agent should adapt to its environment and solve unseen problems (in terms
of developers) with limited resources. Although that is an objective aim, how
can we design a model to solve unseen problems? Few people may reject that a
best reference to achieving AGI is our mind. However, we ourselves have sub-
jective experience, or the feeling, while it is questionable to study the objective
intelligence with the mind as a reference: Are we studying objective aspect of
the mind, or are we studying both the subjective and the objective aspects at
the same time? In a sense, science involves a methodology – testing hypothe-
ses, forming theories, and predicting objective phenomena. Falsifiability is an
important character of scientific theory, but only objective phenomena can be
discussed with falsifiability. The falsification of the subjective feeling is difficult
– when the subject claims that it feels something, how can we deny it? How
do we determine that the “non-self” has the feeling? Therefore, what we study
is the objective aspect of the mind, that is, intelligence. In our view, the laws
and principles of intelligence are completely objective, so it can be studied and
tested by scientific means, while the mind (especially its subjective experience
or feeling) is more difficult to study with the existing scientific paradigm.

The issue of the mind-body relationship is one of the most central issues in
philosophy of mind. What is the relationship between the mind (especially the
conscious mind) and the body (or matter)? On this issue, the most mainstream
view at present is physicalism. Physicalists believe that the physical domain is
causally closed, all facts including psychological facts are physical facts, and all
information is physical information [11]. Within physicalism, there are reductive
physicalism and non-reductive physicalism. The reductive physicalism advocates
that the mind is equivalent to the activity of a specific brain or a neural system,
that mental states can be reduced to certain states of brains or neural system,
and that psychology can be reduced to neuroscience. Phenomenal consciousness
or the feeling can also be reduced to a certain physiological state – for example,
pain is the activation of C-fibers. Non-reductive physicalism believes that the
mental state is determined by the physiological state in some way, and the former
supervenes on the latter. Phenomenal consciousness and qualia supervene on the
basic physiological structure and function of the organism, which means that
if the physiological states of two organisms are exactly the same, then their
conscious experience will also be the same. When the organism feels pain, it is
inevitable that the neural C-fibers of the organism will be activated. As a non-
reductive physicalism, mind-body supervenience is currently widely accepted
[10]. A description of mind-body supervenience is:

The mental supervenes on the physical in that if anything x has a men-
tal property M , there is a physical property P such that x has P , and
necessarily any object that has P has M [11].

Under the context of AGI, a similar view holds that the “phenomenal aspect”
of consciousness is a first-person perspective of a process, while the “functional
aspect” is a third-person perspective of the same process. The two are different
aspects of the same object, and the two cannot be separated [16].
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The current scientific or AGI theories about the mind are mostly about cal-
culations or functions, and they aim to solve the so-called “simple problems”
[4]. For example, Crick and Koch proposed the “neurobiological theory of con-
sciousness”, assuming that the neural oscillations in the brain is the basis of
consciousness and is the neural correlation with awareness [6]. Crick and Koch
hypothesized that information is binded through synchronized oscillations of
neuronal groups that “represent relevant content”. Bernard Baars proposed the
global workspace theory of consciousness: it assumes that the content of con-
sciousness is contained in a global workspace (that is, a central processing unit),
which coordinates other independent and competing parts as a public blackboard
visited by them [1,2]. NARS (Non-Axiomatic Reasoning System) proposed by
Pei Wang uses the term SELF to refer to the system itself, in order to achieve self-
awareness and self-control [15]. Although Wang claims that the phenomenal and
functional aspects of consciousness are different perspectives of the same object
[16], its implicit meaning seems to be that the functional aspect supervenes on
the phenomenal aspect, and the realization of the former naturally comes with
the latter, but what NARS currently achieves is only the functional aspect of
consciousness. The system has the characterization of “subjective experience”
under the context of NARS, but we are not sure whether the system can really
have the feeling1, which is subjective, private, and hard to represented2.

What we concern is always how to create AGI. If the feeling is necessary for
AGI, then the ceiling will become obvious – only by understanding the essence
of the feeling can we know how to create it. In this paper, we point out in the
end the difficulties that may be faced with in the study of intelligence under
some existing arguments of philosophy of mind.

2 The Explanatory Gap and the Hard Problem

None of the above-mentioned scientific theories about consciousness provide an
explanation for the feeling per se [4], and we think neither does NARS. They
describe how to represent and calculate, not how to experience the feeling. This
is related to a very critical issue in philosophy of mind, that is, the “explanatory
gap” or the “hard problem”, both of which point the finger at the subjective
aspect of the mind, that is, the subjective feeling.

Joseph Levine pointed out that there is an insurmountable explanatory gap
between material substance and subjective experience [12]. Levine took the sub-
jective experience of pain as an example to show the difficulty of finding neural
1 The feeling here is not a type of term or concept in NARS, since it cannot be

represented explicitly and measured directly, and the subjective experience in this
paper does not refer to the same thing with that in NARS.

2 The word “subjective” here is not completely the same as that in NARS. In our
view, a NARS agent is subjective in the sense that its knowledge (experience) repre-
sentations are determined by its “agent-specific” environment (or input). However,
the subjective feeling in this paper refers to something without representation. The
feeling per se and representations of the feeling are distinguished in this paper. See
Sect. 3.



The Gap Between Intelligence and Mind 295

correlates of consciousness. Although Levine have been unwilling to draw any
ontological conclusions about anti-physicalism from the explanatory gap [13,14],
some neo-dualists try to use the explanatory gap to refute physicalism, for exam-
ple, David Chalmers expressed the explanatory gap as a “hard problem” of con-
sciousness [4]. There is no reliable evidence to support physicalism and oppose
dualism.

More concretely, if mind-body supervenience is right, why is it pain instead of
itch when some neurophysical state arises? To explain the relationship between
the neurophysical state and the feeling of pain is the so-called explanatory gap.
At the same time, we are of course “easy” to answer the “simple problem(s)”,
like “how can a physical system learn or remember?”, but difficult to answer the
“hard problem(s)”, similar to “how does a physical system experience pain?”.
Since representations are theoretically objective, observable, and computable, we
can study the interaction mechanism of representations through neuroscience,
cognitive science, and intelligence science, while the feeling is subjective, difficult
to observe, and probably impossible to calculate or simulate.

Why a certain physical state corresponds to a certain feeling rather than other
feelings, and how a physical system has the subjective feeling, are also important
for creating AGI, especially when an AGI system must have the feeling. At times,
they are unavoidable. As Jaegwon Kim said:

Suppose that you are now given an assignment to design a “pain box”, a
device that can be implanted in your robot that not only will detect dam-
age to its body and trigger appropriate avoidance behavior but also will
enable the robot to experience the sensation of pain when it is activated.
Building a damage detector is an engineering problem, and our engineers,
we may presume, know how to go about designing such a device. But what
about designing a robot that can experience pain? It seems clear that even
the best and brightest engineers would not know where to begin. What
would you need to do to make it a pain box rather than an itch box, and
how would you know you have succeeded? The functional aspect of pain
can be designed and engineered into a system. But the qualitative aspect
of pain, or pain as a quale, seems like a wholly different game [11].

Can the explanation gap be bridged? One way is the identification of the
mental state and the neurophysical state. Its basic position is that the feeling,
like pain, and its corresponding neurophysical state are identical in definition.
This position does not provide a meaningful explanation for the gap between
consciousness and the brain - it directly excludes the existence of the gap. The
other is the functional analysis of the mental state, that is, the feeling is defined
as a behavioral process. For example, “in a painful state” is defined as “a state
that is caused by tissue damage and leads to aversion behaviors.” In this way, the
question “why a certain representation is related to a certain experience in x and
systems like x” was well explained [11]. However, has the difficult problem really
been solved? We cannot deny having the kind of true feeling that we experience.
If we follow the view of mind-brain identification, this kind of true feeling does
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not seem to exist anymore; from the perspective of functional analysis, we are
just an objective physical process without the true feeling. How does that kind
of the true feeling come about?

As another question, is the subjective feeling necessary for us? Kim pointed
out that neuroscience and cognitive science acquiesce in epiphenomenalism,
which implicitly agrees that the feeling/experience does not cause any effects.
Therefore, the feeling cannot be studied by scientific methods:

Qualia are epiphenomenal; they cause no effects in the physical domain. If
so, how can they even be observed? How can their presence be known to
the investigator? There can be no instrument to detect their occurrence
and identify them. Qualia cannot register on any measuring instruments
because they have no power to affect physical objects or processes. No
one thinks the brain scientist can “directly” observe a subject’s conscious
state, phenomenal or nonphenomenal; direct observation of a conscious
state requires experiencing it, and the scientific observer of course is not
experiencing the subject’s conscious states [11].

Can we agree that the feeling will not affect future decisions and behaviors?
The answer is, no. It is possible that experience plays a causal role. When we
feel pain at the moment, the subjective feeling makes us hard to forget, so that
when we see a similar scene in the future, we want to escape. Of course, some
people may also say that if the feeling is defined as a behavioral process, then
the subjective feeling is epiphenomenal and will not have an effect on objective
objects. What if the feeling cannot be defined as a specific process? As will
be discussed in the next section, the subjective feeling does not correspond to
a specific process, but it is related to a relatively more complex adaptation
procedure. The subjective feeling leads to causal effects through adaptation (or
adaptive behaviors). In addition, just as it is difficult for us to directly prove
through experiments that the subjective feeling really leads to causal effects,
it is also difficult to prove that the subjective feeling is in the leaf node of a
causal graph. Both of these possibilities should be considered. In our opinion,
the feeling is still an unresolved issue.

As AGI researchers, we have to consider what this problem means for AGI
research. If the feeling is epiphenomenal, we certainly do not need to consider
the feeling, and only consider the interaction mechanism of representations. By
contrast, the reason is different from Wang. The reason of ours is that the feeling
(as an epiphenomenon) does not cause any effects (so it will not have any impact
on creating AGI). However, there is another possibility that experience plays a
secret and critical role in our intelligence. Then, the causal effect it produces will
be displayed on “instruments”, and we can model it in a certain way by proposing
a certain computational model to simulate the real feeling. Then there comes the
question: can the subjective feeling be simulated through computational models?
If it cannot be simulated accurately, will there be any serious consequences?
These questions are difficult to answer, but through further discussion, we may
have a deeper understanding as well as inspirations on these questions.



The Gap Between Intelligence and Mind 297

3 A Definition of the Feeling

We start by describing our positions about the feeling:

(i) The feeling is something we truly experience. Even if the feeling is repre-
sented by words like happy, neurophysical states like neuronal membrane-
voltage, hormone like dopamine, etc., they are not the feeling per se but
the representations of the feeling.

(ii) The feeling could be expressed to form the representations, otherwise it is
a non-existence for an observer.

(iii) The feeling should not be defined as any specific and fix function, because
doing so confounds the feeling and representations of the feeling.

(iv) The feeling should be somehow measured for researching AGI, with a defi-
nition that captures the essence of the feeling to some extent.

Consider such a thought experiment.

3.1 The Semi-transparent Room

There is a room like this: From the outside, it is visually completely transparent,
physically inaccessible, and unable to be observed by any scientific instruments
– unless there is matter (such as photon) emitted from the room. However,
information from the outside world can reach the inside unimpededly. There is
a person living in the room, we might as well call her Ann. We can generally
agree that Ann has the same subjective feeling as ours, because she has the same
physical structure as ours. From the outside to observe, the room is smaller than
the smallest particle that physicists know (e.g. quark) as if it is transparent,
while from the inside to observe it is large enough for a person to live in. Now
that we know that the information transmission of this room is asymmetrical,
we might as well call it a “semi-transparent room”. The properties of the room
are consistent with those of the feeling – especially, observed from the outside,
(1) the feeling per se is private without external representations, and (2) it is
unknown where the feeling comes from, although under the “god view” we know
that the feeling comes from Ann. Below, we discuss under the “god view” unless
an observer is specified explicitly.

Ann senses winds and the sun, as well as storms, and correspondingly she
feels happy as well as pain – a breeze makes her happy, and an electric shock
makes her feel pain. However, so far, this room will not have any causal effects
on the outside, and Ann cannot express her feelings to the outside world in any
way.

This room is like a “mind”, or in other words, a mind lives in it, and it has
the subjective feeling. Although it does not present any physical state, or in
other words, it only has a “none” state when observed from the outside, and its
internal state can be ever-changing. This negates the idea that a feeling must
correspond to a physical state for an observer outside.
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You might say that, in fact, observed inside the room, Ann’s feelings corre-
spond to different neurophysical states. However, this is contrary to the experi-
mental setting. Observers can only observe it outside the room but cannot enter
the room – just as we human can only measure the membrane voltage (or other
physical indicators) of a neuron, but we cannot know “the feeling of a neuron” if
there is a “room” inside the neuron. Even if a human “enters” a brain, he does
not enter the room – because representations of neural activations (e.g. spikes)
are something observed outside the room3. The setting of the experiment is
reasonable, because feeling is a private thing.

You might say that the state of the semi-transparent room has actually
changed because the external state has changed, and in fact, in the case of the
semi-transparent room, the (neuro-)physical state is represented by the exter-
nal state. Then we can consider such a situation: the external state remains
unchanged, it has always been so windy and sunny. Ann feels happy at first,
but as time passes by, she becomes bored with this unchanged outside state,
and her happiness fades away. An objectively observed state outside can indeed
correspond to different feelings inside.

You might say that if this is the case, then the feeling becomes something
similar to an epiphenomenon, which is at a leaf node in a causal graph and does
not produce any additional effects. Indeed, if the feeling cannot be represented in
any way and cannot affect the physical state outside, then what is the difference
between its existence and non-existence for an observer outside? If the feeling is
an epiphenomenon, it is easier to handle. AGI researchers can ignore it, because
it will not have any impact on the behavior of the system, will not have any
impact on agents’ interactions with the environment, and will not have any
impact on agents’ achieving goals.

Is this really the case? According to our experience, it is obviously not. When
we feel pain, we will escape, scream, cry bitterly, and express this feeling in
various ways. Therefore, a reasonable approach is to give Ann a channel to
express her feelings.

3.2 Adding a Button to the Room

Now, the experimental setting is changed – there is an extra button in the
semi-transparent room. After Ann presses the button in the room, photons are
emitted with a wavelength of about 700 nm from the room to the world outside.
For humans, this is a red light. Whenever the room emits a red light, if the
environment is in a state of electric shock, it will become a state of non-electric-
shock, that is, if Ann feels pain at this time, when she presses the button, this
painful state will subside. After many explorations, she discovered this pattern.
From then on, whenever Ann feels pain, she would press the button. At this
time, outside observers would see a red light, which, under the “god view”, is a
representation corresponding to Ann’s pain.
3 The feeling is expressed to form representations which can be observed outside, while

this is the further case, in which Ann is given a button to express the feeling (see
Sect. 3.2).
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Does this mean that any mapping or function corresponds to a feeling? Just
like an existing solution to the explanatory gap, “pain” is defined as the process
from stimulus to response, which is essentially a mapping. When we feel happy,
we laugh and secrete dopamine; so we defined the process of “from ‘stimuli that
makes us happy’ to ‘responses of the body caused by happiness’ ” as the feeling of
“happiness”. Under the context of NARS, an external stimulus, through sensing
and reasoning, leads to an increase in the value of a statement “〈{SELF} →
[happy]〉.”, which in turn leads to activations of related concepts and a series of
effects. Perhaps the feeling of happiness could be defined as the above process, or
as the statement or even the term happy, which can be regarded as a collection
of many functions (many kinds of stimuli lead to changing the truth-value of the
statement, and the statement leads to many kinds of responses; or stimuli related
to the term happy lead to responses related to the term happy). If this is the case
(though the feeling may not be defined as above in NARS, and we just discuss
it with the context of NARS), then we could also think that any function (or
any set of functions) actually had a certain “feeling” inside. We could also think
of a mechanical device (a specific input leads to a specific output) as having the
feeling. This is contrary to our intuition, and we cannot agree with this view.

3.3 Equipping the Room with a Body

Obviously, the feeling cannot be defined as a simple functional process. In order
to understand what the feeling is, let us see how a semi-transparent room with
the subjective feeling would do. Since the following discussion will introduce
another room as an observer of the current room, in order to make it easier to
imagine, we might as well give the room a body, like a stone (a black box, or any
other thing) so that it is seen from the outside world as an independent object
instead of “none”. But when no photons are emitted outward, the body is not
different from an object that looks like the stone and does not seem to have the
feeling. After introducing the “body”, the discussions of the previous sections
are still valid – when there is no button or when Ann does not press the button,
the physical state of the body will not change due to Ann’s feeling.

In another semi-transparent room lives Bob, whose room (with a body) is
similar to Ann’s. The only difference is that when the button in the room is
pressed, the room emits photons with a wavelength of about 517 nm to the
outside world – for humans, this is a green light.

Facing the same environment, Ann and Bob have the feelings caused by the
same representations of stimuli, e.g. electric shock. When Ann is stimulated by
an electric shock, Bob finds that Ann would always emit a red light. From this
Bob concludes that Ann would emit a red light to express pain as he feels. For
the observer Bob, “pain” is defined as a function of “from ‘pain stimulus’ to
‘red light’ ”. However, it is not the case for Ann. For the observer Ann, “pain”
is defined as a function of “from ‘pain stimulus’ to ‘green light’ ”. Have they
really figured out what “pain” is? Indeed, the feeling of pain is explained in a
certain way. However, the gap between the feeling and representations of the
feeling has not been really bridged. We do not really understand why the feeling
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of “pain” corresponds to the physical state P instead of another one (such as
P ′), or why the physical state P corresponds to “pain” instead of another one
(such as “itch”), just as the observers, Ann and Bob, do not really understand
why “pain” corresponds to this color of light instead of that color of light, or
why “pain” corresponds to light instead of something else. It is obviously not
the final answer to define the feeling as a certain specific process, because it
confounds the “representations of the feeling” with “the feeling” per se – red or
green light is a representation of the feeling, and what Ann and Bob experience
internally and privately is the feeling per se.

3.4 The Formalized Definition of the Feeling

If the feeling is not defined as a certain function or process, how to define it?
Let us reconsider the semi-transparent room – there is an adaptive procedure.
When an external stimulus makes Ann feel pain, Ann does not know what to
do. The only thing she can try is to press the button. After several attempts,
she discovers that when she feels pain, pressing the button always makes her feel
better. So she learns to express the feeling of pain – whenever Ann feels pain,
from the outside could always see the red light.

The feeling should actually be a certain tendency, with which the agent
expresses the inner state of the feeling to form external representations and
change the inner state by changing indirectly the representations of input stim-
uli. For example, the feeling of “happiness” can be defined as “things that the
agent tends to increase (or get close to)”, and the feeling of “pain” can be defined
as “things that the agent tends to decrease (or stay away from)”. Formally, we
can give the following definition:

For the representation s of a certain stimulus, the agent generates the external
response representation r after thinking, i.e.

r = T (s) (1)

where T is the thinking function. The representation r of the response will
cause a series of effects in the environment, which will eventually lead to a
new representation s′ of a stimulus, i.e.

s′ = E(r) (2)

where E is the environment function. If the agent feels something, it will even-
tually find a plausible T to maximize a metrics between s and s′, i.e.

arg max
T

D(s, s′) (3)

where D measures the relation between the representations s and s′. For exam-
ple, for the feeling of “pain”, D measures the difference between s and s′. More
concretely, when the agent feels pain, it will try its best to make the represen-
tations of pain arise as seldom as possible, that is, stay away from the feeling
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of pain. The agent adjusts itself to decrease the feeling of pain – because the
feeling of pain is defined as “something that the agent tends to stay away from”.
In any case, when the agent feels pain, it will have thoughts of moving away from
it, which will lead to the behavior of moving away from it. This procedure is
adaptive. For a varying environment, the representation of pain may be varying,
but this tendency remains unvarying. Different tendencies may associate with
different Ds, and the form can be unvarying. For example, for the feeling of
“happiness”, the corresponding D measures not difference but similarity.

We cannot limit the environment or circumstances for observing the behav-
iors of a certain agent. Here is the reason. For any mechanical process, if the
above definition is not met, for example, no matter how Ann pressed the button,
the room would not have external representations despite the internal feeling,
while the room would always produce mechanically specific responses without
any adaptation, then the feeling, corresponding to the mechanical process, does
not exist externally – there is no difference between the existence and non-
existence of the feeling. For such a completely mechanical room, even if Ann’s
room emits a red light under a certain stimulus, which decreases Ann’s pain, we
cannot say there is the feeling observed from the outside – Consider such a situ-
ation. After a period of time, the environment E changed, the original red light
would not decrease Ann’s pain ever. Originally, as long as Ann had pressed the
button, her pain would have been decreased, but now the button were switched
at a certain frequency to emit a flashing red light, so that Ann’s pain would be
decreased. Observed from the outside, it seems that Ann’s room did not make a
change for the environment, or Ann did not adjust herself to stay away from the
pain. Then we could not think that there is the feeling in Ann’s room – because
it were not essentially different from a simple mechanical process without the
feeling, or the feeling did not cause any effects. A specific function may work in
many circumstances without any adaptation, but if a new circumstance occurs
while the agent cannot adapt to it to decrease the pain, i.e. the above definition
is not met, we cannot say the agent have the feeling.

We can only judge whether an object may have the feeling through external
performance, but cannot really give a doubtless conclusion. This does not mean
that we are caught in a skeptical dilemma, because through observing behaviors,
a bridge has been built between the subjective and the objective. The subjective
feeling affects objective representations in some way, so that the subjective feeling
becomes measurable and falsifiable to some extent. For an agent that meets the
above definition, we can say that the statement “that the agent has the feeling”
has “positive evidence”. For an agent that does not meet the above definition,
we cannot say that it does not have the feeling, but we can say that there is no
evidence showing that it has the feeling.

Of course, we do not deny either that NARS may be able to have the feeling
(for its adaptability), or that an AI system may be able to have the feeling in the
future. If NARS or other AI systems meet the definition of the feeling, “positive
evidence” is provided to accept that the system has the feeling.
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This definition is acceptable for AGI, because if the feeling exists only as
an epiphenomenon without causing any effects, then its existence will not have
any impact on the system. If this is the case, what if we think that the system
does not actually feel? The feeling is irrelevant to AGI at this time. But if the
subjective feeling can actually affect the behaviors of an agent, and if it has
indistinguishable patterns of behaviors from the agent with the “real” feeling
(such as humans), then the former agent is identical to the agent with the “real”
feeling, and we can think of the former agent as having the feeling.

The discussion is preliminary. Some more complex cases is not considered.
For example, the feeling may be inhibited and not be expressed, but will cause
some effects afterwards; an agent may “enjoy” the “pain”. Some other complex
emotions with the feeling are not discussed neither. These will make the T and
D more complex to model, and we will leave these cases to the future work.
However, we think the definition captures the essence of the feeling to some
extent.

3.5 Is the Explanatory Gap Bridged?

Explanatory gap requires an answer to how the mental state M corresponds to
the physical state P . According to the above discussion, before adaptation, M
and P are not in correspondence. There is no direct correspondence between
the pain and the external stimuli as well as the red light emitted by Ann’s
room. However, after a period of time, Ann finds that whenever she feels pain,
pressing the button will make her feel more comfortable (the pain is decreased).
Observed from the outside, the stimulus, such as an electric shock, will make
the room glow red. The stimulus will also make Bob feel pain, and Bob observes
that when Ann receives an electric shock, red light always appears, so Bob,
the observer of Ann’s room, would think that pain corresponds to the physical
representation of red light. Similarly, Ann, the observer of Bob’s room, would
think that pain corresponds to the representation of green light. If Ann and Bob
can observe their own light, then at least they would come to the conclusion
that pain corresponds to the representation of light. The mental state M (pain)
corresponds to the physical state P (red/green/any light) in this way. However,
under the “god’s view”, Ann and Bob’s belief, that the pain is caused by the
electric shock, is not just derived from the process “from ‘electric shock’ to
‘light”’, but also the procedure of adaptation. In other words, even if the external
environment function E has changed, Bob and Ann still show the same tendency
of adaptation, which conforms to the above definition.

In this sense, is the explanatory gap bridged? At least, we have seen how the
mental state M (the feeling) corresponds to the physical state P (the represen-
tations).

4 The “Hard Problem” of Intelligence

From the above definition, the feeling must form external representations before
we have positive evidence to accept its existence; at the same time, this implies
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a point of view that the feeling can be purely internal and unrepresented. So
there are two cases that need to be specifically discussed.

For the first case, just like the counterfactual “philosophical zombie”
(although this case may be controversial, it still needs to be explained), if the
agent’s external performance is the same as one without the subjective feeling,
then the feeling could be an epiphenomenon; the feeling does not affect the
objective process, and we need to only study the objective laws of intelligence.
For AGI researchers, the “philosophical zombie” case is acceptable. It doesn’t
matter if there is no real feeling – human-level intelligence can also be reached
without the feeling.

For the second case, an agent may inhibit expressing the feeling, so as not
to form an externally observable representation. If the private feeling is not
expressed, that is, Ann or Bob does not press the button, then we cannot claim
as before that “at this time, it will not cause external effects, so it will not affect
the objective process. For AGI, it does not matter whether it exists or not.” In
this case, the internal causal effect cannot be ignored, that is, although there is
no representation of the feeling at present, the internal feeling is indeed experi-
enced. So at some point in the agent’s future, the current inhibited expression
of the feeling leads to a distinct representation. In this case, T becomes more
complicated, but the form in the definition of the feeling remains unchanged.

However, reconsidering the above two cases, we are still not sure whether a
“philosophical zombie” without the feeling will behave differently from an agent
with the feeling, nor can we know exactly what D and T are. Of course, we can
strive to find a computational model.

We call the computational model that meets the definition of the feeling
above as the “simulated” feeling, and call the natural being of the feeling as the
“innate” feeling.

The question then becomes, if this “simulated” feeling is somewhat different
from the “innate” feeling, will it lead to a serious impact on an AGI system?
How accurately can a computational model fit the “innate” feeling? All these
need to be answered through experiments – We should find an agent with the
“innate” feeling and compare the artificial agent with it, and see if they behave
the “same” in some sense.

Unfortunately, in the above definition, it is argued that the test environment
must be open, which is also crucial for AGI. Will an agent with the “simulated”
feeling behaves the same as one with the “innate” feeling at any circumstances?
This is difficult to confirm, because the condition of “any circumstances” is
difficult to achieve, and an experiment can only test a model under limited
circumstances. A more serious issue is how to compare the two kinds of agents
“fairly” to judge if they behave the same.

In addition, what if the “innate” feeling cannot be fully modeled by a com-
putational process? If it is necessary to have such the “innate” feeling in order to
achieve human-level or higher-level AI, or realize the mind with artifacts, then
where does the feeling ultimately come from, and how to achieve an interface
that allows the “innate” feeling to be expressed?
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Perhaps this is the hard problem for intelligence – in summary, if the “innate”
feeling cannot be realized, what kind of impact will it have on the artificial
intelligence system, and if there must be the “innate” feeling, how to realize it?

This problem cannot be answered under the current AI or AGI research, and
it is left to the future. If the problem cannot be solved by the existing classical
computing methods, then the feeling problem is the ceiling of the current AI
research, and it must be broken through with the help of additional paradigms
or technical means. Although this paper as an initial discussion mainly consid-
ers this problem from classical aspects, at the end of the article we want to
emphasize the potential relationship between general intelligence and quantum
mind. Quantum biology studies have shown that at room temperature, quantum
coherence can exist in organisms for enough time [7]. In recent years, Matthew
Fisher has proposed an exciting quantum neural theory based on the nuclear
spin of phosphorus [8]. A bolder idea was put forward by Huping Hu, who sug-
gested that quantum processes in neural activity can be coupled with space-time
dynamics [9]. Considering that Xiao-Gang Wen’s research has shown that the
essence of space-time is quantum information [17], this may mean that the prob-
lem proposed in this article can be discussed in a broader scope. In any case,
social scientists have begun to try to unify the ontology of physics and social
science from the perspective of quantum mind [18]. At least, research in the
direction of quantum cognition has already shown that most of the deviations
from rational behavior can be better explained from a quantum perspective [3].
Is a quantum-based agent a plausible option for merging the gap between intel-
ligence and mind, through the unity of consciousness [5]? We may need to use a
separate article to elaborate on this issue in future.

5 Summary

If the subjective feeling plays an indispensable role, that is, agents with the feel-
ing and agents without the feeling counterfactually (such as philosophical zom-
bies) are distinct significantly in terms of performances, and if without the feeling
human-level AI cannot be reached, then we must study the feeling. However, the
feeling is subjective and private, while scientists study objective phenomena. If
we cannot measure the feeling, we cannot study it scientifically.

Therefore, this paper discusses the impact of the subjective feeling on AGI
research. If the feeling is an epiphenomenon, we can just ignore it. Otherwise, it
plays an indispensable role, so we try to give a possible solution for a machine
to have the feeling: We define the feeling as “a tendency to change the input
representation”, and think “that the performance of an agent conforms to this
definition” provides “positive evidence” for “that the agent has the feeling”. If
the definition captures the essence of the feeling, the feeling becomes measurable.
However, whether it is possible and how to find a computational model, for the
“simulated” feeling, to fit the “innate” feeling remain unknown.
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Abstract. Category theory has been successfully applied to composi-
tional modelling of diverse systems, including computational systems,
logical systems, and physical systems, paving the way for a new kind of
general system science (or rather general process science). It has been
particularly successful in quantum computing and natural language pro-
cessing recently; traditionally, it has played major rôles in compositional
semantics of programming languages and symbolic reasoning systems.
Building upon them, we propose the mathematical system of neural
string diagrams as a universal modelling language for categorical deep
learning, which allows us to turn informal neural network architecture
pictures into formally explainable, mathematically verifiable, and sys-
tematically composable entities in their own right. We give, in partic-
ular, a neural string diagram account of CNN and Transformer (which
has never been achieved before). Neural string diagrams can be com-
puted with DisCoPy, Quantomatic, and their extensions. Categorically
formalised neural networks can be instantiated for both ordinary vector
spaces and other monoidal categorical structures, allowing for general-
isations of deep learning (e.g., deep learning on relational structures,
deep learning on graph and other network structures, etc.). We envisage
that the category theory approach to artificial intelligence ultimately
contributes to the development of artificial general intelligence, giving a
universal modelling language for intelligent systems and agents.

Keywords: Categorical artificial intelligence · Neural category
theory · Categorical deep learning

1 Introduction

Category theory is an abstract mathematical modelling language to express var-
ious sorts of structures and their compositional relationships [7]. It has been
successfully applied in structural modelling of quantum computing and NLP
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(natural language processing), enabling compositional generalisations of quan-
tum protocols and algorithms [1,4,11], and compositional constructions of mean-
ing vectors for grammatically complex sentences and text in NLP [3,10,12]. The
categorical model of NLP integrates the symbolic model and statistical mod-
els of language [3,10]. It is equipped with graphical string diagram calculus,
which allows mathematically precise pictorial reasoning, and thus reconciles intu-
itive clarity and mathematical rigor (and computational efficiency as explained
below). Let us briefly explain what a category is (for detail, see, e.g., [7]).

A category C is an abstract structure of objects and arrows (specifying the
relationships between objects), which can be instantiated in various manners: in
logic, there is a category of propositions and proofs; in programming language
theory, there is a category of data types and programs; in physics, there is a cat-
egory of physical systems and processes [1,4,7]. Arrows can be composed with
each other (if their types are coherent); in monoidal categories (C,⊗, I) in par-
ticular, this can be done in two different ways, i.e., via sequential and parallel
composition as explained below. Different fields of science can share common
categorical structures, and category theory allows to elucidate structural simi-
larities between them, thus giving a unifying perspective on the sciences, and
facilitating transdisciplinary knowledge transfer between them.

In this paper we develop category theory for neural networks as a compo-
sitional modelling language for deep learning and its categorical generalisation.
To this end, we rely upon the framework of dagger compact categories [1], which
has been applied for quantum computing and natural language processing as
mentioned above; this is because quantum computing works with state vec-
tors, NLP with meaning vectors, and dagger compact categories give a platform
for categorical linear algebra. DisCoPy, Quantomatic, and their extensions give
computational implementations of dagger compact categories and their graph-
ical calculus, applied in quantum computing and NLP [6,10,12]. The neural
category theory we develop is implementable in them. Among other things, we
formalise CNN (convolutional neural network) and Transformer using neural
string diagrams (which has never been achieved before).

Categorically formalised neural networks can be instantiated for both ordi-
nary vector spaces and other monoidal categorical structures, allowing for differ-
ent generalisations of deep learning (e.g., deep learning on relational structures;
deep learning on graph categories and other network structures; cf. [15]); note
that the categorical formulations of NLP and quantum computing led to the
discovery and unification of various models as well (e.g., the Spekkens toy quan-
tum models that significantly simplify the ordinary Hilbert space model and yet
keep essential features of quantum theory, Montague-like possibilistic models of
NLP, etc.) [1,3,4,10]. Just as the categorical model of NLP integrates the sym-
bolic and statistical models of language, categorical AI arguably paves the way
for integrative artificial intelligence (cf. [2]), and we believe that it ultimately
contributes to the development of artificial general intelligence [9] by giving a
universal modelling language for intelligent systems and agents.
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The rest of the paper is structured as follows. In Sect. 2, we give the frame-
work of dagger compact categories to categorically formalise neural networks.
In Sect. 3, we develop string diagrams for neural networks based upon dagger
compact categories, especially for CNN and Transformer neural networks.

2 Category Theory via String Diagram

Here we give the basic framework of monoidal categories, dagger compact cat-
egories, and their string diagrams that allows us to formalise neural network
architectures in terms of category theory.

2.1 String Diagram

A string diagram is a directed graph consist of labelled strings and labelled
boxes with specified input and output strings, together with certain notions of
compositionality [4]. Some basic examples are:

These are: (1) String A; (2) Box f with input A and output B; (3) Box g
with input A,B and output C. Note that to avoid repeatedly specifying the
direction of each component of a string diagram we take the convention of reading
diagrams from left to right. Often we also ignore labels in string diagrams if we
don’t need to specifically address the strings and boxes.

We consider two notions of compositionality: sequential composition and par-
allel composition. Any boxes with compatible output and input can be sequen-
tially composed. This is done by connecting the compatible output and input
strings. On the other hand, any boxes or strings may be composed in parallel.
This is done by stacking strings and boxes vertically in the diagram.

By considering objects (or equivalently identity morphism on objects) as
strings and morphisms as boxes, string diagrams provide graphical calculus for
monoidal categories [4,11]. Furthermore, the sequential composition in string
diagram represents morphism composition whereas the parallel composition rep-
resents the monoidal product. Also note that the monoidal unit object I is rep-
resented by the empty diagram.

States and Effects. The states are morphisms that has the unit object as input
and the effects are morphisms that has the unit object as output. Since the unit
object is represented by the empty diagram, the states and effects are drawn as
triangle boxes:

A scalar λ in a monoidal category is an endomorphism λ : I → I.
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2.2 Dagger Compact Category

The basic monoidal structure is not enough to express the intricacies of neural
network architectures. The richer structures we need are captured by the class
of dagger compact categories.

Symmetric Monoidal Category. A symmetric monoidal category is a
monoidal category equipped with a braiding isomorphism σAB : A⊗B → B ⊗A
for each pair of objects and it is natural in both A and B. The braiding morphism
is represented as:

Dagger Category. A dagger category C is a category with an involutive functor
† : Cop → C such that the functor is identity on objects and it sends morphism
to their adjoints in an involutive way:

Compact Closed Category. A monoidal category C is compact closed if for
any object A there exists a dual object A∗ in C. Furthermore there exists a state
ηA : I → A∗ ⊗ A for each object called the unit and an effect εA : A ⊗ A∗ → I
called the counit. The unit and counit on an object satisfy the following string
diagram equations:

Now we are ready to state the definition for dagger compact category.

Definition 1 (Dagger Compact Category). A dagger compact category is a
dagger strict symmetric monoidal and it is closed and compact closed. Moreover,
the unit and the counit are related by the dagger and symmetric structure:

σAA∗ ◦ ε†
A = ηA

or equivalently:
ε†
A = ηA∗

In terms of string diagram the relationship of unit and counit in a dagger compact
category is written as:

Importantly, in a dagger compact category, there is a notion of inner product:
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Definition 2 (Generalised Inner Product). The generalised inner product
of two states of the same type ψ : I → A, φ : I → A is the morphism:

ψ† ◦ φ : I → A → I

In particular, the generalised inner product of two states is a scalar in the
monoidal category. The string diagram of the generalised inner product is:

Furthermore, the inner product is preserved by unitary morphisms.

Definition 3 (Unitary Morphism). A morphism U : A → B in a dagger
category is unitary if it is an isomorphism and such that its adjoint U† : B → A
is also its inverse morphism.

The unitary morphism admits the following diagram.

A unitary morphism preserves the inner product in the following sense:

For our purpose, we restrict our attention to a subclass of dagger compact
categories equipped with the following structures:

(1) Having an zero object 0 so that for each pair of objects there is an unique
morphism factoring through the zero object:

0A,B : A → 0 → B

(2) Having all biproduct. The biproduct of objects A1 . . . Ak is written as

i=k⊕

i=1

Ai

We note here that in a dagger compact category with biproducts each hom-
set can be equipped with addition operation. In particular, the scalars in such
categories form a commutative semi-ring [1].

Moreover, since a biproduct is both a product and a coproduct there are
projections {pj :

⊕i=k
i=1 Ai → Aj}j=k

j=1 and injections {qj : Aj → ⊕i=k
i=1 Ai}j=k

j=1 .
The projections and injections have the following properties:

pj ◦ qi = δij and
i=k∑

i=1

qi ◦ pi = 1⊕iAi

where δii = 1Ai
and δij = 0AI ,Aj

, i �= j.
Dagger compact category with biproducts exhibits generalised vector space

features. To begin with, there is a notion of basis:
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Definition 4 (Generalised Basis). A generalised basis of an object A in a
dagger compact category with biproducts is a unitary morphism:

BA : n · I → A

where n · I :=
⊕i=n

i=1 I. The number n is the dimension of the object A.

In addition, a basis component is a state i : I → A such that

i = BA ◦ qi

where qi : I → n · I is the i-th injection into the biproduct.

Generalised Matrix. With respect to bases BA : n ·I → A and BB : m ·I → B,
to a morphism f : A → B we can associate a generalised matrix M :

M = B†
B ◦ f ◦ BA : n · I → m · I

In particular, each entry of the generalised matrix is given by:

Note that the entries of a generalised matrix are scalars in the sense that they
are endomorphisms on the monoidal unit. Indeed:

Mi,j = i† ◦ M ◦ j : I → n · I → m · I → I

The transposition of a morphism f : A → B is defined as a morphism
fT : B → A satisfying the following condition. Given any bases BA for A and
BB for B, the generalised matrix MT of the morphism fT is the transposition of
the generalised matrix M of f in the sense that MT

i,j = Mj,i. Notice that taking
the transposition of a morphism is basis independent.

Now, given a morphism M : n · I → m · I and bases BA, BB we may consider
M to be the generalised matrix associated with the morphism f : A → B where

f = BB ◦ M ◦ B†
A

From now on we only consider dagger compact categories such that each
object has a basis. We use the suggestive notation Vn to denote an object in a
dagger compact category which is to say that the object is n-dimensional.

Furthermore, we use the notation Vm×n to denote the internal hom [Vn, Vm]
in the dagger compact category. Note that for internal hom in a dagger compact
category we have the correspondence [11]:

C(A, [X,Z]) �−→ C(A ⊗ X,Z)

In this sense, a state ψ : I → Vm×n is associated with a morphism f : I ⊗ Vn →
Vm which is f : Vn → Vm. This allows us to express the state ψ in terms of a
generalised matrix (with respect to some bases for Vm and Vn).
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3 Neural Category Theory via Neural String Diagram

In this section, we describe two neural network architectures: Convolutional Neu-
ral Network (CNN) and Transformer [8] using string diagrams.

3.1 Convolutional Neural Network (CNN)

We first define three special morphisms for the string diagram for CNN.

Definition 5 (Copying). For an object A in a dagger compact category the
copying morphism is: δ : A → A ⊗ A

such that for any state ψ : I → A we have:

The defining mechanism of CNNs is of course convolution. In short, it is a special
way of applying filters to an image to extract meaningful (to computers) features
of the image. For simplicity the convolution morphism we consider here is to
represent convolution with stride 1 and no padding.

Definition 6 (Convolution). The convolution of type Vm×n and Vk×l where
k ≤ m, l ≤ n, is defined as a morphism: � : Vm×n ⊗ Vk×l → V(m−k+1)×(n−l+1)

satisfying the following conditions: For states A : I → Vm×n and B : I → Vk×l,
the state A � B : I → V(m−k+1)×(n−l+1) corresponds (as explained above) to a
morphism

A � B : V(n−l+1) → V(m−k+1).

Notice here we use the same notation A � B for the state and its corresponding
morphism.

Given generalised bases μ : {(m−k+1)×(n− l+1)}·I → V(m−k+1)×(n−l+1),
φ : (m − k + 1) · I → Vm−k+1 and ψ : (n − l + 1) · I → Vn−l+1 the generalised
matrix associated to the morphism A � B satisfies:

where i, j, i+α, j +β are basis component of their respective bases. The summa-
tion and multiplication come from the semiring structure of Hom(I, I).
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Similarly we give the definition of (vertical) concatenation.

Definition 7 (Concatenation). The concatenation of type Vm×n and Vm×k,
is a morphism � : Vm×n ⊗ Vm×k → Vm×(n+k)

The concatenation of two states A : I → Vm×n and B : I → Vm×k is a state
A � B : I → Vm×(n+k) which corresponds to a morphism A � B : V(m−k+1) →
V(n−l+1). With respect to appropriate bases the generalised matrix of the mor-
phism A � B satisfies:

The figure below is the neural string diagram for a simple CNN model. Note
that although the filters F1, F2 are the trainable parameters of CNN, in string
diagram they are represented as fixed states into the same object in the dagger
compact category. This is because the string diagram showcases the architecture
aspect of the neural network instead of the training aspect.

We further equip the dagger compact category with free (non-linear) mor-
phisms: Relu, Pooling, Fully Connected layer (FC), Softmax. Notice here we
take Fully Connected layer as a single morphism even though it is a sub-neural
network with training parameters.

3.2 Transformer

Transformer is a class of neural networks that utilise the attention mechanism.
For the string diagram of Transformer, we introduce three more morphisms.

(1) Generalised matrix multiplication. � : Vm×n ⊗ Vn×k → Vm×k. For states
A : I → Vm×n (which corresponds to a morphism A : Vn → Vm) and
B : I → Vn×k (which corresponds to a morphism B : Vk → Vn), the state
A � B : I → Vm×k corresponds to a morphism A � B : Vk → Vm which
is the composition of morphisms A ◦ B : Vk → Vn → Vm. Furthermore,
fixing generalised bases for the appropriate objects, the generalised matrix
of A � B can be seen as the usual product of the generalised matrices of A
and B.
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(2) Generalised matrix dot product. � : Vm×n ⊗ Vk×n → Vm×k. Similar to
generalised matrix multiplication, for states A : I → Vm×n and B : I →
Vk×n, the state A � B : I → Vm×k corresponds to a morphism A � B :
Vk → Vm which is the composition of morphisms A ◦ BT : Vk → Vn → Vm,
where BT is the transposition of the morphisms B : Vn → Vk as introduced
previously. Again, after fixing bases the generalised matrix of A�B can be
thought as the usual dot product of the generalised matrices of A and B.

(3) Generalised entry-wise matrix addition. ⊕ : Vm×n ⊗ Vm×n → Vm×n. In the
same way as the previous two morphisms, the generalised matrix of A ⊕ B
can be thought as the entry-wise addition of the matrices of A and B.

The key component of Transformer architecture is the attention mechanism.
The following string diagram represents the self-attention mechanism.

The multi-head attention mechanism can be represented by vertically stack-
ing the string diagram above and concatenate the output strings.

The encoding part of Transformer can process input in parallel. This is a
major advantage over ordinary Recurrent Neural Network (RNN). On the other
hand, the decoding part works sequentially. To reflect the sequential process in
the string diagram, we introduce the notion of time flow: In addition to the
convention of reading a string diagram from left to right, we also read a string
diagram from top to bottom and understand it as some morphisms take place in
different time steps. In particular, different time steps are connected by a special
type of morphism called snake morphism. It is a composition of a special state
called cup and a special effect called cap [4]:

Cup and cap satisfy the ranking rules:

We use the snake morphism to connect the encoder and decoder, the decoder
and the next decoder in the string diagram below. It is to say that the output
object of the encoder is fed via identity into the second attention mechanism
(the encoder-decoder attention) of the decoder which happens in the next time
step. Similarly, the output object is fed via identity into the decoder in the next
time step. This is the unrolled loop representation of Transformer.
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Note that we further equipped the dagger compact category with some non-
linear free morphisms; in future work we will develop two-level category theory
(with two classes of morphisms) to do this systematically in general categories.
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Abstract. According to forecasts, the invention of General Artificial Intelli-
gence (AGI) will change the trajectory of the development of human civiliza-
tion. To take advantage of this powerful technology and avoid its pitfalls, it is
important to be able to control it. However, the ability to control AGI and its
more advanced version “Superintelligence” has not been established. In this
article, we explore the arguments that advanced AI cannot be completely con-
trolled. The implications of uncontrolled AI are discussed in relation to the
future of humanity and AI research, and the safety and security of AI systems.

Keywords: AI safety � Control problem � Uncontrollability � X-risk

1 Introduction

Invention of artificial general intelligence is predicted to cause a shift in the trajectory
of human civilization [1–3]. In order to reap the benefits and avoid pitfalls of such
powerful technology it is important to be able to control it. However, possibility of
controlling artificial general intelligence and its more advanced version, superintelli-
gence, has not been formally established. In this paper, we review arguments indicating
that advanced AI can’t be fully controlled. Consequences of uncontrollability of AI are
discussed with respect to future of humanity and research on AI, and AI safety and
security [4].

We were unable to locate any academic publications explicitly devoted to the
subject of solvability of the AI Control Problem. We did find a number of blog posts
[5] and forum comments [6, 7] which speak to the issue but none had formal proofs or
very rigorous argumentation. Despite that, we still review and discuss such works. In
the next section, we will try to understand why scholars think that control is possible
and if they have good reasons to think that.

2 Controllable

While a number of scholars have suggested that controllability of AI should be
accomplishable, none provide very convincing argumentation, usually sharing such
beliefs as personal opinions which are at best sometimes strengthened with assessment
of difficulty or assignment of probabilities to successful control.

For example, Yudkowsky writes about superintelligence: “I have suggested that, in
principle and in difficult practice, it should be possible to design a “Friendly AI” with
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programmer choice of the AI’s preferences, and have the AI self-improve with suffi-
ciently high fidelity to knowably keep these preferences stable. I also think it should be
possible, in principle and in difficult practice, to convey the complicated information
inherent in human preferences into an AI, and then apply further idealizations such as
reflective equilibrium and ideal advisor theories [8] so as to arrive at an output which
corresponds intuitively to the AI “doing the right thing.”” [9]. “I would say that it’s
solvable in the sense that all the problems that we’ve looked at so far seem like they’re
of limited complexity and non-magical. If we had 200 years to work on this problem
and there was no penalty for failing at it, I would feel very relaxed about humanity’s
probability of solving this eventually” [10].

Similarly Baumann says: “I believe that advanced AI systems will likely be aligned
with the goals of their human operators, at least in a narrow sense. I’ll give three main
reasons for this:

• The transition to AI may happen in a way that does not give rise to the alignment
problem as it’s usually conceived of.

• While work on the alignment problem appears neglected at this point, it’s likely that
large amounts of resources will be used to tackle it if and when it becomes apparent
that alignment is a serious problem.

• Even if the previous two points do not hold, we have already come up with a couple
of smart approaches that seem fairly likely to lead to successful alignment” [5].

Baumann continues: “I think that a large investment of resources will likely yield
satisfactory alignment solutions, for several reasons:

• The problem of AI alignment differs from conventional principal-agent problems
(aligning a human with the interests of a company, state, or other institution) in that
we have complete freedom in our design of artificial agents: we can set their internal
structure, their goals, and their interactions with the outside world at will.

• We only need to find a single approach that works among a large set of possible
ideas.

• Alignment is not an agential problem, i.e. there are no agential forces that push
against finding a solution – it’s just an engineering challenge.” [5].

Baumann concludes with a probability estimation: “My inside view puts *90%
probability on successful alignment (by which I mean narrow alignment as defined
below). Factoring in the views of other thoughtful people, some of which think
alignment is far less likely, that number comes down to *80%” [5].

Stuart Russell says: “I have argued that the framework of cooperative inverse
reinforcement learning may provide initial steps toward a theoretical solution of the AI
control problem. There are also some reasons for believing that the approach may be
workable in practice. First, there are vast amounts of written and filmed information
about humans doing things (and other humans reacting). Technology to build models
of human values from this storehouse will be available long before superintelligent AI
systems are created. Second, there are very strong, near-term economic incentives for
robots to understand human values: if one poorly designed domestic robot cooks the cat
for dinner, not realizing that its sentimental value outweighs its nutritional value, the
domestic robot industry will be out of business” [11]. Elsewhere [12], Russell proposes
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three core principles to design AI systems whose purposes do not conflict with
humanity’s and says: “It turns out that these three principles, once embodied in a
formal mathematical framework that defines the problem the AI system is constitu-
tionally required to solve, seem to allow some progress to be made on the AI control
problem.” “Solving the safety problem well enough to move forward in AI seems to be
feasible but not easy.” [13].

Eliezer Yudkowsky1 wrote: “People ask me how likely it is that humankind will
survive, or how likely it is that anyone can build a Friendly AI, or how likely it is that I
can build one. I really don’t know how to answer. I’m not being evasive; I don’t know
how to put a probability estimate on my, or someone else, successfully shutting up and
doing the impossible. Is it probability zero because it’s impossible? Obviously not. But
how likely is it that this problem, like previous ones, will give up its unyielding
blankness when I understand it better? It’s not truly impossible, I can see that much.
But humanly impossible? Impossible to me in particular? I don’t know how to guess.
I can’t even translate my intuitive feeling into a number, because the only intuitive
feeling I have is that the “chance” depends heavily on my choices and unknown
unknowns: a wildly unstable probability estimate. But I do hope by now that I’ve made
it clear why you shouldn’t panic, when I now say clearly and forthrightly, that building
a Friendly AI is impossible” [14].

Joy recognized the problem and suggested that it is perhaps not too late to address
it, but he thought so in 2000, nearly 20 years ago: “The question is, indeed, Which is to
be master? Will we survive our technologies? We are being propelled into this new
century with no plan, no control, no brakes. Have we already gone too far down the
path to alter course? I don’t believe so, but we aren’t trying yet, and the last chance to
assert control—the fail-safe point—is rapidly approaching” [15].

Paul Christiano doesn’t see strong evidence for impossibility: “… clean algorithmic
problems are usually solvable in 10 years, or provably impossible, and early failures to
solve a problem don’t provide much evidence of the difficulty of the problem (unless
they generate proofs of impossibility). So, the fact that we don’t know how to solve
alignment now doesn’t provide very strong evidence that the problem is impossible.
Even if the clean versions of the problem were impossible, that would suggest that the
problem is much more messy, which requires more concerted effort to solve but also
tends to be just a long list of relatively easy tasks to do. (In contrast, MIRI thinks that
prosaic AGI alignment is probably impossible.) … Note that even finding out that the
problem is impossible can help; it makes it more likely that we can all coordinate to not
build dangerous AI systems, since no one wants to build an unaligned AI system” [16].

Everitt and Hutter realize difficulty of the challenge but suggest that we may have a
way forward: “A superhuman AGI is a system who outperforms humans on most
cognitive tasks. In order to control it, humans would need to control a system more
intelligent than themselves. This may be nearly impossible if the difference in intelli-
gence is large, and the AGI is trying to escape control. Humans have one key
advantage: As the designers of the system, we get to decide the AGI’s goals, and the

1 In 2017 Yudkowsky made a bet that the world will be destroyed by unaligned AI by January 1st,
2030, but he did so with intention of improving chances of successful AI control.
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way the AGI strives to achieve its goals. This may allow us design AGIs whose goals
are aligned with ours, and then pursue them in a responsible way. Increased intelligence
in an AGI is not a threat as long as the AGI only strives to help us achieve our own
goals” [17].

3 Uncontrollable

Similarly, those in the “uncontrollability camp” have made attempts at justifying their
opinions, but likewise we note absence of proofs or rigor, probably because all
available examples come from non-academic or not-peer-reviewed sources. This could
be explained by noting that “[t]o prove that something is impossible is usually much
harder than the opposite task; as it is often necessary to develop a theory” [18].

Yudkowsky writes: “[A]n impossibility proof [of stable goal system] would have to
say:

1) The AI cannot reproduce onto new hardware, or modify itself on current
hardware, with knowable stability of the decision system (that which determines what
the AI is *trying* to accomplish in the external world) and bounded low cumulative
failure probability over many rounds of self-modification.

or.
2) The AI’s decision function (as it exists in abstract form across self-modifications)

cannot be knowably stably bound with bounded low cumulative failure probability to
programmer-targeted consequences as represented within the AI’s changing, inductive
world-model” [19].

Below we highlight some objections to possibility of controllability or statements
of that as a fact:

• “Friendly AI hadn’t been something that I had considered at all—because it was
obviously impossible and useless to deceive a superintelligence about what was the
right course of action” [20].

• “AI must be programmed with a set of ethical codes that align with humanity’s.
Though it is his life’s only work, Yudkowsky is pretty sure he will fail. Humanity,
he says, is likely doomed” [21].

• “The problem is that they may be faced with an impossible task. … It’s also
possible that we’ll figure out what we need to do in order to protect ourselves from
AI’s threats, and realize that we simply can’t do it” [22].

• “I hope this helps explain some of my attitude when people come to me with
various bright suggestions for building communities of AIs to make the whole
Friendly without any of the individuals being trustworthy, or proposals for keeping
an AI in a box, or proposals for “Just make an AI that does X”, etcetera. Describing
the specific flaws would be a whole long story in each case. But the general rule is
that you can’t do it because Friendly AI is impossible” [14].

• “It doesn’t even mean that “human values” will, in a meaningful sense, be in control
of the future” [5].

• “And it’s undoubtedly correct that we’re currently unable to specify human goals in
machine learning systems” [5].
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• “[H]umans control tigers not because we’re stronger, but because we’re smarter.
This means that if we cede our position as smartest on our planet, it’s possible that
we might also cede control” [23]. “… no physical interlock or other safety mech-
anism can be devised to restrain AGIs …” [24].

• “[Ultra-Intelligent Machine (ULM)] might be controlled by the military, who
already own a substantial fraction of all computing power, but the servant can
become the master and he who controls the UIM will be controlled by it” [25].

• “Limits exist to the level of control one can place in machines” [26].
• “As human beings, we could never be sure of the attitudes of [superintelligences]

towards us. We would not understand them, because by definition, they are smarter
than us. We therefore could not control them. They could control us, if they chose
to, because they are smarter than us” [27].

• “Artificial Intelligence regulation may be impossible to achieve without better AI,
ironically. As humans, we have to admit we no longer have the capability of
regulating a world of machines, algorithms and advancements that might lead to
surprising technologies with their own economic, social and humanitarian risks
beyond the scope of international law, government oversight, corporate responsi-
bility and consumer awareness” [28].

• “… superhuman intelligences, by definition capable of escaping any artificial
constraints created by human designers. Designed superintelligences eventually will
find a way to change their utility function to constant infinity becoming inert, while
evolved superintelligences will be embedded in a process that creates pressure for
persistence, thus presenting danger for the human species, replacing it as the apex
cognition - given that its drive for persistence will ultimately override any other
concerns” [29].

• “My aim … is to argue that this problem is less well-defined than many people
seem to think, and to argue that it is indeed impossible to “solve” with any pre-
cision, not merely in practice but in principle. … The idea of a future machine that
will do exactly what we would want, and whose design therefore constitutes a lever
for precise future control, is a pipe dream” [30].

• “…extreme intelligences could not easily be controlled (either by the groups cre-
ating them, or by some international regulatory regime), and would probably act to
boost their own intelligence and acquire maximal resources for almost all initial AI
motivations” [31].

• “The only way to seriously deal with this problem would be to mathematically define
“friendliness” and prove that certain AI architectures would always remain friendly.
I don’t think anybody has ever managed to come remotely close to doing this, and I
suspect that nobody ever will. … I think the idea is an impossible dream …” [32].

• “[T]he whole topic of Friendly AI is incomplete and optimistic. It’s unclear whether
or not Friendly AI can be expressed in a formal, mathematical sense, and so there
may be no way to build it or to integrate it into promising AI architectures” [33].

• “I have recently come to the opinion that AGI alignment is probably extremely
hard. … Aligning a fully automated autopoietic cognitive system, or an almost-
fully-automated autopoietic cognitive system, both seem extremely difficult. My
snap judgment is to assign about 1% probability to humanity solving this problem
in the next 20 years. (My impression is that “the MIRI position” thinks the
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probability of this working is pretty low, too, but doesn’t see a good alternative). …
Also note that [top MIRI researchers] think the problem is pretty hard and unlikely
to be solved” [34].

The primary target for AI Safety researchers, the case of successful creation of
value-aligned superintelligence, is worth analyzing in additional detail as it presents
surprising negative side-effects, which may not be anticipated by the developers.
Kaczynski murdered three people and injured 23 to get the following warning about
overreliance on machines in front of the public, which was a part of his broader anti-
technology manifesto:

“If the machines are permitted to make all their own decisions, we can’t make any
conjectures as to the results, because it is impossible to guess how such machines might
behave. We only point out that the fate of the human race would be at the mercy of the
machines. It might be argued that the human race would never be foolish enough to
hand over all power to the machines. But we are suggesting neither that the human race
would voluntarily turn power over to the machines nor that the machines would
willfully seize power. What we do suggest is that the human race might easily permit
itself to drift into a position of such dependence on the machines that it would have no
practical choice but to accept all of the machines’ decisions. As society and the
problems that face it become more and more complex and as machines become more
and more intelligent, people will let machines make more and more of their decisions
for them, simply because machine-made decisions will bring better results than man-
made ones. Eventually a stage may be reached at which the decisions necessary to keep
the system running will be so complex that human beings will be incapable of making
them intelligently. At that stage the machines will be in effective control. People won’t
be able to just turn the machines off, because they will be so dependent on them that
turning them off would amount to suicide” [35].

4 Analysis

Why do so many researchers assume that AI control problem is solvable? To the best of
our knowledge there is no evidence for that, no proof. Before embarking on a quest to
build a controlled AI, it is important to show that the problem is solvable as not to
waste precious resources. The burden of such proof is on those who claim that the
problem is solvable, and the current absence of such proof speaks loudly about inherent
dangers of the proposition to create superhuman intelligence. In fact, uncontrollability
of AI is very likely true as can be shown via reduction to the human control problem.
Many open questions need to be considered in relation to the controllability issue: Is
the Control problem solvable? Can it be done in principle? Can it be done in practice?
Can it be done with the hundred percent accuracy? How long would it take to do it?
Can it be done in time? What are the energy and computational requirements for doing
it? How would a solution look? What is the minimal viable solution? How would we
know if we solved it? Does the solution scale as the system continues to improve?

AI researchers can be grouped into the following broad categories based on
responses to survey questions related to arrival of AGI and safety concerns. First split is
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regarding possibility of human level AI, while some think it is an inevitable devel-
opment others claim it will never happen. Among those who are sure AGI will be
developed some think it will definitely be a beneficial invention because with high
intelligence comes benevolence, while others are almost certain it will be a disaster, at
least if special care is not taken to avoid pitfalls. In the set of all researchers concerned
with AI safety most think that AI control is a solvable problem, but some think that
superintelligence can’t be fully controlled and so while we will be able to construct true
AI, the consequences of such act will not be desirable. Finally, among those who think
that control is not possible, some are actually happy to see human extinction as it gives
other species on our planet more opportunities, reduces environmental problems and
definitively reduces human suffering to zero. The remaining group are scholars who are
certain that superintelligent machines can be constructed but could not be safely
controlled, this group also considers human extinctions to be an undesirable event.

There are many ways to show that controllability of AI is impossible, with sup-
porting evidence coming from many diverse disciplines. Just one argument would
suffice but this is such an important problem, we want to reduce unverifiability con-
cerns as much as possible. Even if some of the concerns get resolved in the future,
many other important problems will remain. So far, researchers who argue that AI will
be controllable are presenting their opinions, while uncontrollability conclusion is
supported by multiple impossibility results [36]. Additional difficulty comes not just
from having to achieve control, but also from sustaining it as the system continues to
learn and evolve, the so called “treacherous turn” [37] problem. If superintelligence is
not properly controlled it doesn’t matter who programmed it, the consequences will be
disastrous for everyone and likely its programmers in the first place. No one benefits
from uncontrolled AI.

There seems to be no evidence to conclude that a less intelligent agent can
indefinitely maintain control over a more intelligent agent. As we develop intelligent
system which are less intelligent than we are we can remain in control, but once such
systems become smarter than us, we will lose such capability. In fact, while attempting
to remain in control while designing superhuman intelligent agents we find ourselves in
a Catch 22, as the controlling mechanism necessary to maintain control has to be
smarter or at least as smart as the superhuman agent we want to maintain control over.
A whole hierarchy of superintelligent systems would need to be constructed to control
ever more capable systems leading to infinite regress. AI Control problems appears to
be Controlled-Superintelligence-complete [38–40]. Worse, the problem of controlling
such more capable superintelligences only becomes more challenging and more
obviously impossible for agents with just a human-level of intelligence. Essentially we
need to have a well-controlled super-superintelligence before we can design a con-
trolled superintelligence but that is of course a contradiction in causality. Whoever is
more intelligent will be in control and those in control will be the ones who have power
to make final decisions.

Most AI projects don’t have an integrated safety aspect to them and are designed
with a sole purpose of accomplishing certain goals, with no resources dedicated to
avoiding undesirable side effects from AI’s deployment. Consequently, from statistical
point of view, first AGI will not be safe by design, but essentially randomly drawn from
the set of easiest to make AGIs (even if that means brute force [41]). In the space of
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possible minds [42], even if they existed, safe designs would constitute only a tiny
minority of an infinite number of possible designs many of which are highly capable
but not aligned with goals of humanity. Therefore, our chances of getting lucky and
getting a safe AI on our first attempt by chance are infinitely small. We have to ask
ourselves, what is more likely, that we will first create an AGI or that we will first
create and AGI which is safe? This can be resolved with simple Bayesian analysis but
we must not fall for the Conjunction fallacy [9]. It also seems, that all else being equal
friendly AIs would be less capable than unfriendly ones as friendliness is an additional
limitation on performance and so in case of competition between designs, less restricted
ones would dominate long term.

Intelligence is a computational resource [43] and to be in complete control over that
resource we should be able to precisely set every relevant aspect of it. This would
include being able to specify intelligence to a specific range of performance, for
example IQ range 70–80, or 160–170. It should be possible to disable particular
functionality, for example remove ability to drive or remember faces as well as limit
system’s rate of time discounting. Control requires capability to set any values for the
system, any ethical or moral code, any set of utility weights, any terminal goals. Most
importantly remaining in control means that we have final say in what the system does
or doesn’t do. Which in turn means that you can’t even attempt to solve AI safety
without first solving “human safety”. Any controlled AI has to be resilient to hackers,
incompetent or malevolent users and insider threats.

5 Conclusions

To the best of our knowledge, as of this moment, no one in the world has a working AI
control mechanism capable of scaling to human level AI and eventually to superin-
telligence, or even an idea for a prototype, which might work. No one made verifiable
claims to have such technology. In general, for anyone making a claim that control
problem is solvable, the burden of proof is on them and ideally it would be a con-
structive proof, not just a theoretical claim. At least at the moment, it seems that our
ability to produce intelligent software greatly outpaces our ability to control or even
verify it.

Narrow AI systems can be made safe because they represent a finite space of
choices and so at least theoretically all possible bad decisions and mistakes can be
counteracted. For AGI space of possible decisions and failures is infinite, meaning an
infinite number of potential problems will always remain regardless of the number of
safety patches applied to the system. Such an infinite space of possibilities is impos-
sible to completely debug or even properly test for safety. Worse yet, a superintelligent
system will represent infinite spaces of competence exceeding human comprehension
[44, 45].

Same can be said about intelligent systems in terms of their security. A NAI pre-
sents a finite attack surface, while an AGI gives malevolent users and hackers an
infinite set of options to work with. From security point of view that means that while
defenders have to secure and infinite space, attackers only have to find one penetration
point to succeed. Additionally, every safety patch/mechanism introduces new
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vulnerabilities, ad infinitum. AI Safety research so far can be seen as discovering new
failure modes and coming up with patches for them, essentially a fixed set of rules for
an infinite set of problems. There is a fractal nature to the problem, regardless of how
much we “zoom in” on it we keep discovering just as many challenges at all levels. It is
likely that the control problem is not just unsolvable, but exhibits fractal impossibility,
it contains unsolvable sub-problems at all levels of abstraction. However, it is not all
bad news, uncontrollability of AI means that malevolent actors will likewise be unable
to fully exploit artificial intelligence for their benefit.
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AGI via Combining Logic with Deep
Learning

King-Yin Yan(B)

Generic Intelligence, Hong Kong, China

Abstract. An integration of deep learning and symbolic logic is pro-
posed, based on the Curry-Howard isomorphism and categorical logic.
The propositional structure of logic is seen as a symmetry, namely the
permutation invariance of propositions; This can be implemented using
so-called symmetric neural networks. Under our interpretation, it turns
out that Google’s BERT, which many currently state-of-the-art language
models are derived from, can be regarded as an alternative form of logic.
This BERT-like structure can be incorporated under a reinforcement-
learning framework to form a minimal AGI architecture. We also men-
tion some insights gleaned from category and topos theory that point
to future directions and may be helpful to other researchers, including
mathematicians interested in AGI.

Keywords: Deep learning · Symbolic logic · Logic-based AI ·
Neural-symbolic integration · Curry-Howard isomorphism · Category
theory · Topos theory · Fuzzy logic

1 Introduction

Results in the present paper does not make use of category theory in any sig-
nificant way (nor the Curry-Howard isomorphism, for that matter). Its main
accomplishment is to express AGI in the categorical language. To the lay person,
concepts of category theory (such as pullbacks, adjunctions, fibration, toposes,
sheaves, ...) may be difficult to grasp, but they are the mathematician’s “daily
bread”. We hope that describing AGI in categorical terms will entice more math-
ematicians to work on this important topic.

Secondly, an abstract formulation allows us to see clearly what is meant by
“the mathematical structure of logic”, without which logic is just a collection
of esoteric rules and axioms, leaving us with a feeling that something may be
“amiss” in our theory.

1.1 The Curry-Howard Isomorphism

As the risk of sounding too elementary, we would go over some basic background
knowledge, that may help those readers unfamiliar with this area of mathematics.
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The Curry-Howard isomorphism expresses a connection between logic syn-
tax and its underlying proof mechanism. It is fundamental to understanding
categorical logic. Consider the mathematical declaration of a function f with
its domain and co-domain:

f : A → B. (1)

This notation comes from type theory, where A and B are types (which we
can think of as sets or general spaces) and the function f is an element in the
function space A → B, which is also a type.

What the Curry-Howard isomorphism says in essence is that we can regard
A → B as a logic formula, i.e. the implication A ⇒ B, and the function f as a
proof process that maps a proof of A to a proof of B.1

The following may give a clearer picture:

logic A =⇒ B

program �
f�−→ � .

(2)

What we see here is a logic formula “on the surface”, with an underlying proof
mechanism which is a function, or λ-calculus term. Here the �’s represent
proof objects or witnesses. The logic propositions A and B coincide with the
domains (or types) specified by type theory. Hence the great educator Philip
Wadler calls it “propositions as types”.2 Other textbooks on the Curry-Howard
isomorphism include: [39,40,42].

The gist of our theory is that Deep Learning provides us with neural net-
works (i.e. non-linear functions) that serve as the proof mechanism of logic via
the Curry-Howard isomorphism. With this interpretation, we can impose the
mathematical structure of logic (e.g. symmetries) onto neural networks. Such
constraints serve as inductive bias that can accelerate learning, according to
the celebrated “No Free Lunch” theory [1,36,45].

In particular, logic propositions in a conjunction (such as A ∧ B) are com-
mutative, i.e. invariant under permutations, which is a “symmetry” of logic and
perhaps the most important one. This symmetry decomposes a logic “state” into
a set of propositions, and seems to be a fundamental feature of most logics known
to humans. Imposing this symmetry on neural networks gives rise to symmetric
neural networks (see Sect. 4).

We have not been clear about what the proof witnesses are. In our current
implementation, types are regions in vector space and witnesses are just points
inside the regions. When some propositions imply another proposition, there
is a function mapping witnesses in some regions to a new witness in another
region. Thus, such spatial regions are nearly tautologous with proof witnesses
(i.e. points versus the regions containing them). In other words, the “big” vector
space is divided into many small regions representing various propositions.
1 Though one does not need to execute a function to prove a statement; Merely the

existence of a such a function (proof object) that type-checks is sufficient.
2 See his introductory video: https://www.youtube.com/watch?v=IOiZatlZtGU.

https://www.youtube.com/watch?v=IOiZatlZtGU
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We should point out that the Curry-Howard isomorphism has not played a
significant role in our current AGI theory. The representation of conditional
statements (e.g. A ⇒ B) requires function types which are hard to represent
as vectors.3 So the only function type in our system is the “main” neural net-
work simulating the � operator. In the language of classical logic-based AI, this
is similar to having “Horn form” logic rules in the knowledge base, while the
working memory contains atomic propositions only.

As an aside, the Curry-Howard isomorphism also establishes connections to
diverse disciplines. Whenever there is a space of elements and some operations
over them, there is a chance that it has an underlying “logic” to it (see e.g.
Baez and Stay’s “Rosetta Stone” paper: [2], also [14]). For example, in quantum
mechanics, that of Hilbert space and Hermitian operators. Another example: in
String Theory, strings and cobordisms between them. For example the famous
“pair of pants” cobordism (Fig. 1A), representing a process in time that merges
two strings into one (time is read upwards).

Seeing logical types as topological spaces is also the origin of Voevodsky’s
Homotopy Type Theory (HoTT) [29], where the identity of two inhabitants
in a type is seen as a homotopy path. HoTT may be relevant to AGI if we want
the convenience of having multiple identical proofs of the same propositions –
this may help simplify the topology of types (i.e. spatial regions representing
propositions). For example in Fig. 2A, two disjoint regions can be connected by
a path, even though x1 and x2 are “identical” points.

Fig. 1. A© pair of pants. B© point clouds

2 Prior Research

2.1 Neuro-symbolic Integration

There has been a long history of attempts to integrate symbolic logic with neural
processing, with pioneers such as Ron Sun, Dov Gabbay, Barbara Hammer,
among others. We describe two model-based approaches below.

From a categorical perspective, model theory is a functor mapping logic
syntax to algebraic objects and the operations between them (hence the name
“functorial semantics”):

3 Ben Goertzel’s latest “general theory of AGI” [11] addresses higher-order networks,
which construct other networks as proofs of implications.
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syntax a · b �−→ �a� · �b� algebraic objects, e.g. group elements (3)

Model theory is interesting when the target structure has additional prop-
erties beyond those specified by the logic syntax. For example, the predicate
male(x) may be modelled by:

algebraic geometry male(x) ⇔ f(x) ≥ 0 f is a polynomial
linear algebra male(x) ⇔ Mx ≥ 0 M is a matrix

topology male(x) ⇔ x ∈ S S is an open set
(4)

Model-based methods may appear impractical for AGI because the number of
grounded atomic propositions gets too large (potentially infinite, if we include
also propositions that are imagined). However, if all possible atoms are embedded
in a mathematical space through mapping schemes such as the above (4), it may
be approximately feasible.

In the “syntactic” or type-theoretic approach (including the one in this
paper), propositions (= types) are regions in some vector space. Currently our
simple scheme is to map predicates like P (a, b) into the Cartesian product Pred×
Obj×Obj where Pred is the space of all possible predicates and Obj the space of
all possible objects4 (but this is not the only option; see Sect. 3.1). Inference is
performed by a neural network simulating the single-step consequence operator
�, while learning is through changing of network weights. This is relatively
simple and straightforward.

Whereas, in the model-theoretic approach one places objects in a high-
dimensional space such that their positions satisfy the constraints imposed by
various predicates (e.g. polynomials, matrices, open sets, ...) Now forward infer-
ence occurs as the system pays attention to (i.e. to be simply aware of) some
points in an Object space, which points are covered by some predicates. Thus a
new proposition is discovered, adding to more new conclusions, ... and so on. It
is interesting that, under this scheme, it seems as if all truths are known a priori,
and the system just needs to discover or “attend” to them. Learning changes
the geometric shapes of predicates and forms new truths to be discovered by the
system.

1. In Pascal Hitzler and Anthony Seda’s Core Method [16], an interpreta-
tion I is a function that assigns truth values to the set of all possible ground
atoms in a logic language L. One can see I as an enumeration of ground atoms
that are true, and thus it provides a model to interpret any logic formula in
L. Moreover I is a function from the space X of atoms to 2 = {
,⊥} and
can be given a topology 2X which is X copies of the discrete topology of 2.
Such a topology makes I homeomorphic to the Cantor set in [0, 1]. To a
logic program P is associated a semantic operator TP : I → I, performing
a single step of forward inference. Finally, the space of interpretations I is

4 Here objects mean logical or first-order objects, not categorical objects.
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embedded into R using a “level mapping” (The level of an atom increases by
each inference step; All the atoms of an interpretation I are translated into a
fractional number in base b). This allows TP to be approximated by a neural
network f : I → R.
The goal of their research is to find the fixed-point semantics of logic pro-
grams, but with suitable modifications, the same mathematical structure may
be used to build an inference engine or AGI. In such case, the logic program
would function as the knowledge base while interpretations would play the
role of working memory (though the memory could only be a subset of an
interpretation, due to physical limitation).

2. ∂-ILP [9] is focused on the learning problem, but its set-up seems similar
to the first example. A valuation is a vector [0, 1]n mapping every ground
atom to a real number ∈ [0, 1]. Each clause is attached with a Boolean flag
to indicate whether it is included in the results or not. From each clause c
one can generate a function Fc on valuations that implements a single step
of forward inference. To enable differentiability, the Boolean flag is relaxed
to be a continuous value and gradient descent is used to learn which clauses
should be included.

We would also like to mention Geoffrey Hinton’s recent GLOM theory [15],
which addresses the problem of representing a hierarchy of visual structures.
OpenCog has also been applied to neural-symbolic integration [12,28]. These
further support that representing and learning relational (logical) knowledge is
a topic of central importance, and that there is a convergence of “mainstream”
AI with AGI.

2.2 Cognitive Architectures and Reinforcement Learning

When we mention “AGI” here, it is intended to focus on a minimal core subset
of its requirements, namely the ability to make logically correct inferences based
on distilled knowledge learned from massive world-data. The strategy is that
other modules of an AGI may be built upon this base.

Reinforcement Learning (RL). In the 1980’s, Richard Sutton [41] introduced
reinforcement learning as an AI paradigm, drawing inspiration from Control
Theory and Dynamic Programming. In retrospect, RL already has sufficient
generality to be considered an AGI theory, or at least as a top-level framework
for describing AGI architectures5.

Relation to AIXI. AIXI is an abstract AGI model introduced by Marcus
Hutter in 2000 [19]. AIXI’s environmental setting is the external “world” as
observed by some sensors. The agent’s internal model is a universal Turing
5 Indeed, Sutton argues that merely increasing brute-force computing power would

lead to AGI and that human design of algorithms is relatively useless. The tenet in
this paper is that logic may serve as an inductive bias to accelerate learning, but we
cannot be certain about this, since the algorithmic search for AGI is non-exhaustive
(see Sect. 5).
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machine (UTM), and the (approximately) optimal action is chosen by maximiz-
ing potential rewards over all programs of the UTM. In our (minimal) model, the
UTM is constrained to be a neural network, where the NN’s state is analogous
to the UTM’s tape, and the optimal weights (program) are found via Bellman
optimality.

Relation to Quantum Mechanics and Path Integrals. At the core of RL
is the Bellman equation, which governs the update of the utility function to
reach its optimal value. This equation (in discrete time) is equivalent to the
Hamilton-Jacobi equation in differential form. Nowadays they are unified as the
Hamilton-Jacobi-Bellman equation, under the name “optimal control theory”
[24]. In turn, the Hamilton-Jacobi equation is closely related to the Schrödinger
equation in quantum mechanics:

Bellman eqn. � Hamilton-Jacobi eqn. � Schrödinger eqn. (5)

but the second link is merely “heuristic”; it is the well-studied “quantization”
process whose meaning remains mysterious to this day. Nevertheless, the path
integral method introduced by Richard Feynmann can be applied to RL algo-
rithms, e.g. [22].

The Hamilton-Jacobi equation gives the RL setting a “symplectic” structure
[26]; Such problems are best solved by so-called symplectic integrators (pro-
posed by (Feng Kang) in the 1980s [10], see also [23]). Surprisingly, in the
RL/AI literature, which has witnessed tremendous growth in recent years, there
is scarcely any mention of the Hamilton-Jacobi structure, while the most efficient
heuristics (such as policy gradient, experience replay, Actor-Critic, etc.) seem to
exploit other structural characteristics of “the world”.

3 The Mathematical Structure of Logic

Currently, the most mathematically advanced and satisfactory description of
logic seems to base on category theory, known as categorial logic and topos
theory. This direction was pioneered by William Lawvere in the 1950–60’s. The
body of work in this field is quite vast, but we shall briefly mention some points
that are relevant to AGI. A more detailed tutorial on categorical logic, with a
focus on AGI, is in preparation [46].

3.1 Predicates and Dependent Type Theory

The Curry-Howard isomorphism identifies propositional intuitionistic logic with
type theory. As such, the arrow → in type theory is “used up” (it corresponds to
the implication arrow ⇒ in intuitionistic logic). However, predicates are also a
kind of functions (arrows), so how could we accomodate predicates in type theory
such that Curry-Howard continues to hold? This is the idea behind Martin Löf’s
dependent type theory.

In dependent type theory, a predicate P (·) is a type constructor ([40]
Sect. 8.7) taking an element a of one type to create a new type P (a). For example,
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each element a ∈ {John, Socrates, Kermit} creates a new type Human(a), and
thus Human is a family of types or a dependent type. This is depicted in
Fig. 2B.

Mathematically, a dependent type is a product of types indexed by another
type, denoted ΠAB, which is really a form of exponentiation. If every source
element maps to the same type B, then ΠAB degenerates into the ordinary
function type A → B (cf. [27] Sect. 3.3).

So far, we did not make use of dependent types: predicates are represented
using simple Cartesian products (i.e. vector concatenation) such as Pred ×Obj,
but there is the possibility of exploiting more general indexing schemes.

Fig. 2. A© A path in homotopy type theory. B© The predicate “Human” as a fibration

The expressiveness of predicate logic (in one form or another) is a highly
desirable feature for AGI knowledge representations. So it seems necessary to
incorporate dependent type theory into our logic. From a categorical perspective,
predicates can be regarded as fibers over a base set. Fibrations capture the
structure of indexing and substitutions, as shown in Fig. 2B. This figure is
key to understanding Bart Jacob’s book [20]. Thus category theory gives us more
insight into the (predicate) structure of logic, though it is as yet unclear how to
make use of this particular idea.

3.2 (Fuzzy) Topos Theory

The author’s previous paper [47], almost a decade ago, proposed a fuzzy-
probabilistic logic where probabilities are distributed over fuzzy truth values.
So far we still believe that regarding fuzziness as a generalization of binary truth
is philosophically sound. Thus it behooves to develop a generalization of standard
topos theory to the fuzzy case.

A topos is a category that generalizes set theory. The most important com-
mutative diagram in Topos theory is this one:

X 1

Y Ω

!

m true

χm

(6)
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It can be understood as saying that every set is a pullback of the true map
1 → Ω (which “picks out” true from Ω = {
,⊥}), in analogy to the idea of a
“moduli space” where every family is a pullback of a “universal family” [13,35].
Following this idea, could it be that every fuzzy set is the pullback of a fuzzy
“true” map?

The book [7] Sect. 5.2.4 provides a concise review of the categorical treatment
of fuzzy sets: The sub-object classifier Ω that characterizes classical set theory is
generalized to a complete Heyting algebra (CHA, also called a frame, which
captures the structure of a topology, ie, the lattice of open subsets of a set; This
includes the interval [0, 1] as a special case, in accord with our philosophical
intuition), and also leads to the recognition that the internal logic of a topos is
intuitionistic (see [25], and this will be further explained in the tutorial [46]).

This line of research leads to Höhle’s [17,18], where fuzzy set theory is inter-
preted as sub-fields of sheave theory, ie, complete Ω-valued sets, where Ω is a
frame. More recent papers seem to be in favor of this thinking: [21,44].

4 Permutation Symmetry and Symmetric
Neural Networks

From the categorical perspective, we make the following correspondence with
logic and type theory:

product A × B � A ∧ B conjunction

function A → B � A ⇒ B implication . (7)

One basic characteristic of (classical) logic is that the conjunction ∧ is commu-
tative:

P ∧ Q ⇔ Q ∧ P. (8)

This remains true of probabilistic logic, where ∧ and ∨ are unified as conditional
probability tables (CPTs) of the nodes of Bayesian networks. (Note: the com-
mutative structure of ∧ also gives rise to monoidal categories, that capture
processes that can be executed in parallel; See [14] for an introduction.)

Once we know the symmetry, the question is how to impose this symmetry
on deep neural networks. Interestingly, the answer already comes from an inde-
pendent line of research (namely, PointNet [31] and Deep Sets [48]) that deals
with visual object recognition of point clouds, e.g. Fig. 1B.

In a point cloud, it does not matter the order in which the points are pre-
sented, as inputs to the classifier function. Such a function needs to be permuta-
tion invariant to a huge number of points. More generally, see also these recent
articles on the use of geometry and symmetry in deep learning: [5,6].

From [48]: the Kolmogorov-Arnold representation theorem states that
every multivariate continuous function can be represented as a sum of continuous
functions of one variable:
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f(x1, ..., xn) =
2n∑

q=0

Φq

(
n∑

p=1

φq,p(xp)

)
(9)

Their paper specialized the theorem to the case that every symmetric multi-
variate function can be represented as a sum of (the same) functions of one
variable:

f(x1, ..., xn) = ρ( φ(x1) + ... + φ(xn) ) (10)

This leads to the implementation using neural networks as in Fig. 3A, and can
be easily implemented with just a few lines of Tensorflow, see Sect. 6.

Fig. 3. A© symmetric neural network. B© permutation invariant vs. equivariant

The idea of using symmetric neural networks to process logical/relational
data has already been explored by one of Google’s research teams in 2017, which
they called RN (Relational Networks) [3,34]. Their results further confirm the
viability of this idea.

4.1 Why BERT Is a Logic

BERT (and its variants) are based on the Transformer architecture [8], and
Transformers are based solely on the Self-Attention mechanism [43]. In Fig. 4
one can verify that the Transformer is equivariant to its inputs. That is to say,
for example, if input #1 and #2 are swapped, then output #1 and #2 would
also be swapped.

In other words, each Transformer layer takes N inputs and produces N equiv-
ariant outputs. That is the same as saying that each output is permutation-
invariant in all its inputs. As we explained in the last section, permutation
invariance is the symmetry that characterizes a logic as having individual propo-
sitions.

Proof that Equivariance ⇔ symmetric (for an N -input N -output set
function): ⇐: Suppose we have constructed n symmetric functions f1, ..., fN ,
satisfying ∀σ. �f(�x) = �f(σ�x), with σ taking values in the symmetric group SN .
We can re-state the condition as ∀σ. σ �f(�x) = �f(σ�x) by re-naming the functions,
because {fi} is a set. ⇒: If we have N equi-variant functions t1, ..., tN , satisfying
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Fig. 4. Flow of operations in self-attention. From blog article: illustrated: self-
attention – step-by-step guide to self-attention with illustrations and code https://
towardsdatascience.com/illustrated-self-attention-2d627e33b20a

∀σ. σ�t(�x) = �t(σ�x), we can also re-state the condition as ∀σ. σ−1σ �t(�x) = �t(σ�x)
by re-naming elements in the set {ti}. This is illustrated in Fig. 3B (for N = 3).

�
A Self-Attention layer can be implemented by this formula (which appears

in numerous tutorials):

Z =
∑

softmax(
1√
dk

Qi · KT
j )Vj (11)

where Query, Key, and Value are linear transformations of the inputs Xi by
multiplying (learned) matrices WQ,WK ,WV respectively. We hypothesize that
(11) is just a general form of equivariant functions, ie, it represents an arbitrary
non-linear transformation of the input vectors Xi to the output vector Z, without
any constraints other than equivariance.

Figure 5C is a simplified view of a single Self-Attention layer. The output
is a new proposition that depends on the input objects, and thus, functions
as a predicate. However, this representation of predicates-within-proposition
is not efficient for logic inference. We may visualize the non-linear (due to the
softmax in Z) deformation of the input and output vector-embedding spaces as
in Fig. 5D.

The problem is that a universally quantified formula such as ∀x.P (x) ⇒
Q(x) requires mapping a source region to a target region in embedding spaces.
This kind of mapping shapes are difficult or slow to learn because it requires
many pairs of input-output data points. But BERT/GPT is famous for being able
to make few-shot generalizations. Thus we conjecture that in BERT/GPT
the logical proposition is not just one equivariant unit but is decomposed
into several units (e.g. “I love you” at the input stage is decomposed into 3

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
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Fig. 5. A© Why Positional Encoding does not interfere with Word Embeddings. B©
How a logic term “Socrates” is copied from one position to another. C© How predicates
may be formed in Self-Attention. D© Non-linear deformation of embedding spaces.

vector units: “I”, “love”, and “you”). In other words, BERT/GPT performs logic
inference/derivations on the syntactic level, ie, via symbolic manipulations.

Figure 5B is an example of such an operation. The object “Socrates” is copied
from one position to another. By inspecting Eq. (11) we surmise that BERT is
capable of such manoeuvres, with appropriately learned Keys and Values.

Figure 5A tries to explain why Positional Encodings (the sine wave patterns)
seem not to interfere with Word Embeddings, when the embedding dimension is
sufficiently large. Note that the x-axis here is not a single dimension but many
dimensions, and the sine waves are not ordinary waves but waves over dimen-
sions. As each wave only occludes 50% of the dimensions, the word embeddings
of “love” and “death” are still recognizable. This enables to mix multiple mean-
ings in a single word vector, e.g. “love” + “you” = “love you”. So a predicate
vector may contain its own objects, as in Fig. 5C.

So far it seems the representation in BERT/GPT may have predicates with
objects inside a single vector or with predicates and objects residing in separate
vectors. Perhaps inspecting the weights inside BERT/GPT may reveal their
internal representations.
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In Multi-Head Attention, the intermediate computations are duplicated
multiple (eg, M = 8) times, each with their own weight matrices. From the logic
point of view, this amounts to duplicating M logic rules per output. But since
the next layer still expects N inputs, the M outputs are combined into one,
before the next stage. Thus, from the logic point of view this merely increased
the parameters within a single logic rule, and seems not significant to increase
the power of the logic rule-base. Indeed, experimental results seem to confirm
that multi-head attention is not particularly gainful towards performance.

A comment is in order here, about the choice of the word “head”. In logic
programming (eg Prolog), one calls the conclusion of a logic rule its “head”,
such as P in P :- Q,R,S. Perhaps the creators of BERT might have logic rules
in mind?

5 “No Free Lunch” Theory

In machine learning, “No Free Lunch” [1,45] refers to the fact that accelerating
the search for a solution by ignoring one part of the search space (known as
”inductive bias” [1]) is just as good as ignoring another part, if the solutions are
believed to be evenly distributed in those regions. For example, the symmetry
proposed here reduces the search space by a factor of 1/n! where n is the number
of propositions in working memory.

The following conceptual diagram of the algorithmic search space illustrates
the possibility that there might exist some form of logic that is drastically dif-
ferent from the symbolic logic currently known to humans (Fig. 6).

but there is no efficient algorithm to find them (grey area is much larger
than shaded area). The permutation symmetry proposed in this paper forces
our logic to be decomposable into propositions. Such a logical form allows a
mental state to be enumerated as a list of sentences (propositions), same as the
“linear” structure of human languages. If the AGI knowledge representation is
linear (in the sequential sense) and symbolic, then it would not be far from our
formulation – all these logics belong to one big family.

Fig. 6. Inductive bias and the search for AGI.
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But could there be drastically different logics? One observes that pictures
and music are not easily described by words, indeed they are 2-dimensional
structures. This suggests that the brain may use multi-dimensional arrays
of features to represent the world. Such a “logic” would be very different from
sequential logic and it would be interesting and fruitful to analyze the relation
between them.

6 Experiment

A simple test6 of the symmetric neural network, under reinforcement learning
(Policy Gradient7), has been applied to the Tic-Tac-Toe game.

The state of the game is represented as a set of 9 propositions, where all
propositions are initialized as “null” in the beginning. During each step of the
game, a new proposition is added to the set (i.e. over-writing the null proposi-
tions). Each proposition encodes who the player is, and which square (i, j) she
has chosen. In other words, it is a predicate of the form: move(player,i,j). The
neural network takes 9 propositions as input, and outputs a new proposition;
Thus it is a permutation-invariant function.

In comparison, the game state of traditional RL algorithms (e.g. AlphaGo
[30,37,38]) usually is represented as a “chessboard” vector (e.g. 3×3 in Tic-Tac-
Toe, 8×8 in Chess, 19×19 = 361 in Go8). This state vector is the same constant
length even if there are very few pieces on the chessboard. Our logic-based repre-
sentation may offer some advantages over the board-vector representation, and
likely induces a different “way of reasoning” about the game.

In our Tic-Tac-Toe experiment, learning led to initial improvements in game
play but failed to achieve the optimal score in general. We find that this failure
is also shared by the fully-connected NN (neural network), and this is likely
because the policy gradient algorithm itself does not converge for Tic Tac Toe.
Figure 7 is a comparison of symmetric NN versus fully-connected NN during
early training. Disappointingly, the symmetric version does not out-perform the
fully-connected version.

6 Code with documentation and more detailed analysis is on GitHub: https://github.
com/Cybernetic1/policy-gradient.

7 The Policy Gradient algorithm is chosen because it allows continuous actions. Other
reinforcement learning algorithms require learning the value function over actions,
and when the action space is not discrete such a value function cannot be represented
by a table, but perhaps as a neural network. However, it is not easy to find the
maximum of a neural network, which is required to choose the optimal action. Policy
Gradient avoids this because the policy function directly maps to actions.

8 In AlphaGo and AlphaZero, the algorithm makes use of several auxiliary “feature
planes” that are also chessboard vectors, to indicate which stones have “liberty”,
“ko”, etc.

https://github.com/Cybernetic1/policy-gradient
https://github.com/Cybernetic1/policy-gradient


340 K.-Y. Yan

Fig. 7. Symmetric vs. fully-connected neural network for Tic Tac Toe

We ascribe this failure to the naive policy gradient algorithm and plan to
use Actor-Critic (which also allows continuous actions) in our next experiments.
We hope to show that symmetric NN is gainful for solving problems with logical
structure. In another Github experiment we explore using a symbolic logic engine
to solve Tic Tac Toe9 and the comparison of these two approaches may shed light
on how to integrate deep learning with logic.

7 Conclusion and Future Directions

We described a minimal AGI with a logic that can derive one new proposition per
iteration. This seems sufficient to solve simple logic problems such as Tic-Tac-
Toe. As a next step, we would consider inference rules with multi-proposition
conclusions. The latter seems essential to abductive reasoning. For example, one
can deduce the concept “apple” from an array of visual features; Conversely,
the idea of an “apple” could also evoke in the mind a multitude of features,
such as color, texture, taste, and the facts such as that it is edible, is a fruit,
and that Alan Turing died from eating a poisoned apple (a form of episodic
memory recall), and so on. This many-to-many inference bears some similarity
to the brain’s computational mechanisms [4,32,33]. The author is embarking on

9 https://github.com/Cybernetic1/GIRL.

https://github.com/Cybernetic1/GIRL
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an abstract unifying AGI theory that makes references to (but not necessarily
copying) brain mechanisms.
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Abstract. Model-based reinforcement learning has recently demon-
strated significant advances in solving complex problems of sequential
decision-making. Updating the model using the case of solving the cur-
rent task allows the agent to update the model and apply it to improve
the efficiency of solving the following similar tasks. This approach also
aligns with case-based planning methods, which already have mecha-
nisms for retrieving and reusing precedents. In this work, we propose a
meta-learned case retrieval mechanism that provides case-based samples
for the agent to accelerate the learning process. We have tested the per-
formance of the proposed approach on the well-known MuJoCo dataset
and have shown results at the level of methods using pre-generated expert
data.

Keywords: Reinforcement learning · Model-based RL · Case-based
planning · Meta-learning · Neural world models · Dreamer · Task
generalization

1 Introduction

Reinforcement Learning has gained huge importance these days. It has been
extensively used in such fields as robotics [13], recommendation systems [1],
and video games [17,21]. In RL setting, the agent applies actions in the envi-
ronment, which then returns observations and rewards to the agent, and the
process repeats. The agent’s goal is to maximize the expected reward summed
over a certain number of environment steps. Despite widespread use, modern RL
algorithms suffer from the curse of low sample efficiency, which is performance
of the Reinforcement Learning agent given that it has observed a fixed number
of environment states.

However, an essential branch of Reinforcement Learning exists to tackle the
problem of sample efficiency, namely, the Model-Based Reinforcement Learning
[9,14,18,20]. Model-Based RL (MBRL) alleviates the problem of sample effi-
ciency by training the model of environment dynamics, which is used to train
the agent. Specifically, the agent no longer has access to the “true” environment.
Instead, the agent uses such a learned environment to train itself. The model-
based RL as a class of RL algorithms contains the most sample-efficient [18] RL
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algorithms. This means that these methods can be efficiently utilized in costly
environments where collecting lots of data is expensive (e.g., when the agent is
a robot in the real environment, the amount of collected data for training is
upper-bounded by the duration of the research project).

A prominent approach to Model-Based RL is using World Models [10]. In gen-
eral, these are deep networks acting on agent’s observations which build abstract
features for policy to act on. The world models capture environment dynamics
and are usually implemented as Variational Autoencoders [16] with a temporal
component. The model encodes visual observations of the agent into the latent
state and then reconstructs these states into the observations and rewards. Both
the encoder and decoder modules of the model are conditioned on the agent’s
actions and previous timestamp latent vector. The recurrent state-space model
(RSSM) networks [11,12] plays an important role in Model-Based RL due to
their expressive power for dynamics learning. In this work, we use the Dreamer
[11], which is an RSSM world model with additional actor and critic which are
trained purely on rollouts from the model.

An important branch of online planning, case-based planning seeks to reuse
previous planning results to accelerate online planning [7,22]. CBP is similar to
the model-based RL in the way that both model the domain, first through the
similarity between planning cases and second through learning the dynamics of
the environment. However, there exists a gap between CBP and RL despite the
fact that they solve similar tasks. Particularly, the RL usually learns behaviors
in a purely online fashion, while the CBP involves additional offline calculations.

In this work, we fill this gap by proposing a model that uses ideas of a Case-
based approach to tackle the multitask adaptation of an MBRL agent. Instead
of training any Model-Based RL algorithm from scratch for each task, we reuse
the data collected along the training of previous agents by using a learned mech-
anism that retrieves training samples to train MBRL agent. Basically, we use the
similarity between concrete behaviors from the current and all previous cases to
retrieve behaviors and reuse them to accelerate the training of the Dreamer. In
particular, inspired by the Variational Memory Addressing [6] mechanism, we
add an auxiliary neural network that acts as the distribution over the expert cases
and retrieves them for Dreamer training. This memory network acts according
to a learned strategy, which is defined as the task-specific performance of the
model, therefore, accelerating the Dreamer’s convergence.

We summarize our key contributions as follows:

1. Case Retrieval Mechanism. Based on insights from Case-Based Reason-
ing, we define a learnable retrieval over episodes from prior tasks, which is
used to propose training samples for the main model.

2. Task Generalization. We empower the RSSM-based RL agent with novel
learnable retrieval to leverage the similarity of intra-domain experiences col-
lected before. The augmented agent is able to train faster on the current task
by using such an adaptive retrieval mechanism.

3. Empirical Evaluation. We evaluate our model on a number of visual
continuous-control tasks grouped by domains. Our model shows increased
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performance compared to the two baselines for the case when prior task is
equal to the current one.

2 Related Work

A number of methods leverage Case-Based Reasoning to speed up reinforcement
learning. CBRetaliate [2] formulates a case as tabular action-value approxima-
tion. Its aim is to quickly adapt to changing conditions by switching policies
defined by Q-tables, which are saved into a case base. In contrast, our method
uses learnable similarity to select cases that would accelerate Deep RL agent
training. Compared to this approach, we define a case as an episode and reuse it
inside the training batch of the world model. CB-HAQL [4] builds heuristics to
guide a policy using the Q-learning algorithm. The Case-based approach is then
used to guide the heuristic by actions.

Modern deep learning can leverage memory to build better representations to
act on. Variational Memory Addressing VAE (VMA-VAE) [6], which inspired the
approach for the current work, learnable addressing latent variable was used to
retrieve the data sample from memory to guide the generative process. Episodic
memory in RL [5,19] uses a hippocampal inspired data structure to accelerate
the recognition of prominent actions. The data structure is used to build better
action-value estimates using similarity search in the representation space. Com-
pared to this approach, we store whole episodes into memory and set up memory
to contain episodes that represent solutions for different tasks.

World models [10] facilitate an accelerated convergence of the RL agent
employing the learned dynamics of the environment. They can predict tran-
sitions directly [14] or use an abstract latent with Markovian property [10–12].
The latter are able to maintain dynamics consistency longer due to compact
latent representation [11]. A separate class of model-based agents fuse planning
with reinforcement learning incorporating tree-based search structure [20].

3 Background

3.1 Reinforcement Learning

We formulate the problem of reinforcement learning as Partially-Observable
Markov Decision Process (POMDP). Formally, POMDP is a tuple

〈S,A,O, P,R,O, γ〉,

where S is the set of states of POMDP, A is the set of actions, and O is the set of
observations. Environment changes its state according to conditional transition
distribution P (s′ | s, a), but the agent only has access to the output of observa-
tion function o = O(s′, a), o ∈ O. The agent is defined by policy π(at | o�t, a<t).
It interacts with partially observable environment by taking actions on the envi-
ronment and getting next observations. We write ot, rt ∼ p(ot, rt | o<t, a<t) as a
shorthand for st ∼ P (st | st−1, at−1), ot = O(st, at−1), rt = R(st, at−1). The goal
of the agent is to maximize its expected discounted sum of rewards Eπ

∑
t γtrt.
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3.2 Model-Based Reinforcement Learning with Dreamer

For our method, we use RSSM-like world models [11], which is a visual model-
based agent with a variational world model. The Dreamer learns latent dynam-
ics by building Markovian latent state for each timestep st given previous
action at−1 by autoencoding observations ot and rewards rt which are non-
Markovian. The world model consists of representation model, or encoder q(st |
st−1, at−1, ot), transition model p(st | st−1, at−1), observation model p(ot | st),
and reward model p(rt | st). Representation and transition models share common
parameters in the RSSM network [12]. The world model is trained to maximize
the variational lower bound on the likelihood of the observed trajectory con-
ditioned on actions Ep log p((o1:T , r1:T ) | a1:T ). This is done by incorporating
approximate posterior model q(st | st−1, at−1, ot), which is known as a represen-
tation model. This model acts as a proposal distribution for states st.

For behavioral training, the Dreamer agent uses latent imagination, an app-
roach where policy π(at | st) is optimized by predicting both policy actions
at ∼ π(at | st) and transition model states st+1 ∼ p(st+1 | st, at) without
environment interaction. In particular, we use value-function estimate based on
v̂(st) on top of the latent state, which the policy is trained to maximize, i.e.
Es0,a0,s1,a1,...

∑
t Vλ(st) where Vλ(s) is a multi-step value estimate with hyperpa-

rameter λ, which controls bias variance trade-off [23]. As the transition and value
models are parameterized by neural networks, we can backpropagate through
the value function, transition model, and action sampling to compute symbolic
gradients of value estimates w.r.t. policy parameters.

3.3 Case-Based Reasoning and Planning

As a fundamental direction to reasoning, Case-Based Reasoning approaches rea-
soning by saving and reusing previous solutions or cases. It incorporates the
notion of similarity between cases to choose a case and reuse it to build a new
solution.

In particular, the abstract CBR algorithm consists of four stages:

1. Retrieve: during this stage, we look up similar cases to select the most
similar ones.

2. Reuse: (or adapt) we select found cases and alter their solutions in order to
fix/adapt them to the current problem.

3. Revise: we verify a solution that resulted in the execution of the previous
two stages.

4. Retain: in this stage, a built solution is brought to the case base forming a
new case, and the process repeats.

Case-Based Planning applies this approach to planning. To this end, the
general goal can be divided into a set of sub-tasks with the aim on speeding up
planning by reusing the planning cases.
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4 Method

4.1 Case Retrieval

In our approach, we define a case as an RL episode i.e. {(at, ot, rt)}T
t=1 or contigu-

ous chunk of the episode where elements of tuple stand for action, observation,
and reward, respectively. We refer to the set of cases as the “expert” buffer. It
holds behavior trajectories of the previously trained agent, which solve the task
with high task-specific episode reward.

Each episode represents a solution to some task τ from the set of tasks T . In
general, tasks may come from arbitrarily different environments. We, therefore,
assume that environments for each of the tasks are semantically similar to each
other and represent different aspects of the domain. Tasks may differ in their
own task-specific reward function Rτ and also in state transition distribution
(e.g., for the robotic manipulation of objects with different shapes). In our case,
we approach the problem of case-based planning by leveraging a mechanism that
retrieves similar cases and uses them to accelerate the training of the reinforce-
ment learning agent for the current task τ ′ ∈ T . We emphasize that in general
Rτ �= Rτ ′ where τ is the task of some case (trajectory) in the set of cases to
which the agent has access. Therefore, we have chosen Model-Based RL as we
may need to approximate Rτ ′ for a newly retrieved case from the set of cases.

For retrieving trajectories (each of which can be a contiguous chunk of
the episode), we have chosen the learned similarity induced by a neural net-
work, which compares the current trajectory from an agent’s replay buffer
x = {(at, ot, rt)}T

t=1 with another trajectory Mj from the batch M extracted
from the expert buffer. In particular, to retrieve the trajectory, we sample index
j from distribution q(j | x,M), which has the form:

qφ(j | xi,M) ∝ exp(fφ(xi)T fφ(Mj)),

where fφ is the learnable embedding of trajectory x or Mj parametrized by
recurrent neural network with parameters φ. We implement fφ as a recurrent
neural network that consumes a sequence of actions concatenated with obser-
vation embeddings obtained from CNN. As the output, we use the last output
vector of the recurrent network. In other words, we project trajectory x and each
Mj into the embedding space, next, we calculate the inner product between the
embedding of x and embedding of each Mj , and finally, we pass the resulting
vector of inner products to the softmax, which gives probabilities for categorical
distribution. We refer to fφ as the retrieval model.

4.2 Case Revision by Training Case Retrieval Network

We consider several approaches for training the retrieval model. First, we feed
each selected trajectory Mj = {(aj

t , o
j
t , r

j
t )}T

t=1 where j ∼ q(j | x,M) to the
Dreamer and run its latent imagination procedure to obtain its value estimates
Vλ(sj

t ). Then we average the estimates over timesteps t and over batch indices
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i and backpropagate gradients of the resulting scalar loss up to gradient w.r.t.
weights φ of the retrieval model. We train the retrieval model to maximize the
objective:

LV = − 1
n

n∑

i=1

∑

t

Vλ(sj
t )

To enable efficient gradient computation, we use a straight-through gradient
estimator [3] to obtain differentiable samples j returned as one-hot vectors. We
then multiply each of these one-hot vectors by a batch of expert trajectories M
to obtain selection by index in a differentiable fashion. We refer to this method
as a value gradient.

Fig. 1. The training cycle of the whole system.

Another approach for training the retrieval model is to use the REINFORCE
algorithm [26]. For this, we sample j ∼ q(j | x,M) then we predict rewards of
selected trajectory Mj using Dreamer’s reward model: rj

t ∼ p(rt | sj
t ) and update

the retrieval model to minimize the objective:

LR = −Eq(j|x,M)

(
∑

t

rj
t

)

log q(j | x,M)

4.3 Case Reuse by Training the MBRL Agent

For training the Dreamer agent given a retrieved case, to accelerate the training,
we modify the Dreamer’s input batch as follows. Given training batch X =
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Algorithm 1: Dreamer with retrieval model
Hyper parameters:
Sequence length L Collect interval C
Batch size n Expert batch size m
Initial episodes S Expert episodes K
Expert batch probability p Expert fill fraction β
λ-return parameter λ Set of prior tasks T
begin

Initialize training buffer D with S random episodes;
Initialize expert buffer M with K expert episodes each representing a
solution for task from T ;
while not converged do

for train step c = 1..C do
// Case revision

Draw n training sequences {(ai
t, o

i
t, r

i
t)}k+L

t=k = xi ∼ D, i = 1, n;

Draw m expert sequences {(aj
t , o

j
t , r

j
t )}k+L

t=k = Mj ∼ M, j = 1, m;
Compute samples from proposal distribution for each xi:
j(i) ∼ q(j | xi, Mj);

Compute reward and value estimates r
j(i)
t , Vλ(s

j(i)
t ) using selected

expert trajectories Mj(i);
Backprop value LV or LR and update model parameters φ.;
// Case retrieval

Draw n trajectories xi ∼ D;
α ∼ Bernoulli(p);
if α = 1 then

Set input batch b ← {xi}βn
i=1 ∪ {Mj(i)}(1−β)n

i=1 ;
else

Set input batch b ← {xi}n
i=1

end
// Case reuse

Update parameters θ of Dreamer using batch b;

end
// Case retention

Collect episode using Dreamer and store it to D and M;

end

end

{xi}n
i=1 and expert batch M = {Mj}m

j=1, for each xi, we sample j(i) ∼ q(j |
xi,M) (the expert batch is shared among xi for all i as otherwise it would require
O(nm) trajectories which is too much to fit into one GPU) and feed Dreamer
with an updated training batch {xi}n

i=1 ∪ {Mj(i)}n
i=1. Here it is important to

note that the trajectory Mj(i) may come from a different task compared to the
task of xi. For part of batch containing such Mj(i), we turn off the reward model
learning. We refer this procedure to as case reuse.
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4.4 Case-Based Planning Process

We pose our method into a case-based approach in an iterative way. First, the
MBRL agent samples an episode, which is then used to condition the retrieval
model. The retrieval model scores the episodes in the case base with respect
to the conditioned one. After that, it retrieves a new episode from the case
base by sampling from the proposal distribution. The selected episode is then
reused by training the MBRL agent. The conditioned episode is retained into
the case base. After that, the MBRLagent revises the retrieval model (i.e., all
next retrieved episodes) by training that model. The overall process is shown in
Fig. 1 and summarized in Algorithm 1.

5 Experiments

5.1 DeepMind Control

We test our model on five visual tasks from DeepMind Control Suite [24] based
on the MuJoCo physics engine [25]. Observations of an Agent are 64 × 64 × 3
images, the actions range from one to 12 dimensions, the rewards range from zero
to one, and the episodes last for 1,000 steps and have randomized initial states.
The tasks include Walker Stand, Walker Walk, Walker Run, Hopper Stand,
and Hopper Hop. These tasks represent different tasks within two domains,
namely, Walker and Hopper. For each domain, we define a sequence of tasks with
increasing difficulty. For the Walker domain, these are Stand, Walk, and Run.
The multitask adaptation procedure will first solve Stand, then, with trajectories
for the Stand task in the multitask buffer, solve the Walk task, and finally, having
experience for the Stand and Walk tasks, solve Run. For the Hopper domain,
the set of tasks consists of two tasks—Stand and Hop.

5.2 Experiment Setting

In all experiments, we implemented the retrieval model with the GRU cell [8].
We trained this model with Adam [15] optimizer using a learning rate of 0.001.
We left all Dreamer-specific hyperparameters to be default [11], i.e. we trained
model with batch size n = 50, each batch consisted of sequences of length L = 50.
We trained the Dreamer and the retrieval model, each for C = 100 optimizer
steps between the episode collection. We set λ-return parameter to be 0.95 and
γ = 0.99. The probability of using expert data in training batch was p = 0.5, the
fraction of the expert data in such batch was β = 0.5. The number of episodes
for the initial pre-training was S = 1 (i.e., no pre-training on random episodes),
and the size of the expert buffer was K = 1000 episodes. For DeepMind Control
Suite environments, we trained each model for 2000000 environment steps.
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5.3 Results

Currently, we have conducted preliminary experiments where expert data is
formed by the same task trajectories but with a high episode reward. For this,
we trained two baselines, namely vanilla Dreamer and Dreamer, with buffer ini-
tialized with expert trajectories. The first one indicates the default performance
of the model while the second one shows how the model would perform with
access to the expert data but without the case-based formulation. We report
performance of two models, both with the same retrieval model trained with
different loss functions. The first uses value gradient and the second uses REIN-
FORCE loss described in the previous section. The results are shown in Fig. 2,
each result is averaged over three runs. The model with a case-based batch
retrieval constantly shows an improvement over both baselines, indicating that
the model can benefit from the case-based formulation.

Fig. 2. Performance of different variations of Dreamer of DMC environments

6 Conclusion

Here we have presented a novel meta-learning algorithm that learns the retrieval
model for a series of tasks in a lifelong fashion. For each particular task, it
trains a separate model-based agent implemented with Dreamer algorithm. We
consider the conducted experiments as first stage proof-of-concept experiments,
which prepare the ground for full-fledged multitask experiments.

Importantly, current work is at the intermediate stage, and it contains sev-
eral open research questions. The first open question in this work is whether
the mix of xi and Mj(i) where j(i) is selected according to the described distri-
bution would indeed accelerate the training. Also, an open question is how the
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model explicitly defines and utilizes similarity between trajectories given that it
is trained only with loss dependent on M .
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Abstract. The Sigma cognitive architecture is the beginning of an inte-
grated computational model of intelligent behavior aimed at the grand
goal of artificial general intelligence (AGI). However, whereas it has been
proven to be capable of modeling a wide range of intelligent behaviors,
the existing implementation of Sigma has suffered from several signifi-
cant limitations. The most prominent one is the inadequate support for
inference and learning on continuous variables. In this article, we pro-
pose solutions for this limitation that should together enhance Sigma’s
level of grand unification; that is, its ability to span both traditional cog-
nitive capabilities and key non-cognitive capabilities central to general
intelligence, bridging the gap between symbolic, probabilistic, and neu-
ral processing. The resulting design changes converge on a more capable
version of the architecture called PySigma. We demonstrate such capa-
bilities of PySigma in neural probabilistic processing via deep generative
models, specifically variational autoencoders, as a concrete example.

Keywords: Sigma · Cognitive architecture · Probabilistic graphical
model · Message passing algorithm · Approximate inference · Deep
generative model

1 Introduction

The Sigma cognitive architecture is the beginning of an integrated computa-
tional model of intelligent behaviors, with an end goal of becoming a working
implementation of a complete cognitive system [13]. In service of this goal, four
design desiderata have been in place to guide the research and development: (1)
grand unification, that the architecture should span both traditional cognitive
capabilities and key non-cognitive aspects – such as the symbolic, probabilistic,
and neural processings – central to an intelligent agent, (2) generic cognition,
that it should span both natural and artificial cognition at an appropriate level
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of abstraction, (3) functional elegance, that it should yield human-level intelli-
gent behaviors from a simple and theoretically elegant base, and (4) sufficient
efficiency, that it should execute quickly enough for real-time applications.

Sigma is implemented as a two-level architecture: a cognitive language level
on top of a graphical architecture level. The cognitive language level provides a
user-friendly interface for programming Sigma models by offering two essential
constructs: Predicates that store and represent first-order relational knowledge
and Conditionals that organize predicates into graphs and rules that enable
deriving new knowledge and update existing memories. The graphical architec-
ture level compiles the model written in the cognitive language into an aug-
mented factor graph. This augmented factor graph inherits the essential seman-
tics of the conventional factor graphs but augments them in several key ways
to allow broader model capacity, such as allowing a variable node to represent
first-order variables and introducing unidirectional edges. The actual computa-
tions then occur over a sequence of cognitive cycles by, within each, passing
messages around this factor graph until quiescence (the elaboration phase) and
then updating message contents in factor nodes as necessary (the modification
phase).

Sigma’s graphical architecture has successfully assisted in modeling a wide
range of cognitive and non-cognitive abilities [13]. However, throughout the years
of research on it, it has been apparent that the current implementation suffers
from at least two fundamental limitations: difficulty in dealing with continu-
ous variables; and lack of a critical cognitive capability for structure learning
from experience; known as “chunking.” In this article, we focus primarily on
tackling the first limitation. We first propose a fundamental change to the mes-
sage structure to efficiently represent continuous variables, accompanied by an
enhanced design of the graphical architecture, message propagation algorithm,
and inference/learning mechanisms. These changes ultimately converge on a new
version of Sigma called PySigma that, by design, inherits all of Sigma’s infer-
ential capabilities and also extends them in significant ways. We then illustrate
one of such extension regarding the support for neural probabilistic processing
by demonstrating the modeling of a canonical deep generative model – the Vari-
ational Autoencoder (VAE) [8]. Finally, we briefly touch upon a potential future
research direction inspired by the experience of modeling VAE that may lead to
solutions to the second limitation.

2 Message Representation with Continuous Variables

The cornerstone of Sigma’s graphical architecture is the message: a data struc-
ture that captures the first-order relational knowledge about certain facts. For
example, the location of an object in the blocks world environment can be rep-
resented by a predicate Location(O:object, X:value, Y:value), where vari-
able O of type object refers to the specific object, and variables X, Y of type
value describes the object’s X-Y coordinate. The specific value of this pred-
icate at any given time is then stored as a message with the same signature:
m(O:object, X:value, Y:value).
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In Sigma, the message data structure leverages Piecewise-Linear Maps [13].
This implementation can approximate functions over continuous variables; how-
ever, it can get quite messy when learning the probability density function of a
continuous random variable. For example, after multiple cycles of updating the
piecewise-linear map, the messages tend to become too fractured and intractable
to compute efficiently unless proper smoothing is applied.

To remedy this issue in PySigma, we recognize that a message is essen-
tially encoding a batch of independently distributed distributions. Drawing inspi-
ration from Tensorflow’s distribution package design [4], we make the distinction
between a message’s variables that index the batch of distributions versus those
variables that are their event variables. The former are called Relational Vari-
ables in PySigma, and the latter Random Variables. Then, to tractably encode
the distributions, the Piecewise-Linear Map representation is replaced with two
alternatives: the parameter and particle-lists format. A message assumes that the
distributions come from a parametric distribution family and uses the parameter
vectors to encode its distributions with the parameter format. With the particle-
lists format, particles (or samples from the distributions) are stored rather than
the parameters, allowing estimation of the statistics of the underlying distribu-
tions [3]. Under such formulation, any Piecewise-Linear Map message in Sigma
can be effectively represented by a particle-lists format message in PySigma,
enabling PySigma to be fully reduced to Sigma.

Because tensors can best represent components of both parameters and par-
ticle lists, we build PySigma’s message structure on top of PyTorch tensors and
implement PySigma’s graphical architecture essentially as pipelines of tensor
manipulations. Since PyTorch is a commonly used deep learning library, such
design choices not only ensure the speed and accuracy of any tensor operation
but also prepares PySigma for further integration with standard deep learning
modules, such as deep neural networks [11].

3 Generalized Factor Graph, Approximate Inference,
and Gradient-Based Learning

Apart from the new message representation and implementation, PySigma fun-
damentally changes several other aspects of Sigma’s graphical architecture. First,
PySigma cognitive models are compiled to an augmented factor graph that is fur-
ther generalized, specifically in the factor node function formulation. In Sigma,
a factor node function is formulated similarly to the tabular factor in a conven-
tional factor graph and implemented as a Piecewise-Linear Map, which records
every function value corresponding to each tuple of the function variable values.
However, such a formulation needs exponential space when the number of func-
tion variables increases. PySigma relaxes this restricted formulation and instead
relies on the following one, which defines two types of factor functions:

Definition 1. An n-ary generative factor function F is a mapping∏n
i=1 RVi

→ [0, 1] such that

p = F (V1, V2, . . . , Vn)
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An n-ary discriminative factor function G is a mapping
∏n−1

i=1 RVi
→ RVn

such that
Vn = G(V1, V2, . . . , Vn−1)

where V1, V2, . . . , Vn are the random variables, and RVi
is the support set of the

random variable Vi.

By doing so, PySigma admits arbitrary function implementations that con-
form to the above definition as factor node functions. Thus, for example, a deep
neural network module can be used as a factor function approximator to resolve
the issue of space explosion.

It should be noted that how PySigma integrates neural networks is very dif-
ferent from the previous approach in Sigma [12,14]. In Sigma, neural networks
are reimplemented leveraging the existing components of the Sigma graphical
architecture. What is done here for PySigma, on the other hand, extends the
architecture to admit neural modules as the primary, inseparable components.
Thus, compared to Sigma, PySigma is more deeply integrated with neural pro-
cessing and hence, is prepared to take one step forward to bridge the gap between
neural, probabilistic, and symbolic reasoning.

All of Sigma’s message passing, inference, and learning mechanisms have been
overhauled in PySigma to work with the new message structure and the general-
ized factor graph. PySigma still inherits the same two-phased cognitive cycles as
in Sigma, but the implementations of both phases are fundamentally changed.
PySigma also clearly distinguish between inference and learning: inference per-
forms local updates on the predicates’ working memory based on incoming mes-
sages to find the posterior distribution given the observations, whereas learning
updates the model parameters to optimize a pre-defined objective function.

For message passing, the existing Sigma uses the Sum-Product algorithm, a
form of exact inference algorithm, which suffers from tractability issues when
facing continuous variables and generalized factor functions [13]. For PySigma,
we have developed a set of generalized message passing rules to perform approx-
imate inference. It is a combination of Particle Belief Propagation (PBP) [3,5]
and Variational Message Passing (VMP) [2,15] on factor graphs. In the most
general case, a conditional subgraph (the group of variable and factor nodes
that a conditional is compiled to) expects all incoming messages from the inci-
dent predicate subgraph (the group of nodes that a predicate is compiled to) to
be of particle-lists format. It then computes outgoing messages using the PBP
message update rule on factor nodes [5]. However, if all of the incoming messages
are also of parameter format and their assumed distribution classes are not only
the exponential class but also conjugate to the factor function, then the VMP
message update rule on factor nodes is used, which directly manipulates the
exponential family distributions’ natural parameters [15]. Such a hybrid message
passing algorithm mostly produces the generalized particle-based approximate
messages. However, the algorithm efficiently generates a parameter-based exact
message when the incoming messages and the factor function share particular
structures. Moreover, message passing in PySigma would be identical to the
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Sum-Product rules if messages are discrete and the factor functions are in tabu-
lar format. In this way, PySigma can be easily reduced to Sigma, thus supporting
all of the cognitive capabilities that Sigma’s inference can achieve in principle.

For the inference update, we follow the PBP formulation so that particles are
only sampled at the predicate subgraph, and a conditional subgraph does not
alter incoming particles or sample new particles. This restriction is to prevent
incoming messages to a predicate subgraph from having contradicting lists of
particles [5]. We thus categorize PySigma’s predicates into three types: the non-
memorial type, the variational memorial, and the Markov Chain Monte Carlo
(MCMC) memorial. The non-memorial type predicate is reserved for relaying
messages from one conditional to another. The last two memorial types, however,
actively maintain an internal message as their working memory and updates this
message using the incoming messages. A variational memorial predicate explic-
itly assumes that a variational posterior distribution describes its memory and
updates this memory by directly summing the incoming message’s parameters if
all of the incoming messages are of parameter format [2]. Otherwise, if any of the
incoming messages are of particle-lists format, it resorts to the stochastic gradi-
ent update, similar to the update method proposed by the Reparameterization
Gradient Message Passing [1]. Unlike the variational one, the MCMC memorial
predicate does not make any assumption about the posterior distribution but
relies on the MCMC method to iteratively update its memory particles [7].

Finally, learning is carried out in PySigma by gradient backpropagation, the
same technique used for training deep neural networks. A PyTorch computa-
tional graph [11] that is automatically built when PySigma propagates mes-
sages in the elaboration phase of each cognitive cycle enables the gradient back-
propagation. Although PyTorch automatically does backpropagation, PySigma
actively controls the scope of the gradient flow to prevent one part of the graph
from affecting the learning of another irrelevant part. Such a control mecha-
nism also enables PySigma to choose different optimizers for each scope of the
gradient and apply different fine-tuning techniques for each optimizer, such as
early-stopping and learning rate schedules.

4 Deep Generative Modeling in PySigma

The expressive power of the new message representation scheme, combined with
the generality of the generalized message propagation, inference, and learning
algorithm, enables PySigma to capture an even more comprehensive range of
models than Sigma, hence taking a step forward toward the ultimate goal of
grand unification. Such increased capability can be best demonstrated by mod-
eling deep generative models, a class of probabilistic models that takes strength
from deep neural networks, which Sigma has difficulties modeling. To illustrate
the deep generative modeling in PySigma, we will discuss one specific such model,
the variational autoencoder (VAE), in detail [8], demonstrate how to model it
in PySigma, and analyze the correctness of the resulting PySigma model.
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4.1 Preliminaries

Variational Autoencoders are canonical deep generative models widely used for
learning a smooth representation space for continuous data such as images and
audio. It is a successful fusion between probabilistic modeling and deep neural
networks: the model can be mathematically analyzed as a probabilistic graphical
model at a conceptual level but relies on deep neural networks for the implemen-
tation and backpropagation-based stochastic gradient descent for optimization.

From a probabilistic inference perspective, VAE is a class of methods for
working with the Latent Variable Model, a class of models where a group of
latent variables is interlinked to explain the behaviors of the observed variables.
Figure 1a shows the simplest possible latent variable model as a Bayesian network
that consists of only a latent variable z and an observed variable x. Figure 1b
presents the factor graph representation of this model. The pθ(z) factor node
encodes the prior distribution over z, and pθ(x | z) factor node encodes the
conditional distribution that determines the underlying dynamics between z and
x. Throughout the following sections, we will concentrate on this simple model
for illustration. We will assume a known and fixed prior distribution and call the
unknown conditional distribution pθ(x | z) the reconstruction model. We will
also assume the reconstruction model comes from a very general model family P
for which exact inference algorithms such as the Sum-Product algorithm cannot
solve in polynomial time. However, despite the generality, the reconstruction
models can be parameterized by a parameter θ, and the probability density
function of the model is differentiable with respect to θ.

(a)

x

z

(b)

pθ(z)

z

pθ(x | z)

x

Fig. 1. Left (a): simple latent variable model as a directed Bayesian network. Right
(b): the same model expressed as a factor graph.

There are two objectives of the above latent variable model that are worth
pursuing:
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1. Inference: with the reconstruction model pθ(x | z) fixed, find the posterior
pθ(z | x) for the latent variable, given data x ∈ D.

2. Learning: to select a reconstruction model pθ(x | z) from the model family
P such that the entire graphical model (prior + reconstruction) best fit the
data distribution D.

VAE approaches the inference task by introducing an amortized variational
posterior qφ(z | x̄) that is implemented by a neural network fφ : X → Λ mapping
a mini-batch of observed data points x̄ to the posterior distribution parameter
λ that is then used to instantiate the variational posterior. This neural network
is also known as the recognition model. Therefore, rather than iteratively finding
a posterior q(z) for multiple steps each time the reconstruction model pθ(x | z)
is updated, VAE more efficiently obtains an approximated posterior through a
single forward propagation of the neural network fφ. Moreover, the inference task
is converted into yet another learning task that is to update fφ, and both the
inference and learning tasks can be solved simultaneously by jointly optimizing
the Evidence Lower Bound Objective (ELBO) for parameters θ and φ:

L(θ, φ; x̄) = Eqφ(z|x̄)

[

log
pθ(x̄ | z)pθ(z)

qφ(z | x̄)

]

(1)

where x̄ is a mini-batch of observed data points. Accordingly, the updates are:

φ ← φ + ∇φL̃(θ, φ; x̄) (2)

θ ← θ + ∇θL̃(θ, φ; x̄) (3)

where L̃ is the Monte Carlo estimate to the lower bound L. Updating φ effectively
solves the inference task, and updating θ effective solves the learning task.

4.2 VAE as a Message-Passing Factor Graph

With the VAE objective and optimization mechanics established, we now con-
sider modeling the VAE as a factor graph to prepare for a PySigma implemen-
tation. VAEs, although inherently are directed latent variable models, are often
optimized with a black-box optimization procedure (or end-to-end training in
the deep learning context) in practice. In such a procedure, the model itself
(including both the “reconstruction” model pθ and the “recognition” model qφ)
is treated as a black box and optimized by first taking a global gradient back-
propagation to the parameters of both models pθ and qφ with a subsequent
joint parameter update to both θ and φ. This black-box optimization procedure,
however, is very different from the design principles of a factor graph. The latter
emphasizes breaking a global model into local pieces and relies on locally correct
message update procedures to achieve the global optimization objective.
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Fortunately, although modeling VAEs while completely conforming to con-
ventional factor graph semantics is very hard, the task is simpler if we consider
the augmented factor graph PySigma leverages. Figure 2a shows a modified
version of the model in Fig. 1b, where a unidirectional message passing gad-
get is added alongside the original model, encapsulating the recognition model
qφ(z | x). Figure 2b shows the actual compiled PySigma model, which will be
analyzed in the next section.

To start, we notice that Eq. (1) can be expressed in the following factorized
format:

L(θ, φ; x̄) = Eqφ(z|x̄)

[

log pθ(x̄ | z) + log pθ(z) − log qφ(z | x̄)
]

(4)

(a)

pθ(z)

z

pθ(x | z)

x

qφ(z | x)

(b)

pθ(z)

z

pθ(x | z)

x

OPTPBFN

WMFN λ

qφ(z | x)

Fig. 2. Left (a): Latent variable model with conditional recognition factor. Note that
the two unidirectional dashed arrows indicate that this model uses PySigma’s aug-
mented factor graph semantics. Right (b): Compiled PySigma model of the Variational
Autoencoder. The nodes grouped by a dashed rectangle together construct a predicate
subgraph.

At first glance, the three terms to be taken expectation seem to exactly map
onto the three factor nodes in Fig. 2a, yet the subtraction sign before the third
term indicates otherwise. Indeed, messages from factor nodes in a conventional
factor graph will be taken product with at the variables nodes, leading to log-
arithmic summations in the overall probability density. However, this challenge
can be overcome if we view qφ(z | x) not as a conventional factor, but as a
sampling factor, from which particles of z are sampled. In this formulation, the
term pθ(z)/qφ(z | x) as well as the term pθ(x | z)/qφ(z | x) can be interpreted
as weights of the particles drawn from qφ(z | x) that are important weighted
against the distributions pθ(z) and pθ(x | z) respectively.
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To further illustrate the model’s correctness under PBP, we break down the
particle messages when the factor graph reaches quiescence, which is shown in
Table 1. The “Particle Source” indicates where the particles of each message
were originally drawn from, the “Log Sampling Densities” indicate the particles’
relative frequencies, and the “Importance Weight” is the importance weight of
the particles derived by dividing the target values by the particles’ log sampling
densities.

Table 1. Messages of the model in Fig. 2a when in quiescence state

Direction Particle source Importance weight Log sampling densities

x → qφ(z | x) Data points x̄ ∈ D Uniform Uniform

qφ(z | x) → z Particles z ∼ qφ(z | x) Uniform log qφ(z | x̄)
x → pθ(x | z) Data points x̄ ∈ D Uniform Uniform

pθ(x | z) → z Particles z ∼ qφ(z | x) ∑
x̄ pθ(x̄ | z)/qφ(z | x̄) log qφ(z | x̄)

z → pθ(z) Particles z ∼ qφ(z | x) ∑
x̄ pθ(x̄ | z)/qφ(z | x̄) log qφ(z | x̄)

pθ(z) → z Particles z ∼ qφ(z | x) pθ(z) log qφ(z | x̄)
z → pθ(x | z) Particles z ∼ qφ(z | x) pθ(z) log qφ(z | x̄)
pθ(x | z) → x Data points x̄ ∈ D ∑

z pθ(x̄ | z)pθ(z)/qφ(z | x̄) Uniform

We can thus derive the marginal posterior for both node x and node z. The
former is simply the message pθ(x | z) → x, whereas the latter is the product of
two messages: pθ(z) → z and pθ(x | z) → z.

post(x) =
∑

z

pθ(x̄ | z)pθ(z)
qφ(z | x̄)

(5)

post(z) =
∑

x̄

pθ(x̄ | z)pθ(z)
qφ(z | x̄)

(6)

where x̄ ∈ D and z ∼ qφ(z | x̄). Here the notation post denotes that the values
estimate the marginal posterior.

Looking back to the global ELBO Eq. (1), we notice that expressions (5)
and (6) are both a Monte Carlo estimator to the ELBO, only with the former
summarizing over variable z and the latter summarizing over variable x. There-
fore, if we optimize post(x) with respect to the model parameter θ and optimize
post(z) with respect to the variational parameter φ separately, we recover the
optimization procedures (2) and (3). Moreover, since both optimization on θ and
φ are done separately and only using local incoming messages, we have achieved
the goal of global optimization via local updates.

4.3 Model Implementation in PySigma

Figure 2b presents the schema of a compiled PySigma model that implements
the variational autoencoder. It is an augmented version of the factor graph in
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Fig. 2a with several PySigma’s special purpose factor nodes added to complete
the predicate subgraph.

At the bottom, the Perception Buffer Factor Node (PBFN) perceives a batch
of data points at the start of each cognitive cycle and encapsulates the data
points as message particles with uniform log sampling densities. The Optimiza-
tion Node (OPT) calculates the loss value (5) by taking the product of the
incoming message’s particle weights. This loss value will then be used to back-
propagate gradients to the reconstruction factor pθ(x | z) during the modifica-
tion phase. Both PBFN and OPT, together with the observed variable node z,
construct the observed predicate structure.

To the right, the recognition factor node qφ(z | x), implemented by a neu-
ral network module, takes in the batch of data points and produces a batch of
variational distribution parameters λ, which is then relayed through the variable
node λ. The Working Memory Factor Node (WMFN) receives λ and instantiates
a batch of independent variational distributions, from which particles are sam-
pled with non-uniform log sampling densities. During the modification phase,
it computes the loss value (6) and propagates gradients back to the recognition
factor qφ(z | x). Both the WMFN and the variable node z together construct
the latent predicate subgraph.

5 Future Work: Chunking

Chunking was implemented years ago in the Soar cognitive architecture, a pre-
decessor to Sigma, where trees of rule firings could be summarized and replaced
by single rules that are efficient to compute [10]. Unfortunately, due to the prob-
abilistic nature of Sigma, summarizing Sigma’s probabilistic logical rules is much
harder, and there is yet to be a satisfactory solution. However, the modeling of
VAE in PySigma provides an exciting lead. The recognition subgraph, in partic-
ular, might be generalizable in that it can be attached to any PySigma models to
efficiently approximate the posterior of an arbitrary predicate given observations
at some other predicates.

The implication of the recognition subgraph being an architectural pattern is
far-reaching. For example, the parallel existence of a complex reasoning pathway
with a simple neural approximator within a cognitive model can be related to
the conception of fast and slow thinking in cognitive science [6]. Moreover, The
ability of the architecture to automatically decide whether to attach such a
recognition subgraph or an active control over the usage of the slow and fast
message pathways are canonical metacognitive capabilities that are significant
to the general intelligence [9]. Thus, it is worthwhile to investigate how well VAE
can be further generalized in PySigma.

6 Conclusion

Sigma cognitive architecture and system results from decades of research on the
integrated computational model of intelligent behaviors. Sigma has successfully
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modeled a wide range of capabilities yet faces a severe challenge regarding infer-
ence and learning with continuous variables. In this article, we presented several
fundamental changes to Sigma’s implementation that converge on a new ver-
sion of Sigma called PySigma. We also provided a glimpse of the new capability
these changes have unveiled, particularly the support for deep generative models.
Overall, we demonstrated that PySigma is more capable than Sigma to unite
neural and probabilistic processing, hence taking a step toward the ultimate
desiderata of grand unification.
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