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Abstract. Machine learning algorithms are increasingly used in making
decisions with significant social impact. However, the predictions made
by these algorithms can be demonstrably biased; oftentimes reflecting
and even amplifying societal prejudice. Fairness metrics can be used to
evaluate the models learned by these algorithms. But how robust are
these metrics to reasonable variations in the test data? In this work,
we measure the robustness of these metrics by training multiple models
in three distinct application domains using publicly available real-world
datasets (including the COMPAS dataset). We test each of these models
for both performance and fairness on multiple test datasets generated by
resampling from a set of held-out datapoints. We see that fairness metrics
exhibit far greater variance across these test datasets than performance
metrics, when the model has not been derived to be fair. Further, socially
disadvantaged groups seem to be most affected by this lack of robust-
ness. Even when the model objective includes fairness constraints, while
the mean fairness of the model necessarily increases, its robustness is
not consistently and significantly improved. Our work thus highlights
the need to consider variations in the test data when evaluating model
fairness and provides a framework to do so.

Keywords: Classification · Fairness · Bootstrap sampling ·
Robustness

1 Introduction

Machine learning methods use data-driven algorithms for automatic pattern
recognition and prediction. Traditionally, the objective of these algorithms has
been to optimize for performance metrics such as accuracy, which essentially
measures the model’s ability to make correct predictions about previously unseen
data. These learned predictors can then be used to make decisions with signifi-
cant societal impact. For instance, among other applications, machine learning is
used in automated judicial review [2] and facial recognition for law enforcement
[28].
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Since machine learning models detect and learn from historical patterns in
data, they may pick up and amplify societal biases. Several recent results show
that the predictions based on these models can be demonstrably biased; for
instance, automated facial analysis algorithms show significant accuracy differ-
ences across both race and gender [8] while music recommendation algorithms
show gender bias in promoting artists [20]. The prevalence of these issues and the
concerns they raise are well-documented, not only in machine learning literature,
but also in the popular press [33,34].

The degree of unfairness exhibited by these models can be captured by met-
rics that are widely accepted in machine learning literature [13,22]. Typically,
the fairness of the model can be evaluated by measuring it against test data.
But how robust are these metrics to small perturbations in the data? Does the
degree of robustness vary across models and application domains? And can we
quantify the degree of unfairness across different sub-populations?

Fairness can be measured either as individual or group fairness. Group fair-
ness metrics quantify how the model’s predictions fare across different subgroups,
often with an emphasis on subgroups that have been historically discriminated
against. For instance, consider a model used to predict the probability of recidi-
vism to determine whether or not to release a defendant for parole. This model
may show different levels of predictive performance across different races. For one
such model (used in US courts to predict recidivism), it has been shown that the
probability of predicting a reoffence is greater for African American defendants
than it is for Caucasian American defendants even when considering only those
individuals who actually go on to reoffend [2]. One way to quantify this inequity
in prediction is using the equality of opportunity fairness measure [22].

In this work, we are interested in measuring the robustness of fairness metrics
when applied to a learned model. In particular, we first learn a predictive model
using training data and then measure both its performance and fairness on test
data. Crucially, rather than testing on a single held-out dataset, we measure fair-
ness across variations in the testing data by generating multiple instances of this
held-out dataset using bootstrap sampling [17,18]. Effectively, bootstrap sampling
uses the empirical distribution of the resampled data as a surrogate for the true
distribution of datapoints. This allows us to measure the variation in both predic-
tion error as well as fairness. We also explore the difference in both the mean and
variance of both performance and fairness metrics across three different datasets
with different semantic notions of socially disadvantaged groups: by race and by
age. We show that fairness metrics are less robust (i.e., exhibit significantly more
variance) than performance metrics under various underlying models; including
models that use post-processing to achieve fairness. We also see that, typically,
protected groups are the most affected by this lack of robustness.

1.1 Related Work

There has been significant work in quantifying fairness and designing techniques
for achieving it [26,29,35,39] as well as in understanding the implications of using
fair predictors in practice [41]. The prevalence of bias in fields as wide-ranging as
Natural Language Processing [7,38], vision [8], ad-placement [44] and health [1]
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have led to domain-specific analyses on bias detection and consequent work on
both building and evaluating fairer datasets [4,46]. Further, a survey of industry
practitioners highlights the need to understand the practical implications of using
fairness metrics [24].

There is no single agreed-upon measure of fairness since different contexts
may require different criteria of measurement, including exogenous concerns like
privacy-preservation [5,6,45]. In fact, so-called “impossibility theorems” show
that some measures of fairness cannot be simultaneously satisfied [12,27]. How-
ever, while there is no consensus measure of fairness, some tests for evaluating
group fairness that have gained widespread acceptance include demographic par-
ity [9], equalized odds and equal opportunity [22]. In the present work, we we focus
primarily on the equal opportunity fairness metric since there has been significant
exploration of models that enforce this constraint [22,29]. We also use equalized
odds to derive a fair predictor.

There is an inherent tradeoff between the performance of a model, typically
measured by metrics such as accuracy, and the fairness of the model, usually
measured by how the predictor differs across different subgroups [30]. Achieving
fairness in a predictive model can be framed by explicitly optimizing for fairness
[10,19], as constrained optimization problems [12,14,22,47] and as conflicting
objective functions [13].

Recent work has analyzed the effects of statistical and adversarial changes
in the data distribution. Some of this work has focused on deriving fair models
when there is a distributional shift in the data [40], when strategically acting
adversaries inject errors in the data [11] or when the data is perturbed to nega-
tively impact a particular subgroup [3,32].

In this work, we focus on the following research questions:

RQ1. For a given model, is the equal opportunity fairness metric a reliable mea-
sure of fairness? Does it show stability across reasonable fluctuations in
the test data?

RQ2. How does the variation of the fairness metric compare with that of more
traditional performance metrics?

RQ3. How much do different choices of models and features affect the robustness
of the fairness metric? Is the robustness of the fairness measure affected
by post-processing a model to satisfy fairness constraints? Further, does
optimizing for a stronger notion of fairness affect the robustness of weaker
notions of fairness?

RQ4. If we measure the effects of unfairness on different subgroups, do we see
the same effects repeated across different datasets and models?

The rest of this paper is organized as follows: we cover background and a brief
overview of our framework in Sect. 2. In Sect. 3 we provide details on the frame-
work as well as the methodology for conducting our experiments. We also pro-
vide a description of the datasets and metrics used. We provide both numerical
results and plots as well as an analysis of our results in Sect. 4. We conclude with
a summary and directions for future work in Sect. 5.
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2 Preliminaries and Overview

To learn a predictive model, we use logistic regression both with and without an
�2 regularizer [23]. This involves solving the following optimization problem:

min
θ̄,b

C

n∑

i=1

log(exp(−yi(xT
i θ̄ + b)) + 1) +

1
2
||θ̄||22

where (xi, yi) are labeled training datapoints, θ̄, b are the learned parameters,
and C is a hyperparameter that controls the degree of regularization.

Each datapoint has a corresponding binary label ∈ {0, 1}. For instance, in
the COMPAS dataset (see Sect. 3.1) each datapoint corresponds to an individual
and a label of 1 indicates an individual who re-offends within two years. The
features that distinguish historically disadvantaged groups are called sensitive
attributes and the groups themselves are called protected groups [22]. Each dat-
apoint includes a sensitive attribute z ∈ {0, 1} that indicates their membership
in a protected group. We train the base classifier both including and excluding
these sensitive attributes.

We use group fairness measures to evaluate the fairness of the predictor
returned by the algorithm. In this work, we focus primarily on analyzing the
equal opportunity fairness metric [22], which enforces equal true positive rates
(TPR) across different groups. This is a weaker notion of fairness that as a
consequence allows for higher performance fair models [22]. Our experiments
show that even with this relaxed definition, we see high variability in the measure
when the optimization problem is agnostic to fairness of the model.

Even when we specifically optimize for this fairness using this metric, the
variance in the measure does not decrease substantially. To achieve this fairness
measure, the predictor is post-processed by solving a constrained optimization
program with the constraints specifying the fairness conditions [22,36,37]. A
formal definition of the fairness metrics used is given in Sect. 3.2.

To evaluate a model, we rely on test data that is held out during the training
process. However, datasets are only samples of the “true” data distribution; thus
although they may be representative of the original distribution, there is a degree
of uncertainty associated with these measures. We use the resampling technique
of bootstrap sampling to generate multiple instances of the test dataset. We
describe the resampling process in further detail in Sect. 3.3.

3 Framework and Experimental Setup

We will now describe our framework for evaluating the robustness of fairness met-
rics across uncertainty in test data. Prior work has cast the uncertainty inherent
in the training data using a Bayesian model [13]. However, we use a resampling
approach to design experiments to study the empirical effects of this uncertainty
on test data. We define the robustness of a metric to be inversely related to
the amount of variation we see in this measure across multiple instances of a
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given dataset; a robust metric should show minimal variance across sampling
variations. We empirically analyze the robustness of equal opportunity by mea-
suring its variance across two datasets drawn from different application domains
with the aim of measuring the persistence of our results across multiple learned
models.

We use the COMPAS dataset [2] and the Bank Marketing dataset [31] which
have been used widely in machine learning literature to study fairness. We also
run these experiments on the South German Credit dataset [21]. Fundamentally,
these datasets differ in social context (one was collected in the US in 2013−2014,
one in Portugal 2008 − 2013, and the other in Southern Germany in 1973 −
1975). The historically disadvantaged groups in the three cases were also different
(race-based vs. age-based discrimination). More details about these datasets are
provided in Sect. 3.1.

Following prior work [29], the features that distinguish the traditionally priv-
ileged vs. disadvantaged groups are referred to as sensitive attributes. To under-
stand the effects of the sensitive attributes on the learned model, we train the
ML algorithm both with and without the sensitive attributes. We also investi-
gate the robustness of both the fairness and performance metrics for different
levels of model complexities by studying the effects of regularization.

By analyzing these metrics across different datasets and across different
instantiations of test data, for different features and model complexities, includ-
ing or ignoring fairness constraints, we are better able to assess the robustness of
these metrics and the generalizability of these results. We describe the datasets,
the metrics, and the methodology in further detail below.

3.1 Datasets

We use the COMPAS dataset [2], the Bank Marketing dataset [31], and the
South German Credit (SGC) dataset [15] for our analyses. These datasets are
well-known benchmarks that have been frequently used to study algorithmic
fairness [29].

Thus it is important to understand the impact of using these datasets to
derive fair models. Further, the difference in domain and protected attributes
between the datasets allows us to analyze the robustness of fairness metrics
beyond a single domain.

The COMPAS dataset contains 6150 datapoints with 8 features. The features
include demographic information such as age, race, and sex as well as crimi-
nal history information such as priors, juvenile offences, and degree of current
crime. When assuming a binary sensitive attribute, the dataset is restricted to
Caucasian American and African American defendants; given the bias inherent
in the dataset, African American defendants are considered to be the protected
group. The binary-valued label indicates whether or not the individual has reof-
fended within two years after being released from prison.

The Bank Marketing dataset [31] contains 45211 datapoints with 15 features.
The features include demographic information such as age, job, and education,
seasonal data such as day and month, and financial data such as balance and
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whether an individual has any personal loans. Following prior work [47], the
sensitive attribute is age where ages between 25 and 60 are considered protected.
A positive outcome is when an individual subscribes to a term deposit.

The SGC dataset [15] contains 1000 datapoints with 20 features. The features
of this dataset include demographic information such as age, sex, and marriage
status, financial standing information such as credit history, savings account
amount, and homeowner status, and, finally, information about the requested
loan such as loan amount, purpose of loan, and duration of loan. Consistent
with prior work [21,25], we use age as the sensitive attribute for this dataset
where an age of 25 years or younger are considered the protected group. The
outcome for this dataset is a binary variable indicating whether or not the loan
contract has been fulfilled after the duration of the loan.

3.2 Metrics

Accuracy. For a given model, we measure its performance using accuracy
defined1 as Acc = 1

N

∑N
i=1[[ŷi = yi]] where ŷi is the outcome predicted by the

model, yi is the true outcome and N is the number of samples we are evaluating
[23].

Equality of Opportunity and Equalized Odds. While there is no single
agreed upon way to measure fairness, one metric that is widely accepted, has
been used to develop “fair” models and has semantic relevance for the datasets we
consider is equal opportunity [22]. A predictor is said to satisfy equal opportunity
if and only if Pr(ŷ = 1|z = 1, y = 1) = Pr(ŷ = 1|z = 0, y = 1) where z
is a sensitive attribute. For the COMPAS dataset, this can be interpreted as
requiring the predictor to be agnostic to race for individuals who reoffend. For
the SGC dataset, equal opportunity means that the probability of predicting a
loan default should not change based on an individual’s age for those individuals
who repaid their loan. We also consider a model where the predictor is modified
to satisfy the stricter measure of equalized odds [22], that additionally enforces
equal false positive rates. Formally, equalized odds requires the following to hold:
∀a ∈ {0, 1} Pr(y = 1|z = 1, y = a) = Pr(y = 1|z = 0, y = a).

Degree of Fairness and Direction of Unfairness. We also measure the
extent to which a model deviates from equality of opportunity. We define the
degree of fairness of the predictor as: 1 − |Pr(ŷ = 1|z = 1, y = 1) − Pr(ŷ =
1|z = 0, y = 1)|. The range of this measure is the unit interval [0, 1]; a higher
value indicates a fairer model. To identify the subgroup against which a pre-
dictor is biased, we define the direction of unfairness as sign[Pr(ŷ = 1|z =
1, y = 1) − Pr(ŷ = 1|z = 0, y = 1)]. For example, in the COMPAS dataset,
z = 1 indicates an African American defendant and z = 0 indicates a Caucasian

1 We use [[]] to denote the Iverson bracket which returns a value of 1 if the predicate
contained within is true and 0 otherwise.
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Fig. 1. Schematic illustrating our framework for measuring robustness of performance
and fairness metrics. We use the COMPAS dataset for illustrative purposes.

American defendant. So, a positive direction of unfairness corresponds to unfair-
ness towards the protected group (in this case, African American defendants).
We compare the variance in the degree of fairness with the variance of accuracy
across multiple models and instances of test datasets. In the next section, we
describe the methodology we use to measure this variance.

3.3 Methodology

We learn twelve different models on the training data to evaluate their effects
on both the mean and variance of fairness and performance metrics. In partic-
ular, we train a logistic regression classifier both with and without an �2-norm
regularizer and both including and excluding sensitive attributes while training.
In addition to these four models, we learn modified models by post-processing
each of these models to separately satisfy first equality of opportunity and then
equalized odds.

In order to split the datasets into training and held-out sets, we first ran-
domly shuffle each dataset. For each dataset, we also ensure that the proportion
of positive examples, the proportion of protected class, and the proportion of
positive examples within the protected class are all preserved across the training
and testing set. Then, we train four models with and without regularization and
with and without the sensitive attributes in the input feature vector. Then we
applied post-processing for fairness constraints. In all, we train a total of twelve
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models. For models trained with regularization we used 5-fold cross-validation to
choose the hyperparameter that determines how much we penalize model com-
plexity. For the COMPAS dataset, we trained each model on 5000 points and
held out 1150 for evaluation. For the Bank Marketing dataset, we trained each
model on 25000 points and held out roughly 20000 points for evaluation. For the
South German Credit dataset, we trained each model on 600 points and held
out 400 for evaluation.

We evaluate the performance and fairness of each model on multiple test
datasets generated from the held-out dataset using bootstrap sampling. Each
sample set was the same size as the held-out set and was created by uniformly
picking a point from the held-out set with replacement. We created 800 such
sample datasets for each evaluation and then measured accuracy and degree of
fairness on each sample dataset as described in Sect. 3.2. A schematic of this
approach is shown in Fig. 1. Note that both the degree of fairness and perfor-
mance measures are defined on the unit interval; for both a higher value is more
desirable.

We compute both the mean and variance of the degree of fairness and accu-
racy measures. We then compare the variance of these metrics over these 800
datasets in multiple ways.

– First, we numerically compute the variance achieved by these metrics and
tabulate it for comparison across all twelve models (see Tables 1 and 2).

– Next, we plot the values of both metrics for each of the bootstrap sampled
datasets (see Fig. 3). For visual consistency, we plot fairness along the hori-
zontal axis and performance along the vertical axis for all plots in that figure.
We also use the same scale for both axes. A larger spread along a particular
axis, therefore, indicates a larger variance along that metric.

– Then, we plot a histogram of both metrics for a visual representation of the
distribution of these measures (see Fig. 2 for the plots for two models on
the COMPAS dataset. Due to space constraints, additional figures have been
omitted.).

– Lastly, we translate both measures from the [0, 1] to the (−∞,+∞) interval
by first centering to 0.5 mean and then applying the logit function to the
values so obtained2. We see that the mapped values broadly follow a normal
distribution. We then compute the variance of these mapped values and apply
the F-test [42] to determine the significance of the difference in variances with
high confidence3.

We provide plots of accuracy vs. degree of fairness for each sample. We also
provide the variance and mean of each of these metrics across the test sets. We
describe our results in the next section. Due to space constraints, the results for
the Bank Marketing dataset are omitted, but similar trends were observed.

2 Datasets with unit fairness were withheld in the F-test analysis to prevent degenerate
cases. However, these accounted for less than 1.5% of all 800 sample datasets.

3 While the independence assumption does not strictly hold, the F-test gives us one
more means of comparison.
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Table 1. Mean (and variance) values in percentage for accuracy and degree of
fairness for the COMPAS dataset reported for Logistic regression (LogReg); post-
processing for equal opportunity (EqOpp) and equalized odds (EqOdds); L2 indicates
regularization.

Model No sensitive Sensitive

Accuracy Deg of fairness Accuracy Deg of fairness

LogReg 62.16 (2.17) 78.32 (20.66) 62.73 (2.06) 61.50 (20.57)

LogReg + L2 62.16 (2.17) 78.32 (20.66) 62.37 (2.12) 65.01 (20.61)

EqOpp 58.72 (2.12) 96.54 (6.37) 56.63 (2.00) 96.27 (8.27)

EqOpp + L2 58.71 (2.12) 96.53 (6.42) 56.41 (2.07) 95.41 (10.53)

EqOdds 58.62 (2.09) 96.29 (7.78) 56.95 (1.99) 95.76 (9.65)

EqOdds + L2 58.61 (2.10) 96.30 (7.76) 56.89 (2.07) 95.40 (11.56)

Table 2. Mean (and variance) values in percentage for accuracy and degree of fair-
ness for the SGC dataset reported for Logistic regression (LogReg); postprocessing for
equal opportunity (EqOpp) and equalized odds (EqOdds); L2 indicates regularization.

Model No sensitive Sensitive

Accuracy Deg of fairness Accuracy Deg of fairness

LogReg 78.45 (4.42) 90.18 (31.65) 77.30 (4.07) 85.07 (43.75)

LogReg + L2 77.20 (4.55) 91.94 (27.48) 78.53 (4.00) 88.07 (34.59)

EqOpp 76.49 (4.35) 93.51 (22.38) 73.58 (4.05) 92.14 (29.91)

EqOpp + L2 75.22 (4.55) 94.56 (16.92) 74.40 (3.88) 94.74 (16.28)

EqOdds 75.23 (4.34) 93.14 (23.70) 73.65 (4.08) 92.04 (30.34)

EqOdds + L2 74.15 (4.61) 94.27 (18.50) 74.48 (3.87) 94.99 (14.98)

4 Results

4.1 Variance of Fairness and Performance Metrics

As shown in Tables 1 and 2, we note that the variance in degree of fairness is
higher than for accuracy. As an example, Fig. 2a shows visually that the spread
of accuracy and degree of fairness can vary significantly. In fact, we show that
difference in variance is statistically significant for various significance levels. We
transform the data to the real number line using the logit function and apply the
F-test to this transformed data (see Sect. 3.3 for details). Table 3 reports these
values for the logistic regression base classifier with regularization trained on
data with sensitive attributes both before and after post-processing for fairness
constraints4. This indicates that the fairness metric of equal opportunity is not
as robust as accuracy across the sampled test sets.
4 While we do not report results on all models due to space constraints, the omitted

results are similar to reported values.
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(a) LogReg, no regularization, with 
sensitive attribute

(b) EqOdds ,regularized, no sensitive
attribute

Fig. 2. Histogram showing the difference in mean and variance of degree of fairness
and accuracy scores for different models on the COMPAS dataset. Figure 2a includes
scores for logistic regression without regularization including sensitive attributes.
Figure 2b includes scores for logistic regression with regularization but without sen-
sitive attributes and post-processing for equalized odds fairness constraint.

Once we post-process for fairness constraints, we see that, as expected, mean
degree of fairness improves. We also note that the variance in degree of fairness
reduces significantly, especially for the COMPAS dataset (see Table 1). This
can be seen visually in Fig. 2b, where for comparison the spread in accuracy is
indicated as well. We note, however, that the differences in variance of degree
of fairness and accuracy are still statistically significant for all models, with the
variance of degree of fairness always being higher than that of accuracy. We see
in Table 3 that the F-test value is much larger than the f-critical value for the
number of observations, thus indicating high confidence that the variances are
in fact significantly different.

When comparing the effect of incorporating different fairness constraints, we
note that both equalized odds as well as equality of opportunity yield fairly
similar results for degree of fairness. Typically, we observe that for models with
post-processing for fairness constraints, means of degrees of fairness are within at
most 1% of each other. We also observe that in most cases equality of opportunity
and equalized odds have comparable magnitudes of variance in degree of fairness.
However, in the case of unregularized base classifiers, equality of opportunity
has a smaller degree of fairness variance; a likely explanation for this lies in
our measure of degree of fairness which explicitly checks for deviation from the
equality of opportunity measure.
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Table 3. F-test for statistical significance of the difference between performance
and fairness variances reported for Logistic regression (LogReg); postprocessing for
equal opportunity (EqOpp) and equalized odds (EqOdds). All models include sensitive
attributes and a regularizer term. � indicates that the ratio is higher than the F critical
value, implying that the difference is statistically significant

Data set Variances Ratio α = 0.05 α = 0.025 α = 0.001

1.1234 1.1488 1.2446

COMPAS LogReg 9.722 � � �
SGC LogReg 8.648 � � �
COMPAS EqOpp 5.087 � � �
SGC EqOpp 4.196 � � �
COMPAS EqOdds 5.585 � � �
SGC EqOdds 3.871 � � �

The effects of incorporating fairness constraints on accuracy have been pre-
viously observed [30]. This is corroborated in our experiments as we observe a
trade-off between accuracy and degree of fairness. In all cases, adding a fairness
constraint reduced overall accuracy; however, the effect on its variance was typ-
ically minimal and inconsistent in direction indicating that adding fairness con-
straints does not seem to affect stability of the performance measure. Amongst
models that were optimized for fairness, we notice that their mean accuracy is
quite similar, being within at most 1% of each other’s performance. This can be
explained by the relationship between the fairness constraints and the degree of
fairness measure. Another important trend we note is that higher mean degree
of fairness generally corresponds to lower degree of fairness variance.

The effects of both including sensitive attributes in training the model, and
adding a regularization term in the objective function, are mixed. The best
performing models for accuracy are logistic regression models with access to
sensitive attributes; perhaps unsurprisingly however, these are often among the
worst performing with respect to the mean and variance of degree of fairness.
We also note that regularization has a significant effect on variance of degree of
fairness especially when post-processing for fairness in the SGC dataset (Table 2)
as compared to the COMPAS dataset (Table 1). This can be likely explained by
the difference in sizes of the two datasets.

A notable case is when we use a logistic regression model and fairness post-
processing with access to sensitive attributes in the COMPAS dataset, which
we can see in Fig. 2b. In this case, the mean accuracy is roughly 58%, which
is only slightly better than naively predicting the most common label in the
dataset (which would give roughly 53% accuracy). This might indicate that there
are degenerate cases of fairness where predictions are equally uninformative for
different subgroups, potentially because the solution space is too restricted by
regularization and fairness constraints.
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(a) COMPAS LogReg (b) COMPAS EqOpp

(c) SGC LogReg (d) SGC EqOpp

Fig. 3. Scatter plot for degree of fairness and accuracy. Orange diamonds indi-
cate unfairness towards protected group, blue dots indicate unfairness towards the
other group. Plots shown for the COMPAS and SGC datasets for Logistic regression
(LogReg); postprocessing for equal opportunity (EqOpp) trained with regularization
and without sensitive attributes. (Color figure online)

4.2 Direction of Unfairness

In addition to looking at the general trends of fairness, we also explore the direc-
tion of unfairness in these models for the SGC and COMPAS datasets. In Fig. 3,
we show a scatter plot of the 800 bootstrapped sampled test datasets (for both
SGC and COMPAS datasets) along the accuracy and degree of fairness axes.
As observable from the plots, generally the models are unfair towards the pro-
tected groups. Fairness constraints help shift the entire distribution to more fair
outcomes, but we still see that most of the unfairness is to the detriment of pro-
tected groups. The plots for other models are omitted due to space constraints,
but they show similar results as well.

5 Conclusions and Future Work

In this paper, we have provided a framework for evaluating the robustness of
fairness metrics across uncertainty in test data. To do this, we resample test data
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using bootstrap sampling and compute both the mean and variance of degree
of fairness and accuracy. This allows us to compare the variations across these
metrics for different learning models. We train a logistic regression model for
binary classification with and without a regularizer, as well as with and without
sensitive attributes. We also post-process these models to separately satisfy two
separate fairness constraints. We evaluate these twelve models separately on 800
bootstrapped test datasets to measure the variability as well as the mean of
both a performance metric and a fairness metric. We show that the equality of
opportunity fairness metric is less robust to variations in the test data than the
accuracy performance metric. We highlight that current post-processing methods
for improving fairness can affect mean fairness and reduce fairness variance; by
and large, however, the variance of fairness still remains significantly higher than
that of performance. We show that variance in model fairness is typically to the
detriment of protected groups, making fairness variance analysis an important
part of developing robust and fair machine learning models.

These findings have important implications for the study of fairness, both
for the machine learning community as well as for disciplines that apply these
techniques. Since fairness metrics are significantly less robust than performance
metrics, a single reported measure of fairness of an algorithm may not be suf-
ficiently informative; a report of the range and variance of the metric might be
relevant. For instance, claims about racial fairness in risk recidivism tools might
not be as trustworthy since in reality there could be significant deviation from
fairness if the model is applied on data that has even slight deviations from the
data it was trained on. Furthermore, this variance is mostly to the detriment of
protected groups, indicating that high uncertainty itself might be an indicator
of further unfairness that is not directly captured in a single measurement of
fairness.

This lays the groundwork for further exploration of the robustness of fair-
ness across other learning models, including those that incorporate a notion of
fairness in their objective. Additionally, we are also interested in whether these
effects will persist across other fairness metrics and datasets. In particular, we
are interested in exploring other group fairness metrics, such as predictive parity
rates or generalized entropy indices [43], as well as individual fairness metrics,
such as Lipschitz conditions constraints [16]. We are also interested in studying
the effects of in-processing learning methods for fairness on its variance. We leave
this for future work.
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