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Abstract. The problem of counterfactual explanations is that of mini-
mally adjusting attributes in a source input instance so that it is classified
as a target class under a given classifier. They answer practical ques-
tions of the type “what should my annual income be for my loan to be
approved?”, for example. We focus on classification and regression trees,
both axis-aligned and oblique (having hyperplane splits), and formulate
the counterfactual explanation as an optimization problem. Although
this problem is nonconvex and nondifferentiable, an exact solution can
be computed very efficiently, even with high-dimensional feature vec-
tors and with both continuous and categorical features. We also show
how the counterfactual explanation formulation can answer a range of
important practical questions, providing a way to query a trained tree
and suggest possible actions to overturn its decision, and demonstrate it
in several case studies. The results are particularly relevant for finance,
medicine or legal applications, where interpretability and counterfactual
explanations are particularly important.

Keywords: Interpretability · Counterfactual explanations · Decision
trees

1 Introduction

In the last decade, deep learning and machine learning models have become
widespread in many practical applications. This has been beneficial as these
models provide intelligent, automated processing of tasks that up to now were
hard for machines. However, at the same time, concerns related to the ethics and
safety of these models have arisen as well. One is the problem of interpretability,
i.e., explaining how these models function. This is an old problem, which has been
studied (possibly under different names, such as explainable AI) since decades
ago in statistics and machine learning (e.g. [2,11,14,21]). A second problem
is explaining why the model made a decision or how to change it [28]. This
problem is more recent and has become more pressing due to concerns over the
opaqueness of current AI systems. That said, related problems have been studied
in data mining or knowledge discovery from databases [1,9,23,30], in particular
in applications such as customer relationship management (CRM).
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Much of the recent works focus on a specific version of the second prob-
lem that focuses on changing a classifier’s decision in a prescribed way [28].
This problem is called counterfactual explanation [28]. Formally, a counterfac-
tual explanation seeks a minimal change to a given input’s features that will
change the classifier’s prediction in the desired way. These explanations are very
helpful in understanding the behavior of a model for a given instance, as they can
answer questions like what input feature the model focuses on to make a certain
prediction. Mathematically, the problem of counterfactual explanations can be
formulated as an optimization problem. The objective is to minimize the change
in input features subject to classified as user-defined class. This similar formu-
lation has been used in deep nets for adversarial examples and model inversion
[10,13,16,17,22,25,26,31]. There are also formulations that are specific for linear
models [6,24,27]. Most algorithms to solve the optimization assume differentia-
bility of the classifier with respect to its input instance so that gradient-based
optimization can be applied. However, none of these algorithms apply to decision
trees, which define nondifferentiable classifiers.

Decision trees have long been widely used in applications and are regu-
larly highly ranked in user surveys such as KDnuggets.com or data mining and
machine learning reviews such as [29]. This is particularly owing to their ease
of interpretability compared to more accurate classifiers such as neural nets or
decision forests. However, the prediction accuracy of decision trees learned using
the recently introduced Tree Alternating Optimization (TAO) algorithm [3,7,38]
is much higher than using traditional algorithms such as CART or C5.0. This
applies both to the traditional, axis-aligned trees, but also to the far more accu-
rate oblique trees (having hyperplane splits) and sparse oblique trees (having
hyperplane splits with few nonzero weights), as well as to trees of more com-
plex forms [34,37], and to forests using bagging, boosting or other ensembling
mechanisms, but where each tree is trained with TAO [8,12,33,35,36]. Finally,
the stronger predictive power of sparse oblique decision trees together with their
interpretability and fast inference makes them useful for other uses, such as in
understanding deep neural networks [18,19] or compressing deep neural networks
[20].

For these reasons, solving counterfactual explanations for decision trees is
important in practice. Our recent work from [4,5] shows that the counterfactual
problem can be solved exactly and efficiently in a decision tree. We showed
that the counterfactual problem in decision trees is equivalent to solving the
counterfactual problem in each leaf region and picking the best among them
(see Sect. 2). This exact formulation for solving the counterfactual problem in
decision trees allows us to extend the problem, which can answer some very
interesting questions. For instance, what is the closest class to change from the
original class, what is the closest boundary if changing the only feature, which
feature has the lowest cost to change the class to a target class, and more. We
describe these extended problems in detail in Sect. 3. These problems are very
difficult and probably very expensive to answer in other models like a neural
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network. However, we show that in decision trees using the [4,5] framework, we
can solve these extended problems exactly and efficiently.

Next, we first briefly describe our formulation of the counterfactual problem
and how to solve it exactly (Sect. 2); this follows closely the main results of [4,5].
Then we describe each extended problem in detail (Sect. 3). Finally, in Sect. 4
we discuss these extended problems along with real-life use cases.

2 Solving Counterfactual Exactly in Decision Trees

2.1 Leaf Region: Definition

Assume we are given a classification tree that can map an input instance x ∈
R

D, with D real features (attributes), to a class in {1, . . . , K}. Assume the
tree is rooted, directed and binary (where each decision node has two children)
with decision nodes and leaves indexed in the sets D and L, respectively, and
N = D ∪ L. We index the root as 1 ∈ D. For example, in Fig. 1 we have
N = {1, . . . , 15}, L = {5, 8, 9, 11, . . . , 15} and D = N \ L. In oblique decision
trees each decision node i ∈ D has a real-valued decision function fi(x) defined
by a hyperplane (linear combination of all the features) fi(x) = wT

i x + bi, with
fixed weight vector wi ∈ R

D and bias bi ∈ R. For axis-aligned trees, wi is an
indicator vector (having one element equal to 1 and the rest equal to 0). The
decision function fi(x) send down an input instance x ∈ R

D to i’s right child if
fi(x) ≥ 0 and down i’s left child otherwise. Each leaf i ∈ L is labeled with one
class label yi ∈ {1, . . . , K}. For an input instance x the tree predicts its label
by sending down x via the decision nodes, to exactly one leaf and outputting
its label. The parameters {wi, bi}i∈D and {yi}i∈L are estimated by TAO [3,7]
(or another algorithm) when learning the tree from a labeled training set.

The tree partitions the input space into |L| regions, one per leaf, as shown in
Fig. 1 (bottom panel). Each region is an axis-aligned box in case of axis-aligned
trees and a polytope for oblique trees. This region is defined by the intersection
of the hyperplanes found in the path from the root to the leaf. Specifically, define
a linear constraint zi(wT

i x + bi) ≥ 0 for decision node i where zi = +1 if going
down its right child and zi = −1 if going down its left child. Then we define
the constraint vector for leaf i ∈ L as hi(x) = (zj(wT

j x + bj))j∈Pi\{i}, where
Pi = {1, . . . , i} is the path of nodes from the root (node 1) to leaf i. We call
Fi = {x ∈ R

D: hi(x) ≥ 0} the corresponding feasible set, i.e., the region in
input space of leaf i. For example, in Fig. 1 (top) the path from the root to leaf
14 is P14 = {1, 3, 6, 10, 14} and its region is given by:

h14(x) =

⎛
⎜⎜⎝

f1(x)
−f3(x)
−f6(x)
−f10(x)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

wT
1 x + b1

−wT
3 x − b3

−wT
6 x − b6

−wT
10x − b10

⎞
⎟⎟⎠ ≥ 0.
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2.2 Counterfactual Problem in Decision Trees

In this section we briefly describe the counterfactual problem in a decision tree.
Assume we are given a source input instance x ∈ R

D which is classified by
the tree as class y, i.e., T (x) = y, and we want to find the closest instance x∗

that would be classified as another class y �= y (the target class). We define
the counterfactual explanation for x as the (or a) minimizer x∗ of the following
problem:

min
x∈RD

E(x;x) s.t. T (x) = y, c(x) = 0, d(x) ≥ 0 (1)

where E(x;x) is a cost of changing attributes of x, and c(x) and d(x) are
equality and inequality constraints (in vector form). The fundamental idea is
that problem (1) seeks an instance x that is as close as possible to x while being
classified as class y by the tree and satisfying the constraints c(x) and d(x).

The constraint T (x) = y makes the problem severely nonconvex, nonlinear
and nondifferentiable because of the tree function T (x). However as described
in [4,5] this problem can be solved exactly and efficiently. In [4] we show that
problem (1) is equivalent to:

min
i∈L

min
x∈RD

E(x;x) s.t. yi = y, hi(x) ≥ 0, c(x) = 0, d(x) ≥ 0. (2)

In English, what this means is that solving problem (1) over the entire space can
be done by solving it within each leaf’s region (defined by hi, Sect. 2.1) and then
picking the leaf with the best solution. This is shown in Fig. 1 (bottom panel).
That is, the problem has the form of a mixed-integer optimization where the
integer part is done by enumeration (over the leaves (L)) and the continuous
part (within each leaf) by other means to be described later.

Hence, the problem we still need to solve is the problem over a single leaf
i ∈ L (having the desired label yi = y), and henceforth we focus on this. We
write it as:

min
x∈RD

E(x;x) s.t. hi(x) ≥ 0, c(x) = 0, d(x) ≥ 0. (3)

here, hi(x) is the set of hyperplanes that represents decision rule of the nodes
in the path from root to leaf i (Sect. 2.1). If the function E(x; ·) is convex over
x and the constraints c(x) and d(x) are linear, then this problem is convex
(since for oblique trees hi(x) is linear). In particular, if E is quadratic then the
problem is convex quadratic program (QP), which can be solved very efficiently
with existing solvers. See [4,5] for more details.

2.3 Separable Problems: A Special Case for Axis-Aligned Trees

Our earlier work [4,5] provides following result, which vastly simplifies the prob-
lem for axis-aligned trees.
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Fig. 1. Top: an oblique classification tree with K = 3 classes (colored white, light gray
and gray) from [4]. A decision node i sends an input instance x to its right child if
fi(x) ≥ 0 and to its left child otherwise. The decision function fi(x) = wT

i x + bi,
where w and b are weights and the bias respectively. Bottom the space of the input
instances x ∈ R

2, assumed two-dimensional, partitioned according to each leaf’s region
in polytopes (the region boundaries are labeled with the corresponding decision node
function). The source instance x is in the white class and the counterfactual one (using
the �2 distance) subject to being in the gray class is x∗.
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Theorem 1. In problem (1), assume that each constraint depends on a single
element of x (not necessarily the same) and that the objective function is sep-
arable, i.e., E(x;x) =

∑D
d=1 Ed(xd;xd). Then the problem separates over the

variables x1, . . . , xD.

This means that, within each leaf, we can solve for each xd independently, by
minimizing Ed(xd;xd) subject to the constraints on xd. Further, the solution is
given by the following result.

Theorem 2. Consider the scalar constrained optimization problem, where the
bounds can take the values ld = −∞ and ud = ∞:

min
xd∈R

Ed(xd;xd) s.t. ld ≤ xd ≤ ud. (4)

Assume Ed is convex on xd and satisfies Ed(xd;xd) = 0 and Ed(xd;xd) ≥ 0
∀xd ∈ R. Then x∗

d, defined as the median of xd, ld and ud, is a global minimizer
of the problem:

x∗
d = median(xd, ld, ud) =

⎧⎪⎨
⎪⎩

ld, xd < ld

ud, xd > ud

xd, otherwise
. (5)

We can apply these theorems to axis-aligned trees (assuming each of the extra
constraints c(x) and d(x) depends individually on a single feature), because each
of the constraints hi(x) ≥ 0 in the path from the root to leaf i involve a single
feature of x. Within each leaf i ∈ L we can represent the constraints (which
represents the path from the root to i) as bounding box li ≤ x ≤ ui, and solve
elementwise by applying the median formula described above. After solving the
counterfactual problem in each leaf, we return the result of the best leaf. This
makes solving the counterfactual explanation problem exceedingly fast for axis-
aligned trees.

2.4 Categorical Variables

Although many popular benchmarks in machine learning use only continuous
variables, in practice, most of the datasets contain categorical variables. This is
true especially in legal, financial, or medical applications, for instance, use cases
in Sect. 4.

In this work we handle categorical variables as described in [4,5]. That is
we encode the categorical variables as one-hot. This means, if an original cat-
egorical variable can take C different categories, we encode it using C dummy
binary variables jointly constrained so that exactly one of them is 1 (for the
corresponding category): x1, . . . , xC ∈ {0, 1} s.t. 1Tx = 1.

Since we only need to read the values of dummy variables during training,
we treat them as if they were continuous and without the above constraints.
However, when solving the counterfactual problem, we modify those variables,
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so we need to respect the above constraints. This makes the problem a mixed-
integer optimization, where some variables are continuous and others binary
(the dummy variables). While these problems are NP-hard in general, in many
practical cases, we can expect to solve them exactly and quickly using modern
mixed-integer optimization solvers, such as CPLEX or Gurobi [15].

3 Exploring Different Types of Counterfactual
Explanation Questions

The counterfactual problem (2) accommodates a variety of useful, practical ques-
tions about the source instance (x). We list each below and explain how that
can be solved exactly.

1. Finding the closest boundary. The minimum-distance change to x that
changes its original class k. Solve the problem (3) in every leaf except the
ones with label k, and pick the solution with the lowest cost.

2. Critical attribute for change to the target class y. Which attribute has the
lowest cost to change the class of x to a target class y, if changing only
one attribute? For given a attribute d, we add all other attributes to the
equality constraint (c(x) = 0) and solve the counterfactual problem (2). We
repeat this process for each attribute in x and pick the attribute for which
the counterfactual (x∗) has the lowest cost.

3. Critical attribute for changing the class. Which attribute has the lowest cost
to change the class of x to any other class if changing only one attribute? For
each attribute, we solve the finding the closest boundary problem, where other
attributes are in the equality constraint; and pick the attribute for which the
counterfactual (x∗) have the lowest cost.

4. Robust counterfactuals. Here, we want to find the counterfactuals that are well
inside a leaf region rather than on the boundary, so they are more robust to
flipping their class due to small changes. This problem can easily be solved
by shrinking the leaf region size in problem 3. That is in problem 3, the
constraint “hi(x) ≥ 0” becomes “hi(x) ≥ ε”, where ε > 0.

We can also use the counterfactual problem (2) to explore more practical
problems that are related to the regression trees.Consider a regression tree T ,
where T (x) and T (x∗) represent the predicted value of the source instance (x)
and the counterfactual (x∗). Similar, to above we list each problem below and
explain how that problem can be solved exactly.

1. T (x∗) > T (x): find the minimum change in x that increase its predicted value.
For this we only consider the leaves whose label is larger than the T (x), and
solve problem (3) in each of them and pick the x∗ with the lowest cost.

2. T (x∗) ≥ T (x) + β find the minimum change in x that increase its predicted
value atleast by β. Same as above, the only difference is the leaves we consider
have the label greater than T (x) + β.
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3. α ≥ T (x∗) ≥ β find the minimum change in x that change its predicted value
between α and β. It is again same as the previous two, but this time we only
consider the leaves with label between α and β.

All these extended problems can be applied to any type of decision tree with
hard thresholds, but here we only focus on oblique trees.

4 Experiments

Since we show all extension problems (Sect. 3) can be solved exactly by con-
verting them into the problem (2), we do not need to assess the optimality and
validity of the generated counterfactual examples experimentally. Instead, we
apply each problem to a real-life dataset [32] and explain their usage with three
use case studies.

– Our first use case deals with the students’ grades in secondary education of
two Portuguese schools. For each student, we have social, demographic, and
school-related attributes and their final grades. In this study, we focus on
the students who have failing grades, and we suggest the changes that can
improve students’ grades by applying our extension problems.

– Next, we focus on the loan applicants as credit risk from the German credit
dataset. We focus on the applicants that are a bad credit risk. Our goal here
is not only to generate counterfactuals that can classify these candidates as
good credit risk but also to suggest more changes to have a stronger credit
profile. We do this by generating counterfactuals that are more robust to
small changes.

– Our last use case study focuses on the median value of owner-occupied homes
in multiple suburbs of Boston. We treat this as a regression problem whose
goal is to predict the value of the home. Then we apply our formulations to
explore what factors affect the value of a home at different price points.

In all the case studies, our model is an oblique decision tree that we train using
a recently proposed algorithm called tree alternating optimization (TAO) [3,7].
To generate counterfactuals we use �2 distance as our cost function (E). Also,
these datasets contain categorical variables, so to generate counterfactuals, we
use Gurobi [15] to solve the mixed-integer optimization problem.

Next, we describe each dataset in brief and then discuss each use case study
in detail.

4.1 Dataset Information

All our datasets are from UCI [32], and they are described in the same order as
the user case study. Since none of the datasets contains a separate test set, we
randomly divide the instances into training (80%) and test (20%) sets.
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Student Portuguese Grades. Each instance have three grades, but we use
only the final grades, and remove the other two from the attributes. The
final grades are in the range of 1 to 20. So, we divide these grades into five
categories. These categories are as follows:

– If the grades are greater or equal to 16, then excellent.
– If grades are either 15 or 14, then good.
– If grades are either 14 or 13, then satisfactory.
– If grades are in range between 12 and 10, then sufficient.
– If grades are 9 or lower, then fail.

The prediction task is to determine the final grades of a student. There are 649
instances, and each has 30 attributes (after removing the two grades). Out
of 30 attributes, 11 are integer, and the rest are categorical. We convert each
categorical attribute into a one-hot encoding attribute. Thus each instance of
the dataset has 64 attributes.

German Credit. The prediction task is to determine whether an applicant is
considered a good or a bad credit risk for 1 000 loan applicants. There are 20
attributes, out of which 7 are integer, and the rest are categorical. Similarly to
the above dataset, we convert each categorical attribute to a one-hot encoding
attribute. Thus each instance of the dataset has 61 attributes.

Boston Housing Dataset. We use this dataset for regression. The task is to
predict the median price of owner-occupied homes. There are 506 instances,
and each instance describes a Boston suburb or town. For each instance, there
is 13 attribute all continuous except one which is binary.

4.2 Use Case Study 1

Our oblique tree for this classification task achieves 56.92% test error and 33.14%
train error. The tree has a depth of 9 and 34 leaves.

First consider a student whose attributes are described in the second column
of Table 1. The current final grades of the student is fail. If create a counterfactual
with target class as excellent, the following attributes change (third column in
Table 1):

– reduce previous class failures from 2 to 1.
– mother’s job should be changed from services to teacher.
– father’s job should be changed from services to teacher.
– change higher education plan from no to yes.

However, it is hard to jump from failing grades to excellent grades in real life.
Also, it requires changing many attributes, which might not be feasible like
mother’s job and father’s job. Instead, the student can try making small changes,
which are enough for passing the class. For this, we try to find the closest other
class boundary problem here since any other class will lead to passing the class.
The closest class we find is sufficient and requires the following change (fourth
column in Table 1).

– reduce previous class failures from 2 to 1.
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This is also expected the closest class to change is sufficient as this lowest thing
to be considered as passing the class. Moreover, it does not suggest big changes
like changing parent’s jobs, but only change previous class failures which easier
to achieve.

Next, we consider another student (fifth column in Table 1). This student
also failed the class. If we upgrade the grades directly to satisfactory allowing
only attribute to change, then the attributes that will change the class with the
lowest cost will be (sixth column in Table 1):

– reduce free time from high(4) to very low(1).

This also makes sense as reducing free time after school can be devoted to studies.
That said, it is still a large change. So, we search for the closest different class
allowing only one attribute to change (last column in Table 1). The closet class
would be sufficient, and the attribute with the lowest cost is:

– reduce going out frequency from medium(3) to low(2).

This makes sense as, again, time spent on going out can be used for studies.
Also, the numeric cost to change to lower grade (sufficient) is 3 times lower than
the upper grade (satisfactory).

4.3 Use Case Study 2

The predictive task in the study is to predict how much a loan applicant is of
credit risk. Our oblique tree achieves a test error of 18.5% and a train error of
17.5% for this dataset. The depth of the tree is 8.

The goal here is to generate diverse counterfactuals, where each subsequent
counterfactual is more robust than the previous one. When generating a coun-
terfactual, the algorithm generates a counterfactual in each target leaf that is
closest to the input instance. If all the attributes are continuous, then this gener-
ated counterfactual will always exist on the boundary of the leaf, as shown in the
Fig. 1. However, if we shrunk these leaves ’ regions, we can force the algorithm
to generate counterfactuals inside the leaf region (generating robust counterfac-
tuals). As described in Sect. 3, for a leaf i this can be done by adding a small
positive constant (ε > 0) in Eq. (3).

min
x∈RD

E(x;x) s.t. hi(x) ≥ ε, c(x) = 0, d(x) ≥ 0. (6)

Consider an example described in the Table 2. This instance is classified as
bad creditor. Next, we generate a counterfactual for it. The generated coun-
terfactual will able to change its label from bad to good creditor. However, it
is either on the boundary of the target leaf region or very close to it (due to
categorical variables). This means the changes suggested by the counterfactual
(x∗

1) will only suggest changes that are the bare minimum for a good creditor.
However, if we force the algorithm to generate counterfactuals deep in the leaf
region, it will suggest the changes that make the counterfactual much better
creditor.
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Table 1. Example illustrating the construction of counterfactual instances with our
extended formulations for an oblique decision tree on the Student Portuguese grades
dataset. Column 2-4: For source x1, x

∗
11 and x∗

12 represents counterfactual with the
given target class and the closest class respectively. Column 5-7: For source x2, both
counterfactuals are generated by changing only one attribute that has the lowest cost.
x∗

21 and x∗
22 represent counterfactual with the given target class and the closest class,

respectively. “=” means the attribute value is the same as in the source instance.

Attribute x1,

source

instance

x∗
11,

target class

excellent

x∗
12,

closest

class

x2,

source

instance

x∗
21,

target class

satisfactory

x∗
22,

closest

class

Only one attribute can change

School GP = = MS = =

Sex Male = = Male = =

Age 18 = = 17 = =

Address Urban = = Urban = =

Family size >3 = = >3 = =

Parent’s status Together = = Together = =

Mother’s education 2 = = 1 = =

Father’s education 1 = = 1 = =

Mother’s job Services Teacher = Other = =

Father’s job Services Teacher = Other = =

Reason Other = = Home = =

Guardian Mother = = Mother = =

Traveltime† 1 = = 1 = =

Study time� 1 = = 2 = =

Failures 2 1 1 0 = =

School support No = = No = =

Family support No = = No = =

Paid No = = Yes = =

Activities No = = No = =

Nursery No = = No = =

Plan for higher
education

No Yes = Yes = =

Internet access Yes = = Yes = =

In romantic
relationship

No = = No = =

Family
relationship‡

3 = = 4 = =

Free time‡ 2 = = 4 1 =

Going out
frequency‡

5 = = 3 = 2

Workday alcohol
consumption‡

2 = = 2 = =

Weekend alcohol
consumption‡

5 = = 4 = =

Health‡ 5 = = 5 = =

Absences 4 = = 4 = =

Grades Fail Excellent Sufficient Fail Satisfactory Sufficient
† 1–<15min, 2–15 to 30min, 3–30min to1 h or 4 –> 1 h).
� 1–<2 h, 2–2 to 5 h, 3–5 h to 10 h or 4 –> 10 h).
‡ from 1 - very low to 5 - very high.
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Table 2. Counterfactual solution trajectory as a function of ε for Credit dataset. �2
distance is also mentioned between source instance (x) and the counterfactual x∗.

Attribute x, source

instance

x∗
1 ,

ε = 0.00

�2 = 1.73

x∗
2 ,

ε = 0.10

�2 = 1.73

x∗
3 ,

ε = 0.20

�2 = 2.00

x∗
4 ,

ε = 0.25

�2 = 2.23

Existing checking <0 DM = = = =

Duration 15 months 16 months = = 16 months

Credithistory Critical

account

= = Delay in

paying off

in the past

Delay in

paying off

in the past

Purpose Furniture/

equipment

= = = =

Credit amount 1478 = = = =

Savings <100 DM = = = =

Employment since ≥7 years = = = =

IInstallment rate 4 = = = =

Status and sex Male: single = = = =

Other debtors None = = = =

Residence since 4 = 3 3 3

Property Car or other = = = =

Age 44 = = = =

Other installment plans None Stores stores = =

Housing Own = = = =

Existing credits 2 = = 1 1

Job Skilled

employee

= = = =

People liable 2 = = = =

Telephone Yes = = = =

Foreignworker Yes = = = =

Credit Bad Good Good Good Good

This is also evident from the Table 2. As we increase the value of ε, the
number of features changed also increases. Thus, creating a user profile (x∗

4)
that is a better creditor than the first counterfactual (x∗

1). This can also be seen
as the distance between the original instances and the counterfactual increases
as the leaf regions get smaller (increasing value of ε).

These kinds of problems can be very useful, as shown in the above case. Here,
we give a solution for now and give a strategy to become much better creditor.

In theory, the distance between the source instance and counter should
increase with the value of ε continuously, but in the presented case, it hap-
pens in intervals. The reason is due to the presence of integer and categorical
attributes because the solution can only change when an attribute changes by
an integer or category.
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Table 3. Example illustrating the construction of counterfactual instances for regres-
sion with our extended formulations for an oblique decision tree on the Boston hous-
ing dataset. We show the dataset attributes, source instance x, and 3 counterfactual
instances (with different Median home value) with various conditions. We have rounded
each attribute value to 2 decimal places.“=” means the attribute value is the same as
the source after rounding.

Attribute x, source instance x∗

T (x∗) > T (x) T (x∗) ≥ T (x) + 5 30 ≥ T (x∗) ≥ 25

Crime rate 2.37 2.15 1.93 1.81

Residential land zoned proportion 0.0 0.02 = 0.03

Proportion of non-retail business 19.58 19.48 = 19.48

Tract bounds river 0 = 1 =

Nitric oxides concentration 0.87 0.39 0.39 0.385

Avg. rooms per dwelling 4.92 5.13 5.73 8.09

Proportion of units before 1940 95.70 95.67 95.71 95.66

Distances to Boston employment centres 1.46 1.17 = 1.16

Accessibility to highways 5.00 5.04 5.1 5.41

Property-tax rate 403.00 = = 402.99

Pupil-teacher ratio 14.70 14.47 14.58 14.60

Proportion of african american by town 391.71 = = 391.67

% lower status of the population 29.53 29.39 29.54 29.41

Median home value in $1000’s 14.74 15.96 20.52 29.14

4.4 Use Case Study 3

This user study deals with predicting the median home value of different suburbs
and towns in Boston. We train a regression tree for this task. Our tree achieves
a test mean squared error of 14.57 and train mean squared error of 13.19. The
depth of the tree is 6, and the number of leaves is 21.

We consider an instance that has attributes described in the second column of
Table 3. We apply our extension problems here to determine how for the given
instance (x), the attributes need to change to accommodate the new median
home value. We investigate three scenarios:

T (x∗) > T (x) meaning have higher median home value. Almost all of the
attributes change (third column of the Table 3), the ones that change the
most are as follows. The crime rate, nitric oxides concentration, distances
to Boston employment centres, and pupil-teacher ratio decreases which make
sense. Because having low crime rate means safer neighborhood and low nitric
oxides concentration means the air quality is better. Also, having low pupil-
teacher ratio means more teacher per student, which is beneficial for the fam-
ilies with children in school, and then distances to Boston employment centers
is important for the people who need employment maybe for other family
members. On the other side, the average rooms per dwelling increases, which
is reasonable as it means bigger homes and thus higher prices.

T (x∗) > T (x) + 5 meaning the median home value should be greater than 19.72.
As shown in the fourth column of the Table 3 the crime rate and nitric oxides
concentration further decrease. The pupil-teacher ratio also decreases but com-



502 S. S. Hada and M. Á. Carreira-Perpiñán

pare to the previous scenario it is higher by a small reason. It may be the
increased value of average rooms per dwelling and tract bounds river compen-
sate for it.

30 ≥ T (x∗) ≥ 25 meaning the median home value should be between 25 and 30.
As shown in the fifth column of the Table 3 again the crime rate and nitric
oxides concentration plays an important role in the value. The biggest change
is the average rooms per dwelling which almost doubled. This is expected as
described earlier.

This case study shows for this particular instances the crime rate, nitric oxides
concentration and average rooms per dwelling plays an important role in deciding
the median home value of the home. Also, average rooms per dwelling compensates
for some attributes like pupil-teacher ratio.

5 Conclusion

Classification and regression trees are very important in applications such as
education, business, law and medicine, where counterfactual explanations are
of particular relevance. These can be formulated as a constrained optimization
problem and solved exactly and efficiently for both continuous and categorical
features, possibly in an interactive way. The formulation can be applied to answer
a variety of practical questions and we have illustrated this in several case studies.
Python code implementing the algorithm is available at the authors’ web page.
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4. Carreira-Perpiñán, M.Á., Hada, S.S.: Counterfactual explanations for oblique deci-
sion trees: exact, efficient algorithms. In: Proceedings of the 35th AAAI Conference
on Artificial Intelligence (AAAI 2021), 2–9 February 2021, pp. 6903–6911 (2021)
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forests using tree alternating optimization. In: Daumé III, H., Singh, A. (eds.)
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