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1.1	 �Introduction

The microorganisms that can cause Lyme borreliosis in humans are spirochetal bac-
teria (Fig. 1.1) that comprise the Borrelia burgdorferi sensu lato (s.l.; Latin: in the 
broad sense) species complex. The bacteria live a parasitic lifestyle and are main-
tained in natural transmission cycles between tick vectors of the Ixodes ricinus–per-
sulcatus species complex and small- to medium-sized vertebrate reservoir 
hosts [1–3].

It had been suspected since the beginning of the last century that tick-borne 
pathogens may cause symptoms that are now known as Lyme borreliosis (reviewed 
by [4]). However, it was not until the early 1980s that the causative agent was shown 
to be a spirochetal bacterium that utilizes ticks as vectors [5]. The bacterium was 
named Borrelia burgdorferi Johnson et al. 1984 [6]. Subsequent studies unraveled 
the genetic and ecological heterogeneity of borreliae in Europe, Asia, and North 
America and several new genospecies were named, e.g., Borrelia garinii Baranton 
et al. 1992 and Borrelia afzelii Baranton et al. 1992; (Table 1.1) [7–25]. Since then, 
the name B. burgdorferi s.l. has been used to refer to the species complex, while 
B. burgdorferi sensu stricto (s.s.; Latin: in the strict sense) refers to the species first 
discovered by W. Burgdorfer and colleagues [5, 6]. Today the species complex con-
tains 23 named and proposed genospecies (Table 1.1). The species are non-uniformly 
distributed mainly between the northern 40° and 60° latitude (Fig. 1.3). This distri-
bution reflects the presence of competent tick vector and reservoir host species [26].

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93680-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-93680-8_1#DOI
mailto:Gabriele.margos@lgl.bayern.de
mailto:Sabrina.hepner@lgl.bayern.de
mailto:volker.fingerle@lgl.bayern.de
mailto:volker.fingerle@lgl.bayern.de


2

b

c

a

Outer membrane Protoplasmic cylinderallegalF

Outer membrane 

Peptidoglycan

Flagellum

Nature Reviews | Microbiology

Periplasmic space

1 µm 0.25 µm 

Cytoplasmic membrane

Flagella

Protoplasmic 
cylinder

Outer membrane

Fig. 1.1  Morphology of Borrelia (adapted from [54] with permission from Nature Reviews 
Microbiology). (a) light microscopy of Borrelia and schematic drawing of transection of a spiro-
chete; (b) schematic representation of a spirochete showing the protoplasmic space with inserted 
flagella; (c) magnification from (b) of the insertion site of a flagellum into the cytoplasmic 
membrane
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Table 1.1  The Borrelia burgdorferi sensu lato species complex

Borrelia 
species

Type 
strain

Reservoir 
hosts Vector species Distribution

Human 
pathogenicity

B. afzelii VS461 Rodents, 
insectivores

Ixodes ricinus, 
Ixodes 
persulcatus, 
Ixodes 
hexagonus

Asia, 
Europe

Yes

B. americana SCW-41 Birds, rodents Ixodes minor, 
Ixodes pacificus

North 
America

Unknown

B. andersonii 
(p)

21,038 Birds, rabbits Ixodes dentatus North 
America

Unknown

B. bavariensis PBi Rodents Ixodes ricinus, 
Ixodes 
persulcatus

Asia, 
Europe

Yes

B. bissettiae a DN-127 Rodents Ixodes 
spinipalpis, 
Ixodes pacificus, 
Ixodes ricinus

Europe, 
North 
America

Potentially

B. burgdorferi 
sensu stricto

B31 Birds, rodents, 
insectivores, 
carnivores

Ixodes ricinus, 
Ixodes 
scapularis, 
Ixodes affinis, 
Ixodes pacificus, 
Ixodes minor, 
Ixodes 
hexagonus

Europe, 
North 
America

Yes

B. 
californiensis

CA446 Rodents Ixodes pacificus, 
Ixodes 
spinipalpis, 
Ixodes jellisoni

North 
America

Unknown

B. 
carolinensis

SCW-22 Rodents Ixodes minor North 
America

Unknown

B. chilensis 
(p)

VA1 (p) Rodents Ixodes stilesi South 
America

Unknown

B. garinii 20047 Birds Ixodes ricinus, 
Ixodes 
persulcatus, 
Ixodes uriae b

Asia, 
Europe

Yes

B. japonica HO14 Rodents Ixodes ovatus Asia Unknown
B. 
kurtenbachii

25015 Rodents ? North 
America

Potentially

B. lanei CA28–
91

Lagomorphs? Ixodes 
spinipalpis, 
Ixodes pacificus

North 
America

Unknown

B. lusitaniae PoTiB2 Lizards Ixodes ricinus Europe Potentially
B. maritima CA690 ? ? North 

America
Unknown

B. mayonii M14–
1420

Rodents? Ixodes 
scapularis

North 
America

Yes

(continued)
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1.2	 �Borrelia Genomics and Cell Biology

Genomics. The first genome of Lyme borreliosis group spirochete to be completely 
sequenced was that of B. burgdorferi s.s. isolate B31 [27]. The genome turned out 
to be unusual for bacteria: it consisted of a large linear chromosome of about 910 
kbp and of 12 linear and 9 circular plasmids which make up another 600 kbp of 
DNA sequence, a substantial contribution to the total genome of B. burgdorferi s.s. 
[27–29]. The genomic structure, i.e., consisting of a linear chromosome and circular 
as well as linear plasmids, was found to be maintained in all species investigated so 
far [19, 24, 30–33]. In B31, the main chromosome contains 820 open reading frames 
(803 protein-coding sequences, 17 pseudogenes; 5 rRNA, 32 tRNA, 3 ncRNA), 
10% of which match hypothetical proteins and 29% have no match in a database. 
The G + C content of the chromosome is around 28% [27, 34]. The plasmids in B31 
range in size from 5 to 60 kbp, contain additional 700 coding sequences of which 
>90% have no convincing database match outside the genus Borrelia [27, 28]. Main 
chromosome and linear plasmids are terminated by covalently closed hairpin struc-
tures [35–37] which are created involving a telomere resolvase, ResT, an enzyme 
encoded on plasmid cp26 [38, 39]. Plasmids may be lost under in vitro culture con-
ditions [40–43], but they are essential for completion of the complex B. burgdorferi 
s.l. life cycle in nature [44, 45].

Initially, plasmids have been named according to whether they are linear or cir-
cular and according to size, e.g., lp54 for a 54 kbp linear plasmids, cp26 for a 26 kbp 
circular plasmid [28]. However, since several plasmids of similar size have been 
found in a single isolate, and size differences of the same plasmid have been noticed 
in different isolates, recently plasmids are typed according to their PFam32 locus, 
which supposedly is homologous to plasmid partitioning protein (ParA) encoding 

Borrelia 
species

Type 
strain

Reservoir 
hosts Vector species Distribution

Human 
pathogenicity

B. sinica CMN3 Rodents Ixodes ovatus Asia Unknown
B. spielmanii PC-Eq17 Rodents Ixodes ricinus, 

Ixodes 
hexagonus

Europe Yes

B. tanukii Hk501 Rodents Ixodes tanuki Asia Unknown
B. turdi Ya501 Birds Ixodes turdus, 

Ixodes frontalis, 
Ixodes ricinus

Asia, 
Europe

Unknown

B. valaisiana VS116 Birds Ixodes ricinus Europe No
B. yangtzensis Okinawa 

CW62
Rodents Ixodes 

granulatus
Asia Potentially

Candidatus 
B. aligera

NA Birds? ? Europe Unknown

(p) proposed, a formerly B. bissettii, b also in sea bird colonies in Canada, NA not applicable

Table 1.1  (continued)
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sequences in other bacteria [29]. Apart from PFam32, related loci (PFam49, 
PFam52, PFam57/60) may be involved in autonomous plasmid replication and 
maintenance but their function is yet to be confirmed [39, 46].

Perhaps as a result of the parasitic lifestyle, B. burgdorferi s.l. has very few genes 
for biosynthesis of cell constituents [27]. The majority of chromosomal genes 
encode proteins for housekeeping and metabolic functions, while many of the genes 
encoding outer surface proteins required for interaction with host or vector are 
located on plasmids. Analyses of plasmid sequences showed that there have been 
extensive rearrangements, and plasmid numbers and structures vary not only 
between genospecies but also between strains of a single species [29, 30, 46, 47]. 
Plasmids of the cp32 family have been shown to contain prophages, perhaps facili-
tating rearrangements and/or exchange of genetic material [46, 48, 49]. Information 
on B. burgdorferi s.l. genome content and structure has been largely gained from 
strains of the genospecies B. burgdorferi s.s. [29, 47, 50]. Although for other Borrelia 
genospecies genomes have been sequenced, the whole complement of plasmids has 
not been completed for all of them [30, 32, 33, 46, 51], (http://BorreliaBase.org).

Cell biology. Borreliae are helical bacteria. Their size is 0.2–0.3 μm wide and 
10–30 μm long. Borrelia are not gram-negative, they lack the lipopolysaccharide 
(LPS) and the protein richness that are typical for the cell surface membrane of 
gram-negative bacteria [52, 53]. Instead, they have a diderm cell envelope consist-
ing of an outer surface membrane separated by a periplasmic space from the cyto-
plasmic membrane, which is covered by a peptidoglycan layer. Usually 7–11 
flagella are inserted near the end of the protoplasmic cylinder of the cell extending 
into the periplasmic space (Fig. 1.1) [54]. These endoflagella give the bacteria a 
unique form of motility permitting them to move in viscous media. They can flex 
and bend, propel themselves forwards and backwards and rotate (non-translational 
mode of motility) [55, 56] and this motility is crucial for host/vector infection [57].

Inserted in the outer surface membrane via lipid moieties are outer surface mem-
brane proteins (Osps); >150 potential Osps have been identified [27]. They have 
been named alphabetically in order of their identification, e.g., OspA, OspB, OspC, 
etc. Many of these proteins have functions in the interaction of the bacteria with 
their environment (host or vector). Table 1.2 provides a non-exhaustive list.

Apart from these Osps, there are outer membrane proteins (OMPs) that are inte-
gral membrane proteins and may serve as transporters for nutrients or other essen-
tial molecules that borreliae take up from the host environment. Freeze fracture 
electron microscopy has shown that the outer membrane contains relatively few 
transmembrane proteins [53]. These studies also provided evidence that blebs, sur-
rounded by a membrane(s) resembling the outer membrane and/or the cytoplasmic 
membrane, are shed from Borrelia cells suggesting that blebs are pinched off sec-
tions of the cells.

Many other outer membrane and internal proteins are important for the life cycle 
of B. burgdorferi s.l. and intensive research efforts are being made to understand 
their function and role in the life cycle of these bacteria (e.g., [44, 58–60]).

1  Characteristics of Borrelia burgdorferi sensu lato
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Table 1.2  A non-exhaustive list of outer surface proteins and transmembrane proteins of B. burg-
dorferi s.l.

Protein name

Gene 
designation 
B31

Proposed biological 
role Size

Outer surface proteins (Osp)
OspA/
OspB

Outer surface 
protein A/B

BB_A15/
BB_A16

Interaction with tick 
receptor TROSPA

31 kDa/34 kDa

OspC Outer surface 
protein C

BB_B19 Early infection of 
vertebrate host

22 kDa

OspD Outer surface 
protein D

Unknown, 
potentially 
adherence to the 
tick midgut

28 kDa

BptA Borrelial persistence 
in ticks A

BBE16

P35 BBA64 Unknown, 
tick-to-host 
transmission or 
vertebrate infection

35 kDa

DbpA/
DbpB

Decorin-binding 
protein A/B

BBA24/BBA25 Interaction with 
collagen fibers; 
decorin binding

18 kDa/17 kDa

BBK32 BBK32 Binding to 
fibronectin

47 kDa

OspF Outer surface 
protein F protein 
family

BBM38/ 
BBO39/ 
BBR42

Unknown, potential 
adhesin

29 kDa/26 kDa 
/25 kDa

VLsE Variable major 
protein-like 
sequence expressed

BB_F0041 Immune evasion 35 kDa

OspE Outer surface 
protein E protein 
family

BBL39/
BBN38, 
(BBP38 
identical to 
BBL39)

Evasion of 
complement lysis 
(CRASP)

ErpG, 
ErpL, 
ErpX, 
ErpY

OspE-related 
proteins

Complement 
evasion?

CspA CRASP-1 BBA68 Evasion of 
complement lysis

27 kDa

CspZ CRASP-2 BBH06 Evasion of 
complement lysis

27 kDa

BBA36 BBA36 Unknown
BBA65 BBA65 Unknown
BBA66 BBA66 Unknown
BBA69 BBA69 Unknown
BBA71 BBA71 Unknown
BBA73 BBA73 Unknown

G. Margos et al.
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1.3	 �The Borrelia burgdorferi Sensu Lato Species Complex

The phylum Spirochaetes Cavalier-Smith 2002 comprises a group of helically 
shaped bacteria, several of which cause human diseases such as Leptospira, 
Treponema, Brachyspira, and Borrelia. The genus Borrelia contains the relapsing 
fever group of spirochetes (e.g., Borrelia recurrentis causing louse-borne human 
relapsing fever and several species causing tick-borne relapsing fever), the Lyme 
borreliosis group of spirochetes (B. burgdorferi s.l. complex), and a group of rep-
tile- and echidna-associated spirochetes [61–64]. In 2014, based on investigations 
on conserved signature proteins (CSP), conserved signature insertions/deletions 
(indels) (CSI), and average nucleotide identity (ANI), the genus was divided into 
two genera: Borrelia containing the relapsing fever species and Borreliella for the 
Lyme borreliosis species [65]. The third clade, reptile- and echidna-associated spe-
cies were not considered. Using different methodology of genus delimitation, 
namely the percentage of conserved proteins (PCOP) [66], recently all groups were 
reunited in the genus Borrelia [62]. This work also showed that reptile- and echidna-
associated species do not genetically resemble relapsing fever species but take a 
somewhat intermediate position between relapsing fever and Lyme borreliosis spi-
rochetes [64].

The B. burgdorferi s.l. species complex currently consists of 23 named species 
(Table  1.1), six of which are assured human pathogens. Five of the species 

Protein name

Gene 
designation 
B31

Proposed biological 
role Size

BBI42 BBI42 Unknown
Integral outer membrane proteins (OMP)
P66 BB0603 Putative porin 66 kDa
P13 BB0034 Putative porin 13 kDa
Lmp1 Surface-located 

membrane protein 1
BB0210 Protection from 

host adaptive 
immunity

128 kDa

BesA/
BesB/
BesC

Borrelia efflux 
system proteins A, 
B, C

Bb0141/
Bb0140/
Bb0142

Putative bacterial 
resistance-
nodulation-division 
(RND)-type 
multidrug-efflux 
system

BamA β-Barrel assembly 
machine protein

bb0795 β-Barrel assembly 
machine

94 kDa

BB0405 BB0405 Unknown 22 kDa
Bgp Borrelia 

glycosaminoglycan-
binding protein

bb0588 Glycosaminoglycan 
(GAG)-binding 
protein; cell 
adhesion

Table 1.2  (continued)
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pathogenic to humans occur in Europe including B. afzelii, Borrelia bavariensis 
Margos et al. 2013, B. burgdorferi s.s., B. garinii, and Borrelia spielmanii Richter 
et al. 2006 [67, 68]. Borrelia afzelii, B. bavariensis, and B. garinii also occur in 
Eastern Europe and Asia [69–71].

In North America, two species are the cause of human Lyme disease, these are 
B. burgdorferi s.s. and Borrelia mayonii Pritt et al. 2016 [72–75]. The latter spe-
cies was only discovered in 2016 in patients visiting the Mayo Clinic in Wisconsin 
[73]. Since then more symptomatic patients have been found to be infected with 
B. mayonii [72].

Two additional species have been discussed as putative human pathogens; these 
are Borrelia lusitaniae Le Fleche et al. 1997 and Borrelia bissettiae Margos et al. 
2016. Borrelia lusitaniae can be commonly found in questing ticks in countries 
neighboring the Mediterranean Sea [76–81], and so far two cases have been 
described in the literature incriminating B. lusitaniae as a suspected human patho-
gen [82, 83]. On the other hand, B. bissettiae has rarely been found in questing ticks 
in Europe [84–86]. So far one human case (where an isolate was obtained) of B. bis-
settiae causing symptoms resembling mild neuroborreliosis has been described [11, 
67]. In North America where B. bissettiae can be commonly found at a regional 
scale and in certain habitat types [87–91], no patient isolates have been obtained 
from humans although B. bissettiae DNA was recovered from serum [92]. Borrelia 
valaisiana Wang et  al. 1997, has been asserted to be nonpathogenic for humans 
[93]. This Borrelia species is transmitted by Ixodes ricinus Linnaeus 1758, the main 
vector of human pathogenic Borrelia species in Europe (reviewed by [94, 95], see 
chapter “Pathogenesis and Immune Defense”), it utilizes avian reservoir hosts and 
is being found as frequently as B. garinii in certain regions [96]. Although it is 
found commonly in ticks, to date not a single human isolate of B. valaisiana has 
been acquired [93]. For the remaining species shown in Table 1.1, the human patho-
genic potential is unknown. Many of these species are transmitted by ticks that do 
not bite humans, which may explain why these spirochetes have not emerged as 
pathogens, although their lack of human pathogenicity may be because of their 
genetic makeup.

1.4	 �Ecology and Transmission Cycles

As the geographical distribution of the different Borrelia species depends on vector 
and host associations (putatively also their pathogenic potential), it may be worth to 
briefly consider the biology of ticks and hosts, both of which will be discussed in 
more detail in chapter “Tick ecology and the eco-epidemiology of Borrelia burg-
dorferi sensu lato” in this book.

Only hard ticks of the genus Ixodes serve as vectors for B. burgdorferi s.l. 
(reviewed by [71, 94, 95, 97, 98]. Ixodes ticks have three life stages that require a 
blood meal from a host: larvae, nymphs, and adult females. In between blood meals, 
the ticks drop off the host, digest the blood meal, and molt into the next developmen-
tal stage in the undergrowth or leaf litter of their habitats. Ticks with a generalist 

G. Margos et al.
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feeding behavior serve as bridge vectors for agents of human Lyme borreliosis. The 
most important vectors for B. burgdorferi s.l. include I. pacificus (west of the Rocky 
Mountains) and I. scapularis (east of Rocky Mountains, Northeast, Midwest and 
Southeast USA, and Canada) in North America, I. ricinus in Europe, and I. persulca-
tus in Eastern Europe and Asia [99]. Host-specific or nidicolous ticks such as I. uriae 
[100], I. hexagonus [101], I. frontalis [102, 103], or I. spinipalpis [104], have more 
or less strong host preferences and are thus less prone to bite (and therefore only 
rarely transmit Borrelia to) humans. However, these specialist ticks in many cases 
use identical hosts to more generalist vectors (such as I. ricinus, I. scapularis, I. paci-
ficus, and I. persulcatus); in this way, a potential connection arises between Borrelia 
transmission cycles of nonhuman-biting and human-biting ticks [105].

Ticks are armed with a cocktail of components that deflect adverse reactions by 
the host to the attached tick [106–110]. Microorganisms that utilize ticks as vectors 
can use tick salivary molecules to their own advantage during transmission, e.g., not 
being recognized by the host’s immune system (reviewed by [110–113]). This phe-
nomenon has been termed saliva-assisted transmission or SAT [114]. Nevertheless, 
some natural hosts are able to develop immune responses toward ticks leading to 
premature detachment of the feeding tick [115] and that can have an effect on patho-
gen transmission (see section Reservoir hosts).

Tick immunity to pathogens. In recent years, progress has been made in recogniz-
ing the complexity of the tick’s immune system (reviewed in [113, 116–118]). 
Ixodes possess a number of immune effectors and modulators such as recognition 
molecules that serve as lectins labeling foreign cells for immune attack, phagocy-
totic hemocytes, antimicrobial peptides, lysozymes, defensins, and a dityrosine net-
work (DTN) [119]. Signaling pathways such as Toll, an atypical IMD 
(Immunodeficiency), and JAK-STAT (Janus Kinase/Signal Transducers and 
Activators of Transcription) regulate the immune system and, interestingly, ticks 
also possess an indirect, cross-species signaling pathway that recognizes the cyto-
kine interferon gamma in the blood of the host [113, 116, 120–122]. The tick’s 
immune system may even be exploited by Borrelia as RNA interference studies of 
genes involved in the tick’s immune response have shown that depletion of expres-
sion may lead to suppression of Borrelia colonization in ticks [123]. Furthermore, 
induction of a protein of I. scapularis with a Reeler domain (PIXR) by Borrelia 
limits bacterial biofilm formation in the tick’s gut, thereby preventing alterations in 
the microbiome and promoting colonization by Borrelia [123]. Thus, it is likely that 
immune effectors play an important role in determining the competence of Ixodes 
species for Borrelia species and/or vice versa.

The microbiome of ticks. In the past decade, efforts have been devoted to study 
the tick’s microbiome in detail. Using high-throughput sequencing methods, initial 
studies on different Ixodes species (e.g., I. scapularis, I. ricinus, I. pacificus, and 
I. persulcatus) discovered a whole range of bacterial taxa associated with ticks. It 
showed that the microbiome of ticks consists of microorganisms associated with the 
outer surface of ticks, the gut, and endosymbiotic bacteria (reviewed by [124]). 
Bacterial genera that were found constituted known tick symbionts like 
Arsenophonus, Cardinium, Coxiella, Francisella, Lariskella, Midichloria, 

1  Characteristics of Borrelia burgdorferi sensu lato
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Rickettsia, Rickettsiella, Spiroplasma, and Wolbachia [125–131]. A more recent 
study used dissected tick tissues of questing I. scapularis to determine the “internal” 
microbiome and the “surface” microbiome. The authors found that in the majority 
of adults the gut microbiome of I. scapularis was limited in diversity [132]. The 
dominating bacteria were Rickettsia and B. burgdorferi. Only a minority of samples 
showed a high microbiome diversity with bacteria of the genera Bacillus and 
Pseudomonas, and the family Enterobacteriaceae in their midguts [132]. It remains 
to be investigated what impact the different “layers” of the microbiome have on the 
tick itself and the microorganisms it transmits.

Reservoir hosts (see also chapter “Pathogenesis and Immune Defense”). More 
than 100 vertebrate species can serve as host for generalist Ixodes ticks such as 
I. ricinus. Most of these species belong to the orders Rodentia, Eulipotyphla (for-
merly part of the Insectivores), Carnivores, Lagomorphs, as well as the classes Aves 
(here mostly Passeriformes and sea birds) and Reptiles. A fraction of these tick 
hosts can serve as hosts for Borrelia, among them various species of mice (genera 
Apodemus, Peromyscus, Neotoma), voles (genus Myodes, Microtus), shrews (gen-
era Sorex, Blarina), squirrels (Tamias, Sciurus), lizards, and ground-feeding pas-
serine birds (genera Turdus, Parus) (e.g., [25, 71, 78, 88, 133–147]).

However, experimental studies have shown that not all hosts that become infected 
with Borrelia species also serve as reservoirs (e.g., [147–149]. Complement sensi-
tivity or resistance matches the reservoir host association of Borrelia species well, 
with B. garinii surviving bird complement but lysed by rodent complement, while 
rodent-associated species such as B. afzelii survive rodent complement but are lysed 
by bird complement. Complement-active deer serum lysed all tested Borrelia spe-
cies suggesting that deer are nonpermissive as hosts for Borrelia [150–152]. The 
expression “host association” has been used to refer to “true” reservoir hosts of 
Borrelia as defined by Kahl and co-authors and Martin and co-authors [153, 154], 
i.e., only those hosts are considered reservoir competent that are able to acquire the 
bacteria from a competent vector tick and (critically) also to transmit it back to new 
vector ticks [1, 155]. The term “host association” was used instead of “host special-
ization” because Borrelia spirochetes are not “specialized” to infect only their res-
ervoir hosts, as may be the case for other directly transmitted or vector-borne 
infectious agents, e.g., [148].

The development of resistance to tick bites by a host may reduce the ability to 
transmit tick-borne pathogens to vector ticks [109, 156, 157]. One such example is 
the bank vole, Myodes glareolus. In comparison to the wood mouse, Apodemus 
sylvaticus, repeated exposure of M. glareolus to tick bites reduced the engorgement 
time and weight of ticks making them drop-off the host prematurely (i.e., before 
complete engorgement) [115]. Reduction of engorgement time limits the transmis-
sion of tick-borne pathogens [158–161].

Some studies have suggested that hosts, once infected with Borrelia, carry the 
infection lifelong [162]. However, experimental transmission studies using different 
isolates of B. burgdorferi s.s. have shown that the duration of infection may differ 
between strains of Borrelia [163, 164].

G. Margos et al.
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1.4.1	 �Infection of Ticks by Borrelia burgdorferi s.l.

Infection of ticks by Borrelia burgdorferi s.l. Borreliae are taken up by the tick dur-
ing the blood meal although the transmission efficiency may be variable depending 
on tick species, Borrelia species, or concomitant infections [161, 165–172]. The 
tick may feed for 16–48 h before the bacterium enters the tick gut [160, 173]. In the 
tick gut, the bacteria adhere to midgut cells via outer surface proteins. It has been 
suggested that OspA interacts with a tick midgut protein that was named tick recep-
tor for OspA (TROSPA) [118, 174]. Upon entering the tick midgut, during blood 
meal digestion, molting, and questing periods, the bacteria remain adhered to the 
midgut. When the tick takes the next blood meal, changes in environmental condi-
tions and the provided nutrients prompt the bacteria to divide and migrate through 
the midgut into the hemocoel and the salivary glands [175]. This is accompanied by 
changes in patterns of protein expression [45] due to regulatory factors responding 
to environmental cues, e.g., temperature and other physiological changes (reviewed 
by [3, 176]) (Fig. 1.2).

Although some studies have suggested that B. burgdorferi s.l. may create a bio-
film in vitro and in vivo [189, 190], biofilm production seems not to be required in 
the ticks’ midgut for spirochete colonization [123]. The spirochetes induce the 
expression of a tick protein of I. scapularis with a Reeler domain (PIXR), which 
prevents biofilm formation and appears to inhibit changes in the gut microbiome, 
supposedly giving Borrelia an advantage during the tick phase of their develop-
ment [123].

When characterization of the first genome of Borrelia isolate B31 was com-
pleted, it was quite astonishing to find that many of the genes encoded hypothetical 
proteins with unknown functions and no match in databases [27, 28]. In spite of 
intensive research efforts, the genetic basis for the host- or vector association is still 
not clear [3, 26, 98, 130, 187]. In contrast to other human pathogenic bacteria, 
B. burgdorferi s.l. lack pathogenicity islands or virulence factors and although sev-
eral proteins have been identified as virulence determinants, which factor exactly 
trigger human pathogenicity is currently still unknown (reviewed by [191, 192]).

1.5	 �Geographic Ranges of the Lyme Borreliosis Spirochetes

The interplay between competent vector ticks and reservoir hosts, their ecology, and 
migration pattern determines the geographic distribution of LB species (Fig. 1.3). 
The geographic ranges of the various B. burgdorferi s. l. species [193] are in each 
case limited to those locations in which both reservoir hosts and vector ticks are able 
to maintain natural transmission cycles [1, 2, 155, 194] (Fig. 1.3). Thus, one should 
be able to define the fundamental niche of each Borrelia species simply by taking 
account of where its vectors and hosts occur. However, many B. burgdorferi s.l. spe-
cies can utilize multiple vertebrate host species and a number can utilize more than 
one vector. In addition, ecological associations between borreliae, ticks, and 
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Fig. 1.2  Regulation of gene expression in Borrelia burgdorferi sensu lato (modified from [3] with 
permission from Nature Reviews Microbiology, and with  special thanks to Melissa Caimano). (a) 
The histidine kinase 1 (Hk1)–response regulatory protein 1 (Rrp1) and alternative RNA poly-
merase σ-factor RpoS global regulatory systems. Binding of ligands to the periplasmic sensor 
domains (D1, D2, and D3) of the hybrid histidine kinase Hk1 initiates the activation of the 
diguanylyl cyclase activity of Rrp1, resulting in the production of cyclic di-GMP (c-di-GMP) 
[177–179]. Phosphodiesterase A (PdeA) and PdeB degrade c-di-GMP to 5′-phosphoguanylyl-
(3′–5′)-guanosine (pGpG) and GMP, respectively [180, 181]. Activation of Rrp2 in  vitro and 
in vivo occurs via the high-energy phosphoryl donor acetyl-phosphate rather than by its presump-
tive cognate histidine kinase, Hk2 [182]. The function of Hk2 is currently unknown. Phosphorylated 
Rrp2, Borrelia oxidative stress regulator (BosR), and RpoN initiate transcription of rpoS ([183, 
184] and references therein). This is depicted as a trimeric complex, but the precise interactions 
between these proteins have yet to be determined. Putative BosR-binding sites (BSs) containing 
the direct repeat sequence TAAATTAAAT are shown; −24/−12 is the RpoN-binding site in the 
rpoS promoter [185]. RpoS in turn induces the expression of genes that are required during the 
mammalian-host phase of the spirochaete life cycle and represses the expression of tick-phase 
genes. (b) Expression of the Hk1–Rrp1 and RpoS global regulatory systems during the B. burgdor-
feri life cycle [177–179, 183, 184, 186]. In the flat nymph, both the Hk1–Rrp1 and the Rrp2–
RpoN–RpoS systems are inactive and only tick-phase genes are expressed. The nymphal blood 
meal activates both the Hk1-Rrp1 and Rrp2–RpoN–RpoS pathways. Expression of mammalian 
phase genes begins in concert with downregulation of tick-phase genes. Following inoculation into 
a mammalian host, the spirochaetes complete the process of adaptation; the Hk1–Rrp1 pathway is 
inactive, the Rrp2–RpoN–RpoS pathway is active, mammalian phase genes are expressed, and 
tick-phase genes are repressed. During larval acquisition of spirochaetes, Hk1–Rrp1 is activated, 
probably at the feeding site, whereas the Rrp2–RpoN–RpoS system is inactivated. Mammalian-
phase genes are repressed, expression of tick-phase genes begins, and ingested spirochaetes bind 
to the larval midgut epithelium via OspA and possibly other receptors [186–188]. GGDEF, a con-
served motif present in diguanylyl cyclases; Hpt, histidine-containing phosphotransfer domain; 
HTH, helix–turn–helix domain; N, amino; PAS, putative sensor domain for Hk2; Rec, 
receiver domain

reservoir hosts are not all equivalent in strength, thus, the realized niche actually 
occupied by each B. burgdorferi s.l. species is likely to be less than its fundamental 
niche [26, 155]. The actual spatial limitation for each spirochete species (i.e., its 
realized niche) will be roughly equivalent to the sum of all those areas in which both 
at least one vector species and one host species occur at sufficiently high density to 
maintain its transmission cycle. The basic reproduction number R0 presents a quan-
tification of the biological framework and efficiency of the transmission cycle and 
its value can serve as a measure for population fitness [195]. For every local popula-
tion of the bacterium, the value of R0, summed over all its hosts and vectors, must 
be >1 for transmission cycles to be sustained [155, 196, 197]. As the presence of 
less efficient vectors and hosts will impact negatively on the value of R0 achieved by 
the “best” vectors and hosts, one cannot simply add up values of R0 that have been 
determined for each vector and each host under laboratory conditions [195, 198]. 
The effects caused by nonpermissive vectors and/or hosts are very important to 
consider as they can influence the success of the bacterium in entirely opposite ways 
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[194]. For example, some potential mammalian hosts (e.g., large animals such as 
deer) may be colonized by B. burgdorferi s.l. spirochetes when bitten by an infected 
tick vector. They are, however, nonpermissive when it comes to transmission of the 
bacteria to a new tick and feeding on a deer may actually clear a B. burgdorferi s.l. 
infection in a tick [150, 199]. Following this, the presence of large numbers of deer 
may actually suppress the spirochete infection rate of true reservoir hosts in that 
location because ticks are more likely to feed on deer than on small mammals. On 
the other hand, the presence of deer in a particular geographic region may permit the 
population density of vector ticks to rise, which would increase the likelihood of 
successful transmission of spirochetes from infected reservoir hosts to ticks and 
thus increase R0 [200–203].

The nonuniform distribution pattern of Borrelia genospecies observed in field 
studies suggests that apart from host associations, vector associations do indeed 
play an important role in limiting their geographic distribution ranges [193]. Some 
Borrelia species are able to utilize a wide range of vectors [71, 204], for example, 
B. burgdorferi s.s. are able to utilize I. scapularis, I. pacificus, I. spinipalpis, and 
I. affinis as vector in North America, as well as I. ricinus in Europe but they have not 
been found in I. persulcatus [69, 138]. Borrelia garinii can be vectored by I. persul-
catus, I. pavlovskyi, I. ricinus, and I. uriae. Consequently, B. garinii’s geographic 
distribution ranges from France to Japan and it can be found in sea bird colonies in 
the Northern and Southern Hemisphere. Borrelia garinii has been found in sea bird 
colonies in Newfoundland [205] but it has not been discovered in North America in 
I. scapularis dominated regions or in I. pacificus [90, 206–209]. Borrelia valaisi-
ana, also a bird-adapted Borrelia species, is frequently found in Europe associated 
with I. ricinus but only a single occurrence in Russia has been recorded [210] 

Fig. 1.3  Global distribution of B. burgdorferi sensu lato (from [26]). *In recent years, B. turdi has 
also been found in Europe in enzootic cycles driven by I. frontalis and passerine bird species [145]. 
For sake of clarity this is not indicated in the figure

G. Margos et al.
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suggesting that I. persulcatus is not a competent vector. Accordingly, in the overlap-
ping zone of I. ricinus and I. persulcatus in Eastern Europe, the prevalence of B. val-
aisiana is higher in I. ricinus than in I. persulcatus [211].

A particular interesting case showing that differential vector adaptation plays an 
essential role in the geographic distribution of Borrelia species is that of B. bavar-
iensis [13]. The B. bavariensis population in Western Europe differs genetically 
from that in Eastern Europe and Asia and they form sister clades in phylogenies not 
only based on MLST housekeeping genes but also based on >100 single-copy genes 
[212]. In addition, the Eastern population of B. bavariensis appears to be present 
only in regions where I. persulcatus serves as vector and it shows much higher 
genetic diversity than the populations in Western Europe. The population that is 
adapted to I. ricinus (Western Europe) shows very little genetic heterogeneity and 
appears almost clonal suggesting that this population arose recently via a vector 
switch [13, 26, 32].

1.6	 �Molecular Typing of B. burgdorferi s.l.

Because species of the genus Borrelia are difficult to distinguish by morphological 
criteria, approaches that can accurately identify species and strains within species 
are critical for epidemiological, clinical, and evolutionary studies. Early tools to 
discriminate between different Borrelia species included DNA-DNA hybridization, 
ribotyping, DNA sequencing of 16S rRNA or other conserved genes, PCR-based 
restriction fragment length polymorphism (RFLP) analysis, random amplified poly-
morphic DNA (RAPD) fingerprinting, or pulsed-field gel electrophoresis (RFLP) 
[213]. Single loci such as the outer surface proteins A (OspA), outer surface protein 
C (OspC), the intergenic spacer (IGS) region between the duplicated 5S and 23S 
rRNA [214], the 23S rRNA locus or flagellin (flaB) have been used for species and 
strain discrimination and are still popular targets for diagnostic purposes, e.g., [7, 
23, 89, 215–223]. These targets have been used either individually or in combina-
tion for molecular characterization of B. burgdorferi s.l. from cultured isolates or 
directly on clinical samples, samples from mammalian hosts or ticks.

Since 2006/2007 multilocus sequence analysis (MLSA) has replaced DNA–
DNA hybridization for species delimitation, epidemiological studies, or strain iden-
tification in B. burgdorferi s.l. and various multilocus sequence typing (MLST) 
schemes have been proposed (e.g., [14, 16, 224–227]). Not all of them use exclu-
sively housekeeping genes as originally proposed for bacterial epidemiology and 
population-level studies [228, 229]. The system currently maintained at the Pubmlst 
database (http://pubmlst.org/borrelia/) at the University of Oxford [230] uses eight 
housekeeping loci that are encoded on the main chromosome; these are clpA, clpX, 
nifS, pepX, pyrG, recG, rplB, and uvrA [224, 225]. This MLST scheme has been 
shown to have great potential not only for Borrelia species discrimination [10–13, 
15, 19, 24, 73, 90] but also for dissecting relationships of bacterial populations [25, 
69, 70, 81, 205, 208, 209, 231–237].

1  Characteristics of Borrelia burgdorferi sensu lato

http://pubmlst.org/borrelia/


16

In recent years, next-generation sequencing methods giving additional power for 
species and isolate determination have been explored for Borrelia typing and draft 
genome assembly, population genetics studies, improvement of MLST sequencing, 
or investigation of pathogenicity [31–33, 72, 238–240]. Currently various technolo-
gies for next-generation sequencing are available, the most popular are Illumina 
Sequencing, Pacific Biosciences single-molecule real-time (SMRT), and Oxford 
Nanopore technologie (ONT). While Illumina provides highly accurate consensus 
contigs, long read methods (SMRT, ONT) vastly improve genome assemblies, and 
hybrid assemblies of both, accurate short and long reads, have been shown to give 
best results for assembly of Borrelia genomes [24, 46, 61, 240, 241]. In future, such 
methods will undoubtedly help to unveil the genetic basis of host and vector adapta-
tion and factors involved in human pathogenicity via comparative genomics.

1.7	 �Outlook

In this chapter, we have briefly summarized characteristics of the pathogen(s) that 
can cause Lyme disease and related bacterial genospecies. Much progress has been 
made in recent years to understand the diversity of the bacteria, their complex ecol-
ogy and evolution. Host- and vector associations have been identified as the main 
drivers of diversification. However, more research needs to be conducted to under-
stand the genetic basis for such associations and to understand what confers human 
pathogenicity on B. burgdorferi s.l.
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