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Introduction

26.03.2022
Historically, tick-associated pathogens can be tracked back to the book of Exodus 

in the Hebrew Bible. The plague (“murrain”) visited upon the cattle of Pharaoh 
Ramses II is probably the first historical reference to a disease transmitted by ticks 
[1]. It took until the late eighteenth century, however, to gather scientific evidence 
for the existence of tick-borne microorganisms and to attain a better understanding 
of the circumstances of transmission and the life cycles of such pathogens. In 1893, 
Smith and Kilbourne discovered that the causative agent of Texas cattle fever, now 
known as the protozoan Babesia bigemina, is transmitted by ticks and were the first 
to determine these arthropods as important vectors of pathogens [2]. McCalla and 
Brereton further substantiated the importance of ticks in the transmission of disease 
in 1908 in the USA. A tick from a patient with Rocky Mountain spotted fever was 
at that time used to transmit the infection to two healthy volunteers [3]. In 1909, 
Ricketts discovered the eponymous genus of bacteria responsible for Rocky 
Mountain spotted fever—Rickettsia [4]. Up to now, more than 50 tick-borne patho-
gens—parasites, bacteria and viruses—have been found to be of considerable con-
cern to humans exposed to tick bites in Europe [5].

Today, Lyme borreliosis (LB)—an infectious disease caused by tick-borne spiro-
chetes of the Borrelia burgdorferi sensu lato (s.l.) complex—is the most commonly 
reported vector-borne infection in the northern hemisphere [6, 7]. The geographical 
presence of the disease thereby follows a belt-like distribution and mirrors the dis-
tribution of ixodid ticks in this part of the world [6]. In central Europe, Ixodes rici-
nus is primarily known as the main vector of B. burgdorferi s.l. and tick-borne 
encephalitis (TBE) virus, which taken together are estimated to infect some 100,000 
individuals per year. Moreover, studies based on polymerase chain reaction (PCR) 
and DNA sequence analyses have shown that tick-borne pathogens other than 
B. burgdorferi s.l., such as Borrelia miyamotoi, Anaplasma phagocytophilum, 
Neoehrlichia mikurensis, Rickettsia spp. and Babesia spp., are also widely prevalent 
in the three-host tick I. ricinus, whose larvae, nymphs, and adults feed on different 
hosts, including virtually any warm-blooded animal and humans [5, 8].

According to the Centers for Disease Control and Prevention (CDC), the inci-
dence in the USA was 7.9/100,000 in 2014, with the majority of cases reported in 
the Northeastern and upper Midwestern States [9]. In the USA, 30,000–40,000 
cases are reported annually through surveillance each year with an estimated 
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476,000 patients treated during 2010–2018 [7]. In Europe, incidence ranges of 
0.001/100,000 in Italy (2001–2005) up to 188.7/100,000 in Slovenia (2014) have 
been published [8]. “Lyme disease”, as it was called, emerged when Steere et al. 
[10] investigated an arthritis epidemic among young children in the community of 
Old Lyme, Connecticut, USA, in the late 1970s [10], but the infection was known to 
medicine in Europe much earlier.

Typical cutaneous manifestations are the most frequent signs of the disease and 
was described at the end of the nineteenth century and the beginning of the twenti-
eth century by physicians such as Buchwald, Pick, Herxheimer, Hartman, Afzelius 
and Lipschütz [11]. Additionally, two French physicians, Garin and Bujadoux, in a 
landmark paper published in 1922, reported a patient who developed erythema 
chronicum migrans followed by painful meningoradiculitis [12]. This patient was 
reportedly bitten by a tick and had a positive Bordet-Wasserman test, which was 
used at that time to diagnose syphilis. Although the test was positive, the patient 
obviously did not have syphilis, and the authors concluded he had a tick-borne dis-
ease caused by a spirochete that induced cutaneous and neurological manifestations 
and was different from the causative agent of syphilis, Treponema pallidum [12]. 
The causative agent of LB, however, remained a mystery until the discovery of spi-
rochetal bacteria in the midgut of ticks collected from Long Island, New York, in 
1982 by the Swiss-borne entomologist Willy Burgdorfer [13]. The subsequent epi-
demiological and laboratory establishment of LB as a new multi-system infectious 
disease entity is one of the most important biomedical discoveries of the twentieth 
century [14]. In the years after the isolation of the causative bacterium, it was 
quickly shown that there were significant differences in disease expression between 
North America and Europe. Furthermore, it was established that in North America 
there was just one predominant pathogenic species of borrelia (B. burgdorferi sensu 
stricto) and one recently discovered minor one (B. mayonii), while there were at 
least four different pathogenic species in Europe [6]. The infection may occur with-
out signs and symptoms, but in clinically apparent cases, typical symptoms associ-
ated with infection include erythema migrans (EM), neurological manifestations 
(e.g. polymeningoradiculoneuritis, also known as Bannwarth’s syndrome), Lyme 
arthritis (LA) and acrodermatitis chronica atrophicans (ACA). Such manifestations, 
together with some other rare ones, had been well recognized in Europe years before 
the final discovery of the causative pathogen B. burgdorferi s.l. [11]. Over the last 
few decades, tremendous progress has been achieved in well-recognized treatment 
options [6]. Nevertheless, LB, like syphilis, can behave as a chameleon of clinical 
medicine for inexperienced clinicians, resulting in a cornucopia of problems, espe-
cially when it comes to direct and indirect laboratory diagnosis of the pathogen and 
consideration of the many potential differential diagnoses [15].

This is why we see an urgent need for a practical medical textbook for doctors 
and students devoted to all the different facets of the diagnosis and clinical manage-
ment of Lyme borreliosis. In addition, special chapters cover differences in disease 
manifestations between Europe and North America, the pathogenicity of the patho-
gens, the life cycle and biology of the vectors, and also important tick-borne patho-
gens other than B. burgdorferi s.l. that are important for the differential diagnosis of 
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tick-borne diseases in Europe. The contributors to this book are all internationally 
well-known specialists in the field of infectious diseases and tick-borne pathogens. 
We aim to provide a well-structured and practice-oriented presentation of clinical 
management, and laboratory diagnosis of LB, and other important tick- borne dis-
eases in Europe. We also discuss the current pitfalls and limitations, as well as 
future prospects in this challenging and rapidly moving area of medicine.

Frankfurt/Main, Hessen, Germany Klaus-Peter Hunfeld 
Belfield, Dublin, Ireland Jeremy Gray
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1Characteristics of Borrelia burgdorferi 
sensu lato

Gabriele Margos, Sabrina Hepner, and Volker Fingerle

1.1  Introduction

The microorganisms that can cause Lyme borreliosis in humans are spirochetal bac-
teria (Fig. 1.1) that comprise the Borrelia burgdorferi sensu lato (s.l.; Latin: in the 
broad sense) species complex. The bacteria live a parasitic lifestyle and are main-
tained in natural transmission cycles between tick vectors of the Ixodes ricinus–per-
sulcatus species complex and small- to medium-sized vertebrate reservoir 
hosts [1–3].

It had been suspected since the beginning of the last century that tick-borne 
pathogens may cause symptoms that are now known as Lyme borreliosis (reviewed 
by [4]). However, it was not until the early 1980s that the causative agent was shown 
to be a spirochetal bacterium that utilizes ticks as vectors [5]. The bacterium was 
named Borrelia burgdorferi Johnson et al. 1984 [6]. Subsequent studies unraveled 
the genetic and ecological heterogeneity of borreliae in Europe, Asia, and North 
America and several new genospecies were named, e.g., Borrelia garinii Baranton 
et al. 1992 and Borrelia afzelii Baranton et al. 1992; (Table 1.1) [7–25]. Since then, 
the name B. burgdorferi s.l. has been used to refer to the species complex, while 
B. burgdorferi sensu stricto (s.s.; Latin: in the strict sense) refers to the species first 
discovered by W. Burgdorfer and colleagues [5, 6]. Today the species complex con-
tains 23 named and proposed genospecies (Table 1.1). The species are non- uniformly 
distributed mainly between the northern 40° and 60° latitude (Fig. 1.3). This distri-
bution reflects the presence of competent tick vector and reservoir host species [26].

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93680-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-93680-8_1#DOI
mailto:Gabriele.margos@lgl.bayern.de
mailto:Sabrina.hepner@lgl.bayern.de
mailto:volker.fingerle@lgl.bayern.de
mailto:volker.fingerle@lgl.bayern.de
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Fig. 1.1 Morphology of Borrelia (adapted from [54] with permission from Nature Reviews 
Microbiology). (a) light microscopy of Borrelia and schematic drawing of transection of a spiro-
chete; (b) schematic representation of a spirochete showing the protoplasmic space with inserted 
flagella; (c) magnification from (b) of the insertion site of a flagellum into the cytoplasmic 
membrane
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Table 1.1 The Borrelia burgdorferi sensu lato species complex

Borrelia 
species

Type 
strain

Reservoir 
hosts Vector species Distribution

Human 
pathogenicity

B. afzelii VS461 Rodents, 
insectivores

Ixodes ricinus, 
Ixodes 
persulcatus, 
Ixodes 
hexagonus

Asia, 
Europe

Yes

B. americana SCW-41 Birds, rodents Ixodes minor, 
Ixodes pacificus

North 
America

Unknown

B. andersonii 
(p)

21,038 Birds, rabbits Ixodes dentatus North 
America

Unknown

B. bavariensis PBi Rodents Ixodes ricinus, 
Ixodes 
persulcatus

Asia, 
Europe

Yes

B. bissettiae a DN-127 Rodents Ixodes 
spinipalpis, 
Ixodes pacificus, 
Ixodes ricinus

Europe, 
North 
America

Potentially

B. burgdorferi 
sensu stricto

B31 Birds, rodents, 
insectivores, 
carnivores

Ixodes ricinus, 
Ixodes 
scapularis, 
Ixodes affinis, 
Ixodes pacificus, 
Ixodes minor, 
Ixodes 
hexagonus

Europe, 
North 
America

Yes

B. 
californiensis

CA446 Rodents Ixodes pacificus, 
Ixodes 
spinipalpis, 
Ixodes jellisoni

North 
America

Unknown

B. 
carolinensis

SCW-22 Rodents Ixodes minor North 
America

Unknown

B. chilensis 
(p)

VA1 (p) Rodents Ixodes stilesi South 
America

Unknown

B. garinii 20047 Birds Ixodes ricinus, 
Ixodes 
persulcatus, 
Ixodes uriae b

Asia, 
Europe

Yes

B. japonica HO14 Rodents Ixodes ovatus Asia Unknown
B. 
kurtenbachii

25015 Rodents ? North 
America

Potentially

B. lanei CA28–
91

Lagomorphs? Ixodes 
spinipalpis, 
Ixodes pacificus

North 
America

Unknown

B. lusitaniae PoTiB2 Lizards Ixodes ricinus Europe Potentially
B. maritima CA690 ? ? North 

America
Unknown

B. mayonii M14–
1420

Rodents? Ixodes 
scapularis

North 
America

Yes

(continued)

1 Characteristics of Borrelia burgdorferi sensu lato
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1.2  Borrelia Genomics and Cell Biology

Genomics. The first genome of Lyme borreliosis group spirochete to be completely 
sequenced was that of B. burgdorferi s.s. isolate B31 [27]. The genome turned out 
to be unusual for bacteria: it consisted of a large linear chromosome of about 910 
kbp and of 12 linear and 9 circular plasmids which make up another 600 kbp of 
DNA sequence, a substantial contribution to the total genome of B. burgdorferi s.s. 
[27–29]. The genomic structure, i.e., consisting of a linear chromosome and circular 
as well as linear plasmids, was found to be maintained in all species investigated so 
far [19, 24, 30–33]. In B31, the main chromosome contains 820 open reading frames 
(803 protein-coding sequences, 17 pseudogenes; 5 rRNA, 32 tRNA, 3 ncRNA), 
10% of which match hypothetical proteins and 29% have no match in a database. 
The G + C content of the chromosome is around 28% [27, 34]. The plasmids in B31 
range in size from 5 to 60 kbp, contain additional 700 coding sequences of which 
>90% have no convincing database match outside the genus Borrelia [27, 28]. Main 
chromosome and linear plasmids are terminated by covalently closed hairpin struc-
tures [35–37] which are created involving a telomere resolvase, ResT, an enzyme 
encoded on plasmid cp26 [38, 39]. Plasmids may be lost under in vitro culture con-
ditions [40–43], but they are essential for completion of the complex B. burgdorferi 
s.l. life cycle in nature [44, 45].

Initially, plasmids have been named according to whether they are linear or cir-
cular and according to size, e.g., lp54 for a 54 kbp linear plasmids, cp26 for a 26 kbp 
circular plasmid [28]. However, since several plasmids of similar size have been 
found in a single isolate, and size differences of the same plasmid have been noticed 
in different isolates, recently plasmids are typed according to their PFam32 locus, 
which supposedly is homologous to plasmid partitioning protein (ParA) encoding 

Borrelia 
species

Type 
strain

Reservoir 
hosts Vector species Distribution

Human 
pathogenicity

B. sinica CMN3 Rodents Ixodes ovatus Asia Unknown
B. spielmanii PC-Eq17 Rodents Ixodes ricinus, 

Ixodes 
hexagonus

Europe Yes

B. tanukii Hk501 Rodents Ixodes tanuki Asia Unknown
B. turdi Ya501 Birds Ixodes turdus, 

Ixodes frontalis, 
Ixodes ricinus

Asia, 
Europe

Unknown

B. valaisiana VS116 Birds Ixodes ricinus Europe No
B. yangtzensis Okinawa 

CW62
Rodents Ixodes 

granulatus
Asia Potentially

Candidatus 
B. aligera

NA Birds? ? Europe Unknown

(p) proposed, a formerly B. bissettii, b also in sea bird colonies in Canada, NA not applicable

Table 1.1 (continued)

G. Margos et al.
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sequences in other bacteria [29]. Apart from PFam32, related loci (PFam49, 
PFam52, PFam57/60) may be involved in autonomous plasmid replication and 
maintenance but their function is yet to be confirmed [39, 46].

Perhaps as a result of the parasitic lifestyle, B. burgdorferi s.l. has very few genes 
for biosynthesis of cell constituents [27]. The majority of chromosomal genes 
encode proteins for housekeeping and metabolic functions, while many of the genes 
encoding outer surface proteins required for interaction with host or vector are 
located on plasmids. Analyses of plasmid sequences showed that there have been 
extensive rearrangements, and plasmid numbers and structures vary not only 
between genospecies but also between strains of a single species [29, 30, 46, 47]. 
Plasmids of the cp32 family have been shown to contain prophages, perhaps facili-
tating rearrangements and/or exchange of genetic material [46, 48, 49]. Information 
on B. burgdorferi s.l. genome content and structure has been largely gained from 
strains of the genospecies B. burgdorferi s.s. [29, 47, 50]. Although for other Borrelia 
genospecies genomes have been sequenced, the whole complement of plasmids has 
not been completed for all of them [30, 32, 33, 46, 51], (http://BorreliaBase.org).

Cell biology. Borreliae are helical bacteria. Their size is 0.2–0.3 μm wide and 
10–30 μm long. Borrelia are not gram-negative, they lack the lipopolysaccharide 
(LPS) and the protein richness that are typical for the cell surface membrane of 
gram-negative bacteria [52, 53]. Instead, they have a diderm cell envelope consist-
ing of an outer surface membrane separated by a periplasmic space from the cyto-
plasmic membrane, which is covered by a peptidoglycan layer. Usually 7–11 
flagella are inserted near the end of the protoplasmic cylinder of the cell extending 
into the periplasmic space (Fig. 1.1) [54]. These endoflagella give the bacteria a 
unique form of motility permitting them to move in viscous media. They can flex 
and bend, propel themselves forwards and backwards and rotate (non-translational 
mode of motility) [55, 56] and this motility is crucial for host/vector infection [57].

Inserted in the outer surface membrane via lipid moieties are outer surface mem-
brane proteins (Osps); >150 potential Osps have been identified [27]. They have 
been named alphabetically in order of their identification, e.g., OspA, OspB, OspC, 
etc. Many of these proteins have functions in the interaction of the bacteria with 
their environment (host or vector). Table 1.2 provides a non-exhaustive list.

Apart from these Osps, there are outer membrane proteins (OMPs) that are inte-
gral membrane proteins and may serve as transporters for nutrients or other essen-
tial molecules that borreliae take up from the host environment. Freeze fracture 
electron microscopy has shown that the outer membrane contains relatively few 
transmembrane proteins [53]. These studies also provided evidence that blebs, sur-
rounded by a membrane(s) resembling the outer membrane and/or the cytoplasmic 
membrane, are shed from Borrelia cells suggesting that blebs are pinched off sec-
tions of the cells.

Many other outer membrane and internal proteins are important for the life cycle 
of B. burgdorferi s.l. and intensive research efforts are being made to understand 
their function and role in the life cycle of these bacteria (e.g., [44, 58–60]).

1 Characteristics of Borrelia burgdorferi sensu lato
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Table 1.2 A non-exhaustive list of outer surface proteins and transmembrane proteins of B. burg-
dorferi s.l.

Protein name

Gene 
designation 
B31

Proposed biological 
role Size

Outer surface proteins (Osp)
OspA/
OspB

Outer surface 
protein A/B

BB_A15/
BB_A16

Interaction with tick 
receptor TROSPA

31 kDa/34 kDa

OspC Outer surface 
protein C

BB_B19 Early infection of 
vertebrate host

22 kDa

OspD Outer surface 
protein D

Unknown, 
potentially 
adherence to the 
tick midgut

28 kDa

BptA Borrelial persistence 
in ticks A

BBE16

P35 BBA64 Unknown, 
tick-to-host 
transmission or 
vertebrate infection

35 kDa

DbpA/
DbpB

Decorin-binding 
protein A/B

BBA24/BBA25 Interaction with 
collagen fibers; 
decorin binding

18 kDa/17 kDa

BBK32 BBK32 Binding to 
fibronectin

47 kDa

OspF Outer surface 
protein F protein 
family

BBM38/ 
BBO39/ 
BBR42

Unknown, potential 
adhesin

29 kDa/26 kDa 
/25 kDa

VLsE Variable major 
protein-like 
sequence expressed

BB_F0041 Immune evasion 35 kDa

OspE Outer surface 
protein E protein 
family

BBL39/
BBN38, 
(BBP38 
identical to 
BBL39)

Evasion of 
complement lysis 
(CRASP)

ErpG, 
ErpL, 
ErpX, 
ErpY

OspE-related 
proteins

Complement 
evasion?

CspA CRASP-1 BBA68 Evasion of 
complement lysis

27 kDa

CspZ CRASP-2 BBH06 Evasion of 
complement lysis

27 kDa

BBA36 BBA36 Unknown
BBA65 BBA65 Unknown
BBA66 BBA66 Unknown
BBA69 BBA69 Unknown
BBA71 BBA71 Unknown
BBA73 BBA73 Unknown

G. Margos et al.
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1.3  The Borrelia burgdorferi Sensu Lato Species Complex

The phylum Spirochaetes Cavalier-Smith 2002 comprises a group of helically 
shaped bacteria, several of which cause human diseases such as Leptospira, 
Treponema, Brachyspira, and Borrelia. The genus Borrelia contains the relapsing 
fever group of spirochetes (e.g., Borrelia recurrentis causing louse-borne human 
relapsing fever and several species causing tick-borne relapsing fever), the Lyme 
borreliosis group of spirochetes (B. burgdorferi s.l. complex), and a group of rep-
tile- and echidna-associated spirochetes [61–64]. In 2014, based on investigations 
on conserved signature proteins (CSP), conserved signature insertions/deletions 
(indels) (CSI), and average nucleotide identity (ANI), the genus was divided into 
two genera: Borrelia containing the relapsing fever species and Borreliella for the 
Lyme borreliosis species [65]. The third clade, reptile- and echidna-associated spe-
cies were not considered. Using different methodology of genus delimitation, 
namely the percentage of conserved proteins (PCOP) [66], recently all groups were 
reunited in the genus Borrelia [62]. This work also showed that reptile- and echidna- 
associated species do not genetically resemble relapsing fever species but take a 
somewhat intermediate position between relapsing fever and Lyme borreliosis spi-
rochetes [64].

The B. burgdorferi s.l. species complex currently consists of 23 named species 
(Table  1.1), six of which are assured human pathogens. Five of the species 

Protein name

Gene 
designation 
B31

Proposed biological 
role Size

BBI42 BBI42 Unknown
Integral outer membrane proteins (OMP)
P66 BB0603 Putative porin 66 kDa
P13 BB0034 Putative porin 13 kDa
Lmp1 Surface-located 

membrane protein 1
BB0210 Protection from 

host adaptive 
immunity

128 kDa

BesA/
BesB/
BesC

Borrelia efflux 
system proteins A, 
B, C

Bb0141/
Bb0140/
Bb0142

Putative bacterial 
resistance-
nodulation-division 
(RND)-type 
multidrug-efflux 
system

BamA β-Barrel assembly 
machine protein

bb0795 β-Barrel assembly 
machine

94 kDa

BB0405 BB0405 Unknown 22 kDa
Bgp Borrelia 

glycosaminoglycan-
binding protein

bb0588 Glycosaminoglycan 
(GAG)-binding 
protein; cell 
adhesion

Table 1.2 (continued)
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pathogenic to humans occur in Europe including B. afzelii, Borrelia bavariensis 
Margos et al. 2013, B. burgdorferi s.s., B. garinii, and Borrelia spielmanii Richter 
et al. 2006 [67, 68]. Borrelia afzelii, B. bavariensis, and B. garinii also occur in 
Eastern Europe and Asia [69–71].

In North America, two species are the cause of human Lyme disease, these are 
B. burgdorferi s.s. and Borrelia mayonii Pritt et al. 2016 [72–75]. The latter spe-
cies was only discovered in 2016 in patients visiting the Mayo Clinic in Wisconsin 
[73]. Since then more symptomatic patients have been found to be infected with 
B. mayonii [72].

Two additional species have been discussed as putative human pathogens; these 
are Borrelia lusitaniae Le Fleche et al. 1997 and Borrelia bissettiae Margos et al. 
2016. Borrelia lusitaniae can be commonly found in questing ticks in countries 
neighboring the Mediterranean Sea [76–81], and so far two cases have been 
described in the literature incriminating B. lusitaniae as a suspected human patho-
gen [82, 83]. On the other hand, B. bissettiae has rarely been found in questing ticks 
in Europe [84–86]. So far one human case (where an isolate was obtained) of B. bis-
settiae causing symptoms resembling mild neuroborreliosis has been described [11, 
67]. In North America where B. bissettiae can be commonly found at a regional 
scale and in certain habitat types [87–91], no patient isolates have been obtained 
from humans although B. bissettiae DNA was recovered from serum [92]. Borrelia 
valaisiana Wang et  al. 1997, has been asserted to be nonpathogenic for humans 
[93]. This Borrelia species is transmitted by Ixodes ricinus Linnaeus 1758, the main 
vector of human pathogenic Borrelia species in Europe (reviewed by [94, 95], see 
chapter “Pathogenesis and Immune Defense”), it utilizes avian reservoir hosts and 
is being found as frequently as B. garinii in certain regions [96]. Although it is 
found commonly in ticks, to date not a single human isolate of B. valaisiana has 
been acquired [93]. For the remaining species shown in Table 1.1, the human patho-
genic potential is unknown. Many of these species are transmitted by ticks that do 
not bite humans, which may explain why these spirochetes have not emerged as 
pathogens, although their lack of human pathogenicity may be because of their 
genetic makeup.

1.4  Ecology and Transmission Cycles

As the geographical distribution of the different Borrelia species depends on vector 
and host associations (putatively also their pathogenic potential), it may be worth to 
briefly consider the biology of ticks and hosts, both of which will be discussed in 
more detail in chapter “Tick ecology and the eco-epidemiology of Borrelia burg-
dorferi sensu lato” in this book.

Only hard ticks of the genus Ixodes serve as vectors for B. burgdorferi s.l. 
(reviewed by [71, 94, 95, 97, 98]. Ixodes ticks have three life stages that require a 
blood meal from a host: larvae, nymphs, and adult females. In between blood meals, 
the ticks drop off the host, digest the blood meal, and molt into the next developmen-
tal stage in the undergrowth or leaf litter of their habitats. Ticks with a generalist 
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feeding behavior serve as bridge vectors for agents of human Lyme borreliosis. The 
most important vectors for B. burgdorferi s.l. include I. pacificus (west of the Rocky 
Mountains) and I. scapularis (east of Rocky Mountains, Northeast, Midwest and 
Southeast USA, and Canada) in North America, I. ricinus in Europe, and I. persulca-
tus in Eastern Europe and Asia [99]. Host-specific or nidicolous ticks such as I. uriae 
[100], I. hexagonus [101], I. frontalis [102, 103], or I. spinipalpis [104], have more 
or less strong host preferences and are thus less prone to bite (and therefore only 
rarely transmit Borrelia to) humans. However, these specialist ticks in many cases 
use identical hosts to more generalist vectors (such as I. ricinus, I. scapularis, I. paci-
ficus, and I. persulcatus); in this way, a potential connection arises between Borrelia 
transmission cycles of nonhuman-biting and human-biting ticks [105].

Ticks are armed with a cocktail of components that deflect adverse reactions by 
the host to the attached tick [106–110]. Microorganisms that utilize ticks as vectors 
can use tick salivary molecules to their own advantage during transmission, e.g., not 
being recognized by the host’s immune system (reviewed by [110–113]). This phe-
nomenon has been termed saliva-assisted transmission or SAT [114]. Nevertheless, 
some natural hosts are able to develop immune responses toward ticks leading to 
premature detachment of the feeding tick [115] and that can have an effect on patho-
gen transmission (see section Reservoir hosts).

Tick immunity to pathogens. In recent years, progress has been made in recogniz-
ing the complexity of the tick’s immune system (reviewed in [113, 116–118]). 
Ixodes possess a number of immune effectors and modulators such as recognition 
molecules that serve as lectins labeling foreign cells for immune attack, phagocy-
totic hemocytes, antimicrobial peptides, lysozymes, defensins, and a dityrosine net-
work (DTN) [119]. Signaling pathways such as Toll, an atypical IMD 
(Immunodeficiency), and JAK-STAT (Janus Kinase/Signal Transducers and 
Activators of Transcription) regulate the immune system and, interestingly, ticks 
also possess an indirect, cross-species signaling pathway that recognizes the cyto-
kine interferon gamma in the blood of the host [113, 116, 120–122]. The tick’s 
immune system may even be exploited by Borrelia as RNA interference studies of 
genes involved in the tick’s immune response have shown that depletion of expres-
sion may lead to suppression of Borrelia colonization in ticks [123]. Furthermore, 
induction of a protein of I. scapularis with a Reeler domain (PIXR) by Borrelia 
limits bacterial biofilm formation in the tick’s gut, thereby preventing alterations in 
the microbiome and promoting colonization by Borrelia [123]. Thus, it is likely that 
immune effectors play an important role in determining the competence of Ixodes 
species for Borrelia species and/or vice versa.

The microbiome of ticks. In the past decade, efforts have been devoted to study 
the tick’s microbiome in detail. Using high-throughput sequencing methods, initial 
studies on different Ixodes species (e.g., I. scapularis, I. ricinus, I. pacificus, and 
I. persulcatus) discovered a whole range of bacterial taxa associated with ticks. It 
showed that the microbiome of ticks consists of microorganisms associated with the 
outer surface of ticks, the gut, and endosymbiotic bacteria (reviewed by [124]). 
Bacterial genera that were found constituted known tick symbionts like 
Arsenophonus, Cardinium, Coxiella, Francisella, Lariskella, Midichloria, 

1 Characteristics of Borrelia burgdorferi sensu lato



10

Rickettsia, Rickettsiella, Spiroplasma, and Wolbachia [125–131]. A more recent 
study used dissected tick tissues of questing I. scapularis to determine the “internal” 
microbiome and the “surface” microbiome. The authors found that in the majority 
of adults the gut microbiome of I. scapularis was limited in diversity [132]. The 
dominating bacteria were Rickettsia and B. burgdorferi. Only a minority of samples 
showed a high microbiome diversity with bacteria of the genera Bacillus and 
Pseudomonas, and the family Enterobacteriaceae in their midguts [132]. It remains 
to be investigated what impact the different “layers” of the microbiome have on the 
tick itself and the microorganisms it transmits.

Reservoir hosts (see also chapter “Pathogenesis and Immune Defense”). More 
than 100 vertebrate species can serve as host for generalist Ixodes ticks such as 
I. ricinus. Most of these species belong to the orders Rodentia, Eulipotyphla (for-
merly part of the Insectivores), Carnivores, Lagomorphs, as well as the classes Aves 
(here mostly Passeriformes and sea birds) and Reptiles. A fraction of these tick 
hosts can serve as hosts for Borrelia, among them various species of mice (genera 
Apodemus, Peromyscus, Neotoma), voles (genus Myodes, Microtus), shrews (gen-
era Sorex, Blarina), squirrels (Tamias, Sciurus), lizards, and ground-feeding pas-
serine birds (genera Turdus, Parus) (e.g., [25, 71, 78, 88, 133–147]).

However, experimental studies have shown that not all hosts that become infected 
with Borrelia species also serve as reservoirs (e.g., [147–149]. Complement sensi-
tivity or resistance matches the reservoir host association of Borrelia species well, 
with B. garinii surviving bird complement but lysed by rodent complement, while 
rodent-associated species such as B. afzelii survive rodent complement but are lysed 
by bird complement. Complement-active deer serum lysed all tested Borrelia spe-
cies suggesting that deer are nonpermissive as hosts for Borrelia [150–152]. The 
expression “host association” has been used to refer to “true” reservoir hosts of 
Borrelia as defined by Kahl and co-authors and Martin and co-authors [153, 154], 
i.e., only those hosts are considered reservoir competent that are able to acquire the 
bacteria from a competent vector tick and (critically) also to transmit it back to new 
vector ticks [1, 155]. The term “host association” was used instead of “host special-
ization” because Borrelia spirochetes are not “specialized” to infect only their res-
ervoir hosts, as may be the case for other directly transmitted or vector-borne 
infectious agents, e.g., [148].

The development of resistance to tick bites by a host may reduce the ability to 
transmit tick-borne pathogens to vector ticks [109, 156, 157]. One such example is 
the bank vole, Myodes glareolus. In comparison to the wood mouse, Apodemus 
sylvaticus, repeated exposure of M. glareolus to tick bites reduced the engorgement 
time and weight of ticks making them drop-off the host prematurely (i.e., before 
complete engorgement) [115]. Reduction of engorgement time limits the transmis-
sion of tick-borne pathogens [158–161].

Some studies have suggested that hosts, once infected with Borrelia, carry the 
infection lifelong [162]. However, experimental transmission studies using different 
isolates of B. burgdorferi s.s. have shown that the duration of infection may differ 
between strains of Borrelia [163, 164].

G. Margos et al.
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1.4.1  Infection of Ticks by Borrelia burgdorferi s.l.

Infection of ticks by Borrelia burgdorferi s.l. Borreliae are taken up by the tick dur-
ing the blood meal although the transmission efficiency may be variable depending 
on tick species, Borrelia species, or concomitant infections [161, 165–172]. The 
tick may feed for 16–48 h before the bacterium enters the tick gut [160, 173]. In the 
tick gut, the bacteria adhere to midgut cells via outer surface proteins. It has been 
suggested that OspA interacts with a tick midgut protein that was named tick recep-
tor for OspA (TROSPA) [118, 174]. Upon entering the tick midgut, during blood 
meal digestion, molting, and questing periods, the bacteria remain adhered to the 
midgut. When the tick takes the next blood meal, changes in environmental condi-
tions and the provided nutrients prompt the bacteria to divide and migrate through 
the midgut into the hemocoel and the salivary glands [175]. This is accompanied by 
changes in patterns of protein expression [45] due to regulatory factors responding 
to environmental cues, e.g., temperature and other physiological changes (reviewed 
by [3, 176]) (Fig. 1.2).

Although some studies have suggested that B. burgdorferi s.l. may create a bio-
film in vitro and in vivo [189, 190], biofilm production seems not to be required in 
the ticks’ midgut for spirochete colonization [123]. The spirochetes induce the 
expression of a tick protein of I. scapularis with a Reeler domain (PIXR), which 
prevents biofilm formation and appears to inhibit changes in the gut microbiome, 
supposedly giving Borrelia an advantage during the tick phase of their develop-
ment [123].

When characterization of the first genome of Borrelia isolate B31 was com-
pleted, it was quite astonishing to find that many of the genes encoded hypothetical 
proteins with unknown functions and no match in databases [27, 28]. In spite of 
intensive research efforts, the genetic basis for the host- or vector association is still 
not clear [3, 26, 98, 130, 187]. In contrast to other human pathogenic bacteria, 
B. burgdorferi s.l. lack pathogenicity islands or virulence factors and although sev-
eral proteins have been identified as virulence determinants, which factor exactly 
trigger human pathogenicity is currently still unknown (reviewed by [191, 192]).

1.5  Geographic Ranges of the Lyme Borreliosis Spirochetes

The interplay between competent vector ticks and reservoir hosts, their ecology, and 
migration pattern determines the geographic distribution of LB species (Fig. 1.3). 
The geographic ranges of the various B. burgdorferi s. l. species [193] are in each 
case limited to those locations in which both reservoir hosts and vector ticks are able 
to maintain natural transmission cycles [1, 2, 155, 194] (Fig. 1.3). Thus, one should 
be able to define the fundamental niche of each Borrelia species simply by taking 
account of where its vectors and hosts occur. However, many B. burgdorferi s.l. spe-
cies can utilize multiple vertebrate host species and a number can utilize more than 
one vector. In addition, ecological associations between borreliae, ticks, and 
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Fig. 1.2 Regulation of gene expression in Borrelia burgdorferi sensu lato (modified from [3] with 
permission from Nature Reviews Microbiology, and with  special thanks to Melissa Caimano). (a) 
The histidine kinase 1 (Hk1)–response regulatory protein 1 (Rrp1) and alternative RNA poly-
merase σ-factor RpoS global regulatory systems. Binding of ligands to the periplasmic sensor 
domains (D1, D2, and D3) of the hybrid histidine kinase Hk1 initiates the activation of the 
 diguanylyl cyclase activity of Rrp1, resulting in the production of cyclic di-GMP (c-di-GMP) 
[177–179]. Phosphodiesterase A (PdeA) and PdeB degrade c-di-GMP to 5′-phosphoguanylyl-
(3′–5′)-guanosine (pGpG) and GMP, respectively [180, 181]. Activation of Rrp2 in  vitro and 
in vivo occurs via the high-energy phosphoryl donor acetyl-phosphate rather than by its presump-
tive cognate histidine kinase, Hk2 [182]. The function of Hk2 is currently unknown. Phosphorylated 
Rrp2, Borrelia oxidative stress regulator (BosR), and RpoN initiate transcription of rpoS ([183, 
184] and references therein). This is depicted as a trimeric complex, but the precise interactions 
between these proteins have yet to be determined. Putative BosR-binding sites (BSs) containing 
the direct repeat sequence TAAATTAAAT are shown; −24/−12 is the RpoN-binding site in the 
rpoS promoter [185]. RpoS in turn induces the expression of genes that are required during the 
mammalian- host phase of the spirochaete life cycle and represses the expression of tick-phase 
genes. (b) Expression of the Hk1–Rrp1 and RpoS global regulatory systems during the B. burgdor-
feri life cycle [177–179, 183, 184, 186]. In the flat nymph, both the Hk1–Rrp1 and the Rrp2–
RpoN–RpoS systems are inactive and only tick-phase genes are expressed. The nymphal blood 
meal activates both the Hk1-Rrp1 and Rrp2–RpoN–RpoS pathways. Expression of mammalian 
phase genes begins in concert with downregulation of tick-phase genes. Following inoculation into 
a mammalian host, the spirochaetes complete the process of adaptation; the Hk1–Rrp1 pathway is 
inactive, the Rrp2–RpoN–RpoS pathway is active, mammalian phase genes are expressed, and 
tick-phase genes are repressed. During larval acquisition of spirochaetes, Hk1–Rrp1 is activated, 
probably at the feeding site, whereas the Rrp2–RpoN–RpoS system is inactivated. Mammalian-
phase genes are repressed, expression of tick-phase genes begins, and ingested spirochaetes bind 
to the larval midgut epithelium via OspA and possibly other receptors [186–188]. GGDEF, a con-
served motif present in diguanylyl cyclases; Hpt, histidine-containing phosphotransfer domain; 
HTH, helix–turn–helix domain; N, amino; PAS, putative sensor domain for Hk2; Rec, 
receiver domain

reservoir hosts are not all equivalent in strength, thus, the realized niche actually 
occupied by each B. burgdorferi s.l. species is likely to be less than its fundamental 
niche [26, 155]. The actual spatial limitation for each spirochete species (i.e., its 
realized niche) will be roughly equivalent to the sum of all those areas in which both 
at least one vector species and one host species occur at sufficiently high density to 
maintain its transmission cycle. The basic reproduction number R0 presents a quan-
tification of the biological framework and efficiency of the transmission cycle and 
its value can serve as a measure for population fitness [195]. For every local popula-
tion of the bacterium, the value of R0, summed over all its hosts and vectors, must 
be >1 for transmission cycles to be sustained [155, 196, 197]. As the presence of 
less efficient vectors and hosts will impact negatively on the value of R0 achieved by 
the “best” vectors and hosts, one cannot simply add up values of R0 that have been 
determined for each vector and each host under laboratory conditions [195, 198]. 
The effects caused by nonpermissive vectors and/or hosts are very important to 
consider as they can influence the success of the bacterium in entirely opposite ways 
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[194]. For example, some potential mammalian hosts (e.g., large animals such as 
deer) may be colonized by B. burgdorferi s.l. spirochetes when bitten by an infected 
tick vector. They are, however, nonpermissive when it comes to transmission of the 
bacteria to a new tick and feeding on a deer may actually clear a B. burgdorferi s.l. 
infection in a tick [150, 199]. Following this, the presence of large numbers of deer 
may actually suppress the spirochete infection rate of true reservoir hosts in that 
location because ticks are more likely to feed on deer than on small mammals. On 
the other hand, the presence of deer in a particular geographic region may permit the 
population density of vector ticks to rise, which would increase the likelihood of 
successful transmission of spirochetes from infected reservoir hosts to ticks and 
thus increase R0 [200–203].

The nonuniform distribution pattern of Borrelia genospecies observed in field 
studies suggests that apart from host associations, vector associations do indeed 
play an important role in limiting their geographic distribution ranges [193]. Some 
Borrelia species are able to utilize a wide range of vectors [71, 204], for example, 
B. burgdorferi s.s. are able to utilize I. scapularis, I. pacificus, I. spinipalpis, and 
I. affinis as vector in North America, as well as I. ricinus in Europe but they have not 
been found in I. persulcatus [69, 138]. Borrelia garinii can be vectored by I. persul-
catus, I. pavlovskyi, I. ricinus, and I. uriae. Consequently, B. garinii’s geographic 
distribution ranges from France to Japan and it can be found in sea bird colonies in 
the Northern and Southern Hemisphere. Borrelia garinii has been found in sea bird 
colonies in Newfoundland [205] but it has not been discovered in North America in 
I. scapularis dominated regions or in I. pacificus [90, 206–209]. Borrelia valaisi-
ana, also a bird-adapted Borrelia species, is frequently found in Europe associated 
with I. ricinus but only a single occurrence in Russia has been recorded [210] 

Fig. 1.3 Global distribution of B. burgdorferi sensu lato (from [26]). *In recent years, B. turdi has 
also been found in Europe in enzootic cycles driven by I. frontalis and passerine bird species [145]. 
For sake of clarity this is not indicated in the figure
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suggesting that I. persulcatus is not a competent vector. Accordingly, in the overlap-
ping zone of I. ricinus and I. persulcatus in Eastern Europe, the prevalence of B. val-
aisiana is higher in I. ricinus than in I. persulcatus [211].

A particular interesting case showing that differential vector adaptation plays an 
essential role in the geographic distribution of Borrelia species is that of B. bavar-
iensis [13]. The B. bavariensis population in Western Europe differs genetically 
from that in Eastern Europe and Asia and they form sister clades in phylogenies not 
only based on MLST housekeeping genes but also based on >100 single-copy genes 
[212]. In addition, the Eastern population of B. bavariensis appears to be present 
only in regions where I. persulcatus serves as vector and it shows much higher 
genetic diversity than the populations in Western Europe. The population that is 
adapted to I. ricinus (Western Europe) shows very little genetic heterogeneity and 
appears almost clonal suggesting that this population arose recently via a vector 
switch [13, 26, 32].

1.6  Molecular Typing of B. burgdorferi s.l.

Because species of the genus Borrelia are difficult to distinguish by morphological 
criteria, approaches that can accurately identify species and strains within species 
are critical for epidemiological, clinical, and evolutionary studies. Early tools to 
discriminate between different Borrelia species included DNA-DNA hybridization, 
ribotyping, DNA sequencing of 16S rRNA or other conserved genes, PCR-based 
restriction fragment length polymorphism (RFLP) analysis, random amplified poly-
morphic DNA (RAPD) fingerprinting, or pulsed-field gel electrophoresis (RFLP) 
[213]. Single loci such as the outer surface proteins A (OspA), outer surface protein 
C (OspC), the intergenic spacer (IGS) region between the duplicated 5S and 23S 
rRNA [214], the 23S rRNA locus or flagellin (flaB) have been used for species and 
strain discrimination and are still popular targets for diagnostic purposes, e.g., [7, 
23, 89, 215–223]. These targets have been used either individually or in combina-
tion for molecular characterization of B. burgdorferi s.l. from cultured isolates or 
directly on clinical samples, samples from mammalian hosts or ticks.

Since 2006/2007 multilocus sequence analysis (MLSA) has replaced DNA–
DNA hybridization for species delimitation, epidemiological studies, or strain iden-
tification in B. burgdorferi s.l. and various multilocus sequence typing (MLST) 
schemes have been proposed (e.g., [14, 16, 224–227]). Not all of them use exclu-
sively housekeeping genes as originally proposed for bacterial epidemiology and 
population-level studies [228, 229]. The system currently maintained at the Pubmlst 
database (http://pubmlst.org/borrelia/) at the University of Oxford [230] uses eight 
housekeeping loci that are encoded on the main chromosome; these are clpA, clpX, 
nifS, pepX, pyrG, recG, rplB, and uvrA [224, 225]. This MLST scheme has been 
shown to have great potential not only for Borrelia species discrimination [10–13, 
15, 19, 24, 73, 90] but also for dissecting relationships of bacterial populations [25, 
69, 70, 81, 205, 208, 209, 231–237].

1 Characteristics of Borrelia burgdorferi sensu lato

http://pubmlst.org/borrelia/


16

In recent years, next-generation sequencing methods giving additional power for 
species and isolate determination have been explored for Borrelia typing and draft 
genome assembly, population genetics studies, improvement of MLST sequencing, 
or investigation of pathogenicity [31–33, 72, 238–240]. Currently various technolo-
gies for next-generation sequencing are available, the most popular are Illumina 
Sequencing, Pacific Biosciences single-molecule real-time (SMRT), and Oxford 
Nanopore technologie (ONT). While Illumina provides highly accurate consensus 
contigs, long read methods (SMRT, ONT) vastly improve genome assemblies, and 
hybrid assemblies of both, accurate short and long reads, have been shown to give 
best results for assembly of Borrelia genomes [24, 46, 61, 240, 241]. In future, such 
methods will undoubtedly help to unveil the genetic basis of host and vector adapta-
tion and factors involved in human pathogenicity via comparative genomics.

1.7  Outlook

In this chapter, we have briefly summarized characteristics of the pathogen(s) that 
can cause Lyme disease and related bacterial genospecies. Much progress has been 
made in recent years to understand the diversity of the bacteria, their complex ecol-
ogy and evolution. Host- and vector associations have been identified as the main 
drivers of diversification. However, more research needs to be conducted to under-
stand the genetic basis for such associations and to understand what confers human 
pathogenicity on B. burgdorferi s.l.
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2.1  Introduction

The four ixodid tick species mainly responsible for Borrelia burgdorferi sensu lato 
(s.l.) transmission and the vast majority of resulting Lyme borreliosis (LB) cases are 
Ixodes ricinus and Ixodes persulcatus in the Old World, and Ixodes scapularis and 
Ixodes pacificus in the New World (Fig. 2.1). In general, the geographical distribu-
tion of LB coincides with that of the main vectors except for the southern USA, 
where the disease is rare despite the presence of I. scapularis [1, 2]. In southern 
Europe and northern Africa, the discovery that Ixodes inopinatus is a separate spe-
cies may mean that the role of I. ricinus as a vector in these regions needs to be 
reassessed and that of I. inopinatus to be investigated. Several other ixodid tick spe-
cies have been reported as possible vectors, but generally the proof provided by 
transmission studies is lacking. Some known vectors of Borrelia burgdorferi s.l., 
such as I. hexagonus parasitizing European hedgehogs (Erinaceus europaeus and 
E. roumanicus −  proven reservoirs of several Borrelia burgdorferi genospecies), 
mainly occur in burrows and very rarely bite humans, but probably contribute to the 
circulation of those pathogens in nature. The vectors of both pathogenic and non-
pathogenic Borrelia genospecies are listed by Ogden and others [3].

Although I. scapularis, I. pacificus and I. persulcatus are considered in this 
review on the ecology of Borrelia burgdorferi s.l., the main focus is on the European 
vector, I. ricinus.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93680-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-93680-8_2#DOI
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2.2  The Tick Life Cycle

The life cycle of the Ixodes spp. vectors of Borrelia burgdorferi s.l. consists of four 
distinct life stages, egg, larva, nymph and adult. The motile stages each take a single 
large blood meal on a different individual host, drop off and then develop to the next 
stage or in the case of the adult females, lay eggs. These feeding phases take up less 
than 1% of their life cycle and for the remaining proportion, the ticks are free-living 
in the habitat, either in an engorged state after feeding on a host or as unfed (flat) 
ticks that seek hosts by ambushing them from vegetation as they pass by. All the life 
stages show some degree of host specificity and although a very wide range of 
mammals, birds and reptiles can be parasitized, nymphs are less successful on small 
mammals than larvae, and adults are restricted to large hosts, mainly ungulates, and 
some medium-sized species, such as hedgehogs, foxes hares and dogs.

2.3  The Feeding Process

The external mouthparts of ixodid ticks consist of two essential components. First, 
a proboscis (hypostome) enclosing the feeding tube that introduces saliva into the 
skin and up which blood and inflammatory exudate is sucked during feeding, and 
second a pair of barbed chelicerae apically, with movable cheliceral digits, blade- 
like structures that are used for incising the skin (Fig. 2.2). Once the tick has found 

Fig. 2.1 Approximate geographical distribution of Ixodes pacificus, I. persulcatus, I. ricinus and 
I. scapularis. Ixodes persulcatus and I. ricinus are sympatric over a large area, comprising parts of 
the Baltic States, Belarus and Russia. © Bernard Kaye and Jeremy Gray
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a suitable feeding site on a host it makes an incision with the cheliceral digits and 
inserts the hypostome into the host skin. Since the tick must feed for several days, 
firm attachment is essential and is provided by recurved teeth on the hypostome, 
reflexed chelicerae at the end of the hypostome, and a cement-like salivary secre-
tion. Anchorage is further facilitated by the deposition of collagen around the hypo-
stome (Fig. 2.2). The tick does not neatly pierce blood vessels (as a female mosquito 
does) but creates a feeding pool by secreting vasoactive mediators and immuno-
modulators that keep the blood flowing and suppress host attempts to resist the 
process. Local inflammation may occur around the tick bite, and the tick-bite lesion 
may persist beneath the epidermis for many days after the tick has fed. During the 
relatively long initial phase of feeding, the tick grows both gut and cuticle to accom-
modate a large volume of blood, which is ingested over a relatively short time just 
before detachment. Detachment is an active process and there is evidence that natu-
ral rhythms play a part [4], but little is known about the factors involved. Although 
a fully engorged tick readily withdraws its mouthparts from the host skin, a partially 
fed feeding tick resists its removal and considerable force is required, especially for 
adult females. Much has been written about correct and incorrect ways to remove 
ticks in order to minimise the risk of pathogen transmission, but Kahl et al. [5] dem-
onstrated experimentally that the method of removal of Borrelia burgdorferi s.l.-infected 
I. ricinus nymphs from Mongolian gerbils (Meriones unguiculatus), including 
intensive squeezing of feeding ticks and the use of nail polish to block the tick 
spiracles, did not affect the likelihood of infection of the host. Thus suggestions that 
careless and rough removal of a feeding tick, or the application of irritating fluids, 
might result in the regurgitation of infective spirochaetes into the tick-bite lesion, 

epidermis

dermis cement/collagen
sheath

palp

hypostome

cheliceral
digits

inflammatory
exudate

Fig. 2.2 Diagrammatic illustration of tick mouthparts embedded in the skin of a vertebrate host 
(after Balashov, 1972 [60])
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have proved unfounded. The clear conclusions that emerged from this study were 
that in every case, it is important that a feeding tick is removed as soon as possible, 
and that it is much less important how the tick is removed. Although the removal of 
feeding ticks with the use of proper forceps seems optimal, one may also be suc-
cessful using long fingernails or by rotating the feeding tick several times around its 
longitudinal axis. The latter approach has the advantage that the tick withdraws its 
mouthparts ‘voluntarily’ and there is no pain involved, which is especially relevant 
if a child is bitten. Prompt removal is important because the risk of becoming 
infected increases with increasing feeding time of the Borrelia-infected tick. Most 
estimates of the time required for transmission to occur are based on experiments on 
laboratory rodents, and although the data suggest that for nymphal I. ricinus >50% 
transmission may occur after only 17–29 h compared with 47–49 h for I. scapularis 
and 72 h for I. pacificus, comparisons between the tick species are difficult because 
of the use of different experimental hosts and spirochaete strains. Additionally, 
when single ticks are used (the most likely clinical situation), transmission occurs 
much more slowly than with the multiple ticks used to generate most experimental 
data [6]. Attempts to calculate realistic transmission delays based on the state of 
engorgement of ticks removed from LB patients have not been successful, despite 
the availability of data relating measurements of engorging ticks to the duration of 
feeding [6].

2.4  Tick Development

Once a feeding tick has fed to repletion, it detaches from the host and locates in the 
mat of decaying vegetation overlying the soil, where the relative humidity is usually 
no lower than 80–85%, so that it can avoid desiccation [7]. Although these tick spe-
cies do not drink, they can actively take in atmospheric water when relative humid-
ity surpasses 80–85% by secreting a hygroscopic fluid from the salivary glands onto 
the mouthparts, which is then ingested [8–10]. This ability recurs in unfed ticks 
during the host-seeking phase of the life cycle. Development to the next stage fol-
lowing engorgement takes many weeks and even longer in the case of larvae and 
nymphs if they feed late in the year, when they show a developmental delay (dia-
pause) that is driven by day length and allows them to overwinter. For females, this 
diapause tends to manifest as delayed oviposition (I. scapularis) or as an egg devel-
opment (I. ricinus) delay [11]. In the absence of ovipositional diapause, egg laying 
starts a week or two after the fed female drops from its host and has found a suitable 
microclimate in the leaf litter. In the case of I. ricinus, approximately 2,000–3,000 
eggs are continuously laid whenever the microclimate temperature exceeds 
4–5 °C. In the other three species, some differences are evident. For example, unlike 
I. ricinus, neither engorged females nor eggs of I. persulcatus overwinter [12, 13] 
and oviposition and hatching are completed before the winter. Ixodes scapularis 
females can overwinter in either the engorged or unfed state, with oviposition com-
mencing in the spring [14]. Ixodes pacificus shows a similar pattern, but in southern 
regions, unfed adults do not appear to survive the winter [15].

J. Gray and O. Kahl
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Following hatching or moulting and after a delay of varying length, the unfed 
ticks commence questing for a host. This involves climbing to a vantage point in the 
vegetation, or on the surface of leaf litter, where they wait in ambush, fastening onto 
a host as it passes by. Questing is punctuated by many visits for water replenishment 
to the humid microclimate at the base of the vegetation. If the tick fails to acquire a 
host, it will die once the energy reserves required for this activity have been depleted. 
The length of time ticks can spend in this questing phase varies and depends on the 
nature of the habitat and on the weather, but in most cases does not exceed a 
few weeks.

2.5  Seasonal Activity

The seasonality of human infection with Borrelia burgdorferi s.l., indicated by the 
incidence of erythema migrans, is well established and determined by two basic 
factors: first, people entering tick habitats most often during the summer and autumn 
months, and second, to the seasonal activity of the ticks themselves. In I. ricinus, 
most host-seeking by unfed ticks occurs in spring and early summer as air tempera-
tures rise above about 7 °C, and then declines gradually over the summer as a result 
of accelerating mortality at a rate usually determined by the nature of the habitat 
[16]. In some regions, a second smaller peak may occur in autumn, which is due to 
the activity of a part of the population that mostly overwintered in the previous 
winter as engorged ticks in developmental diapause. Some of these autumn-active 
ticks may be active in the winter if temperatures are high enough [17]. In the far 
south of the I. ricinus range, the autumn and early winter peaks, especially of adults, 
are more in evidence and some questing activity may occur throughout the winter 
[18, 19]. Although seasonal activity patterns can be partly explained by tactical 
responses to ambient conditions, the main regulating factor is diapause, a physio-
logical response to day length, which in addition to causing delays in development 
(developmental diapause) referred to above, can also inhibit host-seeking by unfed 
ticks (behavioural diapause) [11]. These mechanisms ensure that ticks that feed late 
in the year enter a developmental diapause and overwinter in the engorged state in 
the case of larvae and nymphs or produce diapausing eggs in the case of females. 
Ticks that fed earlier in the year and then moulted by late autumn often go into a 
behavioural diapause, which prevents them becoming active at an inclement time of 
year. However, many individuals merely become quiescent in response to falling 
temperatures and can respond to rising temperatures in winter [17–19]. The other 
main vectors of LB, I. pacificus, I. persulcatus and I. scapularis, show similar pat-
terns of activity, though with some differences in both timing and behaviour, 
depending on the region. For example, larval and nymphal I. persulcatus tend to 
remain within the leaf litter and are difficult to collect by flagging, and there is virtu-
ally no autumn questing by adults of this species, which seem to undergo a strong 
behavioural diapause. In the southern part of the I. scapularis range, the immature 
stages also remain in the leaf litter in the United States, but not in the north. In direct 
contrast to I. persulcatus, adult I. scapularis quest in the autumn (fall), showing 
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little or no behavioural diapause, though some individuals in the population appear 
in the spring and early summer. A more detailed comparative account of the sea-
sonal activity of LB vectors can be found in Gray et al. [11].

2.6  Tick Habitats

The requirement of the non-parasitic phases of these tick species for a humid micro-
climate (>80% RH) at the base of vegetation and in leaf litter is the main factor that 
determines the suitability of a habitat for colonisation. But host requirements must 
also be met and since the adults are mostly restricted to large animals, especially 
deer, the ticks mainly inhabit forests and forest-like habitats and their margins [20]. 
Deciduous and mixed forests are especially favourable because of the year-round 
ability of the leaf litter to retain a high humidity, but all these tick species can also 
be found in some coniferous forests in appreciable densities if there is sufficient 
precipitation in all seasons. Infection of ticks with pathogenic Borrelia burgdorferi 
s.l. in such habitats depends on the presence of reservoir hosts, which are a range of 
small mammals and birds. Ticks may also occur in parks and garden areas where 
hosts for the immature stages can be found, and although the availability of hosts for 
adult ticks may be more limited, tick numbers may be augmented by roosting birds, 
hedgehogs and foxes. In the case of I. scapularis, the greatest risk of LB probably 
occurs in periurban habitats, where many deer may be present in woodland close to 
human dwellings [21]. Deer alone are capable of feeding immature stages as well as 
adults [22–27] and in habitats where the vast majority of all tick stages feed on large 
non-reservoir animals, such as deer, the proportion of infected ticks tends to be low. 
This situation occurs in agricultural settings, especially in the British Isles and 
Ireland, where sheep and cattle maintain large tick populations in areas of rough 
grazing with high precipitation [20].

2.7  Factors Affecting Tick Abundance

2.7.1  Weather and Climate

Since all the tick species considered here are susceptible to desiccation, hot dry 
conditions can be highly detrimental to their survival, and to some extent determine 
their geographical distribution. However, they can survive limited periods of such 
weather as long they have access to protected humid microclimates. Very cold win-
ters are also often thought to result in poor survival of these ticks. However, this is 
simplistic considering that I. ricinus is found in regions such as Scandinavia where 
the winter temperatures can be much lower than in most other parts of Europe. In 
fact, the main risk to overwintering ticks appears to be very cold weather in the 
absence of snow cover for prolonged periods [28]. The northern distribution of both 
I. ricinus and I. scapularis seems to be primarily limited by spring and summer 
temperatures that are not high enough for a sufficient period to permit complete 
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development within a season [29–31]. Temperature-limiting effects on questing 
activity and the availability of appropriate hosts are also relevant factors here.

The factors that limit I. ricinus distribution to the east of its range are unknown, 
but are probably also temperature-based. Ixodes ricinus is gradually replaced east-
wards by the closely related I. persulcatus, and there is a substantial area where the 
two species are sympatric (Fig.  2.1). It seems likely that I. persulcatus is better 
adapted to continental climates, involving hot summers and prolonged cold winters, 
than is I. ricinus, but this awaits further research.

2.7.2  Hosts

In most LB habitats, deer are the most important tick maintenance hosts, mainly 
because of their role in feeding the adult females. Not surprisingly, therefore, the 
density of deer can have a profound effect on local tick abundance [32–35]. However, 
this relationship is complex and it has been suggested that the mere presence of deer 
in tick permissive habitats that harbour numerous hosts of the immature stages, may 
be enough to result in high tick abundance [36]. However, it is commonly found that 
when deer are absent from a habitat, ticks are relatively scarce, unless there are 
alternative hosts such as foxes or hedgehogs, for example in city parks, or they are 
imported from surrounding areas by roosting birds.

While overall host density can affect I. ricinus abundance, short-term changes 
may have a profound effect on year-to-year fluctuations in the size of questing tick 
populations. For example, masting, the production of tree seeds such as beech nuts 
and oak acorns, is known to result in major increases in rodent populations after 
high mast years, which occur every few years [37]. A relationship between high 
mast years and abundance of Ixodes nymphs 2 years later was first explored in the 
United States for I. scapularis [38]. More recently this has been studied in detail in 
Switzerland for I. ricinus by Bregnard and others [39], who found that annual tick 
abundance over a 15-year period was strongly associated with high mast years 2 and 
3 years earlier. Deer are probably also benefited by high mast years, in which case 
effects on tick abundance are likely to be more prolonged, since deer can feed all 
active stages of I. ricinus. At present, there are no data on this in Europe.

2.8  Transmission and Circulation of Borrelia burgdorferi 
sensu lato

2.8.1  The Transmission Process

During feeding, the blood meal is concentrated by the extraction of water, which is 
then secreted back into the host by specialised salivary gland cells, an important 
means by which tick-borne pathogens invade their vertebrate hosts. Furthermore, 
the immunomodulation, induced by components of tick saliva, that permits success-
ful feeding, has an effect on the establishment of transmitted pathogens, as 
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demonstrated by the increased efficiency of tick-transmitted Borrelia burgdorferi 
s.l. compared with needle injection [40].

When Borrelia burgdorferi s.l. spirochaetes are ingested with the blood by a 
feeding tick, they enter the midgut, a sequestered location for pathogens because of 
intracellular rather than lumenal enzymatic digestion. The spirochaetes remain in 
the midgut attached to the gut epithelium through the subsequent tick development 
and moult, but when the resulting unfed tick acquires a host and starts feeding, the 
spirochaetes multiply enormously and migrate to the salivary glands. During this 
migration, crucial changes to the outer surface proteins (Osp) occur and they are 
upregulated from OspA to OspC, the latter being the form required for migration to 
the salivary glands and invasion of the vertebrate host [41, 42]. The time taken for 
these changes and for migration to the salivary glands to occur explains the delay in 
transmission of the spirochaetes after the commencement of tick feeding.

Several other proteins of vector origin have been shown to have a role in regulat-
ing the behaviour of the spirochaetes within the tick and the overall complexity of 
the transmission process suggests that arthropods other than certain ixodid ticks are 
unlikely to serve as vectors of Borrelia burgdorferi s.l. Therefore circumstantial 
evidence for transmission by haematophagous arthropods such as mosquitoes and 
horseflies can most probably be discounted.

Borrelia burgdorferi s.l. is usually transmitted horizontally, a process in which 
the pathogens are acquired from a vertebrate host by one tick stage, survive the 
moult and are then transmitted by the next to another host (Fig. 2.3). Most Borrelia 
burgdorferi s.l. infections are acquired by larvae and transmitted by nymphs and in 
I. ricinus, I. scapularis and I. pacificus it is thought to be the nymphal stage that is 
mostly responsible for the transmission of Lyme borreliae to humans. However, 
adult females, infected as nymphs can also transmit the infection to humans, and in 
I. persulcatus the adult female is regarded as the most important vector stage. 

Feeding nymph(s)

Feeding larvae

Reservoir
host 

Larval-to-nymphal moult

Unfed nymphs

Fig. 2.3 Primary transmission pathway of Borrelia burgdorferi s.l. Nymphal ticks can infect hosts 
from which feeding larvae then acquire the infection. Since reservoir hosts may retain the infection 
for many months, infections may pass from nymphs to larvae over two seasons
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Transovarial transmission of Borrelia burgdorferi s.l. is rare [43, 44], and larvae are 
therefore not considered significant in the epidemiology of human LB, though they 
may have a role in maintaining circulation of the spirochaetes in nature. Non-
systemic transmission (co-feeding transmission), involving transmission of patho-
gens between ticks feeding close together on the reservoir host, has been 
demonstrated for Borrelia burgdorferi s.l. [45, 46], but has limited epidemiological 
significance except for the possible promotion of strain variability [47, 48].

Infection prevalences in unfed ticks are highly variable, ranging from 0% to 50% 
with many variables, including spirochaete genospecies, tick species, nature of hab-
itat (especially in relation to the vertebrate fauna), geographical area, and even the 
methodology used for detection. In general, higher infection prevalence tends to 
occur in adults than nymphs, because of the opportunity for adults to acquire infec-
tions over two blood meals. Larvae are very rarely infected.

2.8.2  Tick and Spirochaete Reservoir Hosts

The host requirements of zoonotic Borrelia burgdorferi genospecies and of their 
tick vectors that enable them to persist within a habitat differ significantly. Whereas 
medium-sized to large mammal hosts, usually deer, are essential for successful 
feeding of adult female ticks, such hosts are usually not reservoir-competent for the 
spirochaetes, for which various species of small mammals and birds serve as reser-
voirs [49]. By definition, a reservoir host of Borrelia burgdorferi s.l. must be capa-
ble of supporting infections, but also serve as hosts to immature stages of the 
vectors, so that the spirochaetes can then infect a substantial proportion of the tick 
population. Although the vectors are capable of parasitizing a wide range of hosts, 
a relatively small proportion of them are significant reservoirs of Borrelia burgdor-
feri s.l. The ecological situation is made more complex by the fact that the patho-
genic spirochaete genospecies differ to some extent in their predilections for 
vertebrate hosts. For example, in Europe, most strains of B. garinii utilise certain 
bird species, notably passerines, B. afzelii is found predominantly in rodents, and 
B. spielmanii in two species of dormouse in particular (Eliomys quercinus and 
Muscardinus avellanarius) [50]. European strains of Borrelia burgdorferi sensu 
stricto (s.s.) appear to be found only in small mammals, but in North America, these 
genospecies can infect both birds and rodents [3]. The only other acknowledged 
pathogenic genospecies in the United States, B. mayonii, appears to be associated 
with small mammals [51]. Additional complexity occurs in Europe in that some 
species of small mammals such as wood mice (Apodemus sylvaticus) are excellent 
hosts of larval I. ricinus, but the spirochaetes are not as infectious for these hosts as 
they are for bank voles (Myodes glareolus), which on the other hand mount a more 
effective immune response against feeding larval ticks [52]. The circulation in 
nature of the three main pathogenic Borrelia burgdorferi s.l. genospecies in Europe 
(B. afzelii, Borrelia burgdorferi s.s., B. garinii), showing their predilections for vari-
ous reservoir hosts, is illustrated in Fig. 2.4.
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It is clear that the precise composition of the vertebrate fauna within a habitat can 
have a profound effect on the abundance of infected ticks, especially in relation to 
the relative proportions of non-reservoir hosts, such as deer, and the important spi-
rochaete reservoir hosts such as voles, wood mice and ground-feeding passerine 
birds. In most habitats with high vertebrate diversity, infected tick abundance is 
likely to be high, but where deer occur at very high densities, tick infection rates 
may be low [32]. This latter situation is common on tick-infested agricultural land 
where sheep and cattle, which are of very limited reservoir competence, are the 
main hosts of all stages [53, 54].

2.9  Environmental Measures for Prevention 
of Lyme Borreliosis

The overall objective of environmental measures for the prevention and control of 
LB should be to reduce the contact rate between people and infected ticks. This may 
be achieved in a variety of ways, preferably in combination. They include the 

Larvae acquire infections
from infected hosts

Larvae very
rarely
infected

?

Spirochaetes very
rarely infect eggs

Hedgehogs may
become infectious

Females feed mainly
on large non-reservoir
hosts that are
dead-ends for the
spirochaetes

Spirochaetes survive
the moult to the adult

B. afzelii

B. garinii

Borrelia burgdorferi s.s.

Spirochaetes survive
the moult to the nymph

Nymphs infect new
hosts and may acquire
new infections

© Bernard Kaye and Jeremy Gray

Fig. 2.4 Transmission cycle of the three main pathogenic Borrelia burgdorferi sensu lato geno-
species in Europe. The size of coloured circles indicates the relative prevalence of the genospecies 
in the hosts and tick, and the size of the hosts indicates their relative significance in the tick life 
cycle in a typical woodland habitat. Hedgehogs are known to transmit all three genospecies, but 
their overall contribution to genospecies circulation is unknown
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reduction of the abundance of ticks, reduction in the infection rate of ticks, and the 
management of habitats to reduce exposure of the public to ticks [55].

Since deer are acknowledged to be the most important maintenance host for tick 
populations in LB habitats, it would seem logical that tick abundance could be 
reduced by the reduction of deer densities. However, there are ethical and practical 
problems in such an approach and furthermore, the existence of alternative hosts 
such as foxes and hedgehogs, and the complexity of the dynamic relationship 
between deer and tick populations, discussed above, makes it difficult to predict the 
level of deer control required to obtain worthwhile tick control. Another factor to 
consider is that reduction of deer density can theoretically divert ticks to other hosts, 
and if these include reservoir-competent species, such as rodents, the tick infection 
rate and even the overall abundance of infected ticks may increase, thus increas-
ing risk.

Host-targeted measures in the United States include self-medication systems, 
involving acaricides for deer and rodents, and these have been deployed commer-
cially in peri-urban habitats [55]. Such measures have not been adopted in Europe, 
where recreational rather than peri-urban habitats pose the main risk to the public 
[56] and where ethical and environmental obstacles arise.

Similarly, while area applications of acaricides, particularly in domestic situa-
tions, are quite common in the United States, such services are not on offer in 
Europe [55]. Less environmentally damaging options include dissemination of 
spores of the fungal entomological pathogen, Metarhizium anisopliae, and deploy-
ment of parasitic wasps (Ixodiphagus hookeri) and entomopathogenic nematodes, 
but so far, such approaches have been limited by scale and expense. Targeting the 
spirochaetes within their rodent hosts, with antibiotics or vaccines, has not got 
beyond experimental stages [55].

Reducing tick habitat by disrupting the humid microhabitat of the non-parasitic 
tick phases is effective and has long been utilised on agricultural land in Europe, but 
such habitats are rarely significant for LB transmission, because of the relative scar-
city of LB reservoir hosts. However, such an approach has some utility in gardens 
and peri-urban habitats [55]. Measures designed to reduce contact between ticks 
and the public include mowing the edges of pathways, removal of leaf litter, and 
erection of barriers. This last measure is most appropriate for residential properties, 
small recreational areas and campsites, and usually consists of deer-proof fencing, 
sometimes combined with borders of materials, such as yellow cedar sawdust that 
discourage crawling ticks [57].

No single preventive measure has been shown to reduce cases of LB, though 
several have shown promise. While it is acknowledged that eradication of LB vec-
tors is not possible, suppression of infected-tick abundance and consequently of 
case incidence could theoretically be achieved by the adoption of an integrated 
approach. However, an acceptable level of infected-tick density is difficult to deter-
mine and depends on risk perceptions by public health authorities and the human 
population utilizing a particular habitat [58]. Most other LB preventive measures 
depend on education of the public, particularly concerning personal protection. 
However, as pointed out by Beaujean et al. [59] in Europe, uptake of recommended 

2 Tick Ecology and the Eco-Epidemiology of Borrelia burgdorferi sensu lato



42

measures for implementation by the public is poor, and in the United States, it is 
variable and of undetermined overall effectiveness [55]. It is clear that more research 
is required on the technical aspects of integrated pest management as applied to the 
vectors of LB and also on the promotion of awareness and preventive behaviour 
among the public, particularly with the continuing absence of a widely acceptable 
vaccine.
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3.1  Introduction

Like other zoonotic pathogens affecting humans, Lyme disease (LD) spirochetes 
belonging to the Borrelia burgdorferi sensu lato [s.l.] complex primarily alternate in 
nature between arthropods and diverse vertebrates while humans are incidental and 
dead-end hosts [1]. LD spirochetes are capable of persistently infecting multiple 
tissues resulting in disease progression over months and years if the infection is not 
appropriately treated with antibiotics. In contrast to other extracellular pathogens, 
Borrelia do not produce their own toxins or proteases for invading deeper tissues 
and organs. Thus, the pathobiology of LD spirochetes is certainly complex and 
involves an arsenal of host-acquiring factors and virulence determinants that allows 
Borrelia to perfectly adapt to different environments they encounter and to survive 
in their hosts despite the expanded inflammatory reactions they cause, in particular 
in the human host. Borrelia reside exclusively inside their hosts are incapable of 
living in an external environment and become pathogenic when infecting humans. 
The route of infection involves a number of key steps described in more detail below 
including (1) the transmission of the pathogen during feeding of an infected tick, (2) 
adaptation to the human host, (3) dissemination and hematogenous spread of spiro-
chetes, (4) tissue colonization, and (5) establishment of organ-specific manifesta-
tions (reviewed in [2]). A simplified view of the complex scenario of a 
Borrelia-induced infection in the human host is demonstrated in Fig. 3.1.
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The infection is always accomplished by the transmission of spirochetes during 
feeding of an infected tick on the human host that is accompanied by dramatic 
changes in bacterial gene expression preparing the incoming pathogens to immedi-
ately adapt to the host environment. LD spirochetes are also protected by a cocktail 
of salivary factors from the tick, consisting of immunomodulatory, immunosuppres-
sive, vasodilatory, and complement-inhibitory proteins that are simultaneously 
injected into the dermis to prevent tick recognition by the human immune system 
(reviewed in [3–5]. A well-studied example is the interaction of the Borrelia-derived 
OspC (Outer surface protein C) protein with the tick Salp15 protein known to facili-
tate colonization of LD spirochetes in the murine host [6, 7]. Confronted with the 
host defense system, LD spirochetes have to develop different means of adapting to 
the new microenvironment and to combat innate immunity. In the initial phase of 
infection, upregulation of genes encoding for a range of surface-exposed determi-
nants, all of which play a central role in host adaptation and tissue colonization, 
takes place including adhesins and proteins that interact with extracellular matrix 
components (see Sect. 3.2.1). Once adapted to the host, Borrelia cells multiply in 
the dermis and induce strong inflammatory responses (see Sects. 3.3.1.3 and 3.3.1.4) 
by moving away from the port of entry to distant sites often resulting initially in a 
circular red rash with central clearing also described as erythema migrans. At this 
stage of infection, motility plays a major role in the dissemination of LD spirochetes 

Transmission of spirochetes
by infected ticks

Host adaption &
Attachment to host cells

Multiplication at the entry point

Induction of local
inflammation

Immune evasion

Hematogenous
dissemination Escaping the vasculature &

Penetration into adjacent tissues

Tissue colonization &
Establishment of organ-specific

manifestation

Fig. 3.1 Schematic overview of the infection routes of Borrelia burgdorferi s.l. infection in the 
mammalian host
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to distant tissues or organs [8]. Interaction with the host vasculature and transmigra-
tion through the endothelium by an intercellular (between junctions of neighboring 
cells) or intracellular (traversing the endothelial cells) route [9, 10] allows the 
spreading spirochetes to leave the bloodstream and penetrate deep into connective 
tissues and reach compartments known as immunoprivileged sites, where they are 
protected from the destructive properties of the host innate immune system. 
Particularly, the avascular connective tissue appears to be not very well penetrated 
by complement, phagocytes, antibodies, or antibiotics.

Like other blood-borne pathogens, LD spirochetes employ elaborate strategies to 
hide, combat, inhibit, or overcome the innate and adaptive immunity of the human 
host and thereby avoid clearance by the immune system, e.g., by changing their 
surface composition (antigenic variation) or by preventing complement activation 
(CRASP proteins or the production of a slime layer) (reviewed in [11–15]). The 
major factors involved in immune evasion are described in more detail in Sect. 3.2.3 
and summarized in Table 3.1.

Table 3.1 Outer surface proteins involved in the pathogenesis of Borrelia burdorferi s.l. infection 
of humans

Description Synonym
Borrelia 
species Functiona Role in pathogenesis

BBK32 Bb Binding to fibronectin, 
GAG, C1r

Adherence
Immune evasion
(Termination of CP)

BAD16 Ba Binding to C1r Termination of CP
BGD19 Bg Binding to C1r Termination of CP 

(reduced 
complement- 
inhibitory capacity)

DbpA/
DbpB

Bb, Ba, Binding to decorin, 
dermatan sulfate

Adherence

Bgp Bb Binding to 
glycosamino-glycans 
(GAGs)

Adherence

P66 Bb Porin, Binding to αIIbβ3 
and αVβ3 integrin

Adherence
Establishment of 
infection (mice)

RevA Bb Binding to fibronectin Adherence
RevB Bb Binding to fribronectin Adherence
ErpX Bb Binding to laminin Adherence
BmpA Bb Binding to laminin Adherence

Potential role in 
arthritis (mice)

BB0406 Bb, Ba, 
Bg, Bba

Binding to laminin Adherence
Establishment of 
infection (mice)

BB0347 Bb Binding to fibronectin Adherence

(continued)
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Table 3.1 (continued)

Description Synonym
Borrelia 
species Functiona Role in pathogenesis

OspC Bb, Ba, 
Bg

Binding of 
plasminogen
Binding to fibronectin
Restricted binding to 
dermatan sulfate

Adherence
Host adaption and 
tissue tropism, 
immune evasion
(Termination of the 
CP and LP)
Inter and intra 
species-specific 
variation

VlsE Bb Antigenic variation Immune evasion
Establishment of 
infection

CspA CRASP-1, 
BbCRASP-1, 
BBA68, ZS7.A68, 
FHBP

Bb, Ba, 
Bs, Bm

Binding of FH, FHL-1, 
C7, C8, C9, TCC, 
plasminogen, collagen, 
fibronectin

Immune evasion
(Termination of AP 
and TP)
Adherence
Host specificity

CspZ CRASP-2
BbCRASP-2
BBH06

Bb Binding of FH, FHL-1, 
plasminogen, laminin, 
collagen, fibronectin

Immune evasion
(Termination of AP)
Adherence
Host specificity

ErpA CRASP-3, 
BbCRASP-3, 
BBN38

Bb Binding of FH, FHR-1, 
FHR-2, FHR-5, 
plasminogen

Immune evasion
(Termination AP)b

ErpC CRASP-4, 
BbCRASP-4

Bb Binding of FH, FHR-1, 
FHR-2, plasminogen

Immune evasion
(Termination AP)b

Adherenceb

ErpP CRASP-5, 
BbCRASP-5, ErpI, 
ErpN, BBP38, 
BBL39, OspE

Bb Binding of FH, FHR-1, 
FHR-2, FHR-5, 
plasminogen

Immune evasion
(Termination AP)b

Erp 
ortholog

Erp63 Bs Binding of FH, FHR-1, 
plasminogen

Immune evasion
(Termination AP)b

BGA66 Bba Binding of C7, C8, C9, 
TCC

Immune evasion
(Termination of TP)

BGA71 Bba Binding of C7, C8, C9, 
TCC

Immune evasion
(Termination of TP)

pncA Bb Infectivity

Abbreviations: CRASP complement-regulator acquiring surface protein, Erp OspE/F-like protein, 
Dbp decorin-binding protein, Bmp Borrelia membrane protein, Bb B. burgdorferi, Bba B. bavar-
iensis, Ba B. afzelii, Bs B. spielmanii, Bg B. garinii, Bm B. mayonii, FH Factor H, FHL factor 
H-like protein, FHR FH-related protein, TCC terminal complement complex, GAG glycosamino-
glycan, AP alternative pathway, CP classical pathway, LP lectin pathway, TP terminal pathway, 
pncA plasmid-encoded nicotinamidase
a Proteins mentioned in the table are of human origins (proteins of animal sources have been 
excluded due to simplification)
b The indicated function of the respective protein and the relevance for pathogenesis is unclear
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It has been shown that LD spirochetes are able to colonize collagenous tissues 
and survive in multiple organs for at least 1 year of experimentally infected mice 
suggesting that similar mechanisms of persistence might also occur in patients with 
a late manifestation such as acrodermatitis chronica atrophicans, even though these 
patients with late manifestations elicit robust antibody responses to the pathogen. It 
is thought that the spirochetes “hide in plain sight” as concluded by Cabello et al. 
[16] in protective niches but the exact mechanism(s) of persistence and the pro-
longed survival in a minority of patients is far from being completely understood 
and warrants further clinical investigations. The genetic disposition of patients with 
late or chronic manifestations might also play a critical role in the establishment and 
the development of the disease, as in patients with antibiotic-refractory arthritis who 
carry the HLA-DRB1*04 and HLA-DRB1*0101 alleles [17]. How Borrelia as an 
obligate extracellular pathogen can persist in the human host is an unsolved mys-
tery, and the stage of latency might be explained in part by the fact that this patho-
gen is shielded by host-acquired proteins or by changing its surface to diminish 
recognition by the host immune system.

The aim of this chapter is to provide an understanding of the molecular mecha-
nisms and the determinants, factors, and molecules known to participate in the cen-
tral steps of a spirochetal infection, as well as the dynamics of the host responses 
provoked during an infection with B. burgdorferi s.l. It would be overambitious to 
attempt to describe all the findings that have emerged within the last decades of 
intensive research and have led to our understanding of the fundamental aspects of 
pathobiology of LD. Nevertheless, this chapter will focus on the most widely stud-
ied factors known to participate in the major steps of infection, namely host adapta-
tion, tissue colonization, dissemination, immune evasion, persistence, and host 
response. References provided will direct the readers to the original literature and 
state-of-the-art review articles.

3.2  Pathogenesis

3.2.1  Factors Involved in Host Adaptation and Tissue 
Colonization of B. burgdorferi s.l.

LD spirochetes elicit a robust humoral immune response that is critical for control-
ling infection [18, 19]. However, B. burgdorferi s.l. are quite adept at evading the 
host humoral response, primarily through variation of surface-exposed proteins. 
Lyme disease spirochetes utilize diverse strategies, e.g., antigenic variation, immune 
evasion, sequestration, penetrating immune-protective niches, motility, chemotaxis 
as well as modulation of outer surface proteins influenced by an environmental- 
induced gene expression at different time points in the infectious cycle to outma-
neuver the hostile immune system. These traits combine to form an efficient strategy 
utilized by LD spirochetes to adapt to and to successfully survive in the human host 
for a prolonged time despite eliciting robust antibody and cellular responses. Owing 
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to the limited space, the most prominent mechanisms and the factors participating 
in these processes are described in more detail below and summarized in Table 3.1.

Shortly after transmission to the human host, B. burgdorferi s.l. either attach to 
the dense extracellular matrix of multiple host tissues or disseminate hematoge-
nously by the dynamics of blood circulation to distant tissues and organs [9, 10]. 
The ability of spirochetes to adhere to and to colonize different tissues is a key step 
for establishing an initial or later on a chronic infection.

To exit the bloodstream/vasculature following colonization, spirochetes produce an 
arsenal of surface-exposed proteins displaying adhesive functions [11, 20, 21] or that 
bind to cell receptors following induction of specific signals for internalization 
(reviewed by [22]). Numerous factors involved in tissue adhesion and in binding to 
extracellular matrix components such as collagen, fibronectin, laminin, decorin, integ-
rins, and glycosaminoglycans have predominantly been described for B. burgdorferi, 
including well-characterized outer surface proteins such as BBK32, DbpA, DbpB, 
OspC, p66, RevA, RevB, Bgp, CspA, CspZ, BB0347, ErpX, and BB0406 [2, 11, 23] 
(see Table 3.1). Several adhesins possess multifunctional properties, e.g., to circumvent 
innate immunity and therefore display redundant roles in the pathobiology of Lyme 
borreliosis. Reflecting the attribute of B. burgdorferi sensu stricto (henceforward 
B. burgdorferi) to colonize specific tissues, certain adhesins, e.g., BBK32, DbpA, and 
DbpB selectively bind to diverse glycosaminoglycans (GAGs) produced by different 
cell types [22, 24] leading to the assumption of a tissue- specific tropism of B. burgdor-
feri. Furthermore, variable expression of multiple GAG-binding adhesins might also 
account for a species-specific as well as strain- specific attachment to different mam-
malian cells [25]. The characteristics of the above-mentioned proteins are described in 
more detail in the following subsections.

3.2.1.1  The GAG-Binding and Complement-Targeting Surface 
Protein BBK32

BBK32, a 47 kDa outer surface protein encoded on linear plasmid 36 (lp36), binds 
the glycosaminoglycans heparin sulfate and dermatan sulfate, in addition to fibro-
nectin [26–28]. BBK32 has sequence similarities with fibronectin-binding adhesins 
of Gram-positive pathogens such as Staphylococcus aureus and the streptococci 
[29, 30]. BBK32 deletion mutants demonstrate a slight, but significant, defect in 
infectivity in the mouse [31–33], and demonstrate that this adhesin is important in 
the earlier stages of infection and contributes to colonization of the joints [28]. 
BBK32 plays an important role in the adhesion to the vasculature [34] and pos-
sesses complement-inhibitory activity [35, 36]. This multifunctional protein specifi-
cally terminates the activation of the classical pathway by interacting with 
complement component C1r of the initiated C1q complex [35]. Similar complement 
inhibitory potential on the classical pathway has also been elucidated for the BBK32 
orthologous proteins BAD16 of B. afzelii and BGD19 of B. garinii but the latter 
appears to display a reduced inhibitory activity compared to BBK32 of B. burgdor-
feri and BAD16 [36]. Consistent with its main function as an adhesin, BBK32 
expression is induced during tick feeding and is continuously produced in the mam-
malian host [37, 38].
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3.2.1.2  The Decorin-Binding Proteins DbpA and DbpB
Decorin is a small leucine-rich proteoglycan that associates with collagen; it pos-
sesses a collagen-binding core protein and single GAG chain, either dermatan sul-
fate or chondroitin-6 sulfate [39–41]. B. burgdorferi has two decorin-binding 
proteins that recognize decorin and other proteoglycans with GAG chains [24, 42–
44]. The genes encoding decorin-binding proteins A and B (dbpA/B) are composed 
in a bicistronic operon on lp54. Both proteins are exposed to the spirochetal surface 
and differ in their specificity to bind to decorin. Compared to DbpB (18-kDa), 
DbpA (20-kDa) binds to decorin with more affinity, suggesting that while DbpA 
primarily mediates attachment of spirochetes to the ECM, both adhesins are required 
for optimal binding of decorin [42, 43]. Mutants deficient in decorin-binding pro-
teins are still infectious; however, dbpA/B deficient bacteria are impaired in both 
colonization of various tissues and in persistent infection [45–48]. Decorin-deficient 
mice are resistant to B. burgdorferi infection, exhibiting fewer bacteria in joints 
upon infection as well as less severe arthritis than that induced in wild-type mice 
[49]. These data highlight the importance of decorin interactions to the establish-
ment of disseminated infections by B. burgdorferi. Despite a strong allelic variation 
among DbpA and DbpB among the pathogenic genospecies, all these proteins dis-
play GAG-binding activity [44, 50]. Moreover, borrelial strains exhibiting different 
GAG-binding specificities are able to bind to different cell types indicating that 
Borrelia produce diverse GAG-binding adhesins for colonization of particular cells/
organs (tissue tropism) [24, 51]. By comparative sequence analysis, five major 
groups of DbpA proteins have been delineated, of which DbpA orthologs compris-
ing groups I to IV were used as valuable discriminating antigens for the serodiagno-
sis of Lyme disease and have been thought to serve as promising antigens for 
vaccine development [52].

3.2.1.3  The Glycosaminoglycan-Binding Protein Bgp
In addition to DbpA, DbpB, and BBK32, Bgp was the first described binding adhe-
sin of B. burgdorferi and is a 5′ methylthioadenosine/S-adenosyl homocysteine 
nucleosidase [53, 54]. This secreted protein exhibits binding specificities to GAG 
but in the absence of other adhesins, Bgp does not promote attachment of spiro-
chetes to eukaryotic cells [55] making its adhesive function in  vivo highly 
questionable.

3.2.1.4  The Pore-Forming and Integrin-Binding Protein P66
The 66-kDa P66 or Oms66 protein is unique among the genus Borrelia and was 
initially identified as a ligand for β3 integrins (αIIbβ3 integrin) [56, 57]. In vivo stud-
ies showed that integrin binding mediated by P66 is important for vascular transmi-
gration and an efficient dissemination of spirochetes in infected mice [58, 59]. In 
addition, the P66 protein also serves as an adhesin for endothelial cells [60]. 
Structural and functional analyses revealed that P66 is an outer membrane-spanning 
protein that functions as a porin of B. burgdorferi [61]. Although P66 of B. burgdor-
feri elicits a robust immune response in humans directed against the surface-exposed 
domain, sera collected from patients with early disseminated and persistent Lyme 
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borreliosis failed to recognize orthologs of B. afzelii and B. garinii [62] suggesting 
that P66 is not an appropriate serologic candidate for an in vitro diagnostic test for 
Lyme disease and a second-generation vaccine.

3.2.1.5  The Fibronectin-Binding Proteins RevA and RevB
RevA is a surface protein encoded on the circular plasmid 32 (cp32) family of plas-
mids of many, but not all, Lyme disease borreliae. RevB is encoded on cp9 and 
shares 28% overall amino acid sequence identity with RevA. This plasmid is miss-
ing from many infectious Lyme disease spirochetes, and its biological significance 
is uncertain. Both RevA and RevB were shown to bind fibronectin in vitro [63]. 
RevA has the potential to play an important role in disease. Its expression is upregu-
lated in the mammal compared to the tick vector and its expression pattern and 
surface exposure suggest a potential role in B. burgdorferi pathogenesis [63–66]. 
Patients with various manifestations of Lyme disease, including patients with ery-
thema migrans, make antibodies to this protein [67]. Studies in mice demonstrated 
that revA mutants are deficient in colonization of the heart, suggesting this protein 
may play a role in tissue tropism [68]. In addition, the absence of RevA induces 
more severe joint pathology and inflammation [68].

3.2.1.6  The Laminin-Binding Proteins ErpX, BmpA, and BB0406
Laminin is a glycoprotein component of the ECM that serves a scaffolding function 
[69]. The outer surface protein ErpX binds laminin [70] through a unstructured 
hydrophilic domain. The biological significance of this protein is largely unknown 
but more recently it has been hypothesized that ErpX along with other Erp proteins, 
e.g., ErpL and ErpY might be a target for a second-generation vaccine employing a 
proteomic-conducted approach of the interactome of human and borrelial pro-
teins [71].

BmpA (Borrelia membrane protein A) originally described as P39 antigen [72] 
as well as the three paralogous proteins BmpB, BmpC, and BmpD exhibit a 
restricted binding property to mammalian laminin but did not bind to type I or type 
IV collagens or fibronectin [73]. The bmpA gene is located on the main chromo-
some of B. burgdorferi and forms a gene cluster together with the three paralogous 
genes bmpB, bmpC, and bmpD. Although BmpA and BmpB are co-transcribed, 
BmpA appears to be expressed in higher amounts [7]. In addition, borrelial cells 
lacking the BmpA or BmpB encoding gene are unable to persist in the murine joint 
tissue suggesting that these proteins play an important role in maintaining mam-
malian infection [74]. Of note, humans frequently produce a robust immune 
response to this particular antigen in the early course of infection, and thus, BmpA 
along with OspC and the FlaB protein was used as a marker for the recommended 
two-tiered IgM testing of acute or early Lyme disease [75, 76].

Recently, a novel laminin-binding protein, BB0406 has been identified that is 
capable of supporting spirochete colonization and survival in the mammalian host 
by interacting with extracellular matrix components [77]. The chromosomally 
encoded bb0406 gene is co-transcribed with the bb0404 and bb0405 genes all of 
which are grouped in the same paralogous gene family. BB0405 and BB0406 are 
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also highly conserved paralogous proteins in other human pathogenic species such 
as B. garinii, B. bavariensis, and B. afzelii as well as being immunogenic during 
mammalian infection [78]. Antibodies specific for BB0405 and BB0406 elicited 
during murine infection possess a high borreliacidal activity of >95% [78].

3.2.2  Factors Involved in Dissemination and Persistence 
of B. burgdorferi

3.2.2.1  OspC, a Multi-Functional Protein Involved 
in Early Dissemination

OspC has diverse roles, many of which are essential for transmission from Ixodes 
ticks and establishing infection in the mammalian host. The timing of OspC expres-
sion is incredibly important for the whole life cycle of Borrelia and its survival in 
different hosts: the ospC gene is upregulated during the early stages of infection and 
downregulated after infection has been established [79, 80]. Importantly, the expres-
sion of OspC is lost rapidly after infection due to the development of bactericidal 
antibodies generated against this antigen and thus, a constitutive expression of the 
protein prevents the persistence of the bacterium. Conversely, deletion or overex-
pression of ospC results in a rapid clearance of spirochetes from the murine host 
[81–83]. However, unlike VlsE, each OspC is present as a single-copy locus; there-
fore, any genetic variation is seen at the population level. That is, excluding random 
mutation or horizontal gene transfer events, a single spirochete cannot produce dif-
ferent OspC types in situ.

More recently, it has been shown that inter- and intraspecies variations of the 
OspC protein contribute to strain-specific differences in binding to diverse extracel-
lular matrix components, in particular fibronectin and dermatan sulfate [84]. 
Sequence variations of OspC enable B. burgdorferi to colonize diverse tissues 
including the skin, heart, bladder, and the joints, whereas OspC of B. garinii was 
incapable of binding dermatan sulfate and also did not promote joint colonization. 
These findings underpin the role of OspC in adherence, tissue tropism, and higher 
invasiveness observed for certain Borrelia strains. OspC functions as an immune- 
evasion molecule through several different mechanisms. It protects B. burgdorferi 
from antibody-mediated killing by binding Salp15, a tick salivary protein [7] at the 
very early steps of infection and also prevents phagocytosis by macrophages [85] 
and binds host complement component C4b [86]. Binding to C4b and inhibition of 
the classical and lectin pathway appears to be important for short-term bloodstream 
survival of B. burgdorferi [86]. Finally, OspC also binds plasminogen from the host, 
which can be activated to form active protease plasmin and can help facilitate the 
dissemination of the bacterium [87]. The multifunctional nature of OspC is not 
unusual in B. burgdorferi; with a limited genome, the bacterium has myriad outer 
surface proteins that harbor more than one binding partner or function. The com-
bined effect of the multi-interacting properties of OspC finally leads to immune 
evasion of spirochetes. It is worth noting that different OspC types are correlated 
with a strain’s ability to establish infection in different vertebrate hosts [88, 89], 
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thus influencing the range of animals B. burgdorferi is able to infect in nature. In 
addition, OspC proteins serve as important serological markers for the detection of 
early and early-disseminated manifestation of Lyme disease.

3.2.2.2  Host-Derived Factors Involved in Dissemination 
of B. burgdorferi

Invasion of deeper tissues depends on the pathogen ability to secrete proteases for 
degradation of the extracellular matrix, the most important structural component of 
connective tissues. This fibrous network is composed of different molecules includ-
ing collagen, decorin, laminin, and fibronectin. In contrast to other invading patho-
gens such as Gram-positive Staphylococcus aureus or Streptococcus pyogenes, 
B. burgdorferi completely lacks proteolytic proteins capable of degrading extracel-
lular matrix components. To overcome the obvious limitations for penetrating host 
barriers, B. burgdorferi utilizes host-derived proteases by producing a number of 
plasmin(ogen)-binding proteins (for review see [2, 11]) or induces the expression of 
different matrix metalloproteinases (MMPs) [90–95]. Recruitment of serum-derived 
plasminogen from the circulation and subsequent activation of surface-bound plas-
min would allow B. burgdorferi to traverse the endothelial layers of the vasculature 
and break down extracellular matrix components to escape host adaptive immunity 
and to reside in a protective environment [16, 96]. Plasmin is an unspecific serine 
protease displaying broad-spectrum enzymatic activity and degrades laminin (12), 
fibronectin (13), vitronectin (14,15), heparan sulfate proteoglycans (16) as well as 
elastin and is able to inactivate complement components C3 and C5 [97, 98]. It is 
noteworthy that plasmin also plays an important role in the activation of diverse 
MMPs including MMP-1, -3, -9, and -13, synthesized as inactive proenzymes by 
macrophages [97]. In vivo studies with plasminogen-deficient mice revealed that 
plasmin is necessary for an efficient migration of spirochetes from the tick midgut 
to the salivary glands and for the establishment of a higher spirochetemia in mice 
[99]. Certainly, plasmin did not influence the dissemination of B. burgdorferi to 
distant sites suggesting that other matrix-degrading proteases such as MMPs might 
play a role in these processes. Although multiple cell types including keratinocytes, 
fibroblasts, astrocytes, chondrocytes, and PBMCs respond to infection by B. burg-
dorferi by the induction of certain MMPs in vitro [91, 93, 94, 100–102], in vivo 
studies with knockout mice deficient in MMP-9 showed that this particular protease 
was not required for the dissemination of the spirochetes to distant sites [103], sug-
gesting that other MMPs possessing similar substrate specificities might compen-
sate for the deficiency of the respective protease. In patients with Lyme arthritis, 
elevated levels of MMP-1, -3, -9, and -13 could be detected in the synovial fluids 
and the activation of MMPs might also account for the irreparable damage of the 
cartilage after infection with B. burgdorferi in prolonged cases of Lyme borreliosis. 
Of note, animal studies do not completely reflect what has been seen in humans as 
specific MMPs are differentially induced in animals and in human tissues making it 
somewhat difficult to extrapolate the findings obtained in animal studies to the situ-
ation in humans.
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A large number of proteins have been detected in B. burgdorferi that may serve 
as ligands for host-derived plasminogen [104]. Among these molecules, the surface- 
exposed proteins OspA [105], OspC [106], the 70-kDa plasminogen-binding pro-
tein BPBP [107], ErpA, ErpC, and ErpP [108, 109]; Erp63 [110]; CspA [109]; CspZ 
[109]; BBA70 [111] as well as the “moonlighting” cytoplasmic protein enolase 
[112] have been identified as ligands for the serine protease. The multifunctional 
properties of these proteins (see Table 3.1) enabling B. burgdorferi s.l. to quickly 
adapting to the human host, colonize specific tissue, and disseminate through the 
human body to infect distant organs and, thus play a crucial role in the pathogenesis 
of Lyme borreliosis.

3.2.3  Immune Evasion Factors of B. burgdorferi

3.2.3.1  Antigenic Variation and the VlsE System of B. burgdorferi s.l.
Antigenic variation is the mechanism by which an infectious agent such as a bacte-
rium alters its composition of the outer surface in order to overcome a host immune 
response. For B. burgdorferi s.l., antigenic recombination of the outer surface pro-
tein VlsE is important in maintaining infection in mammals through evasion of the 
humoral immune response [113–119]. The Vls system can change the expressed 
surface antigen in situ. The Vls system is composed of approximately 16 vls cas-
settes with the exact number varying by strain, and one expression locus, vlsE. All 
of the identified vls cassettes are located on the same plasmid (lp28–1) in close 
proximity to but situated in the opposite direction of vlsE. Random recombination 
of segments of multiple vls cassettes, rather than recombination of an entire, single 
vls cassette, results in a novel vls sequence in the vlsE expression locus. Thus, 
recombination events result in thousands of unique expressed VlsE variants, all 
approximately 36 kDa.

VlsE is highly antigenic; in fact, diagnostic tests utilizing the “C6” peptide, a 23 
amino acid segment of VlsE, are in wide use. How then does variation in this protein 
help borreliae evade host immune responses [120–123]? Antibodies against the C6 
peptide and other invariant regions of VlsE are present in infected humans and ani-
mals, yet antibodies against these regions do not kill the Lyme disease spirochete 
[120]. The invariable regions of VlsE are inaccessible to host antibody, whereas the 
variable regions are accessible [124, 125]. Therefore, antigenic variation of the VlsE 
surface protein allows the bacterium to stay one step ahead of the host antibody 
response.

3.2.3.2  Complement Evasion and Complement Regulator-Acquiring 
Surface Proteins (CRASP)

It is well-known that Borrelia species substantially differ in their susceptibility to 
human serum leading to classification into three main categories based on their 
phenotypical appearance after serum treatment into serum-resistant, intermediate 
serum-resistant (or partial resistant), and serum-sensitive strains. Among Lyme 
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disease spirochetes, B. burgdorferi, B. afzelii, B. spielmanii, B. bavariensis, B. may-
onii, and B. japonica are classified as resistant to complement-mediated killing, 
B. bissettiae represents an intermediate serum-resistant phenotype, and B. garinii, 
B. valaisiana, and B. lusitaniae comprise the group of highly susceptible spiro-
chetes. With the exception of B. garinii, known to be one of the predominant caus-
ative agents of Lyme disease in Europe, the serum susceptibility pattern of all other 
genospecies almost matches their pathogenicity for humans. How B. garinii over-
come complement-mediated killing and which factors contribute to its survival in 
the human host is still a matter of controversy.

To overcome the first line of immune defense, in particular the human comple-
ment system, borreliae possess a number of diverse outer surface molecules, col-
lectively termed Complement Regulator-Acquiring Surface Protein(s) or CRASP 
that bind complement regulators or interact with certain complement components to 
affect the complement system at different activation levels (Table 3.1) (reviewed in 
[2, 12–15, 126]). Termination of human complement mainly includes recruitment of 
complement regulators of the alternative pathway Factor H and Factor H-like pro-
tein 1 (FHL-1) [12, 127–129] or the complement regulator of the classical pathway, 
C4b-binding protein C4BP [130], and binding of complement regulatory proteins 
Factor H-related protein FHR-1, FHR-2, and FHR-5 [131, 132], component C1r[35], 
C4b [86] or components of the terminal pathway including C7, C8, and C9 [133–
135]. While the C4BP-interacting borrelial protein provisionally named p43 and a 
CD59-like molecule found in B. burgdorferi has not been identified so far, all other 
proteins interacting with diverse complement components have been functionally 
characterized in in vitro studies including CspA, CspZ, ErpA, ErpC, ErpP, BGA66, 
BGA71, BBK32, and OspC [35, 36, 86, 131, 133–144]. An overview of the species 
origin and the binding and inhibitory properties of these outer surface proteins are 
presented in Table 3.1.

The physiological importance of CspA, CspZ, BGA66, BGA71, BBK32, OspC 
for complement evasion has been demonstrated by mouse and avian infection mod-
els and by using genetically modified borrelial strains producing the respective 
complement-interacting protein on the cell surface [35, 36, 86, 126, 133–135, 137, 
141, 142, 145–148]. The role of Factor H/FHR-binding ErpA, ErpC, and ErpP pro-
teins for complement evasion is controversial and therefore further investigations 
are required to confirm the participation of these in vivo-expressed molecules in 
immune evasion and pathogenesis of Borrelia [132, 140].

Although most of these proteins investigated so far have been detected in B. burg-
dorferi, orthologous proteins from B. afzelii, B. spielmanii, B. bavariensis, and 
B. mayonii have also been characterized (see Table 3.1) supporting the hypothesis 
that these human pathogenic species utilize similar or even identical mechanisms to 
combat the innate immune system of the human host [134, 135, 149–152]. More 
recent studies revealed a selective function of CspA orthologs concerning host spec-
ificity as CspA from different Borrelia genospecies specifically bind to Factor H 
from distinct hosts, allowing spirochetes to survive within the blood meal in the 
midgut of a feeding tick [126, 146]. Thus, host specificity of certain Borrelia 
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species directly correlates with the Factor H binding capabilities of CspA variants 
and underpin the concept of a complement-driven, selective transmission of spiro-
chetes to diverse mammalian hosts facilitated by a specific molecule.

3.3  Immune Defense and Host Response

3.3.1  Adaptive Immunity to B. burgdorferi s.l.

3.3.1.1  Role of B Cells and Antibody Responses in Lyme Disease
B. burgdorferi induces a strong antibody response, and SCID mice as well as B cell- 
deficient mice have high spirochete loads [19]. These data suggest that the adaptive 
immune system is critical for controlling the growth of B. burgdorferi s.l. However, 
B. burgdorferi s.l. has evolved strategies to subvert those normal immune responses 
and make them less effective.

For instance, while B. burgdorferi s.l. induces antibody production in the host, 
the quality of those antibodies is subpar in their specificity for B. burgdorferi anti-
gens; inappropriate isotype profiles; and poor binding avidity. Thus, while antibody 
production is high in response to a B. burgdorferi s.l. infection, those antibodies are 
ineffective at clearing the pathogen. Variable expression of targeting antigens might 
also enable B. burgdorferi s.l. to hide and to escape the adaptive immunity of the 
host [96, 116, 153, 154].

Normally, antibodies undergo class switching from the initial IgM antibody iso-
type to the IgG form. Although class switching occurs in a B. burgdorferi s.l. infec-
tion, there is also a continual production of low-affinity IgM [155–157]. As an 
antibody response matures, the initial binding avidity of antibodies increase. 
However, during infection with B. burgdorferi, this binding avidity initially increases 
as expected, but then drops off [158], resulting in a population of antibodies that are 
less efficient at recognizing B. burgdorferi antigens.

Activated B cells in draining lymph nodes proliferate rapidly and form extrafol-
licular foci and become plasmablasts. Germinal centers consisting of B cells, CD4+ 
T cells, follicular dendritic cells form and are necessary for affinity maturation of 
antibodies and immunological memory. However, germinal centers collapse in a 
B. burgdorferi infection, along with a loss of T and B cell zones in secondary lym-
phoid tissues [156–159]. The end result is that long-lived memory responses are not 
induced, meaning that a person can become infected again and again with the Lyme 
disease spirochete. This lack of long-lived immunity also has particular implica-
tions for vaccine development.

3.3.1.2  Role of T Cells in Lyme Disease
Innate T cell subsets such as γδ Τ cells and NKT cells respond to lipoproteins or 
lipid antigens, respectively, whereas γδ Τ cells induce maturation of dendritic cells 
[160–162]. Activation of γδ Τ cells is indirect and depends on Toll-like receptor 
(TLR) signaling [162]. The absence of NKT cells leads to higher B. burgdorferi 
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burdens [163]. Both subsets contribute to local defenses whereby the responsive-
ness to Borrelia antigens seems to be largely restricted to Vδ1 γδ T cells at least to 
synovial fluid-derived cells [164]. The roles of αβ T cells are less clear. The fact that 
SCID and rag−/− mice develop persistent arthritis and carditis demonstrates that 
adaptive immunity is critically important for disease resolution. Adoptive transfer 
experiments suggest that B cells and pathogen-specific antibody are necessary for 
control of B. burgdorferi and disease remission [165]. Different subsets of αβ T 
cells (e.g., CD4+ vs. CD8+) are recruited to sites of infection and activated, and 
certainly influence the disease outcome. However, the balance of local Th1/Th2 
responses does not impact arthritis severity [166–169]. There may be a role for 
Th17 and Treg cells; balance may play a role in disease severity or resolution [170–
174]. An important consideration is the expression of certain HLA (human leuko-
cyte antigen) molecules (MHC Class II) that present antigens to T cells. Some of 
these HLA alleles have been associated with predisposition to more severe Lyme 
arthritis and other disease manifestations. HLA-DRB1*04 (DR4) is associated with 
refractory Lyme arthritis [175–177], while a recent study on Latvian patients found 
an association with the DRB1*07 allele with Lyme neuroborreliosis [178]. Patients 
with the HLA-DRB1*11 (DR11) allele tended to resolve their arthritis more quickly. 
Studies using transgenic mice showed that the DR11 allele is associated with higher 
titers of anti-Borrelia antibodies and a lower spirochete burden, while the DR4 
allele mice showed a more inflammatory Th1 response [179]. These data again 
demonstrate the importance of adaptive immunity, particularly the B cell response, 
to disease resolution and control of infection.

3.3.1.3  Induction of Cytokines and Other Mediators
During the infection process, spirochetes induced a strong host response resulting in 
a massive release of cytokines and pro-inflammatory mediators such as TNF-α, 
IFN-γ, IL-1β, IL-6, IL-12, IL-17, IL-22, and GM-CSF as well as chemoattractants 
CXCL1, CXCL2, CXCL5, and CXCL10 in vitro and in vivo [180–185]. Induction 
of these pro-inflammatory cytokines is mainly attributed to the recognition of 
spirochetal- derived lipoproteins due to the pattern recognition receptors (PRRs) on 
monocytes or macrophages, in particular Toll-like receptor 2 (TLR2) and the 
nucleotide- binding oligomerization domain 2 (NOD2) [185–188]. Although para-
doxically, different cell types or tissues including synovia, skin, lymph node cells, 
splenocytes, glial cells, macrophages, lymphocytes, and dendritic cells elicit the 
anti-inflammatory cytokine, IL-10  in response to stimulation by live, heat- 
inactivated, or cell lysates of spirochetes [184, 189, 190]. A proteome-conducted 
analysis revealed that Borrelia-induced stimulation of IL-10 simultaneously modu-
lates pro-inflammatory responses of TNF-α, IFN-γ, IL-1β, IL-6, IL-12, IL-18, 
CCL2, CCL4, and G-CSF in order to control inflammation [191, 192]. It has been 
thought that spirochetes control the inflammatory process they themselves induced 
by stimulation of IL-10 production and thereby impair the burden of infection and 
the outcome of the disease [193]. The inflammatory response/process to a Borrelia 
infection in vitro most likely mirrors what can be seen in skin lesions of patients 
with erythema migrans, synovial fluid of Lyme arthritis patients, or inflammation in 
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the CNS of patients with neuroborreliosis. Apparently, IL-6 and IFN-γ are the domi-
nant cytokines released by certain cell types in response to a borrelial infection.

3.3.1.4  Recognition of Borrelia by Human Host Cells
Recognition of spirochetes by the host innate immune system plays a critical role at 
the very early stage of the infection to eliminate the bacteria from the  blood/circula-
tion and infected tissues [18, 194, 195]. It has been shown that Borrelia are recog-
nized by diverse cell types of the innate immune system including monocytes, 
macrophages, dendritic cells, polymorphonuclear cells (PMNs), natural killer cells 
(NK-cells), and NK-T cells mainly via Toll-like receptors (TLR) activated through 
specific pathogen-associated molecular patterns (PAMPS) that are released, e.g., 
during phagocytosis (reviewed in [196, 197]). The interplay between microbial 
PAMPS and TLRs is accompanied by the induction of specific inflammatory signal-
ing pathways resulting in the release of various cytokines (see Sect. 3.3.1.4) 
(Fig. 3.2). Among TLRs, heterodimeric complexes formed by TLR1 and TLR2 are 
activated by borrelial lipoproteins, while TLR7 and TLR8 play a central role in the 
recognition of ssRNA and dsDNA, and TLR5 acts as a receptor for flagellin. Of 
note, lipoprotein-mediated stimulation of TLR2 causes downregulation of TLR5 
indicating that diverse stimuli affect the expression of different TLRs [198].

Hematogenous dissemination by the pathogen via the circulation also involves 
the activation of certain adhesion molecules such as E-selectin, VCAM-1, ICAM-1, 
and VLA-4 by endothelial cells and the upregulation of IL-8 necessary for the trans-
migration of macrophages, monocytes, neutrophils, and T-cells to combat the 
incoming spirochetes as shown by in vitro assays applying human umbilical vein 
endothelial cells (HUVEC) as a model system [199, 200]. Compared to Th2 cells, 
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Fig. 3.2 Innate immune responses to Borrelia burgdorferi s.l. infections. IL interleukin, PAMP 
pathogen-associated molecular pattern, PRR pattern recognition receptors, TGF transforming 
growth factor, TLR toll-like receptor
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Th1 cells releasing IFN-γ are preferentially transferred but the simultaneous pro-
duction of IL-10 might affect this process as mentioned above. Despite the data 
available, it is not entirely clear how strong host-adapted spirochetes activate the 
endothelium in vivo but it is thought that recognition by TLRs appears to play a 
central role in activating the inflammatory response/signaling. Moreover, additional 
TLR-independent pathways should recognize incoming spirochetes but they are 
insufficient for the eradication of spirochetes when they are activated alone.

In addition, primary human microglia treated with B. burgdorferi showed an 
increased expression of pattern recognition receptors and genes known to be 
involved with cytoskeletal rearrangement and phagocytosis including MARCO, 
SCARB1, PLA2, PLD2, CD14, and TLR3. These data also indicate that B. burgdor-
feri interacts with the cell surface of primary human microglia and may be internal-
ized following this initial interaction. Furthermore, cell lysates of B. burgdorferi 
induce a significantly larger inflammatory response than live bacteria [181].

It is noteworthy to mention that the majority of the studies investigated were 
conducted in murine hosts and in mice deficient in certain genes involved in patho-
gen recognition (TLR2, CD14, MyD88, CD1), and B-cell deficient mice, e.g., SCID 
mice. Although these studies provided plenty of information about the immune 
responses and the signaling pathways involved, many clinical aspects of human 
Lyme borreliosis cannot be explained. For example, mice never develop skin mani-
festations such as an erythema migrans or acrodermatitis chronica atrophicans and 
also do not develop peripheral or central system involvement accompanied with 
meningoradiculoneuritis (Garin–Bujadoux–Bannwarth syndrome), cranial nerve 
palsies, or progressive neuroborreliosis. Also, the pathology of Lyme arthritis dif-
fers between humans and mice, late manifestations of the joints being more com-
mon in humans than mice. In humans, Lyme arthritis can be distinguished in two 
forms: acute and a protracted form that looks like a rheumatoid arthritis [201]. 
Infection of the heart resulting in the development of a carditis is more often 
observed in mice while in humans, internistic manifestations including endocarditis 
or hepatitis occur very rarely and infection of the eye (chorioretinitis, uveitis) has 
also never been observed in the murine host. In contrast, disseminated spirochetes 
frequently colonize the spleen, kidney, and ears within a short period of time in 
infected mice. Despite the obvious drawbacks, the mouse model of Lyme borrelio-
sis has provided important information about the complexity of the host responses 
and the magnitude of factors, activators, ligands, receptors, and signaling pathways 
involved in a spirochetal infection.

3.3.1.5  Persistent Infection of Borrelia and Post-Lyme 
Disease Syndrome

Persistence implicates an active process of infection, reinfection, and subsequent 
invasion of target tissues where spirochetes are able to survive, despite the innate 
and adaptive immune systems, in an uncontrolled manner. In fact, Borrelia have 
developed sophisticated means to successfully overcome innate and acquired immu-
nity (as discussed in Sect. 3.2.3) while host cells simultaneously activate manifold 
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tools to control and eliminate the spirochetes. In vitro and infection studies revealed 
that a spirochetal infection is well controlled by both the innate and acquired host 
defenses. Neither phagocytosis nor complement nor specific antibodies alone are 
able to completely eliminate the pathogen from the circulation and reduce tissue 
burden to an undetectable level. From the murine model, it has been shown that a 
strong antibody response failed to clear the spirochetes from circulation and did not 
prevent colonization of tissues, most likely due to intrinsic mechanisms developed 
by Borrelia, e.g., antigenic variation and variable expression of antigens, respec-
tively, or by an active mechanism involving suppression and alteration of the host’s 
immune response and immunoseclusion to suppress recruitment of inflammatory 
cells and recognition of the pathogen [202]. In contrast to what has been observed 
in infection studies with mice-administered antibiotics, long-term follow-up clinical 
studies showed that there is no evidence, with exception of reinfections, for a relapse 
by bacteria that survived the antibiotic treatment [203–207].

3.3.1.6  Candidates for Lyme Disease Vaccine Development
Since the first licensed OspA-based vaccine for Lyme disease, LYMERrix, was offi-
cially withdrawn from the commercial market by the manufacturer SmithKline 
Beecham in February 2002 in the United States, no further vaccine has been released 
so far, although there is compelling justification for the development of a safer and 
efficient formulation. Due to the phylogenetic diversity of the six genospecies 
(B. burgdorferi, B. afzelii, B. garinii, B. bavariensis, B. spielmanii, and B. mayonii) 
causing Lyme disease in humans and the heterogeneity of the most promising can-
didates (e.g., OspA, OspC, DbpA, OspE, BBK32), the development of a second- 
generation vaccine tends to be a big challenge. Investigations have focused on either 
combination of recombinant proteins (a dual combination of OspA and DbpA or a 
triple combination comprising OspC, BBK32, and DbpA) to synergize the protec-
tive effect of a single protein [208–210] or a chimeric OspA- and OspC-based vac-
cine [211, 212]. Preclinical studies demonstrated broad protection of these 
second-generation vaccines but there is no phase III multicenter trial reported so far. 
Furthermore, the biggest challenge in terms of a high-risk investment and the risk of 
unforeseen side effects, as known from LYMErix, the first-generation OspA-based 
vaccine, would be to bring such a vaccine to the global market.
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4.1  Introduction

Lyme borreliosis is caused by certain genospecies of the Borrelia burgdorferi sensu 
lato (s.l.) complex. The disease presents with diverse clinical manifestations. A pre-
requisite for a correct diagnosis is that physicians should have the best possible 
knowledge of the clinical features of Lyme borreliosis, which should be acquired 
through clinical instruction and personal experience. The evidence-based knowl-
edge of Lyme borreliosis is available from case definitions, guidelines, reviews and 
seminar articles in peer-reviewed publications [1–7]. However, great caution is 
advised when consulting the internet about the spectrum of clinical symptoms of 
Lyme borreliosis and approaches for diagnosing Lyme borreliosis. There are hun-
dreds of sites available containing much misinformation [8].

The causative Borrelia species of Lyme borreliosis occur in natural foci in verte-
brate reservoir hosts and in certain Ixodes tick species that transmit the pathogens to 
other vertebrates, including man. The seasonal occurrence of the main skin manifes-
tation of infection, erythema migrans, is thus linked to tick seasonal activity. 
Disseminated or late disease shows little seasonality and may appear throughout the 
year. Reliable clinical diagnosis of Lyme borreliosis without laboratory confirma-
tion is only possible for typical erythema migrans, whereas other manifestations 
clinically suspicious for Lyme borreliosis need laboratory confirmation. The empha-
sis in this chapter is on European Lyme borreliosis. It provides information on the 
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various clinical presentations of Lyme borreliosis with respect to diagnosis and 
treatment and is intended to provide an insight into the history and epidemiology of 
the disease.

4.2  History of Lyme Borreliosis

The history of this disease begins at the end of the nineteenth century when Alfred 
Buchwald from Breslau (today’s Wroclaw) reported on a patient with a “diffuse 
idiopathic skin atrophy” [9]. It was the first description of a chronic skin disease 
later referred to as “acrodermatitis chronica atrophicans” [10]. European dermatol-
ogy literature had described a relationship between joint and bone abnormalities 
and acrodermatitis chronica atrophicans, as emphasised by the term “akrodermatitis 
atrophicans arthropathica” [11]. In 1909, Arvid Afzelius reported to the Swedish 
Dermatological Academy on his observations of an expanding reddening of the 
skin, which he called “erythema migrans” [12]. In 1913, the Viennese dermatologist 
Benjamin Lipschütz reported that in one case he had observed a skin rash expanding 
over a period of 7 months [13]. The skin rash developed from a spot around a tick 
bite on the thigh and extended over time over the buttocks and the back up to the 
shoulder; then it healed spontaneously. Lipschütz called this rash “erythema chroni-
cum migrans.” Lipschütz recognised the connection with the tick bite and later sug-
gested examination of tick saliva, which he assumed contains the cause of the 
observed skin disorder [14].

In 1922, Garin and Bujadoux from Lille described a paralysis that occurred after 
a tick bite [15], which Schaltenbrand clearly differentiated clinically from other 
arthropod-borne diseases of the nervous system in 1967 [16] and was named 
radiculo- myelo-meningitis following a tick bite, but the cause was still unknown. 
However, due to successful treatment with antibiotics [17], it had become very 
unlikely that a virus could cause this condition. Since the 1950s, dermatologists in 
Europe have successfully used penicillin for the treatment of acrodermatitis chron-
ica atrophicans and erythema chronicum migrans. Hollström reported the success-
ful treatment of erythema migrans in 16 cases including one with meningitis and 
found penicillin superior to other drugs [17]. In his article, he mentioned Carl 
Lennhoff of the dermatological hospital of Magdeburg University, Germany, and 
then the Karolinska Institute in Stockholm, Sweden, who demonstrated structures in 
a skin biopsy of erythema migrans that resembled spirochete-like elements, point-
ing to the possibility that this disease may be caused by tick-associated spirochetes 
[18]. The dermatologist Klaus Weber from Munich systematically went through all 
possible viral causes as well as the role of rickettsia and also the agent of tularemia, 
but had to rule out all of them as causative agents [19]. He also discussed borreliae, 
which he ruled out due to the prevailing opinion among acarologists at that time that 
only soft ticks and not hard ticks, such as Ixodes ricinus, are carriers of borrelia. The 
apparent effectiveness of antibiotics against the disorders suggests a bacterial cause, 
but what bacterial agent was responsible?
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An important observation was made in the United States in 1975. Two mothers, 
Polly Murray and Judith Mensch, reported to the Connecticut State health depart-
ment that many children in the neighbouring villages of Lyme, Old Lyme and East 
Haddam had joint problems. Doctors from the health authority and Allen Steere, 
then a rheumatologist at Yale University in New Haven, Connecticut, organised a 
monitoring program with the mothers, and the local and school doctors. They exam-
ined all children with inflammatory joint diseases from the region and did every-
thing possible to track down the cause of the joint diseases. In a first report, they 
presented 39 children who suffered from a joint disease that was very similar to the 
so-called juvenile rheumatoid arthritis. However, the evaluation of the patient data 
revealed valid differences among the residents of the above-mentioned villages. A 
total of 4.3 in 1000 suffered from arthritis. Taking the children alone, 12.2 out of 
1000 suffered from arthritis. This proportion was about a 100 times higher than the 
known incidence of juvenile rheumatoid arthritis. Arthritis cases were also found to 
be more frequent among the small population that lived on the left side of the 
Connecticut River in a forested area. Most of the patients also remembered that their 
illness began in summer or early autumn. The geographical and seasonal accumula-
tion matched the picture of an arthropod-borne disease. In addition, about a quarter 
of the patients remembered a reddened papule on the skin, which they attributed to 
an insect bite, and that appeared on the skin about 4 weeks before the start of the 
joint inflammation. Some of these patients also reported that a reddening of the skin 
developed around the papule, which has been diagnosed as erythema chronicum 
migrans, for long known in Europe as a disorder following a tick bite [20–22]. In 
addition, the hard tick species Ixodes scapularis (then named I. dammini) was wide-
spread in the Lyme area. I. scapularis is closely related to the hard tick I. ricinus, 
which is widespread in Europe and associated with erythema chronicum migrans. 
Thus the role of I. scapularis as a vector of an unknown etiological agent was almost 
beyond doubt [23].

The association of tick-borne erythema chronicum migrans with subsequent 
joint inflammation was named Lyme arthritis. The ongoing studies revealed other 
accompanying conditions or diseases following erythema chronicum migrans 
affecting the nervous system [24] and the heart [25]. Because of the broader spec-
trum of diseases, the term Lyme disease was then introduced.

The researchers from Yale, who initially considered a virus to be the cause of 
Lyme disease, nevertheless acted on the European experience of the beneficial 
effects of antibiotic treatment and treated erythema chronicum migrans cases in the 
summers of 1977 and 1979 with penicillin. They compared the results with untreated 
cases of 1976 and 1978 and found that when penicillin was administered at the 
beginning of the disease, erythema chronicum migrans quickly disappeared and 
prevented subsequent joint inflammation, or at least reduced its severity. This was 
another supporting fact for a penicillin-sensitive pathogen [25, 26].

A first-hand account of the discovery of the Lyme disease agent has recently 
been published by Alan Barbour and Jorge Benach [27]. This text illuminates the 
context of the discovery and stresses that “the discovery of the Lyme disease agent 

4 The History, Epidemiology, Clinical Manifestations and Treatment of Lyme…



80

has threads originating in different places in the United States” and they conclude 
that the “discovery is actually the product of several threads coming together and is 
attributable to more people than appreciated.” For the world of science it started 
with the Science paper “Lyme Disease—a Tick-Borne Spirochetosis?” [28] fol-
lowed by reports on the isolation of cultivable spirochetes from Ixodes ticks [29, 30] 
and finally by the demonstration of the etiologic role of these spirochetes in Lyme 
disease by isolating them from blood, skin and other specimens from patients in the 
early 1980s [31, 32]. The “First International Symposium on Lyme Disease” was 
held at the Yale University School of Medicine in New Haven, Connecticut, 
November 16–18, 1983. The programme of this conference comprised the topics 
“clinical features, vector and causative agent, causative agent and host response, 
animal studies and epidemiological studies” and listed 36 speakers, 5 of them from 
Europe. The Lyme disease spirochete was described as a new species in the genus 
Borrelia [33] and a discussion on naming this new Borrelia species resulted in the 
name Borrelia burgdorferi [34]. Thanks to the activities of physicians and scientists 
in the United States, it was established that particular disorders of the skin and the 
nervous system—known in Europe for decades—form a nosological entity that is 
now summarised under the term Lyme borreliosis. Lyme borreliosis or Lyme dis-
ease occurs throughout regions of the northern hemisphere with moderate climates, 
where the pathogens are exclusively transmitted by hard ticks of the genus Ixodes. 
Although the disease was known before its discovery in Lyme, the terms Lyme dis-
ease and Lyme borreliosis have been used extensively and now remain as the 
accepted descriptors of this disorder.

It was the development of the Barbour–Stoenner–Kelly medium that allowed the 
cultivation of B. burgdorferi from ticks, animals and humans. For characterisation 
of B. burgdorferi, Barbour and Schrumpf raised monoclonal antibodies to the outer 
surface proteins OspA and OspB and to flagellin proteins [35]. Substantial differ-
ences in reactivity were found with isolates from Europe. An OspA typing system 
was developed by Bettina Wilske and colleagues in Munich and the resulting find-
ings, in conjunction with molecular biological studies by Guy Baranton and col-
leagues in Paris, provided evidence for new Borrelia genospecies such as B. afzelii 
and B. garinii [36–39]. The number of genospecies of the B. burgdorferi s.l. com-
plex has now increased to more than 20; only a small number of them have clinical 
significance [40–43]. The prevailing pathogens of Lyme borreliosis in Europe are 
the genospecies B. afzelii, B. garinii, B. bavariensis (formerly B. garinii OspA type 
4) and B. burgdorferi sensu stricto (henceforward B. burgdorferi). B. spielmanii, 
B. bissetiae, B. valaisiana and B. lusitaniae have been identified as pathogens in 
single cases only. The US pathogenic genospecies are less diverse with only B. burg-
dorferi and B. mayonii (also refer Marques/Wormser chapter “Laboratory Diagnosis 
of Lyme Borreliosis”).

The discovery of the causal agent of Lyme borreliosis sparked off a spate of 
activity in the field of borrelia and tick research. The need to exchange knowledge 
resulted in a series of biennial or triennial international conferences on Lyme bor-
reliosis and other tick-borne diseases (ICLB), commencing in New Haven, USA in 
1984 and then alternating between the United States and Europe. Fifteen such 
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conferences have now been held so far. Additionally, many studies on Lyme bor-
reliosis are presented periodically at other international conferences concerning 
tick-borne pathogens, such as the International Symposium on Ticks and Tick-borne 
Diseases (ISTTBD), Ticks and Tick-Borne Pathogens (TTP), and the International 
Symposium on Tick-Borne Pathogens and Disease (ITPD).

An activity with historical impact was the European Union Concerted Action on 
Risk Assessment in Lyme Borreliosis (EUCALB), a 3-year EU-funded project 
involving more than 30 scientists and physicians from 14 countries, which com-
menced in December 1993 and aimed to provide practical risk assessment criteria 
for Lyme borreliosis [44–54]. After a series of meetings, case definitions were 
agreed and published [55] and these were updated in 2011 [4]. Other publications 
concerned immunoblot serology [56], detection of borrelial infection in ticks, and 
habitat assessment for Lyme borreliosis risk. The latter study concluded that high 
risk was associated with highly heterogeneous recreational woodland, and case data 
from both high and low incidence countries suggested that most infections are 
acquired in recreational areas. In 2012 former EUCALB participants founded the 
ESCMID study group on Lyme borreliosis (ESGBOR), which remains active and 
publishing [57, 58].

Another relevant European project, NorthTick, is co-funded by the European 
Union through the European Regional Development Fund and the North Sea Region 
Programme 2014–2020. It addresses tick-borne diseases in general in the region and 
aims to provide a multidisciplinary and transnational approach in relation to risk 
assessment, preventive measures, diagnostic strategies and patient management. 
Eleven beneficiaries from seven different countries (Denmark, Sweden, Norway, 
Germany, Belgium, United Kingdom and the Netherlands) are involved.

4.3  Epidemiology

The main vector for the pathogens of Lyme borreliosis in Europe is Ixodes ricinus, 
overlapping in the north-eastern parts of Europe with Ixodes persulcatus, the prin-
cipal vector further east. Mice, voles and other small mammals and certain species 
of birds are the principal vertebrate reservoirs for the agents of Lyme borreliosis. 
The feeding activity of I. ricinus nymphs is highest in late spring to early summer; 
however, depending on weather conditions and the nature of the habitat, questing 
ticks may be found throughout the year, even in wintertime. As stated previously, 
recreational areas are the predominant areas for risk of tick bites. Thus, humans are 
most frequently exposed to tick bites between April and October during the peak of 
tick activity, when people are most frequently outdoors and in direct contact with 
vegetation and tick habitats. Tick bites in children occur more often on the head, 
while in adults they are on the lower limbs and on the abdominal and gluteal region 
[59, 60].

A meta-analysis of studies from 23 European countries over the period 
2010–2016, determined the prevalence of Borrelia strains in 115,028 questing 
I. ricinus ticks. This analysis revealed significantly higher infection rates in adult 

4 The History, Epidemiology, Clinical Manifestations and Treatment of Lyme…



82

ticks compared to nymphal ticks (17.8% vs. 14.2%) and in female compared to male 
ticks (18.4% vs. 15.7%). The data also revealed significant differences between 
various European regions, with the highest infection rates in Central Europe (19.3% 
of ticks) and the lowest in the British Isles (3.6%). The most common genospecies 
found in ticks were B. afzelii, B. garinii and B. valaisiana. No statistically signifi-
cant differences were found among the prevalence rates determined by conventional 
PCR, nested PCR, and real-time PCR [61]. Using the PCR-reverse line blot (RLB) 
method to screen for pathogens in a total of 554 I. ricinus ticks collected from all 
provinces of Austria, B. burgdorferi s.l. was found in 25.6% of ticks. Again, B. afzelii 
was the most frequently detected species, followed by B. burgdorferi and B. valaisi-
ana [62].

Three genospecies, B. afzelii, B. garinii, and B. burgdorferi, are the important 
human pathogens for Lyme borreliosis in Europe. This is substantiated by the analy-
sis of more than 1000 isolates obtained in prospective studies from Slovenian 
patients with Lyme borreliosis. Of the 780 Borrelia strains isolated from the skin of 
patients with solitary erythema migrans, 89.5% were B. afzelii, 9.4% B. garinii and 
only 1.1% B. burgdorferi [63–66]. A similar predominance of B. afzelii was shown 
for isolates from the skin and blood of patients with multiple erythema migrans and 
borrelial lymphocytoma. However, there have also been isolates of B. garinii, 
B. burgdorferi, and B. bisettii from patients presenting with these manifestations, 
suggesting that several species may cause erythema migrans or borrelial lymphocy-
toma. Isolates from acrodermatitis chronica atrophicans skin lesions were in 92.8% 
B. afzelii, in 3.6% each B. garinii and B. burgdorferi [67]. In contrast, over 75% of 
isolates from cerebrospinal fluid (CSF) of patients with Lyme neuroborreliosis were 
B. garinii [65, 68–70]. Of interest is that the frequency distribution of borrelial iso-
lates from patients does not correspond with that found in ticks.

Lyme borreliosis is the most common tick-borne infection in humans throughout 
the moderate climates of the northern hemisphere. However, the actual incidence of 
this disease in Europe is very variable. This is well documented in the number of 
reported cases from countries with a history of mandatory reporting. The overall 
incidence in Slovenia for example ranged in a 10-year period (2009–2018) between 
183 and 365 cases per 100,000 inhabitants, mean 257 (Strle personal comm. 2021). 
Incidence determined over the same period in Bulgaria ranged from 4.1 to 11.9 
cases per 100,000 inhabitants, mean 6.9. Figure 4.1 displays the variation of overall 
incidence from year to year and also the difference in the disease burden between 
the two countries. However, a high variation of incidence was also observed in dif-
ferent regions of Bulgaria, varying from 0.30 to 30.9 per 100,000 inhabitants [71].

A population-based retrospective cohort study aimed to estimate the annual inci-
dence of Lyme borreliosis over the years 2001–2012 in the United Kingdom. The 
results indicate a constant increase of incidence from 1.6 to 12.1, with a high varia-
tion of incidence rates across different parts of a region [72]. A database search 
again ascertained the large variance in the incidence rates of Lyme borreliosis in 
western countries of Europe, between the countries and in regions within the coun-
tries with a calculated mean incidence of 56.3 cases per 100,000 inhabitants per 
year [73]. The incidence of Lyme borreliosis in six eastern states of Germany varied 
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between 35 cases in 2009 and 20 cases per 100,000 inhabitants in 2012 [74]. Another 
study from Germany used cases notified in the years 2013–2017 and calculated an 
incidence ranging from 41 per 100,00 in 2013 to 26 in 2015 with a mean 2013–2017 
annual incidence on district level between 0.5 and 138 cases per 100,000 [75]. In 
France, the average incidence of Lyme borreliosis for the years 2004–2009 was 42 
ranging from 0 to 184 per 100,000 inhabitants [76]. Another study from France 
found a mean yearly incidence of Lyme borreliosis of 53 cases per 100,000 inhabit-
ants, ranging from 41 in 2011 to 84 in 2016. The incidence of patients hospitalised 
for Lyme borreliosis ranged from 1.1 cases per 100,000 in 2005 to 1.5 in 2016 [77]. 
In the Netherlands, a decrease of tick bite consultations and stabilisation of early 
Lyme borreliosis cases, erythema migrans, was observed in 2014. The incidence of 
erythema migrans retained at 140 per 100,000 [78]. The mean annual incidence of 
Lyme borreliosis in the Veneto area, Italy, for the period 2015–2019 was 0.999 cases 
per 100,000 inhabitants with a peak of 2 per 100,000 in 2018 [79]. Although overall 
incidence can vary widely incidences of districts particularly allow to identify areas 
of higher risk for tick-borne borrelia infection.

A surprisingly constant finding is the risk of acquiring a borrelia infection (Lyme 
borreliosis diagnosis and/or seroconversion) after a tick bite. A prospective study 
carried out in the years 2008–2009 in Sweden and on the Åland Islands showed that 
the risk of borrelia infection after a tick bite is 5% [80]. The same figure of 5% was 
obtained in a prospective study on the same topic in Austria in 2015–2018 [81].

More than 75% of all Lyme borreliosis cases are diagnosed between June and 
October, with erythema migrans being the most frequently diagnosed clinical mani-
festation, accounting for about 90% of all cases in central Europe, ranging between 
95.4% [74] and 95%, 89% and 77% [59, 75, 82]. Another skin disorder, 
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acrodermatitis chronica atrophicans occurs in about 3% of cases of Lyme borrelio-
sis. The third skin disorder, borrelial lymphocytoma is seen in 2% [82], but more 
frequently in children than in adults. Lyme neuroborreliosis is the most common 
extracutaneous manifestation of Lyme borreliosis in Europe; its proportion ranges 
between 16.7% and 2.7% as reported in studies from southern Sweden in the 1990s 
and from Germany in the years 2013–2017, respectively [59, 75]. Lyme arthritis is 
apparently a less common manifestation in Europe than in the United States. Its 
frequency in European studies is between 2% and 7% [59, 74]. Heart involvement 
appears to be very rare. A bimodal age distribution of Lyme borreliosis is reported 
from several European countries, with incidence peaks reported in children 
5–9 years old and in adults from 50 to 74 years [59, 75, 83]. Female patients are 
more frequently affected than males [59, 84]. The most common reasons for hospi-
talisation are Lyme neuroborreliosis and—although much less often—Lyme arthri-
tis [75]. Erythema migrans occurs soon after the tick bite and is thus linked to the 
level of tick activity, which is seasonal, in contrast to other manifestations that may 
present at any time of the year [2, 59].

4.4  Clinical Manifestations of Lyme Borreliosis

The clinically most characteristic presentation of Lyme borreliosis in Europe is the 
skin infection, erythema migrans. Erythema migrans manifests in about 90% of 
patients with Lyme borreliosis; in the remaining 10%, the disease presents with dis-
seminated or later manifestations of the illness, such as Lyme neuroborreliosis or 
arthritis [2, 7].

4.4.1  Skin Manifestations

Erythema migrans, borrelial lymphocytoma and acrodermatitis chronica atrophi-
cans are characteristic manifestations of Lyme borreliosis. Other skin manifesta-
tions such as scleroderma circumscripta, lichen sclerosus et atrophicus and 
cutaneous B-cell lymphoma have also been associated with Lyme borreliosis, but 
these associations are questionable.

4.4.1.1  Erythema Migrans
Erythema migrans is defined as an erythematous skin lesion that develops days to 
weeks at the site of a bite where a borrelia-infected tick has transmitted borreliae 
into the skin during the course of its blood meal. The lesion typically begins as a red 
macula or papule and expands over days to weeks, with or without central clearing. 
For a reliable diagnosis, a single primary lesion must reach ≥5 cm in diameter. A 
lesion of <5 cm qualifies for the diagnosis of erythema migrans only if it develops 
at the site of a tick bite, if its onset has a delay of at least 2 days, and if the lesion is 
enlarging. Multiple erythema migrans is defined as the presence of two or more skin 
lesions, one of which must fulfil the size criteria for solitary erythema migrans [2, 4].
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Untreated erythema migrans may persist and expand over weeks to several 
months, their diameter ranging from a few centimetres to more than a meter. 
Erythema migrans is most often located on the lower extremities in adult patients; 
in children, the upper part of the body is more often involved [2–6, 59, 60]. Local 
symptoms such as mild itching, burning or pain at the site of erythema migrans may 
be experienced in about half of European patients. Systemic symptoms, such as 
fatigue and malaise, headache, myalgia and arthralgia may only be experienced by 
about one-third of European patients. These symptoms are usually intermittent and 
often vary in intensity and location. Fever is only recorded exceptionally in adult 
European patients, whereas in the United States it occurs more frequently in ery-
thema migrans patients. In multiple erythema migrans, the secondary lesions are 
similar in morphology to the initial solitary lesion, are usually smaller and are only 
exceptionally associated with local itching or pain. In Europe, multiple erythema 
migrans is more frequently seen in children than in adults. Differential diagnoses 
comprise tick- or insect-bite hypersensitivity reaction, fungal infection, erysipelas, 
urticaria, contact eczema, folliculitis, cellulitis, granuloma annulare and fixed drug 
eruption [2, 5, 69, 85–95].

4.4.1.2  Borrelial Lymphocytoma
Borrelial lymphocytoma presents as a solitary swelling up to a few centimetres in 
diameter and consists of a dense lymphocytic infiltration of dermis and subcutane-
ous tissue due to the borrelial infection. B-lymphocytes predominate in this poly-
clonal infiltration and germinal centres may be seen. The predominance of B cells 
contrasts with the findings in erythema migrans and acrodermatitis chronica atro-
phicans skin lesions where T cells prevail. High levels of the B-cell active chemo-
kine CXCL13 are found in this skin manifestation in contrast to erythema migrans 
and acrodermatitis chronica atrophicans. Borrelial lymphocytoma is more fre-
quently seen in children than in adults and most frequently located on the ear lobe. 
In adults it is mostly located in the region of the areola mammae, rarely on the nose, 
arm, shoulder or scrotum. Borrelial lymphocytoma, like erythema migrans, also 
resolves eventually without treatment. The isolation rate of borreliae is about 1/3; 
B. afzelii is most frequently identified. Differential diagnosis requires histological 
examination, particularly in patients with breast lymphocytoma or lymphocytoma 
at other (atypical) locations especially if an association with borrelial infection can-
not be established and B-cell lymphoma and pseudolymphoma are considered 
[96–99].

4.4.1.3  Acrodermatitis Chronica Atrophicans
Acrodermatitis chronica atrophicans is a chronic skin manifestation of Lyme bor-
reliosis. It is almost exclusively seen in Europe. Unlike erythema migrans and bor-
relial lymphocytoma, acrodermatitis chronica atrophicans does not heal 
spontaneously. The lesion is most often located on acral parts of the body, usually 
on the extensor part of the hands or feet. Initially it is usually unilateral, but later on 
it may become more or less symmetrical. Acrodermatitis chronica atrophicans is 
more often diagnosed in women than in men and occurs only very exceptionally in 
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children. Patients are usually over 40  years old. It is most frequently caused by 
B. afzelii. A history of tick bites is not diagnostically supportive because of the long 
incubation time and the long duration of the skin lesions prior to diagnosis. 
Clinically, the involved region is initially usually edematous; erythema and swelling 
may vary in intensity. After the initial months to years, the edema slowly vanishes 
and gradually atrophy becomes more and more prominent. The skin becomes 
increasingly vulnerable, thin and wrinkling, with prominently visible underlying 
vessels. When exposed to a cold environment, the skin becomes pronouncedly blu-
ish. Band-like fibrous indurations may occur in the involved regions, usually in 
ulnar or tibial regions, or they may be nodular, preferably localised prepatellarly or 
next to the olecranon. In some cases, sclerotic lesions are clinically and histologi-
cally indistinguishable from localised scleroderma (morphea) or lichen sclerosus et 
atrophicus. In typical inflammatory acrodermatitis chronica atrophicans every tenth 
patient may also have a lichen sclerosus et atrophicus-like lesion [63, 67, 84, 
99–103].

Patients with long-lasting untreated acrodermatitis chronica atrophicans may 
suffer from some kind of mild or moderate neuropathy [104]. Sensory and motor 
mononeuropathy or polyneuropathy or patchy dysesthesia may develop at the site of 
the cutaneous lesions. Patients with acrodermatitis chronica atrophicans may com-
plain of hyperesthesia, dysesthesia, muscle cramps, muscle weakness and/or sensa-
tions of heaviness, mainly in the affected limb(s) [105]. In long-lasting cases, 
subluxation and/or luxation of the small joints of hands or feet may occur. Periosteal 
thickening of bones similar to dactylitis syphilitica in the late phase of syphilis may 
also occur in a small proportion of patients. Preceding or accompanying inflamma-
tions may occur, such as bursitis of the knee or elbow, epicondylitis, retro- or sub-
calcaneal bursitis and Achilles tendinitis.

A proper diagnosis is based on clinical, serological and histological criteria. IgG 
antibodies to B. burgdorferi s.l. are a prerequisite; IgG-negative acrodermatitis 
chronica atrophicans patients are almost non-existent. Further consolidation of the 
diagnosis is achieved by histological examination of the involved skin. The diagno-
sis can be further supported by the isolation of B. burgdorferi s.l. from lesional skin, 
successful in about one-third of patients [67]. Differential diagnoses or more often 
false interpretation of acrodermatitis chronica atrophicans skin lesions on the lower 
extremities are vascular insufficiency such as chronic venous insufficiency, superfi-
cial thrombophlebitis, hypostatic eczema, arterial obliterative disease, acrocyano-
sis, livedo reticularis, lymphedema, “old skin,” or chilblains. Fibrous nodules may 
be misinterpreted as rheumatoid nodules and gout or even as erythema nodosum.

4.4.2  Lyme Neuroborreliosis

Lyme neuroborreliosis appears during the first few weeks or months after the onset 
of infection. In adult patients, meningoradiculoneuritis is the most frequent clinical 
manifestation of Lyme neuroborreliosis in Europe. Its onset is gradual with increas-
ing pain, later on accompanied by palsies and other neurological signs and 
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symptoms that may, if untreated, persist for many weeks [106, 107]. Radicular pain, 
the most pronounced clinical symptom of meningoradiculoneuritis, is usually 
severe and most intense during the night. In children, isolated meningitis and 
peripheral facial palsy are more common than in adults [108–110]. Involvement of 
motor nerves may lead to paresis [107, 111, 112]. European patients with untreated 
meningopolyneuritis will develop signs and symptoms of disseminated encephalo-
myelitis in up to 10% that may in some respects resemble those seen in multiple 
sclerosis [111]. Dementia-like syndromes, diagnosed as definite Lyme neurobor-
reliosis according to the European guidelines, are rare manifestations of Lyme neu-
roborreliosis. It is essential to be aware of this manifestation of Lyme neuroborreliosis 
because antibiotic treatment will prevent permanent sequelae [113]. Patients with 
borrelial meningitis usually suffer from mild headache with intermittent improve-
ments and deterioration. In adult patients, fever, nausea and vomiting and menin-
geal signs are usually absent [111, 112]. However, CSF findings display a 
lymphocytic pleocytosis up to several hundred million cells/l. Protein concentra-
tions are normal or slightly elevated; glucose concentrations are usually normal or 
mildly depleted [111]. Any cranial nerve may be affected in Lyme neuroborreliosis 
but facial nerves are most frequently involved, resulting in unilateral or bilateral 
peripheral facial palsy [111]. This is due to B. burgdorferi s.l. infection in about 
20% of adult patients and 25% of children in endemic regions [107, 109, 112, 114]. 
Lymphocytic pleocytosis is often seen in patients with borrelial peripheral facial 
palsy, although signs or symptoms of meningitis are absent [114]. Borrelial periph-
eral facial palsy responds very well to antibiotic treatment, but the prognosis is also 
good in untreated patients [112, 115]. However, in Sweden, mild sequelae were 
found in about every second child who had borrelial peripheral facial palsy 3–5 years 
ago [116]. Another Swedish study reported on about 20% of children with acute 
facial palsy who had permanent mild-to-moderate dysfunction of the facial nerve 
without other neurological symptoms or health problems, despite antibiotic treat-
ment [117].

Intrathecal synthesis of antibodies may not be detectable and cerebrospinal fluid 
pleocytosis may be absent shortly after the onset of neurological symptoms, espe-
cially in children with isolated facial palsy [108]. Involvement of most other cranial 
nerves has been described, particularly nervus oculomotorius, n. abducens and n. 
vestibulocochlearis. Best support for a clinical diagnosis of Lyme neuroborreliosis 
is a preceding or accompanying erythema migrans, which is the case in 34–64% of 
patients with meningoradiculoneuritis [65]. In European patients, a close spatial 
relationship was found between the skin region of the tick bite, the subsequent ery-
thema migrans, and the radicular lesion [118]. Pseudotumour cerebri is an unusual 
manifestation of Lyme neuroborreliosis which is seen primarily in children 
[119, 120].

Lyme neuroborreliosis in Europe is most often caused by B. garinii, less fre-
quently by B. afzelii and B. burgdorferi, and only exceptionally by other genospe-
cies [65, 68–70, 121–124]. Patients with a CSF culture-proven B. garinii Lyme 
neuroborreliosis have a different clinical course than patients with a B. afzelii Lyme 
neuroborreliosis. Painful meningoradiculoneuritis, Bannwarth syndrome, the 
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typical early Lyme neuroborreliosis in Europe, is caused by B. garinii, whereas the 
clinical features of central nervous system (CNS) involvement associated with 
B. afzelii are much less specific and more difficult to diagnose since these patients 
rarely report radicular pains or express meningeal signs [65]. The European criteria 
for Lyme neuroborreliosis are not fulfilled by a large majority of B. afzelii Lyme 
neuroborreliosis cases, and the significance of these genospecies in Lyme neurobor-
reliosis remains to be elucidated. In peripheral neuropathy accompanying acroder-
matitis chronica atrophicans, the most striking finding is axonal degeneration [104]. 
It occurs in more than half of patients with long-lasting acrodermatitis chronica 
atrophicans. Whether borrelial linked peripheral neuritis exists at all without acro-
dermatitis chronica atrophicans is doubtful.

The diagnosis of early Lyme neuroborreliosis should be based on clinical char-
acteristics, the presence of lymphocytic pleocytosis and demonstration of intrathe-
cal production of IgG antibodies against B. burgdorferi s.l. in order to prove borrelial 
infection of the CNS [3, 36, 65, 69, 70, 125–128]. Isolation of borreliae from the 
infection site would be the most reliable method of diagnosing Lyme neuroborrelio-
sis, but unfortunately isolation from CSF or demonstration of borrelial DNA in CSF 
samples is limited by low sensitivity. Although the demonstration of intrathecally 
synthesised IgG antibodies to B. burgdorferi s.l. has been established for the diag-
nosis of Lyme neuroborreliosis, physicians should be aware that intrathecal antibod-
ies may not be demonstrable shortly after the onset of Lyme neuroborreliosis. If 
there is strong clinical evidence, together with CSF pleocytosis and/or preceding 
erythema migrans, the clinician should stay with the clinical diagnosis, despite the 
absence of proof of intrathecal antibody production [69, 70]. Differential diagnosis 
comprises a list for each main manifestation of Lyme neuroborreliosis, such as men-
ingitis, radiculoneuritis, cranial nerve involvement and others.

4.4.3  Lyme Carditis

Borrelial infection of the heart usually presents with acute onset of varying degrees 
of intermittent atrioventricular (A-V) heart block, often together with other mani-
festations of Lyme borreliosis such as erythema migrans, Lyme neuroborreliosis or 
arthritis. In most cases, it is a mild and self-limited event and the prognosis is usu-
ally favourable. Diagnosis of Lyme carditis is most reliable when occurring together 
with typical manifestation(s) of Lyme borreliosis such as erythema migrans or 
Lyme neuroborreliosis, and by the absence or exclusion of other explanations for 
cardiac abnormalities [2, 25, 129–132].

4.4.4  Lyme Arthritis

Arthritis due to a B. burgdorferi s.l. infection is mostly monoarticular or oligoarticu-
lar, typically involving the knee. The isolation rate of borreliae from joint fluid and 
synovia is very low; thus, data on the infecting agent are based predominantly on 
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molecular detection of borrelial DNA in synovial fluid or synovial tissue. The geno-
species identified in Lyme arthritis cases in Europe are B. burgdorferi, B. afzelii and 
B. garinii with a pronounced predominance of B. burgdorferi in some series [133–
137]. Borrelia bavariensis was detected in the synovial fluid of the knee and ankle 
joint of an 11-year-old boy who suffered from intermittent arthritis over 5 years 
[138]. Acute arthritis results from Borrelia-induced infiltration of mononuclear 
cells into the synovial tissue and the accumulation of neutrophils, immune com-
plexes, complement and cytokines in the synovial fluid [139].

For clinical diagnosis, it should be considered that Lyme arthritis usually consists 
of intermittent attacks of inflammation of one or a few large joints and is often pre-
ceded by intermittent migratory joint pain. Joint involvement is usually asymmetric, 
the onset of arthritis is acute and with effusion, and skin over the affected joint is 
warm but of normal colour. The knee is by far the most common joint involved, fol-
lowed by ankle, wrist, finger, toe and elbow; heel swelling was found in 9% and 
dactylitis in as many as 23%. In the patients with knee involvement alone, Baker 
cysts were found in 50%. However, some patients with pronounced knee effusions 
have only mild pains. Joint inflammation usually lasts a few days to weeks, some-
times several months. The course of Lyme arthritis is usually recurring and may 
continue for several years. In the beginning, the attacks of arthritis are more frequent 
and short, later they may be more prolonged and about 10% of patients develop 
chronic arthritis with duration of a year or longer. Fatigue, malaise, low fever or night 
sweats may accompany Lyme arthritis in a small proportion of patients [140–143].

Diagnosis of Lyme arthritis is based on the medical history, history or the pres-
ence of other manifestations of Lyme borreliosis such as erythema migrans, Lyme 
neuroborreliosis or acrodermatitis chronica atrophicans, clinical features, labora-
tory findings, exclusion of other causes of arthritis and demonstration of serum IgG 
antibodies to B. burgdorferi s.l. Routine laboratory parameters such as C-reactive 
protein, rheumatoid factors and anti-nuclear antibodies are often within the normal 
range in Lyme arthritis. The pronounced elevation of laboratory inflammation 
parameters in a patient with arthritis argues strongly against a diagnosis of Lyme 
arthritis. Cryoglobulins and circulating immune complexes may be present. Synovial 
fluid shows elevated white cell counts with a predominance of polymorphonuclear 
leukocytes. Cryoglobulins and antigen–antibody complexes are commonly present 
in synovial fluid. Specific radiographic findings for Lyme arthritis have not been 
reported. Serum IgG antibodies to B. burgdorferi s.l. are almost always present in 
high titers in patients with Lyme arthritis. Negative IgG serology rules out the diag-
nosis of Lyme arthritis, but the detection of IgG antibodies alone is not diagnostic 
for Lyme borreliosis. Thus, detection of borrelial DNA in synovial tissue or syno-
vial fluid should be attempted since its sensitivity is high [20, 21, 140–147].

The differential diagnosis of Lyme arthritis includes inflammatory rheumatic 
diseases, bacterial (septic) arthritis, viral arthritis and crystal-induced arthritis. 
Other differential diagnoses include psoriatic arthritis, early rheumatoid arthritis 
and systemic lupus erythematosus in patients who have borrelial antibodies in 
serum. Fibromyalgia in seropositive persons is often wrongly diagnosed as Lyme 
borreliosis [1, 6, 148, 149].
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4.4.5  Eye Involvement

Eye involvement in the course of Lyme borreliosis appears to occur very rarely and 
is associated with erythema migrans, Lyme neuroborreliosis or Lyme arthritis, 
although it can be the sole manifestation of the disease. Diagnosis of borrelial eye 
involvement should be based on medical history, complete physical (not only oph-
thalmological) examination and demonstration of borrelial infection. The differen-
tial diagnosis is broad [150–154].

4.4.6  Lyme Borreliosis During Pregnancy

Information on this topic is limited. There is no substantial difference between preg-
nant and nonpregnant women, either in the presentation of Lyme borreliosis or in 
the outcome of treatment in the corresponding adult population, with the exception 
that in the second half of pregnancy the proportion of patients with erythema 
migrans having constitutional symptoms is lower than during the first months of 
pregnancy and in nonpregnant women of a comparable age. It seems that the out-
come of pregnancies is similar to the outcome in pregnant women without Lyme 
borreliosis. With the exception of some individual reports that do not fulfill current 
diagnostic criteria, no causal relationship with borrelial infection has been estab-
lished for unfavourable outcomes of pregnancies [155–159].

4.4.7  Lyme Borreliosis in Immunocompromised Patients

Information on this topic is also limited. However, the results of four studies revealed 
that all patients had a mild and uncomplicated erythema migrans, as well as a 
favourable outcome after treatment with the same antibiotic regimens as used for 
immunocompetent patients [160–163].

4.4.8  Chronic Lyme Borreliosis and “Chronic Lyme”

Chronic Lyme borreliosis exists in Europe. However, the designation should be 
reserved for patients with objective manifestations of late Lyme borreliosis. These 
patients typically present with acrodermatitis chronica atrophicans, chronic arthritis 
and very rarely with chronic Lyme neuroborreliosis. The term chronic Lyme bor-
reliosis should not be misused or erroneously used for symptoms of unknown cause, 
nor for well-defined illness unrelated to borrelial infection but with antibodies 
against B. burgdorferi s.l., nor for symptoms of unknown cause with antibodies 
against B. burgdorferi s.l., but no reliable history of Lyme borreliosis, and not for 
post-Lyme borreliosis symptoms or syndrome [1, 164, 165].
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4.4.9  Laboratory Support in the Diagnosis of Lyme Borreliosis

Table 4.1 summarises the essential and supporting laboratory evidence in relation to 
the various initial clinical diagnoses of Lyme borreliosis (also refer chapter 
“Prophylactic Measures Including Future Perspectives”).

4.4.10  Treatment

It should be emphasised that early manifestations of Lyme borreliosis, both local-
ised and disseminated, eventually heal spontaneously without antibiotic treatment. 
The main reason to treat such patients is to shorten the duration of the manifestation 

Table 4.1 Laboratory support in the diagnosis of Lyme borreliosis; modified after Stanek et al. 
(2011) [4] and Stanek and Strle (2018) [7]

Initial clinical 
diagnosis Essential laboratory evidence Supporting laboratory evidence
Erythema migrans None if typical Culture from skin biopsy,

Detection of borrelial DNA, 
significant change in levels of 
specific serum antibodiesa

Borrelial 
lymphocytoma

Specific IgG antibodies Histology,
Culture from skin biopsy,
Detection of borrelial DNA

Acrodermatitis 
chronica atrophicans

High level of specific serum IgG 
antibodies

Histology,
Culture from skin biopsy,
Detection of borrelial DNA

Early Lyme 
neuroborreliosis

Lymphocytic pleocytosis in CSF;
Intrathecally produced specific 
antibodiesb

Intrathecal total IgM and IgG,
Specific oligoclonal bands in 
CSF,
Significant change in levels of 
specific serum antibodiesa,
Culture from CSF, detection of 
borrelial DNA

Late Lyme 
neuroborreliosis

Lymphocytic pleocytosis in CSF; 
intrathecally produced specific 
antibodiesb; specific serum IgG

Specific oligoclonal bands in CSF

Lyme arthritis High level of specific serum
Antibodies

Detection of borrelial DNA in 
synovial fluid and/or tissue 
(culture from synovial
Fluid and/or tissue)

Lyme carditis Significant change in levels of 
specific IgG antibodiesa

Culture from endomyocardial 
biopsy,
Detection of borrelial DNA

a Specific antibody levels in serum may increase in response to progression of infection or treat-
ment or may decrease due to abrogation of the infection process. Samples collected a minimum of 
3 months apart may be required in order to detect a decrease in IgG levels
b Intrathecally produced specific antibodies are determined by investigating simultaneously drawn 
samples of CSF and serum
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and to prevent the development of disseminated disease such as Lyme neurobor-
reliosis and Lyme arthritis. Doxycycline, amoxicillin, phenoxymethylpenicillin and 
cefuroxime axetil are highly effective and are the preferred antimicrobial agents for 
the treatment of early localised manifestations. Macrolides such as azithromycin 
seem to be clinically somewhat less effective than other oral antibiotics and are 
consequently used as second-line treatments [1, 5, 88, 90]. Roxithromycin should 
not be given due to commonly observed relapses after the administration of this 
drug. Quinolones are not used because B. burgdorferi s.l. showed resistance to these 
chemotherapeutics in in-vitro studies [166]. Early disseminated disease such as 
Lyme neuroborreliosis is usually treated with intravenous ceftriaxone or penicillin. 
However, results of more recent studies suggest that oral doxycycline treatment of 
Lyme neuroborreliosis is as effective as intravenous ceftriaxone for the treatment of 
European adults with Lyme neuroborreliosis [167, 168]. The shortest duration of 
effective treatment has never been assessed for any of the antimicrobial agents listed 
above. Today, it is recommended that antibiotics should be administered for 2 weeks 
in cases of early localised and early disseminated disease [1, 6, 93]. For chronic 
manifestations, a 4-week course is recommended. It has been shown that a 10-day 
regimen of oral doxycycline was not inferior to a 2  week-regimen for erythema 
migrans [92, 169]. However, there is no direct information on the shorter treatment 
for immunocompromised patients, nor for antibiotics other than doxycycline. Lyme 
arthritis typically responds to antibiotic treatment. Patients whose arthritis is 
improved but not resolved after an initial course of oral treatment can be re-treated 
with a second course of oral antibiotics, reserving parenteral antibiotic treatment for 
those without any substantial clinical response. After resolution of arthritis of the 
knee, physical therapy may be needed if quadriceps atrophy has developed [6]. 
Recommended antibiotic treatment for patients with Lyme borreliosis is shown in 
Table 4.2. Doxycycline should not be prescribed for pregnant and breast feeding 
women and has some restrictions also for children under the age of 8 years.

4.5  Concluding Statement

Lyme borreliosis is a common tick-borne disease in Europe. The identification of 
causative spirochetal agents, Borrelia burgdorferi sensu lato, in the 1980s allowed 
for specific diagnoses of diseases in several clinical disciplines and for causal anti-
biotic therapy. At the same time, misconception and speculation regarding links 
between borrelia infection and a variety of nonspecific symptoms and disorders 
resulted in overdiagnosis and overtreatment of suspected Lyme borreliosis. When 
chronic Lyme borreliosis is suspected, other potential causes of the clinical syn-
drome must be meticulously excluded. Particular caution is recommended when 
consulting the web for comprehensive information on the disease complex.
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Lyme borreliosis has an excellent prognosis after adequate antibiotic therapy.
Clinical pictures of skin infection with Borrelia burgdorferi sensu lato

 (a) Ixodes ricinus female tick almost fully engorged—a rare finding on human skin 
(©G. Stanek).

 (b) Acrodermatitis chronica atrophicans on the dorsal side of both hands (©Hasel 
Druck & Verlag, 1090 Vienna, Austria).

 (c) Borrelial lymphocytoma on the ear lobe (©Hasel Druck & Verlag, 1090 Vienna, 
Austria).

 (d) Erythema migrans on left lower leg (©G. Stanek).
 (e) Erythema migrans expanding from the scalp where the tick bite occurred

(©Hasel Druck & Verlag, 1090 Vienna, Austria).
 (f) Erythema migrans on the back of the knee (©G. Stanek).
 (g) Erythema migrans on the right upper part of the shoulder (©Hasel Druck & 

Verlag, 1090 Vienna, Austria).
 (h) Erythema migrans, intensively coloured, on the right side of the chest 

(©M. Markowicz).
 (i) Erythema migrans expanding around the upper arm (©G. Stanek).
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5.1  Introduction

Lyme borreliosis, or Lyme disease, is the most common vector-borne disease in the 
United States, with an estimate of 476,000 people treated for Lyme disease a year 
[1, 2]. Lyme borreliosis was first recognized in the United States in 1977, based on 
the investigation of an epidemic form of oligoarticular arthritis in the towns of 
Lyme, Old Lyme, and East Haddam in eastern Connecticut [3]. The epidemiology 
suggested transmission by ticks, as cases clustered geographically in heavily 
wooded areas, their occurrence peaked in summer months, and there was a lack of 
other common exposures. Moreover, in 25% of the patients, the arthritis was pre-
ceded by a characteristic skin lesion that fitted the description of erythema migrans, 
which was described in Europe and associated with the bite of Ixodes ricinus ticks. 
Additionally, a cluster of erythema migrans cases had recently been described in 
southeastern Connecticut [4], while a previous case was reported in Wisconsin [5]. 
The pathogen, Borrelia burgdorferi, was discovered in 1982 [6] and recognized as 
a new species of the genus Borrelia in 1984 [7]. Soon after, it was found that 
European strains were more heterogenous and could differ from American strains of 
B. burgdorferi [8, 9]. B. burgdorferi sensu lato was then classified into three main 
divisions or genospecies (I, II, and III), with genospecies I strains named B. burg-
dorferi sensu stricto (henceforward B. burgdorferi), since it contained the type 
strain for the species [10, 11]. Genospecies II was named Borrelia garinii sp. nov., 
while genospecies III was initially referred to as group VS461 and later named 
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Borrelia afzelii sp. nov. [12, 13]. There have been recent revisions to the taxonomy 
of the spirochetes that cause Lyme borreliosis from Borrelia to Borreliella, to dif-
ferentiate them from the spirochetes that cause relapsing fever, which retain the 
genus name Borrelia [14]. This name change has been challenged and is controver-
sial [15–17]. B. burgdorferi causes the vast majority of human infections in the 
United States, with B. mayonii causing a few cases of human illness in the upper 
Midwest [18, 19]. Other Lyme borrelia that are the leading causes of the disease in 
Europe (B. afzelii and B. garinii) are not found in the United States (Table 5.1).

Table 5.1 Lyme Borreliosis—United States versus Europe

Variable United States Europe
Tick vector Ixodes scapularis

Ixodes pacificus
Ixodes ricinus
Ixodes persulcatus

Speed of tick 
transmission of 
Lyme borrelia

Rarely before 36 hours I. ricinus may transmit B. afzelii within 
24 hours

Lyme borrelia Principally B. burgdorferi; 
but B. mayonii may occur in 
the upper midwestern United 
States

Principally B. afzelii and B. garinii, but 
several other species cause human 
disease including B. bavariensis, B. 
spielmanii, B. bissetii, plus others rarely

Clinical 
manifestations
Asymptomatic 
infection

Approximately 10% of cases Appears to be more frequent in Europe, 
although the exact frequency is 
unknown, as the data originate from 
serosurveys.

Lyme arthritis More common in the United 
States

Occurs in Europe

Acrodermatitis 
chronica 
atrophicans

Does not occur in the United 
States

Occurs in Europe

Borrelia 
lymphocytoma

Does not occur in the United 
States

Occurs in Europe

Multiple EM skin 
lesions

More common in the United 
States

Occurs in Europe

Systemic symptoms 
in conjunction with 
EM

65% of cases 37% of cases

Lyme 
encephalopathy

Controversial in the United 
States

Not recognized to occur

Diffuse axonal 
peripheral 
neuropathy

Controversial in the United 
States

Occurs, but only in conjunction with 
ACA

Radicular pain from 
Lyme 
neuroborreliosis

Less in the United States More common in Europe

EM mimics STARI only occurs in the 
United States

STARI does not occur in Europe
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5.2  The Area of Risk for Lyme Borreliosis Is Expanding 
in the United States

Tickborne diseases, particularly Lyme borreliosis, are an increasing threat in the 
United States. As reported by the United States Centers for Disease Control and 
Prevention (CDC), the number of cases of tickborne diseases had gradually increased, 
doubling in the period from 2004 to 2016. Lyme borreliosis accounted for 82% of the 
cases of reportable tick-borne diseases [20]. Geographically, most cases of Lyme 
borreliosis occur in the mid-Atlantic, Northeast, and upper Midwest regions 
(Fig. 5.1), where the disease is transmitted by Ixodes scapularis (the blacklegged tick 
or deer tick), and over 20% of the ticks may be infected with B. burgdorferi [19]. 
Highly endemic areas include Maine, New Hampshire, Rhode Island, Pennsylvania, 
Vermont, Delaware, Connecticut, New Jersey, West Virginia, Wisconsin, Minnesota, 
Maryland, Massachusetts, New York, and Virginia. These 15 states accounted for 

Table 5.1 (continued)

Variable United States Europe
“Chronic Lyme 
disease”

More common in the United 
States

Less common in Europe

Gender No female predominance for 
any manifestation

Female predominance for EM and ACA

Diagnosis Serologic testing is principal 
laboratory test

Serologic testing is principal laboratory 
test. Interpretation is more complicated 
due to the greater number of Lyme 
borrelia species causing human disease

Coinfections Anaplasmosis and babesiosis 
are the most common, with 
prevalence varying depending 
on the geographic areas and 
on the case definition

Tick-borne encephalitis virus is the 
most common in endemic areas. 
Anaplasmosis, rickettsiosis, and B. 
miyamotoi may also occur. Data are 
based on serosurveys and studies of the 
prevalence of pathogens in ticks. See 
Chap. 9

Treatment
Oral penicillin Usually not used Oral penicillin is used in some 

European countries and is the preferred 
treatment for patients with EM in 
Norway

Pregnant women 
with Lyme 
borreliosis

Same as for nonpregnant 
patients, except that 
doxycycline is not usually 
used

Often IV ceftriaxone in Europe

Postexposure 
antibiotic 
prophylaxis after a 
tick bite

Commonly used in the 
United States

Not routinely used in Europe

EM erythema migrans, ACA acrodermatitis chronica atrophicans, STARI Southern tick-associated 
rash illness, IV intravenous
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more than 93% of reported US cases in 2018 [21]. The disease also occurs in areas 
of the Pacific Coast, where it is transmitted by Ixodes pacificus, the Western black-
legged tick. Both the geographic locations and the number of infections in estab-
lished Lyme borreliosis risk areas in the mid-Atlantic, Northeast, and Midwest 
regions have been steadily increasing [22–24], a change likely related to environ-
mental factors such as climate changes, increasing forest fragmentation, and the 
resurgence and expansion of the white-tailed deer population, which is the key host 
for the adult stage of I. scapularis [25, 26]. These factors appear to have contributed 
to an increased density and range of host-seeking nymphal I. scapularis ticks, lead-
ing to more human encounters with infected ticks [27].

Interestingly, while I. scapularis is present throughout the Southern United States, 
these ticks are rarely infected with B. burgdorferi, and relatively few cases of Lyme 
borreliosis are reported from, or acquired in, the South [19]. Differences in questing 
behavior of immature forms of I. scapularis, as well as local ecological factors, and 
genetic factors of the tick, are believed to play a role in the low risk for human dis-
ease. In the South, I. scapularis larvae feed primarily on reservoir incompetent liz-
ards, rather than reservoir-competent small mammals [28], and consequently 
nymphs are infrequently infected with B. burgdorferi. Additionally, nymphs can 
seldom be collected by standard tick collection methods of flagging and dragging 
[29], remaining under the leaf litter and consequently rarely bite humans. These 
behaviors are thought to be key factors contributing to the low incidence of Lyme 
borreliosis in the South [30, 31].

5.3  Differences in Lyme Borrelia Species between United 
States and Europe

In the United States, the only borrelial species recognized to cause Lyme borreliosis 
are B. burgdorferi and B. mayonii, whereas in Europe the majority of cases are 
caused by B. afzelii and B. garinii, with some cases caused by B. burgdorferi, 

Reported Cases of Lyme Disease—United States, 2018 Reported Cases of Lyme Disease—United States, 2001 

1 dot placed randomly within county of residence for each reported case 1 dot placed randomly within county of residence for each confirmed case

Fig. 5.1 Expansion of Lyme borreliosis—United States. Content source: Centers for Disease 
Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases 
(NCEZID), Division of Vector-Borne Diseases (DVBD)
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B. bavariensis, B. spielmanii, and B. lusitaniae [32] (Table 5.1). Differences in the 
species of Lyme borrelia between the United States and Europe have led to both 
subtle and substantive differences in the clinical features of this infection between 
the two geographic locations.

In addition, although the vast majority of United States cases of Lyme borreliosis 
are caused by B. burgdorferi, different strains within this species can be distinguished 
that impact pathogenicity and virulence in humans [27, 33, 34]. B. burgdorferi can 
be classified into subtypes based on genetic variations in the intergenic spacer regions 
of rRNA genes (RST), or in the outer surface protein (Osp) C gene, or on multilocus 
sequence typing. B. burgdorferi RST1 strains, which appear to account for approxi-
mately 40% of Lyme borreliosis cases in the northeastern United States, are more 
likely to disseminate hematogenously and are associated with a higher risk of post-
infectious Lyme arthritis [35, 36]. Similarly, certain variations in OspC have been 
shown to be associated with disseminated infection in humans [34, 37].

5.4  Differences in Clinical Features between the United 
States and Europe

5.4.1  Erythema Migrans

Once B. burgdorferi is deposited in the human dermis by the feeding Ixodes ticks, it 
typically establishes a localized infection at that site and causes the characteristic 
skin lesion, erythema migrans (EM). EM is the most common manifestation of 
Lyme borreliosis in both the United States and Europe, occurring in about 80–90% 
of patients [38, 39], but there are some differences in presentation.

In the United States, EM lesions have a shorter incubation period and duration  
of the disease at presentation, and lesions expand faster. Patients with EM in the 
United States are more likely than patients in Europe to have concomitant systemic 
symptoms (65% vs. 37%), more likely to have multiple skin lesions (21% vs. 12%), 
and more likely to have regional lymphadenopathy (22% vs. 13%) [40]. In addition, 
the EM skin lesions in patients in the United States are less likely to manifest central 
clearing (19% vs. 79%), and patients in the United States are less likely to recall a 
tick bite at the site of the EM skin lesion (26% vs. 64%).

Multiple very small EM skin lesions in the United States have been observed 
in patients infected with B. mayonii. Similarly, differences in the infecting spe-
cies of Lyme borrelia in Europe may also affect some of the clinical features of 
patients with EM in Europe (see Chap. 4 “The History, Epidemiology, Clinical 
Manifestations and Treatment of Lyme Borreliosis”).

5.4.2  EM Versus STARI

One issue particular to the United States, which is becoming an increasingly signifi-
cant problem, is distinguishing between EM and Southern tick-associated rash ill-
ness (STARI). A skin lesion very similar in appearance to EM occurs in STARI 
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(Fig. 5.2). Neither the cause of STARI nor the natural history of the illness has been 
defined. STARI follows the bite of the lone star tick, Amblyomma americanum, 
which is not a competent vector for Lyme borrelia [41]. A. americanum is the most 
abundant human-biting tick in the southeastern and southcentral United States, but 
its range has spread northwards along the eastern seaboard and overlaps areas where 
I. scapularis bites are common [42]. The potential for diagnostic confusion clearly 
exists in areas where both tick species coexist and this could impact Lyme borrelio-
sis surveillance, characterization of laboratory tests for early Lyme borreliosis, and 
evaluation of future Lyme borreliosis vaccines. Experimentally, however, the two 
diseases could be distinguished based on different serum metabolic profiles [43].

5.4.3  “Summer Flu”

About 10–18% of patients in the United States diagnosed with Lyme borreliosis 
present with a nonspecific febrile illness in the summer (a “summer flu”). This is 
due in some cases to lack of recognition of an existing EM skin lesion, or alterna-
tively the EM lesion may first appear after the start of systemic symptoms. Common 
symptoms include fatigue, malaise, myalgias, arthralgias, headache, and neck pain. 

a c

b

Fig. 5.2 Southern Tick-Associated Rash Illness (STARI) and Erythema Migrans (EM). STARI 
(Panel a and b) can be very similar in appearance to EM (Panel c). STARI follows the bite of the 
lone star tick, Amblyomma americanum. Neither the cause of STARI nor the natural history of the 
illness has been defined
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Respiratory symptoms and diarrhea would not be expected [39, 44, 45]. Moreover, 
it is possible that some of the summer flu cases attributed to Lyme borreliosis have 
been misdiagnosed and are actually due to other tickborne infections, particularly 
ones caused by B. miyamotoi [46–48] and Anaplasma phagocytophilum, since both 
of these infections can result in positive serologic tests for Lyme borreliosis [49], as 
can other infectious agents that may cause a febrile illness, including parvovirus 
B19 [50] and Epstein-Barr virus [51].

5.4.4  Lyme Neuroborreliosis

Patients with early Lyme neuroborreliosis typically present with cranial nerve palsy, 
particularly seventh nerve palsy, as well as lymphocytic meningitis and painful 
radiculitis. Facial palsy is the most common manifestation of early Lyme neurobor-
reliosis in the United States. Compared with Europe where most cases of early 
Lyme neuroborreliosis are caused by B. garinii and B. bavariensis [32, 52–54], 
patients in the United States seem to present less frequently with severe radicular 
pain. Levels of intrathecally produced specific antibodies to Lyme borrelia in the 
cerebrospinal fluid are lower in patients in the United States, both early and late in 
the course of the illness [55].

Late Lyme neuroborreliosis, i.e., progressive encephalitis, myelitis, or encepha-
lomyelitis due to Lyme borrelia infection, which has been reported in Europe, is 
very rare in the United States [56]. On the other hand, there are two neurologic 
manifestations that seem particular to the United States and that have been immersed 
in controversy. The first is Lyme encephalopathy, a poorly defined entity, which was 
mostly described in studies published many years ago [57–59]. This is a subtle 
encephalopathic syndrome affecting memory and cognition, but without cerebro-
spinal fluid pleocytosis, intrathecal production of antiborrelia antibody, or molecu-
lar or culture evidence of B. burgdorferi infection in the central nervous system. 
Symptoms include headache, memory and concentration disturbances, anxiety, 
sleeping disorders, paresthesias, fatigue, arthralgias, and myalgias. The difference 
may be semantic, as some reports of late Lyme borreliosis in Europe seem to over-
lap with Lyme encephalopathy in the United States [60]. Another source of confu-
sion is the addition of patients with posttreatment Lyme disease syndrome (PTLDS) 
showing abnormal neurocognitive test results to this category [61, 62], because cri-
teria were not used in the early descriptions of Lyme encephalopathy to clearly 
distinguish between encephalopathy and PTLDS [63, 64]. Memory complaints are 
common in PTLDS [64–67]. Adding to the confusion is the question of what repre-
sents an abnormality in a single test or battery of neuropsychological tests and their 
clinical significance [68].

The second manifestation, which has become controversial, is a chronic, primar-
ily axonal, distal sensory neuropathy. In Europe, distal axonal neuropathy in the 
context of Lyme borreliosis is exclusively associated with acrodermatitis chronica 
atrophicans (ACA), a manifestation of Lyme borreliosis principally associated with 
B. afzelii infection and therefore not seen in the United States. In patients with ACA, 
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the neuropathy is predominantly sensory and more marked in the affected skin areas 
[69–71]. In the United States, a similar neuropathy, but without evidence of ACA, 
was described in early reports of small case series in adult patients [72–76]. The 
typical symptoms are paresthesias, which may be intermittent or radicular pain. 
Neurologic deficits are predominantly sensory and distal. The distribution is typi-
cally symmetric, but it can be asymmetric. Electrophysiologic studies indicated that 
the neuropathy is primarily axonal, and the pathogenesis is thought to be a mono-
neuropathy multiplex, which can be confluent [56]. These patients will usually have 
normal cerebrospinal fluid findings. More recently, there has been a discussion as to 
whether this entity has been appropriately validated as a manifestation of B. burg-
dorferi infection [61].

5.4.5  Lyme Arthritis

Lyme arthritis occurs in approximately 60% of patients with untreated EM in the 
United States [3, 77, 78] and comprises 28% of confirmed cases reported to the 
CDC with data on symptoms available [79]. Lyme arthritis appears to be less fre-
quent in Europe [80–84], but some prospective studies found an incidence of Lyme 
arthritis of 6% or less in both children and adults in the United States [85, 86], rates 
that seem similar to Europe. Lyme arthritis is a migratory, asymmetric, oligoarticu-
lar arthritis of large joints, usually presenting with intermittent episodes of joint 
swelling and pain, especially involving the knee. Joint inflammation can last days to 
weeks or sometimes many months. While arthritis will resolve in the majority of 
patients after antibiotic therapy, some patients will have persistent arthritis (post-
infectious Lyme arthritis) [87–90], which seems to be less common in Europe [91]. 
Moreover, pediatric Lyme arthritis in the United States can have an acute presenta-
tion that overlaps with septic arthritis [92–96]. Patients can present with fever and 
joint pain, along with large joint effusions, resulting in a limited range of motion. 
The peripheral white blood cell count and the inflammatory markers, erythrocyte 
sedimentation rate, and C-reactive protein may be elevated. The synovial fluid white 
cell count can exceed 80,000 cells/mm3 with a percentage of polymorphonuclear 
cells greater than 75%. These findings can result in significant problems if children 
with Lyme arthritis are treated as acute septic arthritis, including the possibility of 
unnecessary surgical procedures, since the results of serologic testing for Lyme bor-
reliosis are not immediately available. This acute presentation of pediatric Lyme 
arthritis does not appear to occur in Europe [97, 98].

5.4.6  Asymptomatic Infections

In the United States, B. burgdorferi is apparently associated with fewer asymptom-
atic infections than in Europe. According to data from the Lymerix vaccine study, 
asymptomatic infection may occur in approximately 10% of infected patients in the 
United States [99]. In comparison, serosurveys in Europe have provided indirect 
evidence of a much higher proportion of asymptomatic infections [100–105].
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5.4.7  Other Clinical and/or Demographic Differences: United 
States Versus Europe

Differences between the most common clinical presentations of Lyme borreliosis in 
the United States versus Europe (Table 5.1) have been noted since the early years of 
the recognition of the disease and the discovery of B. burgdorferi. In the United 
States, untreated B. burgdorferi infection is particularly linked with arthritis [106, 
107]. Borrelial lymphocytoma and ACA are not seen in the United States, presum-
ably because these cutaneous manifestations of Lyme borreliosis are primarily 
caused by B. afzelii, a Lyme borrelia species not found in the United States [39]. 
Lyme borreliosis in the United States is associated with a male predominance, with 
males accounting for 56% of the reported cases from 2008 to 2018 [108]. In the 
United States, none of the clinical manifestations has been associated with a female 
predominance, whereas in Europe, the majority of cases of EM and ACA occur in 
women [109–113], with many studies (but not all) demonstrating a male predomi-
nance among cases of neuroborreliosis and arthritis [82, 114–116].

5.5  Laboratory Testing for Lyme Borreliosis 
in the United States

In both the United States and Europe, most laboratory tests performed to diagnose 
Lyme borreliosis are based on the detection of the antibody responses against Lyme 
borrelia in serum. Because Lyme borreliosis in the United States is mainly caused 
by B. burgdorferi, criteria for test interpretation were somewhat easier to standard-
ize than in Europe. About 3.4 million Lyme serologic tests are done in the United 
States per year [117], likely being ordered in populations with a low probability of 
having Lyme borreliosis. Therefore, high specificity is an essential requirement of 
the testing. The two-tier approach has been recommended by the CDC since 1995 
[118]. The first step uses a sensitive enzyme immunoassay (EIA) or rarely, an indi-
rect immunofluorescence assay. If the test is negative, there is no further testing. If 
the test is borderline or positive, the sample is retested using separate IgM and IgG 
Western blots (WB) as the second step. The WB is interpreted using standardized 
criteria, requiring at least two of three signature bands for a positive IgM WB and 
five of ten signature bands for a positive IgG WB. The IgM WB results are used 
only for patients with an illness of less than or equal to 30 days duration. The IgM 
WB is also irrelevant for diagnosing Lyme arthritis, irrespective of the duration of 
symptoms, as this is a late manifestation of Lyme borreliosis and requires IgG sero-
positivity. While the current two-tier algorithm performs relatively well, there are 
areas in need of improvement. Problems include low sensitivity during early infec-
tion (due to the delay in the development of a reactive IgM WB), subjective inter-
pretation of bands leading to inter- and intra-laboratory variability, high cost, long 
turnaround time, and confusion by health care providers and patients regarding how 
to the interpret the results. Use of a two-EIA approach as an alternative (or modi-
fied) two- tiered testing strategy (Fig. 5.3) has been shown to have higher sensitivity 
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in early disease, while maintaining similar specificity [119], when at least one of the 
EIA assays is based on the antibody response against VlsE (the variable surface 
antigen of B. burgdorferi) or the C6 peptide (derived from the invariable region 6 of 
VlsE). This strategy can be used in the United States, or in Europe, to diagnose 
Lyme borrelia infections acquired in either region. Hopefully, this will lead to new 
developments in the field, including a possible point-of-care test, which will be 
particularly useful for patients with manifestations of early disseminated Lyme bor-
reliosis, like facial palsy or carditis, as well as for children with Lyme arthritis.

5.5.1  Intrathecal Production of Antibodies Against 
B. burgdorferi—Testing in the United States

Because direct tests for the presence of B. burgdorferi in cerebrospinal fluid have 
very low sensitivity, laboratory diagnosis relies on the detection of intrathecal pro-
duction of anti-Lyme borrelia antibodies, referred to as the intrathecal antibody 
index. Detection of intrathecal production of anti-Lyme borrelia antibodies is rec-
ommended to diagnose Lyme neuroborreliosis with central nervous system involve-
ment in both the United States and Europe [120–124]. The vast majority of studies 
on the value of the intrathecal antibody index for the diagnosis of Lyme 

Modified 2-tiered algorithms (MTT) 

First-tier enzyme-linked
immunoassay

Different first-tier enzyme-linked
immunoassay

Positive or
Equivocal 

Positive or
Equivocal 

Positive
overall result 

Negative

Negative overall
result* 

Negative

No further
testing* 

Fig. 5.3 Suggested modified two-tiered algorithms (MTT) for serodiagnosis of Lyme borreliosis. 
*Patients with erythema migrans (EM) should receive treatment on the basis of the clinical diag-
nosis. For patients with illnesses suspicious for early Lyme borreliosis, that do not present with 
EM, and have a disease duration of less or equal to 30 days, the provider may empirically treat the 
patient for Lyme borreliosis and follow up with serologic testing for antibodies to Lyme borrelia 
on a convalescent phase serum sample
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neuroborreliosis, however, originate from Europe, where B. garinii and B. bavar-
iensis are the species most often associated with neurologic disease. Studies have 
used different case definitions, different assays, and interpretative criteria, and there 
is little comparison among assays or among performing laboratories. In the United 
States, the situation is much worse, with no new research published on the value of 
tests for intrathecal antibody production to diagnose neuroborreliosis since the very 
early studies [52, 55, 57, 125]. While the available data are from very few studies, it 
appears that a positive intrathecal antibody index is less common in the United 
States [55, 126, 127]. To compound the issue, tests offered in the United States vary 
substantially in methods, assays, and interpretation [52, 128].

5.6  Some Differences in Treatment Recommendations 
between the United States and Europe

Recommendations for the treatment of Lyme borreliosis are very similar between 
the United States and European guidelines [129]. One difference is in the use of 
phenoxymethylpenicillin (penicillin V), which is recommended in some of the 
guidelines in Europe, but usually not prescribed in the United States [130, 131]. 
Phenoxymethylpenicillin is the most commonly used antibiotic to treat EM in 
Norway [132]. Another difference is the recommendation of intravenous ceftriax-
one for treatment of EM, as well as other manifestations of Lyme borreliosis, in 
pregnant women by some authorities [130, 133]. The United States recommenda-
tions for antibiotic treatment of the different manifestations of Lyme borreliosis in 
pregnancy are the same as for nonpregnant patients, except that doxycycline is usu-
ally avoided in pregnancy [131].

5.6.1  Postexposure Chemoprophylaxis United States 
Versus Europe

Transmission of B. burgdorferi and B. mayonii by I. scapularis is very infrequent 
during the first 36 hours after tick attachment but steadily increases after 48 hours 
of attachment, with similar results with I. pacificus. While transmission of B. afzelii 
by I. ricinus may occur within 24 hours, the majority of transmission occurs after 
48–72 hours [134–136]. Antibiotic prophylaxis with a single dose of doxycycline 
has been shown to reduce the risk of Lyme borreliosis after an I. scapularis bite 
[137, 138]. A recently published European trial showed that a single 200 mg dose 
doxycycline was successful for the prevention of Lyme disease after a tick bite 
[139], with efficacy of 67% by modified-intention-to-treat analysis and 77% in the 
per protocol analysis. We compared these results with the results from Nadelman 
et al. [138], using a Z-score of the log odds ratio from the studies and calculated a 
two-sided p value from the Normal distribution associated with the Z-score. We 
found no evidence of a significant difference in efficacy between the studies. For 
both studies, it was estimated that one case of Lyme borreliosis would be prevented 

5 Special Aspects of Lyme Borreliosis in the United States



118

for about 50 patients treated [138, 139]. Therefore, to limit the unnecessary use of 
doxycycline, in the United States, it is recommended that antibiotic prophylaxis be 
restricted to I. scapularis tick bites in geographic areas where B. burgdorferi infec-
tion rates in the ticks are at least 20%, the tick has been attached for at least 36 hours, 
and the prophylaxis can be given within 72 hours of tick removal [131]. In contrast, 
there are no official recommendations for chemoprophylaxis after an I. ricinus tick 
bite, and a watch-and-wait approach is the standard practice [130].

5.7  Coinfections United States Versus Europe

Ixodes ticks can carry multiple pathogens, and a single tick bite may result in the 
transmission of more than one infectious agent. Infectious agents transmitted by 
I. scapularis to humans include B. burgdorferi, B. mayonii, B. miyamotoi, A. phago-
cytophilum, Babesia microti, Ehrlichia muris eauclairensis, and the deer tick virus 
subtype of Powassan virus [140, 141]. The incidence of coinfections will depend on 
the prevalence of the infectious agents in ticks, which vary in different geographic 
areas [142–145]. The majority of recognized coinfections in the United States 
involve two of the three most common pathogens, B. burgdorferi, A. phagocytophi-
lum, and B. microti. Ten states (Massachusetts, New  York, Maine, Wisconsin, 
Minnesota, Vermont, New Hampshire, Rhode Island, New Jersey, and Connecticut) 
account for more than 93% of all reported cases of anaplasmosis and babesiosis 
[146]. All of these states also report a high incidence of Lyme borreliosis. Regarding 
how commonly coinfection occurs, most studies have examined patients using sero-
logical evidence of exposure, showing that a small proportion of patients with Lyme 
borreliosis are coinfected with B. microti or A. phagocytophilum. Patients with con-
current Lyme borreliosis and untreated babesiosis were more likely to be symptom-
atic for 3 months or longer in one study [147], but in another study, acute Lyme 
borreliosis was not more severe in patients with serological evidence of exposure to 
babesiosis [148]. Regarding anaplasmosis, coinfected patients seem to have more 
symptoms than patients with Lyme borreliosis alone (but this is very much depen-
dent on the case definition of coinfection) [149], and children with recognized con-
current infections had higher rates of hospitalization [150].

About 11% of the patients with B. miyamotoi infection in the Northeastern 
United States also had concomitant Lyme borreliosis [151]. B. miyamotoi infection 
can cause a positive result on EIA used as first-tier tests for Lyme borreliosis, 
including the C6 peptide EIA [47]. Cases of encephalitis due to deer tick virus are 
relatively rare, but the number of cases is increasing, possibly due to better recogni-
tion of the disease and/or greater access to diagnostic tests, as well as to an increase 
in the number of cases [152–154]. The rate of infection of I. scapularis ticks in the 
Northeast and upper Midwest United States with deer tick virus is variable, with 
reports of up to 5% in certain regions [144, 155, 156]. There is no convincing evi-
dence that Bartonella spp. is transmitted by I. scapularis ticks to humans or that 
coinfection with B. burgdorferi occurs.
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In Europe, I. ricinus can transmit tick-borne encephalitis virus, A. phagocytophi-
lum, species of the bacterial genus Rickettsia, B. miyamotoi, and Babesia protozo-
ans (see Chap. 9 “Other Ixodes-Borne Diseases”) Tick-borne encephalitis virus is 
well established as a cause of coinfection in patients with Lyme borreliosis [157–
160]. More data on the frequency of coinfection with the other I. ricinus-transmitted 
pathogens are needed [159, 161–166].

5.8  Chronic Lyme Disease United States Versus Europe

A major controversial issue in the United States, which is also developing in Europe, 
is the diagnosis of “chronic Lyme disease” (CLD). CLD is a very confusing term, as 
it has been applied to vastly different patient populations. Initially used to describe 
patients with objective manifestations of late Lyme borreliosis, it has since been 
used to describe patients with PTLDS; however, in the majority of the cases, it is 
applied to patients suffering from medically unexplained nonspecific symptoms 
who received the CLD diagnosis based on unproven clinical criteria, with or with-
out, the support of non-validated laboratory tests [167–174]. Almost any symptom 
has been attributed to CLD.  Alternatively diagnosed chronic Lyme syndrome 
(ADCLS) has been suggested as a term to describe these patients [175, 176]. 
Moreover, CLD has grown into a disorder presumed to be caused by multiple coin-
fections; metabolic, hormonal, and immune imbalances; toxin damage; heavy metal 
toxicity; and other dysfunctions; all diagnosed by unconfirmed criteria. The diagno-
sis is based on clinical judgment, conventional laboratory tests are not diagnostic, 
and the disease will require prolonged treatment with antibiotics and supplements 
[177]. Treatments may also include a gamut of unorthodox, alternative therapies 
[177–181]. This view of CLD has been advocated by alternative treatment provid-
ers, activists, and support groups in the United States, with similar groups appearing 
in Europe in the last few years. While this has created much confusion [182–184], 
there has been little formal research performed on this heterogeneous patient popu-
lation, and the underlying issues affecting these patients are poorly understood.

5.9  Conclusion

Tickborne infections, particularly Lyme borreliosis, are significant health problems 
in many areas of the United States, and the geographical range of the risk area is 
likely to continue to expand. Lyme borreliosis presents with a variety of manifesta-
tions, and variations within Lyme borrelia, together with differences in the host 
response, and time to antibiotic treatment, play a role in the diversity of disease 
manifestations and/or in their severity. In the United States, early Lyme borreliosis 
presenting with EM is associated with more symptomatic disease than in Europe. It 
will be important to delineate the specific virulence factors that contribute to more 
severe disease. There has been progress toward new approaches for the laboratory 
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diagnosis of Lyme borreliosis, including simplification of the current algorithm for 
serologic testing, potentially opening the door for the development of point-of-care 
tests. More research in the United States on Lyme neuroborreliosis and its labora-
tory diagnosis is needed. The controversial issue of chronic Lyme disease is a grow-
ing problem. Creative, well-designed scientific approaches to investigate this 
heterogeneous group of patients are required to set up the groundwork for more 
effective treatment strategies for patients.Funding and DisclaimerFunding for this 
study was provided in part by the Division of Intramural Research, National Institute 
of Allergy and Infectious Diseases, National Institutes of Health. The content of this 
publication does not necessarily reflect the views or policies of the Department of 
Health and Human Services, nor does the mention of trade names, commercial 
products, or organizations imply endorsement by the United States Government.
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6Laboratory Diagnosis of Lyme 
borreliosis

Benedikt Lohr, Volker Fingerle, and Klaus-Peter Hunfeld

6.1  Introduction

Lyme borreliosis (LB) is an infectious disease caused by tick-borne spirochetes of 
the Borrelia (B.) burgdorferi sensu lato (s.l.) complex. It is the most commonly 
reported vector-borne infection in the northern hemisphere [1–4]. In recent decades 
there has been tremendous scientific progress in understanding the clinical syn-
dromes of LB and the pathophysiology of the infection as well as continuous 
improvement in laboratory testing and the establishment of well-recognized treat-
ment options. Nevertheless, LB, like syphilis, remains a chameleon [5] for inexpe-
rienced clinicians, resulting in a range of problems. Therefore, clinical case 
definitions must be used in combination with the appropriate laboratory methods, 
especially when it comes to directly and indirectly detecting the pathogen and cor-
rectly interpreting the results in a clinical context (Table 6.1) [6]. We present here 
the current state of the art of laboratory diagnosis of LB, including a thorough dis-
cussion of the current pitfalls and limitations as well as future prospects in this chal-
lenging area of modern laboratory medicine.
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Table 6.1 Clinical case definitions and indications for medical laboratory testing, modified from 
Stanek et al. 2011 [44]

Symptom Clinical case definition

Medical 
laboratory 
evidence 
necessaryb

Supporting medical 
laboratory/clinical 
evidence

Erythema migrans 
(early localized 
infection)

Expanding red or 
bluish-red patch (>5 cm 
in diameter),a with or 
without central clearing. 
Advancing edge typically 
distinct, often intensely 
colored not markedly 
elevated.a

None for typical 
erythema

Detection of B. 
burgdorferi by culture 
and/or PCR in skin 
biopsy material

Borrelia 
lymphocytoma 
(localized 
infection)

Painless bluish-red 
nodule or plaque, usually 
on ear lobe, ear helix, 
nipple or scrotum. More 
frequent in children 
(especially on the ear) 
than in adults.

Seroconversion or 
positive serology

Skin biopsy in unclear 
cases; histology, 
detection of B. 
burgdorferi by culture 
and/or PCR; recent or 
concomitant EM

Lyme 
neuroborreliosis 
(early 
disseminated 
infection)

In adults mainly 
meningo-radiculitis 
(Bannwarth syndrome), 
meningitis; rarely 
encephalitis or myelitis; 
very rarely cerebral 
vasculitis; in children 
mainly symptom-poor 
meningitis and facial 
palsy.

Pleocytosis and 
demonstration of 
intrathecal 
specific antibody 
synthesisc

Detection of B. 
burgdorferi by culture 
and/or PCR in 
CSF. Intrathecal 
synthesis of total IgM, 
and/or IgG and/or 
IgA. Detection of 
borrelia-specific serum 
antibodies. Recent or 
concomitant EM.

Lyme carditis 
(rare) (early 
disseminated 
infection)

Acute onset of atrio- 
ventricular (I-III) 
conduction disturbances; 
rhythm disturbances, 
sometimes myocarditis 
or pancarditis. 
Alternative explanations 
must be ruled out.

Specific serum 
antibodies

Detection of B. 
burgdorferi by culture 
and/or PCR in 
endomyocardial biopsy 
material. Recent or 
concomitant erythema 
EM and/or typical 
neurological disorders.

Ocular 
manifestation 
(rare) (early 
disseminated 
infection)

Conjunctivitis, uveitis, 
papillitis, episcleritis, 
keratitis.

Specific serum 
antibodies

Recent or concomitant 
Lyme borreliosis 
manifestations. Detection 
of B. burgdorferi by 
culture and/or PCR in 
ocular fluid/biopsy.

Lyme arthritis 
(late 
manifestation)

Recurrent attacks or 
persisting objective joint 
swelling in one or a few 
large joints. Alternative 
explanations must be 
ruled out.

Specific serum 
IgG antibodies, 
usually in high 
concentrations

Synovial fluid analysis 
and detection of B. 
burgdorferi by PCR (and 
rarely culture) in 
synovial fluid and/or 
biopsy material.
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6.2  Direct Detection of B. burgdorferi s.l.

Direct detection of pathogens remains the gold standard for diagnosing infectious 
diseases [7–9] but suffers from clear limitations when it comes to the mainly pauci-
bacillary disease manifestations of LB. There is a variety of ways to directly detect 
B. burgdorferi s.l. [2, 3, 10] or spirochete components (such as DNA or protein) in 
tick vectors, reservoir hosts, and patients [6].

Microbiological laboratories currently use five different methods of direct detec-
tion: i. culture ii. nucleic acid-based methods, iii. microscopic detection methods, iv. 
direct detection of B. burgdorferi s.l.-specific proteins, and v. xenodiagnoses. Of 
these, only culture and xenodiagnoses of B. burgdorferi s.l. detect viable organisms 
and represent the best way to confirm an active infection [2, 3]; however, neither of 
these methods are currently being used on a broader scale in routine diagnostic 
laboratories, mainly because they are costly, time-consuming, and not well 
standardized.

6.2.1  Direct Detection of Borrelia in Ticks

Various methods with partly unknown or highly variable sensitivity, specificity, and 
reliability have been used to detect the presence of LB agents in tick vectors [10, 
11]. Such approaches include culture and multiple PCR formats (mostly nested 
PCR that targets different genomic loci), reverse-line blotting based on hybridiza-
tion of amplified borrelia genes with specific probes, multilocus sequence analysis 

Table 6.1 (continued)

Symptom Clinical case definition

Medical 
laboratory 
evidence 
necessaryb

Supporting medical 
laboratory/clinical 
evidence

Acrodermatitis 
chronica 
atrophicans (late 
manifestation)

Long-standing red or 
bluish-red lesions, 
usually on the extensor 
surfaces of extremities. 
Initial doughy swelling. 
Lesions eventually 
become atrophic. 
Possible skin indurations 
and fibroid nodules over 
bony prominences.

High level of 
specific serum 
IgG antibodies

Histology. Detection of 
B. burgdorferi by culture 
and/or PCR in skin 
biopsy.

aIf <5 cm in diameter, a history of tick bite, a delay in appearance (after the tick bite) of at least 
2 days and an expanding rash at the site of the tick bite is required. Can occur as single or, more 
rarely, as multiple erythema
bAs a rule, initial and follow-up samples have to be tested in parallel in order to avoid changes due 
to inter-assay variation
cIn early cases, specific intrathecally produced antibodies may still be absent

6 Laboratory Diagnosis of Lyme borreliosis
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of amplified genetic fragments of borrelia, and microscopy of stained spirochetes in 
the tick midgut or salivary glands [2, 3, 12–14]. The most recently applied tech-
niques also include next-generation sequencing (NGS), broad-range PCR combined 
with electrospray mass spectrometry (PCR/ESI MS), and proteomic approaches [6]. 
Alarmingly, there are even point-of-care-test kits (POCT) that can be used at home 
to test ticks for the presence of borrelia [11].

The reliability of such tests to directly detect borrelia in ticks is questionable as 
both false-negative and false-positive results occur even under routine conditions in 
certified microbiological laboratories. Moreover, such tests have not been standard-
ized or evaluated by external quality control measures [11, 15], and there are few 
sound clinical application studies. Most importantly, the detection of a pathogen in 
the vector does not necessarily imply successful transmission to the host when feed-
ing. This is why the use of such tests is of little value for routine diagnostic testing 
and should be limited to research or epidemiological studies [6, 11].

6.2.2  Xenodiagnostic Approaches

In a recent study, laboratory-reared larval I. scapularis ticks were placed on 36 sub-
jects and allowed to feed to repletion [16]. Ticks were then tested for LB agents 
using a highly sensitive diagnostic approach that combined polymerase chain reac-
tion (PCR), culture, and/or isothermal amplification followed by PCR and ESI 
MS. Attempts were also made to infect immunodeficient mice through tick bites or 
molted nymphal ticks or through inoculation with the tick content. In principle, 
xenodiagnosis was well tolerated, with the most common adverse events being a 
mild itching at the tick attachment site. However, further clinical evaluation is 
clearly needed to determine the sensitivity of xenodiagnosis in patients with LB, 
gauge the significance of a positive result, and address borrelial persistence post- 
treatment [17–19]. This is why xenodiagnostic methods are currently not recom-
mended outside the experimental setting.

6.2.3  Direct Microscopy and Borrelia Antigen Detection 
from Clinical Samples

Direct microscopic detection of B. burgdorferi s.l. has limited clinical utility in 
laboratory confirmation of LB due to the sparseness of organisms in clinical sam-
ples [2, 3, 20–22]. This remains especially true for methods, such as the modified 
microscopy protocol (LM-method), which have recently received significant public 
attention. The LM-method claims to directly detect tick-borne pathogens in patient 
blood after a tick bite. In a recent clinical evaluation of the LM-method, structures 
interpreted as Borrelia and babesia could not be verified by PCR and the method 
was, thus, falsified [15]. Such clinical diagnostic studies underline the importance 
of doing proper test validation before new or modified assays are introduced [6, 15]. 
Antigen detection assays (aside from PCR) have the same limitations as 
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microscopic detection. Although antigen capture tests have been used to detect 
B. burgdorferi s.l. antigens in CSF of patients with neuroborreliosis [2, 23, 24] and 
in urine samples from patients with suspected LB [25–27], such assays are not 
regarded as useful due to their insufficient diagnostic validity under routine labora-
tory conditions and many guidelines advise against their use [2, 3, 6, 28–30].

Recently a proposal was made to use a nano trap technique in combination with 
specific immunoassay technology for highly sensitive measurement of urinary 
excretion of the OspA carboxyl-terminus domain in early LB [31]. This interesting 
and novel approach cannot be regarded as an established diagnostic method without 
further evaluation and validation [32]. In summary, none of these procedures are 
recommended by current national and international guidelines for LB diagnostics 
[3, 28–30, 33–36].

6.2.4  Culture of B. burgdorferi s.l. Directly from Clinical Samples

Direct detection by culture with modified Kelly-Pettenkofer (MKP) and Barbour- 
Stoenner- Kelly-H (BSK-H) medium is considered to be the gold standard [6] and 
shows clear proof of infection with B. burgdorferi s.l. [2, 3, 11, 33]. Usually, the 
best borrelial growth is observed at 33 °C under microaerophilic conditions after 
2–3 weeks, while no growth usually occurs at 4 °C. Although BSK-H medium sup-
ports better initial growth of borrelia, MKP is superior with regard to the isolation 
rate, morphology, and motility of cultured spirochetes [37]. Direct detection of spi-
rochetes in LB skin manifestations by culture is frequently successful. The sensitiv-
ity of culture in European studies is between 40% and 90% for erythema migrans 
(EM) and between 20% and 60% for acrodermatitis chronica atrophicans (ACA) 
[10, 28–30, 33]. To a limited degree, detection by culture is also possible in CSF 
(10–26%), in very rare cases in synovial fluid, in synovial biopsies (anecdotal, 
<1%), and in blood culture (BC) (9% [Europe] to >40% [using larger volumes of 
blood from EM patients in the US]) [2, 3, 33]. Approximately 45% of untreated 
American patients with early EM-associated LB are known to have a positive BC 
based on microscopic detection of B. burgdorferi s.l. in BSK-H medium after 
2–12 weeks of incubation [38]. Combing culture with real-time PCR can boost the 
detection of B. burgdorferi s.l. in BC to 70.8% and can also reduce the detection 
time to just 7 days of BC incubation, resulting in positive results for more than 90% 
of patients with EM and nearly 100% for patients with multiple EM [38]. This 
approach, however, is costly and not practical as larger amounts of blood must be 
taken from patients with EM who can usually be diagnosed and treated clinically. In 
addition, the positivity rate of BC is clearly much lower in late infections and with 
additional cutaneous disease manifestations [39]. B. burgdorferi s.l. has also been 
detected in other tissue samples, for example, heart muscle and iris biopsies [40, 
41]; however, borrelia cultivation from patient samples generally remains laborious, 
costly, and usually takes more than 2 weeks to detect the growth of the spirochetes 
[2, 3, 28, 30, 33]. In addition, further molecular confirmation of positive culture 
results and the characterization of the isolate at the genospecies level is essential to 
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guarantee the specificity of the results [28, 30]. In terms of the specificity of com-
plex and accident-sensitive cultivation, it is important to note that contamination 
can occur. The authors of a recent study claimed they were able to cultivate B. burg-
dorferi s.l. from serum in 94% of 72 patients [42]; however, an assessment study 
showed that almost all of these isolates corresponded to one of the control strains 
[43]. Because of the invasiveness of sample acquisition, direct detection by culture 
should best be reserved for clear indications following case definitions such as those 
proposed by Stanek et al. [44], and the procedures should be explicitly undertaken 
by experienced reference centers and laboratories [6, 28, 30, 34–36].

6.2.5  Molecular Biological Detection Methods

For direct molecular detection of borrelia, the clinical presentation and stage of 
disease together with a clear-cut diagnostic indication dictate the type of specimen 
to use, such as skin biopsies for EM and ACA, CSF in suspected cases of neurobor-
reliosis, and synovial fluid or biopsies for Lyme arthritis (LA), as outlined by Stanek 
et al. [44]. Most European and American guidelines advise against using blood and 
urine specimens for molecular testing due to the low and mostly transient presence 
of spirochetes in such materials. This results in a highly variable testing perfor-
mance, at least under routine diagnostic laboratory conditions [10, 28–30, 34–36, 
45]. Although difficult to obtain clinically, the largest conceivable amount of any 
sample material (e.g. 2–3 mm biopsies, >1 mL of CSF or synovial fluid) should be 
collected due to the extremely variable borrelial load in most clinical materials (e.g. 
10–11,000 spirochetes in 2 mm EM skin biopsies and 20-41,000 spirochetes per mL 
of synovial fluid as determined by quantitative real-time PCR) [2, 3, 46, 47]. These 
samples must be transported directly to the diagnostic laboratory as quickly as pos-
sible under optimal conditions (4–8  °C in under 2 h) [10]. Detection of specific 
DNA works better with fresh or fresh-frozen material compared to stored or fixed 
specimens [45, 48]. To circumvent the problems associated with a high ratio of 
human to bacterial DNA in most samples, modified manual and automated extrac-
tion methods have been developed based on specific lysis and degradation of the 
human tissue materials (cells and DNA), selective binding, separation and removal 
of human DNA, and CpG motive-based selection, with final enrichment of bacterial 
DNA. Some of these reagents are commercially available and extraction methods 
for PCR testing were extensively discussed in a recent review by Ružić- Sabljić and 
Cerar [10].

Conventional, isothermal, qualitative, and quantitative real-time PCR assays tar-
geting the unique rRNA gene (16S rDNA, 23S rDNA, 5S–23S rDNA intergenic 
spacer) and a variety of other single-copy chromosomal targets (fla, hbb, rrf-rrl, 
polC, SrRNK, p66, recA, bmpA, rpoB, rpoC, and gyr), plasmid bound targets such 
as dbpA, vlsE, and outer surface proteins (ospA, ospB, ospC) have been developed 
and are, in part, commercially available [2, 3, 6, 10, 49]. An important drawback to 
a more standardized application of such assays is the fact that some molecular tar-
gets, especially the plasmid-encoded target genes (e.g. ospA, ospB, ospC), have 
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high inter- and intra-strain variability, which can lead to amplification dropouts 
(false-negative results). Others (e.g. flagellin: fla) are unable to discriminate between 
the different Borrelia genospecies due to their more conserved genetic nature. An 
overview of correct indications and useful targets for the detection of borrelia in 
different clinical specimens is provided in Tables 6.1 and 6.2 [2, 3, 10, 50, 51]. 
Assays targeting plasmid-encoded genes (e.g., osps, vlsE etc.) are believed to be 
more sensitive than those targeting chromosomal ones (e.g., 16S rRNA-, flagellin 
(fla)-genes) [6]. Such analytical limitations and technical variabilities have led to 
the recommendation that molecular tests should employ at least two different DNA 
target sequences to increase diagnostic reliability [28, 30].

6.2.5.1  PCR Followed by Electrospray Ionization Mass Spectrometry 
(ESI MS)

A relatively recent molecular approach is broad-range PCR followed by electro-
spray ionization mass spectrometry (ESI MS). Briefly, this approach utilizes a con-
ventional real-time PCR assay that uses broad-range primers targeting conserved 
sequences of eubacterial DNA. The resulting amplicons are subjected to ESI MS, 
which measures with sufficient accuracy the mass of the amplicons to determine the 
nucleic acid base composition [52, 53]. Unlike hybridization-based detection, ESI 
MS does not require prior knowledge of the target sequence but can identify without 

Table 6.2 Sensitivity and specificity of molecular diagnostic detection methods for LB, modified 
from Ružić-Sabljić and Cerar (2017) [10]

Clinical 
specimen

No. of 
studies

No. of 
patients Targets (genes)

Median 
sensitivity 
(range) Specificity

Skin 
biopsy – 
EM

28 5–758 p66, 23S rDNA, flagellin, 
rrf-rrl, ospA, recA, 16S 
rDNA, OspC

68 (30–89) 98–100

Europe 19 5–758 70 (30–80)
USA 9 23–139 59 (33–81)
Skin 
biopsy – 
ACA

13 5–59 p66, ospA, chromosomal 
DNA, 23S rDNA, rrf- rrl, 
flagellin

75 (20–100) 100

CSF 22 8–190 chromosomal DNA, ospA, 
flagellin, rrf-rrl, SrRNK, 
p66

22.5 (5–100) 99–100
Europe 16 8–190 18 (9–100)
USA 6 12–81 40.5 (5–93)
Synovial 
fluid

12 4–124 rrs-rrl, ospC, ospA, p66, 
flagellin

77.5 (23–100) 100

Europe 7 4–20 72 (23–100)
USA 5 7–124 85 (60–100)
Blood, 
serum or 
plasma

11 7–557 polC, ospA, 16S rDNA, 
rrf-rrl, rpoC

18 (0–100) 95–100

Europe 5 10–557 16 (3.1–100)
USA 6 7–76 29 (0–62)

EM Erythema migrans, ACA acrodermatitis chronica atrophicans, CSF cerebrospinal fluid

6 Laboratory Diagnosis of Lyme borreliosis



138

prejudice the composition of amplicons based on mass with reference to databases. 
PCR followed by ESI MS may be more useful for rapid borrelia detection but is 
currently not recommended for routine diagnostic testing because it needs more 
extensive clinical evaluation to demonstrate that it is not limited by the same general 
drawbacks in sensitivity in patients with late-stage disease as the other PCR-based 
detection methods [6]. In addition, costs are high for such a technically demanding 
diagnostic approach.

6.2.5.2  Sensitivity of Molecular Diagnostics
In general, the sensitivity of molecular test methods (mainly PCR-based) in detect-
ing borrelia under routine laboratory conditions correlates with the known detection 
limits for culture [2, 3, 10, 28, 30, 50, 51]. In principle, the detection of borrelia 
from a skin biopsy from EM and ACA using nucleic acid amplification techniques 
(usually PCR) is very reliable (75%) and in the case of early manifestations may be 
even more sensitive (68%) than serological antibody detection (40–60%) [28, 30]. 
However, the question remains whether molecular testing and its related costs are 
necessary for most skin manifestations as the molecular test is clearly not warranted 
for a typical EM [44, 45, 52]. The diagnostic sensitivities of molecular diagnostics 
for clinical specimens other than skin biopsies based on a recent meta-analysis [10] 
are summarized in Table 6.2. These average 20% for CSF, approximately 77% for 
synovial fluid, and at best 18% for blood [10, 50, 54–58]. Patients with LA remain 
a diagnostic exception (Table  6.1) and molecular tests can achieve much higher 
sensitivities (77.5%; Table 6.2) than culture (<1%) with this form of manifestation 
[10, 28, 50, 56]. This is why a molecular investigation of synovial fluid or synovial 
biopsies is considered highly important in diagnosing LA [10, 28–30], whereas 
molecular testing of urine samples is generally not recommended due to its inade-
quate analytical specificity [59–61]. Positive results must be confirmed by amplicon 
sequencing and identification of the genospecies [28, 30]. After treatment, borrelia 
DNA can still be detected for weeks or even months in samples taken from previ-
ously affected areas of skin [62] and in treated LA [63, 64]. Since PCR does not 
discriminate between residual DNA and viable organisms, no conclusions should be 
drawn as to whether the therapy has failed, especially in patients without typical 
symptoms [62, 63]. Indeed, molecular detection of pathogens without the simulta-
neous presence of typical disease manifestations is of no clinical relevance [63, 
65, 66].

6.2.5.3  Problems with Standardizing Molecular Testing
A significant drawback to molecular testing for LB has been the absence of stan-
dardized methods [10, 50, 67]. This relates to DNA isolation and selection of the 
clinical sample, as well as elution volumes, analytical conditions, and the selection 
of the molecular targets as outlined earlier. Studies on external quality control for 
these diagnostic techniques are currently too heterogeneous to recommend a par-
ticular method [50, 51, 68]. This supposition is further supported by evidence from 
INSTAND e.V.’s biannual external quality assessment scheme for molecular detec-
tion of B. burgdorferi s.l., which covers several major commercial manufacturers 
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and many in-house assays. Between 2013 and 2015, the average pass rates for the 
241 laboratories enrolled in this program were 86–97% for positive samples and 
94–100% for negative samples [69], bringing to light the current situation surround-
ing molecular testing for LB.

Consequently, direct molecular (mostly PCR-based) detection methods should 
not be used as primary screening tools if LB is suspected. It is important to note that 
a negative PCR test result does not rule out LB. Positive results need to be con-
firmed with regard to specificity (e.g. probe hybridization and sequencing of the 
amplicon), and genospecies must be identified in the laboratory report. Direct 
molecular detection should be limited to defined skin and joint manifestations and 
performed exclusively by specialized reference laboratories [28–30, 33–36, 44, 51].

6.2.5.4  Genetic Typing Methods for Amplicons and Isolates
Genetic characterization of borrelia isolates is mainly relevant for epidemiological, 
clinical, and evolutionary studies [10, 14]. However, diagnostic laboratories also 
use the method to identify positive results of molecular and culture-based tests for 
LB [13]. A variety of molecular methods have been developed for these purposes, 
including large restriction fragment pattern (LRFP) analysis plus plasmid profiling, 
PCR-based typing techniques targeting single genes, PCR-based restriction frag-
ment length polymorphism (RFLP) analysis of rrs-rrlA (16S–23S rDNA) and rrfA- 
rrlB (5S–23S rDNA) intergenic spacer, molecular ospC-analysis [13], flagellin 
typing, real-time PCR-based typing using melting temperature (TM) analysis, mul-
tilocus sequence typing (of mostly 8 housekeeping borrelia genes) [14], and whole- 
genome sequencing (WGS). While studies that use WGS and NGS from culture and 
field samples to diagnose LB are rare and the implementation of such techniques in 
the routine diagnostic laboratory is still under evaluation [10, 70–75], PCR-based 
RFLP analysis, restriction enzyme LFRP analysis in combination with pulsed-field 
gel electrophoresis (PFGE), and PCR-based flagellin typing have made their way 
into scientific and diagnostic laboratories with variable success [10]. In contrast, 
RT-PCR and melting temperature analysis can be automated and are much easier to 
use so that they are utilized by many laboratories for diagnostic and scientific pur-
poses. Such assays, however, remain problematic if directly used with clinical sam-
ples [10]. PCR-based 5S–23S rDNA RFLP analysis using MseI and DraI enzymes 
[76] is a common method for confirming and characterizing borrelia isolates due to 
its relative ease of use, high discriminatory power, and excellent reproducibility [6].

6.3  Indirect Detection of the Pathogen (Serological Testing)

Because of its ease of use and substantial diagnostic value, indirect pathogen detec-
tion through serological testing is indicated in all cases where LB is clinically sus-
pected (except with typical EM) to provide laboratory support in diagnosing the 
disease [28, 30, 34–36, 44, 77]. Case definitions for Europe, which should also work 
for most other parts of the northern hemisphere, contain descriptions of the various 
clinical manifestations of LB (Table  6.1). They provide guidance for clinical 
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diagnosis and advice on the correct indication for diagnostic testing in cases of sus-
pected LB [44]. Despite these definitions, laboratory testing for B. burgdorferi s.l.-
specific antibodies continues to be frequently used in many clinical situations where 
testing is not recommended by current guidelines [28, 30, 34, 35, 77–80]. For exam-
ple, in the Netherlands, only 9% of the patients tested had clinical symptoms out-
lined in the guidelines [80]. In Denmark, only 43% of samples from general 
practices originated from patients with suspected EM [79]. Unnecessary testing can 
delay proper diagnosis and treatment and increase healthcare costs. The annual cost 
of laboratory testing for LB in the outpatient sector in Germany alone was estimated 
to be €51 million, a substantial portion of which obviously resulted from overtest-
ing [78].

6.3.1  Epidemiological Considerations 
for Adequate Serodiagnostics

It should be noted that the less specific the symptoms, the weaker the a priori prob-
ability of LB and the lower the predictive value of serological methods [2, 3, 33, 44, 
77, 81]. Confirmed indications for serological testing in suspected LB are summa-
rized in Table 6.1. The probability that a patient with a positive serological test actu-
ally has LB (positive predictive value) and the probability that a patient with a 
negative test does not have the disease (negative predictive value) depends on the 
performance characteristics of a given assay (sensitivity and specificity) and the 
prevalence of the disease in a given population and geographic region [44, 77, 82, 
83]. The pretest probability of a patient having or not having LB determines the 
predictive value of a given test result. Therefore, the clinical significance of a test 
result for antibodies against B. burgdorferi s.l. must be interpreted with caution, 
especially outside endemic areas [82, 83]. Consequently, relevant clinical signs 
must be present before LB can be suspected [44, 77]. Serological testing is only 
indicated when such clinical symptoms are present [6] and a serological follow-up 
is only of use 2–3 weeks after a possible infection [28, 51].

6.3.2  Advantages and Limitations of Current Serological 
Test Strategies

Currently, many guidelines, including the US Centers for Disease Control and 
Prevention (CDC), recommend a two-tiered laboratory testing strategy that utilizes 
a screening test of high analytic sensitivity (e.g. enzyme-linked immunosorbent 
assay [ELISA]) with a highly specific confirmatory test (immunoblot) (Fig.  6.1) 
[28–30, 51, 84]. Recent attempts have been made to improve the current diagnostic 
testing strategies by integrating new antigen components, such as VlsE or closely 
related peptides (C6), into a new generation of immunoassays (IA) that could poten-
tially replace the widely used two-step or two-tiered approach (e.g., confirmation of 
positive screening results by subsequent immunoblots) and that are more sensitive 
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and specific than the tests currently being used in the United States [44]. In Europe, 
however, several investigations have raised doubts as to whether a single serological 
test is sensitive and specific enough to serve as a stand-alone test for diagnosing LB 
[44, 85–87]. Borrelia genospecies and strains have much higher biodiversity in 
Europe making it much more difficult to design an appropriate IA with a simple 
“one fits all” approach [51, 85, 87]. Therefore, this test strategy seems much more 
feasible in the United States due to the presence of fewer genospecies [6, 88]. This 
is underscored by a recent study, which confirmed that the standard two-tiered sero-
logical testing using assays developed for use in the United States performed more 
poorly than European assays in detecting LB acquired in Europe [89]. As outlined 
earlier, this result is not surprising as LB in North America is mainly caused by 
B. burgdorferi s.s. In Europe, an infection can be caused by B. afzelii, B. garinii, 
B. bavariensis , B. burgdorferi s.s., and less commonly, B. spielmanii [2, 3, 28, 30, 
51]. Importantly, the specificity of stand-alone tests has been questioned by studies 
comparing the specificity of two-tiered (IA & C6 peptide ELISA) algorithms 
(99.5%) to the stand-alone C6 ELISA with a lower specificity of 98.4% [90]. 
Although this difference seems negligible, in the United States alone, where at least 
3.4 million LB tests are performed annually [90], such a difference would lead to an 
additional 37,000 false-positive test results per year, more than the reported inci-
dence of LB in the United States (>35,000 cases annually) [91]. The high specificity 
of the two-tiered approach (Fig. 6.3) is thus a critical advantage [88, 90] and there-
fore has prevailed as the gold standard for LB serology in most diagnostic 

Screening test:
e.g. ELISA (IgG/[IgM])

confirmatory test:
e.g. immunoblot (IgG/[IgM]) or C6 ELISA

positive/borderline negative

negative Lyme-serology

positive

positive
serology

negative
serology

borderline negative

back-up-assay,
follow-up

Fig. 6.1 Diagnostic algorithm for EIA and immunoblot-based two-tier testing, modified from 
Hunfeld et al. (2009) [112]

6 Laboratory Diagnosis of Lyme borreliosis



142

laboratories in Europe and North America [28, 30, 51, 84]. However, it is worth 
noting that it is debatable as to whether the second tier needs to be an immunoblot 
in light of the limitations of immunoblot testing, with little standardization across 
laboratories and problems with specific IgM antibody detection [88].

Although highly sensitive and specific single-tiered tests are increasingly in cir-
culation, two-tiered strategies that combine a highly sensitive screening test (e.g. 
ELISA) with a highly specific confirmatory test (e.g. IA, immunoblot) remain the 
most reliable diagnostic procedure currently available (Fig. 6.1) [6, 28–30, 51, 84].

6.3.3  Relevant Immunodominant Antigens of B. burgdorferi s.l.

Clinical serodiagnostic studies have examined the antigenic repertoire of LB agents 
and identified the following immunodominant borrelia antigens most suited for 
diagnostic purposes: p83/100 (which also serves as a late-phase marker of the spe-
cific immune response), p58, p41 (flagellin), the recombinant internal fragment of 
p41 (which is less cross reactive than the native protein), and the outer surface pro-
teins OspA, OspC, p39 (BmpA), and DbpA (Osp17/p18) [2, 3, 28, 30, 51, 87, 92–
95]. All of these antigens are available as recombinant proteins and are included in 
many diagnostic assays as single proteins or as mixtures of variable combinations 
and concentrations [6]. The known genospecies, and in part also strain-dependent 
variabilities of most borrelia antigens, can result in variable serodiagnostic sensi-
tivities, especially within Europe but also between Europe and North America [28, 
30, 51, 87, 89, 95, 96]. Such variability also significantly affects the proteins VlsE, 
OspA, OspC, and Osp17 with direct diagnostic impact because the resulting bor-
relial surface antigenic diversity impairs serodiagnostic performance, especially for 
methods such as the immunoblot [51, 88, 97]. For example, intraspecies differences 
in B. garinii detected using a panel of monoclonal antibodies have led to the recog-
nition of at least 13 different OspC serotypes [98]. To a lesser extent, heterogeneity 
in the immunoreactivity to VlsE has been described in Europe [87]. As a result, 
European immunoassays are often prepared from mixtures of specific spirochetal 
lysates and/or purified antigens including fusion proteins, and then diagnostic crite-
ria are adjusted to the diagnostic needs best suited for the local epidemiological situ-
ation [28, 30, 51, 99]. Due to strong cross-reactivity, the flagellin protein, a very 
sensitive but not very specific marker of early infection, should only be used as a 
recombinant truncated internal fragment (p41 int.) [93, 100]. A major improvement 
in serodiagnostics was the discovery and production of the recombinant VlsE pro-
tein and its conserved peptide region C6 [87, 101–105]. Interestingly, VlsE exhibits 
no recombination and a less intense expression in culture or ticks but considerable 
recombination and strong expression in the mammalian host [106]. Therefore, using 
recombinant VlsE as an important immunodominant antigen or the VlsE-derived C6 
peptide for diagnostic purposes has dramatically improved the sensitivity and speci-
ficity of detecting IgG antibodies against B. burgdorferi by ELISA and immunoblot 
during the very early stages of infection and immune response [2, 3, 28, 30, 51, 
87, 99].
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6.3.4  Screening and Confirmatory Tests

Various IA modifications, such as ELISA, enzyme-linked fluorescence assays 
(ELFA), chemiluminescence-linked immunoassays (CLIA), and electrochemilumi-
nescence immunoassays (ECLIA), are used as screening tests because they are 
well-suited for the polyvalent, selective, and quantitative determination of specific 
IgG and IgM antibodies [107]. Other serological tests, such as indirect hemaggluti-
nation assays, complement fixation, or indirect immunofluorescence, are no longer 
suitable [28, 30, 51]. In conventional whole-cell lysate assays, the patient’s serum is 
absorbed by Treponema phagedenis to increase the specificity of the screening test. 
The serum must also be treated with a rheumatoid factor (RF) absorbent to selec-
tively detect IgM antibodies and prevent false-positive results stemming from the 
possible presence of RF. Common causes of false-positive screening tests are sum-
marized in Table 6.4 according to Branda and Steere [108]. Such pretreatment is 
normally not required for most recombinant test formats [30, 51]. The antigen frac-
tions to specifically detect antibodies in ELISA and CLIA consist of ultrasonicate 
or borrelial whole-cell extract or purified recombinant proteins capable of stimulat-
ing a specific immune response in vivo; for example, Osp17/p18 (DbpA), flagellin 
(p41), p39, p58, OspC, VlsE (selective ELISA). Hybrid tests combining both cell- 
derived and recombinant antigens are also available, for example, enrichment of 
conventional antigen extracts with recombinant OspC or VlsE. CLIA and ELISA 
differ in the type of detection method and, to some extent, the antigen preparations 
they use. The specificity of advanced IAs is 80–90% [2, 3, 28, 30, 51]. Such assays 
are routine in serological laboratory testing for LB agents because they guarantee an 
automated reading, measurement accuracy, and ease of handling. These tools are 
also readily adapted for modern high-throughput laboratories using automated ana-
lytical chains [6, 51]. The results of the immunoassays can vary significantly 
depending on the specific antigen composition and the manufacturer of the test sys-
tem [107]. Hence, the results of different tests and/or different laboratories are only 
comparable to a very limited extent [51, 78, 107, 109]. Standardization would 
require parallel testing across laboratories with archived control sera, but this is 
rarely carried out [28, 30, 51].

Traditional Western blots use ultrasonicated borrelia as an antigen source 
(Fig. 6.2). Thus, all borrelial antigens, that is, specific immunodominant and non- 
specific proteins, are involved in antibody detection. Optimal expression of the tar-
geted immunodominant antigens of the B. burgdorferi strain is essential for the 
quality of such a blot [2, 3, 92]. Studies have shown that different strains of B. burg-
dorferi display pronounced variability in their immunodominant antigens. The 
B. afzelii strain PKo has proved to be particularly suitable for Europe [28, 95, 96, 
110, 111]. Criteria have been compiled for interpreting, under standardized condi-
tions, whole-cell antigen immunoblots that use the PKo strain [33, 95, 112] 
(Table 6.3). One disadvantage is that new immunodominant antigens such as VlsE 
are strongly expressed in vivo but show less intense expression in conventional cul-
ture [113]. Hence, many manufacturers of conventional lysate blots selectively add 
certain recombinantly produced proteins (VlsE, OspC) to create hybrid tests that 
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close these diagnostic gaps [112]. The use by manufacturers of lot-specific evalua-
tion templates and antigen localization verification with monoclonal antibodies in 
whole-cell lysate immunoblots is essential for diagnostic quality [6, 28, 33, 95, 112].

Highly specific “recombinant immunoblots” (selective blot) that employ antigen 
preparations from recombinant proteins to detect borrelia antibodies are used to an 
increasing extent [33, 112]. Some of the most common recombinant antigens for 
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Fig. 6.2 Different formats of diagnostic immunoblots for the antigen and antibody class-specific 
detection of the anti-borrelia immune response, modified from Hunfeld et al. (2009) [112]

Table 6.3 Examples of established interpretative criteria for immunoblots, modified from 
Hunfeld KP & Kraiczy P, 2009 [112]

B. afzelii (strain PKo) whole cell antigen immunoblot evaluation criteria for Europe
IgG positive: ≥ 2 bands IgM positive: ≥ 1 band
p100, p58, p43, p39, p30, OspC, p21, p17, p14 p41 (strongly positive), p39, OspC, p17
B. burgdorferi s.s. (strain G39/40) whole cell antigen immunoblot evaluation criteria 
(CDC recommendations for the USA only)
IgG positive: ≥ 5 bands IgM positive: ≥ 2 bands
p83/100, p66, p58 (not GroEL), p45, p41, p39, 
p30, p28, OspC, or p18

p39, OspC, p41

Recombinant immunoblot evaluation criteria
IgG positive: ≥ 2 bands IgM positive: ≥ 2 bands
p100, p58, p39, VlsE, OspC, p41 internal 
fragment, p18/p17

p39, OspC, p41 internal fragment, p18/p17 or 
strong reaction only against OspC
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these assays are Osp17/p18 (DbpA), VlsE, OspC, OspA, p39 (BmpA), p41/I (fla-
gellin, internal fragment), p41 (flagellin), and p83/100 (Fig. 6.2). In addition, spe-
cific antigens of different genospecies can be used in the same test mixture to 
counter the immunological variability of the different B. burgdorferi species [6, 95]. 
The diagnostic sensitivity of the recombinant immunoblots depends on the type and 
amount of antigens used. The colored bands of the antigen pattern are more easily 
assigned to defined antigens in the recombinant immunoblot than the whole-cell 
lysate blot (Fig. 6.2). The recombinant immunoblot is, therefore, particularly rec-
ommended for laboratories with little experience in LB serodiagnostics [6, 112].

Line blots represent a modification of conventional recombinant immunoblots in 
terms of the production and processing of the antigens used. However, no electro-
phoretic separation step is necessary prior to the blotting procedure [112]. For such 
tests, the individual antigens are gently and selectively sprayed directly onto the 
carrier membrane without previous denaturation (Fig. 6.2). The line immunoblot 
achieves high levels of sensitivity and specificity in detecting borrelia-specific anti-
bodies [112]. Moreover, the line immunoblot is able to resolve differences in the 
diagnostic reactivity of sera by combining or supplementing tests with highly spe-
cific immunodominant antigens (e.g. VlsE, OspC) from different genospecies and 
strains from different geographic origins [28, 87, 112]. These test systems provide 
information on the quality and duration of the immune response by taking into 
account the number and type of borrelia-specific bands, thus allowing the result to 
be classified more accurately in the clinical context [44, 51, 77]. Identifying blot 
bands via lot-specific evaluation templates that are appropriately weighted, as well 
as the parallel testing of positive controls and cutoff controls, is essential for avoid-
ing false positives and antigen confusion [28, 112]. Given these technically demand-
ing issues and the resulting difficulties in standardizing tests and test results, 
interlaboratory comparisons and round-robin trials reveal the obvious limitations of 
commercially manufactured conventional and recombinant immunoblots [6, 78, 
107, 109].

Table 6.4 Infections and inflammatory conditions associated with falsely positive Lyme EIA 
results, modified from Branda and Steere (2021) [108]

Condition Subcategory
Infection Spirochetal infections: syphilis, yaws, pinta, leptospirosis, relapsing fever, 

Borrelia miyamotoi infection
Tick-borne infections: anaplasmosis, RMSF
Viral infections: Epstein-Barr virus, cytomegalovirus, varicella,
parvovirus B19
Bacterial endocarditis

Inflammatory 
disorders

Autoimmune: rheumatoid arthritis, systemic lupus erythematosus, 
multiple sclerosis
Periodontitis or ulcerative gingivitis

Pain syndromes Fibromyalgia
Vaccination Lymerix (OspA)
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6.3.5  Multiplex Fluorescence Immunoassays (MFI)

The introduction of novel multiple parameter test systems based on single-antigen 
Luminex technology allows a large number of analytes, such as antigens, to be 
simultaneously analyzed in the same microtiter well or by flow cytometry in a sin-
gle process [51]. This test method is based on tiny, antigen-coated polystyrene beads 
that serve as the solid phase for a variety of detection reactions, similar to the 
Western blot and ELISA [114]. As with closely related single-antigen-based multi-
well immunoassay systems, the resulting multi-analyte profiles combine the advan-
tages of immunoblots with the analytic principles of quantifiable immunoassays. A 
study recently evaluated a multiplex bead-based assay for the detection of serum 
antibodies against B. burgdorferi s.l. [115]. The assay tested IgG and IgM responses 
to 13 different borrelia antigens in 49 Danish and 61 Swedish patients with Lyme 
neuroborreliosis (LNB), 139 Swedish non-LNB patients, and 218 Danish blood 
donor controls. The VlsE IgG and OspC IgM testing showed an area under the curve 
(AUC) of 96% and a receiver–operating characteristic curve of ~80%. All other 
antigens were found to be much less discriminatory in LNB compared to the con-
trols. So, the practical advantages of such tests over classical diagnostics in LB 
remain at least questionable [6].

6.3.6  Interpretation of Serological Test Results

Antibodies against borrelia antigens usually form approximately 2–6 weeks after 
the onset of the borrelia infection. In most cases, the IgM antibody response pre-
cedes that of the IgG antibody response [28, 30, 116–118]. The absence of an IgM 
response has been reported in some cases [28]. An IgM response may also be absent 
during reinfections, as these are usually associated with a significant IgG response 
without major IgM production [117]. In the early phase of infection, the immune 
response of both immunoglobulin classes is first directed against a narrow range of 
borrelia antigens, especially flagellin (p41), VlsE, and OspC.  Antibodies against 
VlsE and OspC are of special diagnostic significance because of their relatively 
high specificity [6]. The introduction of the VlsE antigen has provided better sensi-
tivity in serodiagnostic testing for borrelia [87, 99, 105]. If used in the early stages 
of disease manifestation (e.g. EM, LNB), this antigen achieves significantly higher 
detection rates for borrelia-specific IgG antibodies. However, many patients (50 to 
70%) still remain seronegative in the early stage of infection [28, 30].

The number of seropositive patients increases to nearly 100% in late disease as 
the spirochete infection progresses [28, 30, 44, 77]. In these cases, the immune 
response is directed toward a wide range of borrelia-specific antigens. Antibodies 
against specific antigens such as the p83/100 protein, p39 (BmpA), and Osp17/p18 
(DbpA) have a particularly high diagnostic significance during the late stage of the 
immune response. In contrast, antibodies against OspA, which are also specific, are 
rare and are most often observed in patients with LA [28, 30, 51, 112].
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As with other infectious diseases, immunocompromised patients may show a 
delayed or complete absence of an immune response. As a rule, seronegative LB is 
extremely rare in immunocompetent patients, except in the very early stage of the 
disease [6]. Direct detection of the pathogen should always be considered in patients 
who experience a short duration of the disease [28, 30, 44, 51, 77]. IgM antibodies 
against LB agents are relevant for detecting early infection but do not contribute to 
a serodiagnosis in late LB [6, 44]. As outlined earlier, the use of stand-alone IgG 
assays clearly suffers from limitations, at least in the non-American setting but may 
suffice if highly sensitive screening tests are conducted that use the VlsE protein or 
C6 peptide [28, 30, 51]. In this instance, additional IgM detection appears to have 
little significant advantage over IgG testing for early LB and may actually reduce 
the specificity of diagnostic testing in ambiguous clinical situations although this 
may depend on the antigen mix used in the assay [119, 120]. In patients with 
extended disease manifestations, such as chronic Lyme neuroborreliosis (LNB), 
ACA, or LA, only the detection of IgG antibodies against Borrelia should be con-
sidered to be of diagnostic significance [44]. This is because some individuals expe-
rience a persistent low-grade IgM antibody response for months or even years after 
treatment or past infection, although this phenomenon is not associated with a (per-
sistent) infection with B. burgdorferi s.l. [121–124]. In contrast, in late LB manifes-
tations, the presence of an IgG response is essential for the diagnosis of LB based 
on the current case definitions [44]. An isolated and persisting IgM response in such 
cases clearly argues against a long-lasting infection or late manifestation of LB [28, 
30, 44, 51].

Changes in test results must always be verified by parallel testing with previously 
collected serum in the same assay [28, 30, 92, 118, 125]. Moreover, borderline titers 
and immunoblot interpretations as well as diagnostic sensitivity and specificity 
depend on the test and manufacturer. Specified borderline titers and cutoffs are only 
guidance values and should be critically verified for each test used in a laboratory 
through in-house performance reviews on positive reference samples and negative 
blood donor sera that reflect the local epidemiological situation [6, 92, 125, 126].

6.3.6.1  Interpreting Screening Test Results
No further investigations are needed for negative screening test results. However, a 
negative serological finding does not rule out LB. Patients in early disease stages 
often present with negative serological results. If the infection continues to be sus-
pected, the serological diagnosis can be repeated after 2–6 weeks [6]. In individual 
cases, a measurable immune response may have been suppressed by early initiation 
of antibiotic treatment, inhibiting seroconversion for IgG and IgM (so-called 
“abrogative antibody response”; absence of IgG and/or IgM seroconversion) [28, 
30, 44, 51, 77].

A borderline or positive test result must be interpreted with caution because 
false-positive findings do occur, for example, in the case of syphilis, other bacterial 
infections, and EBV infections, despite absorption of cross-reacting antibodies by 
T. phagedenis (Table 6.4) [127]. In the case of a borderline or positive LB screening 

6 Laboratory Diagnosis of Lyme borreliosis



148

test result, a test for syphilis should be performed (see above) to rule out present or 
resolved syphilis as a possible cause of false-positive borreliosis serology [6].

A positive test result is a strong indication of an active or possibly past borrelia 
infection. If this serological finding unambiguously coincides with the suspected 
clinical diagnosis (Table 6.1), further laboratory investigations are not required. In 
all other cases, a further confirmatory test must be performed [28, 30, 44, 51, 77].

6.3.6.2  Interpreting Confirmatory Test Results
A negative confirmatory test (immunoblot, or line blot) suggests that the screening 
test provided a false-positive result and borrelia serology is to be reported as nega-
tive. Further investigations are usually unnecessary although it must be kept in 
mind that early infection stages (EM, LNB) may produce false- negative findings 
[30, 112]. Borderline immunoblot values are particularly difficult to interpret 
because of the absence of the above-mentioned criteria for detecting a borrelia 
infection and diagnosing the disease [6]. There is no standard on how to define or 
interpret indeterminate results [77]. Repeating the test using the same method 
achieves little since the reproducibility of modern automated immune assays is 
quite high with only small random variations in measurement results [77]. 
Reproducibility of immunoblot pass rates for proficiency testing has been reported 
to have achieved the same intended result in 82% of the 239 participating labora-
tories [78]. In these cases, performing a backup test (e.g. verification of a whole-
cell antigen blot result by recombinant immunoblot) can be helpful. If screening 
and backup tests produce divergent results in the presence of a borderline immu-
noblot result, this provides strong evidence for a false positive serodiagnosis [30, 
51]. In the case of a positive or borderline backup test, the serological finding is 
consistent with an early-stage LB infection. However, such results rarely indicate 
an existing, persistent, or late manifestation of LB [28, 30, 44, 51, 77, 118]. Only 
if a recent infection is suspected, a borderline or negative serological test should be 
repeated after 2–6 weeks when there are clinical symptoms and an indication for 
testing (Table 6.1). If the finding remains unchanged, active LB is unlikely [6, 28, 
30, 44, 51, 77, 118].

6.3.6.3  Interpreting Positive Confirmatory Immunoblot Results
As stated earlier, many guidelines, including the US CDC, recommend a two-tiered 
strategy that combines a highly sensitive screening test (e.g. ELISA) with a highly 
specific confirmatory test (immunoblot) (Fig. 6.1) [28–30, 51, 84]. In the case of a 
positive immunoblot, an analysis of the banding pattern should be performed. Data 
on the class of reactive antibodies (IgM and/or IgG), the intensity of the bands, and 
the number of bands (antigens) and their molecular weight, are required to interpret 
the test [28, 51]. In suspected early- or late-stage LB, the diagnostic findings must 
also match the clinical presentation and current case definitions (Table  6.1). An 
isolated detection of IgM antibodies against VlsE, p41, or OspC is an important 
marker of early LB. An isolated p41 band is not proof of LB because the antigen 
may cross-react to the flagellin proteins of other bacteria; however, its presence is 
consistent with the clinical diagnosis of early LB if additional clinical information 
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is present [28, 30, 51]. Early LB is much more probable when antibodies against 
p41 or p41/I, the borrelia-specific internal fragment of flagellin, and VlsE or OspC 
are detected—as long as one of the bands is strongly present in the blot [28, 30, 51]. 
A clinical late-stage diagnosis is only supported by laboratory testing if several 
bands with an intensive signal are recognizable across a wide range of antigens [6]. 
The specificity of the p83/p100 and Osp17/p18 bands make them of particular diag-
nostic significance. In combination with a wide band pattern, they point to a late- 
phase immune response [28, 30, 51]. Detailed clinical information (Table 6.1) is 
essential when assessing an immunoblot result, as outlined above. Importantly, no 
conclusions can be drawn as to the need for treatment based only on a positive 
immunoblot or ELISA result because antibodies (including IgM) do not point to 
active disease per se and may persist for long periods (months to even years) after 
resolution of the infection and even after treatment [28, 30, 51]. Therefore, the 
detection of antibodies does not automatically confirm a clinical infection. 
Confirmation requires the serodiagnostic test result to be examined in conjunction 
with the clinical symptoms (Table 6.1), especially since a real activity marker of 
disease (such as the venereal disease laboratory test (VDRL) for syphilis) is cur-
rently not available [28, 30, 51]. Any reinfections can only be unambiguously diag-
nosed by verifying significant serology changes through parallel testing with a 
previously collected sample. It should again be emphasized that the isolated positive 
detection of IgM antibodies in this context is not an indication of. late LB [28, 
30, 51].

6.3.7  Laboratory Diagnosis of Lyme Neuroborreliosis (LNB)

6.3.7.1  Serology
LNB is a disorder of the central nervous system that can manifest primarily or fol-
low EM. Around 10% of LB patients exhibit LNB with typical clinical symptoms 
and syndromes (Table 6.1). Laboratory diagnosis should follow the proven diagnos-
tic approaches outlined earlier. Except in very early LNB and in cases with polyneu-
ropathy of the peripheral nerves, conventional laboratory investigation of the CSF 
shows signs of inflammation including lymphocytic pleocytosis, activated plasma 
cells, and a disturbance of the blood-brain barrier (i.e. elevated protein and albumin) 
[6, 128]. CSF cell counts can vary between 6/μL and 1100/μL with a mean of 170/
μL [128, 129]. In addition, general intrathecal immunoglobulin production is pres-
ent in 80–100% of cases for IgM and in 60% of cases for IgG in early LNB [128, 
130]. High general intrathecal IgG and IgA production frequently occurs in late 
LNB [128, 131, 132]. Lactate determination does not play a significant role in the 
diagnosis of LNB [128]. Depending on the duration of the disease and the antigen 
preparation used for diagnostic testing (which should preferably contain VlsE or C6 
peptide), specific intrathecal antibodies are detected in 60–100% of LNB cases 
depending on the duration of the infection. An isolated intrathecal antibody response 
without a specific antibody response in peripheral blood has rarely been observed—
mainly in very early LNB in children [6]. Antibody production in the central 
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nervous system is only detectable by parallel quantitative testing of CSF and serum 
for borrelia-specific antibodies. For this purpose, the serum and CSF IgG concentra-
tion or albumin concentration is interrelated with the concentration of the pathogen- 
specific antibodies (IgG, IgM) determined in serum and CSF taken at the same point 
in time [44, 77, 128, 133]. These data are used to determine the liquor-serum index 
(LSI) according to the following formula [128]:

 

LSI
IgGor albumin conc serum spec antibodyconc ELISA U mL

=
( )× ( ). . . / 
( ) ×

inCSF

IgGor albumin conc CSF spec antibody conc ELISA U. . . / mmL in serum( )   

Depending on the test, LSI values >2  in ELISA indicate intrathecal antibody 
production due to LNB unless otherwise indicated. LSI values of 1.5–1.9 are con-
sidered to be borderline results [44, 77, 128, 133]. Advanced CSF analysis should 
employ IT-based evaluation programs coupled with medical laboratory protein 
analysis to assess the CSF flow (function of the blood-brain barrier) to take into 
account special analytical constellations of up-to-date diagnostic algorithms [28, 
51]. This remains true especially in cases with local general intrathecal IgG, IgA, or 
IgM production when the calculation of the LSI for borrelia-specific local antibody 
production must be based on Q-Lim (which is the empirical cutoff for the IgG- [or 
IgA and IgM] fraction originating from peripheral blood in relation to albumin) to 
avoid false-negative LSI determination [6, 28, 51, 128]. In this case, the following 
formula must be applied:

 
LSI

specific IgG Ab inCSF U mL spec IgG ABserum U mL

Q Lim
=

( ) ( )- / : . - /

-  

High diagnostic accuracy is also achieved by immunoblot analysis of concur-
rently collected CSF and serum samples that have been adjusted to equal concentra-
tions of class-specific immunoglobulin (crossmatch immunoblot). Additional bands 
in CSF or higher band intensity compared to the serum are evidence of immuno-
globulin class-specific and antigen-specific autochthonous antibody production in 
CSF [51, 112].

The diagnostic conclusiveness of positive findings must always be assessed in 
the context of other protein analysis and CSF serology data (presence of blood- 
brain- barrier disorders, presence of lymphocytic pleocytosis). The absence of 
inflammation and a lack of an antibody response would indicate there is no LNB if 
the duration of the disease is longer than 4–6 weeks [51]. However, in very early 
LNB, there may be no systemic and/or intrathecal antibody response even though 
signs of inflammation are present, except in peripheral neuropathy. Most impor-
tantly, due to past infections and even after adequately treated LNB, specific autoch-
thonous antibody formation in the CSF can persist for months or even years [128, 
133]. It should be noted that not all serological test systems achieve the same detec-
tion sensitivity for B. garinii, the primary causative agent of LNB [6]. This 
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especially applies to tests that do not include VlsE or C6 peptide and only use 
B. afzelii or B. burgdorferi s.l. as an antigen source [128, 133]. LNB can be ruled 
out, however, by adequate tests if, in the absence of pleocytosis and the presence of 
normal CSF protein concentrations, neurological symptoms have persisted for more 
than 2 months [128, 133].

6.3.7.2  CXCL13 as a Lyme Neuroborreliosis Marker
The chemokine CXCL13 may be a useful parameter in the early diagnosis of LNB 
[134]. Among other effects, this chemotactic cytokine (chemokine) attracts 
B-lymphocytes to the central nervous system [133, 135]. The presence of 
B-lymphocytes in CSF in the case of LB (as well as in neurosyphilis) is an estab-
lished phenomenon. Recent studies have suggested that CXCL13 reliably increases 
in the CSF of patients with well-defined early LNB and can precede specific anti-
body formation in the CSF [133, 135]. Some studies have reported that CXCL13 
shows high sensitivity in early LNB even when the borrelia-specific LSI in CSF 
remains negative [136]. Contemporary clinical evaluation studies have found the 
diagnostic sensitivity and specificity of CXCL13 to be 94–100% and 63–96%, 
respectively [135, 136]. Moreover, the CSF CXCL13 concentration decreases rela-
tively rapidly in treated patients and could act as a potential biomarker for treatment 
response [136].

There remains a lack of information on the diagnostic specificity and discrimina-
tory power for other infectious and inflammatory CNS disorders. Elevated CXCL13 
concentrations have been reported to be detectable in infections with closely related 
pathogens (e.g. T. pallidum), but also in tuberculous meningitis and CNS-lymphoma 
[134, 136–139]. Most importantly, there is no consensus on the standardized perfor-
mance of the assay and the best clinical cutoff value [6]. The CXCL13 test may be 
a useful parameter, especially in the early diagnosis of LNB and for monitoring 
treatment success, but is not yet established as a routine diagnostic tool and needs 
further clinical and scientific standardization and evaluation [44, 77, 128, 133].

6.4  Quality Assurance

Following the guidelines of many national medical associations, diagnostic labora-
tories must participate in infection-related serological round-robin tests several 
times a year [140]. This also applies to serological antibody detection and direct 
molecular biological detection of B. burgdorferi s.l. The molecular detection of LB 
agents is also an option offered as part of the interlaboratory proficiency testing 
scheme on bacterial genome detection. The results of the external quality assess-
ment schemes (EQAS) that INSTAND e.V. has been carrying out for years, reveal 
extensive heterogeneity in the testing systems currently on the market (see above) 
[6]. The pass rates for the conventional serological and molecular test systems, col-
lected from meta-analytical data, show that, despite relatively good analytical pass 
rates for immunoassays and molecular tests, clinical diagnostic interpretation of the 
results often proves difficult and can hamper medical treatment in daily clinical 
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practice [69, 78, 112]. Figure 6.3 provides a summary of the pass rates for common 
test systems based on meta-analytical data in Germany from 2006 to 2008 [78]. 
Thus, when LB is suspected, infectious-disease testing should be conducted in labo-
ratories that meet diagnostic standards in accordance with the guidelines of the 
expert medical societies [6, 30]. Physicians treating patients with LB should verify 
that these prerequisites are met in the laboratories charged with carrying out their 
diagnostic testing [30]. If questionable or implausible test results are produced, 
expert laboratories should be consulted.

6.5  Non-recommended Diagnostic Tests

In addition to the traditional diagnostic methods listed above, the literature describes 
a series of diagnostic techniques, some of which have been inconclusively evaluated 
[6]. This includes the immuno-histochemical detection of B. burgdorferi s.l. in 
biopsies and antigens in blood and urine as well as functional tests that test for cel-
lular immunity (lymphocyte transformation tests [LTT] and cytokine detection) 
[141–144]. Currently, there is a paucity of scientific investigations that support the 
diagnostic benefit of such methods. In addition, LTT methods lack specificity and 
should not be used [142]. Immunohistochemical detection of borrelia in tissue is 
another method that is not recommended for use in diagnosing cutaneous manifes-
tations of LB [30]. Similarly, the enzyme-linked immunospot assay (ELISPOT) 
[145] is not recommended. Detection of LB agents in engorged ticks through 
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xenodiagnosis (see above) or molecular methods is similarly not recommended for 
disease diagnosis [16, 17]. The detection of cystic forms, L-forms or spheroplasts 
[146], CD57+/CD3-lymphocyte subpopulation tests [147], the detection of circulat-
ing immunocomplexes, and the visual contrast sensitivity test (VCS) [148] are nei-
ther helpful nor recommended. Also, point-of-care testing [149] is not recommended 
for diagnosing LB.

6.6  Conclusion

Over the last few decades, tremendous scientific progress has been achieved in 
improving laboratory diagnostic testing for LB; however, problems persist because 
of its variable clinical presentation and the lack of a sensitive and specific activity 
marker for the disease. As outlined earlier, direct detection methods, such as molec-
ular testing and culture, currently have many limitations and cannot fulfill the 
expectations once raised when initially introduced on the diagnostic testing market. 
Although serology currently remains the gold standard for the laboratory diagnosis 
of LB, it also suffers from many drawbacks due to the obvious lack of standardized 
test systems and the given antigenic variability of the causative pathogens. Moreover, 
difficulties often arise concerning the correct interpretation of positive LB serology 
in a given clinical context as it can reflect a past or active infection depending on the 
constellation of test results and the patient’s clinical symptoms [6]. Consequently, 
good knowledge of the currently established clinical case definitions (Table 6.1) and 
guidelines is necessary for making the right decisions at the right time to achieve the 
most effective, patient-oriented and stage-related application of up-to-date direct 
and indirect laboratory methods for detecting LB. This is also important for reduc-
ing over-testing which can mislead the attending clinician by providing a false diag-
nosis, thereby harming the patient by prolonging the time until a correct diagnosis 
can be made and treatment of the true underlying disease can be initiated. Such 
problems and ongoing limitations of LB diagnostic testing strongly underline the 
fact that research is urgently needed to establish better diagnostic options and new 
clinical markers to overcome the remaining diagnostic limitations of the many 
assays and test methods currently in use so that LB patient management can be 
optimized.
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7Prophylactic Measures Against Lyme 
borreliosis Including Future Perspectives

Nathalie Boulanger

7.1  Introduction

Lyme borreliosis is the most prevalent tick-borne disease of the temperate northern 
hemisphere [1]. The twentieth century has seen an important geographic spread and 
impact of this human disease, associated with modifications in landscape patterns 
and socioeconomic changes but also with global warming [2, 3].

The rising incidence of Lyme borreliosis can be attributed to increased tick abun-
dance (linked to the proliferation of the main hosts including deer and rodents), 
modifications of forestry culture and landscape use, changes in human behavior, 
and progress in clinical recognition and diagnosis [4]. The human disease is mainly 
caused by three Borrelia genospecies: B. burgdorferi sensu stricto (s.s.) in Eurasia 
and the United States, and B. afzelii and B. garinii in Eurasia [5]. There is a charac-
teristic delay in Borrelia transmission after tick attachment to the vertebrate host. 
Indeed, in infected ticks, the bacteria are first located in the midgut. When blood 
enters the midgut, they modify their antigenic coat and migrate to the salivary 
glands where they are co-inoculated with tick saliva into the dermis [6]. Interestingly, 
delays of Borrelia transmission in Europe are usually shorter than in the United 
States where the tick vector and Borrelia species complex are different [7, 8].

Lyme Borrelia is transmitted by different Ixodes hard tick species in different 
regions: I. ricinus in Europe, I. persulcatus in East-Europe and Asia, I. scapularis in 
the Eastern part of the United States and I. pacificus in the western part of the 
United States [5]. Ixodes ticks can also transmit a large variety of other pathogens 
(see chapter “Other Ixodes-Borne Diseases”), the most common in humans being 
bacteria (Borrelia, Anaplasma, and Rickettsia), protozoan parasites (Babesia), and 
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viruses (tick-borne encephalitis virus in Europe and Powassan virus in the United 
States) [9]. Ticks are obligate blood-feeders that need a blood meal to molt from 
stage to stage: larvae, nymphs, and adults. In continental climate areas, they have 
two main periods of activity in spring and autumn [10]. The Ixodes complex feeds 
on a large variety of mammals, birds, and reptiles. They are equipped with sophisti-
cated organs, such as Haller’s Organs present on the first pair of legs, which enable 
them to find their host by detecting odors, carbon dioxide, or lactic acid released by 
the host. Once on the vertebrate host, the Ixodes tick secretes a complex panel of 
bioactive molecules targeting the pharmacology and the immunology of the host 
[6, 11].

Humans are accidental hosts, who normally encounter the tick in its typical bio-
tope. In most cases, humans are bitten by the nymphal stage [12] and generally on 
the lower part of the body. Avoiding tick bites and rapid tick removal are the most 
effective measures to reduce the risk of contracting tick-borne diseases. There are 
mechanical or chemical tools available to prevent direct contacts between the tick 
and the host. Furthermore, collective interventions like modifications of the envi-
ronment favorable to ticks can also be considered [13, 14]. Besides all these preven-
tive strategies, an effective vaccine might constitute the future gold standard for 
protection against tick-borne diseases. Research is still in progress to identify pro-
tective antigens that might generate sufficient immunity against either Borrelia or 
the Ixodes vector [15, 16].

7.2  Tick Control in the Human Population

Although not discussed further in this chapter, education of people about tick biol-
ogy and tick-borne diseases is one of the methods of choice to reduce the risk of tick 
bite and contracting tick-borne diseases, which is efficiently promoted in certain 
countries [17, 18].

In temperate zones, prevention relies on simple personal methods to avoid tick 
bites, such as mechanical protection or the use of skin repellents [19]. Furthermore, 
various collective measures to control ticks in their environment exist (Table 7.1).

7.2.1  Personal Protection

7.2.1.1  Mechanical Protection and Adequate Behavior
Although very simple, mechanical protection is the most reliable protection against 
ticks trying to climb up from the ground or low vegetation. Long trousers with light 
colors facilitate the detection of crawling ticks (Fig. 7.1). Further effective measures 
to avoid direct contact between the tick and human are to tuck the trousers into 
socks (rarely done), and to avoid open-toed shoes or sandals [20]. Gaiters (as shown 
in Fig. 7.1) can also be an efficient method to avoid tick bites. When hiking in tick- 
infested habitats, it is also essential to keep to the center of trails to reduce contact 
with ticks.
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Questing ticks are commonly found on the tips of the grass. Therefore, children 
aged 5–13 years are particularly at risk for tick bites. They are more likely to be bit-
ten on the head because of their body size and their more careless behavior (e.g., 
rolling in the grass) [21]. The wearing of a hat or a cap and body checking after 
exposure (discussed later) can reduce tick bites at the level of the scalp. Unfortunately, 
most people do not observe these simple measures of tick bite prevention [4].

Table 7.1 Actual Management strategies and future development for Lyme borreliosis control

Usual methods to limit tick bite
Personal protection – Protective clothing (light colored cloth, gaiter)

– Body examination and prompt tick removal
– Use of skin repellents

Landscape management – Mowing
– Clearing leaves on the ground
– Controlled burning of vegetation

Management of host 
abundance

– Use of fences to exclude deer
– Deer reduction by hunting
– Habitat control to reduce rodent reservoirs

Alternative methods to control tick population
Acaricides – Area spreading of acaricides

– Host-targeted acaricides (rodents or deer)
Biological control – Entomopathogenic fungi

– Parasitoids/Ixodiphagus hookeri
– Nematodes

Alternative methods to be developed
Anti-Borrelia vaccine – Identification of protective antigens

–  Clinical trials in progress with transmission blocking vaccine 
based on OspA antigen

Anti-tick vaccines – Numerous tick proteins identified in Ixodes tick saliva
Transgenic ticks – Modify tick genome to produce Borrelia-refractory ticks

Adapted from [4, 13, 54]

a b c

Fig. 7.1 Personal protective behavior: (a) Light-colored clothing for easier detection of Ixodes 
nymphs, (b) Pants tucked into socks, (c) Long pants and gaiters
 Photos N Boulanger 
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7.2.1.2  Repellents
Repellents are chemical substances that are applied topically and predominantly 
disturb the olfactory system of ticks, preventing them from detecting their host [22]. 
In principle, these molecules do not kill ticks. They must be applied carefully, 
depending on the age and activities of the subject (Table 7.2). Care must be taken to 
avoid contact with eyes or mucous membranes. The duration of repellent activity is 

Table 7.2 Most important natural and synthetic repellents already marketed or in development

Molecules Development Concentration Disadvantages Advantages
Other 
specificity

Synthetic repellents registered in US, Canadian and European agencies
DEET 1953 10–50% Oily, plastics 

damage, eye 
irritation

Toxicology 
well-known
Cheap
Broad 
spectrum 
repellent

DEET 33%:  
slow release 
Polymer:
Ultrathon® 
(3M)

Picaridin
or
KBR3023 
(derived from 
piperidine)

1980s
(BAYER)

20–30% Possible skin 
irritation

Broad 
spectrum.
Does not 
alter 
plastics.
Low odor.

NA

IR3535
or
EBAAP

1975
(MERCK)

20–35% Eye irritation
May damage 
plastic and 
clothing

Safe.
Good 
record.

Low repellency 
at low 
concentrations.

Most important marketed plant-derived products
P-menthane- 
3,8-diol 
(Quwenling)

NA 20–30% Contains 
citral (skin 
irritating)
eye irritating

NA Eucalyptus: 
Corymbia 
citriodora

Permethrin 
(Pyrethrinoids)

1979 0.5% Pesticide.
Should not be 
applied to 
skin.

NA Clothing 
repellent.
Polymer- 
coating 
repellent

Most studied tick repellent compound derived from plants
2-undecanone
BioUD®

2007 7.75% NA NA Lycopersicon 
hirsutum- wild 
tomato

Nootkatone NA 0.0458 (wt/
vol)

NA NA Chamaecyparis 
nootkatensis- 
Alaskan yellow 
cedar

Dodecanoic 
acid (DDA)
Contrazeck®

NA 10% NA NA Coconut and 
palm kernel oil

Adapted from [19, 22, 23]
NA Not applicable
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variable and depends on the type of molecule, the formulation, and the concentra-
tion of the active compound. Special care is indicated with young children (under 2 
years old), pregnant women, and allergic people [22–24].

Today, the most commonly used repellent is diethyltoluamide (DEET). In the 
United States, DEET has been used for several decennia and has proven to be effi-
cient against ticks. The drawback is that it can damage synthetic fibers, plastics 
(glasses, watch-bracelets, etc.), and leather. It was first commercialized in 1956 
with very few published side effects. Two more recently discovered molecules with 
repellent properties, IR35/35® (N-butyl, N-acétyl-3 éthylaminopropionate) and 
KBR 3023 or picaridin, also exhibit good activity against ticks [21]. Picaridin, 
which is the most used of the two against arthropods, has no odor, is not greasy, 
and does not damage plastics (Table  7.2). IR35/35 and picaridin have been the 
focus of several studies conducted by WHO (Pesticide Evaluation Scheme–
WHOPES) [24].

Many essential oils and natural compounds are generally not recommended 
since they are too volatile and some of them cause skin irritation and induce aller-
gies. However, oil of lemon eucalyptus (OLE) which is extracted from the eucalyp-
tus Corymbia citriodora or P-menthane-3,8-diol (PMD), a synthesized version of 
OLE, is efficient and can be employed against ticks [19, 22]. Other natural mole-
cules, including dodecanoic acid, 2-undecanone, and nootkatone, also have a poten-
tial to repel [19, 22, 23] (Table 7.2).

Permethrin, which was developed in the 1970s in the United States is toxic for 
reptiles and fish. Permethrin induces rapid immobilization and detachment of the 
tick when applied on fabric. The molecule is classified as a pesticide and must there-
fore not be applied directly to the skin. It should be used with caution; severe side 
effects are more and more documented [20, 23].

In summary, the use of tick repellents on skin can help to reduce tick bites and 
the incidence of Lyme borreliosis. The wearing of protective, light-colored clothes 
and long trousers has been reported as the most effective [25] as has bathing within 
2 h of being exposed to ticks [26].

7.2.1.3  Body Checking
None of the above-mentioned techniques provide a 100% guarantee of protection 
[20]. Visual inspection of the entire body after activity in endemic areas for ticks is 
still the best prevention. Particular attention must be paid to the examination of 
moist areas of the body, such as the skin folds, navel, scalp, and ears. Tick bites are 
usually painless. In some individuals, a hypersensitive reaction to tick saliva may 
help to detect a tick. In the event of a bite, the best method is the mechanical removal 
of the tick with a specific tool such as thin-tipped tweezers or forceps so that the tick 
may be grasped as near to the skin as possible (Fig. 7.2). When the tick is pulled 
gently but firmly straight upward, the mouthparts can be removed intact. Should the 
mouthparts break off, a small nodule will persist in the skin for a few weeks and will 
finally be resorbed [27]. There are some commercial devices that work in certain 
circumstances but are generally less effective [20]. The application of chemicals to 
the tick such as petroleum, gasoline, fingernail polish, or 70% alcohol cannot be 
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recommended. None of these products are really effective [28], and no study has 
conclusively proved that regurgitation of tick gut contents into the skin occurs after 
chemical application. Indeed, one laboratory study demonstrated that the method of 
tick removal has no impact on Borrelia transmission [28]. After removal, the tick 
bite site must be disinfected and hands should be washed. Topical antibiotics have 
not been shown to be effective in preventing the transmission of Lyme borreliosis 
[29]. It is recommended to note the site and date of the bite and watch for signs and 
symptoms (fever, flu-like symptoms, dizziness…). Erythema migrans, the only 
pathognomonic symptom of Lyme borreliosis, which occurs in a proportion of 
infected individuals, generally appear between 3 and 30 days after the infective tick 
bite [5] and should not be confused with a localized allergic reaction to the tick 
saliva, which can appear at the site of the bite and generally develops rapidly within 
24–48 h [30].

a

b

Fig. 7.2 Tools to remove 
ticks: (a) Fine tweezers, 
(b) commercial device to 
extract different sizes of 
Ixodes ticks
Photos N Boulanger
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7.2.2  Collective Measures: Management 
of Anthropogenic Environments

Ticks spend most of their time in their natural environment, dwelling primarily in 
forest leaf litter; the parasitic phase on the vertebrate host is very short, lasting just 
a few days during the time of the blood meal [13, 31]. Therefore, a suitable ecosys-
tem, including the presence of its appropriate animal hosts, is essential for the tick 
to survive. Ticks quest for the vertebrate host and spend their time going up and 
down on the grass to rehydrate in the ground [31]. Ixodes ticks generally develop in 
shaded areas of mixed forest where the relative humidity is at least 80% [10]. All 
tick stages can regularly be encountered on woodland paths, adults especially like 
grass and bushes, even in urban and suburban areas [32].

Ecosystems typical for Lyme borreliosis are characterized by an environment 
that is favorable for tick development and survival as well as for rodents and deer 
(Fig. 7.3). Therefore, tick control relies on an integrated approach including simple 
methods such as leaf litter removal, controlled vegetation burning, management of 
invasive plant species, and lawn mowing around homes. Since deer play an essential 
role in proliferation of such tick populations, the installation of fences is very impor-
tant to limit deer around housing [13, 14].

Forestry management is equally essential to control animal reservoirs for Lyme 
borreliosis, mainly rodents. Removal of deadwood on the ground and clearing of 
leaf litter makes an environment unattractive to rodents and also to the Ixodes tick 
population [14, 33]. The control of deer populations by regular hunting has been 
also proposed [34]. In certain areas, however, this intervention was not sufficiently 
successful to reduce the risk of Lyme borreliosis, as shown by a recent study per-
formed in Scandinavia [35]. Opening up the land to direct solar exposure and lower-
ing humidity on the ground contributes to the limitation of tick populations, and 
maintaining host diversity, thus promoting the dilution effect on Borrelia transmis-
sion, reduces the abundance of infected ticks [36, 37], although this does not apply 
everywhere [38].

a b c

Fig. 7.3 Favorable environment for Ixodes ticks: (a) leaf litter, (b) branch bundles, (c) forested 
areas in American suburban area conducive for deer
Photos N Boulanger
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7.3  Control of Ticks on Animals

7.3.1  Domestic Animals

Once a tick is attached and feeding, it will not detach to seek another animal or 
human host. Domestic animals such as dogs and cats can carry unattached ticks into 
the home. Therefore, living with pets increases the human risk of Lyme borreliosis 
due to their higher exposure to ticks crawling on dogs’ and cats’ coats [39]. Domestic 
animals can be bitten by Ixodes ticks and even be affected by Lyme borreliosis, but 
the risk seems to be associated with the genetic background of the animal. Clinical 
manifestations are rarely observed, although positive serology is found in a signifi-
cant number of animals such as dogs, horses, and cats [40, 41]. It has therefore been 
proposed to use domestic animals as sentinels in Lyme borreliosis endemic areas. 
Some vaccines for dogs exist, but with variable efficacy [42].

Veterinarians promote various treatments to repel ticks on domestic animals, 
such as spot-on, sprays, collars, or powders. Active molecules include synthetic 
pyrethroids for dogs [43], but these molecules are toxic for cats.

7.3.2  Wild Animals

Lyme borreliosis is a zoonosis, and thus focusing on the reservoir hosts is an obvi-
ous approach to prevent the disease in humans [14]. A variety of small mammal and 
avian reservoirs exists in North America and Eurasia which serve as host for imma-
ture ticks. Deer are important hosts for adult Ixodes, known to contribute substan-
tially to the maintenance of tick populations although they are not reservoirs as such 
for Borrelia [13]. Approaches to improve Borrelia control could be by treatment of 
animal reservoirs with antibiotics or insecticides, or the development of vaccines to 
block Borrelia acquisition.

7.3.2.1  Treatment of Hosts
Different treatment options are available for rodents and deer. Insecticides such as 
fipronil have been tested on rodent bait boxes to reduce larvae and nymphs on this 
primary reservoir [44]. A similar approach using 4-Poster bait boxes along with a 
barrier application of deltamethrin has also been tested for deer to reduce their tick 
burdens. This topical application of acaricide reduced the tick population efficiently 
[45]. An alternative approach is a doxycycline rodent-bait formulation. It was shown 
that an oral formulation of doxycycline was effective in preventing B. burgdorferi 
infection in a murine model. A major concern remains that widespread distribution 
of antibiotics used to treat animals could induce the development of resistance in 
target and non-target pathogens in humans [46].

7.3.2.2  Rodent Vaccination to Reduce Borrelia Infection
The principle of reservoir-targeted vaccines (RTV) is to reduce B. burgdorferi s.l. in 
reservoir hosts to reduce the abundance of infected ticks and thus decrease Lyme 
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borreliosis incidence. For the development of RTV, it is essential to select the right 
antigen type, the appropriate route of delivery, and the optimal formulation. OspA 
is the major surface antigen on spirochetes during their development within the tick 
[47]. Vaccination of rodents with this antigen blocks the bacteria within the tick gut 
and inhibits their migration to the salivary glands from where bacteria would nor-
mally be inoculated into the host [48]. A baited oral vaccination strategy was very 
effective at selected pilot sites. Two main vaccination strategies were developed 
based on two different formulations: (1) oral vaccination based on Escherichia coli 
expressing recombinant OspA and (2) oral vaccination based on vaccinia virus 
(VV) expressing OspA. Both strategies were equally effective in producing protec-
tive levels of OspA-specific antibodies in laboratory mice and white-footed mice 
(Peromyscus leucopus) and in decreasing the prevalence of B. burgdorferi s.s. in 
infected ticks that had fed on vaccinated mice. In order to reduce the potential for 
human infection, another RTV was developed based on a VV encapsulated with 
pH- sensitive polymers (Eudragit) designed to prevent exposure to the virus until it 
is in contact with stomach fluids [49]. However, different technical problems need 
to be solved before extending this approach to natural conditions and increasing its 
scale [13].

7.3.2.3  Control of Deer Populations
Deer are the primary hosts of female Ixodes, and their populations have increased 
dramatically over the twentieth century [31]. Several studies have found a correla-
tion between deer abundance and the incidence of Lyme borreliosis in humans [34, 
50]. However, the culling programs that have been initiated to reduce deer popula-
tions as a means of controlling Lyme borreliosis have produced mixed results 
depending on the geographic areas studied and the numbers of shot animals [35, 
51]. Alternatively, preventing deer from entering residential properties is possible 
by efficient fencing. This intervention reduces the introduction of immature tick 
stages and fed female ticks which can lay thousands of eggs [14]. It seems that tar-
geting deer populations only is not sufficient to reduce the incidence of Lyme bor-
reliosis and that an integrated approach would be more promising [13].

7.4  Control of Ixodes Ticks in the Environment

7.4.1  Biological Control of Ticks

Ticks have a variety of natural predators including ants, spiders, and birds, although 
most of them are generalists that only occasionally feed on ticks. Being non-specific 
predators for ticks, they do not contribute sufficiently to the reduction of tick popu-
lations [13]. Birds for example, such as guinea fowls and chicken, have been pro-
posed to control tick populations. However, research indicates that their tick 
consumption is minimal and not effective enough to reduce local tick popula-
tions [52].
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Other natural enemies of ticks have been studied in the laboratory; they include 
parasitoids, entomopathogenic fungi, and nematodes [13]. To be effective, these 
biological agents must be distributed over wide forest areas, and another limiting 
factor is the large quantities of these agents required for an effective application 
in nature.

7.4.1.1  Parasitoids
Some hymenoptera of the genus Ixodiphagus are known to be lethal for ticks. They 
lay their eggs in fed tick females. Their real utility for tick control is still controver-
sial [13, 52].

7.4.1.2  Fungi
At least 20 fungi species can naturally infect ticks. For example, Metarhizium 
anisopliae and Beauveria bassiana, two entomopathogenic fungi, have been 
described as pathogens for ticks. They target the tick cuticle in specific environmen-
tal conditions and kill them [53].

7.4.1.3  Nematodes
Worms of the Steinernematidae and Heterorhabditidae families can infect ticks by 
entering via the genital pore. Here also, the conditions to use them effectively are 
very strict since a minimum temperature of 20 °C and the right soil are necessary to 
observe an effect. The effect of nematodes on ticks under natural conditions seems 
to be limited [13].

7.4.2  Chemical Control of Ixodes by Acaricides

The use of area-spread synthetic or natural product-based chemical acaricides to 
target host-seeking ticks is possible, and this approach is particularly developed in 
the United States [14]. Suitable molecules include three pyrethroid pesticides 
(bifenthrin, cyfluthrin, and deltamethrin), and one carbamate pesticide (carbaryl) 
[54]. They can be applied to the ground and to the vegetation as granules or as 
sprays, with specific regulations to protect the environment. On the east coast of the 
United States, the application of acaricides in residential landscapes has been shown 
to significantly reduce the number of host-seeking nymphs for at least 6 months. 
However, the acaricidal effect is not comprehensive since it is mainly the questing 
ticks that are targeted and not the ticks present in host microhabitats, in the soil, and 
in the leaf litter layer. The impact of weather conditions on the application and effi-
cacy of various types of acaricides is still poorly understood. In Europe, synthetic 
acaricides are rarely spread because of concerns about the environment. Some prod-
ucts derived from plants have been tested as alternatives to synthetic chemical acari-
cides, such as pyrethrum derived from Chrysanthemum spp. or nootkatone derived 
from Alaska yellow cedar, many citrus products, and grapefruit [23]. As biopesti-
cides, phytochemicals against ticks might offer promising alternatives to synthetic 
acaricides. However, additional assays are necessary to measure their toxicity and 
their impact on the environment [55].
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7.5  Vaccination Against Lyme borreliosis: What Is 
the Future?

Vaccination could control the spread of tick-borne diseases, but the development of 
an effective human vaccine faces several important hurdles.

7.5.1  Human Vaccine Comprising Borrelia Outer Surface 
Protein Antigens

In Lyme borreliosis, the immunity to infection is strain-specific and not protective 
in the long term since it decreases within 1 year after the infection. Identifying suit-
able antigens for the induction of protective immunity is a great challenge. In 1998, 
Smith-Kline Beecham developed a vaccine with the trade name LYMErix, consist-
ing of a recombinant OspA (Outer surface protein A). OspA is highly expressed in 
the gut of Borrelia-infected ticks and relatively well-conserved among different 
bacterial species [56]. This transmission-blocking vaccine contained lipidated 
OspA adsorbed onto aluminum hydroxide adjuvant in PBS. A portion of OspA165-173 
shared a very similar amino acid sequence with human protein LFA-1 (Lymphocyte 
Function Associated Antigen), and this cross-reactivity was potentially responsible 
for side effects such as autoimmunity. Marketed in 2002, LYMErix was withdrawn 
because of public perception of such potentially dangerous side-effects [57].

Lately, a new OspA vaccine has been successfully tested by BAXTER (Vienna, 
Austria) in a phase I/II trial. This new vaccine is a multivalent vaccine composed of 
3 recombinant antigens from the three most pathogenic Borrelia species for humans. 
Three doses with or without aluminum hydroxide adjuvant were tested. It conferred 
protection against all Borrelia species in the United States and in Europe [58, 59]. 
The potential risk of antigen cross-reactivity was eliminated by the removal of the 
epitope responsible for autoimmunity. The vaccine proved itself to be safe with 
minimal adverse effects, well-tolerated, and immunogenic in healthy adults. The 
30  μg adjuvanted dose was reported as the best formulation [25]. Meanwhile, 
another company, Valneva, has taken over this new vaccine, VLA15. This multiva-
lent OspA vaccine targeting different pathogenic Borrelia species [16] is now being 
tested in various clinical trials to prove its efficacy in humans (source: Valneva 
website).

OspC, another outer surface protein, could in theory represent an interesting 
alternative to OspA antigen, since it is upregulated during tick feeding and expressed 
during spirochete transmission from tick to mammal and during the first weeks of 
mammalian infection [60]. However, OspC has been shown to be highly variable 
amongst Borrelia species. Therefore, vaccination with recombinant OspC might be 
protective only against those spirochetes bearing identical or very similar 
OspC. Eventually, OspC alone was considered as not being a reliable vaccine can-
didate [15].

Other Borrelia vaccine candidates have been tested such as BBK32, a 47 kDa 
protein [61] or RevA, a surface-exposed 17 kDa outer membrane protein [62], both 
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fibronectin-binding proteins. DpbA (Decorin binding protein A), another Borrelia 
protein interacting with the extracellular matrix, has been identified as a further 
candidate. However, results were disappointing since immunization of mice with 
this protein protected animals only when they were challenged by syringe- inoculated 
Borrelia and not when spirochetes were transmitted by infected nymphs [63]. 
Alternative approaches using proteomics and RT-PCR on mouse skin have allowed 
the identification of additional Borrelia candidates [64], but up to now, none of 
these antigens have been used to develop a human vaccine [15].

7.5.2  Anti-tick Vaccine

Instead of targeting pathogen proteins, another approach could be to use a tick pro-
tein for a vaccine. Observations on the effects of sequential exposure of experimen-
tal animals to feeding ticks have shown the existence of acquired immunity to 
repeated tick bites. Very early studies performed by Trager in 1939 on rabbits 
infested with the hard tick Dermacentor variabilis showed that the animals develop 
an immune response against tick components resulting in rapid tick rejection after 
successive blood meals (for a review see [65]). It must be noted that successful tick 
vaccination experiments have mostly utilized abnormal hosts and in an attempt to 
evade the effects of the tick’s immunomodulatory salivary proteins ‘novel’ antigens 
such as Bm86 were targeted. By using the midgut antigen, Bm86, derived from 
Rhipicephalus (Boophilus) microplus to immunize cattle [66], it was shown that 
Bm86-based vaccine reduced the number, weight, and reproductive capacity of fed 
females. However, its efficacy is limited to certain geographic areas because of vari-
ation between different tick strains [67].

Since hard ticks inject a large number of different tick saliva molecules into the 
host skin during its long-lasting blood meal, these molecules may constitute poten-
tial vaccine candidates, despite the existence of immunomodulatory saliva compo-
nents [68]. They target different pharmacological processes in the host, such as the 
coagulation cascade and protease inhibitors, or host immune mechanisms such as 
innate and acquired immunity. Different antigens have already been tested in sev-
eral vaccine assays (for a review see [69, 70]. The European project ANTIDotE 
consisted of a network of laboratories that attempted to identify and evaluate poten-
tial anti-tick vaccines [71]. Unfortunately, all attempts to identify such tick vaccine 
candidates have failed (Final Report Summary - ANTIDOTE (Anti-tick Vaccines to 
Prevent Tick-borne Diseases in Europe) | FP7 | CORDIS | European Commission 
(europa.eu).

7.6  Conclusions

The prevention of Lyme borreliosis in humans can only be successful with an inte-
grated strategy embracing different measures. They should include education cam-
paigns leading to better information and awareness about ticks and TBDs, personal 
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protection including appropriate clothing when walking in tick-infested areas, col-
lective measures to limit tick populations in the environment, and the enhancement 
of research to find and develop efficient vaccines [25]. Lyme borreliosis is rapidly 
expanding into new geographical areas. This indicates that the natural control 
mechanisms within the enzootic cycle are becoming deregulated. Although humans 
are only accidental hosts, their vaccination alone, even if successful, will not con-
fine B. burgdorferi s.l. to its natural cycle. Only multidisciplinary approaches, built 
upon effective methods to better control the dynamics in the enzootic cycle, together 
with successful vaccination of humans will lead to a synergistic effect in public 
health. Presently, increasing awareness about personal protection and seeking medi-
cal help are essential to limit the impact of tick-borne diseases in humans.

References

 1. Mead P. Epidemiology of Lyme disease. Infect Dis Clin North Am. 2015;29(2):187–210.
 2. Kilpatrick A, Randolph S. Drivers, dynamics, and control of emerging vector-borne zoonotic 

diseases. Lancet. 2012;380(9857):1946–55.
 3. Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Peña A, George J-C, et al. 

Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit 
Vectors [Internet]. 2013;6:1. Jan [cited 2014 Mar 21]. Available from: http://www.pubmedcen-
tral.nih.gov/articlerender.fcgi?artid=3549795&tool=pmcentrez&rendertype=abstract

 4. Stafford K. Tick management handbook. Revised ed. The Connecticut Agricultural Experiment 
Station. The Connecticut General Assembly.; 2007. 77 p.

 5. Stanek G, Wormser G, Gray J, Strle F.  Lyme borreliosis. Lancet. 2012;379(9814):461–73. 
[cited 2014 Feb 21]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21903253

 6. Bonnet S, Boulanger N. Ixodes Tick Saliva: a potent controller at the skin Interface of early 
Borrelia burgdorferi sensu lato transmission. In: Wikel S, Aksoy S, Dimopoulos G, editors. 
Arthropod vector: controller of disease transmission, vol. 2. London: Academic Press Ltd.-
Elsevier Science Ltd.; 2017. p. 231–48.

 7. Crippa M, Rais O, Gern L. Investigations on the mode and dynamics of transmission and infec-
tivity of Borrelia burgdorferi sensu stricto and Borrelia afzelii in Ixodes ricinus ticks. Vector 
Borne Zoonotic Dis. 2002;2(1):3–9.

 8. Piesman J, Eisen L. Prevention of tick-borne diseases. Annu Rev Entomol. 2008;53:323–43.
 9. de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos A, Estrada-Peña A, et al. 

Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-
borne diseases. Front Cell Infect. 2017;7:114.

 10. Humair P, Gern L.  The wild hidden face of Lyme borreliosis in Europe. Microbes Infect. 
2000;2(8):915–22.

 11. Wikel S. Ticks and tick-borne infections: complex ecology, agents, and host interactions. Vet 
Sci. 2018;5(2):E60.

 12. Barbour A, Fish D.  The biological and social phenomenon of Lyme disease. Science. 
1993;260(5114):1610–6.

 13. Ginsberg H. Tick control. In: Sonenshine D, Roe RM, editors. Biol ticks; 2014. p. 409–44.
 14. Eisen L. Control of ixodid ticks and prevention of tick-borne diseases in the United States: 

the prospect of a new Lyme disease vaccine and the continuing problem with tick exposure on 
residential properties. Ticks Tick-Borne Dis. 2021;12(3):101649. Elsevier GmbH; [cited 2021 
May 29]. Available from: https://pubmed.ncbi.nlm.nih.gov/33549976/

 15. Embers M, Narasimhan. Vaccination against Lyme disease: past, present, and future. Front 
Cell Infect Microbiol. 2013;3:6.

7 Prophylactic Measures Against Lyme borreliosis Including Future Perspectives

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3549795&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3549795&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/21903253
https://pubmed.ncbi.nlm.nih.gov/33549976/


174

 16. Nayak A, Schüler W, Seidel S, Gomez I, Meinke A, Comstedt P, et  al. Broadly protective 
multivalent OspA vaccine against Lyme borreliosis, developed based on surface shaping of 
the C-terminal fragment. Infect Immun. 2020;88(4):e00917–9. Apr 1 [cited 2021 Jun 11]. 
Available from: https://pubmed.ncbi.nlm.nih.gov/31932330/

 17. Kilpatrick A, Dobson A, Levi T, Salkeld D, Swei A, Ginsberg H, et al. Lyme disease ecology in 
a changing world: consensus, uncertainty and critical gaps for improving control. Philos Trans 
R Soc L B Biol Sci. 2017;372(1722):1722.

 18. de Groot CG. Personal protection for people with occupational risk in the Netherlands. In: 
Braks MAH, van Wieren SE, Takken WSH, editors. Ecology and prevention of Lyme borrelio-
sis. Wageningen Academic Publishers; 2016. p. 389–407.

 19. Pages F, Dautel H, Duvallet G, Kahl O, de Gentile L, Boulanger N.  Tick repellents for 
human use: prevention of tick bites and tick-borne diseases. Vector Borne Zoonotic Dis. 
2014;14(2):85–93. [cited 2014 Mar 31]. Available from: http://www.ncbi.nlm.nih.gov/
pubmed/24410143

 20. Due C, Fox W, Medlock J, Pietzsch M, Logan J.  Tick bite prevention and tick removal. 
BMJ. 2013;347:f7123.

 21. Robertson J, Gray J, Stewart P. Tick bite and Lyme borreliosis risk at a recreational site in 
England. Eur J Epidemiol. 2000;16(7):647–52.

 22. Debboun M, Frances SP, Strickman DA. In: Debboun M, Frances SP, Strickman DA, editors. 
Insect repellents handbook. 2nd ed. London, New York: CRC Press; 2015. p. 383.

 23. Bissinger BW, Roe RM. Tick repellents: past, present, and future. Pestic Biochem Physiol. 
2010;96(2):63–79. [cited 2014 Mar 25]. Available from: http://linkinghub.elsevier.com/
retrieve/pii/S0048357509001412

 24. Debboun M, Strickman D. Insect repellents and associated personal protection for a reduction 
in human disease. Med Vet Entomol. 2013;27(1):1–9. [cited 2014 Mar 31].Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/22624654

 25. Richardson M, Khouja C, Sutcliffe K.  Interventions to prevent Lyme disease in humans: a 
systematic review. Prev Med Rep. 2018;13:16–22.

 26. Connally N, Durante A, Yousey-Hindes K, Meek J, Nelson R, Heimer R.  Peridomestic 
Lyme disease prevention: results of a population-based case-control study. Am J Prev Med. 
2009;37(3):201–6.

 27. Elston DM. Tick bites and skin rashes. Curr Opin Infect Dis. 2010;23(2):132–8. [cited 2014 
Mar 10]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20071986

 28. Kahl O, Janetzki-Mittmann C, Gray J, Jonas R, Stein J, de Boer R. Risk of infection with 
Borrelia burgdorferi sensu lato for a host in relation to the duration of nymphal Ixodes ricinus 
feeding and the method of tick removal. Zentralbl Bakteriol. 1998;287(1–2):41–52.

 29. Wormser G, Daniels T, Bittker S, Cooper D, Wang G, Pavia C. Failure of topical antibiotics to 
prevent disseminated Borrelia burgdorferi infection following a tick bite in C3H/HeJ mice. J 
Infect Dis. 2012;205(6):991–4.

 30. Aberer E. What should one do in case of a tick bite? Curr Probl Dermatol. 2009;37:155–66.
 31. Földvári G. Life cycle and ecology of Ixodes ricinus: the roots of public health importance. 

In: Braks MAH, Van Wieren SE, Takken WSE, editors. Ecology and prevention of Lyme bor-
reliosis. 1st ed. Wageningen Academic Publishers; 2016. p. 462.

 32. Gassner F, Hansford K, Medlock J. Greener cities, a wild card for ticks ? In: Braks MAH, Van 
Wieren SE, Takken WSH, editors. Ecology and prevention of Lyme borreliosis. Ecology and 
control of vector-borne diseases. Wageningen Academic Publishers; 2016. p. 187–203.

 33. Hubálek Z, Halouzka J, Juricová Z, Sikutová S, Rudolf I.  Effect of forest clearing on the 
abundance of Ixodes ricinus ticks and the prevalence of Borrelia burgdorferi s.l. Med Vet 
Entomol. 2006;20(2):166–72. [cited 2014 Mar 25]; Available from http://www.ncbi.nlm.nih.
gov/pubmed/16796612

 34. Kilpatrick HJ, LaBonte AM, Stafford KC.  The relationship between deer density, tick 
abundance, and human cases of Lyme disease in a residential community. J Med Entomol. 
2014;51(4):777–84.

N. Boulanger

https://pubmed.ncbi.nlm.nih.gov/31932330/
http://www.ncbi.nlm.nih.gov/pubmed/24410143
http://www.ncbi.nlm.nih.gov/pubmed/24410143
http://linkinghub.elsevier.com/retrieve/pii/S0048357509001412
http://linkinghub.elsevier.com/retrieve/pii/S0048357509001412
http://www.ncbi.nlm.nih.gov/pubmed/22624654
http://www.ncbi.nlm.nih.gov/pubmed/20071986
http://www.ncbi.nlm.nih.gov/pubmed/16796612
http://www.ncbi.nlm.nih.gov/pubmed/16796612


175

 35. Mysterud A, Easterday W, Stigum V, Aas A, Meisingset E, Viljugrein H. Contrasting emer-
gence of Lyme disease across ecosystems. Nat Commun. 2016;7:11882.

 36. LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F. The ecology of infectious disease: effects 
of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci U S 
A. 2003;100(2):567–71. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi
?artid=141036&tool=pmcentrez&rendertype=abstract

 37. Ogden NH, Tsao JI.  Biodiversity and Lyme disease: dilution or amplification? Epidemics. 
2009;1(3):196–206. [cited 2014 Mar 19]. Available from: http://www.ncbi.nlm.nih.gov/
pubmed/21352766

 38. Randolph S, Dobson A. Pangloss revisited: a critique of the dilution effect and the biodiversity- 
buffers- disease paradigm. Parasitology. 2012;139(7):847–63.

 39. Jones E, Hinckley A, Hook S, Meek J, Backenson B, Kugeler K, et al. Pet ownership increases 
human risk of encountering ticks. Zoonoses Public Heal. 2018;65(1):74–9.

 40. Krupka I, Straubinger R. Lyme borreliosis in dogs and cats: background, diagnosis, treatment 
and prevention of infections with Borrelia burgdorferi sensu stricto. Vet Clin North Am Small 
Anim Pract. 2010;40(6):1103–19.

 41. Wagner B, Erb H. Dogs and horses with antibodies to outer-surface protein C as on-time sen-
tinels for ticks infected with Borrelia burgdorferi in New York State in 2011. Prev Vet Med. 
2012;107(3–4):275–9.

 42. Straubinger RK, Dharma Rao T, Davidson E, Summers BA, Jacobson RH, Frey AB. Protection 
against tick-transmitted Lyme disease in dogs vaccinated with a multiantigenic vaccine. 
Vaccine. 2001;20(1–2):181–93.

 43. Emil Hovius K. The protection of European dogs againts infection with Lyme disease spiro-
chaetes. In: Braks MAH, van Wieren SE, Takken W, Sprong H, editors. Ecology and preven-
tion of Lyme borreliosis. Wageningen Academic Publishers; 2016. p. 409–26.

 44. Piesman J. Strategies for reducing the risk of Lyme borreliosis in North America. Int J Med 
Microbiol. 2006;296(Suppl):17–22.

 45. Grear JS, Koethe R, Hoskins B, Hillger R, Dapsis L, Pongsiri M.  The effectiveness of 
permethrin- treated deer stations for control of the Lyme disease vector Ixodes scapularis on 
Cape Cod and the islands: a five-year experiment. Parasit Vectors. 2014;7:292. Available from: 
https://pubmed.ncbi.nlm.nih.gov/24965139

 46. Dolan M, Zeidner N, Gabitzsch E, Dietrich G, Borchert J, Poché R, et  al. A doxycycline 
hyclate rodent bait formulation for prophylaxis and treatment of tick-transmitted Borrelia 
burgdorferi. Am J Trop Med Hyg. 2008;(5):803–5.

 47. Schuijt TJ, Hovius JW, van der Poll T, van Dam AP, Fikrig E. Lyme borreliosis vaccination: 
the facts, the challenge, the future. Trends Parasitol. 2011;27(1):40–7. [cited 2014 Mar 28]. 
Available from: http://www.ncbi.nlm.nih.gov/pubmed/20594913

 48. Tsao JI, Wootton JT, Bunikis J, Luna MG, Fish D, Barbour AG. Elimination of Borrelia burg-
dorferi from vector ticks feeding on OspA-immunized mice. PNAS. 2004;89(12):5418–21. 28 
[cited 2019 Nov 26]

 49. Kern A, Zhou C, Jia F, Xu Q, Hu L. Live-vaccinia virus encapsulation in pH-sensitive poly-
mer increases safety of a reservoir-targeted Lyme disease vaccine by targeting gastrointestinal 
release. Vaccine. 2016;34(38):4507–13.

 50. Ostfeld R, Canham C, Oggenfuss K, Winchcombe R, Keesing F. Climate, deer, rodents, and 
acorns as determinants of variation in Lyme-disease risk. PLoS Biol. 2006;4(6):e145.

 51. Kugeler K, Jordan R, Schulze T, Griffith K, Mead P. Will culling white-tailed deer prevent 
Lyme disease? Zoonoses Public Heal. 2016;63(5):337–45.

 52. Ostfeld RS, Price A, Hornbostel VL, Benjamin MA, Keesing F. Controlling ticks and tick- 
borne zoonoses with biological and chemical agents. Bioscience. 2006;56(5):383–94. 1 [cited 
2020 Jun 2]. Available from: https://academic.oup.com/bioscience/article/56/5/383/234709#.
XtZMg5lFCRY.mendeley

7 Prophylactic Measures Against Lyme borreliosis Including Future Perspectives

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=141036&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=141036&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/21352766
http://www.ncbi.nlm.nih.gov/pubmed/21352766
https://pubmed.ncbi.nlm.nih.gov/24965139
http://www.ncbi.nlm.nih.gov/pubmed/20594913
https://academic.oup.com/bioscience/article/56/5/383/234709#.XtZMg5lFCRY.mendeley
https://academic.oup.com/bioscience/article/56/5/383/234709#.XtZMg5lFCRY.mendeley


176

 53. Stafford KC, Allan SA. Field applications of entomopathogenic fungi Beauveria bassiana and 
Metarhizium anisopliae f52 (hypocreales: clavicipitaceae) for the control of Ixodes  scapularis 
(Acari: Ixodidae). J Med Entomol. 2010;47(6):1107–15. 1 [cited 2020 Jun 2]. Available from: 
https://academic.oup.com/jme/article- lookup/doi/10.1603/ME10019

 54. Eisen L, Dolan M. Evidence for personal protective measures to reduce human contact with 
Blacklegged Ticks and for environmentally based control methods to suppress host-seeking 
Blacklegged Ticks and reduce infection with lyme disease spirochetes in Tick vectors and 
rodent. J Med Entomol. 2016;53(5):1063–92.

 55. Bharadwaj A, Stafford KC III, Behle RW.  Efficacy and environmental persistence of 
Nootkatone for the control of the Blacklegged Tick (Acari: Ixodidae) in residential landscapes. 
J Med Entomol. 2012;49(5):1035–44. 1 [cited 2020 Jun 2]. Available from: https://academic.
oup.com/jme/article- lookup/doi/10.1603/ME11251

 56. Ohnishi J, Piesman J, de Silva A. Antigenic and genetic heterogeneity of Borrelia burgdor-
feri populations transmitted by ticks. PNAS. 2001;98(2):670–5. Available from: http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=14646&tool=pmcentrez&rendertype=abstract

 57. Abbott A. Lyme disease: Uphill struggle. Nature. 2006;439:524–5.
 58. Wressnigg N, Pöllabauer E, Aichinger G, Portsmouth D, Löw-Baselli A, Fritsch S, et  al. 

Safety and immunogenicity of a novel multivalent OspA vaccine against Lyme borreliosis in 
healthy adults: a double-blind, randomised, dose-escalation phase 1/2 trial. Lancet Infect Dis. 
2013;13(8):680–9.

 59. Wressnigg N, Barrett P, Pöllabauer E, O’Rourke M, Portsmouth D, Schwendinger M, et al. A 
Novel multivalent OspA vaccine against Lyme borreliosis is safe and immunogenic in an adult 
population previously infected with Borrelia burgdorferi sensu lato. Clin Vaccine Immunol. 
2014;21(11):1490–9.

 60. Tilly K, Bestor A, Jewett MW, Rosa P. Rapid clearance of Lyme disease spirochetes lacking 
OspC from skin. Infect Immun. 2007;75(3):1517–9.

 61. Seshu J, Esteve-Gassent MD, Labandeira-Rey M, Kim JH, Trzeciakowski JP, Höök M, et al. 
Inactivation of the fibronectin-binding adhesin gene bbk32 significantly attenuates the infec-
tivity potential of Borrelia burgdorferi. Mol Microbiol. 2006;59(5):1591–601.

 62. Brissette CA, Rossmann E, Bowman A, Cooley AE, Riley SP, Hunfeld K-P, et al. The borrelial 
fibronectin-binding protein RevA is an early antigen of human Lyme disease. Clin Vaccine 
Immunol. 2010;17(2):274–80. Feb [cited 2014 Mar 28]. Available from: http://www.pubmed-
central.nih.gov/articlerender.fcgi?artid=2815533&tool=pmcentrez&rendertype=abstract

 63. Hagman K, Yang X, Wikel S, Schoeler G, Caimano M, Radolf J, et al. Decorin-binding protein 
A (DbpA) of Borrelia burgdorferi is not protective when immunized mice are challenged via 
tick infestation and correlates with the lack of DbpA expression by B. burgdorferi in ticks. 
Infect Immun. 2000;68(8):4759–64.

 64. Schnell G, Boeuf A, Jaulhac B, Boulanger N, Collin E, Barthel C, et al. Proteomic analysis of 
three Borrelia burgdorferi sensu lato native species and disseminating clones: relevance for 
Lyme vaccine design. Proteomics. 2014; https://doi.org/10.1002/pmic.201400177.

 65. Wikel SK.  Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick 
countermeasures, and a suitable environment for pathogen establishment. Front Microbiol. 
2013;4:337. Jan [cited 2014 Feb 8]. Available from: http://www.pubmedcentral.nih.gov/arti-
clerender.fcgi?artid=3833115&tool=pmcentrez&rendertype=abstract

 66. de la Fuente J, Rodriguez M, Montero C, Redondo M, Garcia-Garcia JC, Mendez L, et al. 
Vaccination against ticks (Boophilus spp.): the experience with the Bm86-based vaccine Gavac. 
Genet Anal. 1999;15:143–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10596754

 67. de la Fuente J, Kocan K. Development of vaccines for control of tick infestations and interrup-
tion of pathogen transmission. In: Sonenshine DRR, editor. Biology of ticks. 2nd ed. Oxford 
University Press; 2014. p. 333–52.

N. Boulanger

https://academic.oup.com/jme/article-lookup/doi/10.1603/ME10019
https://academic.oup.com/jme/article-lookup/doi/10.1603/ME11251
https://academic.oup.com/jme/article-lookup/doi/10.1603/ME11251
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=14646&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=14646&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2815533&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2815533&tool=pmcentrez&rendertype=abstract
https://doi.org/10.1002/pmic.201400177
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3833115&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3833115&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/10596754


177

 68. Šimo L, Kazimirova M, Richardson J, Bonnet S. The essential role of tick salivary glands and 
saliva in tick feeding and pathogen transmission. Front Cell Infect Microbiol. 2017;7:281.

 69. Kotal J, Langhansova H, Lieskovska J, Andersen JF, Francischetti IM, Chavakis T, et  al. 
Modulation of host immunity by tick saliva. J Proteomics. 2015;128:58–68. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/26189360

 70. Nuttall P.  Wonders of tick saliva. Ticks Tick Borne Dis. 2019;10(2):470–81. pii: 
S1877-959X(18)30255-3

 71. Sprong H, Trentelman J, Seemann I, Grubhoffer L, Rego R, Hajdušek O, Kopáček P, et al. 
ANTIDotE: anti-tick vaccines to prevent tick-borne diseases in Europe. Parasit Vectors. 
2014;7:77.

7 Prophylactic Measures Against Lyme borreliosis Including Future Perspectives

http://www.ncbi.nlm.nih.gov/pubmed/26189360


179© Springer Nature Switzerland AG 2022
K.-P. Hunfeld, J. Gray (eds.), Lyme Borreliosis, 
https://doi.org/10.1007/978-3-030-93680-8_8

H. Wilking (*) · K. Stark 
Department Infectious Disease Epidemiology, Robert Koch Institute, Unit Gastrointestinal 
Infections, Zoonoses and Tropical Infections, Berlin, Germany
e-mail: Wilkingh@rki.de; Starkk@rki.de

8Public Health Aspects of Lyme 
Borreliosis: The German Experience

Hendrik Wilking and Klaus Stark

8.1  Introduction

Public health is the organized effort for promoting human health on a population 
level. Avoiding exposures and identifying and treating infection is, for most infec-
tious diseases, the best way to decrease morbidity and mortality. For most infectious 
diseases several good starting points to interrupt transmission of most infections 
have been detailed [1]. For some robust surveillance leads to early detection and 
targeted countermeasures. Vaccines potentially decrease population susceptibility, 
and in other diseases, health promotion leads to less risky behavior. Lyme borrelio-
sis is, for various reasons, difficult to combat and a challenge for public health. This 
problem is rooted in the fact that a clear stand-alone meaningful laboratory diagnos-
tic test is not available. Furthermore, clinical manifestations are diverse and also 
vary in frequency and severity. These factors contribute to difficulties in surveil-
lance. A vaccine is currently not marketed. The avoidance of tick bites seems to be 
a straightforward if not trivial idea but it is difficult to decrease the frequency of 
bites in the population by organized and targeted efforts.

8.2  Surveillance of Lyme Borreliosis, Incidence Estimates, 
and Disease Burden

Public health surveillance is the continuous, systematic collection, analysis, and 
interpretation of health-related data needed for the planning, implementation, and 
evaluation of public health practice [2]. In several European countries, there are 
notification systems for Lyme borreliosis in place. Either clinical cases or 
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laboratory diagnoses (or a combination of both) are reported to the public health 
offices or registries [3, 4]. The typical seasonal accumulation of cases between June 
and September is similar in different countries in Europe [5–7] and the United 
States [3]. The collection and analysis of these notifications allow detection of the 
onset and end of an infection season and they help in the assessment of the infection 
intensity of the season (Fig. 8.1). Moreover, the geographic distribution, especially 
the spread to new regions, can be assessed in a timely manner.

In Germany, there is currently mandatory notification for Lyme borreliosis in 9 
federal states, while in five of nine states Lyme borreliosis has been notifiable since 
the 1990s without significant changes. Epidemiological data obtained refers only to 
the diagnosable manifestations of erythema migrans, acute neuroborreliosis, and 
acute Lyme arthritis. The onset of the Lyme borreliosis season is in April and May. 
The peak in most years is in August. Seasonal variations are minor and seasons of 
Lyme borreliosis are stable recurring processes. The intensity varies from year-to- 
year, but extremely atypical seasons do not occur.

In addition to the monitoring of the seasonality, notification systems provide 
valuable insights into trends. But the interpretation of year-to-year-differences, and 
especially geographical variation, is hampered by varying awareness of the need for 
notification among physicians and the predictable effects of underreporting and 
diagnostic inaccuracy [5, 8] (Fig. 8.2).

In these federal states of Germany, Lyme borreliosis has been continuously noti-
fiable since the 1990s and in this overall awareness can be assumed to be stable for 
laboratories as well as for physicians.

The number of cases ranged from the lowest in 2002 (2,959) to the highest in 
2006 (6,069). After several years of increasing trends up to 2006, lower case num-
bers followed for several years. Relatively high incidences were observed in the 
years 2016 to 2020.

Lyme borreliosis notification systems currently (status 2020) cover parts of 
Europe, and the status of notifiability of Lyme borreliosis remains a matter of con-
troversy in Europe [4].

Supporters of notification claim that the obligation to notify is justified because 
of the medical importance and severity of the disease. Critics reply that to qualify 
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for notification the infectious disease or pathogen should require action by the 
health authorities in relation to patients or disease outbreaks to prevent disease 
transmission. However, Lyme borreliosis is not contagious and cannot be transmit-
ted from person to person. Furthermore, notification data are most meaningful when 
detailed information on individual patients and their clinical courses are available. 
But this creates a considerable administrative workload for the medical profession, 
for example, general practitioners, hospital doctors, and public health professionals, 
which in the view of the critics are not generally related to the scientific insights 
obtainable from analysis of notification data. In notification systems for Lyme bor-
reliosis, it is important that clear-cut and comparable case definitions are used [9].

Information on the incidence of different Lyme borreliosis manifestations is best 
retrieved from epidemiological studies focusing on population incidence. These are 
difficult to setup and have rarely been conducted in Europe. A population-based 
study in southern Sweden in the 1990s showed an incidence of 69/100,000 inhabit-
ants [10]. The most frequent clinical manifestation was erythema migrans (77%), 
16% showed neuroborreliosis, and 7% Lyme arthritis. Another prospective, 
population- based study, in a south German city identified 313 cases of Lyme bor-
reliosis over 12 months, corresponding to an incidence of 111 cases/100,000 inhab-
itants [11]. Altogether 89% of the patients showed classic erythema migrans, 3% an 
atypical disseminated erythema migrans, 2% a lymphocytoma, 3% early neurobor-
reliosis, and less than 1% Lyme carditis. Patients with late manifestations occurred 
in 5% (Lyme arthritis) and 1% (acrodermatitis chronica atrophicans). Patients with 
other manifestations were not found.

Secondary data analysis of health insurance data based on the International 
Classification of Diseases (ICD 10) coding and billings of doctors and hospitals 
leads to significantly higher case numbers in comparison to notification data. In a 
study in Germany, 214,000 billed case patients were estimated annually in Germany 
[12]. But the authors mention that this number might be overestimated due to clini-
cal misdiagnosis or incorrect coding during the calculation. Another study estimated 
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7500 patients with Lyme borreliosis were treated annually in hospitals in Germany 
[6]. The same study calculated the total societal cost produced by hospitalized 
patients including direct medical cost and indirect medical cost (loss of productivity) 
as around 30 million euros annually in Germany. A study in the United States showed 
that the medical costs of Lyme borreliosis patients recorded in a medical claims data-
base expenses averages nearly 3000 US dollars for each patient annually [13].

8.3  Associated Factors with Borrelia burgdorferi sensu lato 
(s.l.) Infections and Lyme Borreliosis Disease

The disease burden resulting from infections with B. burgdorferi s.l. varies strongly 
among population groups and geographical regions. Differences in incidence are 
the result of differences in the distribution of Ixodes ticks, the proportion of infected 
ticks, and the probability of human exposure to these infected ticks.

Data on the population distribution of the infection determined by serosurveys 
can be used as a surrogate for surveillance and provides population-representative 
estimates, not only for prevalence but also for factors associated with B. burgdorferi 
s.l. infections, although it always has to be kept in mind that infection (measured by 
antibodies) is not a disease, and manifestation-probability indices might differ 
between population groups. In this way, serosurveys were conducted in Germany in 
population-representative samples of children and adolescents as well as in adults 
(Fig. 8.3) [14, 15]. Especially high increases of seroprevalence by age can be shown 
in children and senior citizens (Fig. 8.4). Several studies, based on antibody preva-
lence, notification data, and health insurance data show that boys and men are much 
more affected by infection and Lyme borreliosis than girls and women [6, 8, 14]. 
Prevalence in the 14- to 17-year age group was already at 7%. In adults, the preva-
lence of Borrelia antibodies continues to rise. In the 70- to 79-year age group, 
16.4% of adult women and 24.5% of adult men were seropositive. A similar distri-
bution was found in other European countries such as Belgium [16], Sweden [17], 
Norway, [18], and Finland, [19].

It should be noted that IgG antibodies persist for more than 10 years. Therefore, 
the exact age at the time of infection cannot be determined by such an investigation, 
and the different seroprevalence rates in the age groups must be interpreted as a 
cumulative prevalence with an ascending curve as risk increases and a flat curve 
indicating a low risk. From Wilking et. al. [15, 20].

The increase in seroprevalence in the age-groups between 20 and 50 years is 
relatively low. This argues against Lyme borreliosis as a particular occupational 
medical problem, although studies focusing on occupational groups with obvious 
increased risk of exposure to ticks, such as forestry workers or farmers, have been 
reported to be at higher risks of infection [21].

People who reside in rural or small-town areas have a higher risk for B. burgdorferi- 
infections and for Lyme borreliosis, and residences in densely forested areas have 
previously been identified as a risk factor in the United States and Europe [14, 15, 
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22–24]. In contrast, Lyme borreliosis risk is not absent in urban environments 
because Borrelia-infected ticks can be found in urban parks and private gardens in 
Europe [25–27]. In addition, rats (Rattus norvegicus and Rattus rattus) can function 
as reservoir hosts in urban areas. Studies in Sweden and France showed that the 
incidence of Lyme borreliosis can be significant in urban surroundings [10, 28].

Pet owners have long been regarded as a risk group and the focus has been mostly 
on dog walkers. However, data show that keeping cats is also a risk factor [14]. It is 
hypothesized that these animals become infested by ticks during the day, which then 
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transfers to the cat owner when the cat reenters the house. Pet owners should be 
specifically included in recommended prevention measures.

The analysis of surveillance data is ideal for illustration of spatial differences and 
geographic factors associated with the occurrence of Lyme disease. The local trans-
mission of B. burgdorferi has been established in such disparate ecological areas as 
Dutch coastal regions [29, 30], forested highlands in Bavaria [5], and mountainous 
terrain (subalpine) with a mainly continental climate, such as Slovenia [31]. Despite 
this wide range, there is a characteristic heterogeneity between the regions and the 
districts in Europe and surveillance data can show that the risk is not uniformly 
distributed [5]. There is a large variance in the incidence of Lyme borreliosis 
between the European countries and regions [32, 33]. The highest reported inci-
dence for Lyme borreliosis in Europe has been reported from Sweden with 464 
erythema migrans patients per 100,000 inhabitants [34].

Schleswig-Holstein SH),Hamburg (HH), Lower Saxony (NI), Bremen (HB), North 
Rhine-Westphalia (NW), Hesse (HE), Rhineland-Palatinate (RP), Baden- Wurttemberg 
(BW), Bavaria (BY), Saarland (SL), Berlin (BE), Brandenburg (BB, Mecklenburg-
Vorpommern (MV), Saxonia (SN), Saxonia-Anhalt (ST), Thuringia (TH).

Although epidemiological studies (including serosurveys) show heterogeneous 
risks of Lyme borreliosis in different geographic areas, it is undisputed that it is a 
widespread disease in many countries, and medical awareness and prevention mea-
sures must be taken seriously. Public health efforts in the fight against Lyme bor-
reliosis are not necessarily in proportion to the exact number of disease cases each 
year. The infection may cause severe disease in some patients; however, the vast 
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majority of cases present as erythema migrans and comparatively mild illnesses, 
which are easily treatable with antibiotics. A fatal outcome is very rare and only 
seen in Lyme carditis.

8.4  Disease Prevention Through Promotion of Tick-Bite 
Avoidance, Early Removal, and Awareness 
of Disease Symptoms

As far as is known all infections with B. burgdorferi s.l. are tick-borne. There are no 
well-documented medical reports of person-to-person transmission or blood-borne 
infections. Based on the biology it is conceivable that the pathogens are transmis-
sible by blood transfusion, therefore Lyme borreliosis patients should not donate 
during the disease. Public health promotion should focus on tick-borne infections 
and aim to communicate these three items of information: (i) the ways to avoid tick 
bites, (ii) do’s and don’ts in the removal of ticks, and (iii) knowledge of relevant 
symptoms of Lyme borreliosis and that the patient should seek medical care if 
symptoms consistent with the disease are observed.

The best personal action against Lyme borreliosis is avoidance of tick bites by 
preventing ticks from gaining access to the skin and by avoiding highly infested 
areas. Reducing exposure to ticks is one of the key public health intervention options 
promoted by public health agencies. Communicating that ticks are dangerous and 
may transmit serious infections is important, but overstatements and exaggeration 
should be avoided. Triggering fear in the general public might lead to irrational 
beliefs and behaviors of the population groups. For example, it is essential to com-
municate the likelihood of developing Lyme borreliosis following a tick bite, which, 
depending on the study and the geographical region, ranges from 0.3 to 1.4% 
[35–37].

The European Centre for Disease Prevention and Control (ECDC) recommenda-
tions include the wearing of long trousers and long-sleeved shirts as protective 
clothing [38]. Some institutions recommend tucking the socks into the trousers. The 
body should be checked periodically for ticks after being outdoors. Ticks prefer 
protected body sites such as the back of the knees or the armpits. Furthermore, they 
assemble on and around the scalp. The Centers for Disease Control and Prevention 
(CDC) recommends the application of a repellent from a specific list of active 
agents published on their website [39], among others permethrin on clothes and 
DEET on the body. It is important to communicate the limited period of protection 
and that products have to be chosen with a protection time that fits the duration of 
outdoor activity. Furthermore, it can be useful to recommend taking showers within 
2 h after being outdoors. The water helps to wash off the ticks and washing is also a 
good opportunity to check for ticks.

Although documentaries and magazines dealing with outdoor activities promote 
these prevention measures, adherence to the recommendations by the public is rare. 
Presumably, people do not like to be reminded of such things during their leisure 
time or holidays. For reasons of convenience and personal style, people don’t like to 
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wear long trousers when it is hot outside. Daily evening showers and scanning for 
ticks are often omitted and during camping and long hiking tours is often not pos-
sible. Unfortunately, there is substantial evidence that even in high endemic regions 
and after years of promotion, compliance is poor [40, 41].

If a tick bite is experienced, the tick must be removed as quickly as possible. This 
timeliness is crucial and must be emphasized in the communication. The tick must 
feed for more than 12 h before the pathogen is transmitted and the risk of infection 
increases, depending on the study, after 12–36 h and become highest in 48–72 h 
after the bite [42, 43]. This “window of opportunity” for infectious disease control 
should be the keystone in any communication. But the time of onset of bite often 
cannot be determined by the bitten person or is even estimated to be shorter than it 
really is. Ticks should be removed with tweezers or fine-pointed forceps, grasping 
the tick close to the skin, pulling gently but straightforwardly upwards [44]. All 
manipulation of the tick beforehand (e.g. squeezing, suffocation with nail polish or 
glue) should be avoided [45]. The risk of infection with B. burgdorferi s.l. is not 
increased if tick mouthparts are left behind. A skin disinfectant can be applied after 
tick removal to prevent localized bacterial infection.

The results of tick testing for B. burgdorferi s.l. should not be used for decisions 
on treatment because positive results do not necessarily mean that the bitten persons 
are diseased or even infected. Negative results can lead to false assurance. Public 
health agencies do not recommend antimicrobial prophylaxis for the prevention of 
Lyme borreliosis after a recognized tick bite, as side effects are outweighed by the 
benefits in all but a very few instances [41, 46]. In some regions of the United States 
with extreme disease risk, single courses of doxycycline can have a positive risk–
benefit ratio for some adult patients.

Good health-education material related to Lyme borreliosis is essential. In addi-
tion, for the control of Lyme borreliosis, local community-based approaches might 
be productive in raising education about disease symptoms and decreasing disease 
burden. There are often knowledge gaps in vulnerable and hard-to-reach groups that 
can be addressed by local stakeholders. For example, a Dutch study found that local 
scout groups are often not aware of infectious risks from ticks and do not regularly 
monitor young scouts [47]. A short training by stakeholders in environmental ser-
vices (e.g. forest service) or the health sector (e.g. community healthcare workers) 
could readily fill these gaps. Special targeted communication for other vulnerable 
groups, for example, beekeepers or the geocaching community, are conceivable.

All in all, the fastest possible detection and removal of an attached tick is of great 
importance in the prevention of Lyme borreliosis. On the one hand, recommenda-
tions should result in a significant public health impact on the population in the 
reduction of infection exposure and disease. They should be strong enough that 
people see the relevance of the ticks for their health, and people should become 
confident to manage this risk by prompt tick removal. On the other hand, exagger-
ated messages might result in opposite effects. People lose confidence, become anx-
ious, postpone tick removal before seeing a doctor or wait to purchase instruments 
until the next drugstore opening time.

H. Wilking and K. Stark



187

8.5  Disease Prevention by Vaccination

A vaccine was marketed in the United States from 1998 to 2002. After three doses 
it was shown to be highly effective with only moderate side effects in the vaccinated 
persons [48–49]. It was removed from the market because of low acceptance in the 
US population and among doctors. Additionally, some groups suspected the vaccine 
to be associated with autoimmune reactions [50, 51]. In Europe, no licensed vaccine 
has ever reached the market. Because of the heterogeneity of Borrelia strains, it is 
more difficult to develop an effective vaccine for Europe [52–54]. However, new 
vaccine candidates are under development in both Europe [55, 56] and the United 
States [57].

8.6  Lyme Controversy, Evidence-Based Approaches to Both 
Public Health and the Practice of Medicine

In the current medical and societal contexts, Lyme borreliosis is not only a medical 
issue but also a societal problem and a subject of public controversy. Over the last 
20 years, a considerable controversy has developed about Lyme borreliosis among 
medical societies, the medical scientific community, and evidence-based medicine 
on the one hand and some Lyme borreliosis activist groups and associations of phy-
sicians who claim to be experts in the diagnosis and treatment of patients (so-called 
“Lyme literate medical doctors” (LLMDs) on the other hand [58]. Among the latter 
groups some believe, unsupported by scientific evidence, that infections with 
B. burgdorferi s.l. can cause symptoms even in the absence of objective signs of 
Lyme borreliosis [59]. Furthermore, they allege that treatment with antibiotics and 
other therapeutics is efficient only if prescribed for months or years to suppress the 
symptoms of Lyme borreliosis. Diagnostic tests are often claimed to be falsely neg-
ative. People who experience suffering because of their symptoms are hastily 
assigned the diagnosis of Lyme disease and are thus prevented from receiving their 
actual correct diagnosis which is also a public health problem. Lyme borreliosis 
activist groups believe that due to the abovementioned circumstances the incidence 
of Lyme borreliosis is heavily underestimated by surveillance systems and is in real-
ity a real plague for the masses. They have developed a significant international 
movement, and maintain a high level of pressure on health authorities, policymak-
ers, and the medical scientific community. The dispute between the two groups is 
bitter and far from being resolved.

In several countries, such as the Netherlands, France, the United Kingdom, 
Belgium, and Germany, systematic reviews of the literature have been carried out. 
This research should be further developed into comprehensive, up-to-date informa-
tion in centers of peer-reviewed information on Lyme borreliosis. The provision of 
public education in trustable access points related to Lyme borreliosis and the strong 
connection to medical scientific research might help to improve knowledge about 
this disease in the population. Additionally, health professionals have to be educated 
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on the latest Lyme borreliosis research and resulting treatment options. The devel-
opment of safe and effective vaccines against Lyme borreliosis and their roll out 
must be preceded by preparation of the public in order to increase the acceptance of 
a vaccine. Overall this might result in less disease burden and fewer misdiagnoses 
and misclassifications of the disease.
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9Other Ixodes-Borne Diseases

Pierre H. Boyer, Antoine Grillon, Benoît Jaulhac, 
Aurélie Velay, Frédéric Schramm, 
and Emilie Talagrand-Reboul

9.1  Introduction

Ticks are the most important vectors in the northern hemisphere in human and vet-
erinary medicine [1], and Lyme borreliosis is the most frequent tick-borne disease. 
In addition to Borrelia burgdorferi sensu lato (s.l.), the causative agent of Lyme 
borreliosis, they can harbor many microorganisms [2]. Some of these microorgan-
isms can be transmitted to humans and may cause disease. Fever is the most fre-
quent symptom associated with other tick-related pathogens in Europe, in contrast 
to Lyme borreliosis, which causes less fever. In addition to fever, some symptoms 
are more specific to a particular infectious agent.

In this chapter, we review some ecological, epidemiological, and clinical aspects 
of the main microorganisms, apart from B. burgdorferi s.l., known to be transmitted 
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by Ixodes ticks in Europe: B. miyamotoi, Anaplasma phagocytophilum, Candidatus 
Neoehrlichia mikurensis, Rickettsia monacensis, Rickettsia helvetica, Francisella 
tularensis, human babesiosis, and the ixodid-borne flaviviruses (Table 9.1).

9.2  Borrelia miyamotoi

Relapsing fever (RF) Borrelia are usually associated with lice and soft ticks in 
Africa, America, and Asia; about 20 species have been validated and additional taxa 
are also proposed. However, three species of RF-Borrelia are transmitted by hard 
ticks and so are called Hard Tick-Borne Relapsing Fevers (HTBRF). B. theileri was 
observed at the beginning of the 20th century by Laveran in the blood of livestock 
[3] and Rhipicephalus spp. ticks are vectors of this bacterium. B. lonestari has been 
described in Amblyoma americanum ticks and was initially suspected in the 
Southern Tick-Associated Rash Illness (STARI), but the evidence is lacking con-
cerning the implication of this bacterium in this syndrome [4]. Finally, B. miyamotoi 
is probably the most discussed HTBRF Borrelia species; indeed this species was 
discovered in Japan in the mid 1990s in the ticks (I. persulcatus) and rodents 
(Apodemus argenteus) [5] and has subsequently been described in ticks belonging 
to the Ixodes genus in the Holarctic region [6]. This bacterium is, up to now, the only 
relapsing fever known to share the same Ixodes vectors as the bacteria of the B. burg-
dorferi s.l. group. Interest in this bacterium has grown since 2011 with the publica-
tion of a series of 46 Russian human cases [7] and more recently a few cases of 
meningoencephalitis [8–11].

9.2.1  Bacterial Features

The taxonomy of the Borrelia genus is currently debated [12] since the proposal by 
Adeolu and Gupta [13] to split the genera into two: namely Borreliella for the bac-
teria responsible for the Lyme disease, leaving the name Borrelia for the relapsing 
fever spirochetes. In this last group or genus and based on several genes (glycero-
phosphodiester phosphodiesterase (GlpQ), 16S rDNA, flagellin), B. miyamotoi 
clusters with the other HTBRF (B. lonestari and B. theileri).

Comparisons within the species revealed a genetic diversity for B. miyamotoi. 
Indeed, three separate clades following the geographic distribution were described 
[14]: the Asian (aka Siberian) type, the European, and the American type, respec-
tively, transmitted by I. persulcatus and I. pavlovskyi (I. ovatus); I. ricinus ; I. scapu-
laris and I. pacificus. Sequence variations have recently been described based on the 
sequencing of the 16S rRNA gene in the Asian and American clades [15, 16]. Future 
genomic studies will be of interest to better understand B. miyamotoi evolutionary 
history and host/pathogen interaction.
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9.2.2  Ecology

Little is known about B. miyamotoi reservoir hosts. This spirochete displays some 
characteristics in common with B. burgdorferi s.l., and it has been hypothesized 
that these bacteria share the same reservoir hosts. Indeed, Wagemakers et al. [17] 
showed by compiling several studies that there is a positive correlation between 
the infection rate of B. burgdorferi s.l. in ticks and the infection rate of B. miya-
motoi. As ticks can feed on several hosts, B. miyamotoi DNA has been found in 
several animals from small rodents to birds and in ticks collected on wild boar 
(Sus scrofa) and roe deer (Capreolus capreolus) in North America, Japan, and 
Europe [17]. However, importantly, Kahl et  al. [18] differentiate carrier hosts 
from reservoir hosts. Carrier hosts are hosts that harbor a particular pathogen for 
at least a short period but are not necessarily infective for ticks, whereas reservoir 
hosts are proven natural hosts of vector ticks, and ticks may become infected 
while feeding on them [18]. In view of these definitions, only a few animals have 
been experimentally proven to be reservoir hosts: the wood mouse (Apodemus 
spp.), the bank vole (M. glareolus) [19], and the white-footed mouse (Peromyscus 
leucopus) [20]. It has also been shown that domestic ruminants do not seem to 
eliminate B. miyamotoi from ticks [21], which may therefore have a role in its 
dissemination, contrary to what is observed for the bacteria of the B. burgdorferi 
s.l. group. However, the rate of transmission is too low for ticks to be the only 
reservoir. It should be noted that, in early reports, B. miyamotoi had probably been 
observed instead of B. burgdorferi s.l. in larvae [22, 23]. It has also been shown 
that I. ricinus larvae could transmit B. miyamotoi in a mouse model [24], suggest-
ing that transovarial transmission of B. miyamotoi may occur.

9.2.3  Epidemiology

B. miyamotoi has been reported in tick vectors in the northern hemisphere, espe-
cially ticks of the I. ricinus complex which are known to transmit the B. burgdor-
feri s.l. complex. Indeed, the distribution of B. miyamotoi seems to overlap the 
distribution of the main species responsible for Lyme borreliosis [17]. The preva-
lence of ticks carrying B. miyamotoi is low even in areas where the disease is 
endemic [7, 25]. The median prevalence is 1.5% (minimum: 0–maximum: 6.4%) 
[7, 17].

Serological studies revealed that B. miyamotoi seropositivity in blood donors of 
the Netherlands is 2% (95% CI 0.4–5.7%) and is higher in the forestry worker popu-
lation (10% (5.3–16.8%)) and in patients suspected of anaplasmosis (14.6% 
(9.0–21.8%)) [26]. In the United States, other serological studies showed a similar 
prevalence of antibodies against B. miyamotoi in a healthy population: 3.9% [27]. 
Collectively, these results suggest that humans are exposed to B. miyamotoi to a 
lesser extent compared with B. burgdorferi s.l. but can develop disease under certain 
conditions.

9 Other Ixodes-Borne Diseases
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9.2.4  Clinical Manifestations

The typical symptomatic B. miyamotoi disease (BMD) was described first in Russia 
in 2011 [7], in America [28] and Japan [29]. More recently, some cases were identi-
fied in China [30] and in Western Europe [31, 32]. It is an acute, febrile, and viral- 
like syndrome occurring approximately 2 weeks after a tick bite. Without treatment, 
relapses (one or more) can occur in up to 11% of the patients in the Russian case 
series [7]. Other symptoms including headache, arthralgia, chills, myalgia, malaise, 
and fatigue were also observed. BMD and Human Granulocytic Anaplasmosis 
(HGA) have a similar clinical presentation and should be the subject of differential 
diagnosis. Interestingly, a patient with an asymptomatic infection proven by specific 
PCR was found in Austria [33].

In 2013, two cases of meningoencephalitis due to BMD were reported initially in 
immunocompromised patients [9, 10], another case was then diagnosed in Germany 
[8], and two cases more recently in Sweden [11]. The first three cases of meningoen-
cephalitis cases appeared to show common characteristics, indeed patients were treated 
for non-Hodgkin lymphoma with a CHOP protocol (cyclophosphamide, doxorubicin, 
vincristine, and prednisolone), they were also treated with rituximab, an anti-CD20 
monoclonal antibody. Interestingly, lymphocytic pleocytosis in cerebrospinal fluid 
(CSF) with elevated protein was observed in the three cases, as for Lyme neurobor-
reliosis. A slight difference was found between the three cases of B. miyamotoi neu-
roborreliosis, indeed the German case developed a more acute form than the two other 
cases. In Sweden, one of the two cases was also treated with rituximab (for rheumatoid 
arthritis), but very interestingly the other one was apparently immunocompetent [11]. 
As observed in the other relapsing fevers, B. miyamotoi exhibits neurotropism, but this 
seems to be expressed under particular immunosuppression conditions.

9.2.5  Laboratory Diagnosis

To date, PCR and serology have been the two diagnostic approaches, depending 
upon the stage and duration of infection. Antigens such as glycerophosphoryl dies-
ter phosphodiesterase (GlpQ) have proven useful, being possessed by relapsing 
fever members of the genus but not by the Lyme borreliosis-associated species [34]. 
Consequently, the serological assays based on GlpQ target all the relapsing fever 
Borrelia, but B. miyamotoi is the only described HTBRF species in the Northern 
hemisphere transmitted by the Ixodes genus. This sero-marker does not seem to be 
sensitive enough to diagnose all cases [28]. These results were confirmed by a more 
recent study showing the low specificity and sensitivity of GlpQ for B. miyamotoi 
diagnosis [35].

The variable major proteins (Vmps) of B. miyamotoi have been explored as 
potential antigens for serodiagnosis [36]. Interestingly, the combination of both 
GlpQ and a cocktail of highly immunogenic Vmps has been recently evaluated in a 
cohort of 182 Russian patients [37]. The sensitivity was determined to be 94.7% and 
the specificity 96.6% for IgM from 11 to 20 days after the disease onset. The C6 
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ELISA used for Lyme borreliosis diagnosis may also be interesting since it is posi-
tive in patients infected by B. miyamotoi, and the similarity between the C6 part of 
VlsE and the B. miyamotoi Vmps could be the basis of this cross-reactivity [38]. A 
new antigen has recently been described for the serodiagnosis of B. miyamotoi: 
Borrelia membrane antigen A (BmaA) [39, 40] which needs to be evaluated using a 
large cohort of patients.

During the febrile episode, molecular-based tests are prime of interest. Real-time 
PCR assays have been widely described based on the 16s rDNA or the flagellin gene 
[17]. However, the spirochetemia of B. miyamotoi seems to be lower than in the 
other relapsing fevers [28], and PCR is more likely to be positive during the fever 
spikes [41]. Blood smear examination does not seem to be sensitive enough for the 
diagnosis of B. miyamotoi [42]. Isolation of B. miyamotoi has been successful from 
febrile patients [43] using the Kelly-Pettenkofer Medium (MKP) with added calf 
serum. This technique cannot be implemented in all laboratories and is reserved for 
specialized laboratories or research purposes only.

9.2.6  Treatment

Treatment of BMD is based on the recommendations for treatment of Lyme bor-
reliosis. Ceftriaxone and doxycycline have been mainly used to treat BMD, with 
minocycline and amoxicillin/clavulanic acid used to a lesser extent [17]. All the 
patients described in the medical literature recovered after the treatment and no 
relapse was observed after the treatment.

9.3  Ixodes-Borne Anaplasmataceae

The family of Anaplasmataceae includes six bacterial genera: Anaplasma, Ehrlichia, 
Candidatus Neoehrlichia, Neorickettsia, Wolbachia, and Aegyptianella. These bac-
teria are intracellular, associated with invertebrate hosts. Some of these bacteria 
may be responsible for diseases in mammals including humans. They seem to have 
a tropism for the reticuloendothelial cells. Here, we will focus on two Ixodes-borne 
Anaplasmataceae responsible for proven human disease: Anaplasma phagocytophi-
lum and Candidatus Neoehrlichia mikurensis.

9.3.1  Anaplasma phagocytophilum

Human granulocytic anaplasmosis (HGA) is a tick-borne acute febrile bacterial 
infection caused by a Rickettsiales species, Anaplasma phagocytophilum (Ap), 
which embraces three former taxa: Ehrlichia phagocytophila, E. equi, and human 
granulocytic ehrlichiosis (HGE) agent. Veterinary forms of the disease were first 
described in the 1930s in European sheep and cattle [44] and then in American 
horses and dogs in 1969 and 1982, respectively [45, 46]. Since the preliminary 
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reports, the mode of transmission by Ixodes ricinus tick bite was discovered and 
intracytoplasmic rickettsia-like bacterial bodies were observed after Romanowsky 
staining within granulocytes and monocytes in blood films from infected sheep 
[47]. The first human clinical descriptions were performed later in the United States 
in 1994 and in Europe in 1997 [48, 49].

9.3.1.1  Bacterial Characteristics
As a member of the Rickettsiales, Ap is an obligate intracellular bacterium of 
eukaryotic cells. The only vectors known for Ap are the ticks of the I. ricinus com-
plex. In rare cases, Ap can be directly transmitted by blood in the context of transfu-
sion organ transplant and from mother to child during pregnancy [50]. The bacteria 
exist in two morphological forms: large reticulate and small dense-core cells, both 
are present in intravacuolar colonies (compact inclusions) or “morulae.” These two 
forms divide by binary fission. The size of individual cells and morula are around 
0.3μm and 2μm in diameter, respectively, but they can vary highly in shape and size. 
The structure of its wall is related to the Gram-negative bacteria but lipopolysac-
charide and peptidoglycan are absent [51]. The bacterium does not grow using cell- 
free media but can be cultivated in vitro in human granulocyte (HL-60) or tick cell 
lines [51, 52].

9.3.1.2  Zoonotic Transmission and Hosts
Anthropophilic ticks belonging to the I. ricinus complex are the only known vectors 
of HGA and the vectorial competence of the species I. ricinus, I. scapularis, I. paci-
ficus, and I. persulcatus have been experimentally proven as well as transstadial 
transmission. Transovarial transmission does not occur [46].

After ingestion of Ap with the blood meal on an infected host, these latter bacte-
ria colonize the digestive epithelium of the tick and migrate to the salivary glands. 
Like B. burgdorferi s.l., Ap are released in the tick saliva during the next blood meal 
on a naive host. Ixodid saliva modulates the myeloid pro-inflammatory response to 
the intracellular bacteria during the pathogen transmission, and the pathogen 
requires a time of tick attachment of at least 4 to 24 h for transmission to occur [50]. 
No vectors apart from ticks of the I. ricinus complex have been identified but DNA 
has been detected in other tick species: I. hexagonus, I. ventalloi, I. trianguliceps, 
I. dentatus, I. ovatus, I. nipponensis, Amblyomma americanum, Dermacentor spp., 
and Haemaphysalis spp. [53].

Several epidemiological cycles have been proposed for the circulation of Ap 
depending on regions and pathogen strains. Micromammals, including rodents and 
insectivores, and large mammals, including cervids and wild boar, may act as reser-
voirs of Ap [53]. Analysis of Ap genetic diversity has revealed the existence of sev-
eral distinct lineages within the species, some of which are involved in specific 
infection cycles with preferential association with some potential host reservoirs. 
For example, in a study of 188 European Ap strains from different host species of 
various geographic origins, sequences of ankA gene from human and domestic ani-
mal samples exclusively belonged to one clade, and sequences from roe deer sam-
ples occurred in three other clades. Sheep, cattle, and red deer (Cervus elaphus) 
strains clustered in both the first clade and in “roe deer” clades. The absence of roe 
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deer-associated sequences in the first clade suggests that roe deer do not act as a 
reservoir for human pathogenic strains in Europe [54]. Moreover, at least two Ap 
variants can simultaneously circulate in some hosts, as shown in cattle herds in 
France [55]. Host specificity in the lifecycle of Ap is also demonstrated by the strain 
Ap-V1, nonpathogenic for humans, which infects ruminants and is transmitted by 
I. scapularis. The strains involved in HGA are also responsible for infections in 
canids, horses, and ruminants [56]. Large-scale genetic studies have confirmed this 
type of population structure in distinct genetic clusters by multi-locus sequencing 
[57, 58]. Using this methodology, Langenwalder et al. (2020) argue that hedgehogs 
and wild boars may act as reservoirs for human infections in Europe [58].

9.3.1.3  Epidemiology
The distribution zone of the disease corresponds to the regions inhabited by mem-
bers of the anthropophilic I. ricinus complex ticks in the northern hemisphere. 
Therefore, cases of HGA are reported in North America, Europe, and East Asia.

In North America, the disease has been described in the United States, Canada, 
and more recently in Mexico [59]. The vectors are, as for the B. burgdorferi s.l. com-
plex, I. scapularis across the eastern United States and I. pacificus along the west 
coast. The number of US reported cases has increased steadily since the first year of 
notification in 2000 [60], probably at least in part due to better physician knowledge 
of the disease, and also possibly due to local increases in the level of exposure as this 
has been suggested by Russel et al. (2021) in a particular region of growing incidence 
during 2010–2018 [61]. From 2008 to 2012, passive surveillance data indicated an 
average annual incidence of 6.3 cases per million population. The highest incidences 
were recorded in the northeastern and upper Midwestern states with more than 130 
cases per million population per year in some regions [60]. In Europe, the disease 
occurs at a much lower incidence than in North America but is widely distributed. 
Cases have been reported from many countries, including Slovenia, Norway, Sweden, 
the Netherlands, Poland, Austria, Switzerland, Italy, Spain, France, Greece, and 
Russia. In Asia, the disease is present in China, Mongolia, South Korea, and Japan. 
The vectors of HGA are, as for the B. burgdorferi s.l. complex, I. ricinus in Europe 
and I. persulcatus in Eastern Europe and in Asia. Serological surveys have revealed 
that a large proportion of people have encountered the bacteria without any history of 
reported infection, probably due to subclinical or milder forms of HGA. A recent 
meta-analysis concluded that overall seroprevalences were 13.8% and 5.0% in high-
risk populations and general population, respectively [62].

Depending on the studies, the molecular detection rate of Ap among questing 
ticks varies between less than 1% and up to 20% in I. ricinus and 22% in I. persul-
catus. These highly variable prevalence data are under the influence of the study 
area, the molecular method used, and whether nymphal or adult stages are investi-
gated [53].

9.3.1.4  Pathogenesis and Host Response
After transmission by the tick bite, the infection is disseminated by the peripheral 
blood to hematopoietic organs, mainly the bone marrow in humans. Ap can infect 
myeloid cells at all stages of maturation. The intracellular pathogenic behavior of 
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Ap is enabled by its ability to modulate the actin cytoskeleton of eukaryotic cells 
from ticks and vertebrates, involving possibly an actin filament-associated Ap pro-
tein that was recently identified [63]. Bacteria are internalized in the target cell into 
phagosomal vesicles within the cytoplasm, then, they take a non-infectious reticu-
late form and replicate to form a microcolony or “morula” (Fig. 9.1). To promote 
their intracellular survival within host cells, bacteria inhibit the fusion of the phago-
some with lysosomes and thereby avoid acidic degradation. The propagation of the 
infection occurs with the release of bacteria from infected cells and the formation of 
new infectious dense-core forms.

Innate immune induction in response to Ap infection leads to inflammatory 
lesions in tissues which result in the severe clinical manifestations of HGA [64].

9.3.1.5  Clinical Manifestations
After the infecting tick bite, the incubation period lasts generally from 1 to 3 weeks 
[65]. The clinical presentation is frequently mild or moderate, with influenza-like 
symptoms such as acute fever, malaise, myalgia, headaches, and/or arthralgia. 
Nonspecific biological signs are also frequent: leukopenia, thrombocytopenia, and 
elevation in liver enzymes (AST, ALT). In some cases, the febrile illness can be 
associated with gastrointestinal symptoms (nausea, vomiting, and diarrhea), stiff 
neck, cough, confusion, non-pruritic rash, anemia, and/or elevated serum creatinine. 
Rashes are uncommon (<10%). The milder forms resolve in 10 days even without 
antibiotic treatment [50]. However, the illness may be severe especially in older 
people, in immunocompromised patients (HIV, chemotherapy, treatment…) and/or 
when the antibiotic administration is delayed. The reported complications include 
renal or respiratory failure, septic shock, disseminated intravascular coagulation 
and hemorrhage, rhabdomyolysis, myocarditis, serious opportunistic infections 

Fig. 9.1 Intragranulocytic 
morula (arrow) on an 
MGG stained peripheral 
blood smear in a patient 
suffering from human 
granulocytic anaplasmosis 
(photo credit: Dr 
C. Koebel, Bacteriology 
Laboratory, Hôpitaux 
Universitaires de 
Strasbourg, Strasbourg, 
France)
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(HSV, Candida or Aspergillus—causing invasive infections), and macrophage 
activation- like syndrome. Meningitis or encephalitis is rare (<0.3%). In the United 
States, the estimated hospitalization rate is high (approximately 36% of cases). 
Overall, the case fatality rate of HGA is less than 1% [53]. HGA appears more com-
mon in adults than in children and there are rare case reports of a more complicated 
clinical course in children [66].

9.3.1.6  Laboratory Diagnosis
A suspected diagnosis of HGA is made on (1) clinical suspicion including fever, (2) 
recent tick bite or tick exposure in endemic areas especially during spring and sum-
mer months, and (3) nonspecific biological signs (mild anemia, thrombocytopenia, 
leukopenia, elevated liver enzymes, elevated C-reactive protein, and/or elevated 
serum creatinine). Biological confirmation of the diagnosis relies either on the 
detection of Ap in blood, by specific PCR (or by culture), or serological evidence 
(seroconversion or fourfold or greater increase in the serum antibody titer). An iso-
lated or stable positive antibody titer or the detection of intracytoplasmic morulae in 
peripheral blood smears are not specific or sensitive enough to establish the defini-
tive etiologic diagnosis of HGA [50, 65, 67].

Blood smear microscopy. In the initial fever period, intracytoplasmic morulae of 
Ap can be seen within neutrophil granulocytes after microscopic examination of 
peripheral blood films using May-Grunwald Giemsa or Wright stain (Fig. 9.1). Due 
to the low level of infected cells in the blood, this method is time-consuming and 
has poor sensitivity (only up to 20%) even for trained staff [50, 67].

Blood culture. Ap does not grow in routine blood culture and requires HL-60 cell 
lines for its in vitro cultivation. This technique is only used in specialized 
laboratories.

Serological tests. The reference method is based on an indirect immunofluores-
cence assay (IFA) for the detection of specific immunoglobulin G antibodies. 
Usually, a first sample is collected during the febrile illness and a second one 3–4 
weeks later to detect seroconversion or fourfold or greater increase in the serum 
antibody titer [65]. Thereby serological tests offer mostly a retrospective diagnosis 
of HGA. Specific Ap antibodies can be detected for months or years after the acute 
illness. Immunoglobulin M serology is not recommended given the high rate of 
false-positive results.

PCR assays. Currently, polymerase chain reaction (PCR) testing of whole blood 
is considered the gold standard for the diagnosis of HGA. Different homemade and 
commercial methods have been developed using different targets [65, 68]. Sensitivity 
is highest in the acute phase until 10 days after the onset of the illness without treat-
ment and quickly decreases after antibiotic administration (within 24–48 h). Given 
the variable and possibly intermittent occurrence of bacteremia, a negative result 
does not firmly rule out the diagnosis of Ap [67].

9.3.1.7  Treatment
Antibiotic therapy should be considered for patients presenting an acute febrile ill-
ness compatible with HGA, especially with bicytopenia and/or elevated liver 
enzymes. Due to the potentially serious complications, treatment should not be 
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delayed until laboratory testing has been completed [50]. Doxycycline and rifamy-
cins have an excellent in vitro activity against Ap. In contrast, these bacteria are not 
susceptible to β-lactams, aminoglycosides, macrolides, or chloramphenicol [52]. 
Doxycycline for 7–10 days is the first treatment choice in HGA in adults and chil-
dren (including <8 y. o.). Rifampin is an effective alternative treatment in case of a 
severe allergy or during pregnancy or in children suffering from mild forms. The 
clinical improvement is generally prompt after the beginning of antibiotics in 24 to 
48h. With early administration, this treatment prevents the severe complications of 
HGA.  There are no reported cases that are refractory to treatment or reports on 
chronic infection [50].

9.3.2  Candidatus Neoehrlichia mikurensis

9.3.2.1  Introduction-Bacterial Features
Candidatus Neoehrlichia mikurensis was first identified and described in 2004 from 
rats and ticks of the Mikura island in the south of the Japanese Archipelago [69]. 
This bacterium was previously detected in ticks in Europe [70–72] and was initially 
named Candidatus Ehrlichia walkerii by Brouqui et  al. in 2003 [70]. However, 
genetic analysis based on the 16s rDNA and the groEL gene sequencing revealed 
that it belongs to a new cluster in the Anaplasmataceae family. Can. N. mikurensis 
are Gram-negative pleomorphic cocci of 0.5–1.2 μm of diameter. As the other mem-
bers of this family, Can. N. mikurensis is a strict intracellular bacterium that seems 
to parasitize endothelial cells as membrane-bound inclusions [69]. This tropism for 
the endothelial cells has recently been confirmed by the cultivation of the bacteria in 
endothelial cell lines [73]. Sequencing of the groEL and 16S rRNA genes of iso-
lates from rodents, dogs, and humans in Japan, Siberia, Germany, Switzerland, and 
the Netherlands identified three groups of variants for the groEL gene occurring in 
Siberia, Germany, and Japan, respectively [74]. Studies led by Li, et al. revealed the 
population of Can. N. mikurensis is structured in four groups according to it’s geo-
graphic distribution [75].

9.3.2.2  Ecology and Epidemiology
I. ricinus, I. persulcatus, I. ovatus, I. frontalis, I. hexagonus, D. reticulatus, and 
Haemaphysalis concinna have been reported to be carrier-ticks of Can. N. mikurensis. 
Interestingly, rates of infection of Can. N. mikurensis are the highest among the Ixodes 
species, suggesting that these are the primary vectors. No other Ixodes spp. have been 
identified as carriers [76]. Can. N. mikurensis has been detected in ticks in the northern 
hemisphere in Western and Eastern Europe, in Asia, and Japan, but interestingly it has 
not been detected in the United Kingdom or in North America. The prevalence of Can. 
N. mikurensis among ticks was reported as increasing in the Netherlands between 2006 
and 2010 [77]. The organism, however, appears to be present in ticks for longer periods 
of time at a low prevalence, as it was found in ticks already collected in 1960 [78]. The 
median prevalence among ticks is 3.95% (minimum: 0.08% maximum: 22%). Nymphs 
and adults ticks have been repeatedly reported as carriers, and transovarial transmission 
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seems to be exceptional [79], so a reservoir host is apparently essential for the bacteria 
to be maintained in nature. Several small rodents are suspected as reservoir hosts for 
Can. N. mikurensis: voles, wood mice, rats, and chipmunks [76]. But only Myodes 
glareolus (bank vole) and Apodemus spp. (wood mouse) have been shown to be reser-
voir hosts by transmission experiments [19].

9.3.2.3  Clinical Manifestations
So far, around a hundred symptomatic and subclinical  human cases of infection 
have been reported (Table 9.2) [80–82]. Initially, infection with Can. N. mikurensis 
was reported in patients with immunocompromised backgrounds [83]. Most reports 
corroborated this last fact, indeed patients infected with Can. N. mikurensis suf-
fered from hematological malignancy (CLL, mantle cell lymphoma, post-transplant 
lymphoproliferative disorder) or autoimmune disorders, and had been treated with 
immunosuppressive or cytotoxic drugs (particularly anti-CD20 Rituximab), and/or 
had been splenectomized [74, 83–87]. However, the bacterium has also been 
reported in apparently immunocompetent, but clinically symptomatic patients [33, 
85, 88–90] (Table 9.2).

The clinical picture of neoehrlichiosis includes high fever that can relapse or 
occur in spikes, and last for several days. Fever occurs predominantly at night. 
Several other manifestations have been observed, usually occurring together 
with fever: chills and malaise, joint and/or muscle pain [91]. Nonproductive cough 
and dyspnea have also been reported [74, 88]. A cutaneous erysipelas-like rash was 
described in several reports [83, 92]. It is noteworthy that thromboembolic events 
including deep vein thrombosis were reported  in a significant number of papers, 
especially in a cohort of 11 immunocompromised patients published by Grankvist 
et al. in which 6 had vascular and thromboembolic events, including in 4 with, a 
deep vein thrombosis [85]. These vascular events seem to be very frequent (occur-
ring in more than 50 % of the cases). Also,  in a recently published cohort of 40 
patients with documented neoehrlichiosis, 24 of these individuals presented with a 
thromboembolic event including deep vein thrombosis, pulmonary embolism, 
repeated thrombophlebitis, transitory ischemic attacks, and arteritis [93].

Table 9.2 Human infections with Candidatus N. mikurensis

Asymptomatic infection
Symptomatic infection
Immunocompetent patients Immunocompromised patients

Welc-Faleciak et al. [81]: 
n = 5

von Loewenich et al. [74]: 
n = 1

Welinder-Olsson et al. [83]: 
n = 1

Jahfari et al. [80]: n = 7 Fehr et al. [88]: n = 1 von Loewenich et al. [74]: 
n = 1

Lenart et al. [90]: n = 1 Li et al. [89]: n = 7 Pekova et al. [84]: n = 2
Markowicz et al. [33]: n = 11 Grankvist et al. [85]: n = 2 Grankvist et al. [92]: n = 11

Höper et al. [93]: n = 10 Dadgar et al. [86]: n = 1
Boyer et al. [82]: n = 2 Höper et al. [93]: n = 30

Boyer et al. [82]: n = 2
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9.3.2.4  Laboratory Diagnosis
Few variations in biological parameters were observed in infected patients. The 
C-reactive protein and procalcitonin levels were elevated. There was also neutrophil 
leukocytosis, thrombocytopenia, and hyponatremia [92, 94].

As a high number of copies has been described in patients with neoehrlichiosis, 
the polymerase chain reaction is the primary tool for the etiological diagnosis of 
Can. N. mikurensis infection, using whole blood (EDTA and citrated blood) and 
bone marrow as a diagnostic sample material [76]. Specific PCRs targeting the 16s 
rRNA or the groEL gene are described in the literature [76, 80]. A multiplex PCR 
has been developed with specific probes for the Anaplasmataceae family, 
Neoehrlichia genus, and Can. N. mikurensis, enabling the detection of all three 
targets in a single reaction [83]. Also a cell culture method has recently been pub-
lished, but its use seems to be limited to research laboratories [73].

So far, there is no serological diagnosis for the diagnosis of Can. N. mikurensis 
infection. However, serum antibody  cross-reactivity against Ehrlichia spp., 
Anaplasma spp., and Rickettsia spp. can be observed [83, 89, 95]. To our knowl-
edge, Can. N. mikurensis has not been detected directly in blood smears.

9.3.2.5  Treatment
Up to now no clinical trial or study has been conducted comparing the relative effec-
tiveness of several antibiotics on Can. N. mikurensis infection. Since it is an intra-
cellular bacterium, closely related to bacteria of the Ehrlichia and Anaplasma 
genera, the choice of the antimicrobial substance should be restricted to antibiotics 
with good intracellular penetration, i.e.  doxycycline which is recommended for 
the treatment of both, anaplasmosis and ehrlichiosis [60].

In several case reports, doxycycline for 2–3 weeks at the usual dose of 
200 mg/24 h was employed  successfully [91]. Rifampicin (300–450 mg twice a 
day) can be used as an alternative to doxycycline or applied as part of a combination 
therapy [88]. After 5 days of treatment, patients usually recover and PCR investiga-
tions after treatment yield a negative result for Can. N. mikurensis [91]. Symptomatic 
treatment of patients is strongly required due to the possible occurrence of 
thrombembolism.

9.4  Ixodes-Borne Rickettsiosis

Historically, “rickettsia” has been used to describe multiple small uncultivable (or 
not yet cultivated) rods that had not been otherwise identified. Successive taxo-
nomic changes have been proposed for this disparate group. The Rickettsiaceae 
family now includes two genera, namely, Rickettsia and Orientia [96]. Historically, 
the Rickettsia genus has been subdivided into the typhus group, which includes two 
species (R. prowazekii and R. typhi) and the spotted fever group (SFG), which 
includes several species, some of which may be responsible for human diseases. 
Their taxonomy is still debated. Moreover, several subgroups have emerged from 
the SFG, namely, R. rickettsii, R. massiliae, R. helvetica, and R. akari groups [97].
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Several bacteria belonging to the Rickettsia genus are associated with hema-
tophagous arthropods and among the 31 Rickettsia species and the numerous cur-
rently uncharacterized Rickettsia spp. [97], around 10 species are associated with 
ticks belonging to the Ixodes genus.

In Europe, two Rickettsia species are carried by I. ricinus, namely R. helvetica 
and R. monacensis, both of which belong to the Spotted Fever Group.

9.4.1  Rickettsia helvetica

9.4.1.1  Clinical Picture
Rickettsia helvetica was isolated from Ixodes ricinus in Switzerland in 1979 by Willy 
Burgdorfer and was later recognized as a distinct species [98]. Since its discovery and 
until 1999, it was considered to be non-pathogenic, but then human infections were 
increasingly described at the turn of the twenty-first century. It is now  generally 
accepted that R. helvetica infection can result in post-tick bite febrile syndromes that 
can persist from days to weeks after the onset also in apparently immunocompetent 
patients [99]. Cutaneous involvement is not typically found but some patients have 
been described with an inoculation eschar [100, 101]. A maculopapular rash on the 
back and chest was also described in a case series and a case report [102, 103]. Other 
clinical pictures remain more dubious since they have all been observed by just a single 
team in Sweden. According to this report, R. helvetica could be responsible for menin-
gitis also, since it has been found in the CSF alone or accompanied by the herpes sim-
plex virus 2 [104, 105]. Notably, Koetsveld et  al. published molecular evidence of 
R. helvetica and R. monacensis in the CSF of patients suspected of Lyme neurobor-
reliosis, but the implication of this coinfection for the symptoms or the effect of these 
bacteria on the clinical course of Lyme neuroborreliosis is not clear [106]. It has also 
been hypothesized that R. helvetica could be responsible for myocarditis associated 
with sudden death [107] but these findings have not been corroborated by other findings.

Interestingly, seroconversion in the absence of symptoms has been reported in 
22.2% of a cohort of 35 persons in the Gotland (Sweden) where I. ricinus is highly 
endemic [101]. Contact with the infection has also been indicated in France where 
the seroprevalence was reported to be 9.2% in forestry workers [99]. Compared to 
this high seroprevalence, clinical cases remain rare, obviously supporting the fact 
that R. helvetica is of low pathogenicity for humans. A recent study showed that 
R. helvetica has both, nonfunctional virulence proteins and a low level of expression 
of proteins that are usually essential for virulence in other Rickettsia spp. [108].

9.4.1.2  Ecology and Epidemiology
R. helvetica has been found in ticks across Europe (from Great Britain and France 
to the Baltic countries and Ukraine, through Denmark, Germany, and Poland). In 
addition, it has also been found in countries around the Mediterranean Sea [109]. In 
western Europe, I. ricinus is probably the most important vector for R. helvetica 
because the carrying rate for this species is higher than in others [110]. The infec-
tion rate of ticks reported in the literature varies from 4.7% in Slovakia to 17.4% in 
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Sweden [109], and some authors even mention a rate of 36.8% in endemic foci [99]. 
These data, however, are difficult to compare because these studies deal with vari-
ous tick stages. In addition, data on female adult ticks are not completely represen-
tative for the acarological risk for humans bitten by I. ricinus, since R. helvetica has 
been observed in all tick stages suggesting transovarial transmission [111]. Other 
studies noted an increase in prevalence depending on the stage, thereby suggesting 
the existence of an animal reservoir for R. helvetica [109].

The identity of such  animal reservoirs of R. helvetica,  however,  is unclear. 
Several animals have been investigated, for example, wild boar and roe deer [112, 
113] with carrier rates of 6.5–19.0%. However, it has not been demonstrated that 
ticks can acquire R. helvetica from these animals, though it was demonstrated 
that the prevalence of R. helvetica was higher in ticks from roe deer and dogs [114]. 
As for other Ixodes-borne microorganisms, small rodents have been presumed to be 
a reservoir host for R. helvetica because small rodents are hosts for tick larvae and 
nymphs [115]. Indeed, R. helvetica has been detected to a variable extent in 
Apodemus spp. mice and voles of different geographic origins [116, 117]. According 
to the study of Burri et al., A. sylvaticus and Myodes glareolus are unable to transmit 
R. helvetica to ticks [19].

Several bird species can be rickettsiemic [109] and similar to small rodents, birds 
are hosts for immature stages of ticks, but the reservoir competence of birds for 
R. helvetica has not been demonstrated yet.

9.4.2  Rickettsia monacensis

This species was described and isolated for the first time in Germany from I. ricinus 
ticks [118]. R. monacensis has been observed in different European countries: 
Poland, Germany, Hungary, Slovakia, France, and Ukraine as well as in Algerian 
ticks [109]. The prevalence of R. monacensis in questing ticks is variable, but it 
seems that it is lower than that of R. helvetica. It varies from 0.3% to 52.9%, but 
most prevalences are low and high prevalences could be linked to an area with a 
particular epidemiology. The animal reservoir of R. monacensis is currently 
unknown.

Initially considered to be a nonpathogenic species, cases of human disease have 
been described in Spain and Italy [109]. Symptoms include high fever, headache, 
and arthralgia. Inoculation ulcers may be present or not. If symptoms are present, 
the clinical picture may be reminiscent of Mediterranean Spotted fever.

9.4.3  Laboratory Diagnosis

The best sample for a direct diagnosis of a spotted fever group Rickettsia infection is 
a skin biopsy or a swab from the site of the inoculation ulcer or rash. The diagnosis 
can also be made, but with less sensitivity, from a blood sample. Immunofluorescence-
based serological methods, which are important in the diagnosis of rickettsiosis, are 
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performed in reference centers. To facilitate interpretation of the results, two sera 
should be taken, one at the time of the acute episode and the other at a later time [119].

9.5  Francisella tularensis

9.5.1  Bacterial Features

F. tularensis is a small Gram-negative rod, responsible for tularemia, and occurs in 
the northern hemisphere, in the holarctic region. This species is subdivided into four 
subspecies: F. tularensis subsp. tularensis (also known as type A strains), subsp. 
holarctica (type B strains), subsp. mediasiatica, and subsp. novicida. Tularemia 
clinical cases are mainly related to the tularensis and holarctica subspecies [120]. 
F. tularensis tularensis is primarily reported in North America, but isolates from the 
environment or arthropods have been identified also in Europe [121].

F. tularensis has an extensive wild animal reservoir: mammals, amphibians, 
birds, reptiles, and fishes can carry this bacterium. However, small rodents (mice, 
rats, voles, beavers, lemmings, etc.) and lagomorphs (rabbits, hares) are probably 
the main animal reservoirs [122]. F. tularensis can survive for several weeks in the 
soil or the aquatic environment, which can lead to contamination [123]. Finally, 
arthropods are a potential reservoir of F. tularensis, in particular mosquitoes, which 
become infected during their aquatic larval stage from an aquatic reservoir. No 
human-to-human transmission has been described to date [120]. Transmission by 
ticks will be discussed hereafter.

9.5.2  Tick Transmission of F. tularensis

Since its discovery at the beginning of the 20th century, isolation of F. tularensis 
was possible from Dermacentor andersoni, and a case of a patient who developed 
tularemia after a tick bite was reported by Parker, Spencer, and Francis in 1924 
[124]. Evidence for transmission from animal to animal by ticks was also provided 
in the first studies on this bacterium [124]. In contrast to what is observed for mos-
quitoes and deer flies, which are also vectors of F. tularensis, ticks can participate in 
the maintenance of F. tularensis in the environment for a long period [125]. The bite 
of Dermacentor andersoni, D. variabilis, or Amblyomma americanum is the most 
common route of contamination in North America [125]. In France, approximately 
20% of tularemia cases have been reported to be caused by a tick bite [126], but the 
study did not specify the species of tick concerned. Similarly, three cases of ulcero-
glandular tularemia from the Bade-Wurtemberg region have been reported with the 
origin of a presumed tick bite [127]. Serological data on forestry workers suggest a 
very low rate of transmission by ticks in areas of high I. ricinus endemicity [128].

Transstadial transmission of F. tularensis seems to occur under laboratory condi-
tions in the established North American vectors, Dermacentor andersoni, D. varia-
bilis, and Amblyomma americanum [125].
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Concerning I. ricinus, the percentage of ticks carrying F. tularensis is very low 
and seems to be lower than for Dermacentor species. Transstadial transmission 
occurs for F. tularensis in I. ricinus [129–131], unfortunately, the scientific quality 
of these papers cannot be fully appreciated since they are published only in Slovak. 
Transovarial transmission does not occur in Dermacentor reticulatus, nor in Ixodes 
ricinus [132].

Finally, using an experimental model consisting of tick cell lines, some authors 
suggest that the cell line of I. scapularis, is less permissive of F. tularensis infection 
than that of D. andersoni [133]. Future experiments highlighting the vector compe-
tence of I. ricinus for F. tularensis, would shed light on the transmission of this 
bacterium in Europe.

9.5.3  Clinical Pictures

The mean incubation of tularemia is 3–5 days, with a maximum of 2 weeks [120]. 
The first clinical manifestations are not very specific, evoking a flu-like syndrome 
(moderate fever, headache, arthralgia, myalgia, dry cough, sometimes diarrhea).

After the prodromal phase, the clinical manifestations of tularemia depend on the 
route of inoculation of bacteria and are classically grouped into six clinical forms. 
The ulceroglandular form, the most classic form, corresponds to a cutaneous lesion 
at the site of inoculation (papule, vesicle) which evolves rapidly towards a cutane-
ous ulcer [134]. Adenopathy arises rapidly in the lymphatic drainage area of the 
ulcer. This is the typical clinical picture that can be observed after a tick bite. 
Localized lymphadenopathy without skin lesions may be observed spontaneously 
or after healing of the cutaneous ulcer, and corresponds to the glandular form.

Other clinical manifestations can be observed: the oculoglandular form (syndrome 
of Parinaud) corresponds to conjunctival self-inoculation of F. tularensis after the han-
dling of an infected animal; the oropharyngeal form, which occurs after oral inocula-
tion (manual transmission, or ingestion of water or contaminated food); the pulmonary 
form, which may be primary after inhalation of a contaminated aerosol or secondary 
after hematogenous diffusion of bacteria; the typhoid form, which is characterized by 
severe systemic infection, with an acute influenza-like syndrome and often neurologi-
cal signs (confusion, prostration), but without a visible inoculation site and without 
clinical signs of focal infection (especially without adenopathy) [120].

9.5.4  Laboratory Diagnosis

9.5.4.1  Direct Diagnosis
Direct diagnosis can be performed by culture or by nucleic acid amplification, 
which is more sensitive for the detection of F. tularensis. Direct diagnosis can be 
performed on different matrices according to the clinical presentation: blood, lymph 
node samples, skin biopsy, conjunctival and oropharyngeal specimens [120]. Blood 
specimens are less sensitive for the detection of F. tularensis than other matrices 
since the bacterium is not always present in the blood.
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F. tularensis is a fastidious bacterium that requires enriched media such as choc-
olate agar plates or in a blood culture system (Fig. 9.2). F. tularensis culture must be 
performed under appropriate biosafety conditions. Identification is no longer a 
problem since the implementation of matrix-assisted laser desorption/ionization 
time-of-flight mass spectrometry in clinical microbiology laboratories [120].

9.5.4.2  Indirect Diagnosis
Diagnosis of tularemia is mainly based on serological assay using microagglutina-
tion or indirect immunofluorescence techniques. Antibodies can be detected one or 
two weeks after the disease onset, reach a peak around 3–4 weeks, and may persist 
for months to years [120].

9.5.4.3  Case Definitions
According to the World Health Organization [135], cases can either be suspect, 
presumptive or confirmed. For suspected cases, “an exposure history consistent 
with risks known to be associated with tularemia together with clinical symptoms 
compatible with tularaemia” are required. Presumptive cases are defined as: “sug-
gestive clinical symptoms and a clinical sample that tests positive for tularaemia by 
antigen or DNA detection. A single positive serum is also considered presumptive.” 
Finally, confirmed cases are defined as: “Recovery of an isolate and identification of 
the culture as F. tularensis by antigen or DNA detection. Alternatively, paired serum 
specimens with a fourfold difference in titer (tube or microagglutination assay) or 
significantly (ELISA), with at least one serum positive, are also considered confir-
matory” which suggests that a positive culture must be obtained for the confirmed 
case definition.

Fig. 9.2 Pure F. tularensis 
culture on a chocolate agar 
plate (photo credit : Dr 
F. Schramm, Bacteriology 
Laboratory, Hôpitaux 
Universitaires de 
Strasbourg, Strasbourg, 
France)
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9.5.5  Treatment

F. tularensis is naturally resistant to beta-lactams because of its intracellular multi-
plication in macrophages and the production of a class A beta-lactamase [136, 137]. 
Aminoglycosides (streptomycin and gentamicin), tetracyclines (especially doxycy-
cline), and fluoroquinolones (ciprofloxacin, levofloxacin, and moxifloxacin) are the 
most active antibiotics in vitro. Macrolides are active in vitro only on strains of type 
A and B biovar 1; B biovar 2 are naturally resistant [120].

Fluoroquinolones and tetracyclines are used for mild cases of tularemia. 
Interestingly, more relapses were observed with treatment by doxycycline (10–15%) 
than with ciprofloxacin (5–10%) [138]. Streptomycin is considered to be the refer-
ence molecule in the treatment of severe forms of tularemia, with success rates close 
to 100%. As this antibiotic is no longer available in most countries, the administra-
tion of gentamicin (3 mg/kg daily, in one or two intravenous infusions) is currently 
recommended in severe forms, alone or in combination with a fluoroquinolone [120].

9.6  Human Babesiosis

The name “Babesia” comes from Victor Babes who, in 1888, was the first microbi-
ologist to identify the intraerythrocytic protozoan in the blood of Romanian cattle 
and sheep suffering from febrile and severe hemolytic illness of unknown cause. In 
1893, the parasite was described as the agent of the tick-borne Texas fever in US 
cattle. Thereby, babesiosis (or “piroplasmosis”) was the first identified arthropod- 
borne disease. The first case of human babesiosis was reported by Skrabalo and 
Deanovic in 1957. This was a fatal case in an asplenic Croatian herdsman [139].

9.6.1  Etiologic Agents

In the phylum Apicomplexa, the genus Babesia embraces more than 100 species of 
tick-borne intraerythrocytic protozoans. Numerous species are involved in veteri-
nary diseases (e.g., B. bigemina and B. bovis, responsible for the worldwide bovine 
babesiosis). To date, three species are mainly responsible for human babesiosis: 
Babesia microti (United States, Europe, Asia), B. divergens (Europe), and B. vena-
torum (Europe, Asia). These three species are transmitted by ixodid ticks. B. dun-
cani, transmitted by the tick Dermacentor albipictus and restricted to the North 
American Pacific coast, is a fourth species of Babesia sp. involved in human cases 
[140]. Several other undescribed species have occurred in very rare cases [141]. 
B. microti is a member of a species complex that is phylogenetically quite distant 
from the Babesia sensu stricto group, which includes B. divergens and B. venato-
rum [142].
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9.6.2  Life Cycle, Zoonotic Transmission, and Hosts

In Europe, B. divergens, B. microti, and B. venatorum are transmitted by I. ricinus. 
In the United States, B. microti is transmitted by I. scapularis. I. persulcatus is the 
vector of B. microti and B. venatorum in Asia [143]. The cycle of Babesia spp. 
begins with sporozoite formation called “sporogony” which takes place in the sali-
vary glands of the tick vector. When the infected tick feeds on a naive vertebrate 
host, the sporozoite (infective forms) are inoculated along with tick saliva. 
Sporozoites migrate to the blood vessels and actively penetrate the red blood cells 
within which the vegetative form or “trophozoites” develop. Trophozoites undergo 
intraerythrocytic division forming “merozoites” that are intermittently released into 
the circulation and can then infect new cells [144]. Some forms resulting from mer-
ozoite invasion do not divide but develop into gametocytes that are the transmission 
stages from the vertebrate host to the tick vector. In most Babesia spp., the parasites 
persist from one feeding tick stage to the next and, in the group B. microti, they are 
then transmitted transstadially. Transovarial transmission only occurs in the Babesia 
sensu stricto group [145]. The main reservoir hosts are small rodents for B. microti, 
cattle for B. divergens, and roe deer in the case of B. venatorum [141, 146, 147]. The 
transmission of infection to a vertebrate host requires at least 48h of tick attachment 
in the case of a single nymph infected by B. microti [148]. Cases of human-to- 
human B. microti babesiosis transmitted by blood transfusion have been reported 
since 1979 [149], and there are rare documented cases of mother-to-child transmis-
sion [150].

9.6.3  Epidemiology

Human babesiosis caused by B. microti is endemic in the United States with 
900–1800 annual cases notified to the CDC from 2011 to 2014, corresponding to an 
incidence rate of around 0.8 per 100,000 population with most of the cases reported 
in the northeastern (Rhode Island, Massachusetts and Connecticut with 16.3, 8.0 
and 5.7 cases/100,000 population in 2014, respectively) and in the Midwest of the 
country [151]. The incidence of transfusion-transmitted babesiosis is estimated to 
be about 1–2% of the total of human cases [152].

The epidemiology of human babesiosis in Europe is not well known. While 
bovine B. divergens babesiosis is widely distributed in Europe, as is the tick vector 
I. ricinus, fewer than 50 human cases of babesiosis have been published to date, 
primarily severe cases in immunocompromised patients [141, 153]. B. venatorum 
infections are rarely reported in Europe; only sporadic cases have been described in 
Austria, Italy, Germany, and Sweden with milder forms than B. divergens infections 
[141, 153]. B. microti is also widespread in ticks in Europe (e.g., [154, 155]), but 
human disease is reported very rarely [156, 157]. Seroprevalence in Europe varies 
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depending on the studied region from 2 to 23% and is higher in the tick-exposed 
population [158].

In Asia, B. venatorum is reported as endemic in the northeastern region of China, 
and human cases of B. microti-babesiosis have been reported in China, Taiwan, and 
Japan [141].

9.6.4  Clinical Manifestations

In human babesiosis, the clinical manifestations mainly arise from the lysis of 
infected erythrocytes. The incubation period lasts generally from 1 to 4 weeks what-
ever the transmission route (tick bite or transfusion). Asymptomatic human infec-
tions are frequent in the United States. Given the results of the seroprevalence 
surveys, and the low number of published cases, Babesia infections in Europe may 
also be asymptomatic [158]. Moderate symptomatic cases in the United States show 
flu-like symptoms including fever, sweats, chills, headaches, myalgia, articulation 
pains, fatigue, and more or less marked hemolytic anemia signs such as jaundice, 
hemoglobinuria, hepatomegaly, and/or splenomegaly [141, 159]. Severe disease 
can occur in splenectomized, elderly, or immunocompromised patients. In these 
cases, the complications of babesiosis are severe anemia and/or thrombocytopenia, 
disseminated intravascular coagulation, macrophage activation syndrome, unstable 
blood pressure, and multi-organ failures (heart, lungs, kidneys, liver). In Europe, 
B. divergens and B. venatorum cause severe and mild to severe infections, respec-
tively, and almost all cases have occurred in splenectomized or hyposplenic patients 
[141, 153]. Despite adapted treatment, the clinical presentation can be prolonged in 
fragile patients. The fatality rate of symptomatic infection reaches around 5% in 
B. microti cases and >30% in B. divergens cases [141].

9.6.5  Laboratory Diagnosis

According to the CDC, the diagnosis of babesiosis relies on (1) clinical suspicion 
driven by objective signs (fever, anemia, thrombocytopenia) and subjective symp-
toms (chills, sweats, headaches, myalgia, arthralgia) and (2) microbiological evi-
dence embracing direct detection of the parasite in biological samples and indirect 
serological tests. Babesia serology is not specific enough, nor sensitive at the time 
of the acute illness, to provide diagnostic confirmation and is only supportive bio-
logical evidence (e.g., [141]). Thereby, human babesiosis is confirmed when clini-
cal suspicion is supported by direct detection (blood smears, DNA detection, or 
in vivo cultivation) of Babesia spp. while a case is probably when there is at least 
one objective sign and a positive serological result. In 2018, the US Food and Drug 
administration approved donor screening concerning blood, organ, and tissues sam-
ples based on B. microti testing by Array Fluorescent ImmunoAssay (AFIA) sero-
logical testing and by PCR assays on whole blood (both Imunogen® assays) 
[160, 161].
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Blood hematological and biochemical analysis. Among the unspecific bio-
logical signs, regenerative anemia due to hemolysis, and thrombocytopenia are 
generally seen in human babesiosis and others may occur proteinuria, hemoglo-
binuria, and elevated blood urea nitrogen, creatinine, bilirubin, and liver enzymes 
[141, 153].

Blood smear microscopy. In the acute phase, intraerythrocytic parasites may 
be observed in Giemsa or Wright stained blood smears. The examination of 
blood smears for this purpose should be conducted by experienced technicians. 
Typically, Babesia are shown as intraerythrocytic round trophozoites or piriform 
merozoites (Fig. 9.3). Groups of 4 elements (tetrads), although rare, are charac-
teristic of the B. microti-group parasites. This diagnostic feature is particularly 
difficult to observe because the parasitemia may be very low and the morphology 
of trophozoites can be misleading (e.g., mistaken for Plasmodium falciparum or 
artifacts) [162].

PCR assays. During the acute parasitemic phase, the DNA of Babesia may be 
detected in whole blood. The molecular biology assays are specific to each Babesia 
species. The 18S ribosomal RNA gene is a possible target for gene amplification 
[160]. The sensitivity of these methods (from 0.1 to 10 parasites/μL of blood) is 
better than blood smear examination [141].

Serological Tests. Immunofluorescence assays (IFA) are the most widely 
used serological tests for the determination of human exposure to Babesia spp. 
The serology is often not contributive for acute cases of babesiosis but can offer 
a retrospective diagnosis [153]. A high titer (≥1:256) or a positive IgG immu-
noblot are supportive biological evidence of babesiosis, while seroconversion or 
fourfold or greater increase in the serum antibody titer confirms the diagnosis 
[141, 160].

Fig. 9.3 Piriform parasitic 
inclusion of Babesia 
venatorum in an infected 
erythrocyte (photo credit : 
Pr K.-P. Hunfeld, Institute 
of Medical Microbiology 
& Infection Control, 
Hospital of the Johann 
Wolfgang Goethe-
University Frankfurt am 
Main, Germany)
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9.6.6  Treatment

The specific treatment is generally a combination of either atovaquone plus azithro-
mycin, or quinine plus clindamycin over 7–10 days. Supportive treatment may be 
needed in severe illness: for example, vasopressors, blood transfusions, exchange 
transfusions (if parasitemia >10%, hemoglobin <10 g/dL or organ failure), mechan-
ical ventilation or dialysis [141, 153].

9.7  Ixodid-Borne Flaviviruses

Louping ill is a sheep disease known since the 18th century in Scotland (United 
Kingdom) and was suspected to be transmitted by the tick Ixodes ricinus when the 
causative agent, louping ill virus (LIV), was first isolated in 1929 from infected 
animals [163]. Its name describes the neurological deleterious effects of the virus 
because “loup” means “to spring into the air” in the ancient Scots language. The 
first human cases were reported in 1934 [164]. Only a few years after the descrip-
tion of a novel human encephalitis disease in 1931 in Austria, the causative virus 
(Tick-Borne Encephalitis virus, TBEV) described as “Russian spring and summer 
encephalitis virus” was discovered in 1937 in Far-Eastern Russia [165]. The central 
European variant was shown to be transmitted by I. ricinus in 1949 [166]. The third 
human-associated Ixodes-borne flavivirus is Powassan virus (POWV), which was 
named with reference to the Canadian town where it caused a fatal case of encepha-
litis in a child in 1958 [167].

9.7.1  Virology

Like numerous other mosquito or tick-borne viruses, TBEV, LIV, and POWV are 
classified in the genus Flavivirus, family Flaviviridae. They are enveloped viruses 
about 50 nm in diameter, harboring two surface proteins, the envelope (E) and the 
membrane (M/prM) proteins. Their single positive-stranded RNA genomes are 
approximately 11kb in length and share a similar organization with one open read-
ing frame (ORF) encoding a polyprotein of 3414 amino acids that is processed co- 
and posttranscriptionally into three structural proteins (C, M, and E) and seven 
nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) 
[168, 169]. After attachment and endocytosis, the virus enters the target cell (tick or 
vertebrate) and changes its conformation to allow a fusion process and the release 
of the viral capsid within the host cell cytoplasm. The viral RNA is directly trans-
lated into a polyprotein, which is processed into structural and NS proteins by both 
cellular and viral proteases. The structural and NS proteins participate in the RNA 
replication. After the virion assembly, viral particles are released from the host cell 
through exocytosis [170].

P. H. Boyer et al.



219

9.7.2  Ticks, Hosts, and Reservoirs

TBEV, LIV, and POWV are transmitted by hard ticks belonging to the genus Ixodes 
(see part “Epidemiology and transmission” for more information about the tick spe-
cies involved in the human disease). The transmission of TBEV occurs mainly in 
the absence of systemic viremia through infected leukocytes migrating to skin with 
a preferential localization at the blood meal place, enabling transmission from ver-
tebrates to ticks and between co-feeding ticks (Labuda’s paradigm). In this way, 
ticks seem to be both vectors and reservoirs of the virus, while the vertebrates are 
intermediate hosts acting as transporters [171]. Non-viremic transmission by co- 
feeding has also been described for LIV [172]. Transstadial transmission from larva 
to nymph or adult (TBEV, LIV) and transovarial transmission from adult female to 
egg (TBEV) were also reported for these flaviviruses [168, 173]. Tick saliva factors 
enhance pathogen transmission by their role as immunomodulators of the host 
innate immune defenses. This saliva-assisted transmission has been experimentally 
proven for TBEV and POWV, for which the transmission rate was higher and the 
infection course was more deleterious when the inoculation of virus was supple-
mented by salivary gland extract [174]. Humans are an accidental and dead-end host 
of the three Ixodes-borne flaviviruses. The time of tick attachment required to trans-
mit flaviviruses to humans, from a few minutes to a few hours, is very quick com-
pared with other tick-borne pathogens such as Borrelia burgdorferi sensu lato or 
Anaplasma phagocytophilum [174, 175].

Many vertebrate species can be infected by the TBEV, but their relative impor-
tance as viral reservoir compared to ticks, especially for rodents, is not fully eluci-
dated [176]. The LIV is mostly transmitted to ticks by British red grouse, sheep, and 
mountain hares [177]. The ecological cycles of POWV involve small-to-medium 
mammals: rodents, mustelids, and lagomorphs [175].

9.7.3  Pathogenesis and Host Response

In addition to being transmitted by Ixodes ticks, TBEV, POWV, and LIV also dis-
play the same neurotropism. The pathogenesis mechanisms have been mostly stud-
ied in the case of TBEV. After inoculation into the host during the tick bite, the first 
replication cycles of the virus might occur locally in the skin, in dendritic cells for 
TBEV, and in macrophages and fibroblasts for POWV. Tick saliva exhibits immu-
nomodulatory properties that decrease the local inflammatory process. Due to their 
pattern recognition receptors, dendritic cells can recognize the virus and subse-
quently initiate a type I IFN response. The viral replication continues in the lymph 
nodes. Then, a short phase of viremia leads to virus dissemination especially in the 
central system nervous (CNS) after crossing the blood–brain barrier. Acting as 
antigen- presenting cells, dendritic cells also induce the adaptive immune response 
that begins at the end of the viremic phase. In the brain tissue, viruses mainly repli-
cate in neurons [169, 175, 178].
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9.7.4  TBE Virus

9.7.4.1  Epidemiology and Transmission
Tick-borne encephalitis is widely distributed in Central, Eastern, and Northern 
Europe and in Central and South-Eastern Asia. Phylogenetic analysis of TBEV 
revealed the existence of three geographically restricted subtypes: European 
(TBEV-Eu), Siberian (TBEV-Sib), and Far Eastern (TBEV-FE) [179]. The TBEV-Eu 
subtype is transmitted by I. ricinus, while the TBEV-Sib and the TBEV-FE subtypes 
are transmitted by I. persulcatus [180]. TBE is the second most prevalent tick-borne 
disease after Lyme borreliosis in Europe with around 2000–3000 annual cases 
reported in the EU. The highest incidences of TBE cases in 2016 were reported in 
the Baltic states (Lithuania, Latvia, and Estonia with 21.9, 10.4, and 6.2 cases/100,000 
hab., respectively), in Central Europe (Czech Republic, Slovenia, Slovakia, and 
Austria with 5.4, 4.0, 3.2 and 1.1 cases/100,000 hab., respectively) and in Scandinavia 
(Sweden and Finland with 2.4 and 1.1 cases/100,000 hab., respectively) [181]. In 
Europe, TBEV infections occur mainly (93%) during the warmest months of the 
year between May and October corresponding to the peak of tick activity [181]. In 
rare cases, TBEV can be transmitted by the consumption of unpasteurized milk 
products [181].

9.7.4.2  Clinical Manifestations
The incubation period ranges from 7 to 14 days. The disease has a biphasic evolu-
tion with firstly a prodromal phase consisting of a flu-like syndrome (fever, head-
ache, muscle pains) over 2 to 4 days which is followed in about a third of cases up 
to one week later by a severe neurological illness phase, with febrile meningitis, 
encephalitis, or meningoencephalitis. In the prodromal phase various symptoms, 
which may include fever, malaise, anorexia, muscle pains, headache, nausea, and 
vomiting, occur. TBEV-FE strains cause the most severe form of CNS disorder with 
recorded case fatality rates of 5–20%, while TBE mortality rate is estimated at 
approximately 2% for Eu-TBEV and Sib-TBEV subtypes. Neurological sequelae 
are frequent in the neuroinvasive forms [169, 178, 182].

9.7.4.3  Laboratory Diagnosis
According to the ECDC/EU definition, the confirmation of a TBE case is based on 
(1) clinical suspicion (meningitis, meningoencephalitis, or meningoencephalomy-
elitis), and (2a) serological evidence in the serum or in the CSF, or (2b) a TBEV 
isolation or (2c) positive detection of TBEV nucleic acid in a clinical specimen [183].

CSF cellular and biochemical analysis. The CSF analysis in TBE cases shows 
generally a pleocytosis ranging from 6 to 1200 mononuclear cells/μL with a moder-
ate increase in proteinorrachia and normal levels of glucose and lactate [184].

Serological testing. Serological confirmation is based either on the presence of 
TBE-specific IgM and IgG antibodies in the serum, or seroconversion, or fourfold 
or greater increase in the serum antibody titer, or the presence of IgM in the 
CSF. TBE-specific antibodies can be detected in the serum since in the acute illness 
phase of the disease IgM antibodies are present for the first few several months and, 
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after a few weeks protecting IgG occurs and are maintained in the long term. The 
commercialized enzyme-linked immunosorbent assays (ELISA) have generally a 
great diagnostic sensitivity but there are cross-reactions among flaviviruses (Yellow 
fever, Dengue, West Nile virus), that should be eliminated by a confirmation neu-
tralization assay mainly in regions where several flaviviruses are found. The intra-
thecal synthesis of TBE-specific antibodies is needed to confirm the TBE cases of 
vaccinated patients [184].

Direct detection. The detection of TBEV nucleic acids in blood by RT-PCR 
assays is a sensitive diagnostic method but only at the prodromal stage correspond-
ing to the viremic phase [184].

9.7.4.4  Treatment and Prevention
There is no specific treatment for TBEV, but four inactivated vaccines are cur-
rently available to prevent the infection. Two vaccines against European strains 
are mainly used in Europe (Encepur® and FSME-Immun®). The two others 
against Far Eastern strains are mainly used in Russia (TBE-Moscow and 
EnceVir®). Vaccination against TBE is recommended for the general population 
in highly endemic areas (incidence ≥5 cases/100,000 pop.) and in targeted at-
risk populations (e.g., forest workers) in other areas. In TBE confirmed cases, 
supportive care, based on the severity of the disease, should be administered 
including reduction of the brain edema, pain medication, seizure treatment, and 
assisted ventilation [175, 184].

9.7.5  Louping Ill Virus

9.7.5.1  Epidemiology and Transmission
LIV is transmitted by the European tick I. ricinus and has been mainly detected in the 
British Isles, and also in Norway and Denmark. In sheep, it causes a febrile disease 
leading to fatal encephalomyelitis. Variants of the virus have been detected in Spain, 
Turkey, and Greece. LIV infections in humans are very rare. Fewer than 50 human 
cases have been reported since 1934, the majority of whom have occurred in labora-
tory workers, veterinarians, abattoir workers, and butchers who were exposed to 
infected tissues or aerosols [185].

The clinical presentation of LIV infection is very similar to that caused by TBEV, 
with a prodromal phase and then a severe neurological illness phase. LIV infections 
are rarely fatal in humans [168]. Serological surveys suggest that subclinical or 
milder forms may exist because a significant percentage of exposed persons have 
positive serology (e.g., 8% of abattoir workers) [186].

9.7.5.2  Laboratory Diagnosis
LIV-seropositive sera exhibit cross reactions with TBEV assays because the two 
viruses are very closely related. Therefore, TBEV serology can be utilized as a 
diagnostic method for human LIV infection in the specific areas where the virus is 
circulating (UK and Ireland) [187].
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9.7.5.3  Treatment
There is no specific treatment against LIV. Vaccination is available for animals but 
not for humans [168].

9.7.6  Powassan Virus

9.7.6.1  Epidemiology and Transmission
POWV is present in Northern America (Canada and the United States primarily in 
the northeastern) and in Far-eastern Russia in the Primorsky Krai region. Fewer than 
50 cases have been reported in the United States in the 20th century, but there has 
been an increasing number of human cases in the last decade with an average of 9 
annual cases (min. 1- max. 22) from 2006 to 2016. Cases have been mostly recorded 
in Minnesota, Wisconsin, New York State, and Massachusetts [188]. There is a sea-
sonal distribution of POWV infections in the United States with most human cases 
reported from May to November, corresponding to the highest activity of ticks [188].

It is supposed that tick species involved in the maintenance of POWV in enzoo-
notic cycles are different from the tick species responsible for the transmission to 
humans. In America, the three species of tick thought to be the vectors of the virus 
are I. cookie, I. marxei, and I. scapularis, but this last is more anthropophilic than 
the two other species and by far the most involved in human cases. In Russia, the 
putative vector ticks of POWV are I. persulcatus, Dermacentor silvarum, 
Haemaphysalis japonica, and Haemaphysalis longicornis [175].

9.7.6.2  Clinical Manifestations
The infection is frequently inconspicuous [175]. When the disease is symptomatic, 
the incubation period ranges from 7 to 30 days [175, 178]. As for TBE, the infection 
caused by POWV comprises two phases. The prodromal phase includes a variety of 
flu-like symptoms such as fever, headache, malaise, fatigue, confusion, myalgia, 
gastrointestinal symptoms, and also a facultative erythematous rash. The acute 
phase of the disease is encephalitis, meningitis, or meningoencephalitis. Symptoms 
of this neuroinvasive illness are fever, headache, altered sensorium, aphasia, paraly-
sis, movement disorders, seizures (children), and visual disorders. The fatality rate 
is about 10% in neuroinvasive diseases. Long-lasting neurological sequelae are 
described in half of the survivors, including headaches, muscle disorders, and mem-
ory dysfunctions [188, 175].

9.7.6.3  Laboratory Diagnosis
When clinical presentation and epidemiological data lead to a suspicion of POWV 
infection, the CDC laboratory criteria for the diagnosis are: (1) either an indirect 
detection of POWV by serological tests revealing a 4-fold or greater increase in the 
serum specific antibody titer, or the presence of specific IgM antibodies in serum 
with a confirmation of the virus specificity by neutralizing antibody testing, or the 
presence of specific IgM antibodies in the CSF and the absence of IgM antibodies 
for other arboviruses circulating in the area of exposure, or (2) direct detection of 
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the virus by its isolation, or by antigenic or molecular methods from tissues, blood, 
CSF or other body fluid [175].

CSF cellular and biochemical analysis. In neuroinvasive disease, the CSF analy-
sis shows frequently moderate lymphocytic pleocytosis (<500  cells/μL) and an 
increase in proteinorachia with a normal glycorachia [175].

Serological testing. IFA, ELISA, or multiplex microsphere-based immunoassays 
(MIA) are currently used to perform POWV-specific serological tests in serum or CSF.

RT-PCR assays. The direct detection of viral RNA can be valuable for the diag-
nosis in serum during the short initial phase of viremia or in the CSF at the acute 
illness phase [175], but the negative predictive value of these tests is low.

9.7.6.4  Treatment
There are currently no specific treatments or vaccines against POWV. The therapeu-
tic approach is supportive including respiratory assistance, reduction of cerebral 
edema, pain medication, antiemetic treatment, rehydration, and anti-epileptic drugs 
[178, 188].

9.8  Human Co-infections by Several 
Ixodes-Borne Pathogens

Tick vectors can carry several microorganisms simultaneously that potentially cause 
diseases in humans, as reported by numerous surveys relying on molecular evidence 
[2]. In tick-exposed subjects, the risk of co-exposure and/or successive exposure is 
obviously higher than in the general population, as observed in the case model of 
forestry workers and shown by serological tools [128]. The simultaneous transmis-
sion of B. burgdorferi and B. microti by individual nymphs of I. scapularis has been 
experimentally shown in hamsters [189]. Conversely, with the current knowledge, 
there is a low level of evidence that the vector competence of ticks includes the 
simultaneous transmission of several microorganisms to humans. If co- transmissions 
occur, the infection by one of the two putatively pathogenic microorganisms or both 
can be interrupted in the very early stage and does not lead to human disease [190]. 
Jahfari et al. [80] provided evidence that among patients suffering only from Lyme 
borreliosis erythema migrans, 2.7% were coinfected with Can. N. mikurensis or 
A. phagocytophilum or Babesia divergens or B. miyamotoi without specific addi-
tional symptomatology. Few cases of concomitant infection or “co-disease” have 
been reported so far. Pathogenic interactions between tick-borne diseases have been 
described, as for example in a murine model of concurrent babesiosis and Lyme 
disease where it seems that B. microti enhanced the severity of borreliosis symp-
toms [191]. Coinfection ought to be considered in patients from highly endemic 
regions of tick-borne pathogens and who present with more serious symptoms than 
those commonly seen with Lyme borreliosis, especially fever for more than 48 h in 
spite of proper antibiotic therapy or unexplained cytopenia [192]. Finally, even if 
coinfections of ticks may result in coexposure of at-risk people, the incidence of 
coinfection and codisease in humans remains to be evaluated.
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