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Abstract. Successful incorporation of Electronic Health Records to the
data mining tools created new frontiers in digital clinical data analysis.
One of the well-known applications of clinical data analysis is the mor-
tality prediction of patients in intensive care units (ICUs). One impor-
tant aspect of mortality prediction is the analysis of multivariate time
series of observations after 24 or 48 h of ICU admission. Recent mor-
tality prediction models for ICU patients are based on either recurrent
neural networks or traditional machine learning algorithms using statis-
tical summaries of timestamped observations. Instead of using complex
neural network architectures and statistical summaries, we transform
multivariate time series into multi-instance representation by keeping the
expressiveness of the original observations. We then perform mortality
prediction using multi-instance machine learning algorithms. Our empir-
ical study shows that multi-instance representation achieves comparable
or better (in some configurations) performance in various experiments.

Keywords: Multi-instance learning · Multivariate time series
analysis · Machine learning using statistical summaries · Descriptive
statistics · Ensemble methods

1 Introduction

Electronic Health Records (EHRs) contain an electronic medical history of dif-
ferent patients collected over time, namely, the key clinical data related to the
health routine of patients. Clinicians need to examine these data and prepare
treatment options for patients in a short period of time [21,22,37]. A fast diag-
nosis and treatment is especially important for the patients staying in intensive
care units (ICUs), because they are admitted to these units in extreme situ-
ations. Hospitals and health care providers are also interested in a status of
patients in intensive care units such as how long a patient is going to stay in
ICU, whether or not a patient is going to die after certain number of hours (e.g.
24 or 48 h after ICU admission). With this grounding, they are able to organize
future actions to save time, cost and other resources required for each patient.

This work was supported by the Fraunhofer Internal Programs under Grant No. Attract
042-601000.

c© Springer Nature Switzerland AG 2021
E. K. Rezig et al. (Eds.): Poly 2021/DMAH 2021, LNCS 12921, pp. 103–120, 2021.
https://doi.org/10.1007/978-3-030-93663-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93663-1_9&domain=pdf
http://orcid.org/0000-0002-1441-8569
http://orcid.org/0000-0003-3515-9209
https://doi.org/10.1007/978-3-030-93663-1_9


104 R. Babayev and L. Wiese

To determine future patient status, monitoring data are utilized. These data are
mostly collected as multivariate time series containing values for each key health
indicator (e.g. heart rate, respiratory rate, Creatinine level, etc.) in a temporal
order. In our study, we focus on mortality prediction after 48 h of ICU admission
through multivariate time series classification.

A lot of research has been carried out for multivariate time series analy-
sis of health monitoring data [3,8,19,32,40]. In their experiments, the authors
either use deep neural networks (especially recurrent neural networks) for
sequence/temporal modeling or create feature spaces from time series variables
digested by traditional machine learning algorithms such as random forests, logis-
tic regression classifiers, support vector machines, etc. Recurrent neural networks
are useful tools to learn sequential or temporal relationships from time series
data [32]. However, there are still some open questions remaining about the pos-
sible effectiveness of deep learning models for health care data. For example, the
size of the data in health care applications is often modest relative to the com-
plexity of deep learning models [19]. More specifically, these models can easily
overfit on small-scale data. Moreover, complex architectures and parameter con-
figurations need to be maintained for training. In contrast, traditional machine
learning algorithms are not as complex as deep neural networks, however, the
vast majority of them are not designed in a way that they can handle sequen-
tial/temporal data. To cope with this issue, the straightforward approach is to
map multivariate time series data to the data with a single instance (or a propo-
sitional) feature space. As an example, assume that a multivariate time series
contains T observations of D variables in a temporal order. One can generate the
following statistical summaries for each variable d ∈ {1, . . . , D} from that time
series by considering all T observations; Maximum, Minimum, Mean, Median,
Mode, Standard deviation, Variance, Range, Geometric center, Kurtosis, Skew-
ness, Averaged power, Energy spectral density [35]. Then a feature space can
be generated by all of these summaries or a subset of them. Now assume that
the Maximum and Minimum are selected, then a single instance obtained from
the respective time series becomes a part of Minimax feature space containing
2 · D variables (features). In this approach, the time order is not considered and
instead of using raw features and their values, generated features and their cor-
responding values are applied for training machine learning models. This kind
of approach does indeed show decent predictive performance [3,8,19,35]. In our
work, we focus on using as many raw features as possible to keep the expres-
siveness of the original dataset. To do so, we represent multivariate time series
data as multi-instance data in the context of an MIL (Multi-Instance Learn-
ing) framework. In this representation, each observation of variables in a time
series is considered as one instance and a collection of such instances is denoted
as a bag with a corresponding class label. Finally, we benchmark multivariate
time series classification by classifying bags with multi-instance versions of tra-
ditional machine learning algorithms in the MIL framework. Our results show
that the multi-instance representation yields comparable or sometimes better
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(in some configurations) performance as compared to the statistical summary
representation.

2 Related Work

Multi-Instance Learning (MIL) is a notable topic in machine learning proposed in
1997 [9] as a variation of supervised learning (weakly supervised) for drug activ-
ity prediction. Since then, MIL frameworks are adapted for many other areas.
For instance, [2] incorporated SVM (support vector machines) to the MIL frame-
work and proposed MISVM to generate instance-level and bag-level predictions
effectively. The work by [45] expanded multi-instance SVM approaches through
MIMLSVM (multi-instance multi-label SVM) for solving multi-label classifica-
tion tasks. MIGraph [46] is proposed to model multi-instance bag structures.
Generative mixture models – MIMM (multi-instance mixture model) [11], and
DPMIL (dirichlet process mixture of gaussians) [27] are adapted to tackle binary
multiple-instance classification problems. Deep multi-instance learning methods
are also introduced in an MIL setting [23,30,31,42,44,47]. In-depth surveys of
MIL frameworks are given in works such as [1,7,20,39]. Time series analysis is
adopted into the MIL framework by [17] which utilizes an autoregressive hidden
markov model for an activity recognition in time series data. The work by [36]
proposes a multi-instance learning method for a sound event detection from time
series. Multi-instance learning approach based on the time series modeling for
EEG (Electroencephalogram) identification is proposed by [24].

Despite some applications, we have not noticed any work which benchmarks
multi-instance learning on multivariate time series data. The goal of our work is
to achieve this in the context of multivariate time series classification.

3 Preliminaries

In this section, we present mathematical notations for a multivariate (multi-
dimensional) time series and briefly discuss background for the multi-instance
learning in this context.

Following the notations from [8], we specify a multivariate time series
with D variables (also known as a D-dimensional time series) of length T as
X = (x1, x2, . . . , xT )ᵀ ∈ R

T×D, where ∀t = {1, 2, . . . , T}, xt ∈ R
D is a vector

which represents the t-th measurements (observations) of all variables and xd
t is

the observation of d-th variable of xt. In this paper, we focus on time series clas-
sification to predict a label ln ∈ {1, . . . , L} for each of N multivariate time series
collected in a dataset D, where D = {(Xn)}Nn=1 and Xn =

[
x
(n)
1 , x

(n)
2 , . . . , x

(n)
Tn

]
.

3.1 Multi-instance Learning

Multi-instance learning (MIL) is a type of supervised learning where the data
points are collected in multisets called bags, and the entire bag has a label – either
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discrete or real-valued. The data points of each bag are called instances. The
main purpose is to learn a model from the instances of the bag and the label of
the bag such that bag-level and instance-level predictions can be generated. Our
focus in this work is a classification task (i.e. discrete-valued labels), more specif-
ically binary classification. In general, there are two types of assumptions that
can be used to model relationships between the bag label and labels of instances
inside the bag. The first assumption is called the standard MI assumption [9]. In
this assumption, the bag label is considered negative if all instances inside the
bag are negative and it is considered positive if at least one instance inside the
bag has a positive label. We follow the notations provided by [7] to explain the
assumptions. Let B be a bag of M instances with static features (a.k.a propo-
sitional instances or feature vector instances), namely, B = {z1, z2, . . . , zM}.
Assume that ∀m ∈ {1, . . . ,M}, an instance zm in a feature space Z is mapped
to a class by some imaginary function f : Z → Ω, where Ω = {0, 1}, and where
0 and 1 represent negative and positive labels correspondingly. Then, the bag
classifier (a.k.a the aggregator function), g(B) is given by:

g(B) =

{
1 if ∃z ∈ B : f(z) = 1
0 otherwise

(1)

This standard assumption might be viewed as too strict for some cases where
positive bags cannot be determined by a single instance of a bag. Therefore, this
assumption is relaxed to the collective MI assumption [10,43] which treats the
contribution of each instance to the bag label separately. In contrast to the stan-
dard assumption, the collective assumption considers a bag B as a distribution
P (z|B) (the probability of an instance z given a bag B) over the feature space
Z, and similarly considers labels as a distribution P (c|z) over instances, where
c ∈ Ω = {0, 1}. The collective assumption then models the distribution

P (c|B) =
∫

Z
P (c|z)P (z|B)dz. (2)

To calculate this, the probability distribution P (z|B) for the bag must be known.
Generally, this probability distribution is not known in practice; hence, an empir-
ical version over the instances in the bag is calculated instead:

P̂ (c|B) =
1

MB

MB∑
m=1

P (c|zm), (3)

where MB is the number of instances inside the bag B. Since P (c|zm), ∀m =
{1, . . . , MB} is also unknown, most methods based on the collective assumption
learn this distribution as in a single-instance dataset [10,43]. The probability
distribution in (3) is also called an arithmetic average of posterior probabili-
ties of instances in the bag. In this probability distribution, the instance-level
class label is modeled by P (c|zm) for each m ∈ {1, . . . , MB} for the bag B. It
can also be modeled by a logit transformation, namely, the log-odds function
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log
P (c = 1|zm)
P (c = 0|zm)

[10]. When the logit transformation is substituted in (3), the

following equation is obtained:

log
P (c = 1|B)
P (c = 0|B)

=
1

MB

MB∑
m=1

log
P (c = 1|zm)
P (c = 0|zm)

=
1

MB
log

[
P (c = 1|z1)
P (c = 0|z1) · . . . · P (c = 1|zMB

)
P (c = 0|zMB

)

]

⇒ 1 − P (c = 0|B)
P (c = 0|B)

=
[
∏MB

m=1 P (c = 1|zm)]1/MB

[
∏MB

m=1 P (c = 0|zm)]1/MB

⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (c = 1|B)

= [
∏MB

m=1 P (c=1|zm)]1/MB

[
∏MB

m=1 P (c=1|zm)]1/MB+[
∏MB

m=1 P (c=0|zm)]1/MB

P (c = 0|B)

= [
∏MB

m=1 P (c=0|zm)]1/MB

[
∏MB

m=1 P (c=1|zm)]1/MB+[
∏MB

m=1 P (c=0|zm)]1/MB

(4)

Equation (4) is called a (normalized) geometric average of posterior probabilities
(or an arithmetic mean of log-posterior) [10] of instances in the bag.

The collective assumption weights every instance inside a bag equally. The
paper [12] presents a collective assumption with instance weights. It is called
the (arithmetic) weighted collective MI assumption and simply utilizes weights
of instances inside a bag to calculate the probability distribution

P̆ (c|B) =
1

wB

MB∑
m=1

w(zm) · P (c|zm), (5)

where w : Z → R
+ is a weight function over instances and wB =

1
MB

∑
z∈B

w(z) [10]. The probability distribution for a geometric weighted col-

lective assumption can be calculated similarly. Finally, an aggregator function
for the collective assumptions can be defined as follows:

g(B) =

{
1 if P (c = 1|B) ≥ P (c = 0|B)
0 otherwise

. (6)

3.2 Multivariate Time Series in the MIL Framework

We incorporated multivariate time series into the MIL framework as follows; we
consider ∀n = {1, . . . , N} a multivariate time series Xn as one bag, and the obser-
vations of all D variables at each time step t ∈ {1, . . . , Tn} as an instance of this
bag. More formally, the bag Bn of Xn is defined as Bn = {x

(n)
1 , x

(n)
2 , . . . , x

(n)
Tn

},
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where the class label of Xn becomes the bag label of Bn. With this in mind,
various multivariate time series having different lengths can be considered inside
their own encapsulating bags, so that the expressiveness of the original values is
maintained without rescaling the time series data.

4 Empirical Evaluation

4.1 Dataset and Task Description

We evaluate the performance of a classification in the MIL framework on multi-
variate time series data using several robust machine learning approaches specif-
ically used for this kind of classification tasks. We evaluate our models for dif-
ferent settings such as for the data obtained by different imputations methods,
by boosting and bagging.

PhysioNet Challenge 2012 Dataset (PhysioNet). This dataset is from PhysioNet
Challenge 2012 [38] which is a publicly available1 collection of multivariate clini-
cal time series records of 12000 intensive care unit (ICU) patients. Each record is
a multivariate time series of 48 h after ICU admission of a corresponding patient
and contains 36 variables such as mean arterial blood pressure, heart rate, respi-
ratory rate, etc. The dataset is divided into three sets (Set-A, Set-B, Set-C) each
having 4000 multivariate time series. Set-C is designated for the reviews of the
challenge, so we did not use it. We used Set-A and Set-B in our experiments.
We perform the mortality prediction task on this dataset to predict whether a
patient dies in a hospital after 48 h. We designate the class of death as a positive
class (with the label of 1) and the class of survival as a negative class (with
the label of 0). This is a binary classification task. There are 554 positively
labeled multivariate time series, and 3446 negatively labeled multivariate time
series in Set-A. For Set-B and Set-C, these numbers are 568–3432, and 585–3415
respectively. The class imbalance for each of these sets is roughly 14% (positive)–
86% (negative). We test different approaches to handle the class imbalance, i.e.
through undersampling or oversampling.

Because the PhysioNet dataset is collected from Electronic Health Records,
it has missing values. We replace missing values with Mean and Forward meth-
ods. Apart from that (similarly to [8]), we combine the invasive blood pressure
variables DiasABP (diastolic arterial blood pressure), SysABP (systolic arterial
blood pressure) and MAP (mean arterial blood pressure) with noninvasive ones,
i.e., NIDiasABP, NISysABP and NIMAP respectively which effectively reduces
the number of variables to 33. The combination of variables enables us to reduce
the number of missing values as well. More formally, it is possible to obtain one
value from the other using the following formula [6]:

MAP =
(2 · DiasABP + SysABP)

3
. (7)

1 https://physionet.org/content/challenge-2012/.

https://physionet.org/content/challenge-2012/
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In this case, if a MAP value is not present for some time step, then it can be
calculated from the existing DiasABP and SysABP value of that time step. The
similar approach is also used for missing DiasABP and SysABP values. After
that, it is possible to replace missing values with the computed values. The main
benefit here is the replacement of missing values with the real values, instead of
imputed ones. During the combination, if there are existing values for invasive
and noninvasive counterparts for the same time step, then we prefer an invasive
measurement instead of noninvasive one [33]. Our combination of variables differs
from [8] in a few more nuances. For example, instead of using raw timestamps
in each multivariate time series, they take hourly samples of observations. More-
over, they perform forwarding through hourly/2-hourly samples in their forward
imputation method. In terms of expressiveness, we do not apply such stages.

4.2 Machine Learning Approaches

To benchmark the multivariate time series classification in the MIL framework,
we used different multi-instance learners from the WEKA machine learning
workbench (version 3.7.2) [18]. The multi-instance learners are available under
the weka.classifiers.mi package. We explicitly tested the following learners:

– weka.classifiers.mi.MILR uses either the standard or collective multi-
instance assumption, but within a logistic regression. We picked the collec-
tive assumption with the geometric average of posterior probabilities which
outperformed other assumptions for this learner.

– weka.classifiers.mi.MIWrapper [13] is a simple Wrapper class for apply-
ing standard propositional (feature vector) learners to multi-instance data.
As the first step, MIWrapper gathers instances from all bags, and labels each
instance with the label of its bag. This step creates a propositional (i.e. single-
instance) version of the multi-instance dataset. Then, it weights all instances
such that each bag has equal cumulative total weight. Different weighting
schemes are available; we used unit weighting for propositional instances.
After weighting, a single-instance (feature vector) learner is utilized for this
propositional dataset. During the learning phase, the single-instance learner
estimates class probabilities for all instances inside the bag for which the bag
label should be generated. The generated bag label is simply the mean (arith-
metic or geometric) of the estimated class probabilities of the corresponding
instances [10]. For MIWrapper, we selected

• weka.classifiers.trees.RandomForest
• weka.classifiers.functions.Logistic

as propositional learners and used the collective assumption with the geomet-
ric average which performed better than other collective assumptions. The
latter class refers to the logistic regression (LR). Both LR and the random
forest (RF) are widely used in health care applications [3,8,19,40].

– weka.classifiers.mi.SimpleMI reduces multi-instance data into single-
instance data by taking an arithmetic or geometric average of variable (fea-
ture) values of instances or by creating a minimax feature space from instances
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inside each bag. After reducing each bag into a single instance or feature vec-
tor, single-instance learners such as the random forest or the logistic regression
can be used for modeling. In our experiments, we make use of the arithmetic
average of variable values which provides higher performance. This scheme is
equivalent to the feature space obtained by Mean statistical summary having
the same number of variables (features) as of multi-instance data (see Sect. 1).

– weka.classifiers.meta.RealAdaBoost is a class for boosting a binary clas-
sifier using the Real Adaboost method [16]. We utilized this class to boost
binary classifiers which are wrapped by MIWrapper and SimpleMI.

– weka.classifiers.meta.Bagging [5] is a class for bagging a classifier to
reduce variance. It can perform a classification and regression depending on
the base learner. We used this class as a meta learner for MILR and for the
logistic regression wrapped by SimpleMI.

Outlier removal:
None

Missing value imputation:
Mean

Forward

Attribute (feature) selection:
None

Class imbalance handling:
Random undersampling

Hyperparameter selection:
By choice

Fig. 1. Multi-instance learning pipeline

Remember that a bagging (bootstrap aggregating) [5] and boosting are
ensemble machine learning methods to enhance base classifiers for a better
predictive performance. Thus, there is a clear distinction between an ensemble
method bagging and bags used in the MIL setting where each bag is a multiset
instance.
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In our study, we compare the performance of learners in the multi-instance
context with the learners using the data obtained by SimpleMI (i.e. statistical
summary representation). We use short names of learners for the demonstration
of results such as SMI for SimpleMI, MIW for MIWrapper, RB for RealAd-
aBoost, BG for Bagging, RF for random forest and LR for logistic regression.

4.3 Multi-instance Learning Pipeline

To make the data ready for multi-instance learners, the data preprocessing is
performed through the pipeline presented in Fig. 1. More comprehensively:

– Physionet dataset is a dataset containing the first 48 h of recordings after
ICU admission. After 48 h, either a patient died or survived. Patients are
admitted to the intensive care unit (ICU) in extreme circumstances. In this
case, their health recordings may contain values deviating from the rest of the
population in the ICU. However, these values are still valid and might not be
taken as outliers. From the statistical point of view, traditional outlier removal
methods (e.g. standard deviation based or median absolute deviation based)
can easily strip out this information from the patients’ data. For the sake of
expressiveness, we do not explicitly perform outlier removal. We also observed
that the authors of Physionet dataset successfully removed the medically
implausible values during the dataset creation [25].

– For imputing missing values we used mean and forward methods which show
decent results [8,32].

• Mean (shortly M) [8] – a mean value for each of 33 variables is computed
from the existing measurements in all multivariate time series in Set-A.
Then, missing values for each variable in Set-A and Set-B are replaced
by the corresponding mean value.

• Forward (shortly F) [32] – in this strategy, we impute the missing value
xt
d of a variable d at a time step t as follows; if there is at least one

measurement which is recorded previously for a variable d at a time t′ < t,
we perform a forward imputation by xt

d ← xt′
d . If there is no measurement

that is recorded previously (or if the variable is completely empty), then
we compute the median over all existing measurements in Set-A and
replace the missing values by the respective median in both Set-A and
Set-B.

– We do not perform an attribute selection for Physionet dataset. Our purpose
is to make the version of the dataset comparable to the dataset used in [8]
which also applies a variable combination we explained in Sect. 4.1.

– The class imbalance for each subset (Set-A, Set-B, Set-C) of Physionet
dataset is around 14% (positive)–86% (negative). To handle this prob-
lem, we make use of SpreadSubsample class (shortly SS) from the package
weka.filters.supervised.instance with a distribution 1.0 which is a ran-
dom undersampling effectively reducing the negative class to the size of the
positive class (a class imbalance of 50%-50%). We also checked random over-
sampling of the positive class to the size of negative class using the respective
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WEKA class. However, this caused higher false negatives in our experiments.
Oversampling is a data generation process and we think that more sophis-
ticated oversampling strategy is required to mimic the existing multivariate
time series data (especially for the health-related data).

– Finally, we set hyperparameters for machine learning algorithms by choice.
For instance, for the RF, we set the number of trees to 100 (which demon-
strated better performance and is tolerable in terms of runtime). For boosting
algorithms, the number of boosting iterations is selected to be 10. For run-
time constraints, we do not apply hyperparameter tuning through the cross-
validation (CV) or grid search, because the learners are wrapped by classes
where each wrapper has its own parameters. The other parameters of learners
are WEKA defaults.

4.4 Experimental Setup

In our experiments, two different setups are tested. For each setup, an AUROC
value of the classification is reported. The AUROC is a standard metric for eval-
uating the performance of classifiers. The weka.classifiers.Evaluation class
is applied for the evaluation.

1. Learners are trained on Set-A and tested on Set-B in 10 runs. In each run,
Set-A is randomly shuffled with a different random seed and then a train/test
procedure applied. Finally, the results are averaged.

2. Predictive models are built using a stratified CV on Set-A and then an average
AUROC is reported. Some papers [8] only used this setup, since at their time
of writing, class labels were not available for Set-B and Set-C.

4.5 Interpretation of Results

Results are generated for different configurations. Each configuration is titled by
the short names of learners and short names of pipeline stages. For instance, RB-
MIW-RF-M-SS means that the data are mean imputed (M), a class imbalance
is handled by SpreadSubsample (SS) (undersampled) and the resulting data are
learned by the random forest (RF) which is wrapped by MIWrapper (MIW) and
boosted by RealAdaBoost (RB). For BG-SMI-LR-F-SS, the data are forward
imputed (F), a class imbalance is handled by SpreadSubsample (SS) (undersam-
pled), then the data are transformed into a single-instance format (using Mean
statistical summary) by SimpleMI (SMI), and the resulting data are learned
by LR which is enhanced by Bagging (BG). The other configurations can be
understood similarly.

The bagging is a technique to reduce the complexity of models that overfit dur-
ing training, whereas boosting is used to increase the complexity of models subject
to high bias, thus, handles underfitting during training. We observe that the RF is
better enhanced by RealAdaBoost and LR is by Bagging through systematically
testing different meta learners that WEKA provides. These boosting and bagging
combinations yield more balanced learners for our experiments where we compare
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them to non-bagged and non-boosted variants. In this manner, the RF is boosted
by RealAdaBoost in both multi-instance and propositional settings. MILR and
the propositional logistic regression (SMI-LR) are enhanced by Bagging. The only
exception is a logistic regression in the multi-instance setting which is wrapped
by MIWrapper; we find that RealAdaBoost improves the base learner better than
Bagging (especially for the mean imputation) so that we provide the results for
the former meta learner. The main benefit of RealAdaBoost is that it improves
the base learner by adapting predicted class probabilities of instances [34] which
is useful in a multi-instance setting − a bag label is determined collectively by the
probability distribution of labels of its instances.

Table 1. Model performances measured by average AUROC score for mortality pre-
diction. The weight of each instance in a bag is 1. After propositional conversion unit-
weighting for each single instance is still maintained. The results are generated by
train/test procedure through 10 runs.

Mortality prediction on PhysioNet dataset

MILR BG-MILR

MILR-M-SS 0.8051 BG-MILR-M-SS 0.8075

MILR-F-SS 0.8094 BG-MILR-F-SS 0.8098

MIW-RF MIW-LR

MIW-RF-M-SS 0.7736 MIW-LR-M-SS 0.7645

MIW-RF-F-SS 0.8146 MIW-LR-F-SS 0.8094

RB-MIW-RF RB-MIW-LR

RB-MIW-RF-M-SS 0.7808 RB-MIW-LR-M-SS 0.8035

RB-MIW-RF-F-SS 0.8190 RB-MIW-LR-F-SS 0.8044

SMI-RF SMI-LR

SMI-RF-M-SS 0.8212 SMI-LR-M-SS 0.8051

SMI-RF-F-SS 0.8224 SMI-LR-F-SS 0.8094

RB-SMI-RF BG-SMI-LR

RB-SMI-RF-M-SS 0.8301 BG-SMI-LR-M-SS 0.8075

RB-SMI-RF-F-SS 0.8313 BG-SMI-LR-F-SS 0.8098

In Table 1, we report the results of the first experimental setup (train/test)
and in Table 2, we show the results for the second setup (stratified CV). In
both tables, we tested all configurations for unweighted instances in the bag,
namely the weight of every instance is 1 in each bag. In the experiments, a unit
weighting is also maintained after propositional conversion. In multi-instance
configurations, bags are also unit-weighted.

We observe that the settings we set for MILR, BG-MILR and SMI-LR,
BG-SMI-LR respectively, resulted in a similar predictive performance. MILR
and BIG-MILR applies a geometric average of posterior probabilities of instances
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inside a bag to obtain a bag label, however, SMI-LR and BG-SMI-LR uses Mean
statistical summary of instances inside a bag during training. We notice that a
bagging slightly improves MILR and SMI-LR performances for both setups.

As compared to MILR (in MILR-M-SS), MIW-LR demonstrates slightly lower
performance for the mean imputation (MIW-LR-M-SS). The MIWrapper (MIW)
performs a propositional conversion and generates a bag label from the esti-
mated class probabilities of bag’s instances. Remember that the mean imputation
replaces all missing values with the corresponding mean value. Thus, it inherently
causes the creation of more similar propositional instances (after conversion) from
each bag and across the bags as compared to the forward imputation which in turn
negatively affects the performance of a bag label prediction from the class prob-
abilities of respective instances for the LR. The similar phenomenon also occurs
for MIW-RF with the mean imputation (namely, MIW-RF-M-SS). The forward
imputation enables MIW-RF (in MIW-RF-F-SS) and MIW-LR (in MIW-LR-F-
SS) to show similar or better performance than MILR (i.e. MILR-F-SS).

Table 2. Model performances measured by average AUROC score for mortality pre-
diction. The weight of each instance in a bag is 1. After propositional conversion unit-
weighting for each single instance is still maintained. The results are generated by
10-fold CV on Set-A.

Mortality prediction on PhysioNet dataset

MILR BG-MILR

MILR-M-SS 0.7540 BG-MILR-M-SS 0.7583

MILR-F-SS 0.7679 BG-MILR-F-SS 0.7685

MIW-RF MIW-LR

MIW-RF-M-SS 0.7537 MIW-LR-M-SS 0.7274

MIW-RF-F-SS 0.7917 MIW-LR-F-SS 0.7685

RB-MIW-RF RB-MIW-LR

RB-MIW-RF-M-SS 0.7563 RB-MIW-LR-M-SS 0.7518

RB-MIW-RF-F-SS 0.7977 RB-MIW-LR-F-SS 0.7639

SMI-RF SMI-LR

SMI-RF-M-SS 0.8113 SMI-LR-M-SS 0.7540

SMI-RF-F-SS 0.7939 SMI-LR-F-SS 0.7679

RB-SMI-RF BG-SMI-LR

RB-SMI-RF-M-SS 0.8159 BG-SMI-LR-M-SS 0.7583

RB-SMI-RF-F-SS 0.8101 BG-SMI-LR-F-SS 0.7685

The variants of MIWrapper (MIW) with RealAdaBoost, namely, RB-MIW-
RF and RB-MIW-LR improves the performance of MIW-RF and MIW-LR respec-
tively (except for MIW-LR-F-SS). Remember that 10 runs/folds used in both
experimental setups averages the predictive performance of the boosted variants
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(where each variant internally does 10 iterations). Thus, even an averaging in our
setups enables boosted variants enhance their non-boosted counterparts.

The multi-instance configuration with the highest performance in Table 1 is
RB-MIW-RF-F-SS with 0.8190 average AUROC which improves upon MIW-
RF-F-SS having 0.8146 average AUROC. We observe the similar case in Table 2.

In Table 1, the single-instance configuration with Mean statistical sum-
mary shows the highest performance in RB-SMI-RF-F-SS with 0.8313 average
AUROC. In our tests, it is even higher than Geometric Center and Minimax
statistical summaries that SimpleMI class provides for the same configuration.
It seems that Mean statistical summary better reflects original data points than
the other summaries. In our experiments, we utilize Mean statistical summary
for all configurations containing SimpleMI (SMI).

The single-instance configuration with Mean statistical summary showing
the highest performance is RB-SMI-RF-M-SS having 0.8159 average AUROC in
Table 2. In general, the CV (Table 2) does not yield higher results as compared to
the train/test setup in Table 1. The main reason of that is the number of instances
used in both setups. The train/test setup has more instances to learn/test (since
it trains on Set-A and tests on Set-B) than the CV setup (which does a stratified
CV on Set-A). In both setups, the forward imputation generally yields better
results as compared to the mean imputation.

Our experimental setups show that the multi-instance learners are capable
of performing multivariate time series classification in a decent level. We expect
that they can show even higher performance after more careful data preparation
and in more sophisticated parameter configurations.

5 Discussion

5.1 The Other Multi-instance Learners

In our tests, we comparably examined different multi-instance learners from the
weka.classifiers.mi package in terms of their heuristics, hyperparameter space
and predictive performance with respect to the learners presented in Sect. 4.2.
For some of them, the implementation is not relevant for a multivariate time
series representation. For the others, they either need many hyperparameters
to be adjusted or do not provide an adequate predictive performance in their
default settings. For instance:

– weka.classifiers.mi.MIBoost is a multiple instance AdaBoost method
which considers the geometric average of posteriors of instances in the bag
and takes the expectation for a bag inside the loss function [15]. Analogous
to MIWrapper, it is possible to wrap RF and LR by MIBoost. The default
number of boosting iterations is set to 10 by WEKA.

• The one drawback of this method is that AdaBoost adapts itself according
to the amount of error on predicted classes of instances [34] rather than
class probabilities of instances like RealAdaBoost. Thus, it may not be
effective in a multi-instance setting.
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• Another drawback is that it internally converts all instances in the bag to
the propositional format and weights each propositional instance by total
number of propositional instances after conversion/(total number of bags
∗ total number of instances in the corresponding bag). This weighting
scheme is not appropriate for a multivariate time series representation
and we indeed obtained relatively low predictive performance in the tests
with respect to our chosen learners (i.e. MILR, MIW-LR, MIW-RF and
their boosted/bagged variants).

– weka.classifiers.mi.MISVM is a class which implements MISVM [2]
(Maximum pattern Margin Formulation of MIL). It internally applies the
algorithm called weka.classifiers.functions.SMO [28] to solve multiple
instance problem.

• We observed that its predictive performance was relatively low (in default
settings) as compared to the chosen learners. Moreover, many hyperpa-
rameter configurations need to be maintained (such as a kernel type, a
complexity constant, a cache size, a usage of lower order terms, etc.) [2].

Our findings showed that the learners we chose in our experimental setups
were suitable for the multivariate time series representation in the MIL setting,
required less hyperparameter space to adjust and displayed a decent classification
performance in a straightforward comparison.

5.2 Hyperparameters

We investigated different hyperparameters for our learners to find the proper
ones. In WEKA (version 3.7.2), the RF implementation has 10 trees by default.
Instead, we used 100 trees in our experiments. We additionally observed that
1000 trees slightly improved the performance of configurations containing the
RF in Sect. 4.5. However, this number brought additional runtime overhead (i.e.
for the configurations which also employed RealAdaBoost).

Both MILR and the original LR have a parameter to set the ridge in the log-
likelihood. The former used 10−6 and the latter used 10−8 as its ridge parameter
which resulted in an adequate performance both in multi-instance and single-
instance settings.

As a multi-instance hyperparameter, our selected multi-instance learners
employed the collective assumption with the geometric average of posteriors in
all experiments which outperformed the other assumptions including the stan-
dard assumption and the collective assumption with the arithmetic average.

5.3 Future Work

In this section, we discuss the future insights to improve the predictive capabil-
ities of multi-instance learners for multivariate time series analysis.

Weighting Instances in the Bag. When a multivariate time series is repre-
sented in the MIL framework, each instance in a bag is treated equally without a
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time order (similarly to statistical summaries where the time order is also dis-
carded). In this case, every instance in each bag has a weight of 1 by default.
To incorporate the temporal order to the multi-instance learning, we checked
weighted inner bag instances in one of our tests. Our weighting scheme is straight-
forward. In Physionet dataset every time step of a multivariate time series has its
own timestamp value. That value is in hh:mm format, namely, numbers of hours
and number of minutes after ICU admission. We converted each timestamp value
to minutes. More formally, for each multivariate time series Xn, ∀n ∈ {1, . . . , N}
in D, all respective timestamp minutes are summed up. Then for each t-th obser-
vations of D variables, i.e. xt ∈ Xn, ∀t ∈ {1, . . . , Tn}, xt is weighted as the
ratio of its timestamp minutes divided by the corresponding sum. Finally, the
weighted instances are put to the respective bag Bn. In this weighting scheme,
instances close to the 48-h threshold gain more weight in the temporal order. For
this scheme, the weighted collective assumption of the MIL framework can be
utilized for generating class labels of bags (see (Eq. 5)). Our findings and future
proposals for this and other custom weighting schemes are given in the next two
paragraphs.

We observed that a WEKA implementation of multi-instance learners does
not support such a weighting scheme. We discovered that our weighting scheme is
supported by SimpleMI (which performs a single-instance transformation) where
Mean statistical summary also averages the weights of inner bag instances so that
after transformation by SimpleMI (SMI), propositional instances gain different
weights. In fact, this weighting scheme improved the performance of the con-
figurations using SMI-LR, SMI-RF, BG-SMI-LR and RB-SMI-RF presented in
Sect. 4.5. It is because the original Logistic and RandomForest class from WEKA
can handle weighted instances. The highest performance is obtained in RB-SMI-
RF-F-SS configuration with the average AUROC performance of 0.8427 (in
the train/test setup) which is a decent improvement over the unweighted con-
figuration which displays 0.8313. This insight augments our expectations that
the multi-instance learners supporting such custom weighting schemes can get a
similar performance improvement.

As a future work, one can port custom weighting schemes to multi-instance
learners (e.g. MILR and MIWrapper) by modifying WEKA source code. Then,
the similar tests from Sect. 4.5 can be performed to reveal the effectiveness.

Propositionalisation of Multivariate Time Series Data by Sophisti-
cated Approaches. Remember that SimpleMI class is designed to generate
three different statistical summaries, namely Geometric Center, Mean and Min-
imax from the multi-instance representation of multivariate time series data.
There are also approaches to propositionalise multi-instance data by decision
trees [41] and more ingeniously by random forests [14]. These approaches can
create more advanced feature spaces from the multi-instance representation in
contrast to the statistical summaries. As a future work, every multivariate time
series can be propositionalised by one of these approaches in its MIL format and
then the resulting data can be fed to traditional ML algorithms for classification.
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6 Conclusion

In this paper, we benchmarked multi-instance learning for clinical multivariate
time series classification (on the mortality prediction task). We utilized different
multi-instance learners to study the time series data in multi-instance format
and then used multi-instance assumptions of the MIL framework to generate
class labels for each multivariate time series. We evaluated the multi-instance
learners in different experimental setups and configurations using the well-known
metric named AUROC in both multi-instance and propositional settings. We
compared their performance to the performance of traditional machine learning
algorithms using statistical summaries. Despite the fact that we focused on the
mortality prediction using time series data collected in intensive care units, we
believe that the multi-instance representation will be also useful for other tasks
such as a length-of-stay prediction, phenotype classification, and psychological
decompensation prediction. It will be also interesting to see the generalization of
multi-instance learners on the other healthcare datasets such as MIMIC-III [26],
EEG database dataset [4] and ICU dataset [29].

6.1 Code Availability

For the sake of reproducing the results obtained in this work, all our source code
is published in a public repository2.
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