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Abstract. Modern data services need to meet application developers’
demands in terms of scalability and resilience, and also support pri-
vacy regulations such as the EU’s GDPR. We outline the main sys-
tems challenges of supporting data privacy regulations in the context of
large-scale data services, and advocate for causal snapshot consistency to
ensure application-level and privacy-level consistency. We present Pods,
an extension to the dataflow model that allows external services to access
snapshotted operator state directly, with built-in support for address-
ing the outlined privacy challenges, and summarize open questions and
research directions.
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1 Introduction

Implementing and maintaining distributed data services is becoming an increas-
ingly complex task across two frontiers. At one end, there is strong demand
for data decentralization across multiple data stores, scalability and improved
resilience to failures [4,17,23]. At the other end, there is demand for user data
protection and support for users to exercise their data protection rights [5,9].
Building large and complex data services over a single ACID (atomicity, consis-
tency, isolation, and durability) database is no longer a realistic implementation
approach for meeting today’s demands [18]. Existing scalable solutions to build-
ing such services instead settle on weaker consistency models such as eventual
consistency, which has become the norm for building large-scale data services.

In this work, we identify the core challenges that privacy regulations such
as GDPR [9] and CCPA [5] add to the already existing set of requirements
for building scalable data services, at the intersection of privacy-policy driven
demands and systems driven demands. In particular, we argue that stronger
types of consistency are required, and feasible to achieve given the necessary
paradigm shift in modelling data services.

To that end, we propose Pods, a dataflow model that provides built-in
support for consistent continuous processing of user data, as well as access to
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causally snapshot consistent state such as materialized views used by exter-
nal services. Our model is currently under implementation on top of the Akka
actor framework [12] and features causal consistency for cross-state reads via
the use of distributed consistent snapshotting [6], and the serializable execu-
tion of privacy requests. The solution supports ideas from recent positions on
data-privacy protection systems [16,19,22] while expanding on the capabilities
of modern dataflow systems [2,7], proposing stronger types of guarantees and
ways of stateful processing relevant to data privacy.

In summary, we claim the following contributions: (1) We outline the main
systems challenges for supporting data privacy regulations in the context of
large-scale data services. (2) We argue that eventual consistency is insufficient
for supporting privacy regulations and advocate the adoption of causal snap-
shot consistency, as implemented on dataflow systems. (3) We propose Pods, a
system model capable of addressing all outlined challenges. (4) We summarize
open questions and propose several research directions for resilient, scalable and
privacy-protecting services on dataflow systems.

2 Problem Scope and Challenges

2.1 Privacy Regulation Preliminaries

Data privacy regulations such as the EU’s General Data Protection Regulation
(GDPR) [9] and the California Consumer Privacy Act (CCPA) [5] have shaped
the landscape for data privacy conformance and the proper handling and pro-
tection of user data. The GDPR mainly concerns with how controllers (the data
service providers) process and collect the data of data subjects (the users), and
what rights the data subject has over its personal data (any data relating to an
identifiable natural person). The data subject may issue privacy requests (our
notation) to the controller, these are requests to exercise the rights of the data
subject. Evidently, enforcing compliance becomes more complex as data service
architectures become decentralized. To illustrate this issue we focus on three
fundamental data subject rights (i.e., privacy requests) from the GDPR [9]:

1. Right of Access (Art. 15). The right of access grants the data subject
access to information from the data service (controller) within one month’s time
on what personal data of the data subject is being processed, how it is being
processed, the period for which the data will be stored, the purposes of the
processing, the recipients of the processed data, and more.

2. Right to Erasure (Art. 17). The right to erasure grants the data
subject the right to erase all personal data concerning the data subject within
one month from the time of the request. This would include data that has been
processed, and data for which there is no longer a legal ground for processing.

3. Right to Objection (Art. 21). The right to objection grants the data
subject the right to object to certain types of processing if there are no legitimate
grounds for the processing. Such a request should be processed within one month.
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Fig. 1. Centralized and decentralized privacy compliant service composition.

2.2 Problem Intuition

Consistent Privacy Requests. From a data management systems perspective,
granting the rights to perform privacy requests such as access, erasure and objec-
tion, can be considered as additional operations that need to be performed. To
illustrate this, consider the example in Fig. 1a of a social network that records
the posts and likes of users, and computes aggregates and recommendations
based on these, which are used for an analytics and recommendations service,
respectively. In the example the data subject issues an erasure/access/objection
request to the central database management system (DBMS) with support for
ACID (atomicity, consistency, isolation, durability) transactions. This request is
committed transactionally with an immediate effect. In this setting, ACID trans-
actions ensure trivially that the client and external services access a consistent
view of completed operations and privacy requests.

In reality, however, most data services today are not built around a central
DBMS with ACID guarantees. Instead, they employ decentralized storage and
processing across geographically distributed data centers. The lack of support
for ACID transactions in this setting makes it challenging to support the consis-
tent execution of privacy requests (in contrast to regular user operations, privacy
requests are expected to be executed with stronger guarantees). To that end, a
dataflow-driven design has been proposed (exemplified in Fig. 1b) for data pri-
vacy compliance by construction [16]. In this design, data services can be built
organically from data shards, dataflow operators, and materialized views. Data
shards are data sources owned by the users of the system. External services are
composed using dataflow operators that subscribe to shards or other interme-
diate dataflow dependencies defined by other services, and end in materialized
views. Data access by an external service is limited to reading from material-
ized views (e.g., the recommended view in Fig. 1b) that are composed on the fly
through consumption of data events originating from the user shards. This is a
promising architecture that aligns well with current trends in cloud computing.
However, the current state of the art in distributed dataflow computing lacks
two properties that we consider necessary for serving privacy requests, namely:
causal consistency and serializability of privacy requests.
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Dataflow Causal Consistency. Supporting materialized views in the dis-
tributed dataflow model is currently limited to eventual consistency [16] which
is insufficient for serving privacy requests. To illustrate the problem consider
the external observer in Fig. 1b that accesses state from the recommendations
service. Assume that an erasure request has been completed such that a user’s
post is no longer visible. Subsequently, the same observer reads state from the
analytics service where the aggregate post count still includes the user’s post
(i.e., the erasure request has not yet reached the aggregates view). Given that
the erasure request was already observed in a prior access that precedes the
second read, this exposes a causality violation. In practice, numerous causality
violations can naturally occur in externally accessed dataflow graph state. For
example, eventually consistent materialized views may roll-back due to failure
recovery; and reading from different materialized views may be inconsistent as
one view may contain the effects of a privacy request whereas the other view may
not contain these effects. Instead, an external observer (user or external system)
should only read causally consistent snapshotted state of completed operations.
More specifically, if an observer performs two subsequent read requests, r1 and
r2 with causal relationship r1 ≺ r2 that observe two states s1 and s2, then
there should be a causal relationship between the states s1 � s2, such that the
observed operations and privacy requests that yield the state s1: o1, . . . , on, are
a prefix of those that yield s2: o1, . . . , om, with n ≤ m.

Serializability of Privacy Requests. Whereas causal consistency addresses
the order of which operations are observed externally, the internal execution
order of dataflow operations, including privacy requests, is still subject to arbi-
trary stream alignment. For example, propagating events may be reordered if
they are separated into two different streams, and later joined into a single
stream, because the joined ordering can be an arbitrary interleaving of the two
streams. Such a reordering of privacy requests could result into partially applied
operations and therefore offer an inconsistent view of the system. To ensure the
correct execution of privacy requests we also require them to be serializable. This
means that for every privacy request p, all operations preceding it need to take
effect before p, whereas all subsequent operations need to observe the effect of p.
More formally, consider the sequence of operations o1, . . . , ok−1, pk, ok+1 . . . on,
and pk is a privacy request, then the effect should be equivalent to an execution
that executes and completes o1, . . . , ok−1 before the privacy request pk starts its
execution, and ok−1, . . . , on start execution after pk completes.

Executing Privacy Requests. The serializability and causal-consistency
describe the order in which the requests are to be executed. Yet, there is a
need to materialize privacy requests on top of distributed dataflow operators.
For example, an access request should produce the requested data and return it
to the requester. For an erasure/objection request, the correct execution may be
more complicated as the request modifies state. The dataflow operator needs to
correctly update its own state, and also emit sufficient information to dependent
dataflow operators such that they can perform the request accordingly.
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2.3 Supporting Privacy on Dataflows: Challenges Overview

We have identified the need for dataflow systems to provide built-in support for
privacy requests. A look into modern/popular dataflow streaming [1,7] as well
as serverless programming [4,17,23] solutions used to build data services reveals
fundamental design challenges for supporting privacy regulations. These include
a lack of causally consistent externally queryable state support, and support for
serializable transactions. To that end, we derive a set of challenges towards the
creation of scalable distributed programming systems, able to support privacy
requests (access, erasure, objection) consistently. Intuitively, there is a need to
combine the programming flexibility of actor models with the support for ad-hoc
external queries and transactional ACID guarantees of DBMSs and the end-to-
end reliability and scalability of modern dataflow stream processing systems.
Based on these intuitions we outline the following challenges. While a number
of previous systems address one or more of the challenges, to the best of our
knowledge no existing system addresses all challenges simultaneously.

C1 Dataflow composition for high-performance data streaming: pro-
viding the compositional construction of dataflow graphs and enabling high-
performance data streaming.

C2 Automated resilience to failures: dealing with partial process and net-
work failures that might occur throughout the execution of data services
while maintaining exactly-once processing semantics.

C3 Automated scaling of data services: automatically and elastically scal-
ing the system to meet increasing and decreasing load.

C4 Snapshot consistent externally queryable state: providing external
services access to causally snapshot consistent state of dataflow operators.

C5 Support for privacy requests and data ownership: supporting seri-
alizable privacy requests, ensuring that users have control of and access to
their raw and derived data.

C6 Transparent handling of privacy requests: The privacy requests should
be handled transparently by the system. In effect, the application developer
should not need to implement any logic for handling privacy requests.

3 Proposed Extensions to Dataflow Architecture

At a high level, Pods resembles most existing dataflow system models [2,7,13],
supporting arbitrary stateful event logic, compositional subscription to event
streams and pipelined task execution. Its main distinctions lie at the execution
logic employed within its dataflow tasks, called pod tasks. A pod features two
distinct components, one handling regular event input logic and another han-
dling state operations. This grants Pods the flexibility to transparently employ
all special yet necessary local actions that can collectively ensure global system
properties such as serializability of privacy requests and dataflow causal consis-
tency. In this section, we discuss its core design choices.
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Fig. 2. Privacy compliant service composition with the Pods model.

3.1 Overview of the PODS Model

Pods is a dataflow model that processes user event streams and privacy requests.
We adopt the notion of user shards [16] for all per-user data ingestion and intro-
duce pod tasks for all stateful processing including the composition of material-
ized views. Figure 2a shows an example of a privacy-compliant service in Pods,
while Fig. 2b depicts the anatomy of a pod task. We further detail the design of
user shards and pods, which constitute the overall behavior of the model.

User Shards. All user data is ingested in “user shards” (adopted from [16])
that may be materialized on different data stores. A user shard creates a set of
per-user data updates, e.g., new posts or likes as well as state requests including
erase, object and system-invoked snapshot operations (Fig. 2a). All user shard
streams are expected to be persistently logged and replicated. This makes them
replayable and available in order to support rollback recovery.

Pod Tasks. Pods execute the application and privacy request handling logic.
In detail, pods: 1) subscribe to input streams and generate output streams; and
2) execute operations on the input stream events, and have two side effects:
a) pod state is updated and b) new output events are generated. In contrast to
existing dataflow models, Pods makes a clear separation between state and logic,
one stateless control-flow component handles the application logic, and another
stateful contextual component handles operations on state. Beyond this, pod
tasks allow external services to query their snapshotted state.

We highlight the anatomy of a pod task in Fig. 2b. This detailed view shows
that a pod task consists of two components, a stateless activity component, and a
stateful context component. Pod tasks are connected to other pods and user shards
via a set of input and output channels. Events received by a pod on one of its
input streams are processed sequentially, one at a time. Thus, the processing of
a single event including its effects on the local state can be considered an atomic
operation. Each input/output stream maintains a FIFO order of events; however,
there is no deterministic ordering across streams. Application-level events are
passed to the activity, the activity may access state via the context component, and
emit messages on the output channels. Other events, such as control events and
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privacy requests, are passed to the context component, which handles them
accordingly (see Sect. 3.2). The Pods system attaches metadata to each data
(events and state), such that it can derive the correct privacy policy [22] of raw
and processed data using fine-grained information flow [15,21].

3.2 Handling Privacy Requests and State Management

The context manages two types of state, active state and snapshot state (see
Fig. 2b). Active state is the live state of the executing system, and may be
unstable as it has not been committed. The snapshot state of a pod task reflects
its latest globally coordinated state snapshot of the dataflow graph and it can be
used to support materialized views. Control operations, such as privacy request
operations, are handled transparently by the context component (the control
events are passed to the context component, not the activity), for which the
context component may emit control events to other pods.

Both snapshot operations and privacy requests can make use of a similar
broadcast and alignment dissemination scheme to enforce ordering. Similarly to
classic marker-based snapshotting protocols (e.g., Chandy-Lamport [8]), mark-
ers can be inserted in dataflow inputs and further broadcasted to all outputs in
order to separate those operations that precede and those that succeed a snap-
shot. To enforce the complete effect of certain operations an additional alignment
phase is necessary [6]. The alignment makes every dataflow task prioritize pend-
ing changes across its inputs until all markers are received. This enforces all
operations prior to a marker to complete before triggering a snapshot. Privacy
requests can follow an identical broadcast and alignment scheme within a pod.
This can enforce serializability for privacy requests.

External services can interact with the Pods system by querying the state
of user shards and live pod tasks directly through an asynchronous RPC query
(illustrated by the dotted lines in Fig. 2b). Updates on active pod state are
not directly visible to external queries. This is because read operations would
not expose the right level of isolation for external service access. Therefore,
queries submitted by an external service receive the latest snapshotted version
of that state from the pod context. Since snapshots within the pods dataflow are
atomically committed across all pod tasks, subsequent external access requests
would access the same or a newer version of the corresponding global state of
the system. Via the use of a globally coordinated snapshotting method [6] it is
guaranteed that an operation is either included in all pod snapshots, or pending
to be committed in the next global snapshot.

Privacy requests that arrive at the pod are executed by the context com-
ponent after the alignment phase. An access request can be executed on the
local state, whereas erasure and objection requests are more difficult as they
modify state. We can execute an erasure/objection request by using differen-
tial updates or by recomputing the state [16]. If these options are not available
(e.g., non-relational operators, user-defined functions), we can perform the oper-
ation directly on the state. The semantics and efficient/correct execution remains
an open question which we intend to explore further (see Sect. 4).
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Implementing a system with the presented properties efficiently is challeng-
ing. Whereas causal snapshot consistency has been shown to be supported in
high-performance systems [6]; enforcing serializability of privacy user requests
comes with an overhead from dissemination and synchronization of alignment
markers. Further, certain privacy requests may cause large updates, which take
a long time to complete. The total system overhead from privacy compliance,
however, may be amortized through the batched execution of privacy requests,
given that GDPR allows up to one month to process a privacy request.

3.3 Privacy Request Example

Let us revisit the example from Sect. 2 and exemplify how the Pods system
can successfully deal with a privacy request (see Fig. 2a). Consider the erasure
request submitted by the client. This request first arrives at a user shard. The
shard can handle this request by erasing all data that belongs to the requesting
client. We can find the corresponding data because of the information about the
data origin contained in the metadata. This privacy request is then broadcast
along all outgoing channels of the shard to the two other pod tasks (together
with auxiliary information), the Join pod and the Group-by pod. The request
arrives at the Join pod, and is passed to the context component which applies
it to the active state and snapshot state. Similarly, the request is applied to the
Group-by pod. If another pod subscribes to both the Join pod and the Group-by
pod, the two streams are joined, and the privacy request will act as an alignment
marker to ensure the serializability of the privacy request. This way, the request
is propagated and applied consistently to the whole system.

3.4 Addressing the Outlined Privacy Dataflow Challenges

The specific features of the Pods model enable us to address the outlined chal-
lenges of privacy-compliant dataflows from Sect. 2.3, the challenges are high-
lighted in the Fig. 2b.

C1 Dataflow Composition for High-Performance Data Streaming. The
Pods model enables constructing dataflow graphs composed of pod tasks inter-
connected via channels (see C1 in Fig. 2b). This design for high-performance
data streaming is inspired to a large extent by state-of-the-art data streaming
systems such as Apache Flink [6,7].

C2 Automated Resilience to Failures. Since Pods adopts the stateful stream
processing paradigm and user shard streams are replayable, exactly-once stream
processing methods such as distributed consistent snapshotting [6] and rollback
recovery are applicable to ensure failure-recovery to a consistent active state.

C3 Automated Scaling of Data Services. The Pods model enables scaling
elastically according to load. A pod can either scale the number of messages
that it can handle through executing messages concurrently on activities that
are replicated across physical nodes, or scale its state by partitioning the state
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into shards across nodes (e.g., using consistent hashing). This should be feasible
and requires little to no synchronization for activities that access disjoint state
or conflict-free state (e.g., keyed state [6]). Joint state has a synchronization
overhead and may not be scalable, the developer could be notified of this through
static checking and encouraged to use other types of state. The decision on when
(policy) and how (mechanism) to elastically reconfigure [10] can be handled by
the context component.

C4 Snapshot Consistent Externally Queryable State. Updates on pod
states are not directly visible to external queries. Instead, external queries are
handled differently by the context components. All external read requests are
granted access to the latest snapshotted state of a pod which is acquired via
a global causally consistent checkpoint mechanism (see Sect. 3.2). This ensures
that state is atomically committed across all pod tasks, and only completed
operations are observable to external services.

C5 Support for Privacy Requests and Data Ownership. Supporting
access, erasure, and objection requests requires us to be able to locate and
update all data, raw or processed, belonging to or derived from a data subject.
We can locate all data from a data subject by traversing the static dependencies
of the dataflow system, and through the data ownership information in the meta-
data. Once the data has been located we can apply the requested operation on
it. Privacy requests in Pods dataflows are directly related to the user state and
not the application logic, thus, they are handled differently than regular appli-
cation operations. Privacy requests broadcast to all outgoing channels (similar
to snapshot markers), and aligned on pod tasks with multiple input streams (see
Sect. 3.2). This way we can ensure a serializable ordering of the operations.

C6 Transparent Handling of Privacy Requests. The application devel-
oper does not need to implement any logic for handling privacy requests, this is
instead handled by the stateful context component within the pod task (see C6
in Fig. 2b). In effect, the application developer only needs to write the activity
component’s application logic, agnostic to any privacy/control logic.

4 Open Questions and Research Directions

The design for the Pods model presented in the previous section leaves a few
questions unanswered, for which we outline research directions in the following.

A More Flexible Programming Model. Supporting a wider range of scal-
able data services requires evolving dataflow graphs dynamically by adding and
removing user shards and pod tasks at runtime. Generalizing pod tasks to actor-
like entities could enable iterative computations which require cyclic data depen-
dencies. However, cyclic data dependencies could conflict with assumptions that
are critical for ensuring consistency, and the semantics of dynamic changes to the
dataflow graph are still unclear. This research direction devises ways to efficiently
ensure both consistency guarantees and privacy compliance in the presence of
cyclic data dependencies and dynamic deployments.



WIP: Pods: Privacy Compliant Scalable Decentralized Data Services 79

Efficient Information Flow Tracking. With the Pods model we propose
to enable servicing privacy requests by employing fine-grained information-flow
tracking [15,21]. This poses an efficiency challenge for aggregate data. For exam-
ple, computing aggregate data over all users of a system would have to track its
origin to all users of the system. Efficient processing of such aggregate data
would require a form of declassification [14] as it has been studied in the field of
information-flow security. This research direction explores adaptations of declas-
sification to enable efficient information flow tracking.

Execution of Privacy Requests. The execution of privacy requests has
unclear semantics, for example, it is unclear how to handle a request on data asso-
ciated to multiple users; and the efficient execution of privacy requests remains
challenging [19]. There are various trade-offs between approaches depending
on the workload. Further, many issues do not appear until implementing the
full specification. This research direction looks at the efficient handling of fine-
grained privacy requests for relational and user-defined functions, both for gen-
eral workloads, and applied to specific case studies.

Consistent Integration with External Services. Data computed by a
dataflow graph in the Pods model can be exported to external services which
read from materialized views with snapshot consistency. Pull-based, snapshot-
consistent reads have been presented in Sect. 3. However, it remains an open chal-
lenge (a) to support push-based updates and (b) to propagate privacy requests to
external services with atomic consistency. Push-based updates pose a challenge
due to the (strong) consistency on which external services should be able to rely.
This research direction explores interfaces and protocols that enable atomically-
consistent operations across dataflow graphs and external services, in order to
provide end-to-end exactly-once data processing.

5 Related Work

Data Privacy Compliance. The Pods model was inspired by a position paper
on “GDPR compliance by construction” by Schwarzkopf et al. [16]. In this work
they propose a design that consists of user shards, a dataflow that computes on
inputs from the user shards, and materialized views that are generated by the
dataflow. Privacy requests are performed on the user shards, and these updates
cause the dependent dataflow operators and materialized views to eventually
update implicitly through the “partially-stateful dataflow model” [11]. In our
model, we expose the pod state to external services, in replacement of material-
ized views, in order to provide causally consistent snapshot state of the system
across views (such reads also access the metadata). The privacy requests are exe-
cuted serializably using alignment markers; and we aim to support user-defined
functions with the fine-grained information flow tracking, and declassification
for aggregate data. Further, we adopt ideas from Data Capsules [22] to hold
data together with metadata that specifies the policy of the data. The data
capsule system consists of a data capsule manager that maintains the data cap-
sule graph and tracks all data capsules, and verifies that analysis programs that
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access the data do not violate any policy. In the Pods system we enforce all
data and events to be coupled with metadata (although our metadata is more
limited), and have no central manager as this information is decentralized. The
MONPOLY system [3] uses logs to detect policy violation by formalising GDPR
requirements into metric first-order temporal logic formulas. The GDPR for
Akka Persistence supports encrypting data such that it later can be shredded
by erasing the encryption key, this feature can be used to implement the right
to be forgotten even when encrypted personal data may leak to logs.

Data Services. Apache Flink [7] is a stream-processing framework for dataflow
programs. Flink is known for the use of aligned snapshotting to achieve causal
snapshot consistency [6]. Pods also builds on the same general dataflow
model [2,7,13], and expands it further with the native alignment of privacy
requests and view maintenance of all pod states. This new capability allows
Pods to expose causally consistent shapshotted states for external reads featur-
ing strong serializability of privacy requests. Flink Stateful Functions [20] runs
on a runtime built on Apache Flink. Stateful functions are virtual, i.e. they don’t
consume any resources if idle, and the state and compute are separated. They
provide built-in resilience in form of fault-tolerance and exactly-once semantics,
and also support cyclical message patterns. Similarly, other serverless systems
separate compute and state [4,17,23]. Durable Functions [4] provides server-
less, elastic, failure-resilient, and consistent execution of workflows. It consists of
orchestrations, i.e. reliable workflows, entities, i.e. actor-like addressable units,
and critical sections, i.e. for synchronization. Cloudburst [17] is a function-as-a-
service platform for stateful functions, for which state is held in a lattice-based
distributed key-value store, and functions are executed in virtual machines with
a local cache. Kappa [23] is a serverless computing framework that offers check-
pointing for long-running tasks (and uses checkpointing for fault-tolerance). The
outlined challenges are partially solved by these mentioned works, however, to
the best of our knowledge, none of these projects provides built-in support for
privacy compliance or for externally queryable snapshotted state.

6 Conclusion

We have presented Pods, a practical model for building scalable data services
with privacy compliance as a core concern. Services in Pods can be built organi-
cally and execute reliably on decentralized infrastructures. To avoid inconsisten-
cies between application-level operations and privacy requests, Pods employs
transactional dataflow snapshots which capture a consistent view of the pod
tasks’ state, the snapshotting occurs asynchronously. Pods adopts best practices
from distributed actor programming and serverless frameworks, which makes it
flexible for supporting elastically scalable, replicated and fault tolerant services
that respect their users’ privacy by construction. The architecture of the Pods
model allows the privacy request logic to be handled transparently, in effect the
application developer is agnostic of any privacy logic.
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