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Abstract. This paper documents the data governance facilities in
DBOS, a database-oriented operating system under construction at Stan-
ford and MIT. Because all operating system state is stored in a high
performance main-memory relational DBMS, DBOS has architected a
novel data provenance system for all application data. This system uses
a high-volume column store for historical provenance information, and
provenance data can be queried in SQL. Hence, at its core, DBOS is a
polystore data system. Complementing this capability are facilities moti-
vated by GDPR including support for personal data, purposes, and the
right to be forgotten.

1 Introduction

At Stanford and MIT, we are building a new operating system stack, based
on sophisticated data management: the Database Operating System (DBOS).
Herein we briefly motivate the need for a new stack and then turn to novel
data provenance capabilities that are facilitated by DBOS. We note that this
provenance system requires a collection of polystore capabilities.

Specifically, we are motivated by a collection of hardware and software trends
that have occurred since the current Unix/Linux architecture was devised some
50 years ago. First, the scale of operating system (OS) resources under man-
agement has increased by several orders of magnitude. From the uniprocessor
environments of the 1970’s we have evolved to current data centers with thou-
sands of processors. For example, the MIT/Lincoln Labs Supercloud [1] on which
DBOS has been build encompasses some 9000 cores. Similar expansion of stor-
age has also occurred. Hence, operating system state (files, tasks, messages,
etc.) is several orders of magnitude larger than 50 years ago, and warrants a
new approach to state management. Second, Unix/Linux is now elderly soft-
ware, having been extended/modified/maintained for many, many years. As such,
development velocity is slowing; for example, there is no multi-node support and
sophisticated multi-core management has been slow in appearing. As a result,
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multi-node capabilities must be provided by a second piece of system software
(e.g. Kubernetes). This results in a duplication of services, for example two sched-
ulers, and more difficulty in efficient resource utilization. Third, modern data cen-
ters now have heterogeneous hardware under management, for example GPUs,
TPUs, and FPGAs. However, there is no ability in Linux to manage multiple
kinds of processors. Lastly, a data center OS would benefit a great deal from
DBMS services. For example, DBMSs provide consistency guarantees on concur-
rent updates, crash recovery and a high-level language (SQL) for querying OS
state.

As a result, we have rearchitected the Linux stack to store all OS state in
a multi-node, main memory, transactional DBMS. This full function RDBMS
will run on top of a microkernel which provides interrupt handling, raw device
drivers and very little else. Essentially all OS services (file system, messages,
scheduling, etc.) are implemented in SQL on top of this DBMS. Normal user
tasks run at the top level in protected fashion, as shown in Fig. 1.

Fig. 1. Proposed DBOS stack.

This architecture has a number of compelling advantages relative to the tra-
ditional architecture. First, there is a single piece of software that is managing
a multi-node hardware environment. This removes the duplication of function
found in current multi-node environments. Second, many OS facilities (e.g. ls,
chdir) can be implemented in SQL in a lot less code than in C++. Hence, we
expect the footprint of our stack to be smaller than the current one. Third,
DBMS services (concurrency control, crash recovery, high availability) are avail-
able to all OS functions, resulting in greater functionality (a transactional file
system, for example). Lastly, DBMS services are implemented exactly once and
then used by everybody, resulting in minimal code duplication. At the present
time, we have an initial version of DBOS running as noted in [28], and perfor-
mance is encouraging. File system services, messages, and task scheduling are
competitive in our stack relative to the traditional one. In [28], we also doc-
umented our plan for constructing a complete end-to-end DBOS in additional
implementation phases.



Data Governance in a Database Operating System (DBOS) 45

In this paper we discuss our approach to data governance. System adminis-
trators want a complete record of who did what to which objects. This record is
useful when answering questions such as:

– Could user X have leaked information to user Y?
– Data element X has been found to be erroneous. Find all data elements that

could have been corrupted by this error.
– Find the history of users who have written to file F.
– Find all applications run by user X.
– Find all files copied by user X.

Most large enterprises implement one or more governance systems. A pop-
ular choice is Splunk [2], which requires a user to define “events” of interest,
which Splunk will then capture from application systems. Often organizations,
for example the MIT Supercloud, implement more than one such system, each
dealing with different applications. This results in a piecemeal approach to data
governance in which the complete picture is spread over several semantically
distinct systems. In addition, deploying any new software requires manual inter-
vention to capture new events from the added systems. Most large organizations
struggle to meet the ever growing requirements requested by management in this
area. Such requirements are unlikely to abate, given the recent legislative and
regulatory interest in this area.

Since all OS state is in a DBMS, DBOS enables automatic provenance cap-
ture, which will allow easier coverage of events without manual intervention.
In Sect. 2, we detail our current DBOS support for data provenance. In Sect. 3
we turn to demonstrating that there is very little overhead to running DBOS
provenance, and that interesting provenance queries run with good performance.
Then, Sect. 4 turns to the polystore implications of our provenance system and
the future directions we are exploring in this area. Section 5 discusses one aspect
of the polystore nature of storage, especially in data lakes, which is the use
of data catalogs. Section 6 describes several design challenges and our plan to
address them. Finally, Sect. 7 discusses GDPR capabilities, and Sect. 8 presents
related work.

2 DBOS Data Provenance

2.1 Provenance Architecture

All DBOS operating system state is stored in a main memory DBMS, in our
case VoltDB [3]. This includes multiple tables implementing a file system, a
scheduling table and a interprocess communication (IPC) table. There are likely
to be additional tables storing OS state as the project evolves. For example, the
Message table contains the following fields.

Message (sender_id, receiver_id, message_id,
date_time, message_contents, other_fields)
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The sender activates a stored procedure in VoltDB, which inserts a row in
this table with the various fields filled in. The Message table is partitioned across
the various nodes in Supercloud. The partition key is receiver id, so the row is
added to the Message partition at the node of the receiver. As noted in [28] this
is a single-row single-table operation which is very fast. An efficient implemen-
tation of messages would then use a database trigger to alert the receiver, who
could use SQL to retrieve the message contents and delete the row in the table.
Unfortunately, VoltDB lacks database triggers, so our implementation requires
the receiver to poll the database for the message contents. Even with this limi-
tation, DBOS messages are surprisingly performant, as noted in [28].

In [28] we also detailed implementations of a file system and a scheduler using
VoltDB tables with a similar architecture.

To implement a complete provenance system, DBOS merely needs to capture
all reads and writes to the message table and other tables with relevant OS
state. There are several possible ways to do so. First, a conventional DBMS
would log all changes to all tables for crash recovery purposes. However, VoltDB
uses command logging, as it offers higher performance in their environment [17].
Hence the actual data update is not logged, just the SQL that performed the
operation. In addition, a complete provenance system would also require us to
capture reads as well as writes.

A second possible implementation is to use VoltDB “change capture”. This
facility spools all database updates to a file or other location. With no DBOS
code, this will capture writes but not reads. If VoltDB supported database trig-
gers, those could be a third possible implementation.

At the present time, we have a system running that uses VoltDB change
capture to deal with all write events. To get to a complete system, we plan to
migrate to a facility that performs data capture in the DBOS stored procedures
that read and write database tables. That way we can capture all reads and
writes to table of interest.

2.2 Provenance Specification

For every table in the DBOS VoltDB data base, the table owner must specify
the level of provenance they desire. The options are:

– Capture the existence of each write operations
– Capture write operations including the actual data written
– Capture the existence of each read operations
– Capture read operations including the actual data read.

We have had substantial discussions about the granularity of provenance
capture. On the one hand, we could capture coarse granularity, for example
that user X wrote File Y at time T. Alternately, we could capture that user X
wrote block L at time Y or even that user X wrote byte B at time Y. This will
obviously dramatically change the size of the provenance database when DBOS
is in “capture existence” mode. Our current thinking is to allow user specification
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of granularity on a file/table basis. Obviously, there may be additional modes
for the provenance system as we gain more experience with it.

2.3 Provenance Database

Obviously, provenance capture entails a massive amount of data especially if the
actual data read or written is captured. A high performance OLTP DBMS like
VoltDB is ill-suited to the capture of a massive amount of historical data. As a
result, we are spooling provenance data transactionally to Vertica, a multi-core,
multi-node DBMS based on column store technology that can readily manage
petabytes of provenance data. In a DBOS environment, we expect an instance
of VoltDB and an instance of Vertica will run on most DBOS nodes.

According to our industrial partners, access control is handled by standard
SQL capabilities. Hence, they are worried about legal, but suspicious events,
which we call the Edward Snowden effect (ESE). As such, the main use of a
provenance database is for after-the-fact monitoring, as we discuss in the next
section. Of course, provenance is also useful for detecting error propagation.

2.4 Provenance Queries

In this section, we present ten representative provenance queries, which guide
our implementation. This list comes primarily from tasks of interest at DBOS
industrial partners.

1. File/DB touch—For a file F or a table T, who was the last person to write
each block/record. Who was the first person to do so? Which block/record has
the most updates in the last week? In the last year?

2. Connectivity—If X made a network connection with Y, then there is a bi-
directional arc between X and Y. Construct the connection graph in the last
week. Do the same for the last year. Construct the connection graph of people
who talked in the last year but not in the last week. Do the same for systems,
described below.

3. Compromised systems/users—A user interacted with a system if the
scheduler ran a task on the system on his/her behalf. Who interacted with poten-
tially compromised system S in the last month? What systems did a potentially
compromised user interact with in the last month? Trace all connections (tran-
sitively) from a compromised system S in the last month.

4. Downstream provenance—Find all blocks/records that could have resulted
from information in block/record X. In other words, find a block Y that was
written by some user who previously read block X within 5 s. This is “one hop”
provenance. Complete provenance requires the transitive closure of this opera-
tion.

5. Upstream provenance—Find any block/record X that could have been
influenced by block/record Y. In other words, somebody read X and wrote Y -
transitively.
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6. Debugging—What is the state of a file/table at time T. Now “single step”
forward for 3 h.

7. Could X have leaked info to Y?—We define possible leakage as X wrote a
file block and Y read the same block within 1 min. In addition, X sent a message
to Y, or X wrote a DBMS record and Y read it within 1 min. This is “one-
hop” possible leakage. Complete possible leakage is the transitive closure of this
operation.

8. Ranking suspicious objects—Administrators are often called upon to rank
suspicious objects or behaviors: network packets from potential intrusions, files
that are potentially infected, and user data reads that are potentially inappropri-
ate. To rank an object, we can compute an object score using provenance-derived
statistics. For example, scoring a particular file open might need to know how
many individuals open the file on a typical day. The provenance system should
allow administrators to specify and efficiently compute different “object ranking
views” that use provenance data.

9. Input auditing—An organization wants to know that it has the legal rights
to all of the data resources used to compute a particular output (possibly a
sensitive ML model). For file X, the system should: (1) compute every ancestor
file of X, and (2) consult a database of file rights to make sure it has legal right to
all X’s ancestors. That database might be partially derived from GDPR activity,
but probably also reflects commercial transactions and other information.

10. Pipeline Modeling—A data pipeline is a long sequence of programs that
yields a set of data products. If pipelines are first-class objects, then the prove-
nance system can answer valuable questions valuable to administrators, such as,
“Did pipeline X complete successfully on July 23?” and “What pipeline produced
file Y?”

The query processing implications of these queries are discussed in Sect. 2.6.

2.5 Provenance Schema

There are two possible approaches to a Vertica provenance schema. First, for any
update, we can capture (old value, new value) pairs from VoltDB using change
capture or our own stored procedures. For inserts, there is no old value and for
deletes, there is no new value. For any operation, we insert the appropriate record
into Vertica. As such, Vertica manages an insert-only provenance database. The
second option for updates is to capture only the new value, and perform a Vertica
update (rather than an insert). Since Vertica does not overwrite data, the histor-
ical record is preserved with appropriate timestamps and we store two records,
without duplicating data between them. We plan to explore the performance
and ease of querying for both options.
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2.6 Provenance Query Processing

Some of the above queries (1, 6, 8, and 10) can be expressed in normal SQL.
On the other hand, several (2, 3, 4, 5, 7, and 9) require transitive closure, which
is available in some SQL engines but not others. Specifically, Vertica does not
have built-in support for transitive closure. There has been a lot of work in
this area [4,9,29]. However, in Vertica it will likely be fastest to code a breadth
first algorithm, removing duplicates between iterations. A depth first exploration
would require many more user queries and would make parallelism difficult to
exploit. On the other hand, breadth-first means running a transitive closure iter-
ation as a parallel SQL query, adding the result to the answer being assembled,
removing duplicates at each iteration.

In query 7, in our opinion, indirect leakage is quite rare. Hence, one could
stop after one or two iterations, with very low probability of missing a leakage
path. Since the iteration is in user code, we can watch the size of the answer
being assembled and stop if it does not grow.

Furthermore, one can maintain the transitive closure for each of these queries
dynamically, incrementally updating the result when events occur. Alternatively,
one can compute the transitive closure only when there is a provenance query.
The tradeoff, of course, is the ratio of VoltDB updates to provenance queries.
When provenance queries are rare (the usual case), computing the transitive
closure in advance is probably the wrong thing to do.

Lastly, in query 7 if (X, Y) is a possible leakage path, then there is no reason
to find additional instances of this possibility. As such, this is a “first match”
query in which additional instances are not useful.

Although we could run Vertica at level 4 in the diagram of Fig. 1 (i.e. in user
space) performance would suffer. Our planned implementation uses the VoltDB
store procedures for read and write. If Vertica is run in user space, then an extra
two messages will be required. Hence, we are planning to run both DBMSs in
the kernel at level 2.

The trend in data warehouse systems is to separate compute from storage,
pioneered by systems such as BigQuery [27] and Snowflake [30]. In this way, a
storage layer with perhaps limited compute is separate from a compute layer.
Of course, the reason for this architecture is to allow compute resources to be
scaled up and down elastically as query needs change. Vertica is moving toward
this architecture, and in time, most warehouse vendors will offer elasticity on a
query-by-query basis.

With this separation, there is the option of pushing portions of a provenance
query into the storage layer. In a recent paper [32], some of us analyzed the
desirability of pushing down filters and joins into the storage layer. When data
blocks are re-referenced frequently, it will be desirable to perform most-to-all
of query processing in the compute layer. Alternately, when re-reference is low,
then it is best to push down query pieces into the storage layer, when possi-
ble. Since provenance queries are expected to be infrequent, it will generally be
advantageous to push down as much computation as possible.
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Fig. 2. Throughput versus median and tail latency for a social network workload with
and without provenance capture for writes.

3 Performance

To demonstrate the practicality of provenance capture, we instrumented a sim-
ple DBOS workload to capture all write operations including the actual data
written, then measured workload performance with and without capture. We
implemented this instrumentation using VoltDB’s change data capture feature,
exporting all information to a remote Vertica server. Our benchmark uses the
simple Twitter clone Retwis [26], adapted to store all data in VoltDB instead of
in Redis. This workload stores all data in VoltDB tables (e.g., a “posts” table)
so provenance capture requires logging updates to these table. We execute a
workload of 100% writes to a single VoltDB partition, repeatedly making posts
for randomly selected users.

We show all results for this benchmark in Fig. 2. We measure throughput
versus median and tail latency with an increasing amount of offered load. We
find that overhead associated with provenance capture slightly reduces maximum
achievable throughput. It has little effect on latency at lower loads, but increases
latency somewhat at higher loads. A DBA would have to decide whether detailed
provenance was worth the overhead, given the particulars of his load.

We next evaluate query performance on this captured data. We adapt two of
the queries from Sect. 2.4 to Retwis and measure their latency in both Vertica
and VoltDB, showing results in Fig. 3.

The first query is “Who was the last person to write a post?”:

select USERID from RETWISPOSTS order by TIMESTAMP desc limit 1;

We show the performance of this query in Fig. 3a. With 100M rows, Vertica
can execute this query in 17 ms, while VoltDB slows down and eventually times
out when given too much data.

The second query is “Who posted the most since time X?”:
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Fig. 3. Performance of provenance queries on social network data using Vertica and
VoltDB.

select agg.USERID, agg.cnt
from (select USERID, count(*) as cnt from RETWISPOSTS

where TIMESTAMP >= 100 group by USERID) as agg
order by agg.cnt desc limit 1;

Figure 3b demonstrates the performance of this query. As before, Vertica can
execute this more complex query in 313 ms given 100M rows, while VoltDB slows
down and eventually times out with too much data.

These experiments demonstrate that a dedicated OLAP system like Vertica
can easily handle provenance queries on large amounts of data. They also demon-
strate the need for a polystore in provenance management, as a dedicated OLTP
system like VoltDB is not capable of executing large-scale provenance queries.

4 Polystore Implications

As noted previously, DBOS is a fairly simple polystore that spools provenance
data from VoltDB to Vertica. However, it is obviously a good idea to support a
file system on top of Vertica. For gigantic files, this will offer a compressed column
store implementation which will outperform the VoltDB row store. Also, there is
no reason to disallow users from storing DBMS data in Vertica, if they so choose.
As such, we will have two different DBMSs generating provenance information.

More generally, there will potentially be other DBMSs in which user data is
stored and/or files supported. On a case-by-case basis, we will explore supporting
such other DBMSs. Also, over time we expect to have to support provenance
information in multiple data warehouse-oriented column stores. This situation
could arise if applications insist on spooling their provenance data to a preferred
DBMS. This leads to the general polystore architecture of Fig. 4.

With multiple provenance stores, standard SQL queries will access only one
of the repositories. However, figuring out which one will require a data catalog,
discussed in the next section. Also, the scope of our transitive closure queries will
be all systems. We distinguish two cases of interest. In the first case provenance
information is separable

¯
and there is no cross-talk between the systems. In this
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Fig. 4. Proposed polystore architecture.

case there is no possibility of a user reading a file or a database that spools
to one repository and then writing a file or a database that spools elsewhere.
Hence, one can run the transitive closure queries on each repository individ-
ually and then merge the answers. On the other hand, there will be situations
where provenance information is not separable. This will lead to a more complex
query processing strategy, whereby intermediate results must be traded between
provenance stores.

However, it is a reasonable assumption that a provenance system need only
support warehouse-oriented DBMSs and only for a subset of possible queries. As
such polystore complexity is limited.

5 Support for Data Catalogs

The previous section noted the problem of finding metadata across multiple stor-
age systems. Obviously, the metadata within a single DBMS is correct; however,
enterprises are typically running several-to-many DBMSs. Also, metadata for
files is often not captured anywhere. A common architecture is to move all such
data to a data lake (or lakehouse, if you wish) and then build a catalog for lake
objects.

There are a number of recent data catalog systems that do exactly this. These
are standalone systems that serve as authoritative sources of metadata for all
the datasets in an organization. Commercial systems include Alation, Collibra,
and data.world. Open source systems include ckan, Amundsen, and Magda.

Data catalogs allow metadata queries by humans and external systems.
For example, a compliance system might compare the access permissions of
an observed database with the data privacy requirements stated in the orga-
nization’s data catalog. Catalogs can also be instrumental in enabling better
organizational data search.

In addition, data catalogs also play an important role in data access control
and information security initiatives. For example, companies frequently imple-
ment course-grained or fine-grained access control based on data classifications
stored within these catalogs.

In our conversations with commercial users of such systems, we have observed
two common problems. First, the catalogs are incomplete. Although most of
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these systems include crawlers that will traverse existing data assets and help
populate the catalog, there is still some human curation effort needed to ensure
datasets have correct schemas, personal data settings, and so on. Moreover, many
users build semi-private datasets that are inaccessible to crawlers and are never
added to the catalog. Second, the catalogs fail to attract wide audiences inside
the organizations that build them. This might be due to the poor quality of the
catalogs, or because the catalogs simply do not deliver enough compelling value
to the typical data users.

We wish to make two points in this section. First, if an enterprise decided
to run DBOS everywhere, then a rudimentary data catalog is automatically
constructed. This DBOS catalog is by definition complete and accurate, avoiding
the criticisms discussed above. Also, if DBOS provenance is used, then the lineage
of every object is automatically provided. This is a powerful form of metadata,
which will help users uncover the semantic definition of a data set, even when it
is missing or incomplete.

6 Design Challenges

We now describe a few ongoing design challenges for any useful provenance
system, and how we address them in DBOS.

6.1 Provenance Data Capture

Data capture is a serious challenge for provenance systems. Past efforts have
addressed this challenge in two main ways, both unsatisfying:

1. Users must rewrite their code with a new toolchain, which generally yields
high-quality data at the cost of high human effort. With this approach, the
coverage of data provenance often suffers.

2. Automatic instrumentation of unmodified code, which generally yields low-
quality data at a low human cost. With this approach, the usefulness of data
provenance often suffers.

The design of DBOS alters this playing field dramatically. Since provenance is
integrated with the OS itself, all important operations are captured and logged.
We expect this design to make a big difference.

However, DBOS provenance still has shortcomings. For example, suppose OS-
visible operations do not reflect operations that downstream users are interested
in. Consider a privacy policy-compliance process that scans every file in DBOS
and generates a per-user report file describing possible violations. The DBOS
provenance system will show that each output report file is dependent on every
file in the system. In most cases, such provenance information is either misleading
or useless. Capturing such provenance data is not helpful to the application being
run, and another (presumably higher level) system is required.

Another problem arises when data crosses DBOS-visible boundaries. In par-
ticular, the provenance of any dataset that escapes via traditional I/O channels
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(e.g., a screen, a log file, or over a network socket) can no longer be tracked with
confidence. Disabling traditional display and network access would make DBOS
unusable for many applications.

We can mitigate this problem by sandboxing stored procedures and either
noting in the provenance record when bytes left the DBOS system, or disabling
such operations altogether for sensitive data. There are several solutions of inter-
est in this space. For example, cloud providers already use techniques like run-
time sandboxing [24] and restricting process privileges via mechanisms like SEC-
COMP [15]. In addition, sandboxing techniques in dynamic information flow
control (IFC) systems like Trapeze [5] are also applicable in our setting.

These issues are serious. While DBOS’ current provenance design partially
addresses them, they are still questions for ongoing research. One approach is
discussed in the next subsection.

6.2 Application Integration

Organizations operate with multiple data abstractions. Obviously, organizational
activity can be captured as files, records, processes, and function invocations.
But organizations also have pipelines, approval processes, business patterns,
and other “objects” that intersect with, but are not identical to, computational
objects.

For example, “did marketing approve the latest commercial?” is a business
question, but it can also be framed as a provenance question when combined
with a file identified as “the latest commercial”, a user group identified as “mar-
keting”, and a particular process execution identified as “approve”.

DBOS can enable integration of provenance with these external non-
provenance concepts in two ways.

Concept-As-View—The user can define views that model external concepts.
For example, the table of “commercials” might be written as a view over the set
of DBOS files that are in the commercials directory and which have a member of
the marketing team as an owner. An important property of such a system is the
use of user-defined functions as part of the view definition. This allows arbitrary
domain-specific questions to be asked of the DBOS and its provenance objects.

Federated Query Optimization—A user query that involves non-provenance
objects might involve query processing over multiple schemas, for example a rela-
tional database of DBOS files and a graph database of provenance information.
We plan to study optimization across multiple systems so that user queries can
be executed in reasonable amounts of time.

7 Support for Capabilities Motivated by GDPR

7.1 Personal Data

GDPR legislates special support for personal data. One of us is a lawyer spe-
cializing in privacy issues such as this one. Although it would be very helpful to
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have an algorithm decide what fields are personal data and what ones are not,
such a feature seems out of reach, since personal data is somewhat subjective.
Instead, a human must specify what is personal data. In a DBOS environment,
this requires tagging every column of every table in a DBOS instance with a
notation whether it is personal data or not. Furthermore, it is equally difficult
to automatically mark derived data (materialized views, query results). Hence,
it is assumed that all derived data will be appropriately marked, and we will not
try to build a system to automatically mark derived data.

Such a marking system can be added trivially to the system catalogs (meta-
data).

7.2 Purposes

GDPR legislates that every person with personal data stored in a service have the
right to decide for what purposes his/her data can be used. Example purposes
might be medical research or advertising. Hence, the service provider decides on
a collection, K, of (otherwise uninterpreted) strings, called purposes. Every item
of personal data is tagged with the purposes the owner of that data item allows
for that data element.

Although in theory, there can be tens or hundreds of purposes, we expect the
normal case will be a half a dozen or less. Otherwise, it will be too confusing for
users to say yes/no to each of tens of purposes. In a previous paper [13], we advo-
cated using extra bits in each record to store this yes/no information. However,
when the number of purposes is small, we think an alternate implementation
will be more efficient.

For every column of personal data and for each purpose, we plan to store in
DBOS an exception list of record identifiers of persons who have opted out of
allowing their data to be used for that purpose. We expect the normal case is
that people will not opt out, so these lists will not be onerous to store. Every
query which is sent to a service must include one of the authorized purposes.

The query executor just needs to add the following processing step whenever
it picks up a piece of personal data:

– Look up the person ID in the appropriate exception list
– If found, do not return the requested data element.

We anticipate the exception lists for a table will be small and will be cached
in main memory when the table is active. A bit-oriented implementation will
require one bit per record. This scheme requires one record identifier per person
that opts out. As long as the opt out rate is low (less than 1%), this scheme will
be more efficient. We can also use delta encoding for record identifiers to cut
down on the amount of space they consume.

7.3 The Right to be Forgotten

Any person, P, with personal data in a service can request to be forgotten. In
this case all personal data (defined above) should be deleted by the service.
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It is assumed that P presents their identifier, I, or the service can look it up.
The identifier is assumed to be the key of one or more tables.

If there is a “path” from the key to an item of personal data, then this item
must be deleted (nulled). A path is defined as a collection of column names,
N1, . . . , Nk, such that (I,N1), (N1, N2), . . . , (Nk−1, Nk) are the composite keys
of intermediate tables and Nk is the key of a table, T, with personal data. Any
personal data in the appropriate row of T should be nulled.

We expect to look for efficient ways to perform this operation. In addition,
we GDPR legislated that a service has 30 days to perform this operation. Hence,
it is possible to batch such requests and perform them in bulk. We expect to see
if this technique is more efficient than forgetting people one at a time.

8 Related Work

There has been a substantial amount of provenance research, including work on
data models, query processing, and practical systems.

Provenance Models—There has been a vast amount of theoretical and model-
related provenance research. Cheney, Chiticariu, and Tan provide a useful
overview [7]. Provenance queries are generally divided among three models:

– Why provenance queries that identify all the source values contributed to the
computation of a particular output,

– How provenance queries that describe the computation that combined the
source values, and

– Where provenance queries that describe where a particular piece of output
information was copied from.

For most of our DBOS target queries, why provenance and where provenance
are likely the most relevant model.

Query Processing—Query processing is a major thrust of provenance work.
Green, et al. [8] showed that query processing for why-provenance queries can be
viewed as an example of a broader class of query processing methods that can
also be used in probabilistic and incomplete databases. Recent work [22] takes
a user’s example why provenance query and rewrites it to match user guidance
about which entities should be included or not; this method might be a good
fit to typical DBOS scenarios. Chiticariu, et al. [12] introduced a system that
permits manual annotations of relational data, along with a mechanism for users
to describe how annotations should be propagated.

Data Collection—For many non-relational systems, there is an additional chal-
lenge associated with non-relational software: how to actually capture the prove-
nance. The noWorkflow [20] system automatically collects information about
Python programs at code-definition time as well as runtime. Vamsa [21] uses
static analysis of Python programs to derive provenance for machine learning
models. Chapman, et al. [6] aim to capture provenance for data preprocessing
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code; they introduce a set of operators that closely resemble common prepre-
pocessing patterns, then annotate Python code with their standard operators.
Scientific workflow systems [10,14,18,31] ask users to manually annotate code
for provenance collection. Dagger asks users to annotate data at certain inter-
faces between code blocks [25]. Other systems [11,19] collect provenance via
automatic automatic instrumentation of a process’ interaction with the compu-
tational environment; this is perhaps the most similar approach in previous work
to what DBOS does today.

All of these systems struggle to obtain provenance data that is relevant and
complete without huge human effort. Unlike relational databases with their fixed
set of operators, general-purpose programs have neither a fixed set of operations,
nor an obvious best place for instrumenting those operations. In work to date,
either the programmer must manually annotate existing code to capture prove-
nance information, at great human effort; or the system must try to automat-
ically instrument unmodified code, and thereby potentially capture confusing
“operations” at an inappropriate level of granularity.

By moving many operations into a relational model, DBOS has some data
capture advantages over previous work. Many OS operations—such as file create,
or network transmissions, or process launches—can be observed as a standard
relational INSERT. In many cases, the semantics of these operations are broadly
understood and can support a range of likely downstream queries.

However, there is nothing that requires a DBOS-visible operation to make
sense to a future provenance query-writer; consider that a user launching a sin-
gle program from a shell will appear to be a new entry in a process table, as
will just one of the many independent processes that together allow a modern
web browser to operate. As a result, even though DBOS operates via the rela-
tional model, some aspects of DBOS data capture closely resemble the challenges
usually associated with general-purpose program provenance.

Practical Systems—There are many issues that arise when building practical
provenance systems, especially when the volume of provenance data grows very
large. Zheng and Ives examine how to build a provenance system that is efficient
and tamper-proof enough for long term archival use [33]. The Smoke system [23]
is an in-memory database explicitly designed for efficient provenance capture
and querying, employing specialized optimizations when provenance queries are
known in advance, which is likely in many use cases. As provenance is especially
useful in data science use cases, the NBSafety [16] system is tailored for preserv-
ing provenance in notebook-style settings where cell dependencies are easy to
lose track of.

9 Conclusions

In this paper we have presented a provenance system built into the DBOS oper-
ating system. This automatically captures a lot of provenance events without
manual intervention by a user. We have show that the run-time overhead of the
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system is modest and query performance on the provenance database is reason-
able. The polystore implications of our approach were also discussed. Our plan
going forward is to build a complete end-to-end DBOS implementation.
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