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Abstract. Transactional isolation is a challenge for polystores, as along
with the limited capabilities of each datastore, we have to contend
with their sheer diversity. However, transactional isolation is increas-
ingly desirable as a variety of datastores are being sought after for roles
that go beyond data lakes. Transactional guarantees are also relevant for
reliability at scale. In this paper, we propose that transactional isola-
tion in polystores can be achieved by leveraging the query engine, i.e.,
basing some of the responsibilities of a traditional transactional storage
manager (TSM) on the query language itself. This has the key advan-
tage of greatly simplifying design and implementation, as it doesn’t need
to be re-invented for each datastore, and should increase performance,
by taking advantage of dynamic query optimization where available. We
demonstrate the feasibility of the proposal with a simple proof-of-concept
and experiment.
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1 Introduction

Polystores aim at combining the diversity of data models, query languages, inter-
faces, and architectures of multiple datastores [17,22]. This enables executing
queries expressed in, or even combining, the preferred data model, the best
query abstractions, and ideal query engines for each use case. The focus has
thus been on big data and analytical workloads.

However, diverse data models and query capabilities are not the sole reason
for the current datastore diversity. Increasingly, the ability to handle updates in
a variety of challenging scenarios has been the driving force behind novel data-
store proposals. For instance, Apache Cassandra is well known for its ability to
handle very high update throughput [23]. Redis provides a variety of data struc-
tures, including Conflict-free Replicated Data Types (CRDTSs) for geographical
scalability [10].

It is thus interesting to accommodate this diversity in update processing
capabilities of datastores, which raises the issue of update consistency and atom-
icity in each of them and across multiple of them. Transactional updates are also
desirable even in mostly static data lakes to correct and remove data (e.g., due
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to the GDPR and other “right to be forgotten” regulations) and ultimately for
reliability, as data corruption on loading has shown to be a frequent issue [7].

Traditionally, transactional isolation and recovery are the responsibility of
the transactional storage manager (TSM) layer [21]. Depending on the strategy
used, these are achieved by the combined effect of the lock manager, the buffer
pool (i.e., for latching and holding different versions), and the log manager.
These features are implemented separately and lie beneath the query engine,
which then operates within the abstraction of an isolated and recoverable data
space. More recently, transactional isolation has also been provided for NoSQL
datastores as a custom middleware layer that wraps the native store [19].

Unfortunately, transactional isolation in polystores is harder than in tradi-
tional database systems or homogeneous big datastores, and often identified as
a key research challenge [28,30]. The first issue is that target datastores have
wildly different isolation and consistency criteria, and not just different imple-
mentations of similar criteria. Namely, some systems, such as MongoDB [26] or
Neodj [5], provide multi-operation isolation and recovery. Other systems, such as
HBase, do not offer multi-operation isolation but provide multi-versioning and
a re-do log, that can be used for transactional isolation at the middleware level
[19]. Still, some systems (e.g., Cassandra [23]) exhibit no isolation at all and
offer only eventual consistency [31], which is central to their value proposition
as distributed and scalable. The second issue is how to enforce a single trans-
actional context for an operation reading from or updating multiple datastores.
Even datastores that have transactional support such as MongoDB or Neo4j
do not support XA [1] transaction interfaces for two-phase commit. Therefore,
individually wrapping or modifying each datastore with a transactional storage
management layer is both unfeasible and undesirable.

In this paper, we assume Snapshot Isolation [9] as the target transactional
isolation criterion and the availability of a multi-version optimistic concurrency
control mechanism. We divide transactional processing into two main concerns:
the first involves capturing write operations and, when commit is requested, val-
idating that there are no write-write conflicts with concurrent transactions; the
second is the ability to, at any point during the execution of a given transac-
tion, reconstruct the current snapshot by reconciling values written by previously
committed transactions, items updated by the current transaction, and avoiding
values written by concurrent transactions. We address only the latter and focus
on the computation needed to deliver the snapshot in a polyglot query engine.

Our first requirement is to provide transactional isolation and recovery, while
at the same time allowing unfettered access to native stores. This precludes, for
instance, cluttering the data with version information. The second requirement
stems from the observation that the best approach for computing isolated snap-
shots varies for different datastores and that an efficient implementation must
take advantage of each one’s strengths.

The main insights in this paper are that reconstructing a transactional snap-
shot across a diversity of datastores (1) is itself a polyglot data processing prob-
lem and (2) that we can take advantage of an optimizing query engine to make
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it simpler, portable, and efficient. We are, as the saying goes, “eating our own
dog-food.”

The rest of this paper is organized as follows: Sect. 2 describes the background
and assumptions for our proposal; Sect. 3 details the design of a proof-of-concept
system for transactional snapshot reconstruction; Sect. 4 evaluates the proposed
approach with an experiment; and finally, Sect. 5 discusses the main conclusions,
remaining challenges, and future research directions.

2 Background and Assumptions

2.1 Query Processing

We assume as the baseline a cloud multi-datastore query engine such as Cloud-
MdsQL [22] offering a SQL-like language that can embed statements in native
query languages of diverse datastores as table expressions, i.e., native table
expressions. It follows the mediator/wrapper architecture from multi-database
systems: A logically centralized mediator — the Common Query Engine (CQE)
— handles client connections, parses and optimizes queries, and then hands sub-
sets of the resulting plan for each target datastore to each wrapper, that extracts
native query fragments or converts relational operators in the plan and handles
execution and data transfer.

In practice, this means that ad-hoc views of data from multiple datastores
can be defined and used in relational queries. A relational data model, extended
with non-atomic list and dictionary types, is used as the target for such views
and the domain for queries in the CloudMdsQL common query language. The
major advantage of this approach is that it is able to fully exploit the power
of each datastore with native queries without having to fully map data to a
common data model, while at the same time globally optimizing the composite
query, e.g., by pushing down selection predicates, using bind join, performing
join ordering, or planning intermediate data shipping.

2.2 Versions and Snapshot Isolation

We assume Snapshot Isolation [9] as the target criterion. In contrast to tra-
ditional ANSI isolation levels based on 2-phase locking, using a multi-version
concurrency control mechanism has clear advantages for read-only transactions
and parallel/distributed systems, and is now widely preferred.

This means that there can be multiple versions of each data item stored at
the same time and that a version is visible to a transaction if and only if it was
committed before the transaction started. For simplicity, we consider only full
Snapshot Isolation, with multi-statement consistency, and not the weaker single-
statement Read Consistency levels that are also available in various systems.

Assuming that the minimum visibility (commit) timestamp for an item is cts
and that the maximum (starting) visibility timestamp for a transaction is sts,
we can consider these possible states for each usable version of an item:
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Visible-to-All (or Storage): Committed versions labeled with a cts that is
less than or equal to the starting timestamps sts of all currently executing
transactions, thus, visible-to-all transactions unless overwritten.

Visible-to-Some (or Cache): Committed versions labeled with a cts that is
greater than the starting timestamp sts of some currently executing trans-
actions, thus, invisible to such transactions even if not overridden. Keeping
these versions separate from those visible-to-all avoids non-repeatable reads.

Visible-to-One (or Temporary): Uncommitted versions associated with a sin-
gle transaction. These versions ensure that a transaction reads its own writes
and at the same time avoid causing dirty reads in concurrent transactions.

When a version is written, it starts in the visible-to-one state, proceeds to
visible-to-some when committed, and eventually becomes visible-to-all as other
concurrent transactions finish. Some systems might in fact keep around some
obsolete versions, visible-to-none, after a newer visible-to-all version exists.

When reading, a transaction first considers its own visible-to-one versions,
then those visible-to-some — considering the timestamp — and finally those
visible-to-all. This process, which obtains correct versions for all data items
requested by some transaction, is the snapshot reconstruction and is the focus
of this paper.

This distinction of versions in terms of visibility is not how most multi-version
systems are described but is key to our insight in Sect.3. Instead, systems are
usually described in terms of strategies used to physically store different ver-
sions. As an example, PostgreSQL keeps them all in the main heap/file, explic-
itly tagged with t_zmin and t_rmax that can be compared to current visibility
boundaries, termed the snapshot. This avoids copying old data when new ver-
sions are added, at the expense of keeping obsolete versions until vacuumed
[27,29]. Oracle labels versions with the system change number (SCN) [8,12] and
these reside: in the main heap/file, while visible-to-one and locked, latest visible-
to-some, or if visible-to-all; other visible-to-some versions are kept separately in
rollback segments. This optimizes for short-lived transactions, where a new ver-
sion quickly becomes visible-to-all. A different example is provided by Google’s
Spanner, which keeps visible-to-one versions directly in the client in unlogged
structures and takes advantage of versioning in BigTable to manage committed
versions, visible-to-some or visible-to-all [14].

2.3 Simplifying Assumptions

Besides snapshot reconstruction, Snapshot Isolation requires precluding concur-
rent updates to the same item. As an example, Oracle and PostgreSQL rely on
aborting transactions in lock queues on commit to ensure that the first com-
mitter wins. In distributed systems, such as Omid [19], this is achieved with a
centralized validation server. A recovery mechanism is also required and usually
relies on logging to ensure atomicity and durability. In this paper, we omit both
of these important issues and focus exclusively on the read path for snapshot
reconstruction.
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We make the additional simplifying assumption of not considering the
ability of a transaction to read its own writes, i.e., we ignore visible-to-one
(or temporary) versions during snapshot reconstruction. Moreover, we assume
that all writes are done atomically at commit time, as this simplifies represen-
tation and the manipulation of timestamps. Our proposal could be extended to
accommodate such possibilities, although the current simpler form would already
be useful and is actually how some systems work [14].

3 Proof-of-Concept

3.1 Version Representation

The first pillar of our proposal is the use of regular tables or collections to hold
versions of data items in different visibility categories according to Sect. 2.2, in
contrast to using custom data structures encapsulated within a transactional
storage manager layer. In detail, we separate visible-to-all (or storage) from
visible-to-some (or cache) versions. The approach could be extended by consid-
ering a third table or collection for visible-to-one (or temporary) versions, which
we are not addressing in this proof-of-concept.

Our key insight, which makes our proposal suitable for a polystore and com-
patible with a wide spectrum of datastores, is the following: It is not neces-
sary to keep individual version numbers for visible-to-all (or storage) versions.
The reason for this is that, by definition, all these versions are visible to all
transactions unless overwritten. Therefore, their final visibility depends only on
whether reconstruction picks up a more recent version while traversing cached
(visible-to-some) versions. In other words, it is as if we consider that all storage
(visible-to-all) versions are implicitly labeled with ts — 1, where ts is the oldest
version in cache (visible-to-some).

The first corollary is that a transactional update and query system can be lay-
ered on top of an existing datastore without changing its content, in particular,
without polluting data with additional version meta-data or multiple versions
for each item, which would break compatibility with existing non-transactional
applications. Additionally, this also decreases the space overhead imposed on the
system, comprised by recently modified rows. With a sufficiently large storage,
this overhead can be considered effectively zero. The second corollary is that
the datastore does not need to be able to filter versions, which is hard or even
impossible to do in pure key-value stores. In fact, previous transaction isolation
systems that can be layered on existing datastores, such as Spanner [14] or Omid
[19], assume that the datastore can hold and filter versions or, in the latter, store
additional version meta-data with each item.

In detail, our general approach is that for each storage table (S) in any of
the supported datastores, we create an additional table for the corresponding
visible-to-some versions (S_Cache). The cache accommodates data with the orig-
inal schema plus three extra fields: from and to, which specify a record’s validity,
and deleted, which identifies deleted records. The primary key for this table is
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a) S b) S_Cache c) S_Snapshot
kv kv from to deleted k v

k1 vl kl v0O1 1 4 false k1l v10

k2 v2 k1l vi0 5 20 false k2 v2

k3 v3 k1 v100 21 oo false k4 v4

k4 v4 k3 L 4 oo true

Fig. 1. Example of the cache of storage S (S_Cache) and resulting snapshot for trans-
action T'. T’s starting timestamp = 15, meaning it will read (k1,v10) and (k3, L) from
the cache and the remaining records from the storage. k3 will not be present in the
snapshot since it is flagged as deleted. (Color figure online)

composite, with the original key in the base storage table and from. As this table
is not used by non-transactional applications, and only indirectly by transactional
applications, the additional data do not create a compatibility issue.

Figure 1 provides an example. Figure 1(a) shows some base storage table S
with key k£ and value v. Depending on the application and the underlying data-
store, both k and v can be composite values. The base table contains items with
keys k1 to k4 with corresponding base values vl to v4. Figure 1(b) shows the
version cache table, added by our proposal. In detail, S_C'ache shows that the
value for k1 has been updated three times: v01 is valid from timestamp 1 to 4;
v10 from 5 to 20; and v100 from 21. We can also see that k3 has been removed
by version 4.

3.2 Snapshot Reconstruction

The second pillar of our proposal is that we describe snapshot reconstruction for
each transaction as a query to the common query engine. This is made possible
by representing versions of items with different visibility as regular tables or
collections.

Figure 2 outlines the logical query used to reconstruct each table in a transac-
tion’s snapshot. It finds out which keys in the cache (visible-to-some) are relevant
considering the current transaction’s starting timestamp sts. These keys are used
to filter out the corresponding rows from the storage. The result is merged with
the readable values from the cache. A complex query involving multiple tables
requires computing this plan for each table.

Figure 1(c) shows the example of the reconstructed snapshot for a transac-
tion reading from starting timestamp sts = 15. Records selected in each table
are highlighted in green, and tombstones hiding items in red. In detail, k1 has
been recently updated and the appropriate value corresponding to the starting
timestamp of 15 is selected from S_Cache, avoiding an even more recent value
with timestamp 21. k3 is present in S_Cache as a tombstone and thus is removed
from the snapshot. Finally, k4 and k2 are obtained from the base storage table.

In short, by using a query for reconstructing the snapshot, we are able
to provide isolation while, at the same time, provide a simpler alternative to
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T, v | nStorage.k,Storage.v|
I
| Ofrom < sts < to A —deleted | | Storage > Cache |
T I
Cache

Stor’lage

Ofrom < sts < to

Cache

Fig. 2. Logical plan for snapshot reconstruction. Storage and Cache are the tables
from Fig. 1; o, 7, p,>, U are the relational selection, projection, renaming, left anti join,
and union operators, respectively.

specialized transactional layers or modifications to multiple datastores. It is,
however, interesting to determine to what extent the resulting performance is
acceptable.

3.3 Execution Alternatives and Optimization

The attainable performance is related to the possibility of finding an optimal
physical plan for the proposed reconstruction query. Defining snapshot recon-
struction as a query at the common query engine level opens up the possibility
of alternative physical plans, leading to decisions by the database administrator
and the automatic optimizer.

The key decision is the placement of the cache table relative to the original
storage. Ideally, they would be placed right next to each other, i.e., the same
datastore, providing optimal data locality and enabling the entire reconstruction
plan to be pushed down to the datastore. However, since the underlying query
engine might not support joining the different structures, this solution is not
always viable. Therefore, the version cache can be placed in a different datas-
tore, that should be selected to provide optimal performance for the required
operations. In systems such as CloudMdsQ]l, auxiliary tables can be stored in
the common query engine itself, instead of an external datastore.

The next decision is how to distribute the logical query plan across the com-
mon query engine and external datastores. Depending on where each cache table
is placed relative to the corresponding storage table and the capabilities of the
query engine in the external datastore, there are three main options for what
can be delegated to the datastore, depicted in Fig.3: alternative (a) shows the
ideal case of pushing the entire computation to the datastore, which should also
allow for additional processing that needs to be performed over the entire snap-
shot to be made there; (b) sends the cache keys to the datastore to filter the
storage but performs the union operation and the remaining processing in the
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Common Query Common Query

Datastore Engine Datastore Engine Datastore
: [ Cache ] [ Storage ] E : [ Cache ] E : [ Storage ] E : [ Cache ] E : [ Storage ] E
' T T b T b T b T b T :

process process ! . process [ process ' H process b process
: N filter N . !
H Cache Storage | ! ! Cache .| Storage | . ! Cache 1 [ Storage |
E Processed Processed | | i (Processed) ' . |Processed] ! i (Processed) ! | (Processed]) !
T T . . T o T : ' T o T !

anti join anti join | union . union ! i antijoin y i anti join

Snapshot

Snapshot ] : [Snapshot

(a) Entire computation (b) Cache keys sent to the (c) Anti join performed in
performed in the datas- datastore to filter the stor- the common query engine.
tore. age.

Fig. 3. Different alternatives for cache placement and snapshot computation. The “pro-
cess” step here depicted can be a wide range of operators (filter, order, join, aggregate,
...) intended to be performed over the snapshot but are pushed down in order to favor
index usage, reduce record materialization, and reduce data transfer.

common query engine; (c) performs only basic storage processing in the datas-
tore (if possible), leaving the merging process and remaining processing to the
common query engine.

Finally, when considering snapshot reconstruction sub-plan as part of a larger
query, an optimizer should be able to globally reorder and select physical opera-
tors. For instance, when executing a join operation, the query engine might opt
for first joining the caches for different tables and obtain an empty result, thus
avoiding the need to filter the storage. To quickly assess if these alternatives
have a substantial impact on execution time, which justifies using an optimizer,
and if the resulting overhead is tolerable, we evaluate in Sect. 4 different plan
implementations with different queries and datastores.

3.4 Concurrent Updates

We are focusing only on transactional snapshot reconstruction during query
execution and avoiding the discussion of how update operations are handled.
However, the reconstruction process needs to tolerate that operations needed for
updates — producing new versions — may occur concurrently.

When a transaction is committed, new versions of data items labeled with
corresponding versions need to be inserted into the cache. This can be done one
item at a time without impact in reconstruction as long as no currently execut-
ing transactions have a starting timestamp equal or greater than the currently
committing transaction. This is true by definition, as the starting timestamp
assigned to a transaction should be the commit timestamp of the latest commit-
ted transaction. Recovery would need a re-do log to ensure that all items from
committed transactions are eventually inserted in the cache.
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We now consider the task which materializes cache records into the storage,
i.e., flush, and removes them, i.e., garbage collection. Let us assume that a record
in the cache C, 7., has the same key as some record r in the storage S, meaning
r. overwrites r, in the snapshots of transactions with begin time greater or equal
to 7. from. We can only flush r, if no current or future transaction can ever read
rs, .., the smallest begin timestamp of all currently executing transactions (),
is greater or equal to r..from. This € can be easily computed with a log that
stores the identifier, timestamp, and status of every transaction. When multiple
versions of the same key can be flushed, the most recent one is chosen. After
that, the flushed records can be safely removed from the cache.

An interesting property of this process is that it can crash at any time without
compromising consistency, not requiring multi-record atomicity guarantees or
needing to halt transaction execution. An incomplete flush means both flushed
and non-flushed records are still present in the cache, and thus will still be
considered for reads for current and future transactions. An incomplete garbage
collection still has the guarantee that every removed cache record is persisted in
the storage, while the remaining ones will overwrite the storage with the exact
same value.

4 Experiment

We use a polystore inspired by CloudMdsQL [6], with MongoDB and Cassan-
dra as datastores. Briefly, queries are written with a low code visual builder or
the corresponding SQL-like language, with embedded native queries for different
datastores. The common query engine is based on PostgreSQL, using the FDW
interface for datastore wrappers. This system includes custom wrappers for Cas-
sandra and MongoDB that optimize filter push-down, by combining them with
the native query languages. While MongoDB'’s aggregation pipeline is expressive
enough to build the entire snapshot natively, the same is not possible in Cas-
sandra, and as such it relies exclusively on the common query engine to join the
cache with the storage.

Therefore, we have multiple steps where the query is transformed and pos-
sibly optimized: (1) in the initial translation to PostgreSQL SQL; (2) within
PostgreSQL itself; (3) in the wrapper; and finally (4) in the datastore itself. We
use step 1 to determine placement and step 3 to push-down selections and pro-
jections. We have, however, limited control of step 2 in how we re-write the query
in step 1 or how we provide statistics back in step 3. We deployed the system on
two Google Cloud instances (8 N1 vCPUs, 8 GB RAM, 500 GB SDD), located
on us-eastl and us-east4 (RTT of 11ms), one hosting the query engine and
the other the MongoDB and Cassandra datastores. The cache sizes are set to
1% of their respective storage sizes.

Our experiment consists in running various simple queries — select all (returns
all rows), filter (returns one row), small join (joins one row), large join (joins
all rows), and aggregation (performs a sum) — on TPC-C’s order_line and
item tables, stored in both MongoDB and Cassandra. By manipulating place-
ment of tables and the common query engine, we obtain several physical
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Table 1. Performance of different physical plans with MongoDB and Cassandra. The
bordered cells mark the best plan for each query in each datastore.

MongoDB Cassandra

t(i]l;czry Baseline Overhead (%) Baseline Overhead (%)

(ms) NG NL FJ LJ NI NA OD (ms) FJ LJ NI OD
Select all 11682 17 151 5] 7 6 8 5 15702 2 6 1|1
Filter 13 9110 14 11 12 46 12 15 1 1 1 0
Small join 13 5 8 100 94 98 95 94 28 ITI 9 10 8
Large join 15266 15 156 6 10 7 n 6 19740 2 5 1 2
Aggregation 299 171 8842 7 14| 7 | 10

NG - MongoDB Native GROUP | NL - MongoDB Native Lookup | FJ - SQL FuLL
Jon | LJ - SQL LEfFT JoIN | NI - SQL WHERE NoT IN | NA - SQL WHERE NOT
ANY | OD - SQL ORDER By + DISTINCT

plans. Considering the alternatives of Fig.3, when using MongoDB, alterna-
tive (a) is implemented with a native GROUP (NG, equivalent to PostgreSQL’s
ORDER+DISTINCT [2]) and a native LOOKUP (NL, equivalent to PostgreSQL’s
LEFT JOIN [3]). With MongoDB and Cassandra, alternative (c¢) makes use of
FuLL JoiN (FJ), LEFT JOIN (LJ), NoT IN (NI), and ORDER+DISTINCT (OD).
Note that each implementation generates different execution trees. Finally, we
also use NOT ANY (NA) with MongoDB to implement alternative (b).

Table 1 displays the read overhead comparatively to the transaction-less alter-
native. The first conclusion is that different physical plans have a profound
impact on query execution time, with one reaching up to 58x the baseline!
Most strikingly, it is clear that different plans are optimal in different scenarios,
which is a compelling argument for the use of an optimizer.

Finally, these results show less than 10% of read overhead for most cases
with both datastores, which compares favorably to the measured cost of corre-
sponding transactional mechanisms in a traditional SQL database system [20].
The exception is the aggregation query with MongoDB. While the NoT ANY
approach can execute the partial aggregation natively in it, greatly reducing
data transfer, the engine filters the storage with the cache keys using, for this
particular case, a suboptimal index scan implemented with the keys’ bounds.
Since each of the thousands of keys are completely different, the scan will con-
sider thousands of bounds. For this case, a better alternative would be a hash
anti join, which should bring the overhead closer to the other queries.

5 Discussion

In this paper, we address a challenge — transaction isolation in polystores —
that has seen very little previous attention, even if identified as a key research
challenge [28,30]. Transactional support is a challenge even in multi-model data-
stores, naturally more integrated than polystores, where support for multi-model
transactions seems to be non-existent [24].
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The main competing approach for transactional isolation in polystores is
Polypheny-DB [32]. In contrast to our proposal, which aims at running read-
only transactions with little interference and at fine-grained conflict resolution
for update transactions, Polypheny-DB assumes two-phase locking with coarse
granularity, which limits concurrent updates and makes them conflict with read-
only transactions.

We are also aware of a different proposal that has been prototyped in Cloud-
MdsQL [22], as part of the same research project. Like our current proposal, it
aimed at Snapshot Isolation and fine-grained conflict resolution but it relied on
the implementation, from scratch, of a custom wrapper or even core changes,
to each datastore. It also assumed the version cache is always co-located, which
often resulted in changing the native schema.

Similar motivation can be found in DeltaLake [7], aimed at incremental load-
ing or correction of data in a data lake with coarse-granularity. In contrast to our
proposal, it is not aimed at polystores but only at data in Parquet files directly
managed by Spark. Therefore, snapshot reconstruction in DeltaLake boils down
to reading the right subset of file fragments, making updates and removals very
costly as a new version of the affected files needs to be written. It is also not
clear how it would be extended to polystores.

Our approach is to define transactional isolation in terms of additional
tables, managed themselves within the polystore, and generic queries that can
be mapped to a common query engine layer and multiple datastores. This takes
advantage of query optimization to achieve the optimal execution plan for each
particular polystore configuration. In fact, a preliminary experiment shows that
the overhead of transactional isolation is comparable to what has been measured
in traditional SQL systems [20].

An interesting outcome of this experiment regards the feasibility of the pro-
posed approach: To what extent keeping updated versions in a separate table
can be reconciled with full use of the interface of each datastore? Namely, can
a native query for some datastore always be modified to account for such ver-
sions? In our experiment, this is very easy to do with a key-value store such as
Cassandra, where obsolete versions returned from the datastore can easily be
replaced by the correct versions from the cache. Our experience with MongoDB
is different: We cannot easily patch the result from a native query, which can be
an arbitrarily complex “aggregation pipeline.” On the other hand, this makes
MongoDB expressive enough that the query can be modified to the reconstruc-
tion by itself. We postulate that this might be generally true: Whenever the
native query engine is complex enough to make it hard to patch the result, it
should be expressive enough to be itself used for reconstruction.

The main threat to the validity of our experiment is that we omit the write
path. We expect to approach this by defining how updates on a view should be
translated to changes in the cache table, which can be implemented, for exam-
ple, using INSTEAD OF triggers or rules [4]. This possibility is limited by known
bounds on updatable views as the reverse mapping may not always exist [13]
and the challenges of translating an update u to a view V' into a set of updates
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U to the underlying data D, namely [15,16]. Additionally, we have to consider
multiple data models and, in the CloudMdsQL, the effect of ad-hoc views, for
which we can resort to bi-directional transformations, with weaker guarantees on
update properties [11,25]. Finally, we have to coordinate the recovery of hetero-
geneous multi-statement transactions with the various guarantees of individual
datastores.

We can thus identify several lessons learned and outstanding challenges for
transactional polystores:

Optimization and DBA are Needed. We have shown that structuring snapshot
reconstruction as a data processing problem allows optimization (different plans
are optimal in different conditions) and provides an opportunity for a DBA to
intervene.

Useful for Different Datastores. Datastores with a more complex QE make it
harder to store changes and reconstruct the snapshot outside (e.g. MongoDB)
than simple key-value stores, but on the other hand, they make it easier to use
their own QE for reconstruction, which makes the approach feasible across a
large spectrum of datastores.

Datastore Interfaces Matter. It is highly relevant that the data-store language is
amenable to processing and manipulation, without having to rewrite the parser.
For instance, MongoDB’s aggregation pipeline is much easier to handle than the
SQL-like language in Cassandra. It is thus a challenge to achieve this and still
be user-friendly for writing native queries.

Various Isolation Criteria are Possible. Polystores are inherently distributed and
likely make strict snapshot isolation problematic. Moreover, it is likely that the
“one size does not fit all” motto is also true in terms of isolation level. A possible
alternative is a relaxed criterion such as TOPSI [18].

Update Processing is an Open Problem. Updates issued at the common QE level
are issued on views. This means that they have to be translated back to the
original data model for the underlying datastore.

Interaction with Native Readers and Writers is an Open Problem. Our proposal
provides transactional isolation when all readers and writers access datastores
through the common query engine. A consistent view of a prefix of updates to
native readers should also be possible by judiciously scheduling checkpointing
operations. It is unclear, however, if it is possible to do the reverse: Allowing
native clients to update datastores without disturbing isolation.
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