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Abstract. Synthetic electronic health records (EHR) can facilitate effective use
of clinical data in software development, medical education, and medical
research without the concerns of data privacy. We propose a novel Generative
Adversarial Network (GAN) approach, called Longitudinal GAN (LongGAN),
that can generate synthetic longitudinal EHR data. LongGAN employs a
recurrent autoencoder and the Wasserstein GAN Gradient Penalty (WGAN-GP)
architecture with conditional inputs. We evaluate LongGAN with the task of
generating training data for machine/deep learning methods. Our experiments
show that predictive models trained with synthetic data from LongGAN achieve
comparable performance to those trained with real data. Moreover, these models
have up to 0.27 higher AUROC and up to 0.21 higher AUPRC values than
models trained with synthetic data from RCGAN and TimeGAN, the two most
relevant methods for longitudinal data generation. We also demonstrate that
LongGAN is able to preserve patient privacy in a given attribute disclosure
attack setting.
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1 Introduction

Electronic health record (EHR) systems capture vast amounts of digital data about
patients’ health status, their medical and treatment histories, and clinical outcomes.
These data provide opportunities to improve healthcare delivery, reduce medical costs
and, when integrated with genomic and imaging data, can enable the development of
strategies for personalized medicine. However, the use of EHR data in medical research
and software development is often impeded by the complexities of regulatory over-
sight. Because electronic health records contain patients’ information, data access and
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sharing are strictly controlled by rules and processes to protect patient privacy. Getting
approvals for access to de-identified clinical data can be time consuming. Approvals are
generally granted for specific subsets of data (new approvals are required, if a study
later needs additional data subsets) with limits on how the data can be shared within
and among research teams. Higher security requirements on computing and storage
infrastructure put additional burden on EHR based medical and informatics research.
The process of data de-identification is also time consuming and expensive, especially
for large EHR datasets. Moreover, de-identified data can still pose privacy and security
risks [1].

Realistic synthetic datasets that maintain the statistical properties of real datasets
can mitigate the complexities of clinical data access by eliminating (or significantly
reducing) privacy and security risks and can complement de-identified real clinical data
in informatics and medical research [2—11]. For instance, synthetic datasets can be used
for data analysis3 and cohort identification tasks [2]. They can also replace or augment
real data for a more efficient development and evaluation of computerized analysis
methods [4, 5]. Realistic synthetic EHR data can, in particular, benefit deep learning
analysis workflows, which often require large volumes of data to train accurate and
robust models. Large longitudinal EHR datasets, for example, are critical to the
development of reliable predictive models, which are generally based on recurrent
neural networks (RNN), such as long short-term memory [12] (LSTM) architectures.
However, there are challenges in generating realistic synthetic datasets. Data hetero-
geneity, large numbers of data elements and types, irregularities in data, and missing
values make it arduous to implement efficient methods that can produce realistic
synthetic data.

We propose a novel deep learning method, coined as Longitudinal GAN (Long-
GAN), for generating longitudinal synthetic EHR data. A trained LongGAN model
generates high-quality clinical data containing continuous laboratory and medication
values for given diseases for a time period of 72 h. It can be applied to any continuous-
valued longitudinal data for any reasonable time range given.

Deep learning has in recent years become the preferred method for data analysis in
a wide range of applications including analysis of clinical data for identification of
disease risk, outcome prediction, and the extraction and classification of clinical
information. For example, deep learning methods have been used to analyze EHR data
to identify the risk of opioid use disorder [13] and opioid overdose [14] in population
studies and to detect miscoded diabetes diagnosis codes for quality improvement [15].
Deep learning methods have also been successfully applied to synthetic data generation
in many application domains, such as text-to-image synthesis [16], video generation
[17], and music generationl8. Most synthetic data methods employ the Generative
Adversarial Network [19] (GAN) architecture, which consists of a generator compo-
nent and a discriminator (or a critic) component. The generator produces synthetic data,
whereas the discriminator distinguishes between real and synthetic data. The adver-
sarial relationship between the generator and the discriminator forces the generator to
learn to produce realistic synthetic data. Several recent projects have employed GANs
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for synthetic EHR data generation [20-27]. Medical Generative Adversarial Network
(MedGAN) [20] implements a method for generating discrete data elements (medi-
cation codes and diagnosis codes). SMOOTH-GAN [21] demonstrated GANs would
generate more realistic synthetic data when binary labels are converted to continuous
values by using imperfect machine learning models as heuristic functions for gener-
ating laboratory values and medications as a snapshot of patients’ records. However,
most of the previous efforts have focused on producing non-longitudinal synthetic data
that represent a snapshot of a patient’s medical history. Applications of GANs for
synthetic time-series clinical data remain scarce, owing mainly to the fact that gener-
ating sequences requires the generated data to have not only similar overall distribution
of attributes, but also similar temporal dynamics to the real sequences. Some recent
efforts have resulted in methods for generating longitudinal synthetic data. Recurrent
Conditional Generative Adversarial Networks (RCGAN) [22] used a RNN architecture
for both the generator and the discriminator and took conditional input at each time
step. The authors evaluated the performance on the eICU Collaborative Research
Database with four selected regularly sampled features. Time-series Generative
Adversarial Networks (TimeGAN) [23] introduced supervised loss to enforce temporal
dynamic preservation and trained the generator and the discriminator in embedded
space. The authors of TimeGAN measured its success on a discrete-valued lung cancer
dataset. Dual Adversarial Autoencoder (DAAE) [24] made use of an inner GAN and an
outer GAN to learn set-valued sequences of medical entities such as diagnosis codes.

LongGAN takes advantage of recurrent autoencoders and the Wasserstein Gener-
ative Adversarial Network with Gradient Penalty [28] (WGAN-GP) architecture.
Recurrent autoencoders have been successfully applied to multivariate time series
analysis such as forecasting [29] and anomaly detection [30]. They can learn useful
representations of sequences while preserving temporal dynamics during the recon-
struction. LongGAN leverages this property of recurrent autoencoders and adapts it to
train an autoencoder model to generate realistic sequences. Our work differs from the
previous work as follows: 1) Unlike regularly sampled bedside data, our data are
irregularly sampled with many missing values. 2) Our data contains many features,
rather than only a few handcrafted features. 3) Conditions are combined to generate
realistic longitudinal data.

We evaluated the performance of LongGAN by training a logistic regression
model, a random forest model, and a two-layer long short-term memory (LSTM)
network model to predict acute kidney injury (AKI). These models represent examples
of linear models, nonlinear models, and deep learning models, respectively. The
experimental results show that predictive models trained with synthetic data from
LongGAN achieve comparable Area Under the Receiver Operating Characteristics
(AUROC) and Area Under the Precision Recall Curve (AUPRC) values to models
trained with real data. In addition, synthetic datasets from LongGAN lead to much
better models, with up to 0.27 higher AUROC and up to 0.21 higher AUPRC values,
compared with synthetic data from RCGAN and TimeGAN, the two most relevant
GAN-based methods for synthetic longitudinal data generation.
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Beyond the realisticness of synthetic data, a key concern is protecting patient
privacy (i.e., an attacker should not be able to discover the identities of patients from a
synthetic dataset). We examined this aspect of LongGAN in the context of attribute
disclosure attacks. The experimental results show that an attacker, who has a subset of
attributes from the real dataset, could achieve a mean accuracy of 20% in predicting
missing attributes with k-nearest neighbors (KNN) estimation using the synthetic
dataset generated by LongGAN. This value is lower than the mean accuracy of 26%
that the attacker could achieve without access to the synthetic dataset using a popu-
lation median method.

2 Methods

2.1 Architecture of LongGAN

The proposed method consists of a recurrent autoencoder network and a GAN network
as is shown in Fig. 1. A recurrent autoencoder is a neural network trained to copy its
input sequence to its output sequence31. More specifically, it can be viewed as having
two parts: the encoder Enc takes sequential data X and maps it to a dense representation
h, then the decoder Dec takes h and tries to reconstruct the input from it. Here,

X =(s1,82,...,57) is a time-ordered sequence of vectors. Each vector s; =

(sl s2 .. .,sic)7 1 <i<T represents C features at the time pointi. In our implementa-

P90
tion, the encoder and decoder both have three LSTM layers. We aim to minimize the
reconstruction loss, which is:

Slx —x|P

XeD

where D is the dataset, and X' = Dec(h) = Dec(Enc)(X) is the reconstruction of X.
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Fig. 1. Architecture of the proposed LongGAN model.
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The GAN network is based on the WGAN-GP architecture with conditional inputs.
A GAN consists of two components: a generator G(z; 6,) and a discriminator D(#; 0,).
The generator takes random noise and tries to generate samples that follow the same
distribution of the real data. Meanwhile, the discriminator receives both real and
generated data, and tries to detect whether a sample is real or fake. Ideally, the optimal
generator G* would generate samples that are indistinguishable from real samples, and
the discriminator would be forced to make a random guess. Conditional GANs [32]
(cGAN5s) are extensions of GANs where the generator takes not only random noise but
also some auxiliary information such as labels, to help with the generation. The
objective of a conditional GAN is:

mingmaxpV (O, 04) = Ey~ p,[l0g(D(h]y))] + E: . p.[log(1 — D(G(z]y))]

Here £ is the output of the pre-trained encoder, i.e. representation of real longitu-
dinal data, Pj, represents the distribution of real representation, P, is the distribution of
random noise (here we used Gaussian distribution), and y is the conditional input.
WGAN-GP is an extension of the basic GAN architecture that improves the stability
when training the model. Compared to the original GAN, it uses the Wasserstein
distance instead of the Jenson-Shannon (JS) divergence, replaces the discriminator with
a critic that scores the realness or fakeness of a given sample, and adds gradient penalty
to enforce Lipschitz constraints on the critic. The objective function of WGAN-GP is:

L=Ej_p [D(R)] ~ Enern D)+ 2B~ [(IV-D@B)], ~1)]

The synthetic representation 7 was fed to the pre-trained encoder to generate
synthetic longitudinal data:

X = Dec(fz) = Dec(G(z]y))

In our method, the generator has two leakyRelu hidden layers with o = 0.2, each
followed by a batch normalization layer, and the output layer is tanh. The critic has two
leakyRelu hidden layers with oo = 0.2. The output layer is linear.

2.2 Training LongGAN

We extracted inpatient encounter data for adults (18+) from the Cerner Health Facts
database [33-35], a large multi-institutional de-identified database derived from EHRs
and administrative systems. The extracted data were mapped to the OHDSI Common
Data Model (version 5.3) and vocabulary release (2/10/2018) [36]. We randomly chose
two facilities (131 and 143) from the 10 highest volume inpatient facilities and
extracted encounters from 1/1/2016 to 12/31/2017 for the experimental evaluation of
the proposed method.
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Medications and laboratory tests with no less than 5% appearance rate by encounter
in both facilities were extracted, and the raw values were converted to quantiles. We
further extracted encounters with length of stay no less than 72 h and sampled one
medication/laboratory test per hour. If there were more than one measurement in an
hour, medians were computed. Diagnosis codes were mapped from the International
Classification of Diseases (ICD) codes to Systematized Nomenclature of Medicine
Clinical Terms (SNOMED CT). SNOMED codes and the descendant codes for Acute
Kidney Injury (AKI) were combined and used as labels for our study.

The extracted datasets were extremely sparse because not all patients have mea-
surements of all medications/laboratory tests every hour, and thus imputation was
necessary. There are many approaches to impute time-series data. Here we used the
interpolation part of the Interpolation-Prediction Network [37]. The Interpolation-
Prediction Network is a semi-parametric network designed for irregularly sampled
multivariate time series, taking into account correlations across all time series from
different dimensions.

After the preprocessing, we obtained multidimensional longitudinal data for every
patient, where each dimension represents the trajectory of a specific medication/
laboratory test measurement from the first 72 h of hospitalization. We then trained a
classifier to get smooth labels [21, 38] of AKI. More specifically, we trained a random
forest model on the training set of real longitudinal EHR data with AKI as labels to
assign probabilities of patients’ developing AKI, and then adjusted these probabilities
to obtain smooth labels. The adjustment is done as follows:

0.49, iprrob > 0.5 and Xizpey == 0
SmoothLabel (Xprob, Xiabel) = { 0.51, if Xprop <0.5 and Xigpes == 1

Xprob, Otherwise

Here X_prob is the probability of getting AKI assigned by the trained classifier, and
X_label is the original binary valued label for AKI.

To train a synthetic data generation model, we first pre-trained the encoder and
decoder with the real EHR data with reconstruction loss. We then took the output of the
encoder, i.e., the representation of the input data, and trained the WGAN-GP to pro-
duce synthetic representations. The smooth labels of AKI were used as conditional
input for both the generator and the discriminator. Finally, the generated representa-
tions were input into the trained decoder to obtain synthetic longitudinal data.

The method was implemented in Python v3.6. The random forest and logistic
regression method were implemented using the scikit-learn package [39]. The recurrent
encoder network and the GAN network were developed using Tensorflow [40]. Other
libraries used include Python Numpy41, Python Pandas [42], and Python Scipy [43].
Training was performed on an NVIDIA Tesla V100 (16 GB RAM).



Generating Longitudinal Synthetic EHR Data 159

3 Results

3.1 Evaluation of Realism

We have evaluated the performance of LongGAN by training traditional machine
learning models and RNNs to predict whether or not a patient will develop AKI based
on the medication and laboratory results from the first 72 h of hospitalization. In our
experiments we used logistic regression, random forest, and a two-layer LSTM net-
work as examples of linear models, nonlinear models, and neural networks, respec-
tively. In each case we trained two models, one using the real training dataset and the
other using the synthetic dataset, and then evaluated both models on a real test dataset.
This approach, called Train on Synthetic and Test on Real (TSTR), is a common
mechanism with which to evaluate the realism of synthetic data [21, 22]. Since logistic
regression and random forest are not designed for time-series data, we flattened the
sequence along the time dimension as input for these two algorithms. We measured the
performances of the models with AUROC and AUPRC as they are commonly used
metrics for TSTR [21, 22].

We compared our method with RCGAN and TimeGAN. Since TimeGAN is not
designed for conditional generation, we trained two TimeGAN models on positive
cases and negative cases separately to generate synthetic data with both cases. Table 1
shows the experimental evaluation results. Our results demonstrate that the models
trained on synthetic datasets generated by LongGAN have performances closer to those
trained on real datasets than other synthetic datasets generated by RCGAN and
TimeGAN. Models trained with synthetic data from LongGAN achieved up to 0.27
higher AUROC and up to 0.21 higher AUPRC values than models trained with data
from RCGAN and TimeGAN.

Table 1. Performance of trained predictive models on real and synthetic datasets.

Predictive model | Metric | Real | RCGAN | TimeGAN | LongGAN
Logistic regression | AUROC | 0.80 | 0.57 0.61 0.74
AUPRC |0.57 {0.34 0.36 0.51
Random forest AUROC | 0.86 | 0.50 0.71 0.77
AUPRC |0.70 {0.29 0.50 0.51
LSTM network AUROC | 0.83 | 0.63 0.67 0.77
AUPRC |0.67 | 0.39 0.45 0.52

In the next set of experiments, we examined whether models trained with the
synthetic dataset selected a similar set of features for prediction compared with models
trained with the real dataset. To this end, we extracted the top 15 most important
features of the random forest models trained with the real and synthetic datasets.
Table 2 shows the list of features from each random forest model. Our experiments
show that 10 features overlap between the two models.
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Table 2. Top 15 most important features of random forest model trained on real/synthetic

datasets.

Top 15 features from random forest model
trained on the real dataset

Top 15 features from random forest model
trained on the synthetic dataset

Creatinine [Mass/volume] in Serum or
Plasma
Creatinine [Mass/volume] in Urine

Chloride [Moles/volume] in Serum or
Plasma
Ferritin [Mass/volume] in Serum or Plasma

Phosphate [Mass/volume] in Serum or
Plasma

Respiratory rate
Sodium [Moles/volume] in Serum or Plasma

Iron [Mass/volume] in Serum or Plasma
Glasgow coma scale

Aspartate aminotransferase [Enzymatic
activity/volume] in Serum or Plasma
Basophils/100 leukocytes in Blood by
Automated count

Glucose [Mass/volume] in Serum or Plasma
Potassium [Moles/volume] in Serum or
Plasma

Creatinine [Mass/volume] in Serum or
Plasma

Neutrophils/100 leukocytes in Blood by
Automated count

Aspartate aminotransferase [Enzymatic
activity/volume] in Serum or Plasma

Respiratory rate

Phosphate [Mass/volume] in Serum or
Plasma

Eosinophils/100 leukocytes in Blood by
Automated count

Chloride [Moles/volume] in Serum or
Plasma

Ferritin [Mass/volume] in Serum or Plasma
Protein [Mass/volume] in Serum or Plasma
Diastolic blood pressure

paracetamol

Creatinine [Mass/volume] in Urine
Iron [Mass/volume] in Serum or Plasma

Mean blood pressure

Glucose [Mass/volume] in Serum or Plasma

Cholesterol [Mass/volume] in Serum or
Plasma

Basophils/100 leukocytes in Blood by
Automated count

3.2 Evaluation of Privacy Preservation

A critical requirement for a synthetic EHR data generator is that it must preserve patient
privacy. In this section we evaluate this aspect of our method with respect to attribute
disclosure attacks. Attribute disclosure occurs when attackers can derive target attri-
butes about a patient based on key attributes that they already know about the patient
[8, 44]. This is a prominent issue for synthetic datasets as attackers might gain sensitive
knowledge of real patients based on similar records in a given synthetic dataset.

We assume the attacker has full access to the synthetic dataset and partial access to
the real dataset. This is a commonly adopted setting for evaluating the attribute dis-
closure risk [20, 45]. More specifically, we randomly sampled 1% of patients from the
real training set as the compromised records, flattened them along the time dimension,
and randomly masked 10% of the attributes as the set of target attributes that are
unknown to the attacker.
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While there are different potential attack methods for synthetic dataset [20, 46, 47],
in this paper, due to space limitation, we focused on KNN estimation, a common
method considered for privacy preserving evaluation. For each compromised record,
we retrieved its k-nearest neighbors in the synthetic dataset based on the key attributes
and estimated the target attribute using the median of corresponding attributes of these
k neighbors. We call an estimation accurate, if the relative error of the estimation is
below 5%. We used a dummy baseline where the attacker simply guesses the median
value in the population. Here it is 0.5 since our data are in quantile. This simulates the
attacker’s behavior when they have no knowledge of the original dataset or the syn-
thetic dataset and have to make estimations uniformly at random [46].

The idea is that a privacy-preserving synthetic dataset should avoid providing the
attacker with additional knowledge for better estimation of target attributes, in order to
minimize the risk of attribute disclosure. We repeated the experiment for 30 times, with
different records of patients randomly selected and different attributes randomly
masked and mean accuracy computed for all masked attributes. The experiments
showed that with the KNN estimation the attacker on average achieved a mean
accuracy of 20%, while with the estimation of the population median the mean
accuracy was 26%. The paired samples t-test of the mean accuracies from different
experiments resulted in a p-value of 7.12e—23. This indicates that the mean accuracy
from the KNN estimation was significantly smaller than that of random guess, sug-
gesting that in the given scenario, an attacker using KNN estimation cannot do better
than random guess.

4 Discussion

Generating synthetic clinical data has great potential for researchers to conduct com-
petitive and reproducible research with electronic health records without privacy
concerns. However, very few works have tackled the problems of generating contin-
uous time-series clinical data. We have proposed a model that combines a recurrent
autoencoder and WGAN-GP to generate realistic time-series data containing continu-
ous laboratory and medication values for given diseases. While we focused on a
specific disease (AKI) in our experimental evaluation, the methodology is universal and
can be applied in the context of other diseases.

4.1 Comparison with Previous Work

In Esteban’s work on RCGAN, they used RNNs (LSTM) as the generator and the
discriminator, and the labels were fed to the generator and the discriminator at every
time step [22]. In Yoon’s work on TimeGAN, they used RNNs as embedding and
recovery functions to provide mappings between feature space and latent space, and
then trained the GAN within the latent space [23]. The GAN aspect of TimeGAN also
utilized the RNNs as both the generator and the discriminator. In addition, another
RNN (called supervisor in the paper) was added to enforce the generated longitudinal
data having similar temporal relationships to the real longitudinal data.
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GANSs and RNNs can both be hard to train [28, 48], and using the RNN structures
in GANs would intuitively introduce instability in training. Compared with previous
studies, the key difference of our study is that we managed to bypass the RNN structure
in the GAN. We accomplished this by taking advantage of a pre-trained recurrent
autoencoder and transformed the problem of generating sequences to the problem of
generating dense representations of sequences. Since the generated representations are
input to the decoder, which was trained on real longitudinal data, the generated lon-
gitudinal data would maintain similar temporal dynamics to the real dataset. Our model
also differs from previous work in that we took advantage of WGAN-GP and smooth
labels, which made the training more stable. Moreover, our model requires minimal
domain knowledge to make hand-crafted features, rendering it more generalizable.

Our model achieved much better AUROC and AUPRC values than the baseline
models in predictive modeling tasks. The significant overlap of top features between
models trained with synthetic data and those trained with real data suggests LongGAN
can generate realistic synthetic data which can in turn be used to complement or replace
real data for training machine learning models. The experiments on attribute disclosure
demonstrated that an attacker cannot reliably obtain additional information about real
patients with help of our generated dataset, which minimizes the concerns for privacy
issues.

4.2 Limitations

The datasets extracted from the Health Facts database contain many missing values,
because not all patients have measurements of all medications/laboratory tests every
hour. We performed imputation to obtain fixed-length longitudinal data to fit the
model. However, in this process we also eliminated any patterns of the missing data
itself, which could contain useful information about patients [49]. While our method
generates synthetic data that are similar to the imputed data, it does not have patterns of
missing data like the original datasets do.

5 Conclusion and Future Work

LongGAN is a new approach to generating synthetic longitudinal EHR data. It can
produce synthetic datasets that enable training of machine/deep learning models with
comparable predictive performances to those of models trained with real data. For
future work, we shall investigate how to combine the transformer [50] architecture with
GAN and implement extensions to produce synthetic data on demographics and pre-
serve patterns of missing data. Transformer networks have achieved great success in
natural language processing tasks [51, 52] and have been shown to be powerful tools
for extracting useful features of sequences [53, 54]. We will also explore other aspects
of privacy attack and preservation and differentially private training methods [55, 56],
in order to further minimize or eliminate the risk of information leakage.
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