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Abstract. Low-cost and widely available Next-Generation Sequencing
(NGS) is revolutionizing clinical practice, paving the way for the real-
ization of precision medicine. Applying NGS to clinical practice requires
establishing a complex loop involving sample collection and sequencing,
computational processing of the NGS outputs to identify variants, and
the interpretation of the variants to establish their significance for the
condition being treated. The computational tools that perform variant
calling have been extensively used in bioinformatics, but there are few
attempts to integrate them in a comprehensive, production-grade, Cloud-
native infrastructure able to scale to national levels. Furthermore, there
are no established interfaces for closing the loop between NGS machines,
computational infrastructure, and variant interpretation experts.

We present here the platform developed for the Greek National Pre-
cision Medicine Network for Oncology. The platform integrates bioinfor-
matics tools and their orchestration, makes provisions for both experi-
mental and clinical usage of variant calling pipelines, provides program-
matic interfaces for integration with NGS machines and for analytics,
and provides user interfaces for supporting variant interpretation. We
also present benchmarking results and discuss how these results confirm
the soundness of our architectural and implementation choices.

Keywords: NGS data · Variant calling · Variant annotation ·
Cloud-native

1 Introduction

Low-cost and widely available Next-Generation Sequencing (NGS) is revolution-
izing clinical practice and paves the way for the realization of precision medicine.

The work described here has received funding from the Greek General Secretariat for
Research and Innovation in the context of the Hellenic Network of Precision Medicine
on Cancer. See also https://oncopmnet.gr for more details.
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Applying NGS to clinical practice requires establishing a complex loop involving
sample collection and sequencing, variant calling , the computational processing
of the NGS outputs to identify variants, and variant annotation, the interpreta-
tion of the variants to establish their significance for the condition being treated.

Computational tools for variant calling are computationally challenging pro-
cesses, developed with parallelisation being a major design consideration. Both
multi-threading of individual processes and the Map/Reduce paradigm have
been extensively explored [1]. The advent of Cloud computing has also seen the
appearance of specialized omics Cloud services that offer flexible scalability by
porting these tools to remote infrastructures. Such service include those offered
by the European ELIXIR project,1 commercial services such as DNAnexus,2

and services provided by the manufacturers of NGS engines such as Illumina.3

Each of these services emphasises different aspects and features, ranging from
open interfaces and software, ability to extend the bioinformatics toolset with
custom tools, to tracking the lineage and provenance of data and experiments,
and integrating with variant annotation databases and environments.

But there are few attempts to integrate a comprehensive, production-grade
infrastructure able to scale to national levels. Furthermore, there are no estab-
lished interfaces for closing the loop between NGS machines, computational
infrastructure, and variant interpretation experts. Even more so, when one want
to also include in the loop secondary medical research usage of the data produced
by clinical usage.

In this paper we present an architecture that integrates bioinformatics tools
and their orchestration, makes provisions for both experimental and clinical
usage of variant calling pipelines, provides programmatic interfaces for integra-
tion with NGS machines and for medical analytics, and provides user interfaces
for supporting variant interpretation.

We also present the implementation of this architecture as the end-to-end
variant calling and annotation platform developed for the Greek National Pre-
cision Medicine Network for Oncology, and is in the final stages before entering
productive clinical use.

2 Use Case-Driven Platform Design

The design of our platform was based on common processes followed by labs
that support NGS processing for Precision Medicine applications. Our analysis
for the distinct user roles in this context has identified the following user profiles
and service needs:

– Clinicians have access to samples and NGS machines and need to get the NGS
data processed by executing a variant calling workflow in order to get a VCF
data structure that represents all variants found in the sample’s DNA along

1 Cf. https://www.elixir-europe.org.
2 Cf. https://www.dnanexus.com.
3 Cf. https://basespace.illumina.com.
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Fig. 1. Services and interfaces required in clinical use.

with useful metadata (e.g., coverage, statistical significance). Subsequently,
they annotate each variant according to its clinical significance.

– Bioinformaticians provide the definition of the variant calling processing. In
particular, they determine and configure the steps of the workflows and then
test them by applying them on benchmark datasets and/or on the inputs from
past clinical usage. They evaluate alternative tools and workflows on both
their efficacy in correctly calling variants and their computational efficiency .

– Medical researchers seek to correlate variants, diseases, treatments, and out-
comes and, in general, to perform data analytics queries on the repository of
results of the platform. They provide access to the clinical data the need to
join with the VCF data computed using this platform.

Based on these user profiles, in the next paragraphs, we will present use cases
and the relevant requirements for our precision medicine platform.

In clinical usage (Fig. 1), the user needs to load the outputs of the NGS
machine into the platform and select among parameter presets, such as the clin-
ical purpose of the processing. The platform is pre-configured with the appropri-
ate processing and the clinician cannot affect the workflows and tools used. This
is facilitated by an Operator API through which the desktop computer directly
attached to the NGS machine can upload inputs to the platform and the user
can select and initiate the processing. A minimal Operator UI also provides a
graphical environment for this usage.

When processing terminates, the infrastructure adds the resulting VCF
data to the Results Repository that constitutes the clinical usage record of the
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Fig. 2. Services and interfaces required to execute bioinformatics benchmarks and
maintain the clinical pipelines.

infrastructure and also makes them available for annotation in a Variant Anno-
tation Environment . These environments initialize the annotation by accessing
databases of variants known to be significant for the specific condition and allow
the user to edit these initial annotations. These manual annotations are also
added to the Results Repository, available both for reporting and for medical
research.

Bioinformatics usage (Fig. 2) ensures the efficacy and efficiency of the pre-
configured processing made available to clinicians. Following standard practice in
bioinformatics, this processing is organized as the application to the input data
of a workflow that is the composition of several tools. A Workflow Orchestrator
reads the definition of the workflow and then ensures that each tool referenced
in the definition is given as input the output of the previous step in the pipeline
and is appropriately parameterized and invoked. The software that implements
each step is retrieved from a Software Repository and inputs and outputs are
retrieved from and stored to a Data Repository .

Bioinformaticians update and evaluate reference data (effectively, inputs that
are the same for all runs), bioinformatics tools, and workflows. Testing is per-
formed by applying alternative workflows on benchmark data and on previous
clinical data, so the infrastructure needs to clearly distinguish between clini-
cal and experimental workflow execution. The former are restricted to the pre-
configured workflow and write their output to the Results Repository; There is
only one such output associated with each input. The latter are unrestricted
computational experiments, are not meant to be used for any medical purposes,
and there will be multiple runs and outputs for each input.
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Fig. 3. Services and interfaces required for medical research.

Bioinformaticians have access to several components that are internal from
the perspective of clinicians: They can directly access the data repository to pro-
vide benchmark and reference data, they can add and update the bioinformatics
tools and workflows in the Software Repository, and they can read detailed
Operational Logs from the execution of workflows so that they can debug and
benchmark tools and workflows.

It should be noted at this point that the data in the platform does not consti-
tute personally identifiable information (PII) either by itself or when combined
with other information: The number of variants needed for precision medicine
purposes is too small to identify individuals. Furthermore, NGS data, VCF data,
and annotations are internally linked by a unique key, but this key is created by
infrastructure and unrelated to any external PII or key.

Medical research users need to combine access to external data with access to
the platform’s Results Repository to extract statistics about how variants corre-
late with clinical and, possibly, other data (Fig. 3). This is facilitated by foresee-
ing linking the internal index used by the platform with an external index, such
as a medical exam referral number. Medical research users who are authorized
to access clinical and other sensitive PII can use this link to join variants with
the clinical or personal data, without having to store PII in this platform.
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3 Platform Description

The abstract architecture shaped by our functional requirements draws a land-
scape where a large number of different services, addressing the needs of dif-
ferent users, cluster around the core functionality of applying variant calling
workflows. Accordingly, we will start by establishing how this core functional-
ity will be implemented and then use this to drive the elicitation of technical
requirements and the decisions on concrete software systems that implement the
abstract components in Fig. 3.

As discussed in Sect. 1, the bioinformatics community has converged to orga-
nizing processing in pipelines of tools. Containerization technologies allow both
the pipeline orchestrator and the individual tools to be deployed in Cloud comput-
ing infrastructures and to scale up or down the allocated computational resources.
At the same time, Cromwell4 is a well-supported and ubiquitously-used orchestra-
tor of containerized tools. Cromwell also supports the CWL workflow description
language, the de facto standard in the bioinformatics community.

On the other hand, the Kubernetes container deployment, scaling, and man-
agement system5 and the various tools developed around it are the dominant
open-source ecosystem for Cloud-native applications. Although Cromwell is not
developed as a Cloud-native application, it offers the extremely useful abstrac-
tion of task execution schemas (TES)6 that specify how Cromwell can deploy
batch execution tasks. Although not officially supported by Cromwell, TESK7

implements the TES API on Kubernetes.

3.1 Variant Calling

The entry point of the Variant Calling sub-system is the REST API. Through
this API a user can submit pipelines, either provided by the system and stored in
platform’s software repository or custom pipelines defined by them. Either way
the pipelines should be defined in CWL. The REST API is also the interface of
the metadata subsystem so users can be informed about the status of pipelines
submitted by them or their group and retrieve other pipeline metadata such as
the exact pipeline inputs, the location of the output files in the object store, and
pipelines logs.

Upon pipeline submission, the REST API submits the pipeline to Cromwell
which handles the workflow orchestration. The orchestrator reads the CWL def-
inition and starts the execution of every job defined there. Cromwell monitors
the health of every job and handles job failures by retrying failed jobs when-
ever appropriate. It also ensures that each job is given the appropriate inputs
from previous job outputs if needed. The metadata sub-system polls Cromwell to

4 Cf. https://cromwell.readthedocs.io.
5 cf. https://kubernetes.io.
6 https://github.com/ga4gh/task-execution-schemas.
7 Cf. https://github.com/elixir-cloud-aai/TESK.

https://cromwell.readthedocs.io
https://kubernetes.io
https://github.com/ga4gh/task-execution-schemas
https://github.com/elixir-cloud-aai/TESK
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Fig. 4. Systems and components integrated to realize the architecture.

retrieve information about the status of the workflow, workflow logs and output
files location in the object store (Fig. 4).

Task execution is handled by TESK. A task defines a set of input files, a set of
(Docker) containers and commands to run, a set of output files, and some other
logging and metadata. TESK implements TES on Kubernetes backends so each
task is executed in a Kubernetes pod. It handles task execution, failure recov-
ery, task resource assignments (CPU, RAM, block disk size), and housekeeping.
Every task is scheduled by Kubernetes on nodes with available resources, is
assigned block storage from NFS for temporary file storage and retrieves input
files and stores output files in the system’s object store.

Finally, we use an instance of Gitlab installed on our Kubernetes infrastruc-
ture8 as our software repository and identity server. By storing the platform’s
predefined pipelines on a Git server we support version control, branch access

8 Cf. https://docs.gitlab.com/charts.

https://docs.gitlab.com/charts
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controls, merge reviews, and merge approvals. Pipeline definitions are fully spec-
ified and reproducible as they refer to specific container images, served by the
Gitlab Docker registry.

The sophisticated access control and software review mechanisms included in
Gitlab are used to ensure the appropriate access rights and reviews before com-
mitting to the branches that the system trusts as the correct pipeline definitions
and tool implementations for the clinical pipelines. The system is configured
to recognize certain repositories and branches as pertaining to clinical, non-
experimental usage, and to only write the VCF outputs from these pipelines to
the results database. Images for these branches are built and served automati-
cally using Gitlab CI/CD tools, so that updating the clinical pipelines amounts
to merging into the appropriate (protected) branches, without any further plat-
form administration actions. This approach facilitates using the infrastructure
to also carry out bioinformatics experimentation and benchmarking with the
data and tools that accumulate in the platform: Users can be given access to
repositories and groups that are not recognized by the system as clinical to sub-
mit arbitrary workloads; these workloads will yield results and benchmarking
measurements but will not update the clinical results database.

Besides enforcing access rights and review policies for tools and pipelines, Git-
lab is also the identity and role-based access service across the system. Access
from the internet goes through Keycloak/NGINX and the Kubernetes load bal-
ancer, which use Gitlab as an identity server. Roles that do not directly map to
repository access (such as accessing the results repository) are mapped to a hier-
archy of Gitlab groups that do not contain any repositories. Keycloak/NGINX
knows how to map membership in these special groups to internal services that
are made available or masked for each user. This allows extremely flexible admin-
istration as, for instance, a user can be made the administrator of the group that
maps to accessing the results database; that user can invite further members
without having to interact with the administration of the platform as a whole.

3.2 Variant Annotation

The Variant Annotation component of our platform automates and facilitates
gathering genomic annotation data from external databases and combining them
with VCF data coming from the Variant Calling step of the platform (Sect. 3.1).
The integrated results are then stored in the platform’s data space and they are
ready to be used both for the production of patient reports and for answering
research questions posed by medical researchers (see also Sect. 3.3).

In the core of this component, lies a deployment of the open-source Ensembl
Variant Effect Predictor (VEP) software [3]. This tool can be configured to make
use of data gathered from a set of desired external databases to analyse, annotate,
and prioritize genomic variants in coding and non-coding regions. In our case,
VEP is run with the default configuration that includes a variety of variant (e.g.,
COSMIC, dbSNP), protein (UniProt), algorithmic variant effect prediction (e.g.,
SIFT, Polyphen), variant allele frequency (e.g. gnomAD), clinical significance
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(ClinVar), and scientific literature (PubMed) databases.9 Further, we include
data from the LOVD variation database (using VEP’s LOVD plugin),10 as well
as variant nomenclature from HGVS. For efficiency reasons, the data of each
source are stored locally in our platform’s data space in the form of a collection
of annotation database cache files, which can optionally be installed alongside
VEP itself.

It is worth mentioning that for clinicians it is very crucial to have access to
the most recent information; the results of new research may identify previously
unknown variants or reveal and correct data for already studied ones. To make
sure that the most recent information is used during the annotation step, we
have developed a custom module which, at runtime, examines if the information
gathered from important external databases (like ClinVar) is up-to-date. This
module compares the cached version of the respective database to the most
recently published one and loads the more recent version in the platform’s data
space, if needed.

By default, the output of VEP is given in the form of an annotated VCF
file which contains integrated information from the input VCF and the selected
external databases. This file is stored by itself in the Results Repository, however,
to better support basic functionalities of the Variant Annotation component
the same information is also loaded into a relational database schema. This
database schema is a custom extension of LOVD [2], particularly tailored to
accommodate storing and indexing VCF annotation data. This is achieved by the
extension, modification, and addition of tables to the schema. For example, tables
storing individual patient data in the original LOVD schema, only store referral
numbers which correspond to particular NGS analyses in our version of LOVD
(as per the requirements of Sect. 2 regarding PII data). Further, our schema
extends LOVD with additional tables, e.g., for recording data from ClinVar,
data gathered from clinical analysis report forms, filled out by clinicians during
variant interpretation, etc.

The Variant Annotation component offers a functionality to browse the anno-
tated data through a basic user interface that retrieves data from the aforemen-
tioned database and displays them in a tabular form. This interface allows the
user to identify any variants of interest that should reported in the context of the
investigation of the case of a particular patient. Finally, the users are also able to
report newly identified links between variants and phenotypes, diseases, treat-
ments, etc. These special-purpose contributions are very important since they
may be related to particularities of the population being investigated by the lab
that owns the platform and may be a very valuable addition for investigating
research questions by medical researchers (see Sect. 3.3).

9 An exhaustive list of annotation databases used with VEP’s default configuration
can be found here:
https://www.ensembl.org/info/docs/tools/vep/script/VEP script documentation.
pdf.

10 This plugin retrieves LOVD variation data from http://www.lovd.nl.

https://www.ensembl.org/info/docs/tools/vep/script/VEP_script_documentation.pdf
https://www.ensembl.org/info/docs/tools/vep/script/VEP_script_documentation.pdf
http://www.lovd.nl


130 G. Mouchakis et al.

3.3 Knowledge Base

Our platform offers a Knowledge Base component which consists of the Results
Repository along with a graphical UI-enabled analytics query engine. This
knowledge base is intended for medical researchers and, hence, should not require
familiarity with any database and/or respective query language. To facilitate this
requirement, our platform uses metabase11 running on top of mariaDB.

Metabase is an open source tool that allows for querying databases through
user friendly UIs and without requiring users to be familiar with database query
languages, or the underlying database schemas. It offers automatic explorations
of the tables of databases it connects to, and allows for performing and saving
queries on their data. It is particularly tailored to performing statistical queries,
offering a variety of visualization options for the results, such as bar charts,
pie charts, etc. Metabase supports connecting to a variety of different database
management systems, such as MySQL, PostgreSQL, MongoDB, and others.

In the case of our platform’s knowledge base, we use MariaDB as the under-
lying RDBMS. The core of this database is a collection of clinical variant inter-
pretation data collected in a single table, alongside their connection to external
exam referral data links (see Sect. 2). The clinical interpretation data stored
originate from the Variant Annotation system of the platform, in particular,
data from clinical interpretation result forms provided by the tool. These data
concern the characterization of variants detected using the platform’s workflow
(i.e., pathogenic, uncertain/unknown significance), the genes on which they were
found, alongside data pertaining to the particular analysis (i.e., the frequency
and coverage of the variants).

Registered users of the platform may access the knowledge base through a
web interface provided by metabase. The web interface facilitates access to the
underlying database tables through an intuitive UI, through which users can ask
simple questions by applying filters on values of the selected table’s columns, and
summarizations (i.e., aggregation queries and/or grouping) on the data by click-
ing on buttons provided for each of these functions. Further options are provided
with regards to the display format of the results. By default these are shown in
table format, but users may choose more appropriate visualizations, such as bar
charts, or chronological time series, which are additionally customizable in terms
of display (user can change display colors, types of axes, texts in legends, etc.).

Researchers querying the data are given the option to save each performed
query. Saved queries, alongside their resulting visualizations, can be added to
dashboards, which are readily available to users when accessing metabase. Vari-
ous dashboards can focus on particular aspects of the data (e.g., statistical data
of variants based on each gene they were found on), allowing for a fine grained
organization and real time monitoring of the summary statistics recorded in the
knowledge base. Finally, the various dashboards and saved questions make up
a powerful tool that enables the sharing of results among different users of the
platform.

11 https://www.metabase.com.

https://www.metabase.com
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4 Scalability Experiments and Discussion

In order to test the scalability of the platform, we collected execution time
measurements from two different pipelines, with a different number of pipeline
instances (runs) executing concurrently. The experiment was carried out on an
installation of the system with 26 nodes. Each node has sufficient resources to
execute two tasks (pipeline steps) where each task is allocated 8 CPU threads
and 16 Gb RAM. Regarding storage, 8 nodes with a total of 36 Gb RAM are used
to serve 6 Tb of disk space, split between transient NFS space and longer-term
CEPH S3 space.

These resources suffice to execute the number of concurrent runs we show
in Table 1 without scheduling and without deploying multiple runs on the same
node. These execution times show that there is relatively small deviation between
execution times and, consequently, it does not make sense to invest in migrating
still-executing tasks to nodes where processing has finished and, in general, in
more dynamic scheduling.

We also observe that processing times scale well, and bigger batches do not
require linearly longer execution times. As discussed in the introduction, pro-
cessing takes place in batches of roughly identical runs as soon as FASTQ inputs
become available from an NGS engine. This motivates our approach of paral-
lelizing the execution of multiple, independent of each other, runs. Furthermore,
bioinformatics pipelines are computationally challenging and, subsequently, most
of the execution time is consumed in actual computation rather than network
and disk transfers. Having relatively small network and disk overhead means that
we expect (and actually observe in Table 1) a sub-linear relationship between the
number of runs in a batch and execution time for the batch.

However, some non-constant overhead and some noticeable execution time
deviation is still visible in the results. This is due to the fact that input files are
large and in our experiments (as foreseen by the use case) all runs are loaded
at the same time, so that network and hard disk access becomes a temporary
bottleneck at the beginning of the execution of each batch. The phenomenon

Table 1. Execution times (average, standard deviation, and maximum) for pipeline
runs executing concurrently. Batch size gives the number of concurrently executing
runs.

Pipeline Batch size Input size Execution time (min)

Avg Std dev Max

Solid tumors 2 970 Mb 137 8 142

4 138 2 141

8 161 7 170

Hematologic tum. 2 675 Mb 68 3 62

4 63 3 66

8 70 2 78
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dampens after the first step, as it is highly unlikely that all runs terminate
their steps at exactly the same time. This observation motivated our devoting
to storage the considerable resources mentioned above.

5 Conclusions and Future Work

We presented the architecture and implementation of the end-to-end precision
medicine platform developed for the Greek National Precision Medicine Network
for Oncology. The architecture describes the platform as an ecosystem of Cloud-
native applications offering services over a backbone that executes variant calling
workflows. The platform is implemented using the Cromwell orchestrator and the
Kubernetes container deployment, scaling, and management system. Our tests
confirm that our architecture and our choices on which systems to integrate in
order to materialize the architecture are sound, and fit well with our use cases
and with the nature of bioinformatics pipelines.

Besides the focus on scalable Cloud deployment, another innovation is using
an internal Gitlab instance as the provider not only of container images, but also
of identity services and access right management. This maximally exploits the
flexibility of the Gitlab role-based access control system and its UI for managing
users and roles.

Future work includes defining a digital artifact that combines reference to
specific container image tags, reference data versions, and outputs. Such an arti-
fact will constitute a fully specified experiment that can be reliably reproduced
on any instance of our architecture.

Further work will look into interesting integrations with client applications
and external resources. This includes developing higher-level analytics interfaces,
such as in R or as Python Notebooks. Another useful integration is with clini-
cal databases that follow standard schemas such as the OHDSI Common Data
Model,12 facilitating the processing of medical research queries and analyses.
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