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Abstract. Modern analytics environments are characterized by a data
infrastructure that comprises a great variety of datasets, data for-
mats, data management and processing systems. Such environments are
dynamic and data analysis needs to be performed in a flexible and agile
manner via data virtualization techniques. Towards this end, we have
proposed the Data Virtual Machine (DVM), a graph-based conceptual
model based on entities and attributes. The basic idea of the DVM is
that the relations of entities and attributes are based and expressed as
the output of data processing tasks. In this paper we discuss the notion
of data virtualization and propose a set of goals for relevant techniques in
terms of modeling capabilities, query formulation and schema flexibility.
We also place DVMs with respect to these goals.
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1 Introduction

Modern analytics environments in research and industry aim at the analysis of
diverse datasets. The latter may be produced by a variety of applications or col-
lected by autonomous agents and stored in dispersed locations. Therefore, such
datasets are expected to be inherently heterogeneous in both the semantics that
they encapsulate as well as the data structures that hold them and relevant sys-
tems that manage and process them. This heterogeneity extends from the data
to the analysis itself, since various users of analytics environment – most prob-
ably data scientists, but also data engineers, simple end-users, data regulation
officers etc. – want to deploy different analysis projects, related to traditional
BI, data exploration, data mining, prediction etc.

Coping with this diversity in the data management landscape is a well-known
research mandate [1,6]. Multiple big data systems and analysis platforms need
to coexist, integrated and federated. While data warehousing is the usual app-
roach, it is rigid for a rapidly changing data environment. In addition, [1] dis-
cusses the need for techniques that can create late-bound schemas on data that
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may be persisted but are processed seldomly, if ever. In the analytics environment
as described above, this need is more prevalent, since the whole data infrastructure
is dynamic and analysis purposes change agilely. For such environments, produc-
ing full-fledged classical integrated schemas on structured, semi-structured and
unstructured data is not only extremely expensive in terms of time and resources,
but it may also be impossible to achieve in the time-window of the analysis.

To tackle the above challenges, we have proposed the Data Virtual Machine
(DVM), which was briefly introduced in [3], a graph-based conceptual model
based on entities and attributes - concepts that users understand well. A DVM
is a graph where nodes represent attribute domains and edges represent map-
pings between these domains. These mappings are expressed by the output of
data processing tasks (e.g. a query or a program.) This output must be pro-
vided as (v1, v2) value pairs. The argument is that these data processing tasks
can be easily defined, in an on-demand and visual manner. The schema is then
generated. Furthermore, this graph is appropriate for visual query formulation
(emphasis is given on dataframes). We have developed a research prototype,
called DataMingler [5] that demonstrates the DVM and its potential.

A DVM is a data virtualization technique, a significant enterprise trend [9].
The goal is to allow an application to retrieve and manipulate data without
requiring technical details about the data, i.e. abstracting data out of its form
and manipulating it regardless of the way it is stored or structured [11]. It also
provides a single customer view (or single view of any other entity) of the overall
data [14]. All major DB vendors offer products in this field, e.g. [7,10,12,13].
Data virtualization is closely related to mediators and federated databases [8],
concepts that the research community has dealt with decades ago, when systems
heterogeneity was also an issue. The focus of data virtualization however is on
availing common database features, such as data modeling, querying and data
extraction to DB-naive users [2,11].

In this paper we propose a set of goals for dynamic and efficient data virtual-
ization environments (Sect. 2) in terms of modeling capabilities, query formula-
tion and schema flexibility. We then discuss data virtual machines with respect
to these challenges (Sects. 3 and 4).

2 Data Virtualization

The research question is how a db-literate person can create quickly, agilely a
virtual data layer on top of an organization’s data infrastructure that can be
easily and intuitively used by db-illiterate people (usually data scientists) for
data exploration and query formulation.

2.1 Analytics Environments

The term data infrastructure encompasses much more than data persistently
stored in data management systems, SQL, NoSQL, or otherwise. It also involves
flat files, spreadsheets and transient data handled by stream engines. Last but not
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least, it includes processes (e.g. queries, scripts, models, web services, programs
in general) that produce output that could be perceived as data and exploited
in the analysis phase, for instance a Python program that computes the social
influence or the churn category of each customer. These are also attributes of
the customer and it is important to easily and agilely represent them at the
conceptual data layer (think: derived attributes in ER model).

We identify four distinct roles of data stakeholders in an analytics environ-
ment. Data engineers are technical people whose main duty is to extract, trans-
form and integrate data from multiple sources. They would like to have a formal-
ism where they can easily and quickly map data and programs’ output onto it.
They also create/prepare data structures appropriate for input to data analysis
tasks, for example dataframes. They would like to delegate this task to data scien-
tists. Data scientists, not necessarily DB-literate people, usually build a model for
an entity, using the features (attributes) of that entity. They would like to have
at their disposal a simple model that identifies entities and attributes, so they
can easily select/experiment with those of interest. Ideally, they would like to cre-
ate/manage themselves the data inputs to their algorithms. Data subjects or con-
tributors, such as customers, suppliers, users, will soon be involved in the data
supply chain due to the EU GDPR’s data portability requirement – data markets
have already emerged in various domains. They have to be provided with a high-
level model, easy to understand and manage, and possibly link to data from other
organizations. Some “self-service” data integration and data portfolios manage-
ment will be necessary. In addition, data subjects should be enabled to export
selected data to the logical model of their choice (e.g. XML, JSON, relational.)
Finally, data protection officers whose primary role is to ensure that their organi-
zation processes personal data according to applicable data protection laws. They
want to easily see data provenance and consent of data at a fine granular level.

2.2 Goals of Data Virtualization Systems

A data virtualization layer should serve appropriately all data stakeholders of
an analytics environment. This layer should exhibit the properties mentioned
below. As a running example, assume the following – very simple – collection of
data sources.

Example 1. Assume a data setting with the following data sources:

– S1 : A relational table Customers(custID,Age,Gender,City),
– S2 : An excel spreadsheet called Transactions having columns 1 to 4 labeled

as: transactionID, custID, Amount, Date,
– S3 : A text file keeping the customers’ comments as (custID, comment) lines,
– S4 : A java program implementing a churn prediction model which outputs

when executed the customer’s ID and her churn category for all customers. ��
Model Simplicity, Plasticity and Agility. The data virtualization model
should be simple, based on concepts that people understand well, for exam-
ple entities and attributes. It should represent these in a graphical manner and
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should be amenable to visual manipulations, both in terms of schema manage-
ment and query formulation. Data sources become rapidly available and unavail-
able in modern analytics environments. Data engineers should be able to easily
and quickly, in an ad hoc manner, incorporate parts of these in a virtual schema
without significant semantic effort. It should also be easy to modify the vir-
tual schema with no major implications to the rest of it. In Example 1, the
question is how can one quickly represent the customer entity along with his
transactions, age, gender, city, comments, churn category attributes.
At the same time, a transaction is an entity itself with its own attributes
customer, date, amount.

Intuitive Data Exploration/Query Formulation. Data exploration and
query formulation should be facilitated by non-DB experts (e.g. statisticians,
data subjects) in a simple and intuitive, visual, manner. One should easily select
attributes, express conditions and define transformations, using built-in or plug-
in functions in some programming language of his/her choice to form a query.
Query evaluation should be efficient and based on a theoretical framework, pos-
sibly similar to relational algebra. For example, one should easily ask for each
customer his age and gender, the average sentiment of his comments containing
the keyword “google”, the actual list of her comments and the total amount of
her transactions on May 2019.

Data Sharing: Data sharing has been identified as a key element of the big data
era. Data sharing is related to many different research topics, such as ontologies,
common vocabularies, vertical and horizontal sharing, etc. In real-life analytics
environments, people need to share parts of spreadsheets, flat files, json docu-
ments or relations. In most cases this is done manually, in an ad hoc manner, by
exporting data to a text file and moving this file around. There is no principled
way to describe what someone shares in an intermediate representation, unless
if imported to a data warehouse. A data virtualization model should make this
process easy, quick and semantically clear. It should serve as the medium for
data sharing in a standardized, collaborative, distributed manner.

Support for “Any Entity View”: This is not a known term in conceptual mod-
eling, yet it is an important, practical requirement in analytics applications of an
organization. Traditionally refers to the customer entity (“single customer view”),
which means structuring/representing attributes from several sources around the
customer entity (e.g. think of a JSON document rooted on customer’s id). How-
ever, data scientists want to study features of other entities as well, such as suppli-
ers, employees, products, transactions, etc. Going one step further, they want to
convert entities’ attributes, such as the age of a customer, the churn category of
a customer, or the date of a transaction, to entities and study them individually.
For example, think of a JSON document rooted on age or churn category or date.
To do so, all model’s constructs should be conceived as an attribute and an entity
at the same time, i.e. they have to be symmetric in a way. The ER model does
not exhibit this property, since it represents entities and attributes with different
constructs. It should be easy to “reorient” the schema around any entity.
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Model Polymorphism: One size does not fit all and a virtual schema has to
be easily concretized to different logical models. While in a traditional database
design the data model is predefined and determines storage models, in a concep-
tual design one can create database instances in different logical models (e.g. rela-
tional, semi-structured, multi-dimensional). These instances can then be queried
by data scientists via the native query language of the model (e.g. SQL, Mongo
queries, MDX).

Linkability and Crawlability: Data exploration requires a “connected”
model, where the schema can be navigated. In addition, feature selection is a
well-known topic in statistics: the data scientist selects appropriate features for
a model. For this, a model that supports crawling is needed, i.e. starting from
an entity, an algorithm collects or defines relevant attributes. This property also
plays an important role in GDPR’s data portability requirement. Data subjects
could build their own data models from multiple domains.

3 Data Virtual Machines

A Data Virtual Machine (DVM) is a graph-based representation of a collection of
Data Manipulation Tasks (DMT) defined over the data infrastructure of an orga-
nization. For example, consider the SQL query: ‘‘SELECT custID, Age from
Customers’’. The output of this query provides two mappings between two
attribute domains, custID and Age. These mappings can be represented by two
key-list structures, as shown in Fig. 1. Attribute domains become nodes in the
DVM graph and edges represent mappings between them, as manifested by the
output of DMTs. The motivation of the main idea lies on multi-valued, derived
attributes in Entity-Relationship theory: each node in a DVM is a derived, multi-
valued attribute for any other attribute that is related to (which plays the role
of the primary key of an entity) and vice versa. More details can be found in [4].

Definition 1. [Key-List Structure] A key-list structure (KL-structure) K is
a set of (key, list) pairs, K = {(k, Lk)}, where Lk is a list of elements or the
empty list and ∀ (k1, Lk1), (k2, Lk2) ∈ K, k1 �= k2. Both keys and elements of
the lists are strings. The set of keys of KL-structure K is denoted as keys(K);
the list of key k of KL-structure K is denoted as list(k,K). If k /∈ keys(K), the
value of list(k,K) is null. The schema of a KL-structure K, denoted as K(A,B)
consists of two labels, A and B. A is the role of the key and B is the role of the
list in the key-list pairs. ��
A key-list structure is essentially a multi-map data structure, where mapped
values to a key are organized as a list. There are many key-value stores (e.g.
Redis) that efficiently handle key-list structures.

Definition 2. [Data Virtual Machines] Assume a collection A of n
domains A1, A2, . . . , An, called attributes. Assume a collection S of m multi-
sets, S1, S2, . . . , Sm, where each multiset S has the form: S = {(u, v) : u ∈
Ai, v ∈ Aj , i, j ∈ {1, 2, . . . , n}}, called data manipulation tasks. For each such
S ∈ {S1, S2, . . . , Sm} we define two key-list structures, KS

ij and KS
ji as:
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Fig. 1. A data manipulation task as a mapping between attributes

KS
ij: for each u in the set {u : (u, v) ∈ S} we define the list Lu = {v : (u, v) ∈ S}
and (u,Lu) is appended to KS

ij.
KS

ji is similarly defined.

The data virtual machine corresponding to these attributes and data manipula-
tion tasks is a multi-graph G = {A,S} constructed as follows:

– each attribute becomes a node in G
– for each data manipulation task S we draw two edges Ai → Aj and Aj → Ai,

labeled with KS
ij and KS

ji respectively.

The key-list structure that corresponds to an edge e :Ai → Aj is denoted as
KL(e), with schema (Ai, Aj). ��

The term “data manipulation task” refers to its output. The terms
“attribute” and “node” are used interchangeably in the remaining of the paper.

Note that DVM modeling is somehow the inverse process of traditional data
modeling. While in the latter one first designs the schema and then creates the
DMTs to accommodate (fit) this schema, in DVM modeling one first defines the
DMTs and a schema is produced according to the DMTs.

4 Data Virtualization and DVMs

In this section, we revisit the goals of data virtualization, as presented in Sect. 2.2,
in the context of DVMs.
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Fig. 2. A DVM generated according to a collection of DMTs

4.1 Agile Schema Modeling

Let us consider Example 1 and define the following data manipulation tasks over
it – with the obvious semantics for each one:

– DMT1: SELECT custID, Age From Customers using S1
– DMT2: SELECT custID, Gender From Customers using S1
– DMT3: SELECT custID, City From Customers using S1
– DMT4: SpreadsheetReader(S2,1,2,‘transID’,‘custID’)
– DMT5: SpreadsheetReader(S2,1,3,‘transID’,‘Amount’)
– DMT6: SpreadsheetReader(S2,1,4,‘transID’,‘Date’)
– DMT7: TextReader(S3,1,2,‘custID’,‘Comment’)
– DMT8: ExecEnv(S4,1,2,‘custID’,‘ChurnCateg’)

The generated DVM is shown in Fig. 2(a), as generated by the DataMingler
tool [5]. Nodes having degree >1 are painted blue for visualization purposes and
one could think of them as “entities”, although all nodes have the same status
in the graph. Assume now that one wants to relate each city with the average
age of city’s customers. s/he could do this by defining the following DMT.

– DMT9: SELECT City, CAST(avg(Age) AS int) as AvgAge FROM Customers
GROUP BY City using S1

The generated DVM is shown in Fig. 2(b). Note that the City attribute is painted
blue now. We reiterate here that DMT9 provides not only an average age per
city, but also a list of cities per age.

4.2 Simple and Efficient Dataframing

What kind of queries can we have on top of DVMs? Defining a complete query
language over DVMs is work in progress. We focus on what data scientists/
statisticians usually do, since this is the primary target group of this work. They
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Fig. 3. A dataframe query example

usually form dataframes in Python, R or Spark. A dataframe is a table built
incrementally, column-by-column, around an entity. The first column(s) is usu-
ally the key of the entity (e.g. customer ID) and the remaining ones are related
attributes. An attribute can be processed (aggregated, filtered or transformed
via a user-defined function in Python or R) before added as a column to the
dataframe. The latter often serves as input to learning algorithms or for ad hoc
reporting. It is important to facilitate this process in a simple and intuitive, visual
manner. One should easily select (possibly along a path) attributes, express con-
ditions and define transformations, using built-in methods or plug-in functions
in a programming language of her choice (polyglotism) to form a dataframe.

A dataframe query over a DVM is defined as a tree, consisting of nodes
and edges of the DVM [5] - not necessarily a subtree of the DVM. The same
node/edge could appear multiple times in a dataframe query. For example, the
query: “for each customer (custID), show his/her Gender and Age, the list
of his/her transactions, the total amount of these transactions in the second
semester of 2019 and the total number of characters of his/her comments” is
shown in Fig. 3. To evaluate a dataframe query, the transformations on the
edges have to be applied and the edges have to be combined, either along a
path or across the same level. This evaluation (as well as optimization) take
place within an algebraic framework equipped with operators that take as input
one or more edges (i.e. key-list structures) and have as output an edge (another
key-list structure).

4.3 Any-Entity View, Model Polymorphism

One of the goals of data virtualization is to provide a single view of any entity
of the overall data. Traditional logical models, such as the relational or semi-
structured ones fall through this goal because they provide a single-angle view
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of a schema, built with a specific entity in mind. Moreover, traditional concep-
tual models, such as the ER or UML, build a diagram in which metadata about
the data are encapsulated in schematic objects of the model in a absolute man-
ner, e.g. as entity sets, as relationship sets (ER) or as attributes, with absolute
relation to other such schematic objects (e.g. an attribute belongs to a specific
entity set or two entity sets or more are connected semantically in specific way
via a relationship set. As a result, it is difficult to reorient a schema (or diagram)
adhering to traditional models, in a way that all metadata can be viewed with
respect and in relation to a specific schematic object, essentially giving different
conceptual angles of the encapsulated world. Such schema reorientation can be
a very useful tool in the hands of data scientists, enabling them to define very
easily and using always the same schema different views of the overall data with
respect to different entities in the data.

As an example, let us consider the nodes custID, transID, Date and
ChurnCateg in Fig. 2(b). custID and transID are blue nodes, i.e. are considered
as entities with attributes. In a respective ER diagram, these would correspond
to two entity sets (with their respective attributes) connected with a relationship
set. The produced relational schema would encode only this specific conceptual
view, in which, for example, Dates are referenced with respect to transIDs and
not to custIDs. In order to view Datess with respect to custIDs (i.e. the dates
in which customers have made transactions) one would need to query the data
and produce new relations (not encapsulated in the original conceptual schema).
Moreover, Dates, which correspond to an attribute in the respective ER and rela-
tional schema, can be viewed only in reference to transIDs, whereas it may be
useful to a user to view transIDs and even, furthermore, custIDs, with respect
to Datess (i.e. what are the transactions made on a date and which customers
made these transactions). As in the previous case, this can be done only via
querying the data to produce a new relation that does not adhere to the origi-
nal conceptual schema, but, in this case, the query is also quite complex, as it
attempts to turn around the relationship of entity-attribute between transID
and Dates. The same holds if one wants to view the data of customers and their
transactions with respect to ChurnCateg.

The DVM is a model that achieves the goal of ‘any-entity view’ by simplify-
ing all conceptual objects to graph nodes and all conceptual relations to graph
edges. The exact conceptual relations between two nodes are determined by the
data itself via the corresponding data processing tasks. Therefore, the exact con-
ceptual objects are also defined by the data itself, i.e. if a node is an entity or
an attribute. In the DVM, we define the notion of entity’s view with respect to
some node N as a graph consisting of the node N and a collection of DVM’s
paths that originate from N and end on a node M different than N .

The simplest structure of the DVM together with the fact that it is the data
and the data processing tasks that form the entities, attributes and relations
between entities and entities as well as entities and attributes, make it possible
for a DVM to represent multiple different conceptual and logical schemas. The
latter certainly necessitate different representations in all traditional conceptual
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Fig. 4. Creating JSON documents for different DVM’s nodes, conceived as entities

and logical models. For example, we would need two different ER schemas to
represent transID as an entity set and Date as an attribute and the opposite.
Furthermore, we would need schema mappings between logical schemas that are
derived from the conceptual schemas. The DVM not only alleviates all this com-
plexity, but enables the extraction of multiple schemas in traditional structured
and semi-structured models, via the implementation of the notion ‘entity view’,
achieving in this way, polyglotism. For example, based on a given graph for a
specific ‘entity view’, a relational (work in progress) or semi-structured database
can be materialized.

Using DataMingler [5], a user can selects a node in the DVM and a breadth-
first-search tree rooted on that node is defined and the system generates a col-
lection of JSON documents corresponding to the tree defined. It implements
attributes as lists or strings, depending on the cardinality of lists (whether they
contain multiple or single elements.) Fig. 4 shows the output when (a) custID
is selected, (b) ChurnCateg is selected, and (c) Date is selected. This way one
may define any node as an entity and analyze data based on that entity.

5 Conclusions

We discuss the notion of data virtualization as the enabler of agile, efficient
and effective data processing in modern analytics environments. We focus on
the fact that such environments are characterized on one hand by tremendous
heterogeneity of data, formats, systems etc. and on the other by dynamicity and
different analysis needs by users with multifarious roles that may not have data
management expertise. We set goals of data virtualization and we briefly present
DVM, a graph-based data virtualization model that we have proposed.
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