
El Kindi Rezig · Vijay Gadepally ·
Timothy Mattson · Michael Stonebraker ·
Tim Kraska · Fusheng Wang ·
Gang Luo · Jun Kong ·
Alevtina Dubovitskaya (Eds.)

LN
CS

 1
29

21 Heterogeneous
Data Management, Polystores,
and Analytics for Healthcare
VLDB Workshops, Poly 2021 and DMAH 2021
Virtual Event, August 20, 2021
Revised Selected Papers

Lecture Notes in Computer Science 12921

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at https://link.springer.com/bookseries/7410

https://springerlink.bibliotecabuap.elogim.com/bookseries/7410

El Kindi Rezig · Vijay Gadepally ·
Timothy Mattson ·Michael Stonebraker ·
Tim Kraska · Fusheng Wang · Gang Luo ·
Jun Kong · Alevtina Dubovitskaya (Eds.)

Heterogeneous
Data Management, Polystores,
and Analytics for Healthcare
VLDB Workshops, Poly 2021 and DMAH 2021
Virtual Event, August 20, 2021
Revised Selected Papers

Editors
El Kindi Rezig
Massachusetts Institute of Technology
Cambridge, MA, USA

Timothy Mattson
Intel Corporation
Portland, ME, USA

Tim Kraska
Massachusetts Institute of Technology
Cambridge, MA, USA

Gang Luo
University of Utah
Salt Lake City, UT, USA

Alevtina Dubovitskaya
Lucerne Unviersity of Applied Sciences
Rotkreuz, Zug, Switzerland

Vijay Gadepally
Lincoln Laboratory
Massachusetts Institute of Technology
Lexington, MA, USA

Michael Stonebraker
Massachusetts Institute of Technology
Cambridge, MA, USA

Fusheng Wang
Stonybrook University
Lake Grove, NY, USA

Jun Kong
Georgia State University
Atlanta, GA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-93662-4 ISBN 978-3-030-93663-1 (eBook)
https://doi.org/10.1007/978-3-030-93663-1

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-9369-9361
https://doi.org/10.1007/978-3-030-93663-1

Preface

In this volume we present the accepted contributions for the VLDB 2021 workshops
entitled “Polystore systems for heterogeneous data in multiple databases with privacy
and security assurances” (Poly 2021) and the “Seventh International Workshop on Data
Management and Analytics for Medicine and Healthcare” (DMAH 2021). The work-
shops were held virtually in conjunction with the 47th International Conference on Very
Large Data Bases (VLDB 2021) on August 20, 2021.

Poly 2021 aimed to focus on the broader real-world polystore problem, which
includes data management, data integration, data curation, privacy, and security. Enter-
prises are routinely divided into independent business units to support agile operations.
However, this leads to “siloed” information systems which generate a host of problems,
such as the following:

• Discovery of data relevant to the problem at hand. For example, Merck has approx-
imately 4000 Oracle databases, a data lake, large numbers of files, and an interest
in public data from the web. Finding relevant data in this sea of information is a
challenge.

• Integrating the discovered data. Independently constructed schemas are never com-
patible.

• Cleaning the resulting data. A good figure of merit is that 10% of all data is missing
or wrong.

• Ensuring efficient access to the resulting data. At scale, operations must be performed
“in situ”, and a good polystore system is a requirement.

It is often said that data scientists spend 80% (or more) of their time on these tasks,
and it is crucial to have better solutions. In addition, the EU has recently enacted the
General Data Protection Regulation (GDPR) that will force enterprises to assuredly
delete personal data on request. This "right to be forgotten" is one of several requirements
of GDPR, and it is likely that GDPR-like requirements will spread to other locations,
for example, California. In addition, privacy and security issues are increasingly an
issue for large internet platforms. In enterprises, these issues will be front and center in
the distributed information systems in place today. Lastly, enterprise access to data in
practice will require queries constructed from a variety of programming models. A “one
size fits all” model just won’t work in these cases.

All submissions for Poly 2021 were reviewed in a single-blind manner, and the
acceptance was determined by the aggregated scores from all reviewers.

The goal of the DMAH workshop is to bring together people in the field cross-
cutting information management and medical informatics to discuss innovative data
management and analytics technologies highlighting end-to-end applications, systems,
and methods to address problems in healthcare, public health, and everyday wellness,
with clinical, physiological, imaging, behavioral, environmental, and omics data, along
with data from social media and the Web.

vi Preface

DMAH 2021 provided a unique opportunity for interaction between information
management researchers and biomedical researchers in this interdisciplinary field. All
submitted papers were rigorously reviewed by three reviewers and the acceptance was
determined by the aggregated scores.

We are grateful to everyone involved in the organization of these workshops, includ-
ing all authors for submitting their work and the workshop participants. We hope that
you enjoy reading the papers included in this volume.

El Kindi Rezig
Vijay Gadepally

Michael Stonebraker
Tim Kraska

Fusheng Wang
Gang Luo
Jun Kong

Alevtina Dubovitskaya

Organization

Poly 2021

Workshop Chairs

El Kindi Rezig MIT CSAIL, USA
Vijay Gadepally MIT Lincoln Laboratory, USA
Tim Kraska MIT CSAIL, USA
Timothy Mattson Intel Corporation, USA
Michael Stonebraker MIT CSAIL, USA

Program Committee

Vijay Gadepally MIT Lincoln Laboratory, USA
El Kindi Rezig MIT CSAIL, USA
Danny Weitzner MIT Internet Policy Research Initiative, USA
Michael Gubanov Florida State University, USA
Edmon Begoli Oak Ridge National Laboratory, USA
Dimitris Kolovos University of York, UK
Amarnath Gupta University of California, San Diego, USA
Ratnesh Sahay AstraZeneca, UK
Rada Chirkova North Carolina State University, USA
Sam Madden MIT, USA
Tim Kraska MIT, USA
Pedro Pedreira Facebook Inc., USA
Timothy Mattson Intel Corporation, USA
Michael Stonebraker MIT CSAIL, USA
Mourad Ouzzani Qatar Computing Research Institute, Qatar
Makoto Onizuka University of Osaka, Japan
Ahmed Abdelhamid Purdue University, USA
Ismail Oukid Snowflake, USA

DMAH 2021

Workshop Chairs

Fusheng Wang Stony Brook University, USA
Gang Luo University of Washington, USA

viii Organization

Alevtina Dubovitskaya Lucerne University of Applied Sciences and
Arts/Swisscom, Switzerland

Jun Kong Georgia State University, USA

Program Committee

Yang Cao Kyoto University, Japan
Dejun Teng Stony Brook University, USA
Blair Christian Oak Ridge National Laboratory, USA
Vagelis Hristidis University of California, Riverside, USA
Tahsin Kurc Stony Brook University, USA
Peter Elkin University at Buffalo, USA
Jerome Carter Informatics Squared, Inc., USA
Ye Ye University of Pittsburgh, USA
Yanhui Liang Google Inc., USA
Peter Dolog Aalborg University, Denmark
Halil Kilicoglu University of Illinois Urbana-Champaign, USA
Chunjie Zhou Ludong University, China
Xiaxia Yu Shenzhen University, China

Friends Don’t Let Friends Deploy Black-Box Models:
the Importance of Intelligibility and Explanation

for Machine Learning in Healthcare (Keynote Talk)

Rich Caruana
Microsoft Research, Redmond, Washington, USA

rcaruana@microsoft.com

Abstract. In machine learning sometimes a tradeoff must be made
between accuracy and intelligibility: the most accurate models usually
are often not very intelligible, and the most intelligible models usually
are less accurate. This can limit the accuracy of models that can safely be
deployed in mission-critical applications such as healthcare where being
able to understand, validate, edit, and ultimately trust a model is impor-
tant. We have developed a learning method based on generalized additive
models (GAMs) that is as accurate as full complexity models such as
boosted trees and random forests, but even more intelligible than linear
models. This makes it easy to understand what models have learned and
to edit models when they learn inappropriate things. Making it possible
for medical experts to understand and repair a model is critical because
most clinical data is complex and has unanticipated problems. I’ll present
a number of healthcare case studies where these high-accuracy GAMs
discover surprising patterns in the data that would have made deploying
black-box models risky. The case studies include surprising findings in
pregnancy, pneumonia, ICU and COVID-19 risk prediction.

Bio. Rich Caruana is a Senior Principal Researcher at Microsoft. His research focus is
on intelligible/transparent modeling and machine learning for medical decision making.
Before joiningMicrosoft, Richwas on the faculty at Cornell, at UCLA’sMedical School,
and at CMU’s Center for Learning and Discovery. Rich’s Ph.D. is from CMU, and
his thesis on Multitask Learning helped create interest in the new subfield of Transfer
Learning. Rich has received a number of best paper awards, an NSF CAREER Award
in 2004 for Meta Clustering, and chaired KDD in 2007.

Contents

Privacy, Security and/or Policy Issues for Heterogenous Data

Data Virtual Machines: Enabling Data Virtualization . 3
Damianos Chatziantoniou and Verena Kantere

A Formal Category Theoretical Framework for Multi-model Data
Transformations . 14
Valter Uotila and Jiaheng Lu

Towards Generic Fine-Grained Transaction Isolation in Polystores 29
Nuno Faria, José Pereira, Ana Nunes Alonso, and Ricardo Vilaça

Data Governance in a Database Operating System (DBOS) 43
Deeptaanshu Kumar, Qian Li, Jason Li, Peter Kraft,
Athinagoras Skiadopoulos, Lalith Suresh, Michael Cafarella,
and Michael Stonebraker

ACID-V: Towards a New Class of DBMSs for Data Sharing 60
Muhammad El-Hindi, Zheguang Zhao, and Carsten Binnig

Polystore Systems and DBMSs: Love Marriage or Marriage
of Convenience? . 65
Marco Vogt, David Lengweiler, Isabel Geissmann, Nils Hansen,
Marc Hennemann,Cédric Mendelin, Sebastian Philipp, andHeiko Schuldt

WIP: Pods: Privacy Compliant Scalable Decentralized Data Services 70
Jonas Spenger, Paris Carbone, and Philipp Haller

DMAH 2021

Privacy-Preserving Distributed Support Vector Machines . 85
Simone Bottoni, Stefano Braghin, Theodora Brisimi,
and Alberto Trombetta

Benchmarking Multi-instance Learning for Multivariate Time Series
Analysis . 103
Rufat Babayev and Lena Wiese

xii Contents

A Cloud-Native NGS Data Processing and Annotation Platform 121
Giannis Mouchakis, Babis Kostopoulos, Stasinos Konstantopoulos,
Ilias Kanellos, Anargiros Tzerefos, Thanasis Vergoulis,
and Thodoris Dalamagas

Administrative Health Data Representation for Mortality and High
Utilization Prediction . 133
Negin Asadzadehzanjani and Janusz Wojtusiak

Invited Paper

Generating Longitudinal Synthetic EHR Data with Recurrent
Autoencoders and Generative Adversarial Networks . 153
Siao Sun, Fusheng Wang, Sina Rashidian, Tahsin Kurc,
Kayley Abell-Hart, Janos Hajagos, Wei Zhu, Mary Saltz,
and Joel Saltz

TRACE: Early Detection of Chronic Kidney Disease Onset
with Transformer-Enhanced Feature Embedding . 166
Yu Wang, Ziqiao Guan, Wei Hou, and Fusheng Wang

Author Index . 183

Privacy, Security and/or Policy Issues
for Heterogenous Data

Data Virtual Machines: Enabling Data
Virtualization

Damianos Chatziantoniou1(B) and Verena Kantere2

1 Department of Management Science and Technology,
Athens University of Economics and Business, Athens, Greece

damianos@aueb.gr
2 School of Electrical and Computer Engineering,

National Technical University of Athens, Athens, Greece
verena@mail.ntua.gr

Abstract. Modern analytics environments are characterized by a data
infrastructure that comprises a great variety of datasets, data for-
mats, data management and processing systems. Such environments are
dynamic and data analysis needs to be performed in a flexible and agile
manner via data virtualization techniques. Towards this end, we have
proposed the Data Virtual Machine (DVM), a graph-based conceptual
model based on entities and attributes. The basic idea of the DVM is
that the relations of entities and attributes are based and expressed as
the output of data processing tasks. In this paper we discuss the notion
of data virtualization and propose a set of goals for relevant techniques in
terms of modeling capabilities, query formulation and schema flexibility.
We also place DVMs with respect to these goals.

Keywords: Data virtualization · Data virtual machines

1 Introduction

Modern analytics environments in research and industry aim at the analysis of
diverse datasets. The latter may be produced by a variety of applications or col-
lected by autonomous agents and stored in dispersed locations. Therefore, such
datasets are expected to be inherently heterogeneous in both the semantics that
they encapsulate as well as the data structures that hold them and relevant sys-
tems that manage and process them. This heterogeneity extends from the data
to the analysis itself, since various users of analytics environment – most prob-
ably data scientists, but also data engineers, simple end-users, data regulation
officers etc. – want to deploy different analysis projects, related to traditional
BI, data exploration, data mining, prediction etc.

Coping with this diversity in the data management landscape is a well-known
research mandate [1,6]. Multiple big data systems and analysis platforms need
to coexist, integrated and federated. While data warehousing is the usual app-
roach, it is rigid for a rapidly changing data environment. In addition, [1] dis-
cusses the need for techniques that can create late-bound schemas on data that
c© Springer Nature Switzerland AG 2021
E. K. Rezig et al. (Eds.): Poly 2021/DMAH 2021, LNCS 12921, pp. 3–13, 2021.
https://doi.org/10.1007/978-3-030-93663-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93663-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-93663-1_1

4 D. Chatziantoniou and V. Kantere

may be persisted but are processed seldomly, if ever. In the analytics environment
as described above, this need is more prevalent, since the whole data infrastructure
is dynamic and analysis purposes change agilely. For such environments, produc-
ing full-fledged classical integrated schemas on structured, semi-structured and
unstructured data is not only extremely expensive in terms of time and resources,
but it may also be impossible to achieve in the time-window of the analysis.

To tackle the above challenges, we have proposed the Data Virtual Machine
(DVM), which was briefly introduced in [3], a graph-based conceptual model
based on entities and attributes - concepts that users understand well. A DVM
is a graph where nodes represent attribute domains and edges represent map-
pings between these domains. These mappings are expressed by the output of
data processing tasks (e.g. a query or a program.) This output must be pro-
vided as (v1, v2) value pairs. The argument is that these data processing tasks
can be easily defined, in an on-demand and visual manner. The schema is then
generated. Furthermore, this graph is appropriate for visual query formulation
(emphasis is given on dataframes). We have developed a research prototype,
called DataMingler [5] that demonstrates the DVM and its potential.

A DVM is a data virtualization technique, a significant enterprise trend [9].
The goal is to allow an application to retrieve and manipulate data without
requiring technical details about the data, i.e. abstracting data out of its form
and manipulating it regardless of the way it is stored or structured [11]. It also
provides a single customer view (or single view of any other entity) of the overall
data [14]. All major DB vendors offer products in this field, e.g. [7,10,12,13].
Data virtualization is closely related to mediators and federated databases [8],
concepts that the research community has dealt with decades ago, when systems
heterogeneity was also an issue. The focus of data virtualization however is on
availing common database features, such as data modeling, querying and data
extraction to DB-naive users [2,11].

In this paper we propose a set of goals for dynamic and efficient data virtual-
ization environments (Sect. 2) in terms of modeling capabilities, query formula-
tion and schema flexibility. We then discuss data virtual machines with respect
to these challenges (Sects. 3 and 4).

2 Data Virtualization

The research question is how a db-literate person can create quickly, agilely a
virtual data layer on top of an organization’s data infrastructure that can be
easily and intuitively used by db-illiterate people (usually data scientists) for
data exploration and query formulation.

2.1 Analytics Environments

The term data infrastructure encompasses much more than data persistently
stored in data management systems, SQL, NoSQL, or otherwise. It also involves
flat files, spreadsheets and transient data handled by stream engines. Last but not

Data Virtual Machines: Enabling Data Virtualization 5

least, it includes processes (e.g. queries, scripts, models, web services, programs
in general) that produce output that could be perceived as data and exploited
in the analysis phase, for instance a Python program that computes the social
influence or the churn category of each customer. These are also attributes of
the customer and it is important to easily and agilely represent them at the
conceptual data layer (think: derived attributes in ER model).

We identify four distinct roles of data stakeholders in an analytics environ-
ment. Data engineers are technical people whose main duty is to extract, trans-
form and integrate data from multiple sources. They would like to have a formal-
ism where they can easily and quickly map data and programs’ output onto it.
They also create/prepare data structures appropriate for input to data analysis
tasks, for example dataframes. They would like to delegate this task to data scien-
tists. Data scientists, not necessarily DB-literate people, usually build a model for
an entity, using the features (attributes) of that entity. They would like to have
at their disposal a simple model that identifies entities and attributes, so they
can easily select/experiment with those of interest. Ideally, they would like to cre-
ate/manage themselves the data inputs to their algorithms. Data subjects or con-
tributors, such as customers, suppliers, users, will soon be involved in the data
supply chain due to the EU GDPR’s data portability requirement – data markets
have already emerged in various domains. They have to be provided with a high-
level model, easy to understand and manage, and possibly link to data from other
organizations. Some “self-service” data integration and data portfolios manage-
ment will be necessary. In addition, data subjects should be enabled to export
selected data to the logical model of their choice (e.g. XML, JSON, relational.)
Finally, data protection officers whose primary role is to ensure that their organi-
zation processes personal data according to applicable data protection laws. They
want to easily see data provenance and consent of data at a fine granular level.

2.2 Goals of Data Virtualization Systems

A data virtualization layer should serve appropriately all data stakeholders of
an analytics environment. This layer should exhibit the properties mentioned
below. As a running example, assume the following – very simple – collection of
data sources.

Example 1. Assume a data setting with the following data sources:

– S1 : A relational table Customers(custID,Age,Gender,City),
– S2 : An excel spreadsheet called Transactions having columns 1 to 4 labeled

as: transactionID, custID, Amount, Date,
– S3 : A text file keeping the customers’ comments as (custID, comment) lines,
– S4 : A java program implementing a churn prediction model which outputs

when executed the customer’s ID and her churn category for all customers. ��
Model Simplicity, Plasticity and Agility. The data virtualization model
should be simple, based on concepts that people understand well, for exam-
ple entities and attributes. It should represent these in a graphical manner and

6 D. Chatziantoniou and V. Kantere

should be amenable to visual manipulations, both in terms of schema manage-
ment and query formulation. Data sources become rapidly available and unavail-
able in modern analytics environments. Data engineers should be able to easily
and quickly, in an ad hoc manner, incorporate parts of these in a virtual schema
without significant semantic effort. It should also be easy to modify the vir-
tual schema with no major implications to the rest of it. In Example 1, the
question is how can one quickly represent the customer entity along with his
transactions, age, gender, city, comments, churn category attributes.
At the same time, a transaction is an entity itself with its own attributes
customer, date, amount.

Intuitive Data Exploration/Query Formulation. Data exploration and
query formulation should be facilitated by non-DB experts (e.g. statisticians,
data subjects) in a simple and intuitive, visual, manner. One should easily select
attributes, express conditions and define transformations, using built-in or plug-
in functions in some programming language of his/her choice to form a query.
Query evaluation should be efficient and based on a theoretical framework, pos-
sibly similar to relational algebra. For example, one should easily ask for each
customer his age and gender, the average sentiment of his comments containing
the keyword “google”, the actual list of her comments and the total amount of
her transactions on May 2019.

Data Sharing: Data sharing has been identified as a key element of the big data
era. Data sharing is related to many different research topics, such as ontologies,
common vocabularies, vertical and horizontal sharing, etc. In real-life analytics
environments, people need to share parts of spreadsheets, flat files, json docu-
ments or relations. In most cases this is done manually, in an ad hoc manner, by
exporting data to a text file and moving this file around. There is no principled
way to describe what someone shares in an intermediate representation, unless
if imported to a data warehouse. A data virtualization model should make this
process easy, quick and semantically clear. It should serve as the medium for
data sharing in a standardized, collaborative, distributed manner.

Support for “Any Entity View”: This is not a known term in conceptual mod-
eling, yet it is an important, practical requirement in analytics applications of an
organization. Traditionally refers to the customer entity (“single customer view”),
which means structuring/representing attributes from several sources around the
customer entity (e.g. think of a JSON document rooted on customer’s id). How-
ever, data scientists want to study features of other entities as well, such as suppli-
ers, employees, products, transactions, etc. Going one step further, they want to
convert entities’ attributes, such as the age of a customer, the churn category of
a customer, or the date of a transaction, to entities and study them individually.
For example, think of a JSON document rooted on age or churn category or date.
To do so, all model’s constructs should be conceived as an attribute and an entity
at the same time, i.e. they have to be symmetric in a way. The ER model does
not exhibit this property, since it represents entities and attributes with different
constructs. It should be easy to “reorient” the schema around any entity.

Data Virtual Machines: Enabling Data Virtualization 7

Model Polymorphism: One size does not fit all and a virtual schema has to
be easily concretized to different logical models. While in a traditional database
design the data model is predefined and determines storage models, in a concep-
tual design one can create database instances in different logical models (e.g. rela-
tional, semi-structured, multi-dimensional). These instances can then be queried
by data scientists via the native query language of the model (e.g. SQL, Mongo
queries, MDX).

Linkability and Crawlability: Data exploration requires a “connected”
model, where the schema can be navigated. In addition, feature selection is a
well-known topic in statistics: the data scientist selects appropriate features for
a model. For this, a model that supports crawling is needed, i.e. starting from
an entity, an algorithm collects or defines relevant attributes. This property also
plays an important role in GDPR’s data portability requirement. Data subjects
could build their own data models from multiple domains.

3 Data Virtual Machines

A Data Virtual Machine (DVM) is a graph-based representation of a collection of
Data Manipulation Tasks (DMT) defined over the data infrastructure of an orga-
nization. For example, consider the SQL query: ‘‘SELECT custID, Age from
Customers’’. The output of this query provides two mappings between two
attribute domains, custID and Age. These mappings can be represented by two
key-list structures, as shown in Fig. 1. Attribute domains become nodes in the
DVM graph and edges represent mappings between them, as manifested by the
output of DMTs. The motivation of the main idea lies on multi-valued, derived
attributes in Entity-Relationship theory: each node in a DVM is a derived, multi-
valued attribute for any other attribute that is related to (which plays the role
of the primary key of an entity) and vice versa. More details can be found in [4].

Definition 1. [Key-List Structure] A key-list structure (KL-structure) K is
a set of (key, list) pairs, K = {(k, Lk)}, where Lk is a list of elements or the
empty list and ∀ (k1, Lk1), (k2, Lk2) ∈ K, k1 �= k2. Both keys and elements of
the lists are strings. The set of keys of KL-structure K is denoted as keys(K);
the list of key k of KL-structure K is denoted as list(k,K). If k /∈ keys(K), the
value of list(k,K) is null. The schema of a KL-structure K, denoted as K(A,B)
consists of two labels, A and B. A is the role of the key and B is the role of the
list in the key-list pairs. ��
A key-list structure is essentially a multi-map data structure, where mapped
values to a key are organized as a list. There are many key-value stores (e.g.
Redis) that efficiently handle key-list structures.

Definition 2. [Data Virtual Machines] Assume a collection A of n
domains A1, A2, . . . , An, called attributes. Assume a collection S of m multi-
sets, S1, S2, . . . , Sm, where each multiset S has the form: S = {(u, v) : u ∈
Ai, v ∈ Aj , i, j ∈ {1, 2, . . . , n}}, called data manipulation tasks. For each such
S ∈ {S1, S2, . . . , Sm} we define two key-list structures, KS

ij and KS
ji as:

8 D. Chatziantoniou and V. Kantere

Fig. 1. A data manipulation task as a mapping between attributes

KS
ij: for each u in the set {u : (u, v) ∈ S} we define the list Lu = {v : (u, v) ∈ S}
and (u,Lu) is appended to KS

ij.
KS

ji is similarly defined.

The data virtual machine corresponding to these attributes and data manipula-
tion tasks is a multi-graph G = {A,S} constructed as follows:

– each attribute becomes a node in G
– for each data manipulation task S we draw two edges Ai → Aj and Aj → Ai,

labeled with KS
ij and KS

ji respectively.

The key-list structure that corresponds to an edge e :Ai → Aj is denoted as
KL(e), with schema (Ai, Aj). ��

The term “data manipulation task” refers to its output. The terms
“attribute” and “node” are used interchangeably in the remaining of the paper.

Note that DVM modeling is somehow the inverse process of traditional data
modeling. While in the latter one first designs the schema and then creates the
DMTs to accommodate (fit) this schema, in DVM modeling one first defines the
DMTs and a schema is produced according to the DMTs.

4 Data Virtualization and DVMs

In this section, we revisit the goals of data virtualization, as presented in Sect. 2.2,
in the context of DVMs.

Data Virtual Machines: Enabling Data Virtualization 9

Fig. 2. A DVM generated according to a collection of DMTs

4.1 Agile Schema Modeling

Let us consider Example 1 and define the following data manipulation tasks over
it – with the obvious semantics for each one:

– DMT1: SELECT custID, Age From Customers using S1
– DMT2: SELECT custID, Gender From Customers using S1
– DMT3: SELECT custID, City From Customers using S1
– DMT4: SpreadsheetReader(S2,1,2,‘transID’,‘custID’)
– DMT5: SpreadsheetReader(S2,1,3,‘transID’,‘Amount’)
– DMT6: SpreadsheetReader(S2,1,4,‘transID’,‘Date’)
– DMT7: TextReader(S3,1,2,‘custID’,‘Comment’)
– DMT8: ExecEnv(S4,1,2,‘custID’,‘ChurnCateg’)

The generated DVM is shown in Fig. 2(a), as generated by the DataMingler
tool [5]. Nodes having degree >1 are painted blue for visualization purposes and
one could think of them as “entities”, although all nodes have the same status
in the graph. Assume now that one wants to relate each city with the average
age of city’s customers. s/he could do this by defining the following DMT.

– DMT9: SELECT City, CAST(avg(Age) AS int) as AvgAge FROM Customers
GROUP BY City using S1

The generated DVM is shown in Fig. 2(b). Note that the City attribute is painted
blue now. We reiterate here that DMT9 provides not only an average age per
city, but also a list of cities per age.

4.2 Simple and Efficient Dataframing

What kind of queries can we have on top of DVMs? Defining a complete query
language over DVMs is work in progress. We focus on what data scientists/
statisticians usually do, since this is the primary target group of this work. They

10 D. Chatziantoniou and V. Kantere

Fig. 3. A dataframe query example

usually form dataframes in Python, R or Spark. A dataframe is a table built
incrementally, column-by-column, around an entity. The first column(s) is usu-
ally the key of the entity (e.g. customer ID) and the remaining ones are related
attributes. An attribute can be processed (aggregated, filtered or transformed
via a user-defined function in Python or R) before added as a column to the
dataframe. The latter often serves as input to learning algorithms or for ad hoc
reporting. It is important to facilitate this process in a simple and intuitive, visual
manner. One should easily select (possibly along a path) attributes, express con-
ditions and define transformations, using built-in methods or plug-in functions
in a programming language of her choice (polyglotism) to form a dataframe.

A dataframe query over a DVM is defined as a tree, consisting of nodes
and edges of the DVM [5] - not necessarily a subtree of the DVM. The same
node/edge could appear multiple times in a dataframe query. For example, the
query: “for each customer (custID), show his/her Gender and Age, the list
of his/her transactions, the total amount of these transactions in the second
semester of 2019 and the total number of characters of his/her comments” is
shown in Fig. 3. To evaluate a dataframe query, the transformations on the
edges have to be applied and the edges have to be combined, either along a
path or across the same level. This evaluation (as well as optimization) take
place within an algebraic framework equipped with operators that take as input
one or more edges (i.e. key-list structures) and have as output an edge (another
key-list structure).

4.3 Any-Entity View, Model Polymorphism

One of the goals of data virtualization is to provide a single view of any entity
of the overall data. Traditional logical models, such as the relational or semi-
structured ones fall through this goal because they provide a single-angle view

Data Virtual Machines: Enabling Data Virtualization 11

of a schema, built with a specific entity in mind. Moreover, traditional concep-
tual models, such as the ER or UML, build a diagram in which metadata about
the data are encapsulated in schematic objects of the model in a absolute man-
ner, e.g. as entity sets, as relationship sets (ER) or as attributes, with absolute
relation to other such schematic objects (e.g. an attribute belongs to a specific
entity set or two entity sets or more are connected semantically in specific way
via a relationship set. As a result, it is difficult to reorient a schema (or diagram)
adhering to traditional models, in a way that all metadata can be viewed with
respect and in relation to a specific schematic object, essentially giving different
conceptual angles of the encapsulated world. Such schema reorientation can be
a very useful tool in the hands of data scientists, enabling them to define very
easily and using always the same schema different views of the overall data with
respect to different entities in the data.

As an example, let us consider the nodes custID, transID, Date and
ChurnCateg in Fig. 2(b). custID and transID are blue nodes, i.e. are considered
as entities with attributes. In a respective ER diagram, these would correspond
to two entity sets (with their respective attributes) connected with a relationship
set. The produced relational schema would encode only this specific conceptual
view, in which, for example, Dates are referenced with respect to transIDs and
not to custIDs. In order to view Datess with respect to custIDs (i.e. the dates
in which customers have made transactions) one would need to query the data
and produce new relations (not encapsulated in the original conceptual schema).
Moreover, Dates, which correspond to an attribute in the respective ER and rela-
tional schema, can be viewed only in reference to transIDs, whereas it may be
useful to a user to view transIDs and even, furthermore, custIDs, with respect
to Datess (i.e. what are the transactions made on a date and which customers
made these transactions). As in the previous case, this can be done only via
querying the data to produce a new relation that does not adhere to the origi-
nal conceptual schema, but, in this case, the query is also quite complex, as it
attempts to turn around the relationship of entity-attribute between transID
and Dates. The same holds if one wants to view the data of customers and their
transactions with respect to ChurnCateg.

The DVM is a model that achieves the goal of ‘any-entity view’ by simplify-
ing all conceptual objects to graph nodes and all conceptual relations to graph
edges. The exact conceptual relations between two nodes are determined by the
data itself via the corresponding data processing tasks. Therefore, the exact con-
ceptual objects are also defined by the data itself, i.e. if a node is an entity or
an attribute. In the DVM, we define the notion of entity’s view with respect to
some node N as a graph consisting of the node N and a collection of DVM’s
paths that originate from N and end on a node M different than N .

The simplest structure of the DVM together with the fact that it is the data
and the data processing tasks that form the entities, attributes and relations
between entities and entities as well as entities and attributes, make it possible
for a DVM to represent multiple different conceptual and logical schemas. The
latter certainly necessitate different representations in all traditional conceptual

12 D. Chatziantoniou and V. Kantere

Fig. 4. Creating JSON documents for different DVM’s nodes, conceived as entities

and logical models. For example, we would need two different ER schemas to
represent transID as an entity set and Date as an attribute and the opposite.
Furthermore, we would need schema mappings between logical schemas that are
derived from the conceptual schemas. The DVM not only alleviates all this com-
plexity, but enables the extraction of multiple schemas in traditional structured
and semi-structured models, via the implementation of the notion ‘entity view’,
achieving in this way, polyglotism. For example, based on a given graph for a
specific ‘entity view’, a relational (work in progress) or semi-structured database
can be materialized.

Using DataMingler [5], a user can selects a node in the DVM and a breadth-
first-search tree rooted on that node is defined and the system generates a col-
lection of JSON documents corresponding to the tree defined. It implements
attributes as lists or strings, depending on the cardinality of lists (whether they
contain multiple or single elements.) Fig. 4 shows the output when (a) custID
is selected, (b) ChurnCateg is selected, and (c) Date is selected. This way one
may define any node as an entity and analyze data based on that entity.

5 Conclusions

We discuss the notion of data virtualization as the enabler of agile, efficient
and effective data processing in modern analytics environments. We focus on
the fact that such environments are characterized on one hand by tremendous
heterogeneity of data, formats, systems etc. and on the other by dynamicity and
different analysis needs by users with multifarious roles that may not have data
management expertise. We set goals of data virtualization and we briefly present
DVM, a graph-based data virtualization model that we have proposed.

Data Virtual Machines: Enabling Data Virtualization 13

References

1. Abadi, D., et al.: The Beckman report on database research. Commun. ACM 59,
692–699 (2016)

2. Alagiannis, I., Borovica-Gajic, R., Branco, M., Idreos, S., Ailamaki, A.: Nodb:
efficient query execution on raw data files. Commun. ACM 58(12), 112–121 (2015)

3. Chatziantoniou, D., Kantere, V.: Data virtual machines: data-driven conceptual
modeling of big data infrastructures. In: Workshops of EDBT 2020 (2020)

4. Chatziantoniou, D., Kantere, V.: Data virtual machines: a novel approach to data
virtualization (2021, submitted for publication)

5. Chatziantoniou, D., Kantere, V.: Datamingler: a novel approach to data virtual-
ization. In: Li, G., Li, Z., Idreos, S., Srivastava, D. (eds.) SIGMOD 2021: Interna-
tional Conference on Management of Data, Virtual Event, China, 20–25 June 2021,
pp. 2681–2685. ACM (2021). https://doi.org/10.1145/3448016.3452752, https://
doi.org/10.1145/3448016.3452752

6. Chatziantoniou, D., Tselai, F.: Introducing data connectivity in a big data web.
In: Proceedings of the Third Workshop on Data analytics in the Cloud, DanaC
2014, pp. 7:1–7:4 (2014). http://doi.acm.org/10.1145/2627770.2627773

7. Denodo: Data virtualization: the modern data integration solution (2019). https://
www.denodo.com/en/document/whitepaper/data-virtualization-modern-data-
integration-solution

8. Doan, A., Halevy, A.Y., Ives, Z.G.: Principles of Data Integration. Morgan Kauf-
mann, San Francisco (2012)

9. Gartner: Market Guide for Data Virtualization (2018). https://www.gartner.com/
en/documents/3893219/market-guide-for-data-virtualization

10. IBM: IBM’s data virtualization tool: Cloud Pak for data (2021). https://www.ibm.
com/analytics/data-virtualization

11. Karpathiotakis, M., Alagiannis, I., Heinis, T., Branco, M., Ailamaki, A.: Just-in-
time data virtualization: lightweight data management with ViDa. In: CIDR 2015
(2015)

12. Microsoft: Introducing data virtualization with polybase (2021). https://
docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-guide?
view=sql-server-ver15

13. Oracle Corp.: Oracle Data Service Integrator (2020). https://www.oracle.com/
middleware/technologies/data-service-integrator.html

14. Data virtualization and data warehousing (2020). https://en.wikipedia.org/wiki/
Data virtualization

https://doi.org/10.1145/3448016.3452752
https://doi.org/10.1145/3448016.3452752
https://doi.org/10.1145/3448016.3452752
http://doi.acm.org/10.1145/2627770.2627773
https://www.denodo.com/en/document/whitepaper/data-virtualization-modern-data-integration-solution
https://www.denodo.com/en/document/whitepaper/data-virtualization-modern-data-integration-solution
https://www.denodo.com/en/document/whitepaper/data-virtualization-modern-data-integration-solution
https://www.gartner.com/en/documents/3893219/market-guide-for-data-virtualization
https://www.gartner.com/en/documents/3893219/market-guide-for-data-virtualization
https://www.ibm.com/analytics/data-virtualization
https://www.ibm.com/analytics/data-virtualization
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-guide?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-guide?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-guide?view=sql-server-ver15
https://www.oracle.com/middleware/technologies/data-service-integrator.html
https://www.oracle.com/middleware/technologies/data-service-integrator.html
https://en.wikipedia.org/wiki/Data_virtualization
https://en.wikipedia.org/wiki/Data_virtualization

A Formal Category Theoretical
Framework for Multi-model Data

Transformations

Valter Uotila(B) and Jiaheng Lu

Unified Database Management Systems, University of Helsinki, Helsinki, Finland
{valter.uotila,jiaheng.lu}@helsinki.fi

Abstract. Data integration and migration processes in polystores and
multi-model database management systems highly benefit from data and
schema transformations. Rigorous modeling of transformations is a com-
plex problem. The data and schema transformation field is scattered
with multiple different transformation frameworks, tools, and mappings.
These are usually domain-specific and lack solid theoretical foundations.
Our first goal is to define category theoretical foundations for relational,
graph, and hierarchical data models and instances. Each data instance is
represented as a category theoretical mapping called a functor. We for-
malize data and schema transformations as Kan lifts utilizing the functo-
rial representation for the instances. A Kan lift is a category theoretical
construction consisting of two mappings satisfying the certain universal
property. In this work, the two mappings correspond to schema trans-
formation and data transformation.

Keywords: Polystores · Multi-model databases · Data and schema
transformations · Database theory · Category theory

1 Introduction

The biggest success stories in database theory are the relational model and rela-
tional algebra.Codd’s theory [3] on relational databases has had an incomprehensi-
ble huge impact on database theory and applications. More formal and theoretical
treatment of polystores and multi-model databases would make it possible us to
repeat this success story in polystores and multi-model databases. A solid math-
ematical foundation would highly benefit their research and industry. Besides, to
standardize the existing techniques and systems, a rigorous formulation is crucial.

Polystores and multi-model databases are a solution to the problem of han-
dling a variety of data [12,14,20]. Native graph, document, key-value, and col-
umn databases have reached the point where they are competitive alternatives
for relational databases especially in the cases when we perform a lot of read-
and write-operations and heavy data analysis tasks. Since ML and AI are relying
on massive amounts of data, NoSQL databases have gained attention.

Undoubtedly, polystores and multi-model databases are more complicated
systems than ordinary relational databases since they subsume relational
c© Springer Nature Switzerland AG 2021
E. K. Rezig et al. (Eds.): Poly 2021/DMAH 2021, LNCS 12921, pp. 14–28, 2021.
https://doi.org/10.1007/978-3-030-93663-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93663-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-93663-1_2

A Category Theoretical Framework for Multi-model Data Transformations 15

databases. The theory and language describing the systems have to evolve along
with the systems which are gradually becoming more complex. But this should
not mean that the theory and languages become more complex for end-users or
even for database administrators and architects. Different databases have their
own theoretical foundations and query languages that are not automatically
compatible at a practical or theoretical level. This creates a huge challenge that
we are tackling from the theoretical perspective.

Data and schema transformations form a significant part of the data inte-
gration and migration problems [10]. For example, the transformations might
be needed at any point during the development of ML and AI solutions
where databases are a part of the process. Initially, importing data requires
transformations. Data integration between the databases can require multi-
ple transformation-based views between the participating databases. Sometimes
the most efficient solution is to materialize the transformed data. When the
amount of data grows, the transformation systems need to be able to adapt for
the growth. Thus monotonicity and temporality aspects of transformations are
important to take into account. Eventually, the data require transformations
before it can fit ML and AI models. For example, ML and AI models can use a
knowledge graph approach but the data is stored in a relational database. The
same transformation problems are also apparent for polystores and multi-model
databases.

Often these transformations lack formal treatment. Daimler et al. [7] argue
that informal data transformations are harmful. This is one of the challenges we
are addressing in this work. The language, which is proved to be capable of cap-
turing highly complex structures with a compact notation, is category theory.
Liu et al. [19] visioned that the foundations of multi-model databases could be
built on category theory because relational algebra’s expressiveness is not pow-
erful enough. We argue that the same applies to polystores. Our contributions
include

– continuing previous research connecting category theory and database theory,
– formalizing graph and hierarchical models and instances in terms of category

theory, and
– formalizing data transformations in polystores and multi-model databases as

a solution to a category theoretical lifting problem.

Informally category can be thought of as a graph or a network with a cer-
tain additional structure. The additional structure is usually easy to find from
computer science and database applications. If our goal is to express database
theory precisely, it does not make sense to use only graphs because we can do
modeling much better with categories.

In this work, we are often mentioning “schema”. By schema, we do not only
mean the conventional relational schema but a larger piece of information that
contains any constraint related to a model. Also, the information about the
model is part of the schema. Although modern NoSQL data is often referred
to as schemaless, the data always have some constraints which we include in a
schema in this context.

16 V. Uotila and J. Lu

1.1 Related Work

There are influential transformation frameworks but only a few of them are
developed formally. SQLGraph [27] is a system, which translates graph databases
to relational databases. It utilizes hashing and the fact that the modern rela-
tional databases natively support JSON. A framework of converting relational
databases to graph databases by Virgilio et al. [9] utilizes schema paths. Das
et al. [8] have developed a framework that creates RDF-view for property graph
data in Oracle databases. All of these transformations are considered from a
domain-specific and practical perspective although we identify that they have
characteristical features which could be theoretically modeled and unified.

Jananthan et al. [15] propose associative algebra as a mathematical foun-
dation for polystores. Leclercq et al. [18] built foundations of polystores on the
tensor-based data model. Liu et al. [19] visioned that the foundations of multi-
model databases could be built on category theory and we continue this work
for polystores and multi-model databases.

There has been relatively much research on applying category theory to
database theory. Our approach is highly influenced by David Spivak [25,26]. As
he points out in [25], the category theoretical database research can be divided
into two schools: category-based [24] and sketch-based [16]. A sketch [28] is a
category with certain limit objects. Our position is category-based.

Besides work on database theory, category theory has been applied widely in
computer science. Some of the most interesting and recent applications are pro-
gramming languages (foundations of many functional programming languages),
machine learning [6,11], automata learning [13], natural language processing (Dis-
CoCat [5]), and quantum computing and mechanics [1,4]. Applied category theory
has its annually organized conference called ACT (Applied Category Theory).

2 Prerequisites

2.1 Categories

Category theory is a relatively new field of mathematics. Saunders MacLane and
Samuel Eilenberg introduced categories, functors, and natural transformations
in the mid-1940s as a “meta-mathematical” tool to study algebraic topology.
MacLane [17] is the standard introduction to the topic. Other good introduction
from mathematical perspective is [22] and from computer science perspective
[26,28].

Definition 1 (Category). A category C consists of a collection of objects
denoted by Obj(C) and a collection of morphisms denoted by Hom(C). For each
morphism f ∈ Hom(C) there exists an object A ∈ Obj(C) that is a domain of f
and an object B ∈ Obj(C) that is a target of f . In this case we denote f : A → B.
We require that all the defined compositions of morphisms are included in C: if
f : A → B ∈ Hom(C) and g : B → C ∈ Hom(C) are morphisms, then the
composition g ◦ f ∈ Hom(C) is defined and g ◦ f : A → C is a morphism.

A Category Theoretical Framework for Multi-model Data Transformations 17

Also, we assume that the composition operation is associative and that for every
object A ∈ Obj(C) there exists an identity morphism idA : A → A so that f ◦
idA = f and idA ◦ f = f whenever the composition is defined.

See Fig. 1 as a simple example of a category. In this work sans serif font
always indicates a category. We follow the standard notation of category theory
literature that is used, for example, in [22]. One of the most important categories

h

object
1

g
h○gobject

4
object

2
f

g○f

object
3id

id

idid

h○g○f

Fig. 1. A simple four object category with three non-trivial morphisms f , g and h and
identities. In this case all the compositions of morphisms are drawn.

is the category Set whose objects are sets and morphisms are functions between
the sets. The composition operation of the morphisms is the composition of
functions.

2.2 Functors

In science and mathematics, we often have functions or mappings which respect
the underlying structures. Next, we define a structure-preserving mapping for
categories. The mapping is called a functor.

Definition 2 (Functor). Assume C,D are categories. A functor F : C → D is
defined so that

– for every object c in the category C, F (c) is an object in the category D and
– for every morphism f : c → d in C, it holds that F (f) : F (c) → F (d) is a

morphism in D.

Besides, we assume that following axioms hold:

– For every object c ∈ C it holds that F (idc) = idF (c) and
– if the composition f ◦ g is defined, then F (f ◦ g) = F (f) ◦ F (g).

If every morphism in the category D has a preimage in the category C, we call
the functor F full.

See Fig. 2(a) as an example of functor between two simple categories. The fact
that a functor preserves the structure of a category is apparent in the example.

2.3 Natural Transformations

The idea behind structure-preserving mappings is so fundamental that we can
study what it means to preserve a structure of structure-preserving mappings.

18 V. Uotila and J. Lu

The category theoretical notion for this is called a natural transformation. We
follow a convention from category theory and denote a natural transformation
by “⇒”-arrow.

Definition 3 (Natural Transformation). Assume F,G : C ⇒ D are func-
tors. A natural transformation α : F ⇒ G contains the following informa-
tion: For each c ∈ C is associated a component of the natural transformation
αc : F (c) → G(c). This component is a morphism in D so that the following
diagram commutes for any morphism f : c → d in C

In equational format commuting means that G(f) ◦ αc = αd ◦ F (f).

See Fig. 2(b) as an example of a natural transformation.

(a) (b)

Fig. 2. (a) An example of a simple functor. (b) An example of a simple natural trans-
formation α : F ⇒ G. The component morphisms αi : F (i) → G(i) are defined so that
they map everything to the single object in D.

A Category Theoretical Framework for Multi-model Data Transformations 19

2.4 Kan Lifts

We discuss Kan lifts [21] shortly. Kan lift is a pair consisting of a functor and a
natural transformation. The problem can be expressed as a diagram

A C

B

F

L G
ε

where all the arrows represent functors and a natural transformation ε : G ◦
L ⇒ F . The category theoretical problem is to find a suitable functor L : A →
B and a natural transformation ε : G ◦ L ⇒ F which make the construction
universal i.e. the natural transformation ε is universal among all the suitable
natural transformations which satisfy the diagram. The problem is called a lifting
problem.

Definition 4 (Kan Lift). Let F : A → C and G : B → C be functors. A right
Kan lift of F through G consists of a functor RiftGF : A → B and a natural
transformation ε : G ◦ RiftGF ⇒ F so that they satisfy the following univer-
sal property: given any other pair of a functor and a natural transformation
(H : A → B, η : G ◦ H ⇒ F) then there exists a unique natural transformation
γ : H ⇒ RiftGF so that η factors through ε i.e. η = ε◦(G◦γ). Diagrammatically
if

A C

B

F

RiftGF G
ε and

A C

B

F

H G
η

then

A C

B

F
H

RiftGF
γ G

ε

The problem of finding the pair RiftGF : A → B and ε : G ◦ RiftGF ⇒ F is
called a lifting problem. The intuition behind Kan lifts is that we find a functor
RiftGF that is the best approximation which makes the triangle ”commute”.
The notion of Kan lift grabs a larger collection of data transformations since we
do not require that the triangle necessarily commutes in strict sense. Although
the definition is abstract, we believe that is suitably flexible to describe trans-
formations conceptually.

2.5 Graphs

Graphs have a three-folded role in this work. The first role of graphs is that every
category is naturally a graph where objects are the vertices and morphisms are

20 V. Uotila and J. Lu

the edges. On the other hand, a graph is an abstract data model which we
are formalizing in terms of category theory. Some concrete models following the
graph model are property graphs and RDF graphs. The third role of graphs is
that they serve as the most standard tool to model relationships in a database,
for example, ER diagrams and various relational schemas are graphs. We want
to emphasize that these graphs should not be confused.

Definition 5 (Graph). A graph G is a quad G = (V,E, src, tgt) where V is
a set of vertices, E is the set of edges, src : E → V is the source function and
tgt : E → V is the target function. If e ∈ E is an edge then its source vertex is
src(e) = v and its target vertex is tgt(e) = w.

When we have graphs, it is natural to talk about paths. The following notation
for paths is used in [24].

Definition 6 (Path). Let G = (V,E, src, tgt) be a graph. A path p of length
n in the graph G is a sequence of connected edges in G. The set of all paths of
length n is denoted by Path(n)

G . The set of all path of G is PathG = ∪n∈NPath(n)
G .

3 Functorial Instances and Databases

3.1 Functorial Representation of Relational Data

We can draw a correspondence that we use categories to encode database con-
straints and functors to create instances. Because database instances have to
follow the constraints, the structure-preserving (and thus constraint-preserving)
mapping, a functor, is a natural choice to model instances and transfer con-
straints to them.

David Spivak [24] represented a simple database definition language using
categories and functors. Now we shortly recall this construction. Following his
ideas, we extend relational construction to graph and hierarchical data models.
When data models have their functorial representations, we can define data
transformations as a solution to the lifting problem (Definition 4).

Definition 7 (Categorical Path Equivalence Relation [24]). Let G = (V,
E, src, tgt) be a graph. A categorical path equivalence relation, denoted by ∼=, is
an equivalence relation on the set PathG of all the paths of G and it has the
properties listed in Definition 3.2.4 in [24].

We omit the full list of properties since the list is relatively long and for
this work, the most important is to know that the relation ∼= is an equivalence
relation on the set PathG.

Definition 8 (Categorical Schema). A categorical schema is C = (G,∼=)
where G is a graph and ∼= is a categorical path equivalence relation on PathG.

Definition 9 (Schema Category). Let C = (G,∼=) be a categorical schema.
The schema category C is the category whose objects are the vertices of the graph

A Category Theoretical Framework for Multi-model Data Transformations 21

G and the morphisms are the equivalence classes of the paths of G defined by ∼=.
The composition is defined as path composition with respect to the equivalence
relation.

The schema category consists of objects which are table descriptions, for
example, similar to that we have in the ER diagram. The morphisms are induced
by the foreign key constraints between the tables. Intuitively, a schema category
is the category induced by the corresponding ER diagram.

Definition 10 (Instance Functor). Let C = (G,∼=) be a schema category.
An instance functor I : C → Set maps the schema category to the category of
sets and it satisfies the property that if p ∼= q, then I(p) = I(q).

See Fig. 3(a) as an example of a relational instance functor. In Fig. 3(a) arrows
are based on the constraints between the attributes. Since functional dependen-
cies can be composed, the compositions of the dependencies are defined. A set
of attributes trivially depends on itself which creates identity arrows.

For instance, we can ask a question related to Fig. 3(a): What is the channel
that the moderator with ModName alicee owns? The answer can be found when
we compose the arrow Moderator.FollowerID → Follower.ID with the arrow Fol-
lower.OwnChannel → Channel.ID. This gives us an arrow Moderator.FollowerID
→ Channel.ID. The answer is the channel with id C4which can be read in Fig. 3(a).

The intuition behind a relational instance functor is that it sends each object
c ∈ C (corresponding table description or a column in the schema) to a set I(c) ∈
Set. The set I(c) is the concrete instance of a table or a column. For example
in Fig. 3(a), I(ChannelMods) = {(C1,M1), (C2,M2), (C3,M1), (C3,M2)}. If a
morphism f : c → d ∈ C corresponds a foreign key dependency between the
table descriptions c and d in the schema, then I(f) : I(c) → I(d) ∈ Set is the set
valued function that sends the tuples of the table I(c) to the tuples of the table
I(d) along the functional dependency defined by the foreign key constraint.

3.2 Functorial Representation of the Graph and Hierarchical Data

Bumby et al. [2] gives a category theoretical formulation for graphs. Recall that we
previously defined a graph G to be a quad (V,E, src, tgt). Property graphs have
been studied from an algebraic and category theoretical perspective already in [23].

Definition 11 (Graph as Functor). Let G be the two element category which
consists of the identity morphisms and two non-trivial morphisms as the diagram

describes. Now a graph G is a functor G : G → Set where G(0) = E is the set of
edges, G(1) = V is the set of vertices, G(s) : G(0) → G(1) = src : E → V is the
source function and G(t) : G(0) → G(1) = tgt : E → V is the target function.
Besides, G maps identity morphisms of G to identity functions in Set.

22 V. Uotila and J. Lu

We do not assume that the graph would have a schema. In this sense, the
construction differs from the one that we gave to the relational data. In practice,
we might have a graph schema available, for example, in the cases when we are
transforming relational data into graph data.

When a graph schema is available, we can encode it in the category theoretical
definition. If we have a strict schema for the graph, we can generalize Spivak’s
approach for the relational data and assign the schema information to the objects
0 and 1 in Definition 11.

The classical graph example is a social network. Let us take a property graph
-oriented approach and set that the object 1 is associated with a graph schema
(person : {key,name, age}). The label person is the label of the node and key,
name and age are keys for the properties stored in nodes. For edges we can define
similar structure by setting 0 = [knows : {key, since}]. See Fig. 3(b) for the full
construction.

Follower

ID Name Age OwnChannel
U1 Alice 25 C4

U2 Bob 22 C1

U3 Julia 45 C3

Follower

+ ID
+Name
+Age
+OwnChannel

Moderator

ID ModName FollowerID
M1 alicee U1

M2 bobby U2

Moderator

+ID
+Name
+FollowerID

Channel

ID ChannelName Followers
C1 musichannel 504

C2 movie_stream 1057

C3 chat_with_us 2 475 398

C4 learn_dancing 74

ChannelMods

ChannelID ModID
C1 M1

C2 M2

C3 M1

C3 M2

ChannelMods

+ChannelID
+ModID

Channel

+ID
+ChannelName
+Followers

Relational schema category

Image of instance functor in the category Set

Relational instance functor

ChannelMods.ModID
= Moderator.ID

Moderator.FollowerID = Follower.ID

Follower.OwnChannel =
Channel.ID

ChannelMods.ChannelID = Channel.ID

(a)

person:
{ key, name,

age }

knows: {
key, since }

s = source

t = target

0 1

Categorical representation for graph schema

knows: { key: e2,
since: 2018-11-12 }

Vertex set in category Set

person:
{ key: p1,

name: "Alice",
age: 25}

person:
{ key: p2,

name: "Bob",
age: 22}person:

{ key: p3,
name: "Julia",

age: 45}

Graph instance in category Set

Graph notation

person:
{ key: p1,

name: "Alice",
age: 25 }

person:
{ key: p2,

name: "Bob",
age: 22}

person:
{ key: p3,

name: "Julia",
age: 45}

knows: { key: e1,
since: 2019-05-22 }

knows: { key: e2,
since: 2018-11-12 }

Set notation

e1

e2

e1

e2

p1

p1

p3

p2

Source function

Target function

Graph instance functor

Edge set in
category Set

knows: { key: e1,
since: 2019-05-22 }

(b)

Fig. 3. (a) An example of a relational instance functor. (b) The graph instance functor
consists of the functor from the category that is a categorical representation for the
graph schema to the category set. The graph is represented using the set notation and
the conventional property graph notation.

As far as we know, hierarchical data, such as XML and JSON, do not have a
category theoretical description that would have been studied previously. We use
terms hierarchical data and tree data interchangeable. For any tree, we identify
the characteristical feature that each node in the tree has exactly one parent

A Category Theoretical Framework for Multi-model Data Transformations 23

node except the root. We can conceptually expand the tree construction so that
the root is the unique node that has itself as a parent.

Definition 12 (Tree as functor). Let T be the one element category whose
object is 0 and the only non-trivial morphism is p : 0 → 0. Diagrammatically the
category is simply

Now a tree is a functor T : T → Set which sends the single element 0 to the set
of nodes of the tree. The single non-trivial morphism p : 0 → 0 is sent to the
function that gives the parent node for each node in T (0). If the node is the root
r, then we define T (p)(r) = r.

4 Data Transformations Between Functorial Instances

4.1 Intuition Behind Transformations Represented in Terms
of Category Theory

Before formally discussing the transformations, we show a motivating example
of how the theory in the previous sections manages to unify a big part of the
transformation theory.

This example is continuation to Fig. 3(b) where we had the classical social
network data stored in a relational database. In our opinion, the most obvious
way to store a social network is to use simple vertex- and edge-tables. The rela-
tionships are defined by foreign key constraints. The knows table, which serves
as the edge-table, has at least two foreign keys, k.personID1 and k.personID2.
These are connected to the person-table’s primary key p.personID. Diagrammat-
ically this can be expressed as

We note that this schema already defines a schema category (Definition 9).
Recall the category theoretical representation for the graph in Definition 11.

We can transform the relational instance into a graph in multiple ways. The first
way to map the relational schema category to the graph schema category is

on objects

{
p �→ 1
k �→ 0

and on morphisms

{
(p.personID = k.personID1) �→ s

(p.personID = k.personID2) �→ t.

The objects 0 and 1 and morphisms s and t refer to the same objects and
morphisms as in Definition 11. The second transformation is that we swap how
the morphisms are mapped i.e. swap the roles of s and t. Compared to the first
transformation this inverses the direction of the edges in the resulting graph.

24 V. Uotila and J. Lu

Besides these two mappings, we can find two more. The third possible functor
collapses the relational schema i.e. it maps everything to the object 0 and its
identity morphism:

on objects

{
p �→ 0
k �→ 0

and on morphisms

{
(p.personID = k.personID1) �→ id0

(p.personID = k.personID2) �→ id0.

The fourth possible functor is similar to the previous functor but maps every-
thing to the object 1. The benefit of the category theoretical formulation for
transformations is that we can mathematically characterize, that the transfor-
mation which sends the knows-table to vertices and person-table to edges, is not
valid because such transformation is not a functor.

The transformations 3. and 4. have problems although they are well-defined
functors. Thus functoriality is not a sufficient condition to characterize mean-
ingful transformations. It does not make sense to map everything to edges (the
result of the transformation 3.) because a valid edge needs to have a source and a
target vertex. Also, a graph that contains only vertices without edges (the result
of the transformation 4.) is not meaningful because edges are necessary for the
most important graph operations. Thus we require that the functor should be
full (Definition 2) to be relevant in practice. As we see, the transformations 3.
and 4. as functors are not full but transformations 1. and 2. are.

4.2 Data Transformation as Lifting Problem

Data and schema transformations are usually modeled as mappings from a source
database to a target database. We base our data and schema transformation on
Kan lifts [21]. Lifting problems have been considered in database theory also
previously in [25]. As Definition 4 shows, the lift consists of two components: a
functor and a natural transformation. Informally, the functor part is a schema
mapping which describes a set of rules which define how the data items are
mapped at a schema level. The functor is required to be full (Definition 2)
because functors which are not full are not practically meaningful as the dis-
cussion in the previous section shows. Along the functor, we have a natural
transformation which is data mapping. The pair satisfies the universal prop-
erty which creates certain classification for transformations. The nature of this
classification is still an open question.

The category theoretical approach to data and schema transformations
reveals a crucial problem in transformation research. The problem is the sep-
aration of data and schema. In a world where relational databases are still the
dominant databases, the division of data and schema is obvious. But the prob-
lem is apparent with the schemaless or schema-free models such as graphs and
documents. If graph and document data transformations are approached from
the relational perspective, we are likely to face problems. With category theory,
we can model as much structure as the data has. Modeling transformations as
pairs of mappings describes transformations more rigorously than a single total
function between data sets.

A Category Theoretical Framework for Multi-model Data Transformations 25

Let I1 : C1 → Set and I2 : C2 → Set be two data instances as functors where
the functors can represent either relational, graph or hierarchical instance func-
tors as described in Definitions 10, 11, and 12. The question is how do we gen-
erally find a transformation between the data instances I1 and I2. The problem
can be expressed as a diagram

C1 Set

C2

I1

F I2

where the functor F : C1 → C2 is the schema transformation mapping between
the categorical representations of the schema categories C1 and C2. The second
part of the transformation consists of a natural transformation ε : I2 ◦ F ⇒ I1
which obeys certain laws. If we assume that we have the two diagrams

C1 Set

C2

I1

F I2
ε and

C1 Set

C2

I1

H I2
η

where the second diagram has a functor H : C1 → C2 and η : I2 ◦ H ⇒ I1
a natural transformation. We then require that there exists a unique natural
transformation γ : H ⇒ F such that η = ε ◦ (I2 ◦ γ).

Definition 13 (Data and Schema Transformation). Let I1 : C1 → Set and
I2 : C2 → Set be two data instances. A transformation from I1 to I2 is a Kan lift
(RiftI2I1 : C1 → C2, ε : I2 ◦ RiftI2I1 ⇒ I1) so that the functor RiftI2I1 is a full
functor.

We recall our example relational database instance in Fig. 3(a). In order to
transform the relational instance to a property graph we need to construct a
functor from the relational schema category to the graph schema category and
define the natural transformation. Figure 4 describes the full transformation and
the coloring codes the corresponding elements in each category. Informally, the
natural transformation in the example could be understood so that for each
object in the relational schema category, we have a mapping that tells how the
corresponding relational data object in the category Set is mapped to the graph
data object in the category Set.

26 V. Uotila and J. Lu

Moderator

ID ModName FollowerID
M1 alicee U1

M2 bobby U2

Moderator

+ID
+Name
+FollowerID

Channel

ID ChannelName Followers
C1 musichannel 504

C2 movie_stream 1057

C3 chat_with_us 2 475 398

C4 learn_dancing 74

ChannelMods

ChannelID ModID
C1 M1

C2 M2

C3 M1

C3 M2

ChannelMods

+ChannelID
+ModID Channel

+ID
+ChannelName
+Followers

Schema category for relational data

Images of instance functors in the category Set

Instance functor for relational data

Moderator
+ID

+Name
+Follower

Channel
+ID

+ChannelName
+Followers

Edge

ChannelMods
+ChannelID

+ModID

Vertex

source

target

Moderator:
{id: "M1",

modName: "alicee",
followerID: "U1"}

Instance functor for graph data

Moderator:
{id: "M2",

modName: "bobby",
followerID: "U2"}

Channel:
{id: "C1",

channelName:
"musichannel",
followers: 504}

Channel:
{id: "C4",

channelName:
"learn_dancing",

followers: 74}

Channel:
{id: "C3",

channelName:
"chat_with_us",

followers:
2475398}

Channel:
{id: "C2",

channelName:
"movie_stream",
followers: 1057}

Transformation
functor i.e. lift

Schema category for graph data

Fig. 4. Example transformation from relational to property graph.

5 Conclusions and Future Work

When the variety and amount of data grows, the need for polystores and multi-
model databases is urgent. The efficient utilization of the systems requires a pre-
cise theory of how the systems operate and how they are modeled. So far, there
has been extensive research on practical and implementational aspects. With-
out a proper theoretical framework, the field is left scattered. We are answering
this challenge by formalizing the three most common data models and the data
and schema transformations between them. We continued previous research and
contributed by formalizing graph and hierarchical models functorially. We then
focused on data and schema transformations between the functorial instances.
Kan lifts require more studying as a basis for transformations but it seems a
promising direction.

Query transformations form another half of the transformation systems. A
query can be transformed correctly if the data is transformed correctly. This ties
both transformations together which makes the modeling challenge still harder.
Future work would include formalizing and unifying query transformations. In
the case of SQL, the topic has already been studied in [25].

We identify that there is a need to model temporal data better. The prob-
lem of temporality is rarely addressed in polystore, multi-model database, and
transformation research. Usually, the implicit assumption, especially in transfor-
mation frameworks, is that the systems are dealing with static data. Of course,
that is hardly ever true and data changes and expands constantly. We believe
that with category theory we can naturally include a time component to data.

A Category Theoretical Framework for Multi-model Data Transformations 27

Acknowledgement. This paper is partially supported by Finnish Academy Project
310321 and Oracle ERO gift funding.

References

1. Abramsky, S., Coecke, B.: Categorical quantum mechanics (2008)
2. Bumby, R.T., Latch, D.M.: Categorical constructions in graph theory. Int. J. Math.

Math. Sci. 9, 791947 (1986). https://doi.org/10.1155/S0161171286000017
3. Codd, E.F.: A relational model of data for large shared data banks. Commun.

ACM 13(6), 377–387 (1970). https://doi.org/10.1145/362384.362685, https://doi.
org/10.1145/362384.362685

4. Coecke, B., Paquette, É.: Categories for the Practising Physicist, pp. 173–286.
Springer, Berlin Heidelberg (2011). https://doi.org/10.1007/978-3-642-12821-9 3

5. Coecke, B., Sadrzadeh, M., Clark, S.: Mathematical foundations for a composi-
tional distributional model of meaning. CoRR abs/1003.4394 (2010). http://arxiv.
org/abs/1003.4394

6. Cruttwell, G.S.H., Gavranovic, B., Ghani, N., Wilson, P.W., Zanasi, F.: Categori-
cal foundations of gradient-based learning. CoRR abs/2103.01931 (2021). https://
arxiv.org/abs/2103.01931

7. Daimler, E., Wisnesky, R.: Informal data transformation considered harmful.
arXiv:2001.00338, January 2020. http://arxiv.org/abs/2001.00338, arXiv: 2001.
00338

8. Das, S., Srinivasan, J., Perry, M., Chong, E., Banerjee, J.: A tale of two graphs:
property graphs as RDF in oracle (2014). https://doi.org/10.5441/002/EDBT.
2014.82, https://openproceedings.org/EDBT/2014/edbticdt2014industrial submi
ssion 28.pdf

9. De Virgilio, R., Maccioni, A., Torlone, R.: Converting relational to graph databases.
In: First International Workshop on Graph Data Management Experiences and
Systems, pp. 1–6. ACM, June 2013. https://doi.org/10.1145/2484425.2484426

10. Dziedzic, A., Elmore, A.J., Stonebraker, M.: Data transformation and migration
in polystores. In: 2016 IEEE High Performance Extreme Computing Conference,
HPEC 2016, Waltham, MA, USA, 13–15 September 2016, pp. 1–6. IEEE (2016).
https://doi.org/10.1109/HPEC.2016.7761594

11. Fong, B., Spivak, D., Tuyéras, R.: Backprop as functor: a compositional perspective
on supervised learning. In: 2019 34th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pp. 1–13 (2019). https://doi.org/10.1109/LICS.2019.
8785665

12. Gadepally, V., et al.: The bigdawg polystore system and architecture. In: 2016
IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–6 (2016).
https://doi.org/10.1109/HPEC.2016.7761636

13. van Heerdt, G., Kappé, T., Rot, J., Sammartino, M., Silva, A.: A categorical
framework for learning generalised tree automata. CoRR abs/2001.05786 (2020).
https://arxiv.org/abs/2001.05786

14. Holubová, I., Klettke, M., Störl, U.: Evolution management of multi-model data.
In: Gadepally, V., Mattson, T., Stonebraker, M., Wang, F., Luo, G., Laing,
Y., Dubovitskaya, A. (eds.) DMAH/Poly -2019. LNCS, vol. 11721, pp. 139–153.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33752-0 10

https://doi.org/10.1155/S0161171286000017
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://doi.org/10.1007/978-3-642-12821-9_3
http://arxiv.org/abs/1003.4394
http://arxiv.org/abs/1003.4394
https://arxiv.org/abs/2103.01931
https://arxiv.org/abs/2103.01931
http://arxiv.org/abs/2001.00338
http://arxiv.org/abs/2001.00338
http://arxiv.org/abs/2001.00338
http://arxiv.org/abs/2001.00338
https://doi.org/10.5441/002/EDBT.2014.82
https://doi.org/10.5441/002/EDBT.2014.82
https://openproceedings.org/EDBT/2014/edbticdt2014industrial_submission_28.pdf
https://openproceedings.org/EDBT/2014/edbticdt2014industrial_submission_28.pdf
https://doi.org/10.1145/2484425.2484426
https://doi.org/10.1109/HPEC.2016.7761594
https://doi.org/10.1109/LICS.2019.8785665
https://doi.org/10.1109/LICS.2019.8785665
https://doi.org/10.1109/HPEC.2016.7761636
https://arxiv.org/abs/2001.05786
https://doi.org/10.1007/978-3-030-33752-0_10

28 V. Uotila and J. Lu

15. Jananthan, H., Zhou, Z., Gadepally, V., Hutchison, D., Kim, S., Kepner, J.: Poly-
store mathematics of relational algebra. In: 2017 IEEE International Conference
on Big Data (Big Data), pp. 3180–3189. IEEE Computer Society, Los Alamitos,
December 2017. https://doi.org/10.1109/BigData.2017.8258298

16. Kadish, B., Diskin, Z.: Algebraic graph-oriented = category theory based. mani-
festo of categorizing database theory (1994)

17. Lane, S.: Categories for the Working Mathematician. In: Graduate Texts in Math-
ematics, Springer, New York (1998), https://doi.org/10.1007/978-1-4612-9839-7

18. Leclercq, E., Savonnet, M.: A tensor based data model for polystore: an applica-
tion to social networks data. In: Proceedings of the 22nd International Database
Engineering & Applications Symposium, IDEAS 2018, pp. 110–118. Association
for Computing Machinery, New York (2018). https://doi.org/10.1145/3216122.
3216152

19. Liu, Z., Lu, J., Gawlick, D., Helskyaho, H., Pogossiants, G., Wu, Z.: Multi-model
database management systems - a look forward. In: Poly/DMAH@VLDB (2018)

20. Lu, J., Holubová, I., Cautis, B.: Multi-model databases and tightly integrated
polystores: current practices, comparisons, and open challenges. In: Cuzzocrea, A.,
et al. (eds.) Proceedings of the 27th ACM International Conference on Information
and Knowledge Management, CIKM 2018, Torino, Italy, 22–26 October 2018, pp.
2301–2302. ACM (2018). https://doi.org/10.1145/3269206.3274269

21. nLab authors: Kan lift, May 2021. http://ncatlab.org/nlab/show/Kan%20lift
22. Riehl, E.: Category Theory in Context. Aurora: Dover Modern Math Originals,

Dover Publications, Mineola (2017). www.math.jhu.edu/∼eriehl/context.pdf
23. Shinavier, J., Wisnesky, R.: Algebraic property graphs (2020)
24. Spivak, D.I.: Functorial data migration. CoRR abs/1009.1166 (2010). http://arxiv.

org/abs/1009.1166
25. Spivak, D.I.: Database queries and constraints via lifting problems. Math. Struct.

Comput. Sci. 24 (2013)
26. Spivak, D.I.: Category Theory for the Sciences. MIT Press, Cambridge (2014)
27. Sun, W., Fokoue, A., Srinivas, K., Kementsietsidis, A., Hu, G., Xie, G.: Sqlgraph:

an efficient relational-based property graph store. In: Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, pp. 1887–1901. ACM,
May 2015. https://doi.org/10.1145/2723372.2723732

28. Wells, C.: Category theory for computing science. Theory Appl. Categ. 22, 515
(2012)

https://doi.org/10.1109/BigData.2017.8258298
https://doi.org/10.1007/978-1-4612-9839-7
https://doi.org/10.1145/3216122.3216152
https://doi.org/10.1145/3216122.3216152
https://doi.org/10.1145/3269206.3274269
http://ncatlab.org/nlab/show/Kan%20lift
www.math.jhu.edu/~eriehl/context.pdf
http://arxiv.org/abs/1009.1166
http://arxiv.org/abs/1009.1166
https://doi.org/10.1145/2723372.2723732

Towards Generic Fine-Grained
Transaction Isolation in Polystores

Nuno Faria(B) , José Pereira , Ana Nunes Alonso , and Ricardo Vilaça

INESC TEC and University of Minho, Braga, Portugal
{nuno.f.faria,jose.o.pereira,ana.n.alonso,ricardo.p.vilaca}@inesctec.pt

Abstract. Transactional isolation is a challenge for polystores, as along
with the limited capabilities of each datastore, we have to contend
with their sheer diversity. However, transactional isolation is increas-
ingly desirable as a variety of datastores are being sought after for roles
that go beyond data lakes. Transactional guarantees are also relevant for
reliability at scale. In this paper, we propose that transactional isola-
tion in polystores can be achieved by leveraging the query engine, i.e.,
basing some of the responsibilities of a traditional transactional storage
manager (TSM) on the query language itself. This has the key advan-
tage of greatly simplifying design and implementation, as it doesn’t need
to be re-invented for each datastore, and should increase performance,
by taking advantage of dynamic query optimization where available. We
demonstrate the feasibility of the proposal with a simple proof-of-concept
and experiment.

Keywords: Transactions · Snapshot isolation · Polystores

1 Introduction

Polystores aim at combining the diversity of data models, query languages, inter-
faces, and architectures of multiple datastores [17,22]. This enables executing
queries expressed in, or even combining, the preferred data model, the best
query abstractions, and ideal query engines for each use case. The focus has
thus been on big data and analytical workloads.

However, diverse data models and query capabilities are not the sole reason
for the current datastore diversity. Increasingly, the ability to handle updates in
a variety of challenging scenarios has been the driving force behind novel data-
store proposals. For instance, Apache Cassandra is well known for its ability to
handle very high update throughput [23]. Redis provides a variety of data struc-
tures, including Conflict-free Replicated Data Types (CRDTs) for geographical
scalability [10].

It is thus interesting to accommodate this diversity in update processing
capabilities of datastores, which raises the issue of update consistency and atom-
icity in each of them and across multiple of them. Transactional updates are also
desirable even in mostly static data lakes to correct and remove data (e.g., due
c© Springer Nature Switzerland AG 2021
E. K. Rezig et al. (Eds.): Poly 2021/DMAH 2021, LNCS 12921, pp. 29–42, 2021.
https://doi.org/10.1007/978-3-030-93663-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93663-1_3&domain=pdf
http://orcid.org/0000-0003-4691-0440
http://orcid.org/0000-0002-3341-9217
http://orcid.org/0000-0002-0519-9675
http://orcid.org/0000-0002-6957-1536
https://doi.org/10.1007/978-3-030-93663-1_3

30 N. Faria et al.

to the GDPR and other “right to be forgotten” regulations) and ultimately for
reliability, as data corruption on loading has shown to be a frequent issue [7].

Traditionally, transactional isolation and recovery are the responsibility of
the transactional storage manager (TSM) layer [21]. Depending on the strategy
used, these are achieved by the combined effect of the lock manager, the buffer
pool (i.e., for latching and holding different versions), and the log manager.
These features are implemented separately and lie beneath the query engine,
which then operates within the abstraction of an isolated and recoverable data
space. More recently, transactional isolation has also been provided for NoSQL
datastores as a custom middleware layer that wraps the native store [19].

Unfortunately, transactional isolation in polystores is harder than in tradi-
tional database systems or homogeneous big datastores, and often identified as
a key research challenge [28,30]. The first issue is that target datastores have
wildly different isolation and consistency criteria, and not just different imple-
mentations of similar criteria. Namely, some systems, such as MongoDB [26] or
Neo4j [5], provide multi-operation isolation and recovery. Other systems, such as
HBase, do not offer multi-operation isolation but provide multi-versioning and
a re-do log, that can be used for transactional isolation at the middleware level
[19]. Still, some systems (e.g., Cassandra [23]) exhibit no isolation at all and
offer only eventual consistency [31], which is central to their value proposition
as distributed and scalable. The second issue is how to enforce a single trans-
actional context for an operation reading from or updating multiple datastores.
Even datastores that have transactional support such as MongoDB or Neo4j
do not support XA [1] transaction interfaces for two-phase commit. Therefore,
individually wrapping or modifying each datastore with a transactional storage
management layer is both unfeasible and undesirable.

In this paper, we assume Snapshot Isolation [9] as the target transactional
isolation criterion and the availability of a multi-version optimistic concurrency
control mechanism. We divide transactional processing into two main concerns:
the first involves capturing write operations and, when commit is requested, val-
idating that there are no write-write conflicts with concurrent transactions; the
second is the ability to, at any point during the execution of a given transac-
tion, reconstruct the current snapshot by reconciling values written by previously
committed transactions, items updated by the current transaction, and avoiding
values written by concurrent transactions. We address only the latter and focus
on the computation needed to deliver the snapshot in a polyglot query engine.

Our first requirement is to provide transactional isolation and recovery, while
at the same time allowing unfettered access to native stores. This precludes, for
instance, cluttering the data with version information. The second requirement
stems from the observation that the best approach for computing isolated snap-
shots varies for different datastores and that an efficient implementation must
take advantage of each one’s strengths.

The main insights in this paper are that reconstructing a transactional snap-
shot across a diversity of datastores (1) is itself a polyglot data processing prob-
lem and (2) that we can take advantage of an optimizing query engine to make

Towards Generic Fine-Grained Transaction Isolation in Polystores 31

it simpler, portable, and efficient. We are, as the saying goes, “eating our own
dog-food.”

The rest of this paper is organized as follows: Sect. 2 describes the background
and assumptions for our proposal; Sect. 3 details the design of a proof-of-concept
system for transactional snapshot reconstruction; Sect. 4 evaluates the proposed
approach with an experiment; and finally, Sect. 5 discusses the main conclusions,
remaining challenges, and future research directions.

2 Background and Assumptions

2.1 Query Processing

We assume as the baseline a cloud multi-datastore query engine such as Cloud-
MdsQL [22] offering a SQL-like language that can embed statements in native
query languages of diverse datastores as table expressions, i.e., native table
expressions. It follows the mediator/wrapper architecture from multi-database
systems: A logically centralized mediator – the Common Query Engine (CQE)
– handles client connections, parses and optimizes queries, and then hands sub-
sets of the resulting plan for each target datastore to each wrapper, that extracts
native query fragments or converts relational operators in the plan and handles
execution and data transfer.

In practice, this means that ad-hoc views of data from multiple datastores
can be defined and used in relational queries. A relational data model, extended
with non-atomic list and dictionary types, is used as the target for such views
and the domain for queries in the CloudMdsQL common query language. The
major advantage of this approach is that it is able to fully exploit the power
of each datastore with native queries without having to fully map data to a
common data model, while at the same time globally optimizing the composite
query, e.g., by pushing down selection predicates, using bind join, performing
join ordering, or planning intermediate data shipping.

2.2 Versions and Snapshot Isolation

We assume Snapshot Isolation [9] as the target criterion. In contrast to tra-
ditional ANSI isolation levels based on 2-phase locking, using a multi-version
concurrency control mechanism has clear advantages for read-only transactions
and parallel/distributed systems, and is now widely preferred.

This means that there can be multiple versions of each data item stored at
the same time and that a version is visible to a transaction if and only if it was
committed before the transaction started. For simplicity, we consider only full
Snapshot Isolation, with multi-statement consistency, and not the weaker single-
statement Read Consistency levels that are also available in various systems.

Assuming that the minimum visibility (commit) timestamp for an item is cts
and that the maximum (starting) visibility timestamp for a transaction is sts,
we can consider these possible states for each usable version of an item:

32 N. Faria et al.

Visible-to-All (or Storage): Committed versions labeled with a cts that is
less than or equal to the starting timestamps sts of all currently executing
transactions, thus, visible-to-all transactions unless overwritten.

Visible-to-Some (or Cache): Committed versions labeled with a cts that is
greater than the starting timestamp sts of some currently executing trans-
actions, thus, invisible to such transactions even if not overridden. Keeping
these versions separate from those visible-to-all avoids non-repeatable reads.

Visible-to-One (or Temporary): Uncommitted versions associated with a sin-
gle transaction. These versions ensure that a transaction reads its own writes
and at the same time avoid causing dirty reads in concurrent transactions.

When a version is written, it starts in the visible-to-one state, proceeds to
visible-to-some when committed, and eventually becomes visible-to-all as other
concurrent transactions finish. Some systems might in fact keep around some
obsolete versions, visible-to-none, after a newer visible-to-all version exists.

When reading, a transaction first considers its own visible-to-one versions,
then those visible-to-some – considering the timestamp – and finally those
visible-to-all. This process, which obtains correct versions for all data items
requested by some transaction, is the snapshot reconstruction and is the focus
of this paper.

This distinction of versions in terms of visibility is not how most multi-version
systems are described but is key to our insight in Sect. 3. Instead, systems are
usually described in terms of strategies used to physically store different ver-
sions. As an example, PostgreSQL keeps them all in the main heap/file, explic-
itly tagged with t xmin and t xmax that can be compared to current visibility
boundaries, termed the snapshot. This avoids copying old data when new ver-
sions are added, at the expense of keeping obsolete versions until vacuumed
[27,29]. Oracle labels versions with the system change number (SCN) [8,12] and
these reside: in the main heap/file, while visible-to-one and locked, latest visible-
to-some, or if visible-to-all; other visible-to-some versions are kept separately in
rollback segments. This optimizes for short-lived transactions, where a new ver-
sion quickly becomes visible-to-all. A different example is provided by Google’s
Spanner, which keeps visible-to-one versions directly in the client in unlogged
structures and takes advantage of versioning in BigTable to manage committed
versions, visible-to-some or visible-to-all [14].

2.3 Simplifying Assumptions

Besides snapshot reconstruction, Snapshot Isolation requires precluding concur-
rent updates to the same item. As an example, Oracle and PostgreSQL rely on
aborting transactions in lock queues on commit to ensure that the first com-
mitter wins. In distributed systems, such as Omid [19], this is achieved with a
centralized validation server. A recovery mechanism is also required and usually
relies on logging to ensure atomicity and durability. In this paper, we omit both
of these important issues and focus exclusively on the read path for snapshot
reconstruction.

Towards Generic Fine-Grained Transaction Isolation in Polystores 33

We make the additional simplifying assumption of not considering the
ability of a transaction to read its own writes, i.e., we ignore visible-to-one
(or temporary) versions during snapshot reconstruction. Moreover, we assume
that all writes are done atomically at commit time, as this simplifies represen-
tation and the manipulation of timestamps. Our proposal could be extended to
accommodate such possibilities, although the current simpler form would already
be useful and is actually how some systems work [14].

3 Proof-of-Concept

3.1 Version Representation

The first pillar of our proposal is the use of regular tables or collections to hold
versions of data items in different visibility categories according to Sect. 2.2, in
contrast to using custom data structures encapsulated within a transactional
storage manager layer. In detail, we separate visible-to-all (or storage) from
visible-to-some (or cache) versions. The approach could be extended by consid-
ering a third table or collection for visible-to-one (or temporary) versions, which
we are not addressing in this proof-of-concept.

Our key insight, which makes our proposal suitable for a polystore and com-
patible with a wide spectrum of datastores, is the following: It is not neces-
sary to keep individual version numbers for visible-to-all (or storage) versions.
The reason for this is that, by definition, all these versions are visible to all
transactions unless overwritten. Therefore, their final visibility depends only on
whether reconstruction picks up a more recent version while traversing cached
(visible-to-some) versions. In other words, it is as if we consider that all storage
(visible-to-all) versions are implicitly labeled with ts − 1, where ts is the oldest
version in cache (visible-to-some).

The first corollary is that a transactional update and query system can be lay-
ered on top of an existing datastore without changing its content, in particular,
without polluting data with additional version meta-data or multiple versions
for each item, which would break compatibility with existing non-transactional
applications. Additionally, this also decreases the space overhead imposed on the
system, comprised by recently modified rows. With a sufficiently large storage,
this overhead can be considered effectively zero. The second corollary is that
the datastore does not need to be able to filter versions, which is hard or even
impossible to do in pure key-value stores. In fact, previous transaction isolation
systems that can be layered on existing datastores, such as Spanner [14] or Omid
[19], assume that the datastore can hold and filter versions or, in the latter, store
additional version meta-data with each item.

In detail, our general approach is that for each storage table (S) in any of
the supported datastores, we create an additional table for the corresponding
visible-to-some versions (S Cache). The cache accommodates data with the orig-
inal schema plus three extra fields: from and to, which specify a record’s validity,
and deleted, which identifies deleted records. The primary key for this table is

34 N. Faria et al.

Fig. 1. Example of the cache of storage S (S Cache) and resulting snapshot for trans-
action T . T ’s starting timestamp = 15, meaning it will read (k1, v10) and (k3, ⊥) from
the cache and the remaining records from the storage. k3 will not be present in the
snapshot since it is flagged as deleted. (Color figure online)

composite, with the original key in the base storage table and from. As this table
is not used by non-transactional applications, and only indirectly by transactional
applications, the additional data do not create a compatibility issue.

Figure 1 provides an example. Figure 1(a) shows some base storage table S
with key k and value v. Depending on the application and the underlying data-
store, both k and v can be composite values. The base table contains items with
keys k1 to k4 with corresponding base values v1 to v4. Figure 1(b) shows the
version cache table, added by our proposal. In detail, S Cache shows that the
value for k1 has been updated three times: v01 is valid from timestamp 1 to 4;
v10 from 5 to 20; and v100 from 21. We can also see that k3 has been removed
by version 4.

3.2 Snapshot Reconstruction

The second pillar of our proposal is that we describe snapshot reconstruction for
each transaction as a query to the common query engine. This is made possible
by representing versions of items with different visibility as regular tables or
collections.

Figure 2 outlines the logical query used to reconstruct each table in a transac-
tion’s snapshot. It finds out which keys in the cache (visible-to-some) are relevant
considering the current transaction’s starting timestamp sts. These keys are used
to filter out the corresponding rows from the storage. The result is merged with
the readable values from the cache. A complex query involving multiple tables
requires computing this plan for each table.

Figure 1(c) shows the example of the reconstructed snapshot for a transac-
tion reading from starting timestamp sts = 15. Records selected in each table
are highlighted in green, and tombstones hiding items in red. In detail, k1 has
been recently updated and the appropriate value corresponding to the starting
timestamp of 15 is selected from S Cache, avoiding an even more recent value
with timestamp 21. k3 is present in S Cache as a tombstone and thus is removed
from the snapshot. Finally, k4 and k2 are obtained from the base storage table.

In short, by using a query for reconstructing the snapshot, we are able
to provide isolation while, at the same time, provide a simpler alternative to

Towards Generic Fine-Grained Transaction Isolation in Polystores 35

Fig. 2. Logical plan for snapshot reconstruction. Storage and Cache are the tables
from Fig. 1; σ, π, ρ, �, ∪ are the relational selection, projection, renaming, left anti join,
and union operators, respectively.

specialized transactional layers or modifications to multiple datastores. It is,
however, interesting to determine to what extent the resulting performance is
acceptable.

3.3 Execution Alternatives and Optimization

The attainable performance is related to the possibility of finding an optimal
physical plan for the proposed reconstruction query. Defining snapshot recon-
struction as a query at the common query engine level opens up the possibility
of alternative physical plans, leading to decisions by the database administrator
and the automatic optimizer.

The key decision is the placement of the cache table relative to the original
storage. Ideally, they would be placed right next to each other, i.e., the same
datastore, providing optimal data locality and enabling the entire reconstruction
plan to be pushed down to the datastore. However, since the underlying query
engine might not support joining the different structures, this solution is not
always viable. Therefore, the version cache can be placed in a different datas-
tore, that should be selected to provide optimal performance for the required
operations. In systems such as CloudMdsQl, auxiliary tables can be stored in
the common query engine itself, instead of an external datastore.

The next decision is how to distribute the logical query plan across the com-
mon query engine and external datastores. Depending on where each cache table
is placed relative to the corresponding storage table and the capabilities of the
query engine in the external datastore, there are three main options for what
can be delegated to the datastore, depicted in Fig. 3: alternative (a) shows the
ideal case of pushing the entire computation to the datastore, which should also
allow for additional processing that needs to be performed over the entire snap-
shot to be made there; (b) sends the cache keys to the datastore to filter the
storage but performs the union operation and the remaining processing in the

36 N. Faria et al.

Fig. 3. Different alternatives for cache placement and snapshot computation. The “pro-
cess” step here depicted can be a wide range of operators (filter, order, join, aggregate,
...) intended to be performed over the snapshot but are pushed down in order to favor
index usage, reduce record materialization, and reduce data transfer.

common query engine; (c) performs only basic storage processing in the datas-
tore (if possible), leaving the merging process and remaining processing to the
common query engine.

Finally, when considering snapshot reconstruction sub-plan as part of a larger
query, an optimizer should be able to globally reorder and select physical opera-
tors. For instance, when executing a join operation, the query engine might opt
for first joining the caches for different tables and obtain an empty result, thus
avoiding the need to filter the storage. To quickly assess if these alternatives
have a substantial impact on execution time, which justifies using an optimizer,
and if the resulting overhead is tolerable, we evaluate in Sect. 4 different plan
implementations with different queries and datastores.

3.4 Concurrent Updates

We are focusing only on transactional snapshot reconstruction during query
execution and avoiding the discussion of how update operations are handled.
However, the reconstruction process needs to tolerate that operations needed for
updates – producing new versions – may occur concurrently.

When a transaction is committed, new versions of data items labeled with
corresponding versions need to be inserted into the cache. This can be done one
item at a time without impact in reconstruction as long as no currently execut-
ing transactions have a starting timestamp equal or greater than the currently
committing transaction. This is true by definition, as the starting timestamp
assigned to a transaction should be the commit timestamp of the latest commit-
ted transaction. Recovery would need a re-do log to ensure that all items from
committed transactions are eventually inserted in the cache.

Towards Generic Fine-Grained Transaction Isolation in Polystores 37

We now consider the task which materializes cache records into the storage,
i.e., flush, and removes them, i.e., garbage collection. Let us assume that a record
in the cache C, rc, has the same key as some record rs in the storage S, meaning
rc overwrites rs in the snapshots of transactions with begin time greater or equal
to rc.from. We can only flush rc if no current or future transaction can ever read
rs, i.e., the smallest begin timestamp of all currently executing transactions (ε),
is greater or equal to rc.from. This ε can be easily computed with a log that
stores the identifier, timestamp, and status of every transaction. When multiple
versions of the same key can be flushed, the most recent one is chosen. After
that, the flushed records can be safely removed from the cache.

An interesting property of this process is that it can crash at any time without
compromising consistency, not requiring multi-record atomicity guarantees or
needing to halt transaction execution. An incomplete flush means both flushed
and non-flushed records are still present in the cache, and thus will still be
considered for reads for current and future transactions. An incomplete garbage
collection still has the guarantee that every removed cache record is persisted in
the storage, while the remaining ones will overwrite the storage with the exact
same value.

4 Experiment

We use a polystore inspired by CloudMdsQL [6], with MongoDB and Cassan-
dra as datastores. Briefly, queries are written with a low code visual builder or
the corresponding SQL-like language, with embedded native queries for different
datastores. The common query engine is based on PostgreSQL, using the FDW
interface for datastore wrappers. This system includes custom wrappers for Cas-
sandra and MongoDB that optimize filter push-down, by combining them with
the native query languages. While MongoDB’s aggregation pipeline is expressive
enough to build the entire snapshot natively, the same is not possible in Cas-
sandra, and as such it relies exclusively on the common query engine to join the
cache with the storage.

Therefore, we have multiple steps where the query is transformed and pos-
sibly optimized: (1) in the initial translation to PostgreSQL SQL; (2) within
PostgreSQL itself; (3) in the wrapper; and finally (4) in the datastore itself. We
use step 1 to determine placement and step 3 to push-down selections and pro-
jections. We have, however, limited control of step 2 in how we re-write the query
in step 1 or how we provide statistics back in step 3. We deployed the system on
two Google Cloud instances (8 N1 vCPUs, 8 GB RAM, 500 GB SDD), located
on us-east1 and us-east4 (RTT of 11 ms), one hosting the query engine and
the other the MongoDB and Cassandra datastores. The cache sizes are set to
1% of their respective storage sizes.

Our experiment consists in running various simple queries – select all (returns
all rows), filter (returns one row), small join (joins one row), large join (joins
all rows), and aggregation (performs a sum) – on TPC-C’s order line and
item tables, stored in both MongoDB and Cassandra. By manipulating place-
ment of tables and the common query engine, we obtain several physical

38 N. Faria et al.

Table 1. Performance of different physical plans with MongoDB and Cassandra. The
bordered cells mark the best plan for each query in each datastore.

NG - MongoDB Native Group | NL - MongoDB Native Lookup | FJ - SQL Full
Join | LJ - SQL Left Join | NI - SQL Where Not In | NA - SQL Where Not
Any | OD - SQL Order By + Distinct

plans. Considering the alternatives of Fig. 3, when using MongoDB, alterna-
tive (a) is implemented with a native Group (NG, equivalent to PostgreSQL’s
Order+Distinct [2]) and a native Lookup (NL, equivalent to PostgreSQL’s
Left Join [3]). With MongoDB and Cassandra, alternative (c) makes use of
Full Join (FJ), Left Join (LJ), Not In (NI), and Order+Distinct (OD).
Note that each implementation generates different execution trees. Finally, we
also use Not Any (NA) with MongoDB to implement alternative (b).

Table 1 displays the read overhead comparatively to the transaction-less alter-
native. The first conclusion is that different physical plans have a profound
impact on query execution time, with one reaching up to 58× the baseline!
Most strikingly, it is clear that different plans are optimal in different scenarios,
which is a compelling argument for the use of an optimizer.

Finally, these results show less than 10% of read overhead for most cases
with both datastores, which compares favorably to the measured cost of corre-
sponding transactional mechanisms in a traditional SQL database system [20].
The exception is the aggregation query with MongoDB. While the Not Any
approach can execute the partial aggregation natively in it, greatly reducing
data transfer, the engine filters the storage with the cache keys using, for this
particular case, a suboptimal index scan implemented with the keys’ bounds.
Since each of the thousands of keys are completely different, the scan will con-
sider thousands of bounds. For this case, a better alternative would be a hash
anti join, which should bring the overhead closer to the other queries.

5 Discussion

In this paper, we address a challenge – transaction isolation in polystores –
that has seen very little previous attention, even if identified as a key research
challenge [28,30]. Transactional support is a challenge even in multi-model data-
stores, naturally more integrated than polystores, where support for multi-model
transactions seems to be non-existent [24].

Towards Generic Fine-Grained Transaction Isolation in Polystores 39

The main competing approach for transactional isolation in polystores is
Polypheny-DB [32]. In contrast to our proposal, which aims at running read-
only transactions with little interference and at fine-grained conflict resolution
for update transactions, Polypheny-DB assumes two-phase locking with coarse
granularity, which limits concurrent updates and makes them conflict with read-
only transactions.

We are also aware of a different proposal that has been prototyped in Cloud-
MdsQL [22], as part of the same research project. Like our current proposal, it
aimed at Snapshot Isolation and fine-grained conflict resolution but it relied on
the implementation, from scratch, of a custom wrapper or even core changes,
to each datastore. It also assumed the version cache is always co-located, which
often resulted in changing the native schema.

Similar motivation can be found in DeltaLake [7], aimed at incremental load-
ing or correction of data in a data lake with coarse-granularity. In contrast to our
proposal, it is not aimed at polystores but only at data in Parquet files directly
managed by Spark. Therefore, snapshot reconstruction in DeltaLake boils down
to reading the right subset of file fragments, making updates and removals very
costly as a new version of the affected files needs to be written. It is also not
clear how it would be extended to polystores.

Our approach is to define transactional isolation in terms of additional
tables, managed themselves within the polystore, and generic queries that can
be mapped to a common query engine layer and multiple datastores. This takes
advantage of query optimization to achieve the optimal execution plan for each
particular polystore configuration. In fact, a preliminary experiment shows that
the overhead of transactional isolation is comparable to what has been measured
in traditional SQL systems [20].

An interesting outcome of this experiment regards the feasibility of the pro-
posed approach: To what extent keeping updated versions in a separate table
can be reconciled with full use of the interface of each datastore? Namely, can
a native query for some datastore always be modified to account for such ver-
sions? In our experiment, this is very easy to do with a key-value store such as
Cassandra, where obsolete versions returned from the datastore can easily be
replaced by the correct versions from the cache. Our experience with MongoDB
is different: We cannot easily patch the result from a native query, which can be
an arbitrarily complex “aggregation pipeline.” On the other hand, this makes
MongoDB expressive enough that the query can be modified to the reconstruc-
tion by itself. We postulate that this might be generally true: Whenever the
native query engine is complex enough to make it hard to patch the result, it
should be expressive enough to be itself used for reconstruction.

The main threat to the validity of our experiment is that we omit the write
path. We expect to approach this by defining how updates on a view should be
translated to changes in the cache table, which can be implemented, for exam-
ple, using instead of triggers or rules [4]. This possibility is limited by known
bounds on updatable views as the reverse mapping may not always exist [13]
and the challenges of translating an update u to a view V into a set of updates

40 N. Faria et al.

U to the underlying data D, namely [15,16]. Additionally, we have to consider
multiple data models and, in the CloudMdsQL, the effect of ad-hoc views, for
which we can resort to bi-directional transformations, with weaker guarantees on
update properties [11,25]. Finally, we have to coordinate the recovery of hetero-
geneous multi-statement transactions with the various guarantees of individual
datastores.

We can thus identify several lessons learned and outstanding challenges for
transactional polystores:

Optimization and DBA are Needed. We have shown that structuring snapshot
reconstruction as a data processing problem allows optimization (different plans
are optimal in different conditions) and provides an opportunity for a DBA to
intervene.

Useful for Different Datastores. Datastores with a more complex QE make it
harder to store changes and reconstruct the snapshot outside (e.g. MongoDB)
than simple key-value stores, but on the other hand, they make it easier to use
their own QE for reconstruction, which makes the approach feasible across a
large spectrum of datastores.

Datastore Interfaces Matter. It is highly relevant that the data-store language is
amenable to processing and manipulation, without having to rewrite the parser.
For instance, MongoDB’s aggregation pipeline is much easier to handle than the
SQL-like language in Cassandra. It is thus a challenge to achieve this and still
be user-friendly for writing native queries.

Various Isolation Criteria are Possible. Polystores are inherently distributed and
likely make strict snapshot isolation problematic. Moreover, it is likely that the
“one size does not fit all” motto is also true in terms of isolation level. A possible
alternative is a relaxed criterion such as TOPSI [18].

Update Processing is an Open Problem. Updates issued at the common QE level
are issued on views. This means that they have to be translated back to the
original data model for the underlying datastore.

Interaction with Native Readers and Writers is an Open Problem. Our proposal
provides transactional isolation when all readers and writers access datastores
through the common query engine. A consistent view of a prefix of updates to
native readers should also be possible by judiciously scheduling checkpointing
operations. It is unclear, however, if it is possible to do the reverse: Allowing
native clients to update datastores without disturbing isolation.

Acknowledgments. Special thanks to the anonymous reviewers for their helpful feed-
back. Partially funded by project AIDA – Adaptive, Intelligent and Distributed Assur-
ance Platform (POCI-01-0247-FEDER-045907) co-financed by the European Regional
Development Fund (ERDF) through the Operational Program for Competitiveness and
Internationalisation (COMPETE 2020) and by the Portuguese Foundation for Science
and Technology (FCT) under CMU Portugal.

Towards Generic Fine-Grained Transaction Isolation in Polystores 41

References

1. Distributed transaction processing: The XA specification (1991). https://pubs.
opengroup.org/onlinepubs/009680699/toc.pdf

2. MongoDB 4.4 manual - aggregation pileline stages: $group (2020). https://docs.
mongodb.com/manual/reference/operator/aggregation/group/

3. MongoDB 4.4 manual - aggregation pileline stages: $lookup (2020). https://docs.
mongodb.com/manual/reference/operator/aggregation/lookup/

4. PostgreSQL documentation - 40.4. rules on insert, update, and delete (2020).
https://www.postgresql.org/docs/13/rules-update.html

5. Transaction management - the Neo4j java developer reference v4.3 (2020). https://
pubs.opengroup.org/onlinepubs/009680699/toc.pdf

6. Nunes Alonso, A., et al.: Building a polyglot data access layer for a low-code
application development platform (experience report). In: Remke, A., Schiavoni, V.
(eds.) DAIS 2020. LNCS, vol. 12135, pp. 95–103. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-50323-9 6

7. Armbrust, M., et al.: Delta lake: high-performance acid table storage over cloud
object stores. Proc. VLDB Endow. 13(12), 3411–3424 (2020). https://doi.org/10.
14778/3415478.3415560

8. Bamford, R.J., Jacobs, K.R.: Method and apparatus for providing isolation levels
in a database system, 9 February 1999. US Patent 5,870,758

9. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique
of ANSI SQL isolation levels. ACM SIGMOD Rec. 24(2), 1–10 (1995)

10. Biyikoglu, C.: Under the hood: Redis CRDTs (conflict-free replicated data types)
(2018)

11. Bohannon, A., Pierce, B.C., Vaughan, J.A.: Relational lenses: a language for updat-
able views. In: Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pp. 338–347 (2006)

12. Burleson, D.K.: Oracle Internals: Tips, Tricks, and Techniques for DBAs. CRC
Press, Boca Raton (2017)

13. Codd, E.F.: Recent investigations into relational data base systems. Technical
report RJ1385, IBM, April 1974

14. Corbett, J.C., et al.: Spanner: Google’s globally distributed database. ACM Trans.
Comput. Syst. (TOCS) 31(3), 1–22 (2013)

15. Dayal, U., Bernstein, P.A.: On the updatability of relational views. In: VLDB, vol.
78, pp. 368–377. Citeseer (1978)

16. Dayal, U., Bernstein, P.A.: On the correct translation of update operations on
relational views. ACM Trans. Database Syst. (TODS) 7(3), 381–416 (1982)

17. Duggan, J., et al.: The BigDAWG polystore system. SIGMOD Rec. 44(2), 11–16
(2015). https://doi.org/10.1145/2814710.2814713

18. Faria, N., Pereira, J.: Totally-ordered prefix parallel snapshot isolation. In: Pro-
ceedings of the 8th Workshop on Principles and Practice of Consistency for Dis-
tributed Data, PaPoC 2021. Association for Computing Machinery, New York
(2021). https://doi.org/10.1145/3447865.3457966

19. Gómez Ferro, D., Junqueira, F., Kelly, I., Reed, B., Yabandeh, M.: Omid: lock-free
transactional support for distributed data stores. In: 2014 IEEE 30th International
Conference on Data Engineering, pp. 676–687 (2014). https://doi.org/10.1109/
ICDE.2014.6816691

https://pubs.opengroup.org/onlinepubs/009680699/toc.pdf
https://pubs.opengroup.org/onlinepubs/009680699/toc.pdf
https://docs.mongodb.com/manual/reference/operator/aggregation/group/
https://docs.mongodb.com/manual/reference/operator/aggregation/group/
https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/
https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/
https://www.postgresql.org/docs/13/rules-update.html
https://pubs.opengroup.org/onlinepubs/009680699/toc.pdf
https://pubs.opengroup.org/onlinepubs/009680699/toc.pdf
https://doi.org/10.1007/978-3-030-50323-9_6
https://doi.org/10.1007/978-3-030-50323-9_6
https://doi.org/10.14778/3415478.3415560
https://doi.org/10.14778/3415478.3415560
https://doi.org/10.1145/2814710.2814713
https://doi.org/10.1145/3447865.3457966
https://doi.org/10.1109/ICDE.2014.6816691
https://doi.org/10.1109/ICDE.2014.6816691

42 N. Faria et al.

20. Harizopoulos, S., Abadi, D.J., Madden, S., Stonebraker, M.: OLTP through the
looking glass, and what we found there. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2008, pp. 981–992.
Association for Computing Machinery, New York (2008). https://doi.org/10.1145/
1376616.1376713

21. Hellerstein, J.M., Stonebraker, M., Hamilton, J.: Architecture of a database sys-
tem. Found. Trends Databases 1(2), 141–259 (2007). https://doi.org/10.1561/
1900000002

22. Kolev, B., Valduriez, P., Bondiombouy, C., Jiménez-Peris, R., Pau, R., Pereira,
J.: CloudMdsQL: querying heterogeneous cloud data stores with a common lan-
guage. Distrib. Parallel Databases 34(4), 463–503 (2015). https://doi.org/10.1007/
s10619-015-7185-y

23. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010)

24. Lu, J., Holubová, I.: Multi-model databases: a new journey to handle the variety
of data. ACM Comput. Surv. (CSUR) 52(3), 1–38 (2019)

25. Macedo, N., Pacheco, H., Cunha, A., Oliveira, J.N.: Composing least-change lenses.
In: Electronic Communications of the EASST, vol. 57 (2013)

26. Schultz, W., Avitabile, T., Cabral, A.: Tunable consistency in MongoDB.
Proc. VLDB Endow. 12(12), 2071–2081 (2019). https://doi.org/10.14778/3352063.
3352125

27. Stonebraker, M.: The design of the POSTGRES storage system. In: Proceedings
of the 13th International Conference on Very Large Data Bases, VLDB 1987, pp.
289–300. Morgan Kaufmann Publishers Inc., San Francisco (1987)

28. Stonebraker, M.: The case for polystores. ACM SIGMOD Blog (2015). https://
wp.sigmod.org/?p=1629

29. Suzuki, H.: The internals of PostgreSQL: Chapter 5 concurrency control (2021).
https://www.interdb.jp/pg/pgsql05.html

30. Tan, R., Chirkova, R., Gadepally, V., Mattson, T.G.: Enabling query processing
across heterogeneous data models: a survey. In: 2017 IEEE International Con-
ference on Big Data (Big Data), pp. 3211–3220 (2017). https://doi.org/10.1109/
BigData.2017.8258302

31. Vogels, W.: Eventually consistent. Commun. ACM 52(1), 40–44 (2009)
32. Vogt, M., et al.: Polypheny-DB: towards bridging the gap between polystores

and HTAP systems. In: Gadepally, V., et al. (eds.) DMAH/Poly-2020. LNCS,
vol. 12633, pp. 25–36. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
71055-2 2

https://doi.org/10.1145/1376616.1376713
https://doi.org/10.1145/1376616.1376713
https://doi.org/10.1561/1900000002
https://doi.org/10.1561/1900000002
https://doi.org/10.1007/s10619-015-7185-y
https://doi.org/10.1007/s10619-015-7185-y
https://doi.org/10.14778/3352063.3352125
https://doi.org/10.14778/3352063.3352125
https://wp.sigmod.org/?p=1629
https://wp.sigmod.org/?p=1629
https://www.interdb.jp/pg/pgsql05.html
https://doi.org/10.1109/BigData.2017.8258302
https://doi.org/10.1109/BigData.2017.8258302
https://doi.org/10.1007/978-3-030-71055-2_2
https://doi.org/10.1007/978-3-030-71055-2_2

Data Governance in a Database
Operating System (DBOS)

Deeptaanshu Kumar1, Qian Li3(B), Jason Li2, Peter Kraft3,
Athinagoras Skiadopoulos3, Lalith Suresh4, Michael Cafarella2,

and Michael Stonebraker2

1 Carnegie Mellon University, Pittsburgh, USA
2 Massachusetts Institute of Technology, Cambridge, USA

3 Stanford University, Stanford, USA
qianli@cs.stanford.edu

4 VMware, Palo Alto, USA

Abstract. This paper documents the data governance facilities in
DBOS, a database-oriented operating system under construction at Stan-
ford and MIT. Because all operating system state is stored in a high
performance main-memory relational DBMS, DBOS has architected a
novel data provenance system for all application data. This system uses
a high-volume column store for historical provenance information, and
provenance data can be queried in SQL. Hence, at its core, DBOS is a
polystore data system. Complementing this capability are facilities moti-
vated by GDPR including support for personal data, purposes, and the
right to be forgotten.

1 Introduction

At Stanford and MIT, we are building a new operating system stack, based
on sophisticated data management: the Database Operating System (DBOS).
Herein we briefly motivate the need for a new stack and then turn to novel
data provenance capabilities that are facilitated by DBOS. We note that this
provenance system requires a collection of polystore capabilities.

Specifically, we are motivated by a collection of hardware and software trends
that have occurred since the current Unix/Linux architecture was devised some
50 years ago. First, the scale of operating system (OS) resources under man-
agement has increased by several orders of magnitude. From the uniprocessor
environments of the 1970’s we have evolved to current data centers with thou-
sands of processors. For example, the MIT/Lincoln Labs Supercloud [1] on which
DBOS has been build encompasses some 9000 cores. Similar expansion of stor-
age has also occurred. Hence, operating system state (files, tasks, messages,
etc.) is several orders of magnitude larger than 50 years ago, and warrants a
new approach to state management. Second, Unix/Linux is now elderly soft-
ware, having been extended/modified/maintained for many, many years. As such,
development velocity is slowing; for example, there is no multi-node support and
sophisticated multi-core management has been slow in appearing. As a result,
c© Springer Nature Switzerland AG 2021
E. K. Rezig et al. (Eds.): Poly 2021/DMAH 2021, LNCS 12921, pp. 43–59, 2021.
https://doi.org/10.1007/978-3-030-93663-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93663-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-93663-1_4

44 D. Kumar et al.

multi-node capabilities must be provided by a second piece of system software
(e.g. Kubernetes). This results in a duplication of services, for example two sched-
ulers, and more difficulty in efficient resource utilization. Third, modern data cen-
ters now have heterogeneous hardware under management, for example GPUs,
TPUs, and FPGAs. However, there is no ability in Linux to manage multiple
kinds of processors. Lastly, a data center OS would benefit a great deal from
DBMS services. For example, DBMSs provide consistency guarantees on concur-
rent updates, crash recovery and a high-level language (SQL) for querying OS
state.

As a result, we have rearchitected the Linux stack to store all OS state in
a multi-node, main memory, transactional DBMS. This full function RDBMS
will run on top of a microkernel which provides interrupt handling, raw device
drivers and very little else. Essentially all OS services (file system, messages,
scheduling, etc.) are implemented in SQL on top of this DBMS. Normal user
tasks run at the top level in protected fashion, as shown in Fig. 1.

Fig. 1. Proposed DBOS stack.

This architecture has a number of compelling advantages relative to the tra-
ditional architecture. First, there is a single piece of software that is managing
a multi-node hardware environment. This removes the duplication of function
found in current multi-node environments. Second, many OS facilities (e.g. ls,
chdir) can be implemented in SQL in a lot less code than in C++. Hence, we
expect the footprint of our stack to be smaller than the current one. Third,
DBMS services (concurrency control, crash recovery, high availability) are avail-
able to all OS functions, resulting in greater functionality (a transactional file
system, for example). Lastly, DBMS services are implemented exactly once and
then used by everybody, resulting in minimal code duplication. At the present
time, we have an initial version of DBOS running as noted in [28], and perfor-
mance is encouraging. File system services, messages, and task scheduling are
competitive in our stack relative to the traditional one. In [28], we also doc-
umented our plan for constructing a complete end-to-end DBOS in additional
implementation phases.

Data Governance in a Database Operating System (DBOS) 45

In this paper we discuss our approach to data governance. System adminis-
trators want a complete record of who did what to which objects. This record is
useful when answering questions such as:

– Could user X have leaked information to user Y?
– Data element X has been found to be erroneous. Find all data elements that

could have been corrupted by this error.
– Find the history of users who have written to file F.
– Find all applications run by user X.
– Find all files copied by user X.

Most large enterprises implement one or more governance systems. A pop-
ular choice is Splunk [2], which requires a user to define “events” of interest,
which Splunk will then capture from application systems. Often organizations,
for example the MIT Supercloud, implement more than one such system, each
dealing with different applications. This results in a piecemeal approach to data
governance in which the complete picture is spread over several semantically
distinct systems. In addition, deploying any new software requires manual inter-
vention to capture new events from the added systems. Most large organizations
struggle to meet the ever growing requirements requested by management in this
area. Such requirements are unlikely to abate, given the recent legislative and
regulatory interest in this area.

Since all OS state is in a DBMS, DBOS enables automatic provenance cap-
ture, which will allow easier coverage of events without manual intervention.
In Sect. 2, we detail our current DBOS support for data provenance. In Sect. 3
we turn to demonstrating that there is very little overhead to running DBOS
provenance, and that interesting provenance queries run with good performance.
Then, Sect. 4 turns to the polystore implications of our provenance system and
the future directions we are exploring in this area. Section 5 discusses one aspect
of the polystore nature of storage, especially in data lakes, which is the use
of data catalogs. Section 6 describes several design challenges and our plan to
address them. Finally, Sect. 7 discusses GDPR capabilities, and Sect. 8 presents
related work.

2 DBOS Data Provenance

2.1 Provenance Architecture

All DBOS operating system state is stored in a main memory DBMS, in our
case VoltDB [3]. This includes multiple tables implementing a file system, a
scheduling table and a interprocess communication (IPC) table. There are likely
to be additional tables storing OS state as the project evolves. For example, the
Message table contains the following fields.

Message (sender_id, receiver_id, message_id,
date_time, message_contents, other_fields)

46 D. Kumar et al.

The sender activates a stored procedure in VoltDB, which inserts a row in
this table with the various fields filled in. The Message table is partitioned across
the various nodes in Supercloud. The partition key is receiver id, so the row is
added to the Message partition at the node of the receiver. As noted in [28] this
is a single-row single-table operation which is very fast. An efficient implemen-
tation of messages would then use a database trigger to alert the receiver, who
could use SQL to retrieve the message contents and delete the row in the table.
Unfortunately, VoltDB lacks database triggers, so our implementation requires
the receiver to poll the database for the message contents. Even with this limi-
tation, DBOS messages are surprisingly performant, as noted in [28].

In [28] we also detailed implementations of a file system and a scheduler using
VoltDB tables with a similar architecture.

To implement a complete provenance system, DBOS merely needs to capture
all reads and writes to the message table and other tables with relevant OS
state. There are several possible ways to do so. First, a conventional DBMS
would log all changes to all tables for crash recovery purposes. However, VoltDB
uses command logging, as it offers higher performance in their environment [17].
Hence the actual data update is not logged, just the SQL that performed the
operation. In addition, a complete provenance system would also require us to
capture reads as well as writes.

A second possible implementation is to use VoltDB “change capture”. This
facility spools all database updates to a file or other location. With no DBOS
code, this will capture writes but not reads. If VoltDB supported database trig-
gers, those could be a third possible implementation.

At the present time, we have a system running that uses VoltDB change
capture to deal with all write events. To get to a complete system, we plan to
migrate to a facility that performs data capture in the DBOS stored procedures
that read and write database tables. That way we can capture all reads and
writes to table of interest.

2.2 Provenance Specification

For every table in the DBOS VoltDB data base, the table owner must specify
the level of provenance they desire. The options are:

– Capture the existence of each write operations
– Capture write operations including the actual data written
– Capture the existence of each read operations
– Capture read operations including the actual data read.

We have had substantial discussions about the granularity of provenance
capture. On the one hand, we could capture coarse granularity, for example
that user X wrote File Y at time T. Alternately, we could capture that user X
wrote block L at time Y or even that user X wrote byte B at time Y. This will
obviously dramatically change the size of the provenance database when DBOS
is in “capture existence” mode. Our current thinking is to allow user specification

Data Governance in a Database Operating System (DBOS) 47

of granularity on a file/table basis. Obviously, there may be additional modes
for the provenance system as we gain more experience with it.

2.3 Provenance Database

Obviously, provenance capture entails a massive amount of data especially if the
actual data read or written is captured. A high performance OLTP DBMS like
VoltDB is ill-suited to the capture of a massive amount of historical data. As a
result, we are spooling provenance data transactionally to Vertica, a multi-core,
multi-node DBMS based on column store technology that can readily manage
petabytes of provenance data. In a DBOS environment, we expect an instance
of VoltDB and an instance of Vertica will run on most DBOS nodes.

According to our industrial partners, access control is handled by standard
SQL capabilities. Hence, they are worried about legal, but suspicious events,
which we call the Edward Snowden effect (ESE). As such, the main use of a
provenance database is for after-the-fact monitoring, as we discuss in the next
section. Of course, provenance is also useful for detecting error propagation.

2.4 Provenance Queries

In this section, we present ten representative provenance queries, which guide
our implementation. This list comes primarily from tasks of interest at DBOS
industrial partners.

1. File/DB touch—For a file F or a table T, who was the last person to write
each block/record. Who was the first person to do so? Which block/record has
the most updates in the last week? In the last year?

2. Connectivity—If X made a network connection with Y, then there is a bi-
directional arc between X and Y. Construct the connection graph in the last
week. Do the same for the last year. Construct the connection graph of people
who talked in the last year but not in the last week. Do the same for systems,
described below.

3. Compromised systems/users—A user interacted with a system if the
scheduler ran a task on the system on his/her behalf. Who interacted with poten-
tially compromised system S in the last month? What systems did a potentially
compromised user interact with in the last month? Trace all connections (tran-
sitively) from a compromised system S in the last month.

4. Downstream provenance—Find all blocks/records that could have resulted
from information in block/record X. In other words, find a block Y that was
written by some user who previously read block X within 5 s. This is “one hop”
provenance. Complete provenance requires the transitive closure of this opera-
tion.

5. Upstream provenance—Find any block/record X that could have been
influenced by block/record Y. In other words, somebody read X and wrote Y -
transitively.

48 D. Kumar et al.

6. Debugging—What is the state of a file/table at time T. Now “single step”
forward for 3 h.

7. Could X have leaked info to Y?—We define possible leakage as X wrote a
file block and Y read the same block within 1 min. In addition, X sent a message
to Y, or X wrote a DBMS record and Y read it within 1 min. This is “one-
hop” possible leakage. Complete possible leakage is the transitive closure of this
operation.

8. Ranking suspicious objects—Administrators are often called upon to rank
suspicious objects or behaviors: network packets from potential intrusions, files
that are potentially infected, and user data reads that are potentially inappropri-
ate. To rank an object, we can compute an object score using provenance-derived
statistics. For example, scoring a particular file open might need to know how
many individuals open the file on a typical day. The provenance system should
allow administrators to specify and efficiently compute different “object ranking
views” that use provenance data.

9. Input auditing—An organization wants to know that it has the legal rights
to all of the data resources used to compute a particular output (possibly a
sensitive ML model). For file X, the system should: (1) compute every ancestor
file of X, and (2) consult a database of file rights to make sure it has legal right to
all X’s ancestors. That database might be partially derived from GDPR activity,
but probably also reflects commercial transactions and other information.

10. Pipeline Modeling—A data pipeline is a long sequence of programs that
yields a set of data products. If pipelines are first-class objects, then the prove-
nance system can answer valuable questions valuable to administrators, such as,
“Did pipeline X complete successfully on July 23?” and “What pipeline produced
file Y?”

The query processing implications of these queries are discussed in Sect. 2.6.

2.5 Provenance Schema

There are two possible approaches to a Vertica provenance schema. First, for any
update, we can capture (old value, new value) pairs from VoltDB using change
capture or our own stored procedures. For inserts, there is no old value and for
deletes, there is no new value. For any operation, we insert the appropriate record
into Vertica. As such, Vertica manages an insert-only provenance database. The
second option for updates is to capture only the new value, and perform a Vertica
update (rather than an insert). Since Vertica does not overwrite data, the histor-
ical record is preserved with appropriate timestamps and we store two records,
without duplicating data between them. We plan to explore the performance
and ease of querying for both options.

Data Governance in a Database Operating System (DBOS) 49

2.6 Provenance Query Processing

Some of the above queries (1, 6, 8, and 10) can be expressed in normal SQL.
On the other hand, several (2, 3, 4, 5, 7, and 9) require transitive closure, which
is available in some SQL engines but not others. Specifically, Vertica does not
have built-in support for transitive closure. There has been a lot of work in
this area [4,9,29]. However, in Vertica it will likely be fastest to code a breadth
first algorithm, removing duplicates between iterations. A depth first exploration
would require many more user queries and would make parallelism difficult to
exploit. On the other hand, breadth-first means running a transitive closure iter-
ation as a parallel SQL query, adding the result to the answer being assembled,
removing duplicates at each iteration.

In query 7, in our opinion, indirect leakage is quite rare. Hence, one could
stop after one or two iterations, with very low probability of missing a leakage
path. Since the iteration is in user code, we can watch the size of the answer
being assembled and stop if it does not grow.

Furthermore, one can maintain the transitive closure for each of these queries
dynamically, incrementally updating the result when events occur. Alternatively,
one can compute the transitive closure only when there is a provenance query.
The tradeoff, of course, is the ratio of VoltDB updates to provenance queries.
When provenance queries are rare (the usual case), computing the transitive
closure in advance is probably the wrong thing to do.

Lastly, in query 7 if (X, Y) is a possible leakage path, then there is no reason
to find additional instances of this possibility. As such, this is a “first match”
query in which additional instances are not useful.

Although we could run Vertica at level 4 in the diagram of Fig. 1 (i.e. in user
space) performance would suffer. Our planned implementation uses the VoltDB
store procedures for read and write. If Vertica is run in user space, then an extra
two messages will be required. Hence, we are planning to run both DBMSs in
the kernel at level 2.

The trend in data warehouse systems is to separate compute from storage,
pioneered by systems such as BigQuery [27] and Snowflake [30]. In this way, a
storage layer with perhaps limited compute is separate from a compute layer.
Of course, the reason for this architecture is to allow compute resources to be
scaled up and down elastically as query needs change. Vertica is moving toward
this architecture, and in time, most warehouse vendors will offer elasticity on a
query-by-query basis.

With this separation, there is the option of pushing portions of a provenance
query into the storage layer. In a recent paper [32], some of us analyzed the
desirability of pushing down filters and joins into the storage layer. When data
blocks are re-referenced frequently, it will be desirable to perform most-to-all
of query processing in the compute layer. Alternately, when re-reference is low,
then it is best to push down query pieces into the storage layer, when possi-
ble. Since provenance queries are expected to be infrequent, it will generally be
advantageous to push down as much computation as possible.

50 D. Kumar et al.

Fig. 2. Throughput versus median and tail latency for a social network workload with
and without provenance capture for writes.

3 Performance

To demonstrate the practicality of provenance capture, we instrumented a sim-
ple DBOS workload to capture all write operations including the actual data
written, then measured workload performance with and without capture. We
implemented this instrumentation using VoltDB’s change data capture feature,
exporting all information to a remote Vertica server. Our benchmark uses the
simple Twitter clone Retwis [26], adapted to store all data in VoltDB instead of
in Redis. This workload stores all data in VoltDB tables (e.g., a “posts” table)
so provenance capture requires logging updates to these table. We execute a
workload of 100% writes to a single VoltDB partition, repeatedly making posts
for randomly selected users.

We show all results for this benchmark in Fig. 2. We measure throughput
versus median and tail latency with an increasing amount of offered load. We
find that overhead associated with provenance capture slightly reduces maximum
achievable throughput. It has little effect on latency at lower loads, but increases
latency somewhat at higher loads. A DBA would have to decide whether detailed
provenance was worth the overhead, given the particulars of his load.

We next evaluate query performance on this captured data. We adapt two of
the queries from Sect. 2.4 to Retwis and measure their latency in both Vertica
and VoltDB, showing results in Fig. 3.

The first query is “Who was the last person to write a post?”:

select USERID from RETWISPOSTS order by TIMESTAMP desc limit 1;

We show the performance of this query in Fig. 3a. With 100M rows, Vertica
can execute this query in 17 ms, while VoltDB slows down and eventually times
out when given too much data.

The second query is “Who posted the most since time X?”:

Data Governance in a Database Operating System (DBOS) 51

Fig. 3. Performance of provenance queries on social network data using Vertica and
VoltDB.

select agg.USERID, agg.cnt
from (select USERID, count(*) as cnt from RETWISPOSTS

where TIMESTAMP >= 100 group by USERID) as agg
order by agg.cnt desc limit 1;

Figure 3b demonstrates the performance of this query. As before, Vertica can
execute this more complex query in 313 ms given 100M rows, while VoltDB slows
down and eventually times out with too much data.

These experiments demonstrate that a dedicated OLAP system like Vertica
can easily handle provenance queries on large amounts of data. They also demon-
strate the need for a polystore in provenance management, as a dedicated OLTP
system like VoltDB is not capable of executing large-scale provenance queries.

4 Polystore Implications

As noted previously, DBOS is a fairly simple polystore that spools provenance
data from VoltDB to Vertica. However, it is obviously a good idea to support a
file system on top of Vertica. For gigantic files, this will offer a compressed column
store implementation which will outperform the VoltDB row store. Also, there is
no reason to disallow users from storing DBMS data in Vertica, if they so choose.
As such, we will have two different DBMSs generating provenance information.

More generally, there will potentially be other DBMSs in which user data is
stored and/or files supported. On a case-by-case basis, we will explore supporting
such other DBMSs. Also, over time we expect to have to support provenance
information in multiple data warehouse-oriented column stores. This situation
could arise if applications insist on spooling their provenance data to a preferred
DBMS. This leads to the general polystore architecture of Fig. 4.

With multiple provenance stores, standard SQL queries will access only one
of the repositories. However, figuring out which one will require a data catalog,
discussed in the next section. Also, the scope of our transitive closure queries will
be all systems. We distinguish two cases of interest. In the first case provenance
information is separable

¯
and there is no cross-talk between the systems. In this

52 D. Kumar et al.

Fig. 4. Proposed polystore architecture.

case there is no possibility of a user reading a file or a database that spools
to one repository and then writing a file or a database that spools elsewhere.
Hence, one can run the transitive closure queries on each repository individ-
ually and then merge the answers. On the other hand, there will be situations
where provenance information is not separable. This will lead to a more complex
query processing strategy, whereby intermediate results must be traded between
provenance stores.

However, it is a reasonable assumption that a provenance system need only
support warehouse-oriented DBMSs and only for a subset of possible queries. As
such polystore complexity is limited.

5 Support for Data Catalogs

The previous section noted the problem of finding metadata across multiple stor-
age systems. Obviously, the metadata within a single DBMS is correct; however,
enterprises are typically running several-to-many DBMSs. Also, metadata for
files is often not captured anywhere. A common architecture is to move all such
data to a data lake (or lakehouse, if you wish) and then build a catalog for lake
objects.

There are a number of recent data catalog systems that do exactly this. These
are standalone systems that serve as authoritative sources of metadata for all
the datasets in an organization. Commercial systems include Alation, Collibra,
and data.world. Open source systems include ckan, Amundsen, and Magda.

Data catalogs allow metadata queries by humans and external systems.
For example, a compliance system might compare the access permissions of
an observed database with the data privacy requirements stated in the orga-
nization’s data catalog. Catalogs can also be instrumental in enabling better
organizational data search.

In addition, data catalogs also play an important role in data access control
and information security initiatives. For example, companies frequently imple-
ment course-grained or fine-grained access control based on data classifications
stored within these catalogs.

In our conversations with commercial users of such systems, we have observed
two common problems. First, the catalogs are incomplete. Although most of

Data Governance in a Database Operating System (DBOS) 53

these systems include crawlers that will traverse existing data assets and help
populate the catalog, there is still some human curation effort needed to ensure
datasets have correct schemas, personal data settings, and so on. Moreover, many
users build semi-private datasets that are inaccessible to crawlers and are never
added to the catalog. Second, the catalogs fail to attract wide audiences inside
the organizations that build them. This might be due to the poor quality of the
catalogs, or because the catalogs simply do not deliver enough compelling value
to the typical data users.

We wish to make two points in this section. First, if an enterprise decided
to run DBOS everywhere, then a rudimentary data catalog is automatically
constructed. This DBOS catalog is by definition complete and accurate, avoiding
the criticisms discussed above. Also, if DBOS provenance is used, then the lineage
of every object is automatically provided. This is a powerful form of metadata,
which will help users uncover the semantic definition of a data set, even when it
is missing or incomplete.

6 Design Challenges

We now describe a few ongoing design challenges for any useful provenance
system, and how we address them in DBOS.

6.1 Provenance Data Capture

Data capture is a serious challenge for provenance systems. Past efforts have
addressed this challenge in two main ways, both unsatisfying:

1. Users must rewrite their code with a new toolchain, which generally yields
high-quality data at the cost of high human effort. With this approach, the
coverage of data provenance often suffers.

2. Automatic instrumentation of unmodified code, which generally yields low-
quality data at a low human cost. With this approach, the usefulness of data
provenance often suffers.

The design of DBOS alters this playing field dramatically. Since provenance is
integrated with the OS itself, all important operations are captured and logged.
We expect this design to make a big difference.

However, DBOS provenance still has shortcomings. For example, suppose OS-
visible operations do not reflect operations that downstream users are interested
in. Consider a privacy policy-compliance process that scans every file in DBOS
and generates a per-user report file describing possible violations. The DBOS
provenance system will show that each output report file is dependent on every
file in the system. In most cases, such provenance information is either misleading
or useless. Capturing such provenance data is not helpful to the application being
run, and another (presumably higher level) system is required.

Another problem arises when data crosses DBOS-visible boundaries. In par-
ticular, the provenance of any dataset that escapes via traditional I/O channels

54 D. Kumar et al.

(e.g., a screen, a log file, or over a network socket) can no longer be tracked with
confidence. Disabling traditional display and network access would make DBOS
unusable for many applications.

We can mitigate this problem by sandboxing stored procedures and either
noting in the provenance record when bytes left the DBOS system, or disabling
such operations altogether for sensitive data. There are several solutions of inter-
est in this space. For example, cloud providers already use techniques like run-
time sandboxing [24] and restricting process privileges via mechanisms like SEC-
COMP [15]. In addition, sandboxing techniques in dynamic information flow
control (IFC) systems like Trapeze [5] are also applicable in our setting.

These issues are serious. While DBOS’ current provenance design partially
addresses them, they are still questions for ongoing research. One approach is
discussed in the next subsection.

6.2 Application Integration

Organizations operate with multiple data abstractions. Obviously, organizational
activity can be captured as files, records, processes, and function invocations.
But organizations also have pipelines, approval processes, business patterns,
and other “objects” that intersect with, but are not identical to, computational
objects.

For example, “did marketing approve the latest commercial?” is a business
question, but it can also be framed as a provenance question when combined
with a file identified as “the latest commercial”, a user group identified as “mar-
keting”, and a particular process execution identified as “approve”.

DBOS can enable integration of provenance with these external non-
provenance concepts in two ways.

Concept-As-View—The user can define views that model external concepts.
For example, the table of “commercials” might be written as a view over the set
of DBOS files that are in the commercials directory and which have a member of
the marketing team as an owner. An important property of such a system is the
use of user-defined functions as part of the view definition. This allows arbitrary
domain-specific questions to be asked of the DBOS and its provenance objects.

Federated Query Optimization—A user query that involves non-provenance
objects might involve query processing over multiple schemas, for example a rela-
tional database of DBOS files and a graph database of provenance information.
We plan to study optimization across multiple systems so that user queries can
be executed in reasonable amounts of time.

7 Support for Capabilities Motivated by GDPR

7.1 Personal Data

GDPR legislates special support for personal data. One of us is a lawyer spe-
cializing in privacy issues such as this one. Although it would be very helpful to

Data Governance in a Database Operating System (DBOS) 55

have an algorithm decide what fields are personal data and what ones are not,
such a feature seems out of reach, since personal data is somewhat subjective.
Instead, a human must specify what is personal data. In a DBOS environment,
this requires tagging every column of every table in a DBOS instance with a
notation whether it is personal data or not. Furthermore, it is equally difficult
to automatically mark derived data (materialized views, query results). Hence,
it is assumed that all derived data will be appropriately marked, and we will not
try to build a system to automatically mark derived data.

Such a marking system can be added trivially to the system catalogs (meta-
data).

7.2 Purposes

GDPR legislates that every person with personal data stored in a service have the
right to decide for what purposes his/her data can be used. Example purposes
might be medical research or advertising. Hence, the service provider decides on
a collection, K, of (otherwise uninterpreted) strings, called purposes. Every item
of personal data is tagged with the purposes the owner of that data item allows
for that data element.

Although in theory, there can be tens or hundreds of purposes, we expect the
normal case will be a half a dozen or less. Otherwise, it will be too confusing for
users to say yes/no to each of tens of purposes. In a previous paper [13], we advo-
cated using extra bits in each record to store this yes/no information. However,
when the number of purposes is small, we think an alternate implementation
will be more efficient.

For every column of personal data and for each purpose, we plan to store in
DBOS an exception list of record identifiers of persons who have opted out of
allowing their data to be used for that purpose. We expect the normal case is
that people will not opt out, so these lists will not be onerous to store. Every
query which is sent to a service must include one of the authorized purposes.

The query executor just needs to add the following processing step whenever
it picks up a piece of personal data:

– Look up the person ID in the appropriate exception list
– If found, do not return the requested data element.

We anticipate the exception lists for a table will be small and will be cached
in main memory when the table is active. A bit-oriented implementation will
require one bit per record. This scheme requires one record identifier per person
that opts out. As long as the opt out rate is low (less than 1%), this scheme will
be more efficient. We can also use delta encoding for record identifiers to cut
down on the amount of space they consume.

7.3 The Right to be Forgotten

Any person, P, with personal data in a service can request to be forgotten. In
this case all personal data (defined above) should be deleted by the service.

56 D. Kumar et al.

It is assumed that P presents their identifier, I, or the service can look it up.
The identifier is assumed to be the key of one or more tables.

If there is a “path” from the key to an item of personal data, then this item
must be deleted (nulled). A path is defined as a collection of column names,
N1, . . . , Nk, such that (I,N1), (N1, N2), . . . , (Nk−1, Nk) are the composite keys
of intermediate tables and Nk is the key of a table, T, with personal data. Any
personal data in the appropriate row of T should be nulled.

We expect to look for efficient ways to perform this operation. In addition,
we GDPR legislated that a service has 30 days to perform this operation. Hence,
it is possible to batch such requests and perform them in bulk. We expect to see
if this technique is more efficient than forgetting people one at a time.

8 Related Work

There has been a substantial amount of provenance research, including work on
data models, query processing, and practical systems.

Provenance Models—There has been a vast amount of theoretical and model-
related provenance research. Cheney, Chiticariu, and Tan provide a useful
overview [7]. Provenance queries are generally divided among three models:

– Why provenance queries that identify all the source values contributed to the
computation of a particular output,

– How provenance queries that describe the computation that combined the
source values, and

– Where provenance queries that describe where a particular piece of output
information was copied from.

For most of our DBOS target queries, why provenance and where provenance
are likely the most relevant model.

Query Processing—Query processing is a major thrust of provenance work.
Green, et al. [8] showed that query processing for why-provenance queries can be
viewed as an example of a broader class of query processing methods that can
also be used in probabilistic and incomplete databases. Recent work [22] takes
a user’s example why provenance query and rewrites it to match user guidance
about which entities should be included or not; this method might be a good
fit to typical DBOS scenarios. Chiticariu, et al. [12] introduced a system that
permits manual annotations of relational data, along with a mechanism for users
to describe how annotations should be propagated.

Data Collection—For many non-relational systems, there is an additional chal-
lenge associated with non-relational software: how to actually capture the prove-
nance. The noWorkflow [20] system automatically collects information about
Python programs at code-definition time as well as runtime. Vamsa [21] uses
static analysis of Python programs to derive provenance for machine learning
models. Chapman, et al. [6] aim to capture provenance for data preprocessing

Data Governance in a Database Operating System (DBOS) 57

code; they introduce a set of operators that closely resemble common prepre-
pocessing patterns, then annotate Python code with their standard operators.
Scientific workflow systems [10,14,18,31] ask users to manually annotate code
for provenance collection. Dagger asks users to annotate data at certain inter-
faces between code blocks [25]. Other systems [11,19] collect provenance via
automatic automatic instrumentation of a process’ interaction with the compu-
tational environment; this is perhaps the most similar approach in previous work
to what DBOS does today.

All of these systems struggle to obtain provenance data that is relevant and
complete without huge human effort. Unlike relational databases with their fixed
set of operators, general-purpose programs have neither a fixed set of operations,
nor an obvious best place for instrumenting those operations. In work to date,
either the programmer must manually annotate existing code to capture prove-
nance information, at great human effort; or the system must try to automat-
ically instrument unmodified code, and thereby potentially capture confusing
“operations” at an inappropriate level of granularity.

By moving many operations into a relational model, DBOS has some data
capture advantages over previous work. Many OS operations—such as file create,
or network transmissions, or process launches—can be observed as a standard
relational INSERT. In many cases, the semantics of these operations are broadly
understood and can support a range of likely downstream queries.

However, there is nothing that requires a DBOS-visible operation to make
sense to a future provenance query-writer; consider that a user launching a sin-
gle program from a shell will appear to be a new entry in a process table, as
will just one of the many independent processes that together allow a modern
web browser to operate. As a result, even though DBOS operates via the rela-
tional model, some aspects of DBOS data capture closely resemble the challenges
usually associated with general-purpose program provenance.

Practical Systems—There are many issues that arise when building practical
provenance systems, especially when the volume of provenance data grows very
large. Zheng and Ives examine how to build a provenance system that is efficient
and tamper-proof enough for long term archival use [33]. The Smoke system [23]
is an in-memory database explicitly designed for efficient provenance capture
and querying, employing specialized optimizations when provenance queries are
known in advance, which is likely in many use cases. As provenance is especially
useful in data science use cases, the NBSafety [16] system is tailored for preserv-
ing provenance in notebook-style settings where cell dependencies are easy to
lose track of.

9 Conclusions

In this paper we have presented a provenance system built into the DBOS oper-
ating system. This automatically captures a lot of provenance events without
manual intervention by a user. We have show that the run-time overhead of the

58 D. Kumar et al.

system is modest and query performance on the provenance database is reason-
able. The polystore implications of our approach were also discussed. Our plan
going forward is to build a complete end-to-end DBOS implementation.

References

1. Mit supercloud (2021). https://supercloud.mit.edu/
2. Splunk (2021). https://www.splunk.com/
3. VoltDB (2021). https://www.voltdb.com/
4. Agrawal, R., Jagadish, H.: Direct algorithms for computing the transitive closure

of database relations. In: VLDB, vol. 87, pp. 1–4 (1987)
5. Alpernas, K., et al.: Secure serverless computing using dynamic information flow

control. In: Proceedings of the ACM Programming Languages (OOPSLA), October
2018. https://doi.org/10.1145/3276488,https://doi.org/10.1145/3276488

6. Chapman, A., Missier, P., Simonelli, G., Torlone, R.: Capturing and querying fine-
grained provenance of preprocessing pipelines in data science. Proc. VLDB Endow.
14(4), 507–520 (2020). https://doi.org/10.14778/3436905.3436911

7. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: why, how, and
where. Found. Trends Databases 1(4), 379–474 (2009). https://doi.org/10.1561/
1900000006

8. Chiticariu, L., Tan, W.C., Vijayvargiya, G.: Dbnotes: a post-it system for relational
databases based on provenance. In: Conference: Proceedings of the ACM SIGMOD
International Conference on Management of Data, Baltimore, Maryland, USA,
June 14-16, 2005, pp. 942–944, January 2005. https://doi.org/10.1145/1066157.
1066296

9. Dar, S., Ramakrishnan, R.: A performance study of transitive closure algorithms.
ACM SIGMOD Record. 23(2), 454–465 (1994)

10. Frew, J., Bose, R.: Earth system science workbench: a data management infras-
tructure for earth science products, pp. 180–189, January 2001. https://doi.org/
10.1109/SSDM.2001.938550

11. Frew, J., Metzger, D., Slaughter, P.: Automatic capture and reconstruction of
computational provenance. Concurr. Comput. Pract. Exp. 20, 485–496 (2008).
https://doi.org/10.1002/cpe.1247

12. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings
of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2007, pp. 31–40. Association for Computing Machin-
ery, New York (2007). https://doi.org/10.1145/1265530.1265535,https://doi.org/
10.1145/1265530.1265535

13. Gadepally, V., Mattson, T., Stonebraker, M., Wang, F., Luo, G., Laing, Y.,
Dubovitskaya, A. (eds.): DMAH/Poly -2019. LNCS, vol. 11721. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-33752-0

14. Lin, C., et al.: A reference architecture for scientific workflow management systems
and the view SOA solution. IEEE Trans. Serv. Comput. 2, 79–92 (2009). https://
doi.org/10.1109/TSC.2009.4

15. Linux: Linux seccomp. https://man7.org/linux/man-pages/man2/seccomp.2.html
16. Macke, S., Gong, H., Lee, D.J.L., Head, A., Xin, D., Parameswaran, A.: Fine-

grained lineage for safer notebook interactions (2021)
17. Malviya, N., Weisberg, A., Madden, S., Stonebraker, M.: Rethinking main memory

OLTP recovery. In: 2014 IEEE 30th International Conference on Data Engineering,
pp. 604–615. IEEE (2014)

https://supercloud.mit.edu/
https://www.splunk.com/
https://www.voltdb.com/
https://doi.org/10.1145/3276488,
https://doi.org/10.1145/3276488
https://doi.org/10.14778/3436905.3436911
https://doi.org/10.1561/1900000006
https://doi.org/10.1561/1900000006
https://doi.org/10.1145/1066157.1066296
https://doi.org/10.1145/1066157.1066296
https://doi.org/10.1109/SSDM.2001.938550
https://doi.org/10.1109/SSDM.2001.938550
https://doi.org/10.1002/cpe.1247
https://doi.org/10.1145/1265530.1265535,
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1007/978-3-030-33752-0
https://doi.org/10.1109/TSC.2009.4
https://doi.org/10.1109/TSC.2009.4
https://man7.org/linux/man-pages/man2/seccomp.2.html

Data Governance in a Database Operating System (DBOS) 59

18. McPhillips, T., Song, T., Kolisnik, T., Aulenbach, S., Freire, J.: al et: Yeswork-
flow: a user-oriented, language-independent tool for recovering workflow informa-
tion from scripts. Int. J. Digit. Cur. 10(1), 298–313 (2015)

19. Muniswamy-Reddy, K.K., Holland, D.A., Braun, U., Seltzer, M.: Provenance-aware
storage systems. In: Proceedings of the Annual Conference on USENIX 2006
Annual Technical Conference, ATEC 2006, p. 4. USENIX Association (2006)

20. Murta, L., Braganholo, V., Chirigati, F., Koop, D., Freire, J.: noworkflow: cap-
turing and analyzing provenance of scripts. In: Ludäscher, B., Plale, B. (eds.)
Provenance and Annotation of Data and Processes, pp. 71–83. Springer, Cham
(2015)

21. Namaki, M.H., et al.: Vamsa: Automated Provenance Tracking in Data Science
Scripts, pp. 1542–1551. Association for Computing Machinery, New York (2020).
https://doi.org/10.1145/3394486.3403205

22. Namaki, M.H., Song, Q., Wu, Y., Yang, S.: Answering why-questions by exem-
plars in attributed graphs. In: Proceedings of the 2019 International Conference on
Management of Data, SIGMOD 2019, pp. 1481–1498. Association for Computing
Machinery, New York (2019). https://doi.org/10.1145/3299869.3319890,https://
doi.org/10.1145/3299869.3319890

23. Psallidas, F., Wu, E.: Smoke: fine-grained lineage at interactive speed. Proc. VLDB
Endow. 11(6), 719–732 (2018). https://doi.org/10.14778/3199517.3199522

24. PyPy: Pypy’s sandboxing features. https://doc.pypy.org/en/release-2.0-beta2/
sandbox.html

25. Rezig, E.K., et al.: Dagger: a data (not code) debugger. In: 10th Conference on
Innovative Data Systems Research, CIDR 2020, Amsterdam, The Netherlands, 12–
15 January 2020, Online Proceedings. www.cidrdb.org (2020). http://cidrdb.org/
cidr2020/papers/p35-rezig-cidr20.pdf

26. Salvatore Sanfilippo: Retwis: a twitter toy-clone (2014). https://github.com/
antirez/retwis

27. Sato, K.: An inside look at google bigquery. White paper (2012). https://cloud.
google.com/files/BigQueryTechnicalWP.pdf

28. Skiadopoulos, A., et al.: DBOS: a DBMS-oriented Operating System. Submitted
for publication (2021)

29. Valduriez, P., Khoshfian, S.: Parallel evaluation of the transitive closure of a
database relation. Int. J. Parallel Program. 17(1), 19–42 (1988)

30. Vuppalapati, M., Miron, J., Agarwal, R., Truong, D., Motivala, A., Cruanes, T.:
Building an elastic query engine on disaggregated storage. In: 17th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 2020), pp. 449–
462. USENIX Association, Santa Clara, February 2020. https://www.usenix.org/
conference/nsdi20/presentation/vuppalapati

31. Wolstencroft, K., et al.: The Taverna workflow suite: designing and executing
workflows of Web Services on the desktop, web or in the cloud. Nucl. Acids
Res. 41(W1), W557–W561 (2013). https://doi.org/10.1093/nar/gkt328,https://
doi.org/10.1093/nar/gkt328

32. Yang, Y., et al.: Flexpushdowndb: Hybrid pushdown and caching in a cloud DBMS.
In: VLDB, vol. 14 (2021)

33. Zheng, N., Ives, Z.G.: Compact, tamper-resistant archival of fine-grained prove-
nance. Proc. VLDB Endow. 14(4), 485–497 (2020). https://doi.org/10.14778/
3436905.3436909

https://doi.org/10.1145/3394486.3403205
https://doi.org/10.1145/3299869.3319890,
https://doi.org/10.1145/3299869.3319890
https://doi.org/10.1145/3299869.3319890
https://doi.org/10.14778/3199517.3199522
https://doc.pypy.org/en/release-2.0-beta2/sandbox.html
https://doc.pypy.org/en/release-2.0-beta2/sandbox.html
http://cidrdb.org/cidr2020/papers/p35-rezig-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p35-rezig-cidr20.pdf
https://github.com/antirez/retwis
https://github.com/antirez/retwis
https://cloud.google.com/files/BigQueryTechnicalWP.pdf
https://cloud.google.com/files/BigQueryTechnicalWP.pdf
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati
https://doi.org/10.1093/nar/gkt328,
https://doi.org/10.1093/nar/gkt328
https://doi.org/10.1093/nar/gkt328
https://doi.org/10.14778/3436905.3436909
https://doi.org/10.14778/3436905.3436909

ACID-V: Towards a New Class of DBMSs
for Data Sharing

Muhammad El-Hindi(B), Zheguang Zhao(B), and Carsten Binnig(B)

Technical University Darmstadt, Darmstadt, Germany
{muhammad.el-hindi,zheguang.zhao,carsten.binnig}@cs.tu-darmstadt.de

Abstract. Recently, a new class of systems for shared and collaborative
data management has gained more and more traction. Different from
classical DBMSs, systems for shared data need to provide additional
guarantees to ensure the integrity of data and transaction execution. In
this paper, we propose to extend the ACID properties used by classical
DBMSs with a new Verifiability component to enable users to specify
the required guarantees of verifiability in a declarative manner.

1 Introduction

Motivation. Recently, a new class of systems for shared and collaborative data
management has gained more and more traction. Examples of such systems
include Veritas [2], BlockchainDB [1], FalconDB [5], Fides [4] and Spitz [8].
Compared to classical DBMSs that are designed for being used by a single party,
these systems enable multiple parties to manage a shared database (DB) in
a collaborative manner. For example, think of a shared database for medical
patient records. Here, hospitals and doctors would be able to directly share and
modify patient data to keep track of diagnoses and treatments a patient received.
Clearly, shared DBs provide many opportunities not only in the medical domain
such as for large-scale epidemic studies [6], but also for many other fields where
access to a shared DB enables more effective collaboration or new use cases (e.g.,
financial domain [7] or supply chains [3]).

However, different from classical DBMSs, systems for shared data need to
provide additional guarantees to ensure the integrity of data and transaction
execution (called verifiability guarantees in the following). The main reason for
this is that when manipulating a shared database in a collaborative manner
there is often some mutual distrust between the different parties that jointly
access the shared database since they often have different interests (e.g., think
of an insurance company and a hospital that use a shared database for medical
records). Hence, the goal of the verifiability guarantees is to govern the shared
database; i.e., to guarantee that the shared database is only modified based on a
predefined and agreed upon set of transactions that every party adheres to and
that none of the parties can tamper with the data in a different manner.

If we now look at how existing systems for shared data (such as those men-
tioned at the beginning) provide verifiability, we can observe that these systems
c© Springer Nature Switzerland AG 2021
E. K. Rezig et al. (Eds.): Poly 2021/DMAH 2021, LNCS 12921, pp. 60–64, 2021.
https://doi.org/10.1007/978-3-030-93663-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93663-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-93663-1_5

ACID-V: Towards a New Class of DBMSs for Data Sharing 61

typically take a very implementation-centric approach and often do not integrate
well with the ACID guarantees of classical DBMSs. Moreover, the concrete guar-
antees that such systems provide are very different from system to system and
often hard-baked into their execution model. FalconDB, for instance, is based on
blockchains to implement verifiability and uses an incentive-based scheme where
nodes are encouraged to verify the execution of queries asynchronously to hide
the high verification cost. As a result, however, potentially unverified queries
from malicious servers stay undetected. In contrast to that, updates are always
verified synchronously for the entire network.

Vision. In this paper, we propose to take a more principled and more database-
centric approach to provide verifiability for shared data systems. The main idea is
to extend the ACID properties used by classical DBMSs with a new Verifiability
component which results in the ACID-V properties. To be more precise, similar
to the other components in ACID such as the well-known isolation property, we
propose to specify the guarantees of verifiability in a declarative manner using
different verification levels (i.e., strict or more loose). Moreover, we believe that
the integration of verification with the ACID properties not only is a natural
fit and gives applications well-defined guarantees but it enables a new class of
shared DBMSs that decide based on the verification level what optimizations
and concrete execution strategies are best suited to meet the desired guarantees.

2 From ACID to ACID-V

2.1 Adding the V to ACID

In classical databases, transactions are governed by the ACID properties. As
mentioned before, the concrete properties that should be satisfied can be defined
declaratively and are implemented by databases in various ways. For example,
for the I (solation) in ACID, a user can declare the specific isolation level (e.g.,
read committed, serializable) that a transaction should run under. This isolation
level is then guaranteed by a database through its concurrency control scheme
(e.g., optimistic vs. pessimistic). Similarly, we propose to add a new Verifiabil-
ity property that user can specify declaratively and that database systems can
implement in different ways. Further, looking at Verifiability from a conceptional
perspective enables users to reason about the guarantees a system provides inde-
pendent from implementation details.

To add the V to ACID, we extend the classical transaction state model of
ACID-compliant DBMSs by a verified state. For simplicity, Fig. 1 visualizes the
extended state model for ACID-V for the case in which all nodes in a shared
DBMS act honestly. We will briefly discuss some aspects of malicious behavior
later in Sect. 2.3. As we can see, in our state model a transaction can only reach
the verified state after it reached the committed state.

Modeling verified as a state that follows the committed state has several
advantages. First, since verification is typically an expensive step the model
leaves some freedom when the transition from committed to verified happens
(i.e., directly after the commit or if it can be deferred). Moreover, it enables

62 M. El-Hindi et al.

Com-
mitted

Aborted

Active

Verified

ACID

ACID-V

Fig. 1. Simplified state model for ACID-V. The classical transaction state model is
extended with a Verified state.

the user to declare which state is allowed to be read by other transactions (e.g.,
if committed but unverified can be read or if all state must be verified before
becoming visible). Second, the verified state is an optional state as shown in
Fig. 1, i.e., not all committed transactions need to be verified, which allows partial
verification to reduce the overhead.

2.2 Verification Levels

While a formal definition of ACID-V and a more complete discussion of possible
verification levels are out of scope for this paper, in the following we show how
a first set of different verification levels can be defined based on the state model
we introduced before. Based on this we will discuss what implications different
levels can have on the integrity of data/execution and a system’s performance.

Strict Verification (SV). This verification level requires that all transactions need
to be verified. Moreover, all transactions are allowed to read only verified state.
A similar guarantee can be provided by the online verification schemes of exist-
ing systems such as Veritas and BlockchainDB which guarantee that the result
of a transaction (or database operation) is verified before becoming visible to
other transactions. For the actual execution of transactions, this level implies
that transactions should transition as fast as possible from the committed state
to verified since otherwise (i.e., if there are too many committed but unverified
transactions) this can lead to low performance or in worst case starvation. How-
ever, clearly strict verification thus has a high overhead and might lead to inferior
performance when compared to more relaxed levels that we discuss below.

Unstrict Verification/Full (UV-f). Compared to the previous level, this is a more
relaxed verification level since it allows transactions to read from committed
but not yet verified state. That is, even if the verification of a transaction is
still pending, other transactions can access its committed state. However, all
transactions are still being verified (hence it is called full) and unsuccessful
verification in case of malicious behavior needs to be handled as we discuss below
in Sect. 2.3. In contrast to the SV level, though, this makes room for different
optimizations. Most importantly, transactions are not blocked by potentially
expensive verification protocols since verification can be executed in batches
and in a deferred manner. This is similar to deferred verification schemes that
are available in existing systems (e.g., [8] or [1]). But still, verification should not

ACID-V: Towards a New Class of DBMSs for Data Sharing 63

lag behind too much. This can be controlled by setting an additional parameter
that specifies how many committed but unverified transactions are allowed.

Unstrict Verification/Partial (UV-p). This verification level relaxes the guaran-
tees of the previous level (UV-f) even further. In UV-f, transactions are allowed to
access committed, but unverified state. However, unlike UV-f in partial unstrict
verification (UV-p) we do not enforce that all transactions need to be verified.
Consequently, this verification level assumes that verified is an optional state of
a transaction. In this level, a user can thus explicitly request to verify only a sub-
set of transactions. Hence, UV-p could be used to limit the verification overhead
to some (e.g., important) transactions or to provide probabilistic guarantees by
verifying only a sample of all transactions.

2.3 Handling Malicious Behavior

As mentioned before, in ACID-V it is important to take the effects of potentially
malicious behavior of individual peers into account (i.e., in case they do not
execute transactions in a correct manner). That is, if the verification fails for a
particular transaction (e.g., due to incorrect execution by a malicious peer) all
dependent subsequent transactions need to be rolled back in order to guarantee
a correctly verified state of the database as specified in the verification level.
For strict verification levels, this is less of a problem since no other transaction
can read committed but unverified state from other transactions and hence only
the effects of the transactions where the verification failed need to be reverted.
However, for unstrict verification handling malicious behavior is more difficult
since transactions can read from committed and not yet verified transactions
and thus erroneous state can propagate across multiple dependent transactions.

3 Future Directions

In this paper we presented our vision for ACID-V compliant DBMSs to enable
data sharing. As a core contribution, with ACID-V we propose to specify the
guarantees of verifiability in a declarative manner and let the DBMS decide on
what optimizations and concrete execution strategies are best suited to meet
the guarantees of a particular verification level. In the future, we think that this
model of ACID-V compliant DBMSs can trigger many follow-up work. First, the
verification levels proposed in this paper are just an initial direction and we think
that this requires a more profound discussion of what levels data sharing appli-
cations actually require. Second, similar to isolation levels that have triggered
different implementation strategies (optimistic vs. pessimistic), we think ACID-
V will also enable a wide variety of different implementation strategies (e.g.,
beyond using blockchains) to implement the desired guarantees of verification.

Acknowledgments. This work partly grew out of discussions within and sup-
port of the National Research Center ATHENE, the BMWi project SafeFBDC
(01MK21002K), and the BMBF project TrustDBle (16KIS1267).

64 M. El-Hindi et al.

References

1. El-Hindi, M., et al.: Blockchaindb - a shared database on blockchains. Proc. VLDB
Endow. 12(11), 1597–1609 (2019)

2. Gehrke, J., et al.: Veritas: shared verifiable databases and tables in the cloud. In:
CIDR. www.cidrdb.org (2019)

3. Kamilaris, A., et al.: The rise of blockchain technology in agriculture and food
supply chains. Trends Food Sci. Technol. 91, 640–652 (2019)

4. Maiyya, S., et al.: Fides: managing data on untrusted infrastructure. In: ICDCS,
pp. 344–354. IEEE (2020)

5. Peng, Y., et al.: Falcondb: blockchain-based collaborative database. In: ACM SIG-
MOD, pp. 637–652. ACM (2020)

6. Smith, E.R., Flaherman, V.J.: Why you should share your data during a pandemic.
BMJ Glob. Health 6(3) (2021)

7. Tapscott, D., Tapscott, A.: Blockchain Revolution: How the Technology Behind
Bitcoin Is Changing Money, Business, and the World. Penguin, Westminster (2016)

8. Zhang, M., et al.: Spitz: A verifiable database system. PVLDB 13(12), 3449–3460
(2020)

Polystore Systems and DBMSs: Love
Marriage or Marriage of Convenience?

Marco Vogt(B), David Lengweiler, Isabel Geissmann, Nils Hansen,
Marc Hennemann, Cédric Mendelin, Sebastian Philipp, and Heiko Schuldt

Databases and Information Systems Research Group, Department of Mathematics
and Computer Science, University of Basel, Basel, Switzerland

{marco.vogt,david.lengweiler,isabel.geissmann,nils.hansen,marc.hennemann,
cedric.mendelin,sebastian.philipp,heiko.schuldt}@unibas.ch

Abstract. Polystore systems allow to combine different heterogeneous
data stores in one system and also offer different query languages for
accessing data. While this addresses a large number of requirements espe-
cially when providing access to heterogeneous data in mixed workloads,
most polystore systems are somewhat limited in terms of their function-
ality. In this paper, we make the case to ‘upgrade’ polystore systems
towards full-fledged databases systems, leading to the notion of Poly-
DBMSs. We summarize the features of such PolyDBMSs and exemplify
the implementation on the basis of our PolyDBMS Polypheny-DB.

Keywords: Polystore systems · Database management systems

1 Introduction

In the last years, polystore systems have become popular as an attempt to bridge
the heterogeneity of data models and to combine the best-of-breed in a single
system – by seamlessly integrating the concepts of multistore databases and
polyglot persistence [3]. A multistore database system combines heterogeneous
data stores and manages data across these stores by offering a single query
interface and a single query language. Polyglot persistence offers different query
languages for accessing data. Most existing polystore systems focus on selected
aspects but do not provide the full-fledged feature set of a database system.

According to a summary given in [2], Ted Codd identified the following func-
tionality a full-fledged database system has to provide: (i) Storage of data (ii)
Retrieval and update of data (iii) Access support from remote locations (iv) User
accessible metadata catalog or data dictionary (v) Support for transactions and
concurrency (vi) Facilities for recovering the database in case of damage (vii)
Enforcing constraints, and (viii) Support for authorization of access and update
of data. When deploying polystore systems in real world applications, it has
turned out that the full DBMS functionality is required, not (only) the support
for heterogeneous data stores and different query languages.

In this paper, we make the case for upgrading polystore systems to full-fledged
databases – for which we introduce the term PolyDBMSs – and we discuss the
c© Springer Nature Switzerland AG 2021
E. K. Rezig et al. (Eds.): Poly 2021/DMAH 2021, LNCS 12921, pp. 65–69, 2021.
https://doi.org/10.1007/978-3-030-93663-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93663-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-93663-1_6

66 M. Vogt et al.

challenges for the different database functionality. We exemplify this on the basis
of Polypheny-DB [4,5], the polystore database system we have introduced in our
previous work. Polypheny-DB has been published under an open source license1

and participates in 2021 to the Google Summer of Code (GSoC) program.
The contribution of the paper is twofold: first, we identify the challenges

polystore systems have to meet to provide the features of a full-fledged DBMS.
Second, we exemplify based on Polypheny-DB how these feature can be provided.

2 From Polystore Systems to “PolyDBMSs”

In this section, which is organized along Codd’s DBMS features as summarized
in [2], we discuss the challenges for polystore systems in general, leading to a
novel kind of PolyDBMS, and how they are addressed in Polypheny-DB.

2.1 Storage of Data

PolyDBMSs need to support different data storage engines optimized for various
types of data and workloads. These data stores are internally based on different
data models (relational, documents, wide-columns, key-values, graphs, etc.) and
are queried using different query languages and methods. This is an inevitable
feature all PolyDBMSs have to provide intrinsically.

Polypheny-DB currently supports relational, document, and wide-column
stores and different data sources. The connection to data stores and data
sources is handled by adapters. Data Stores are used as physical storage and
execution engines and are fully maintained by and under exclusive control of
Polypheny-DB. In order to be able to guarantee correctness, the stores are only
accessed through Polypheny-DB. Data Sources allow mapping data on (remote)
database systems into the schema of Polypheny-DB. There are also adapters
for querying file systems or CSV files. Data source adapters are less complex
than data store adapters and usually only support a subset of the functionality.
Polypheny-DB allows that data sources are queried by other systems in parallel.
Hence, Polypheny-DB does not provide support for constraints or data repli-
cation/partitioning on entities originating from data sources, only for the ones
from data stores. The optimization offered by a storage system can be leveraged
when pushing down a complete query (or at least parts of it) whenever possible.
In order to optimize the data transfers, query results are read on demand.

2.2 Retrieval and Update of Data

PolyDBMSs intrinsically need to support the retrieval of data using multiple
query languages and methods. Furthermore, PolyDBMSs should also offer data
modification queries – which usually goes beyond the feature set of polystores.

1 https://github.com/polypheny/Polypheny-DB.

https://github.com/polypheny/Polypheny-DB

Polystore Systems and DBMSs: Love Marriage or Marriage of Convenience? 67

Polypheny-DB supports DML and DDL operations. The most mature query
language supported by Polypheny-DB is its own SQL dialect PolySQL. It fea-
tures a common set of operations including JOIN, GROUP BY and HAVING clauses,
set operations, inner queries and WITH clauses. Additionally, it provides a large
set of query and aggregation functions 2 and it comes with functions specifi-
cally for media and blob data. Furthermore, Polypheny-DB supports a distance
function for k-NN similarity search. Polypheny-DB also supports the MongoDB
Query Language. Moreover, support for the Contextual Query Language is cur-
rently being added. With the Explore-by-Example interface and the Dynamic
Query Builder, Polypheny-DB also supports two innovative query methods [4].

2.3 Access Support from Remote Locations

PolyDBMSs should offer the query functionality identified in Sect. 2.2 also from
remote locations by offering appropriate APIs and query interfaces.

The JDBC interface of Polypheny-DB supports the retrieval of meta data and
the control of transactions. It also provides prepared statements and batch inserts
and updates. The REST-based query interface allows accessing and modifying
data using GET, POST, PATCH, and DELETE requests. Results are returned as JSON.

2.4 User Accessible Metadata Catalog or Data Dictionary

In addition to the usual metadata maintained by a DBMS, PolyDBMSs also
need to keep metadata on data distribution across different data stores.

Polypheny-DB comes with a data dictionary that has a browser-based user
interface (Polypheny-UI). It allows to view and alter the schema and it can be
used to browse and modify the data, manage data stores and data sources, and
execute queries using the supported query methods and languages. In addition to
accessing schema information using Polypheny-UI, it is also possible to retrieve
the schema using the JDBC meta functions provided by our JDBC driver.

2.5 Support for Transactions and Concurrency

PolyDBMSs need to offer transaction support at their interface. This is par-
ticularly relevant when data accessed within an application is internally spread
across several data stores.

Polypheny-DB supports concurrent queries, guaranteeing atomicity and iso-
lation using transactions for data stored on its underlying data stores. For data
stored on data sources, support for transactions can be limited and depends on
the capabilities of the data source. The isolation of concurrent transactions is
ensured on the polystore level. Due to data partitioning and replication, only
the polystore has the necessary information for ensuring the isolated execution
of transactions. Locking on the underlying data stores is deactivated for per-
formance reasons whenever possible. Polypheny-DB uses strong strict two-phase
2 https://polypheny.org/documentation/PolySQL/Operators/.

https://polypheny.org/documentation/PolySQL/Operators/

68 M. Vogt et al.

locking (SS2PL) [1] for the isolation of concurrent transactions. The SS2PL
implementation in Polypheny-DB comes with the necessary deadlock detection.

2.6 Facilities for Recovering the Database in Case of Damage

PolyDBMSs need to support two types of failure cases: (i) failures of the Poly-
DBMS as a whole and (ii) failures of single data stores/data sources.

Polypheny-DB distinguishes between data recovery in the underlying data
stores, and schema recovery, which includes data placement (i.e., the physical
schema mapping). For data recovery, Polypheny-DB assumes that the selected
underlying data stores work correctly and thus delegates recovery there. For the
data stores integrated in Polypheny-DB (e.g., file store), a proper recovery mech-
anism is implemented in the adapter. Schema recovery is under the responsibility
of Polypheny-DB. It leverages the whole catalog containing the schema informa-
tion which is persistently stored using a transactional storage system featuring a
write-ahead log. On start-up, all persistent placements of an entity are restored.
For entities without a persistent placement, only the schema is restored.

2.7 Enforcing Constraints

PolyDBMSs need to enforce constraints that span two or more data sources, not
just constraints within a single store that are natively enforced there.

Polypheny-DB enforces primary key, foreign key, and uniqueness constraints.
The enforcement is done on the polystore level by extending the query plan. The
major challenge with implementing constraint enforcement on the polystore level
is that constraints need to be enforced even if data is stored on data stores that
do not natively support constraints. Furthermore, data can be partitioned across
multiple data stores which makes the full delegation of constraint enforcement to
the underlying data stores unfeasible. Hence, constraint enforcement may only
(partly) be delegated to underlying stores whenever applicable.

2.8 Support for Authorization of Access and Update of Data

In a PolyDBMSs, each single store is supposed to provide necessary mechanisms
for authorizing accesses. In addition, this support also needs to be provided
globally at the PolyDBMS level.

Polypheny-DB supports basic authentication, but there is not yet a complete
mechanism for a role or user-based authorization of specific actions.

3 Conclusion

Polystore systems combine several distributed and potentially heterogeneous
data stores underneath one or several interfaces. Usually, even though the data
stores might be full-fledged database systems, polystore systems lack one or sev-
eral features of a complete DBMS. In this paper, we make the case to ‘upgrade’

Polystore Systems and DBMSs: Love Marriage or Marriage of Convenience? 69

polystore systems to full-fledged DBMSs, leading to the notion of PolyDBMSs.
We have surveyed the requirements at the PolyDBMS level and we have briefly
presented how these challenges have been implemented in Polypheny-DB, which
combines the advantages of a polystore system with the ones of a DBMS.

Acknowledgments. This work has been partly funded by the Swiss National Science
Foundation, project Polypheny-DB (contract no. 200021 172763).

References

1. Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in
Database Systems. Addison-Wesley Longman, Boston (1987)

2. Connolly, T., Begg, C.: Database Systems: A Practical Approach to Design, Imple-
mentation, and Management. Pearson, Boston (2014)

3. Tan, R., Chirkova, R., Gadepally, V., Mattson, T.G.: Enabling query processing
across heterogeneous data models: a survey. In: Proceedings of the 2017 IEEE Inter-
national Conference on Big Data (BigData 2017), pp. 3211–3220. IEEE, Boston
(2017). https://doi.org/10.1109/BigData.2017.8258302

4. Vogt, M., et al.: Polypheny-DB: towards bridging the gap between polystores and
HTAP systems. In: Gadepally, V., et al. (eds.) DMAH/Poly-2020. LNCS, vol. 12633,
pp. 25–36. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71055-2 2

5. Vogt, M., Stiemer, A., Schuldt, H.: Polypheny-DB: towards a distributed and self-
adaptive polystore. In: 2018 IEEE International Conference on Big Data, pp. 3364–
3373. IEEE (2018). https://doi.org/10.1109/BigData.2018.8622353

https://doi.org/10.1109/BigData.2017.8258302
https://doi.org/10.1007/978-3-030-71055-2_2
https://doi.org/10.1109/BigData.2018.8622353

WIP: PODS: Privacy Compliant Scalable
Decentralized Data Services

Jonas Spenger1,2(B), Paris Carbone1,2, and Philipp Haller2

1 RISE Research Institutes of Sweden, Stockholm, Sweden
{jonas.spenger,paris.carbone}@ri.se

2 Digital Futures and EECS, KTH Royal Institute of Technology, Stockholm, Sweden
{jspenger,parisc,phaller}@kth.se

Abstract. Modern data services need to meet application developers’
demands in terms of scalability and resilience, and also support pri-
vacy regulations such as the EU’s GDPR. We outline the main sys-
tems challenges of supporting data privacy regulations in the context of
large-scale data services, and advocate for causal snapshot consistency to
ensure application-level and privacy-level consistency. We present Pods,
an extension to the dataflow model that allows external services to access
snapshotted operator state directly, with built-in support for address-
ing the outlined privacy challenges, and summarize open questions and
research directions.

Keywords: Decentralized data services · Dataflow model · Privacy
compliance · GDPR

1 Introduction

Implementing and maintaining distributed data services is becoming an increas-
ingly complex task across two frontiers. At one end, there is strong demand
for data decentralization across multiple data stores, scalability and improved
resilience to failures [4,17,23]. At the other end, there is demand for user data
protection and support for users to exercise their data protection rights [5,9].
Building large and complex data services over a single ACID (atomicity, consis-
tency, isolation, and durability) database is no longer a realistic implementation
approach for meeting today’s demands [18]. Existing scalable solutions to build-
ing such services instead settle on weaker consistency models such as eventual
consistency, which has become the norm for building large-scale data services.

In this work, we identify the core challenges that privacy regulations such
as GDPR [9] and CCPA [5] add to the already existing set of requirements
for building scalable data services, at the intersection of privacy-policy driven
demands and systems driven demands. In particular, we argue that stronger
types of consistency are required, and feasible to achieve given the necessary
paradigm shift in modelling data services.

To that end, we propose Pods, a dataflow model that provides built-in
support for consistent continuous processing of user data, as well as access to
c© Springer Nature Switzerland AG 2021
E. K. Rezig et al. (Eds.): Poly 2021/DMAH 2021, LNCS 12921, pp. 70–82, 2021.
https://doi.org/10.1007/978-3-030-93663-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93663-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-93663-1_7

WIP: Pods: Privacy Compliant Scalable Decentralized Data Services 71

causally snapshot consistent state such as materialized views used by exter-
nal services. Our model is currently under implementation on top of the Akka
actor framework [12] and features causal consistency for cross-state reads via
the use of distributed consistent snapshotting [6], and the serializable execu-
tion of privacy requests. The solution supports ideas from recent positions on
data-privacy protection systems [16,19,22] while expanding on the capabilities
of modern dataflow systems [2,7], proposing stronger types of guarantees and
ways of stateful processing relevant to data privacy.

In summary, we claim the following contributions: (1) We outline the main
systems challenges for supporting data privacy regulations in the context of
large-scale data services. (2) We argue that eventual consistency is insufficient
for supporting privacy regulations and advocate the adoption of causal snap-
shot consistency, as implemented on dataflow systems. (3) We propose Pods, a
system model capable of addressing all outlined challenges. (4) We summarize
open questions and propose several research directions for resilient, scalable and
privacy-protecting services on dataflow systems.

2 Problem Scope and Challenges

2.1 Privacy Regulation Preliminaries

Data privacy regulations such as the EU’s General Data Protection Regulation
(GDPR) [9] and the California Consumer Privacy Act (CCPA) [5] have shaped
the landscape for data privacy conformance and the proper handling and pro-
tection of user data. The GDPR mainly concerns with how controllers (the data
service providers) process and collect the data of data subjects (the users), and
what rights the data subject has over its personal data (any data relating to an
identifiable natural person). The data subject may issue privacy requests (our
notation) to the controller, these are requests to exercise the rights of the data
subject. Evidently, enforcing compliance becomes more complex as data service
architectures become decentralized. To illustrate this issue we focus on three
fundamental data subject rights (i.e., privacy requests) from the GDPR [9]:

1. Right of Access (Art. 15). The right of access grants the data subject
access to information from the data service (controller) within one month’s time
on what personal data of the data subject is being processed, how it is being
processed, the period for which the data will be stored, the purposes of the
processing, the recipients of the processed data, and more.

2. Right to Erasure (Art. 17). The right to erasure grants the data
subject the right to erase all personal data concerning the data subject within
one month from the time of the request. This would include data that has been
processed, and data for which there is no longer a legal ground for processing.

3. Right to Objection (Art. 21). The right to objection grants the data
subject the right to object to certain types of processing if there are no legitimate
grounds for the processing. Such a request should be processed within one month.

72 J. Spenger et al.

Fig. 1. Centralized and decentralized privacy compliant service composition.

2.2 Problem Intuition

Consistent Privacy Requests. From a data management systems perspective,
granting the rights to perform privacy requests such as access, erasure and objec-
tion, can be considered as additional operations that need to be performed. To
illustrate this, consider the example in Fig. 1a of a social network that records
the posts and likes of users, and computes aggregates and recommendations
based on these, which are used for an analytics and recommendations service,
respectively. In the example the data subject issues an erasure/access/objection
request to the central database management system (DBMS) with support for
ACID (atomicity, consistency, isolation, durability) transactions. This request is
committed transactionally with an immediate effect. In this setting, ACID trans-
actions ensure trivially that the client and external services access a consistent
view of completed operations and privacy requests.

In reality, however, most data services today are not built around a central
DBMS with ACID guarantees. Instead, they employ decentralized storage and
processing across geographically distributed data centers. The lack of support
for ACID transactions in this setting makes it challenging to support the consis-
tent execution of privacy requests (in contrast to regular user operations, privacy
requests are expected to be executed with stronger guarantees). To that end, a
dataflow-driven design has been proposed (exemplified in Fig. 1b) for data pri-
vacy compliance by construction [16]. In this design, data services can be built
organically from data shards, dataflow operators, and materialized views. Data
shards are data sources owned by the users of the system. External services are
composed using dataflow operators that subscribe to shards or other interme-
diate dataflow dependencies defined by other services, and end in materialized
views. Data access by an external service is limited to reading from material-
ized views (e.g., the recommended view in Fig. 1b) that are composed on the fly
through consumption of data events originating from the user shards. This is a
promising architecture that aligns well with current trends in cloud computing.
However, the current state of the art in distributed dataflow computing lacks
two properties that we consider necessary for serving privacy requests, namely:
causal consistency and serializability of privacy requests.

WIP: Pods: Privacy Compliant Scalable Decentralized Data Services 73

Dataflow Causal Consistency. Supporting materialized views in the dis-
tributed dataflow model is currently limited to eventual consistency [16] which
is insufficient for serving privacy requests. To illustrate the problem consider
the external observer in Fig. 1b that accesses state from the recommendations
service. Assume that an erasure request has been completed such that a user’s
post is no longer visible. Subsequently, the same observer reads state from the
analytics service where the aggregate post count still includes the user’s post
(i.e., the erasure request has not yet reached the aggregates view). Given that
the erasure request was already observed in a prior access that precedes the
second read, this exposes a causality violation. In practice, numerous causality
violations can naturally occur in externally accessed dataflow graph state. For
example, eventually consistent materialized views may roll-back due to failure
recovery; and reading from different materialized views may be inconsistent as
one view may contain the effects of a privacy request whereas the other view may
not contain these effects. Instead, an external observer (user or external system)
should only read causally consistent snapshotted state of completed operations.
More specifically, if an observer performs two subsequent read requests, r1 and
r2 with causal relationship r1 ≺ r2 that observe two states s1 and s2, then
there should be a causal relationship between the states s1 � s2, such that the
observed operations and privacy requests that yield the state s1: o1, . . . , on, are
a prefix of those that yield s2: o1, . . . , om, with n ≤ m.

Serializability of Privacy Requests. Whereas causal consistency addresses
the order of which operations are observed externally, the internal execution
order of dataflow operations, including privacy requests, is still subject to arbi-
trary stream alignment. For example, propagating events may be reordered if
they are separated into two different streams, and later joined into a single
stream, because the joined ordering can be an arbitrary interleaving of the two
streams. Such a reordering of privacy requests could result into partially applied
operations and therefore offer an inconsistent view of the system. To ensure the
correct execution of privacy requests we also require them to be serializable. This
means that for every privacy request p, all operations preceding it need to take
effect before p, whereas all subsequent operations need to observe the effect of p.
More formally, consider the sequence of operations o1, . . . , ok−1, pk, ok+1 . . . on,
and pk is a privacy request, then the effect should be equivalent to an execution
that executes and completes o1, . . . , ok−1 before the privacy request pk starts its
execution, and ok−1, . . . , on start execution after pk completes.

Executing Privacy Requests. The serializability and causal-consistency
describe the order in which the requests are to be executed. Yet, there is a
need to materialize privacy requests on top of distributed dataflow operators.
For example, an access request should produce the requested data and return it
to the requester. For an erasure/objection request, the correct execution may be
more complicated as the request modifies state. The dataflow operator needs to
correctly update its own state, and also emit sufficient information to dependent
dataflow operators such that they can perform the request accordingly.

74 J. Spenger et al.

2.3 Supporting Privacy on Dataflows: Challenges Overview

We have identified the need for dataflow systems to provide built-in support for
privacy requests. A look into modern/popular dataflow streaming [1,7] as well
as serverless programming [4,17,23] solutions used to build data services reveals
fundamental design challenges for supporting privacy regulations. These include
a lack of causally consistent externally queryable state support, and support for
serializable transactions. To that end, we derive a set of challenges towards the
creation of scalable distributed programming systems, able to support privacy
requests (access, erasure, objection) consistently. Intuitively, there is a need to
combine the programming flexibility of actor models with the support for ad-hoc
external queries and transactional ACID guarantees of DBMSs and the end-to-
end reliability and scalability of modern dataflow stream processing systems.
Based on these intuitions we outline the following challenges. While a number
of previous systems address one or more of the challenges, to the best of our
knowledge no existing system addresses all challenges simultaneously.

C1 Dataflow composition for high-performance data streaming: pro-
viding the compositional construction of dataflow graphs and enabling high-
performance data streaming.

C2 Automated resilience to failures: dealing with partial process and net-
work failures that might occur throughout the execution of data services
while maintaining exactly-once processing semantics.

C3 Automated scaling of data services: automatically and elastically scal-
ing the system to meet increasing and decreasing load.

C4 Snapshot consistent externally queryable state: providing external
services access to causally snapshot consistent state of dataflow operators.

C5 Support for privacy requests and data ownership: supporting seri-
alizable privacy requests, ensuring that users have control of and access to
their raw and derived data.

C6 Transparent handling of privacy requests: The privacy requests should
be handled transparently by the system. In effect, the application developer
should not need to implement any logic for handling privacy requests.

3 Proposed Extensions to Dataflow Architecture

At a high level, Pods resembles most existing dataflow system models [2,7,13],
supporting arbitrary stateful event logic, compositional subscription to event
streams and pipelined task execution. Its main distinctions lie at the execution
logic employed within its dataflow tasks, called pod tasks. A pod features two
distinct components, one handling regular event input logic and another han-
dling state operations. This grants Pods the flexibility to transparently employ
all special yet necessary local actions that can collectively ensure global system
properties such as serializability of privacy requests and dataflow causal consis-
tency. In this section, we discuss its core design choices.

WIP: Pods: Privacy Compliant Scalable Decentralized Data Services 75

Fig. 2. Privacy compliant service composition with the Pods model.

3.1 Overview of the PODS Model

Pods is a dataflow model that processes user event streams and privacy requests.
We adopt the notion of user shards [16] for all per-user data ingestion and intro-
duce pod tasks for all stateful processing including the composition of material-
ized views. Figure 2a shows an example of a privacy-compliant service in Pods,
while Fig. 2b depicts the anatomy of a pod task. We further detail the design of
user shards and pods, which constitute the overall behavior of the model.

User Shards. All user data is ingested in “user shards” (adopted from [16])
that may be materialized on different data stores. A user shard creates a set of
per-user data updates, e.g., new posts or likes as well as state requests including
erase, object and system-invoked snapshot operations (Fig. 2a). All user shard
streams are expected to be persistently logged and replicated. This makes them
replayable and available in order to support rollback recovery.

Pod Tasks. Pods execute the application and privacy request handling logic.
In detail, pods: 1) subscribe to input streams and generate output streams; and
2) execute operations on the input stream events, and have two side effects:
a) pod state is updated and b) new output events are generated. In contrast to
existing dataflow models, Pods makes a clear separation between state and logic,
one stateless control-flow component handles the application logic, and another
stateful contextual component handles operations on state. Beyond this, pod
tasks allow external services to query their snapshotted state.

We highlight the anatomy of a pod task in Fig. 2b. This detailed view shows
that a pod task consists of two components, a stateless activity component, and a
stateful context component. Pod tasks are connected to other pods and user shards
via a set of input and output channels. Events received by a pod on one of its
input streams are processed sequentially, one at a time. Thus, the processing of
a single event including its effects on the local state can be considered an atomic
operation. Each input/output stream maintains a FIFO order of events; however,
there is no deterministic ordering across streams. Application-level events are
passed to the activity, the activity may access state via the context component, and
emit messages on the output channels. Other events, such as control events and

76 J. Spenger et al.

privacy requests, are passed to the context component, which handles them
accordingly (see Sect. 3.2). The Pods system attaches metadata to each data
(events and state), such that it can derive the correct privacy policy [22] of raw
and processed data using fine-grained information flow [15,21].

3.2 Handling Privacy Requests and State Management

The context manages two types of state, active state and snapshot state (see
Fig. 2b). Active state is the live state of the executing system, and may be
unstable as it has not been committed. The snapshot state of a pod task reflects
its latest globally coordinated state snapshot of the dataflow graph and it can be
used to support materialized views. Control operations, such as privacy request
operations, are handled transparently by the context component (the control
events are passed to the context component, not the activity), for which the
context component may emit control events to other pods.

Both snapshot operations and privacy requests can make use of a similar
broadcast and alignment dissemination scheme to enforce ordering. Similarly to
classic marker-based snapshotting protocols (e.g., Chandy-Lamport [8]), mark-
ers can be inserted in dataflow inputs and further broadcasted to all outputs in
order to separate those operations that precede and those that succeed a snap-
shot. To enforce the complete effect of certain operations an additional alignment
phase is necessary [6]. The alignment makes every dataflow task prioritize pend-
ing changes across its inputs until all markers are received. This enforces all
operations prior to a marker to complete before triggering a snapshot. Privacy
requests can follow an identical broadcast and alignment scheme within a pod.
This can enforce serializability for privacy requests.

External services can interact with the Pods system by querying the state
of user shards and live pod tasks directly through an asynchronous RPC query
(illustrated by the dotted lines in Fig. 2b). Updates on active pod state are
not directly visible to external queries. This is because read operations would
not expose the right level of isolation for external service access. Therefore,
queries submitted by an external service receive the latest snapshotted version
of that state from the pod context. Since snapshots within the pods dataflow are
atomically committed across all pod tasks, subsequent external access requests
would access the same or a newer version of the corresponding global state of
the system. Via the use of a globally coordinated snapshotting method [6] it is
guaranteed that an operation is either included in all pod snapshots, or pending
to be committed in the next global snapshot.

Privacy requests that arrive at the pod are executed by the context com-
ponent after the alignment phase. An access request can be executed on the
local state, whereas erasure and objection requests are more difficult as they
modify state. We can execute an erasure/objection request by using differen-
tial updates or by recomputing the state [16]. If these options are not available
(e.g., non-relational operators, user-defined functions), we can perform the oper-
ation directly on the state. The semantics and efficient/correct execution remains
an open question which we intend to explore further (see Sect. 4).

WIP: Pods: Privacy Compliant Scalable Decentralized Data Services 77

Implementing a system with the presented properties efficiently is challeng-
ing. Whereas causal snapshot consistency has been shown to be supported in
high-performance systems [6]; enforcing serializability of privacy user requests
comes with an overhead from dissemination and synchronization of alignment
markers. Further, certain privacy requests may cause large updates, which take
a long time to complete. The total system overhead from privacy compliance,
however, may be amortized through the batched execution of privacy requests,
given that GDPR allows up to one month to process a privacy request.

3.3 Privacy Request Example

Let us revisit the example from Sect. 2 and exemplify how the Pods system
can successfully deal with a privacy request (see Fig. 2a). Consider the erasure
request submitted by the client. This request first arrives at a user shard. The
shard can handle this request by erasing all data that belongs to the requesting
client. We can find the corresponding data because of the information about the
data origin contained in the metadata. This privacy request is then broadcast
along all outgoing channels of the shard to the two other pod tasks (together
with auxiliary information), the Join pod and the Group-by pod. The request
arrives at the Join pod, and is passed to the context component which applies
it to the active state and snapshot state. Similarly, the request is applied to the
Group-by pod. If another pod subscribes to both the Join pod and the Group-by
pod, the two streams are joined, and the privacy request will act as an alignment
marker to ensure the serializability of the privacy request. This way, the request
is propagated and applied consistently to the whole system.

3.4 Addressing the Outlined Privacy Dataflow Challenges

The specific features of the Pods model enable us to address the outlined chal-
lenges of privacy-compliant dataflows from Sect. 2.3, the challenges are high-
lighted in the Fig. 2b.

C1 Dataflow Composition for High-Performance Data Streaming. The
Pods model enables constructing dataflow graphs composed of pod tasks inter-
connected via channels (see C1 in Fig. 2b). This design for high-performance
data streaming is inspired to a large extent by state-of-the-art data streaming
systems such as Apache Flink [6,7].

C2 Automated Resilience to Failures. Since Pods adopts the stateful stream
processing paradigm and user shard streams are replayable, exactly-once stream
processing methods such as distributed consistent snapshotting [6] and rollback
recovery are applicable to ensure failure-recovery to a consistent active state.

C3 Automated Scaling of Data Services. The Pods model enables scaling
elastically according to load. A pod can either scale the number of messages
that it can handle through executing messages concurrently on activities that
are replicated across physical nodes, or scale its state by partitioning the state

78 J. Spenger et al.

into shards across nodes (e.g., using consistent hashing). This should be feasible
and requires little to no synchronization for activities that access disjoint state
or conflict-free state (e.g., keyed state [6]). Joint state has a synchronization
overhead and may not be scalable, the developer could be notified of this through
static checking and encouraged to use other types of state. The decision on when
(policy) and how (mechanism) to elastically reconfigure [10] can be handled by
the context component.

C4 Snapshot Consistent Externally Queryable State. Updates on pod
states are not directly visible to external queries. Instead, external queries are
handled differently by the context components. All external read requests are
granted access to the latest snapshotted state of a pod which is acquired via
a global causally consistent checkpoint mechanism (see Sect. 3.2). This ensures
that state is atomically committed across all pod tasks, and only completed
operations are observable to external services.

C5 Support for Privacy Requests and Data Ownership. Supporting
access, erasure, and objection requests requires us to be able to locate and
update all data, raw or processed, belonging to or derived from a data subject.
We can locate all data from a data subject by traversing the static dependencies
of the dataflow system, and through the data ownership information in the meta-
data. Once the data has been located we can apply the requested operation on
it. Privacy requests in Pods dataflows are directly related to the user state and
not the application logic, thus, they are handled differently than regular appli-
cation operations. Privacy requests broadcast to all outgoing channels (similar
to snapshot markers), and aligned on pod tasks with multiple input streams (see
Sect. 3.2). This way we can ensure a serializable ordering of the operations.

C6 Transparent Handling of Privacy Requests. The application devel-
oper does not need to implement any logic for handling privacy requests, this is
instead handled by the stateful context component within the pod task (see C6
in Fig. 2b). In effect, the application developer only needs to write the activity
component’s application logic, agnostic to any privacy/control logic.

4 Open Questions and Research Directions

The design for the Pods model presented in the previous section leaves a few
questions unanswered, for which we outline research directions in the following.

A More Flexible Programming Model. Supporting a wider range of scal-
able data services requires evolving dataflow graphs dynamically by adding and
removing user shards and pod tasks at runtime. Generalizing pod tasks to actor-
like entities could enable iterative computations which require cyclic data depen-
dencies. However, cyclic data dependencies could conflict with assumptions that
are critical for ensuring consistency, and the semantics of dynamic changes to the
dataflow graph are still unclear. This research direction devises ways to efficiently
ensure both consistency guarantees and privacy compliance in the presence of
cyclic data dependencies and dynamic deployments.

WIP: Pods: Privacy Compliant Scalable Decentralized Data Services 79

Efficient Information Flow Tracking. With the Pods model we propose
to enable servicing privacy requests by employing fine-grained information-flow
tracking [15,21]. This poses an efficiency challenge for aggregate data. For exam-
ple, computing aggregate data over all users of a system would have to track its
origin to all users of the system. Efficient processing of such aggregate data
would require a form of declassification [14] as it has been studied in the field of
information-flow security. This research direction explores adaptations of declas-
sification to enable efficient information flow tracking.

Execution of Privacy Requests. The execution of privacy requests has
unclear semantics, for example, it is unclear how to handle a request on data asso-
ciated to multiple users; and the efficient execution of privacy requests remains
challenging [19]. There are various trade-offs between approaches depending
on the workload. Further, many issues do not appear until implementing the
full specification. This research direction looks at the efficient handling of fine-
grained privacy requests for relational and user-defined functions, both for gen-
eral workloads, and applied to specific case studies.

Consistent Integration with External Services. Data computed by a
dataflow graph in the Pods model can be exported to external services which
read from materialized views with snapshot consistency. Pull-based, snapshot-
consistent reads have been presented in Sect. 3. However, it remains an open chal-
lenge (a) to support push-based updates and (b) to propagate privacy requests to
external services with atomic consistency. Push-based updates pose a challenge
due to the (strong) consistency on which external services should be able to rely.
This research direction explores interfaces and protocols that enable atomically-
consistent operations across dataflow graphs and external services, in order to
provide end-to-end exactly-once data processing.

5 Related Work

Data Privacy Compliance. The Pods model was inspired by a position paper
on “GDPR compliance by construction” by Schwarzkopf et al. [16]. In this work
they propose a design that consists of user shards, a dataflow that computes on
inputs from the user shards, and materialized views that are generated by the
dataflow. Privacy requests are performed on the user shards, and these updates
cause the dependent dataflow operators and materialized views to eventually
update implicitly through the “partially-stateful dataflow model” [11]. In our
model, we expose the pod state to external services, in replacement of material-
ized views, in order to provide causally consistent snapshot state of the system
across views (such reads also access the metadata). The privacy requests are exe-
cuted serializably using alignment markers; and we aim to support user-defined
functions with the fine-grained information flow tracking, and declassification
for aggregate data. Further, we adopt ideas from Data Capsules [22] to hold
data together with metadata that specifies the policy of the data. The data
capsule system consists of a data capsule manager that maintains the data cap-
sule graph and tracks all data capsules, and verifies that analysis programs that

80 J. Spenger et al.

access the data do not violate any policy. In the Pods system we enforce all
data and events to be coupled with metadata (although our metadata is more
limited), and have no central manager as this information is decentralized. The
MONPOLY system [3] uses logs to detect policy violation by formalising GDPR
requirements into metric first-order temporal logic formulas. The GDPR for
Akka Persistence supports encrypting data such that it later can be shredded
by erasing the encryption key, this feature can be used to implement the right
to be forgotten even when encrypted personal data may leak to logs.

Data Services. Apache Flink [7] is a stream-processing framework for dataflow
programs. Flink is known for the use of aligned snapshotting to achieve causal
snapshot consistency [6]. Pods also builds on the same general dataflow
model [2,7,13], and expands it further with the native alignment of privacy
requests and view maintenance of all pod states. This new capability allows
Pods to expose causally consistent shapshotted states for external reads featur-
ing strong serializability of privacy requests. Flink Stateful Functions [20] runs
on a runtime built on Apache Flink. Stateful functions are virtual, i.e. they don’t
consume any resources if idle, and the state and compute are separated. They
provide built-in resilience in form of fault-tolerance and exactly-once semantics,
and also support cyclical message patterns. Similarly, other serverless systems
separate compute and state [4,17,23]. Durable Functions [4] provides server-
less, elastic, failure-resilient, and consistent execution of workflows. It consists of
orchestrations, i.e. reliable workflows, entities, i.e. actor-like addressable units,
and critical sections, i.e. for synchronization. Cloudburst [17] is a function-as-a-
service platform for stateful functions, for which state is held in a lattice-based
distributed key-value store, and functions are executed in virtual machines with
a local cache. Kappa [23] is a serverless computing framework that offers check-
pointing for long-running tasks (and uses checkpointing for fault-tolerance). The
outlined challenges are partially solved by these mentioned works, however, to
the best of our knowledge, none of these projects provides built-in support for
privacy compliance or for externally queryable snapshotted state.

6 Conclusion

We have presented Pods, a practical model for building scalable data services
with privacy compliance as a core concern. Services in Pods can be built organi-
cally and execute reliably on decentralized infrastructures. To avoid inconsisten-
cies between application-level operations and privacy requests, Pods employs
transactional dataflow snapshots which capture a consistent view of the pod
tasks’ state, the snapshotting occurs asynchronously. Pods adopts best practices
from distributed actor programming and serverless frameworks, which makes it
flexible for supporting elastically scalable, replicated and fault tolerant services
that respect their users’ privacy by construction. The architecture of the Pods
model allows the privacy request logic to be handled transparently, in effect the
application developer is agnostic of any privacy logic.

WIP: Pods: Privacy Compliant Scalable Decentralized Data Services 81

Acknowledgements. We would like to thank the anonymous reviewers for their help-
ful comments. This work was partially funded by the Swedish Foundation for Strategic
Research (SSF grant no. BD15-0006) and by Digital Futures.

References

1. Akidau, T., et al.: Millwheel: fault-tolerant stream processing at internet scale.
Proc. VLDB Endow. 6(11), 1033–1044 (2013). https://doi.org/10.14778/2536222.
2536229, http://www.vldb.org/pvldb/vol6/p1033-akidau.pdf

2. Akidau, T., et al.: The dataflow model: a practical approach to balancing correct-
ness, latency, and cost in massive-scale, unbounded, out-of-order data processing.
Proc. VLDB Endow. 8(12), 1792–1803 (2015). https://doi.org/10.14778/2824032.
2824076, http://www.vldb.org/pvldb/vol8/p1792-Akidau.pdf

3. Arfelt, E., Basin, D., Debois, S.: Monitoring the GDPR. In: Sako, K., Schneider,
S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11735, pp. 681–699. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-29959-0 33

4. Burckhardt, S., Gillum, C., Justo, D., Kallas, K., McMahon, C., Meiklejohn, C.S.:
Serverless workflows with durable functions and netherite. CoRR abs/2103.00033
(2021). https://arxiv.org/abs/2103.00033

5. California Legislature: California consumer privacy act of 2018 (CCPA) (2018).
https://leginfo.legislature.ca.gov/faces/codes displayText.xhtml?division=3.&
part=4.&lawCode=CIV&title=1.81.5

6. Carbone, P., Ewen, S., Fóra, G., Haridi, S., Richter, S., Tzoumas, K.: State
management in apache flink R©: consistent stateful distributed stream processing.
Proc. VLDB Endow. 10(12), 1718–1729 (2017). https://doi.org/10.14778/3137765.
3137777, http://www.vldb.org/pvldb/vol10/p1718-carbone.pdf

7. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache FlinkTM: stream and batch processing in a single engine. IEEE Data Eng.
Bull. 38(4), 28–38 (2015). http://sites.computer.org/debull/A15dec/p28.pdf

8. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of
distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985). https://doi.
org/10.1145/214451.214456

9. Council of the European Union: Regulation (EU) 2016/679 of the European par-
liament and of the council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement of such
data, and repealing directive 95/46/ec (general data protection regulation) (2016).
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC

10. Fragkoulis, M., Carbone, P., Kalavri, V., Katsifodimos, A.: A survey on the evo-
lution of stream processing systems. CoRR abs/2008.00842 (2020). https://arxiv.
org/abs/2008.00842

11. Gjengset, J., et al.: Noria: dynamic, partially-stateful data-flow for high-
performance web applications. In: Arpaci-Dusseau, A.C., Voelker, G. (eds.) 13th
USENIX Symposium on Operating Systems Design and Implementation, OSDI
2018, Carlsbad, CA, USA, 8–10 October 2018, pp. 213–231. USENIX Association
(2018). https://www.usenix.org/conference/osdi18/presentation/gjengset

12. Lightbend Inc: Akka. https://akka.io/. Accessed 21 May 2021

https://doi.org/10.14778/2536222.2536229
https://doi.org/10.14778/2536222.2536229
http://www.vldb.org/pvldb/vol6/p1033-akidau.pdf
https://doi.org/10.14778/2824032.2824076
https://doi.org/10.14778/2824032.2824076
http://www.vldb.org/pvldb/vol8/p1792-Akidau.pdf
https://doi.org/10.1007/978-3-030-29959-0_33
https://arxiv.org/abs/2103.00033
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5
https://doi.org/10.14778/3137765.3137777
https://doi.org/10.14778/3137765.3137777
http://www.vldb.org/pvldb/vol10/p1718-carbone.pdf
http://sites.computer.org/debull/A15dec/p28.pdf
https://doi.org/10.1145/214451.214456
https://doi.org/10.1145/214451.214456
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
https://arxiv.org/abs/2008.00842
https://arxiv.org/abs/2008.00842
https://www.usenix.org/conference/osdi18/presentation/gjengset
https://akka.io/

82 J. Spenger et al.

13. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad:
a timely dataflow system. In: Kaminsky, M., Dahlin, M. (eds.) ACM SIGOPS 24th
Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA,
3–6 November 2013, pp. 439–455. ACM (2013). https://doi.org/10.1145/2517349.
2522738

14. Sabelfeld, A., Sands, D.: Dimensions and principles of declassification. In: 18th
IEEE Computer Security Foundations Workshop, (CSFW-18 2005), 20–22 June
2005, Aix-en-Provence, France, pp. 255–269. IEEE Computer Society (2005).
https://doi.org/10.1109/CSFW.2005.15

15. Salvaneschi, G., Köhler, M., Sokolowski, D., Haller, P., Erdweg, S., Mezini, M.:
Language-integrated privacy-aware distributed queries. In: Proceedings ACM Pro-
gramming Language 3(OOPSLA), pp. 167:1–167:30 (2019). https://doi.org/10.
1145/3360593

16. Schwarzkopf, M., Kohler, E., Frans Kaashoek, M., Morris, R.: Position: GDPR
compliance by construction. In: Gadepally, V., et al. (eds.) DMAH/Poly -2019.
LNCS, vol. 11721, pp. 39–53. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-33752-0 3

17. Sreekanti, V., et al.: Cloudburst: stateful functions-as-a-service. Proc. VLDB
Endow. 13(11), 2438–2452 (2020). http://www.vldb.org/pvldb/vol13/p2438-
sreekanti.pdf

18. Stonebraker, M., Çetintemel, U.: “One size fits all”: an idea whose time has come
and gone. In: Aberer, K., Franklin, M.J., Nishio, S. (eds.) Proceedings of the 21st
International Conference on Data Engineering, ICDE 2005, 5–8 April 2005, Tokyo,
Japan, pp. 2–11. IEEE Computer Society (2005). https://doi.org/10.1109/ICDE.
2005.1

19. Stonebraker, M., Mattson, T.G., Kraska, T., Gadepally, V.: Poly’19 workshop
summary: GDPR. SIGMOD Rec. 49(3), 55–58 (2020). https://doi.org/10.1145/
3444831.3444842

20. The Apache Software Foundation: Apache Flink stateful functions (2021). https://
flink.apache.org/stateful-functions.html. Accessed 14 June 2021

21. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow analy-
sis. J. Comput. Secur. 4(2/3), 167–188 (1996). https://doi.org/10.3233/JCS-1996-
42-304

22. Wang, L., et al.: Data capsule: a new paradigm for automatic compliance with
data privacy regulations. In: Gadepally, V., et al. (eds.) DMAH/Poly -2019. LNCS,
vol. 11721, pp. 3–23. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
33752-0 1

23. Zhang, W., Fang, V., Panda, A., Shenker, S.: Kappa: a programming framework
for serverless computing. In: Fonseca, R., Delimitrou, C., Ooi, B.C. (eds.) SoCC
2020: ACM Symposium on Cloud Computing, Virtual Event, USA, 19–21 October
2020, pp. 328–343. ACM (2020). https://doi.org/10.1145/3419111.3421277

https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1109/CSFW.2005.15
https://doi.org/10.1145/3360593
https://doi.org/10.1145/3360593
https://doi.org/10.1007/978-3-030-33752-0_3
https://doi.org/10.1007/978-3-030-33752-0_3
http://www.vldb.org/pvldb/vol13/p2438-sreekanti.pdf
http://www.vldb.org/pvldb/vol13/p2438-sreekanti.pdf
https://doi.org/10.1109/ICDE.2005.1
https://doi.org/10.1109/ICDE.2005.1
https://doi.org/10.1145/3444831.3444842
https://doi.org/10.1145/3444831.3444842
https://flink.apache.org/stateful-functions.html
https://flink.apache.org/stateful-functions.html
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.1007/978-3-030-33752-0_1
https://doi.org/10.1007/978-3-030-33752-0_1
https://doi.org/10.1145/3419111.3421277

DMAH 2021

Privacy-Preserving Distributed Support
Vector Machines

Simone Bottoni1(B), Stefano Braghin2, Theodora Brisimi2,
and Alberto Trombetta1

1 University of Insubria, Varese, Italy
{sbottoni,alberto.trombetta}@uninsubria.it

2 IBM Research Europe, Dublin, Ireland
stefanob@ie.ibm.com, theodora.brisimi@ibm.com

Abstract. Federated machine learning is a promising paradigm allowing
organizations to collaborate toward the training of a joint model without
the need to explicitly share sensitive or business-critical datasets. Previ-
ous works demonstrated that such paradigm is not sufficient to preserve
confidentiality of the training data, even to honest participants. In this
work, we extend a well-known framework for training sparse Support
Vector Machines in a distributed setting, while preserving data confiden-
tiality by means of a novel non-interactive secure multiparty computa-
tion engine, that preserves data confidentiality. We formally demonstrate
the security properties of the engine and provide, by means of extensive
empirical evaluation, the performance of the extended framework both
in terms of accuracy and execution time.

Keywords: Distributed support vector machines · Privacy-preserving
machine learning · Secure federated learning

1 Introduction

In an era of “big data”, computationally efficient and privacy-aware solutions
for large-scale machine learning problems become crucial. This becomes very
relevant in the healthcare domain where large amounts of data are stored in dif-
ferent locations and owned by different entities. Past research has been focused
on centralized algorithms, which assume the existence of a central data reposi-
tory (database) that stores and processes the data from all participants. Such an
architecture, however, can be impractical when data are not centrally located,
it does not scale well to very large datasets, and introduces single-point of fail-
ure risks which could compromise the integrity and privacy of the data. Given
the large amount of data that is widely spread across hospitals/individuals, a
decentralized and computationally scalable methodology is very much in need.

Motivating Scenario. Hospitals want to create reliable and accurate models on
the data that they own but for regulatory and compliant constraints they cannot
c© Springer Nature Switzerland AG 2021
E. K. Rezig et al. (Eds.): Poly 2021/DMAH 2021, LNCS 12921, pp. 85–102, 2021.
https://doi.org/10.1007/978-3-030-93663-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93663-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-93663-1_8

86 S. Bottoni et al.

share data with other institutes. Within national boundaries, it might be possible
to leverage governmental aggregators, but it is not always feasible to share data
across borders, or even between organizations. Legislations like General Data
Protection Regulation (GDPR)1, California Consumer Privacy Act (CCPA)2

and Safe Shield3 provide definitions and levels of sensitivity in personal data and
instruct all the entities involved in the data process pipeline how such categories
of data should be managed. These data handling instructions further specify
under which conditions data can be exchanged, with the general assumption that
clear text data should not be openly shared with other entities. This constraint
conflicts with the basic requirement of sharing data to train a joint model. Hence,
a mechanism to securely compute models in a federated fashion is required.

Federated learning allows the hospitals to train a machine learning model
without sharing their data. However, this mechanism is vulnerable to attacks,
for example, in the inference problem [15] where an attacker can leak sensi-
tive information about the participants’ private data from the machine learning
algorithm parameters [19].

To preserve privacy, federated learning can use various methods. Specifi-
cally, Secure Multi-party Computation (SMC), Differential Privacy, Homomor-
phic Encryption [25], or a combination of them, as in [23,26]. Each of these
methods has its advantages and disadvantages. SMC provides a complete Zero-
Knowledge property, where each party involved knows nothing except its input
and output, but this is difficult to achieve efficiently [8]. Differential Privacy pre-
vents a third party from being able to associate data with an individual and pro-
tects their privacy, at the cost of losing a certain amount of the model’s accu-
racy [17]. Finally, the Homomorphic Encryption guarantees privacy protection
through parameter exchange under the encryption mechanism. The model’s accu-
racy is preserved but this technique adds a non-negligible communication cost [27].

In this work we present a method based on the Homomorphic Encryp-
tion technique, and in particular, using the Paillier Homomorphic Encryption
scheme [21], which is a method widely used in the previously described scenario.
We choose to use a Homomorphic Encryption approach given the fact that it
can preserve the privacy of data from any external adversary, it does not have
any model precision loss and, finally, it is possible to apply this security method
over an existing federated learning model. This is obtained without modification
to the original algorithm, beside the encryption and decryption of the coeffi-
cients [27]. A similar approach to our work was considered in [12]. The authors
propose a secure weighted aggregation scheme based on the Paillier Homomor-
phic Encryption where they try to protect the privacy of the clients’ data from
information leakage. The architecture of their protocol includes multiple clients
that solve a machine learning problem with the coordination of a central unit
that has the purpose to aggregate the values received from the clients. In their
protocol, they evaluate the data disparity, i.e., the different amounts of data that

1 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC.
2 https://oag.ca.gov/privacy/ccpa.
3 https://eur-lex.europa.eu/eli/dec impl/2016/1250/oj.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
https://oag.ca.gov/privacy/ccpa
https://eur-lex.europa.eu/eli/dec_impl/2016/1250/oj

Privacy-Preserving Distributed Support Vector Machines 87

the federated learning participants own. For the security of that protocol, the
authors take into account both the privacy problems in data disparity evalua-
tion and the privacy-preserving aggregation security issue. They also consider
the possibility that both the central server and/or the clients send fraudulent
messages to the others clients.

In [16] the authors present the xMK-CKKS, a multi-key homomorphic
encryption protocol for a privacy-preserving federated learning method that is an
improvement of the state-of-art MK-CKKS protocol [4]. They apply this scheme
to FedAvg [18], a federated learning method based on iterative model averaging.
The authors apply their solution to a smart healthcare scenario with 10 IoT
devices and a central unit that computes the model aggregates. They compare
their solution with a federated learning method based on the Paillier encryption
scheme assuming that this last solution is not secure because all the devices
share the same secret key and public key. They show that their solution loses
less than 0.5% accuracy compared to the federated learning scheme and reduces
the communication cost, the computational cost, and the energy consumption
compared to the Paillier solution.

More recent work was presented in [10], where the author proposes a multi-
party privacy-preserving federated machine learning framework, called PFMLP.
This framework is based on partially homomorphic encryption, in particular,
they used an improved Paillier algorithm, that adds a random integer in the
encryption, which can speed up the training by 25–28%. They consider a Fed-
erated Network that includes a server that aggregates the encrypted model gra-
dients and sends back the results to the clients. The security of their solution is
based on the fact that the server does not have any key, so it can not see any
plaintext avoiding the inference problem.

All previous works take into account a central unit with the purpose to
aggregate the model coefficients shared from the clients. Our work does not
involve the use of a single central unit, in fact, all the clients act both as a node
and an aggregator. Our protocol also avoids the security problem related to the
fact that all the devices share the same secret key and public key, generating
different compatible keys in a particular way.

In this paper, we present Secure Homomorphic Sum protocol (SHSP), a novel
SMC protocol that can be applied to any federated learning method. Encrypted
messages are exchanged between agents containing the parameters of a model
that they all jointly want to learn. To illustrate it in practice, we apply the pro-
posed encryption scheme on top of a federated learning method, where agents
jointly solve the sparse Support Vector Machine (sSVM) in a distributed privacy-
preserving manner without exchanging their raw data. As a case study to illus-
trate our algorithm, we apply it in a healthcare scenario, where we study the
heart disease problem.

The paper is organized as follows. Section 2 presents an overview of the dis-
tributed sSVM algorithm based on a framework called cluster Primal Dual Split-
ting (cPDS). In Sect. 3 we explain the protocol and its variation that adapts
cPDS to be secure. In Sect. 4 we present the datasets, how we executed the

88 S. Bottoni et al.

tests, and the setting that we used. In Sect. 5 we show the results that we have
obtained and we finally discuss them in Sect. 6. We conclude in Sect. 7 depicting
some future work.

2 Federated Primal Dual Split Method

We will be extending the work presented in [2], that describes a federated learn-
ing of predictive models from federated data. Specifically they apply the cPDS
framework to the sSVM.

Let us briefly summarize the work presented in [2]. Suppose a set P of agents
that want to collaborate to train a sSVM global model to separate two classes.
Each participant p ∈ P owns a subset Dp ⊆ D of the entire dataset and maintains
a copy (βj , βj0) of the classifier parameters to be estimated. In each iteration
of the method the parameters (βj , βj0) are updated, using data locally stored
in the agent and the coefficients that the agent receives from its neighbors. In
every iteration each agent updates xj = (βj , βj0) ∈ R

d+1, yj ∈ R
nj , qj ∈ R

nj

and λj ∈ R
d+1.

We illustrate in Algorithm1 the cPDS updates that each agent j is perform-
ing. The effectiveness of this approach has been demonstrated against state-of-
the-art of local and distributed methods in [2].

3 Method

From a high-level point of view, the protocol presented in Sect. 2 can be viewed
as a sequence of iterations in which, at every stage, a set of nodes sends its own
locally computed weights to an aggregator that sums them, and afterward uses
the aggregated value as input for the next stage. Note that this is an abstraction
of the actual protocol. In cPDS each node is at the same time aggregator and
worker, as each nodes receives weights from its neighbours and sends the weights
it computed on its own data to the neighbours as well.

In what follows, we describe how an aggregator may sum the coefficients
sent by the nodes in an oblivious way, obtaining the aggregated value of their
sum without knowing their actual values. The proposed approach is based on
a simple deployment of the Paillier encryption scheme, known to be additively
homomorphic [21]. This, in turn, allows us to define a secure version of the
protocol presented in Sect. 2 in which the weights collected by an aggregator are
not directly accessible neither to the aggregator nor to the other nodes (except –
of course – the weights a node has sent itself). In this way, it is not possible for a
party acting in the protocol to infer the weights computed by other parties and,
in turn, no party is able to perform an inference attack on the data that parties
exchange during the protocol’s stages. In this work, we do not address attacks
different from inference attacks or – as an example – collusion attacks [24]. Other
attack scenarios can be addressed by combining works previously presented, such
as [17] and [15], to the framework presented in remainder this section. This is

Privacy-Preserving Distributed Support Vector Machines 89

Algorithm 1: cPDS method
1 Function main():
2 x0

j , y
0
j , q−1

j , q0
j , λ−1

j , λ0
j = initialize()

3 for k ← 0 to max iter do

4 xk+1
j = compute local(λk

j)

5 λk+1
j = λ update(xk+1

j) // requires information exchange

6 end

7

8 Function initialize():

9 x0
j ∈ R

d+1

10 y0
j ∈ R

nj

11 q−1
j = 0

12 q0
j = Γj(A

ᵀ
j x0

j − y0
j)

13 λ−1
j = 0

14 λ0
j = x0

j − ∑
i∈Nj∪{j} wjix

0
j

15 return x0
j , y

0
j , q−1

j , q0
j , λ−1

j , λ0
j

16

17 Function compute local(λk
j):

18 xk+1
j =

argmin
xj

{〈2qk
j − qk−1

j , ΓjAjxj〉+ gj(xj)+ 〈2λk
j − λk−1

j , xj〉+0.5‖xj − xk
j ‖2

Θj
}

19 yk+1
j = argmin

yj

{fj(yj) + 〈qk
j , −Γjyj〉 + 0.5‖yj − Ajx

k+1
j ‖2

Γ
ᵀ
j Γj

}

20 qk+1
j = qk

j + Γj(Ajx
k+1
j − yk+1

j)

21 return xk+1
j

22

23 Function λ update():

24 λk+1
j = λk

j + xk+1
j − ∑

i∈Nj∪{j} wjix
k+1
j

25 return λk+1
j

possible because the framework here presented preserves confidentiality of the
weights computed locally by each node, but does not make any assumption on
how the weights have been computed.

We begin by presenting the Paillier-based secure sum protocol. Consider a
set P of nodes, or participants, {p1, . . . , pm} and a dataset D. Each participant
p ∈ P owns a subset Dp ⊆ D of the entire dataset.

According to the federated machine learning protocol described in [2], each
participant of the federated machine learning task acts as an aggregator for the
weights computed by its neighbors. Such neighbors are predefined according to
the network topology connecting the various agents. Departing from traditional
approaches, we remark that our protocol does not require multiple interaction
steps among the nodes and an aggregator. There are two possible scenarios about
network topology, as shown in Fig. 1a and Fig. 1b. The first scenario implies that
all nodes that participate in the computation have at least two neighbors. On the

90 S. Bottoni et al.

(a) Case 1 (b) Case 2

Fig. 1. Simplified depiction of possible topological scenarios

other side, in the second scenario is it possible to find some nodes that have only
one neighbor. In this case, it is necessary to modify the protocol to compute the
sum. In the following, we present the protocol, its variation, and how we provide
security to the machine learning model.

3.1 Keys Generation and Encryption

We assume the presence of a trusted keys generator that computes the crypto-
graphic material (keys and random values) and distributes it to the appropriate
parties participating in the protocol execution. We can safely assume that after
the key generation and distribution phase the key generator may go offline.

The keys generator computes, for each node, a master private key msk and
a set of secret encryption keys {pk1, . . . , pkm}, where m is the number of node’s
neighbors. The detailed procedure for the generation of the keys, based on the
Paillier keys generation scheme, is summarized in Algorithm 2.

We note that the parameters for key generation are the same as in the Paillier
scheme, and follow the same rules. Such parameters are used to generate a master
private key msk that is used by a node to decrypt the aggregated value that it
obtains after the sum of all the values that it has received from its neighbors
(the associated public key is not used in our protocol, and so it is not generated).
We detail how the nodes use these keys and which values (and how many times)
are exchanged among the nodes in the next section.

Referring to the Algorithm2 we note that the set of secret encryption keys
{pk1, . . . , pkm} are generated following the Paillier public key rules, but in addi-
tion, a random value ri is added, different for each key of the set. Such keys will
be used by the node’s neighbors to encrypt the values before exchanging them.
The decryption of one encrypted value can only happen after having summed up
all the other ones, using the associated master private key msk. If a node tries
to decrypt an encrypted value before having summed it with the other values,
it obtains an obfuscated value with the secret ri. We detail the security of the
message in Sect. 3.4.

Privacy-Preserving Distributed Support Vector Machines 91

Note that the association between node’s neighbors and keys {pk1, . . . , pkm}
could be further randomized to reduce collusion risks.

Algorithm 2: Secure Homomorphic Sum protocol
1 Function parameters generation():
2 Choose p, q random primes such that gcd(pq, (p − 1)(q − 1)) = 1
3 Compute n = pq and λ = lcm(p − 1, q − 1)
4 Select random integer g where g ∈ Z

∗
n2

5 Check the existence of μ = (L(gλ mod n2))−1 mod n, where L(x) = x−1
n

6 return n, g, L, μ

7

8 Function master private key(L, μ):
9 msk = (λ, μ)

10 return msk

11

12 Function secret encryption keys(n, g):
13 Select m − 1 random numbers, {r1, . . . , rm−1} from Zn

14 Set rm = − ∑
ri

15 Let pi = (n, g, ri) be the secret key associated to agent i
16 return P = {p1, . . . , pm}
17

18 Function encryption(pi, mi):
19 Check mi < n
20 Select r < n such that r ∈ Z

∗
n

21 Ensure that gcd(r, n) = 1
22 ci = gmi ∗ gri ∗ rn mod n2

23 return ci

24

25 Function decryption(msk, c):

26 m = L(cλ mod n2)μ mod n
27 return m

3.2 Protocol

The protocol assumes that a node p has m ≥ 2 neighbors. All the nodes work
both as a simple node and as an aggregator. In the following, we present how
the protocol works taking into account only one node as an aggregator; these
operations must be applied to all nodes in parallel, considering each node as an
aggregator.

The trusted keys generator sends to the aggregator node a master private
key and a secret encryption key pm taken from the set of keys P; then it sends to
each neighbor of the aggregator a different key always taken from the set of keys
P. The secret encryption keys are distributed to the nodes so that all the nodes

92 S. Bottoni et al.

that participate in the computation group have only one key present in the set
and all the keys must be allocated.

At each iteration of the algorithm presented in Sect. 2, each participant i
computes its algorithm parameters based on its data. Then everyone encrypts
its coefficients with the secret encryption key pi, and sends the encrypted
value to the node designated as the aggregator. When the aggregator has
received all the encrypted data from all its neighbors, it encrypts its algo-
rithm’s coefficients with its secret encryption key pm and aggregates the val-
ues by summing all encrypted values that it has received, obtaining a value
E =

∑
ei. Because of Paillier Encryption schema construction, this results in

E = g(v1+r1)+(v2+r2)+...+(vm+rm). Knowing that
∑

ri = 0 this is equivalent to
E = gv1+v2+...+vm , the aggregator can decrypt the aggregated value E with
its master private key msk to obtain the plaintext.

Because of the presence of ri in the keys, without first adding all the values, it
is not possible to recover with enough confidence the values from the decryption
of individual ciphertexts.

3.3 A Variation of the Protocol

The protocol presented in the previous section implies that a node p has m ≥ 2
neighbors. In fact, if we were deploying the previously described protocol in a
scenario like the one in Fig. 1b, where there are some nodes as C, D and E with
exactly one neighbor, when these will be aggregators they could leverage their
secret encryption keys to extract the values of the coefficients of the nodes A
and B. For example, if we consider C as the aggregator, it could encrypt its
algorithm’s coefficients with its secret encryption key, sum with the encrypted
values that it has received from B and then it can decrypt with its master private
key. This way, C obtains a plaintext that is an aggregated value composed by
its value and the value of B. To obtain the B ’s plaintext the aggregator must
only subtract its coefficients. Thus, it would be able to infer some information
about the nature of the data that the neighbor node possesses.

This variation adapts the protocol to work correctly with the presence of
nodes with only one neighbor in the graph’s topology.

The solution that we propose to solve this problem uses dummy links. The
keys generator, which knows the graph topology, when seeing a node that has
only one neighbor, instead of generating only two secret encryption keys p1, p2,
generates a third key p3. This last key is sent to a random node that is a neighbor
of the only neighbor node that has the aggregator. In this way, the node that is
the only neighbor of the aggregator sends to the aggregator two different values,
its value and the other one that has received from one of its neighbors. Applying
this solution, the protocol can be considered as the standard one defined in the
previous paragraph. The security of this protocol’s variation is the same that
the standard protocol has, because, using the third values encrypted with the
third key, the aggregator can’t recover with enough confidence the right values
and it can’t infer any information about the data.

Privacy-Preserving Distributed Support Vector Machines 93

3.4 Security Considerations

We now present the proof that our protocol is secure in an honest-but-curious
scenario. In this scenario, we consider a passive adversary that listens to the
network and it can obtain all the messages that the federated learning parties
exchange during a computation. These messages, which are the model coeffi-
cients, were encrypted by a node with its secret encryption key. Following the
protocol presented in this section, the only way that the adversary has to decrypt
these ciphertexts is to get all the others messages from the others nodes of the
group, sum them and decrypt the aggregated value with the aggregator’s private
key.

Now, we assume that our protocol is insecure. Then we can assume that
there is an adversary that may decrypt each message it intercepts in the net-
work (without knowing the secret key). So, the adversary can decrypt every
message exchanged during the machine learning computation. We start from
the fact that an encrypted message with our protocol is equal to c = E(pi,m) =
E((n, g, ri),m) = gm ∗ gri ∗ rn mod n2, and, if we set ri = 0 we obtain
c = E(pi,m) = E((n, g),m) = gm ∗ rn mod n2 that is equal to a ciphertext
encrypted with the Paillier standard protocol. Given this fact and taking into
account an adversary with the previously described power, we can conclude that
an attacker that can easily decrypt a message encrypted with our protocol can
easily decrypt a message encrypted with the standard Paillier protocol. Thus,
an adversary that uses the procedure for breaking our protocol as a block-box
for breaking the Paillier scheme.

In conclusion, if we consider [3], where the authors prove that Paillier’s
encryption scheme is semantically secure, we can assume that our protocol is
also semantically secure.

4 Experimental Evaluation

In this section, we describe how we modified the algorithm presented in Sect. 2
to make it more secure, i.e., to avoid that a node can infer sensible information
from data shared by other participants in the computation. We also present how
we evaluated the impact of our protocol on the algorithm, considering both the
time used to train the model and the performance of classification obtained in
tests.

To develop the secure version of cPDS we use the phe Python3 library [5]
that implements the Paillier partially homomorphic encryption. This library is
composed of some functions that allow us to generate a different set of keys,
encrypt some values, and decrypt the ciphertexts. It also contains a function to
sum two ciphertexts and one to multiply a ciphertext with a scalar. We modified
this library to adapt it to our requirements; in particular, we added a new func-
tion that allows us to generate a new set of keys following the protocol that we
previously described. We also adapted the encryption and decryption functions
to work correctly with the new version of the keys. Algorithm2 illustrates the
details about these functions.

94 S. Bottoni et al.

Finally, we apply to the cPDS algorithm, the adapted functions of the phe
library, to encrypt the computed coefficients, sum them and decrypt the aggre-
gated values that the nodes composing the system exchange during algorithm
execution.

4.1 Settings

To test the cPDS algorithm in a distributed way we considered different envi-
ronment setups. In particular, we took into account the number of nodes that
compose the system and the topology of the network that includes all these
nodes.

To test the algorithm in a realistic scenario we vary the number of nodes
that want to participate in the computation. In the healthcare scenario, this
number represents the number of hospitals that own part of the data used to
train the model. To emulate a real environment we range this number from 5
to 30. We observed these different numbers of clients in some business settings
where solutions like [14].

In a real scenario, it is not sure that all nodes are communicating with each
other. To take into account all the different possibilities we choose to test the
secure version of the cPDS algorithm considering different network topologies.
We run different tests, and before each test, we generate a graph that represents
the topology of the network using the Erdős - Rényi model. To generate the
graph we use three different levels of connection between nodes, in this way
we have (i) a low connected graph where the edges of the nodes are as lower
as possible, (ii) a partially connected graph where the nodes are on average
connected and (iii) a fully connected graph where all the nodes are connected. To
define more formally these three types we take into account the degree property
of a network [13], that is the number of edges that a node has. This way, define n
as the number of nodes present in the network, the expected number of a node’s
edges is equal to n ∗ p [9,20]. Given this property, we define (i) a low connected
graph as a network where nodes have an average degree equal to n ∗ 0.2, (ii)
a partial connected graph as a network with an average degree of n ∗ 0.5 and
finally (iii) a fully connected graph where the average degree is n ∗ 1.

When varying the topology of the network, and/or the number of nodes, the
number of the edges that connect the nodes between them also varies, and, as
a consequence, the number of messages circulating on the network increases or
decreases. This allows us to study - if and how much - the different number of
messages and the different number of nodes impact the times and the accuracy
of the model.

4.2 Datasource

To evaluate our protocol we train the cPDS algorithm considering three different
datasets. The first dataset is a synthetic dataset generated in three different
versions that vary in the number of features: the first one has 15, 000 instances
and 5 features, the second one has 15, 000 instances and 10 features, and the

Privacy-Preserving Distributed Support Vector Machines 95

Fig. 2. Synthetic test dataset’s classes.

third one has 15, 000 instances and 20 features. All of these synthetic datasets
were generated randomly following a Multivariate Gaussian Distribution [11].
We choose to vary these datasets based on the number of features because, in
this way, we can study how the time to encrypt the coefficients of the cPDS
algorithm increases as the number of features increases. We show an example of
this synthetic dataset in Fig. 2.

To evaluate our protocol in a real-world scenario with a dataset based on
real data, we use the “Heart Disease” dataset [7]. This set is composed of dif-
ferent subsets of data, where each of these sets describes a heart disease study
on a different location. In particular, we choose to use the dataset describing
the Cleveland population, which is the only one that has been used by machine
learning researchers and practitioners. This because it is the only dataset that
has a very small percentage of NaN values and it is the one that has the high-
est number of instances. This dataset describes different health situations of
patients, and the purpose is to find the presence, or not, of heart disease in a
patient. The database has 76 raw features, but we used the pre-processed version,
which is the version used by all the published experiments that use this dataset
where the unimportant attributes are dropped and only the important ones are
considered [22], that are only 14; the set has 303 instances. Finally, given the
low number of data of the previous set, we choose to test the cPDS algorithm
with another medical database, based on real data, that has more instances. The
dataset that we choose to use is a subset of the Framingham database that is
available on Kaggle [1,6]. This set of data includes 15 features and more than
4, 000 instances. This set is a study of cardiovascular disease conducted in the
town of Framingham, Massachusetts, on over 5000 citizens. The data, as the
previous one, describes different health situations of patients, and the purpose
is to find the presence, or not, of cardiovascular disease in a patient.

96 S. Bottoni et al.

4.3 Metrics

To evaluate the performance of the secure version of cPDS we took into account
the additional time compared to the classic version of the algorithm. To esti-
mate the impact of the adapted phe secure functions on the execution time of
the algorithm we recorded three different times during the execution of the algo-
rithm. These recorded values are the times that were added to execute (i) the
operation of encryption of the algorithm coefficients by the nodes, (ii) the oper-
ation of sum computed by the aggregators, and (iii) the operation of decryption
of the aggregated values. For the encryption’s operation, the time recorded was
calculated by summing, for each node, the time used to encrypt the algorithm
coefficients for every neighbor of the node. From these values, for each iteration,
only the time of the node that has the greatest value was recorded, because,
given the fact that the execution is in parallel the aggregator can’t start the
sum’s operation without the values of all the nodes. The sum time is the max
time that a node used to sum all the values that it receives from all its neighbors.
The aggregator starts the operation only when it has received all the values from
all its neighbors. Taking into account the fact that each node is both a simple
node and an aggregator, when a node finishes the sum’s operation it can start to
decrypt the aggregated values. The decryption time was taken from each node
and is the time that a node used to decrypt its aggregated coefficients. Then a
new iteration can start immediately with the new values used to compute a new
set of coefficients. Finally, to evaluate the performance of classification, we took
into account, the Receiver Operating Characteristic Curve (AUC), obtained in
the test of the model. We investigated - if and how much - our secure version of
the algorithm impacted the precision of the model compared with the one that
is not secure.

5 Results

In this section, we present the conducted tests and the results that we obtained,
for both the added time to the computation and the performance of the trained
models. We executed different tests to evaluate the secure version of the cPDS
algorithm. These tests vary based on the dataset considered, the number of
nodes, and the topology of the network that connected the nodes.

For each dataset, we run three different tests, one for each graph topology, and
for each of these, we run four other tests, with a different number of nodes. We
executed these tests one time for the secure version of cPDS algorithm and one
time for the standard version. The results for the synthetic datasets are presented
in Fig. 3a. These three graphs differ based on the number of features that are
present in the dataset. Each of these graphs represents the total time per iteration
that we added to the computation of the secure version of cPDS compared to
the non-secure version, as a function of the number of nodes that participate in
the machine learning computation. The total time is the sum of the time used,
by each node, to execute the three secure functions, the encryption, the sum,
and the decryption ones, presented in Sect. 4.3. We consider the maximum time

Privacy-Preserving Distributed Support Vector Machines 97

(a) Synthetic datasets times. (b) UCI - Heart Disease and Framing-
ham Heart Study datasets times.

Fig. 3. Max time per iteration.

of each of these functions because, taking into account the fact that they are
executed in parallel, a node must wait for the values from other nodes before
start a new iteration. In each of these graphs, we present the total time based
also on the topology of the network taking into account the number of edges that
connect the nodes. In Fig. 3b we show the results obtained from the executed
tests for the other two datasets, the “UCI - Heart Disease” and the “Framingham
Heart Study”. These two datasets are based on real data and regards the study
of heart diseases. They have 13 and 15 features respectively. As in the previous
case, we present the total time as a function of the number of nodes. We consider
also the topology of the network.

We present in Fig. 4 the AUC that we obtained from the tests that we exe-
cuted with “UCI - Heart Disease” and the “Framingham Heart Study” datasets.
In this graph, we inserted only one value per test, given the fact that the values
obtained from the executed tests with the secure version of cPDS are exactly the
same as the values obtained from the non-secure version. To be able to compare
the AUC obtained in tests between the two cPDS versions, we used the same
parameters and the same network configuration between the nodes. In this way,
we could see - if and how much - the added functions to make the algorithm
secure impacted the performance of the trained model. In this graph is possi-
ble to see the AUC of the model in the setting where the protocol variation is
applicable. These cases are the ones where we have 5 and 10 nodes with a lower
connected graph, and so we have the highest probability to find a node with only
one neighbor. To have a better understanding of this fact, we also show in this
graph the AUC obtained from tests executed removing the protocol variation.
These tests are executed with the same setting, but given the fact that some

98 S. Bottoni et al.

Fig. 4. AUC of tested datasets. Fig. 5. Communication cost.

Table 1. JSON size in KB.

Features Encrypted JSON (KB) JSON (KB)

5 7768 122

10 14243 227

15 20715 332

20 27194 435

cPDS parameters are randomly initialized, the obtained AUCs are not perfectly
the same.

Finally, we tested the communication costs, taking into account the time that
two nodes use to exchange a message and the size of this message. We consider
the different number of features, given the fact that a message corresponds to a
serialized version of the coefficients computed by a node, and these coefficients
are equal in number to the feature of the data, as required by cPDS. We present
the communication time based on different server locations in Fig. 5 and based
on the message sizes in Table 1. To test the time we have created two different
servers on the Heroku platform, the first one is located in EU region, and the
second one in the US region and we exchange messages with our server located
in Italy. This time includes the time to serialize a message in JSON format, send
it from a server to another, and deserialize the JSON object. We recorded the
times with both messages that include encrypted values and messages with clear
values.

6 Discussion

Below, we discuss the results presented in the previous section. We also highlight
the limits that our solution presents.

In Fig. 3a we present the total time that we obtain from the tests with the
synthetic datasets. From these three graphs, we show how the time that we
add to the execution, to make it secure, depends on the number of features.
This is given by the fact that the coefficient vector of cPDS is as long as the

Privacy-Preserving Distributed Support Vector Machines 99

number of features that are present in the dataset. This implies that each node
has to encrypt more values, so the time increase. In fact, from this Figure, we
can notice that the time increases linearly based on the number of features. We
observe the same dependence considering not only the number of features but
also the number of nodes and how much these nodes are connected between
them. As we show in Fig. 3a we note that, taking into account the three graph
topologies independently, how the time slightly increases as the number of nodes
increases. This is given by the fact that the more nodes we have, and the more
they are connected, the more encrypted values each node has to sum. If we also
consider the number of edges that connect the nodes we notice how the time
increases as the connections between the nodes increase. This is motivated by
the fact that each node must encrypt its coefficient several times, with different
keys, that strictly depends on the number of nodes, as presented in Sect. 3.2. We
also note that the number of instances of a dataset does not impact the added
time to the secure cPDS. We observe the same dependencies in Fig. 3b where we
show the results obtained from the tests with “UCI - Heart Disease” and the
“Framingham Heart Study” datasets.

In Fig. 6 we split the total time that we add to an iteration of the tests with
the “Framingham Heart Study” dataset in its three components, the encryption,
the sum, and the decryption time. We present, how the encryption time, that
is the time that a node used to encrypt all the values in a single iteration, is
around 96–98% of the total time that we added to make the cPDS secure. We
observe the same relation in all the others sets. From the above analysis, we can
conclude that our solution performs well in presence of datasets with a restricted
number of features, regardless of the number of instances. We also notice that
our solution could be considered too expensive in the presence of a large number
of participants in the computation that are all connected because this could fall
into an expensive time-consuming.

Regarding Fig. 4, one can observe that, for the two datasets considered, the
obtained AUC is the same for both the secure version of cPDS and the non-
secure version. This implies that our solution has no impact on the classification
performance of the machine learning model. Moreover, we observe that the error
introduced by the conversion from floating-point coefficients to integer during
the encryption process is negligible in all the configurations, as shown in Fig. 7.
The AUC is also constant for all the settings that we have presented in Sect. 4.1.
We also note how the obtained values do not vary too much in the settings where
the protocol variation is applicable compared to the others. We conclude that
the protocol variation does not impact the performance of the model, where
applicable.

Finally, in Fig. 5, where we show the communication cost, we observe that
the time that two nodes used to serialize, send and deserialize an encrypted
JSON is slightly higher than the not encrypted version, for all the servers con-
sidered. This is given by the fact that in a JSON file of the encrypted version are
stored the encrypted coefficients, where each coefficient has a length of 2048 bits.

100 S. Bottoni et al.

Fig. 6. Framingham components. Fig. 7. Training AUC in a setting with 10
nodes partially connected.

In the not encrypted version, these coefficients have a length equal to a double-
precision floating-point length, which is 64 bits in our Python implementation.
This has an impact also in the size of the JSON as showed in Table 1.

7 Conclusions and Future Work

In this work, we presented an extension of the cPDS algorithm based on the
Paillier Homomorphic encryption scheme. Our solution allows hospitals to com-
pute a machine learning model in a distributed way without sharing their private
data, preserving their patients’ privacy from inference attacks. Our work added
a secure layer to protect the cPDS model’s coefficient from Honest-but-Curious
adversaries and we proved that SHSP is semantically secure assuming that Pail-
lier’s encryption scheme is semantically secure.

We evaluated our solution with different datasets, with both synthetic data
and medical data, that vary according to the number of features and the number
of instances. We showed how the time that we added to preserve the privacy of
the data depends on the number of features that are present in the data and it
does not on the number of instances. We considered also the topology of the net-
work that connects the participants to the computation and we showed that this
time depends also on the number of clients that participate in the computation
and the number of edges that connect these nodes. We also demonstrated that
our solution preserves the accuracy of the model, compared to the non-secure
version, without any loss. However, we noted how our solution does not work
well in all the settings that we considered. In fact, we noticed how the time that
we added could be considered too high in the presence of a higher number of
features and also in the settings where are present a lot of nodes with a high
degree value.

Privacy-Preserving Distributed Support Vector Machines 101

Further analysis can be conducted to improve the time of our solution, for
example reducing the number of encryptions that a node must do before sharing
its coefficients with the other nodes. This would greatly reduce the time each
node uses to encrypt the values, making our solution much more efficient. A
potential future research direction could also be to investigate how we can protect
the cPDS from other types of attacks, like membership inference attack.

Acknowledgement. Stefano Braghin and Theodora Brisimi are partially funded from
the European Union’s Horizon 2020 research and innovation programme under grant
agreement No. 824988. https://musketeer.eu/

References

1. Ajmera, A.: Framingham heart study dataset (2018). Data Accessed from Kaggle.
https://www.kaggle.com/amanajmera1/framingham-heart-study-dataset

2. Brisimi, T.S., Chen, R., Mela, T., Olshevsky, A., Paschalidis, I.C., Shi, W.: Feder-
ated learning of predictive models from federated electronic health records. Int. J.
Med. Inform. 112, 59–67 (2018)

3. Catalano, D., Gennaro, R., Howgrave-Graham, N.: The bit security of Paillier’s
encryption scheme and its applications. In: Pfitzmann, B. (ed.) EUROCRYPT
2001. LNCS, vol. 2045, pp. 229–243. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44987-6 15

4. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption
with packed ciphertexts with application to oblivious neural network inference.
Cryptology ePrint Archive, Report 2019/524 (2019). https://eprint.iacr.org/2019/
524

5. CSIRO Data61: Python Paillier Library (2013). https://github.com/data61/
python-paillier

6. Dawber, T.R., Meadors, G.F., Moore, F.E.: Epidemiological approaches to heart
disease: the Framingham Study. Am. J. Public Health Nations Health 41(3), 279–
286 (1951)

7. Detrano, R., et al.: International application of a new probability algorithm for the
diagnosis of coronary artery disease. Am. J. Cardiol. 64(5), 304–310 (1989)

8. Du, W., Han, Y.S., Chen, S.: Privacy-preserving multivariate statistical analysis:
linear regression and classification. In: Berry, M.W., Dayal, U., Kamath, C., Skil-
licorn, D.B. (eds.) Proceedings of the Fourth SIAM International Conference on
Data Mining, Lake Buena Vista, Florida, USA, 22–24 April 2004, pp. 222–233.
SIAM (2004)

9. Erdös, P., Rényi, A.: On random graphs I. Publicationes Math. Debrecen 6, 290
(1959)

10. Fang, H., Qian, Q.: Privacy preserving machine learning with homomorphic encryp-
tion and federated learning. Future Internet 13(4), 94 (2021)

11. Flury, B.: The multivariate normal distribution. In: Flury, B. (ed.) A First Course
in Multivariate Statistics. STS, pp. 171–207. Springer, New York (1997). https://
doi.org/10.1007/978-1-4757-2765-4 3

12. Guo, J., Liu, Z., Lam, K., Zhao, J., Chen, Y., Xing, C.: Secure weighted aggregation
in federated learning. CoRR abs/2010.08730 (2020)

https://musketeer.eu/
https://www.kaggle.com/amanajmera1/framingham-heart-study-dataset
https://doi.org/10.1007/3-540-44987-6_15
https://doi.org/10.1007/3-540-44987-6_15
https://eprint.iacr.org/2019/524
https://eprint.iacr.org/2019/524
https://github.com/data61/python-paillier
https://github.com/data61/python-paillier
https://doi.org/10.1007/978-1-4757-2765-4_3
https://doi.org/10.1007/978-1-4757-2765-4_3

102 S. Bottoni et al.

13. Kantarci, B., Labatut, V.: Classification of complex networks based on topological
properties. In: 2013 International Conference on Cloud and Green Computing,
Karlsruhe, Germany, 30 September–2 October 2013, pp. 297–304. IEEE Computer
Society (2013)

14. Ludwig, H., et al.: IBM federated learning: an enterprise framework. White Paper
V0.1 (2020)

15. Lyu, L., et al.: Privacy and robustness in federated learning: attacks and defenses.
CoRR abs/2012.06337 (2020)

16. Ma, J., Naas, S.A., Sigg, S., Lyu, X.: Privacy-preserving federated learning based
on multi-key homomorphic encryption (2021)

17. Mammen, P.M.: Federated learning: opportunities and challenges. CoRR
abs/2101.05428 (2021)

18. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data (2017)

19. Melis, L., Song, C., Cristofaro, E.D., Shmatikov, V.: Exploiting unintended fea-
ture leakage in collaborative learning. In: 2019 IEEE Symposium on Security and
Privacy, SP 2019, San Francisco, CA, USA, 19–23 May 2019, pp. 691–706. IEEE
(2019)

20. Newman, M.E.J.: Random graphs as models of networks, pp. 35–68. Wiley (2002)
21. Paillier, P.: Public-key cryptosystems based on composite degree residuosity

classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

22. Patel, J., Tejalupadhyay, S., Patel, S.: Heart disease prediction using machine learn-
ing and data mining technique, March 2016

23. Truex, S., et al.: A hybrid approach to privacy-preserving federated learning. In:
Cavallaro, L., et al. (eds.) Proceedings of the 12th ACM Workshop on Artificial
Intelligence and Security, AISec@CCS 2019, London, UK, 15 November 2019, pp.
1–11. ACM (2019)

24. Xu, R., Baracaldo, N., Zhou, Y., Anwar, A., Ludwig, H.: Hybridalpha: an efficient
approach for privacy-preserving federated learning. In: Cavallaro, L., et al. (eds.)
Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security,
AISec@CCS 2019, London, UK, 15 November 2019, pp. 13–23. ACM (2019)

25. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and
applications. ACM Trans. Intell. Syst. Technol. 10(2), 12:1–12:19 (2019)

26. Yin, L., Feng, J., Xun, H., Sun, Z., Cheng, X.: A privacy-preserving federated
learning for multiparty data sharing in social IoTs. IEEE Trans. Netw. Sci. Eng.
8(3), 2706–2718 (2021)

27. Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., Liu, Y.: BatchCrypt: efficient homo-
morphic encryption for cross-silo federated learning. In: Gavrilovska, A., Zadok,
E. (eds.) 2020 USENIX Annual Technical Conference, USENIX ATC 2020, 15–17
July 2020, pp. 493–506. USENIX Association (2020)

https://doi.org/10.1007/3-540-48910-X_16

Benchmarking Multi-instance Learning
for Multivariate Time Series Analysis

Rufat Babayev(B) and Lena Wiese

Fraunhofer ITEM, Nikolai-Fuchs-Strasse 1, 30625 Hannover, Germany
{rufat.babayev,lena.wiese}@item.fraunhofer.de

Abstract. Successful incorporation of Electronic Health Records to the
data mining tools created new frontiers in digital clinical data analysis.
One of the well-known applications of clinical data analysis is the mor-
tality prediction of patients in intensive care units (ICUs). One impor-
tant aspect of mortality prediction is the analysis of multivariate time
series of observations after 24 or 48 h of ICU admission. Recent mor-
tality prediction models for ICU patients are based on either recurrent
neural networks or traditional machine learning algorithms using statis-
tical summaries of timestamped observations. Instead of using complex
neural network architectures and statistical summaries, we transform
multivariate time series into multi-instance representation by keeping the
expressiveness of the original observations. We then perform mortality
prediction using multi-instance machine learning algorithms. Our empir-
ical study shows that multi-instance representation achieves comparable
or better (in some configurations) performance in various experiments.

Keywords: Multi-instance learning · Multivariate time series
analysis · Machine learning using statistical summaries · Descriptive
statistics · Ensemble methods

1 Introduction

Electronic Health Records (EHRs) contain an electronic medical history of dif-
ferent patients collected over time, namely, the key clinical data related to the
health routine of patients. Clinicians need to examine these data and prepare
treatment options for patients in a short period of time [21,22,37]. A fast diag-
nosis and treatment is especially important for the patients staying in intensive
care units (ICUs), because they are admitted to these units in extreme situ-
ations. Hospitals and health care providers are also interested in a status of
patients in intensive care units such as how long a patient is going to stay in
ICU, whether or not a patient is going to die after certain number of hours (e.g.
24 or 48 h after ICU admission). With this grounding, they are able to organize
future actions to save time, cost and other resources required for each patient.

This work was supported by the Fraunhofer Internal Programs under Grant No. Attract
042-601000.

c© Springer Nature Switzerland AG 2021
E. K. Rezig et al. (Eds.): Poly 2021/DMAH 2021, LNCS 12921, pp. 103–120, 2021.
https://doi.org/10.1007/978-3-030-93663-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93663-1_9&domain=pdf
http://orcid.org/0000-0002-1441-8569
http://orcid.org/0000-0003-3515-9209
https://doi.org/10.1007/978-3-030-93663-1_9

104 R. Babayev and L. Wiese

To determine future patient status, monitoring data are utilized. These data are
mostly collected as multivariate time series containing values for each key health
indicator (e.g. heart rate, respiratory rate, Creatinine level, etc.) in a temporal
order. In our study, we focus on mortality prediction after 48 h of ICU admission
through multivariate time series classification.

A lot of research has been carried out for multivariate time series analy-
sis of health monitoring data [3,8,19,32,40]. In their experiments, the authors
either use deep neural networks (especially recurrent neural networks) for
sequence/temporal modeling or create feature spaces from time series variables
digested by traditional machine learning algorithms such as random forests, logis-
tic regression classifiers, support vector machines, etc. Recurrent neural networks
are useful tools to learn sequential or temporal relationships from time series
data [32]. However, there are still some open questions remaining about the pos-
sible effectiveness of deep learning models for health care data. For example, the
size of the data in health care applications is often modest relative to the com-
plexity of deep learning models [19]. More specifically, these models can easily
overfit on small-scale data. Moreover, complex architectures and parameter con-
figurations need to be maintained for training. In contrast, traditional machine
learning algorithms are not as complex as deep neural networks, however, the
vast majority of them are not designed in a way that they can handle sequen-
tial/temporal data. To cope with this issue, the straightforward approach is to
map multivariate time series data to the data with a single instance (or a propo-
sitional) feature space. As an example, assume that a multivariate time series
contains T observations of D variables in a temporal order. One can generate the
following statistical summaries for each variable d ∈ {1, . . . , D} from that time
series by considering all T observations; Maximum, Minimum, Mean, Median,
Mode, Standard deviation, Variance, Range, Geometric center, Kurtosis, Skew-
ness, Averaged power, Energy spectral density [35]. Then a feature space can
be generated by all of these summaries or a subset of them. Now assume that
the Maximum and Minimum are selected, then a single instance obtained from
the respective time series becomes a part of Minimax feature space containing
2 · D variables (features). In this approach, the time order is not considered and
instead of using raw features and their values, generated features and their cor-
responding values are applied for training machine learning models. This kind
of approach does indeed show decent predictive performance [3,8,19,35]. In our
work, we focus on using as many raw features as possible to keep the expres-
siveness of the original dataset. To do so, we represent multivariate time series
data as multi-instance data in the context of an MIL (Multi-Instance Learn-
ing) framework. In this representation, each observation of variables in a time
series is considered as one instance and a collection of such instances is denoted
as a bag with a corresponding class label. Finally, we benchmark multivariate
time series classification by classifying bags with multi-instance versions of tra-
ditional machine learning algorithms in the MIL framework. Our results show
that the multi-instance representation yields comparable or sometimes better

Benchmarking Multi-instance Learning for Multivariate Time Series Analysis 105

(in some configurations) performance as compared to the statistical summary
representation.

2 Related Work

Multi-Instance Learning (MIL) is a notable topic in machine learning proposed in
1997 [9] as a variation of supervised learning (weakly supervised) for drug activ-
ity prediction. Since then, MIL frameworks are adapted for many other areas.
For instance, [2] incorporated SVM (support vector machines) to the MIL frame-
work and proposed MISVM to generate instance-level and bag-level predictions
effectively. The work by [45] expanded multi-instance SVM approaches through
MIMLSVM (multi-instance multi-label SVM) for solving multi-label classifica-
tion tasks. MIGraph [46] is proposed to model multi-instance bag structures.
Generative mixture models – MIMM (multi-instance mixture model) [11], and
DPMIL (dirichlet process mixture of gaussians) [27] are adapted to tackle binary
multiple-instance classification problems. Deep multi-instance learning methods
are also introduced in an MIL setting [23,30,31,42,44,47]. In-depth surveys of
MIL frameworks are given in works such as [1,7,20,39]. Time series analysis is
adopted into the MIL framework by [17] which utilizes an autoregressive hidden
markov model for an activity recognition in time series data. The work by [36]
proposes a multi-instance learning method for a sound event detection from time
series. Multi-instance learning approach based on the time series modeling for
EEG (Electroencephalogram) identification is proposed by [24].

Despite some applications, we have not noticed any work which benchmarks
multi-instance learning on multivariate time series data. The goal of our work is
to achieve this in the context of multivariate time series classification.

3 Preliminaries

In this section, we present mathematical notations for a multivariate (multi-
dimensional) time series and briefly discuss background for the multi-instance
learning in this context.

Following the notations from [8], we specify a multivariate time series
with D variables (also known as a D-dimensional time series) of length T as
X = (x1, x2, . . . , xT)ᵀ ∈ R

T×D, where ∀t = {1, 2, . . . , T}, xt ∈ R
D is a vector

which represents the t-th measurements (observations) of all variables and xd
t is

the observation of d-th variable of xt. In this paper, we focus on time series clas-
sification to predict a label ln ∈ {1, . . . , L} for each of N multivariate time series
collected in a dataset D, where D = {(Xn)}Nn=1 and Xn =

[
x
(n)
1 , x

(n)
2 , . . . , x

(n)
Tn

]
.

3.1 Multi-instance Learning

Multi-instance learning (MIL) is a type of supervised learning where the data
points are collected in multisets called bags, and the entire bag has a label – either

106 R. Babayev and L. Wiese

discrete or real-valued. The data points of each bag are called instances. The
main purpose is to learn a model from the instances of the bag and the label of
the bag such that bag-level and instance-level predictions can be generated. Our
focus in this work is a classification task (i.e. discrete-valued labels), more specif-
ically binary classification. In general, there are two types of assumptions that
can be used to model relationships between the bag label and labels of instances
inside the bag. The first assumption is called the standard MI assumption [9]. In
this assumption, the bag label is considered negative if all instances inside the
bag are negative and it is considered positive if at least one instance inside the
bag has a positive label. We follow the notations provided by [7] to explain the
assumptions. Let B be a bag of M instances with static features (a.k.a propo-
sitional instances or feature vector instances), namely, B = {z1, z2, . . . , zM}.
Assume that ∀m ∈ {1, . . . ,M}, an instance zm in a feature space Z is mapped
to a class by some imaginary function f : Z → Ω, where Ω = {0, 1}, and where
0 and 1 represent negative and positive labels correspondingly. Then, the bag
classifier (a.k.a the aggregator function), g(B) is given by:

g(B) =

{
1 if ∃z ∈ B : f(z) = 1
0 otherwise

(1)

This standard assumption might be viewed as too strict for some cases where
positive bags cannot be determined by a single instance of a bag. Therefore, this
assumption is relaxed to the collective MI assumption [10,43] which treats the
contribution of each instance to the bag label separately. In contrast to the stan-
dard assumption, the collective assumption considers a bag B as a distribution
P (z|B) (the probability of an instance z given a bag B) over the feature space
Z, and similarly considers labels as a distribution P (c|z) over instances, where
c ∈ Ω = {0, 1}. The collective assumption then models the distribution

P (c|B) =
∫

Z
P (c|z)P (z|B)dz. (2)

To calculate this, the probability distribution P (z|B) for the bag must be known.
Generally, this probability distribution is not known in practice; hence, an empir-
ical version over the instances in the bag is calculated instead:

P̂ (c|B) =
1

MB

MB∑
m=1

P (c|zm), (3)

where MB is the number of instances inside the bag B. Since P (c|zm), ∀m =
{1, . . . , MB} is also unknown, most methods based on the collective assumption
learn this distribution as in a single-instance dataset [10,43]. The probability
distribution in (3) is also called an arithmetic average of posterior probabili-
ties of instances in the bag. In this probability distribution, the instance-level
class label is modeled by P (c|zm) for each m ∈ {1, . . . , MB} for the bag B. It
can also be modeled by a logit transformation, namely, the log-odds function

Benchmarking Multi-instance Learning for Multivariate Time Series Analysis 107

log
P (c = 1|zm)
P (c = 0|zm)

[10]. When the logit transformation is substituted in (3), the

following equation is obtained:

log
P (c = 1|B)
P (c = 0|B)

=
1

MB

MB∑
m=1

log
P (c = 1|zm)
P (c = 0|zm)

=
1

MB
log

[
P (c = 1|z1)
P (c = 0|z1) · . . . · P (c = 1|zMB

)
P (c = 0|zMB

)

]

⇒ 1 − P (c = 0|B)
P (c = 0|B)

=
[
∏MB

m=1 P (c = 1|zm)]1/MB

[
∏MB

m=1 P (c = 0|zm)]1/MB

⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (c = 1|B)

= [
∏MB

m=1 P (c=1|zm)]1/MB

[
∏MB

m=1 P (c=1|zm)]1/MB+[
∏MB

m=1 P (c=0|zm)]1/MB

P (c = 0|B)

= [
∏MB

m=1 P (c=0|zm)]1/MB

[
∏MB

m=1 P (c=1|zm)]1/MB+[
∏MB

m=1 P (c=0|zm)]1/MB

(4)

Equation (4) is called a (normalized) geometric average of posterior probabilities
(or an arithmetic mean of log-posterior) [10] of instances in the bag.

The collective assumption weights every instance inside a bag equally. The
paper [12] presents a collective assumption with instance weights. It is called
the (arithmetic) weighted collective MI assumption and simply utilizes weights
of instances inside a bag to calculate the probability distribution

P̆ (c|B) =
1

wB

MB∑
m=1

w(zm) · P (c|zm), (5)

where w : Z → R
+ is a weight function over instances and wB =

1
MB

∑
z∈B

w(z) [10]. The probability distribution for a geometric weighted col-

lective assumption can be calculated similarly. Finally, an aggregator function
for the collective assumptions can be defined as follows:

g(B) =

{
1 if P (c = 1|B) ≥ P (c = 0|B)
0 otherwise

. (6)

3.2 Multivariate Time Series in the MIL Framework

We incorporated multivariate time series into the MIL framework as follows; we
consider ∀n = {1, . . . , N} a multivariate time series Xn as one bag, and the obser-
vations of all D variables at each time step t ∈ {1, . . . , Tn} as an instance of this
bag. More formally, the bag Bn of Xn is defined as Bn = {x

(n)
1 , x

(n)
2 , . . . , x

(n)
Tn

},

108 R. Babayev and L. Wiese

where the class label of Xn becomes the bag label of Bn. With this in mind,
various multivariate time series having different lengths can be considered inside
their own encapsulating bags, so that the expressiveness of the original values is
maintained without rescaling the time series data.

4 Empirical Evaluation

4.1 Dataset and Task Description

We evaluate the performance of a classification in the MIL framework on multi-
variate time series data using several robust machine learning approaches specif-
ically used for this kind of classification tasks. We evaluate our models for dif-
ferent settings such as for the data obtained by different imputations methods,
by boosting and bagging.

PhysioNet Challenge 2012 Dataset (PhysioNet). This dataset is from PhysioNet
Challenge 2012 [38] which is a publicly available1 collection of multivariate clini-
cal time series records of 12000 intensive care unit (ICU) patients. Each record is
a multivariate time series of 48 h after ICU admission of a corresponding patient
and contains 36 variables such as mean arterial blood pressure, heart rate, respi-
ratory rate, etc. The dataset is divided into three sets (Set-A, Set-B, Set-C) each
having 4000 multivariate time series. Set-C is designated for the reviews of the
challenge, so we did not use it. We used Set-A and Set-B in our experiments.
We perform the mortality prediction task on this dataset to predict whether a
patient dies in a hospital after 48 h. We designate the class of death as a positive
class (with the label of 1) and the class of survival as a negative class (with
the label of 0). This is a binary classification task. There are 554 positively
labeled multivariate time series, and 3446 negatively labeled multivariate time
series in Set-A. For Set-B and Set-C, these numbers are 568–3432, and 585–3415
respectively. The class imbalance for each of these sets is roughly 14% (positive)–
86% (negative). We test different approaches to handle the class imbalance, i.e.
through undersampling or oversampling.

Because the PhysioNet dataset is collected from Electronic Health Records,
it has missing values. We replace missing values with Mean and Forward meth-
ods. Apart from that (similarly to [8]), we combine the invasive blood pressure
variables DiasABP (diastolic arterial blood pressure), SysABP (systolic arterial
blood pressure) and MAP (mean arterial blood pressure) with noninvasive ones,
i.e., NIDiasABP, NISysABP and NIMAP respectively which effectively reduces
the number of variables to 33. The combination of variables enables us to reduce
the number of missing values as well. More formally, it is possible to obtain one
value from the other using the following formula [6]:

MAP =
(2 · DiasABP + SysABP)

3
. (7)

1 https://physionet.org/content/challenge-2012/.

https://physionet.org/content/challenge-2012/

Benchmarking Multi-instance Learning for Multivariate Time Series Analysis 109

In this case, if a MAP value is not present for some time step, then it can be
calculated from the existing DiasABP and SysABP value of that time step. The
similar approach is also used for missing DiasABP and SysABP values. After
that, it is possible to replace missing values with the computed values. The main
benefit here is the replacement of missing values with the real values, instead of
imputed ones. During the combination, if there are existing values for invasive
and noninvasive counterparts for the same time step, then we prefer an invasive
measurement instead of noninvasive one [33]. Our combination of variables differs
from [8] in a few more nuances. For example, instead of using raw timestamps
in each multivariate time series, they take hourly samples of observations. More-
over, they perform forwarding through hourly/2-hourly samples in their forward
imputation method. In terms of expressiveness, we do not apply such stages.

4.2 Machine Learning Approaches

To benchmark the multivariate time series classification in the MIL framework,
we used different multi-instance learners from the WEKA machine learning
workbench (version 3.7.2) [18]. The multi-instance learners are available under
the weka.classifiers.mi package. We explicitly tested the following learners:

– weka.classifiers.mi.MILR uses either the standard or collective multi-
instance assumption, but within a logistic regression. We picked the collec-
tive assumption with the geometric average of posterior probabilities which
outperformed other assumptions for this learner.

– weka.classifiers.mi.MIWrapper [13] is a simple Wrapper class for apply-
ing standard propositional (feature vector) learners to multi-instance data.
As the first step, MIWrapper gathers instances from all bags, and labels each
instance with the label of its bag. This step creates a propositional (i.e. single-
instance) version of the multi-instance dataset. Then, it weights all instances
such that each bag has equal cumulative total weight. Different weighting
schemes are available; we used unit weighting for propositional instances.
After weighting, a single-instance (feature vector) learner is utilized for this
propositional dataset. During the learning phase, the single-instance learner
estimates class probabilities for all instances inside the bag for which the bag
label should be generated. The generated bag label is simply the mean (arith-
metic or geometric) of the estimated class probabilities of the corresponding
instances [10]. For MIWrapper, we selected

• weka.classifiers.trees.RandomForest
• weka.classifiers.functions.Logistic

as propositional learners and used the collective assumption with the geomet-
ric average which performed better than other collective assumptions. The
latter class refers to the logistic regression (LR). Both LR and the random
forest (RF) are widely used in health care applications [3,8,19,40].

– weka.classifiers.mi.SimpleMI reduces multi-instance data into single-
instance data by taking an arithmetic or geometric average of variable (fea-
ture) values of instances or by creating a minimax feature space from instances

110 R. Babayev and L. Wiese

inside each bag. After reducing each bag into a single instance or feature vec-
tor, single-instance learners such as the random forest or the logistic regression
can be used for modeling. In our experiments, we make use of the arithmetic
average of variable values which provides higher performance. This scheme is
equivalent to the feature space obtained by Mean statistical summary having
the same number of variables (features) as of multi-instance data (see Sect. 1).

– weka.classifiers.meta.RealAdaBoost is a class for boosting a binary clas-
sifier using the Real Adaboost method [16]. We utilized this class to boost
binary classifiers which are wrapped by MIWrapper and SimpleMI.

– weka.classifiers.meta.Bagging [5] is a class for bagging a classifier to
reduce variance. It can perform a classification and regression depending on
the base learner. We used this class as a meta learner for MILR and for the
logistic regression wrapped by SimpleMI.

Outlier removal:
None

Missing value imputation:
Mean

Forward

Attribute (feature) selection:
None

Class imbalance handling:
Random undersampling

Hyperparameter selection:
By choice

Fig. 1. Multi-instance learning pipeline

Remember that a bagging (bootstrap aggregating) [5] and boosting are
ensemble machine learning methods to enhance base classifiers for a better
predictive performance. Thus, there is a clear distinction between an ensemble
method bagging and bags used in the MIL setting where each bag is a multiset
instance.

Benchmarking Multi-instance Learning for Multivariate Time Series Analysis 111

In our study, we compare the performance of learners in the multi-instance
context with the learners using the data obtained by SimpleMI (i.e. statistical
summary representation). We use short names of learners for the demonstration
of results such as SMI for SimpleMI, MIW for MIWrapper, RB for RealAd-
aBoost, BG for Bagging, RF for random forest and LR for logistic regression.

4.3 Multi-instance Learning Pipeline

To make the data ready for multi-instance learners, the data preprocessing is
performed through the pipeline presented in Fig. 1. More comprehensively:

– Physionet dataset is a dataset containing the first 48 h of recordings after
ICU admission. After 48 h, either a patient died or survived. Patients are
admitted to the intensive care unit (ICU) in extreme circumstances. In this
case, their health recordings may contain values deviating from the rest of the
population in the ICU. However, these values are still valid and might not be
taken as outliers. From the statistical point of view, traditional outlier removal
methods (e.g. standard deviation based or median absolute deviation based)
can easily strip out this information from the patients’ data. For the sake of
expressiveness, we do not explicitly perform outlier removal. We also observed
that the authors of Physionet dataset successfully removed the medically
implausible values during the dataset creation [25].

– For imputing missing values we used mean and forward methods which show
decent results [8,32].

• Mean (shortly M) [8] – a mean value for each of 33 variables is computed
from the existing measurements in all multivariate time series in Set-A.
Then, missing values for each variable in Set-A and Set-B are replaced
by the corresponding mean value.

• Forward (shortly F) [32] – in this strategy, we impute the missing value
xt
d of a variable d at a time step t as follows; if there is at least one

measurement which is recorded previously for a variable d at a time t′ < t,
we perform a forward imputation by xt

d ← xt′
d . If there is no measurement

that is recorded previously (or if the variable is completely empty), then
we compute the median over all existing measurements in Set-A and
replace the missing values by the respective median in both Set-A and
Set-B.

– We do not perform an attribute selection for Physionet dataset. Our purpose
is to make the version of the dataset comparable to the dataset used in [8]
which also applies a variable combination we explained in Sect. 4.1.

– The class imbalance for each subset (Set-A, Set-B, Set-C) of Physionet
dataset is around 14% (positive)–86% (negative). To handle this prob-
lem, we make use of SpreadSubsample class (shortly SS) from the package
weka.filters.supervised.instance with a distribution 1.0 which is a ran-
dom undersampling effectively reducing the negative class to the size of the
positive class (a class imbalance of 50%-50%). We also checked random over-
sampling of the positive class to the size of negative class using the respective

112 R. Babayev and L. Wiese

WEKA class. However, this caused higher false negatives in our experiments.
Oversampling is a data generation process and we think that more sophis-
ticated oversampling strategy is required to mimic the existing multivariate
time series data (especially for the health-related data).

– Finally, we set hyperparameters for machine learning algorithms by choice.
For instance, for the RF, we set the number of trees to 100 (which demon-
strated better performance and is tolerable in terms of runtime). For boosting
algorithms, the number of boosting iterations is selected to be 10. For run-
time constraints, we do not apply hyperparameter tuning through the cross-
validation (CV) or grid search, because the learners are wrapped by classes
where each wrapper has its own parameters. The other parameters of learners
are WEKA defaults.

4.4 Experimental Setup

In our experiments, two different setups are tested. For each setup, an AUROC
value of the classification is reported. The AUROC is a standard metric for eval-
uating the performance of classifiers. The weka.classifiers.Evaluation class
is applied for the evaluation.

1. Learners are trained on Set-A and tested on Set-B in 10 runs. In each run,
Set-A is randomly shuffled with a different random seed and then a train/test
procedure applied. Finally, the results are averaged.

2. Predictive models are built using a stratified CV on Set-A and then an average
AUROC is reported. Some papers [8] only used this setup, since at their time
of writing, class labels were not available for Set-B and Set-C.

4.5 Interpretation of Results

Results are generated for different configurations. Each configuration is titled by
the short names of learners and short names of pipeline stages. For instance, RB-
MIW-RF-M-SS means that the data are mean imputed (M), a class imbalance
is handled by SpreadSubsample (SS) (undersampled) and the resulting data are
learned by the random forest (RF) which is wrapped by MIWrapper (MIW) and
boosted by RealAdaBoost (RB). For BG-SMI-LR-F-SS, the data are forward
imputed (F), a class imbalance is handled by SpreadSubsample (SS) (undersam-
pled), then the data are transformed into a single-instance format (using Mean
statistical summary) by SimpleMI (SMI), and the resulting data are learned
by LR which is enhanced by Bagging (BG). The other configurations can be
understood similarly.

The bagging is a technique to reduce the complexity of models that overfit dur-
ing training, whereas boosting is used to increase the complexity of models subject
to high bias, thus, handles underfitting during training. We observe that the RF is
better enhanced by RealAdaBoost and LR is by Bagging through systematically
testing different meta learners that WEKA provides. These boosting and bagging
combinations yield more balanced learners for our experiments where we compare

Benchmarking Multi-instance Learning for Multivariate Time Series Analysis 113

them to non-bagged and non-boosted variants. In this manner, the RF is boosted
by RealAdaBoost in both multi-instance and propositional settings. MILR and
the propositional logistic regression (SMI-LR) are enhanced by Bagging. The only
exception is a logistic regression in the multi-instance setting which is wrapped
by MIWrapper; we find that RealAdaBoost improves the base learner better than
Bagging (especially for the mean imputation) so that we provide the results for
the former meta learner. The main benefit of RealAdaBoost is that it improves
the base learner by adapting predicted class probabilities of instances [34] which
is useful in a multi-instance setting − a bag label is determined collectively by the
probability distribution of labels of its instances.

Table 1. Model performances measured by average AUROC score for mortality pre-
diction. The weight of each instance in a bag is 1. After propositional conversion unit-
weighting for each single instance is still maintained. The results are generated by
train/test procedure through 10 runs.

Mortality prediction on PhysioNet dataset

MILR BG-MILR

MILR-M-SS 0.8051 BG-MILR-M-SS 0.8075

MILR-F-SS 0.8094 BG-MILR-F-SS 0.8098

MIW-RF MIW-LR

MIW-RF-M-SS 0.7736 MIW-LR-M-SS 0.7645

MIW-RF-F-SS 0.8146 MIW-LR-F-SS 0.8094

RB-MIW-RF RB-MIW-LR

RB-MIW-RF-M-SS 0.7808 RB-MIW-LR-M-SS 0.8035

RB-MIW-RF-F-SS 0.8190 RB-MIW-LR-F-SS 0.8044

SMI-RF SMI-LR

SMI-RF-M-SS 0.8212 SMI-LR-M-SS 0.8051

SMI-RF-F-SS 0.8224 SMI-LR-F-SS 0.8094

RB-SMI-RF BG-SMI-LR

RB-SMI-RF-M-SS 0.8301 BG-SMI-LR-M-SS 0.8075

RB-SMI-RF-F-SS 0.8313 BG-SMI-LR-F-SS 0.8098

In Table 1, we report the results of the first experimental setup (train/test)
and in Table 2, we show the results for the second setup (stratified CV). In
both tables, we tested all configurations for unweighted instances in the bag,
namely the weight of every instance is 1 in each bag. In the experiments, a unit
weighting is also maintained after propositional conversion. In multi-instance
configurations, bags are also unit-weighted.

We observe that the settings we set for MILR, BG-MILR and SMI-LR,
BG-SMI-LR respectively, resulted in a similar predictive performance. MILR
and BIG-MILR applies a geometric average of posterior probabilities of instances

114 R. Babayev and L. Wiese

inside a bag to obtain a bag label, however, SMI-LR and BG-SMI-LR uses Mean
statistical summary of instances inside a bag during training. We notice that a
bagging slightly improves MILR and SMI-LR performances for both setups.

As compared to MILR (in MILR-M-SS), MIW-LR demonstrates slightly lower
performance for the mean imputation (MIW-LR-M-SS). The MIWrapper (MIW)
performs a propositional conversion and generates a bag label from the esti-
mated class probabilities of bag’s instances. Remember that the mean imputation
replaces all missing values with the corresponding mean value. Thus, it inherently
causes the creation of more similar propositional instances (after conversion) from
each bag and across the bags as compared to the forward imputation which in turn
negatively affects the performance of a bag label prediction from the class prob-
abilities of respective instances for the LR. The similar phenomenon also occurs
for MIW-RF with the mean imputation (namely, MIW-RF-M-SS). The forward
imputation enables MIW-RF (in MIW-RF-F-SS) and MIW-LR (in MIW-LR-F-
SS) to show similar or better performance than MILR (i.e. MILR-F-SS).

Table 2. Model performances measured by average AUROC score for mortality pre-
diction. The weight of each instance in a bag is 1. After propositional conversion unit-
weighting for each single instance is still maintained. The results are generated by
10-fold CV on Set-A.

Mortality prediction on PhysioNet dataset

MILR BG-MILR

MILR-M-SS 0.7540 BG-MILR-M-SS 0.7583

MILR-F-SS 0.7679 BG-MILR-F-SS 0.7685

MIW-RF MIW-LR

MIW-RF-M-SS 0.7537 MIW-LR-M-SS 0.7274

MIW-RF-F-SS 0.7917 MIW-LR-F-SS 0.7685

RB-MIW-RF RB-MIW-LR

RB-MIW-RF-M-SS 0.7563 RB-MIW-LR-M-SS 0.7518

RB-MIW-RF-F-SS 0.7977 RB-MIW-LR-F-SS 0.7639

SMI-RF SMI-LR

SMI-RF-M-SS 0.8113 SMI-LR-M-SS 0.7540

SMI-RF-F-SS 0.7939 SMI-LR-F-SS 0.7679

RB-SMI-RF BG-SMI-LR

RB-SMI-RF-M-SS 0.8159 BG-SMI-LR-M-SS 0.7583

RB-SMI-RF-F-SS 0.8101 BG-SMI-LR-F-SS 0.7685

The variants of MIWrapper (MIW) with RealAdaBoost, namely, RB-MIW-
RF and RB-MIW-LR improves the performance of MIW-RF and MIW-LR respec-
tively (except for MIW-LR-F-SS). Remember that 10 runs/folds used in both
experimental setups averages the predictive performance of the boosted variants

Benchmarking Multi-instance Learning for Multivariate Time Series Analysis 115

(where each variant internally does 10 iterations). Thus, even an averaging in our
setups enables boosted variants enhance their non-boosted counterparts.

The multi-instance configuration with the highest performance in Table 1 is
RB-MIW-RF-F-SS with 0.8190 average AUROC which improves upon MIW-
RF-F-SS having 0.8146 average AUROC. We observe the similar case in Table 2.

In Table 1, the single-instance configuration with Mean statistical sum-
mary shows the highest performance in RB-SMI-RF-F-SS with 0.8313 average
AUROC. In our tests, it is even higher than Geometric Center and Minimax
statistical summaries that SimpleMI class provides for the same configuration.
It seems that Mean statistical summary better reflects original data points than
the other summaries. In our experiments, we utilize Mean statistical summary
for all configurations containing SimpleMI (SMI).

The single-instance configuration with Mean statistical summary showing
the highest performance is RB-SMI-RF-M-SS having 0.8159 average AUROC in
Table 2. In general, the CV (Table 2) does not yield higher results as compared to
the train/test setup in Table 1. The main reason of that is the number of instances
used in both setups. The train/test setup has more instances to learn/test (since
it trains on Set-A and tests on Set-B) than the CV setup (which does a stratified
CV on Set-A). In both setups, the forward imputation generally yields better
results as compared to the mean imputation.

Our experimental setups show that the multi-instance learners are capable
of performing multivariate time series classification in a decent level. We expect
that they can show even higher performance after more careful data preparation
and in more sophisticated parameter configurations.

5 Discussion

5.1 The Other Multi-instance Learners

In our tests, we comparably examined different multi-instance learners from the
weka.classifiers.mi package in terms of their heuristics, hyperparameter space
and predictive performance with respect to the learners presented in Sect. 4.2.
For some of them, the implementation is not relevant for a multivariate time
series representation. For the others, they either need many hyperparameters
to be adjusted or do not provide an adequate predictive performance in their
default settings. For instance:

– weka.classifiers.mi.MIBoost is a multiple instance AdaBoost method
which considers the geometric average of posteriors of instances in the bag
and takes the expectation for a bag inside the loss function [15]. Analogous
to MIWrapper, it is possible to wrap RF and LR by MIBoost. The default
number of boosting iterations is set to 10 by WEKA.

• The one drawback of this method is that AdaBoost adapts itself according
to the amount of error on predicted classes of instances [34] rather than
class probabilities of instances like RealAdaBoost. Thus, it may not be
effective in a multi-instance setting.

116 R. Babayev and L. Wiese

• Another drawback is that it internally converts all instances in the bag to
the propositional format and weights each propositional instance by total
number of propositional instances after conversion/(total number of bags
∗ total number of instances in the corresponding bag). This weighting
scheme is not appropriate for a multivariate time series representation
and we indeed obtained relatively low predictive performance in the tests
with respect to our chosen learners (i.e. MILR, MIW-LR, MIW-RF and
their boosted/bagged variants).

– weka.classifiers.mi.MISVM is a class which implements MISVM [2]
(Maximum pattern Margin Formulation of MIL). It internally applies the
algorithm called weka.classifiers.functions.SMO [28] to solve multiple
instance problem.

• We observed that its predictive performance was relatively low (in default
settings) as compared to the chosen learners. Moreover, many hyperpa-
rameter configurations need to be maintained (such as a kernel type, a
complexity constant, a cache size, a usage of lower order terms, etc.) [2].

Our findings showed that the learners we chose in our experimental setups
were suitable for the multivariate time series representation in the MIL setting,
required less hyperparameter space to adjust and displayed a decent classification
performance in a straightforward comparison.

5.2 Hyperparameters

We investigated different hyperparameters for our learners to find the proper
ones. In WEKA (version 3.7.2), the RF implementation has 10 trees by default.
Instead, we used 100 trees in our experiments. We additionally observed that
1000 trees slightly improved the performance of configurations containing the
RF in Sect. 4.5. However, this number brought additional runtime overhead (i.e.
for the configurations which also employed RealAdaBoost).

Both MILR and the original LR have a parameter to set the ridge in the log-
likelihood. The former used 10−6 and the latter used 10−8 as its ridge parameter
which resulted in an adequate performance both in multi-instance and single-
instance settings.

As a multi-instance hyperparameter, our selected multi-instance learners
employed the collective assumption with the geometric average of posteriors in
all experiments which outperformed the other assumptions including the stan-
dard assumption and the collective assumption with the arithmetic average.

5.3 Future Work

In this section, we discuss the future insights to improve the predictive capabil-
ities of multi-instance learners for multivariate time series analysis.

Weighting Instances in the Bag. When a multivariate time series is repre-
sented in the MIL framework, each instance in a bag is treated equally without a

Benchmarking Multi-instance Learning for Multivariate Time Series Analysis 117

time order (similarly to statistical summaries where the time order is also dis-
carded). In this case, every instance in each bag has a weight of 1 by default.
To incorporate the temporal order to the multi-instance learning, we checked
weighted inner bag instances in one of our tests. Our weighting scheme is straight-
forward. In Physionet dataset every time step of a multivariate time series has its
own timestamp value. That value is in hh:mm format, namely, numbers of hours
and number of minutes after ICU admission. We converted each timestamp value
to minutes. More formally, for each multivariate time series Xn, ∀n ∈ {1, . . . , N}
in D, all respective timestamp minutes are summed up. Then for each t-th obser-
vations of D variables, i.e. xt ∈ Xn, ∀t ∈ {1, . . . , Tn}, xt is weighted as the
ratio of its timestamp minutes divided by the corresponding sum. Finally, the
weighted instances are put to the respective bag Bn. In this weighting scheme,
instances close to the 48-h threshold gain more weight in the temporal order. For
this scheme, the weighted collective assumption of the MIL framework can be
utilized for generating class labels of bags (see (Eq. 5)). Our findings and future
proposals for this and other custom weighting schemes are given in the next two
paragraphs.

We observed that a WEKA implementation of multi-instance learners does
not support such a weighting scheme. We discovered that our weighting scheme is
supported by SimpleMI (which performs a single-instance transformation) where
Mean statistical summary also averages the weights of inner bag instances so that
after transformation by SimpleMI (SMI), propositional instances gain different
weights. In fact, this weighting scheme improved the performance of the con-
figurations using SMI-LR, SMI-RF, BG-SMI-LR and RB-SMI-RF presented in
Sect. 4.5. It is because the original Logistic and RandomForest class from WEKA
can handle weighted instances. The highest performance is obtained in RB-SMI-
RF-F-SS configuration with the average AUROC performance of 0.8427 (in
the train/test setup) which is a decent improvement over the unweighted con-
figuration which displays 0.8313. This insight augments our expectations that
the multi-instance learners supporting such custom weighting schemes can get a
similar performance improvement.

As a future work, one can port custom weighting schemes to multi-instance
learners (e.g. MILR and MIWrapper) by modifying WEKA source code. Then,
the similar tests from Sect. 4.5 can be performed to reveal the effectiveness.

Propositionalisation of Multivariate Time Series Data by Sophisti-
cated Approaches. Remember that SimpleMI class is designed to generate
three different statistical summaries, namely Geometric Center, Mean and Min-
imax from the multi-instance representation of multivariate time series data.
There are also approaches to propositionalise multi-instance data by decision
trees [41] and more ingeniously by random forests [14]. These approaches can
create more advanced feature spaces from the multi-instance representation in
contrast to the statistical summaries. As a future work, every multivariate time
series can be propositionalised by one of these approaches in its MIL format and
then the resulting data can be fed to traditional ML algorithms for classification.

118 R. Babayev and L. Wiese

6 Conclusion

In this paper, we benchmarked multi-instance learning for clinical multivariate
time series classification (on the mortality prediction task). We utilized different
multi-instance learners to study the time series data in multi-instance format
and then used multi-instance assumptions of the MIL framework to generate
class labels for each multivariate time series. We evaluated the multi-instance
learners in different experimental setups and configurations using the well-known
metric named AUROC in both multi-instance and propositional settings. We
compared their performance to the performance of traditional machine learning
algorithms using statistical summaries. Despite the fact that we focused on the
mortality prediction using time series data collected in intensive care units, we
believe that the multi-instance representation will be also useful for other tasks
such as a length-of-stay prediction, phenotype classification, and psychological
decompensation prediction. It will be also interesting to see the generalization of
multi-instance learners on the other healthcare datasets such as MIMIC-III [26],
EEG database dataset [4] and ICU dataset [29].

6.1 Code Availability

For the sake of reproducing the results obtained in this work, all our source code
is published in a public repository2.

References

1. Amores, J.: Multiple instance classification: review, taxonomy and comparative
study. Artif. Intell. 201, 81–105 (2013)

2. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for
multiple-instance learning. In: Advances in Neural Information Processing Sys-
tems, vol. 15, pp. 561–568. MIT Press (2003)

3. Awad, A., Bader-El-Den, M., McNicholas, J., Briggs, J., El-Sonbaty, Y.: Predict-
ing hospital mortality for intensive care unit patients: time-series analysis. Health
Inform. J. 26(2), 1043–1059 (2019). https://doi.org/10.1177/1460458219850323

4. Begleiter, H.: UCI machine learning repository: EEG database data set (1999).
https://archive.ics.uci.edu/ml/datasets/eeg+database

5. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). https://doi.
org/10.1007/BF00058655

6. Brunner, L.S.: Brunner & Suddarth’s Textbook of Medical-Surgical Nursing, vol.
1. Lippincott Williams & Wilkins (2010)

7. Carbonneau, M.A., Cheplygina, V., Granger, E., Gagnon, G.: Multiple instance
learning: a survey of problem characteristics and applications. Pattern Recogn.
77, 329–353 (2018)

8. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks
for multivariate time series with missing values. Sci. Rep. 8(1), 1–12 (2018)

9. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance
problem with axis-parallel rectangles. Artif. Intell. 89(1–2), 31–71 (1997)

2 https://github.com/CavaJ/time-series-analysis.

https://doi.org/10.1177/1460458219850323
https://archive.ics.uci.edu/ml/datasets/eeg+database
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://github.com/CavaJ/time-series-analysis

Benchmarking Multi-instance Learning for Multivariate Time Series Analysis 119

10. Foulds, J., Frank, E.: A review of multi-instance learning assumptions. Knowl.
Eng. Rev. 25(1), 1–25 (2010)

11. Foulds, J., Smyth, P.: Multi-instance mixture models and semi-supervised learning.
In: Proceedings of the 2011 SIAM International Conference on Data Mining, pp.
606–617. SIAM (2011)

12. Foulds, J.R.: Learning instance weights in multi-instance learning. Ph.D. thesis,
The University of Waikato (2008)

13. Frank, E.T., Xu, X.: Applying propositional learning algorithms to multi-instance
data. Technical report, University of Waikato, Department of Computer Science,
Hamilton, NZ, June 2003

14. Frank, E., Pfahringer, B.: Propositionalisation of multi-instance data using random
forests. In: Cranefield, S., Nayak, A. (eds.) AI 2013. LNCS (LNAI), vol. 8272, pp.
362–373. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03680-9 37

15. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Thir-
teenth International Conference on Machine Learning, pp. 148–156. Morgan Kauf-
mann, San Francisco (1996)

16. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical
view of boosting. Ann. Stat. 95(2), 337–407 (2000)

17. Guan, X., Raich, R., Wong, W.K.: Efficient multi-instance learning for activity
recognition from time series data using an auto-regressive hidden Markov model.
In: International Conference on Machine Learning, pp. 2330–2339 (2016)

18. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)

19. Harutyunyan, H., Khachatrian, H., Kale, D.C., Steeg, G.V., Galstyan, A.: Mul-
titask learning and benchmarking with clinical time series data. arXiv preprint
arXiv:1703.07771 (2017)

20. Herrera, F., et al.: Multiple instance learning. In: Herrera, F., et al. (eds.) Multiple
Instance Learning, pp. 17–33. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47759-6 2

21. Hesse, B.W., Ahern, D., Beckjord, E.: Oncology Informatics: Using Health Informa-
tion Technology to Improve Processes and Outcomes in Cancer. Academic Press,
Cambridge (2016)

22. Howie, J.G., Heaney, D.J., Maxwell, M., Walker, J.J., Freeman, G.K., Rai, H.:
Quality at general practice consultations: cross sectional survey. BMJ 319(7212),
738–743 (1999)

23. Huang, Y., Wang, W., Wang, L., Tan, T.: Multi-task deep neural network for
multi-label learning. In: 2013 IEEE International Conference on Image Processing,
pp. 2897–2900. IEEE (2013)

24. Jafari, A., Gandhi, S., Konuru, S.H., Hairston, W.D., Oates, T., Mohsenin, T.: An
EEG artifact identification embedded system using ICA and multi-instance learn-
ing. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 1–4. IEEE (2017)

25. Johnson, A.E., Dunkley, N., Mayaud, L., Tsanas, A., Kramer, A.A., Clifford, G.D.:
Patient specific predictions in the intensive care unit using a Bayesian ensemble.
In: 2012 Computing in Cardiology, pp. 249–252. IEEE (2012)

26. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci.
Data 3, 1–9 (2016)

27. Kandemir, M., Hamprecht, F.A.: Instance label prediction by Dirichlet process
multiple instance learning. In: UAI, pp. 380–389 (2014)

28. Keerthi, S., Shevade, S., Bhattacharyya, C., Murthy, K.: Improvements to Platt’s
SMO algorithm for SVM classifier design. Neural Comput. 13(3), 637–649 (2001)

https://doi.org/10.1007/978-3-319-03680-9_37
http://arxiv.org/abs/1703.07771
https://doi.org/10.1007/978-3-319-47759-6_2
https://doi.org/10.1007/978-3-319-47759-6_2

120 R. Babayev and L. Wiese

29. Kohane, I.: UCI machine learning repository: ICU data set (1994). https://archive.
ics.uci.edu/ml/datasets/ICU

30. Kotzias, D., Denil, M., Blunsom, P., de Freitas, N.: Deep multi-instance transfer
learning. arXiv preprint arXiv:1411.3128 (2014)

31. Kraus, O.Z., Ba, J.L., Frey, B.J.: Classifying and segmenting microscopy images
with deep multiple instance learning. Bioinformatics 32(12), i52–i59 (2016)

32. Lipton, Z.C., Kale, D.C., Wetzel, R.: Modeling missing data in clinical time series
with RNNs. arXiv preprint arXiv:1606.04130 (2016)

33. McMahon, N., Hogg, L., Corfield, A., Exton, A.: Comparison of non-invasive and
invasive blood pressure in aeromedical care. Anaesthesia 67(12), 1343–1347 (2012)

34. Nock, R., Nielsen, F.: A real generalization of discrete AdaBoost. Artif. Intell.
171(1), 25–41 (2007)

35. Sadeghi, R., Banerjee, T., Romine, W.: Early hospital mortality prediction using
vital signals. Smart Health 9, 265–274 (2018)

36. Salamon, J., McFee, B., Li, P., Bello, J.P.: DCASE 2017 submission: multiple
instance learning for sound event detection. In: Detection and Classification of
Acoustic Scenes and Events 2017 (2017)

37. Sandberg, J.G., Johnson, L.N., Robia, M., Miller, R.B.: Clinician identified barriers
to clinical research. J. Marital Fam. Ther. 28(1), 61–67 (2002)

38. Silva, I., Moody, G., Scott, D.J., Celi, L.A., Mark, R.G.: Predicting in-hospital
mortality of ICU patients: the PhysioNet/computing in cardiology challenge 2012.
In: 2012 Computing in Cardiology, pp. 245–248. IEEE (2012)

39. Soleimani, H., Miller, D.J.: Semisupervised, multilabel, multi-instance learning for
structured data. Neural Comput. 29(4), 1053–1102 (2017)

40. Song, H., Rajan, D., Thiagarajan, J.J., Spanias, A.: Attend and diagnose: clinical
time series analysis using attention models. In: Thirty-Second AAAI Conference
on Artificial Intelligence (2018)

41. Weidmann, N., Frank, E., Pfahringer, B.: A two-level learning method for gen-
eralized multi-instance problems. In: Lavrač, N., Gamberger, D., Blockeel, H.,
Todorovski, L. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 468–479. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-39857-8 42

42. Wu, J., Yu, Y., Huang, C., Yu, K.: Deep multiple instance learning for image
classification and auto-annotation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3460–3469 (2015)

43. Xu, X.: Statistical learning in multiple instance problems. Ph.D. thesis, The Uni-
versity of Waikato (2003)

44. Yan, Z., et al.: Multi-instance deep learning: discover discriminative local anatomies
for bodypart recognition. IEEE Trans. Med. Imaging 35(5), 1332–1343 (2016)

45. Zhang, Z.L., Zhang, M.L.: Multi-instance multi-label learning with application to
scene classification. In: Advances in Neural Information Processing Systems, pp.
1609–1616 (2007)

46. Zhou, Z.H., Sun, Y.Y., Li, Y.F.: Multi-instance learning by treating instances as
non-IID samples. In: Proceedings of the 26th Annual International Conference on
Machine Learning, pp. 1249–1256 (2009)

47. Zhu, W., Lou, Q., Vang, Y.S., Xie, X.: Deep multi-instance networks with sparse
label assignment for whole mammogram classification. In: Descoteaux, M., Maier-
Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017.
LNCS, vol. 10435, pp. 603–611. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66179-7 69

https://archive.ics.uci.edu/ml/datasets/ICU
https://archive.ics.uci.edu/ml/datasets/ICU
http://arxiv.org/abs/1411.3128
http://arxiv.org/abs/1606.04130
https://doi.org/10.1007/978-3-540-39857-8_42
https://doi.org/10.1007/978-3-319-66179-7_69
https://doi.org/10.1007/978-3-319-66179-7_69

A Cloud-Native NGS Data Processing
and Annotation Platform

Giannis Mouchakis1, Babis Kostopoulos1, Stasinos Konstantopoulos1(B) ,
Ilias Kanellos2, Anargiros Tzerefos2, Thanasis Vergoulis2,

and Thodoris Dalamagas2

1 Institute and Informatics and Telecommunications, NCSR ‘Demokritos’,
Ag. Paraskevi, Greece

{gmouchakis,kostbabis,konstant}@iit.demokritos.gr
2 Information Management Systems Institute, ATHENA RC, Marousi, Greece

{ilias.kanellos,tzerefos,vergoulis,dalamag}@athenarc.gr

Abstract. Low-cost and widely available Next-Generation Sequencing
(NGS) is revolutionizing clinical practice, paving the way for the real-
ization of precision medicine. Applying NGS to clinical practice requires
establishing a complex loop involving sample collection and sequencing,
computational processing of the NGS outputs to identify variants, and
the interpretation of the variants to establish their significance for the
condition being treated. The computational tools that perform variant
calling have been extensively used in bioinformatics, but there are few
attempts to integrate them in a comprehensive, production-grade, Cloud-
native infrastructure able to scale to national levels. Furthermore, there
are no established interfaces for closing the loop between NGS machines,
computational infrastructure, and variant interpretation experts.

We present here the platform developed for the Greek National Pre-
cision Medicine Network for Oncology. The platform integrates bioinfor-
matics tools and their orchestration, makes provisions for both experi-
mental and clinical usage of variant calling pipelines, provides program-
matic interfaces for integration with NGS machines and for analytics,
and provides user interfaces for supporting variant interpretation. We
also present benchmarking results and discuss how these results confirm
the soundness of our architectural and implementation choices.

Keywords: NGS data · Variant calling · Variant annotation ·
Cloud-native

1 Introduction

Low-cost and widely available Next-Generation Sequencing (NGS) is revolution-
izing clinical practice and paves the way for the realization of precision medicine.

The work described here has received funding from the Greek General Secretariat for
Research and Innovation in the context of the Hellenic Network of Precision Medicine
on Cancer. See also https://oncopmnet.gr for more details.

c© Springer Nature Switzerland AG 2021
E. K. Rezig et al. (Eds.): Poly 2021/DMAH 2021, LNCS 12921, pp. 121–132, 2021.
https://doi.org/10.1007/978-3-030-93663-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93663-1_10&domain=pdf
http://orcid.org/0000-0002-2586-1726
https://oncopmnet.gr
https://doi.org/10.1007/978-3-030-93663-1_10

122 G. Mouchakis et al.

Applying NGS to clinical practice requires establishing a complex loop involving
sample collection and sequencing, variant calling , the computational processing
of the NGS outputs to identify variants, and variant annotation, the interpreta-
tion of the variants to establish their significance for the condition being treated.

Computational tools for variant calling are computationally challenging pro-
cesses, developed with parallelisation being a major design consideration. Both
multi-threading of individual processes and the Map/Reduce paradigm have
been extensively explored [1]. The advent of Cloud computing has also seen the
appearance of specialized omics Cloud services that offer flexible scalability by
porting these tools to remote infrastructures. Such service include those offered
by the European ELIXIR project,1 commercial services such as DNAnexus,2

and services provided by the manufacturers of NGS engines such as Illumina.3

Each of these services emphasises different aspects and features, ranging from
open interfaces and software, ability to extend the bioinformatics toolset with
custom tools, to tracking the lineage and provenance of data and experiments,
and integrating with variant annotation databases and environments.

But there are few attempts to integrate a comprehensive, production-grade
infrastructure able to scale to national levels. Furthermore, there are no estab-
lished interfaces for closing the loop between NGS machines, computational
infrastructure, and variant interpretation experts. Even more so, when one want
to also include in the loop secondary medical research usage of the data produced
by clinical usage.

In this paper we present an architecture that integrates bioinformatics tools
and their orchestration, makes provisions for both experimental and clinical
usage of variant calling pipelines, provides programmatic interfaces for integra-
tion with NGS machines and for medical analytics, and provides user interfaces
for supporting variant interpretation.

We also present the implementation of this architecture as the end-to-end
variant calling and annotation platform developed for the Greek National Pre-
cision Medicine Network for Oncology, and is in the final stages before entering
productive clinical use.

2 Use Case-Driven Platform Design

The design of our platform was based on common processes followed by labs
that support NGS processing for Precision Medicine applications. Our analysis
for the distinct user roles in this context has identified the following user profiles
and service needs:

– Clinicians have access to samples and NGS machines and need to get the NGS
data processed by executing a variant calling workflow in order to get a VCF
data structure that represents all variants found in the sample’s DNA along

1 Cf. https://www.elixir-europe.org.
2 Cf. https://www.dnanexus.com.
3 Cf. https://basespace.illumina.com.

https://www.elixir-europe.org
https://www.dnanexus.com
https://basespace.illumina.com

A Cloud-Native NGS Data Processing and Annotation Platform 123

Fig. 1. Services and interfaces required in clinical use.

with useful metadata (e.g., coverage, statistical significance). Subsequently,
they annotate each variant according to its clinical significance.

– Bioinformaticians provide the definition of the variant calling processing. In
particular, they determine and configure the steps of the workflows and then
test them by applying them on benchmark datasets and/or on the inputs from
past clinical usage. They evaluate alternative tools and workflows on both
their efficacy in correctly calling variants and their computational efficiency .

– Medical researchers seek to correlate variants, diseases, treatments, and out-
comes and, in general, to perform data analytics queries on the repository of
results of the platform. They provide access to the clinical data the need to
join with the VCF data computed using this platform.

Based on these user profiles, in the next paragraphs, we will present use cases
and the relevant requirements for our precision medicine platform.

In clinical usage (Fig. 1), the user needs to load the outputs of the NGS
machine into the platform and select among parameter presets, such as the clin-
ical purpose of the processing. The platform is pre-configured with the appropri-
ate processing and the clinician cannot affect the workflows and tools used. This
is facilitated by an Operator API through which the desktop computer directly
attached to the NGS machine can upload inputs to the platform and the user
can select and initiate the processing. A minimal Operator UI also provides a
graphical environment for this usage.

When processing terminates, the infrastructure adds the resulting VCF
data to the Results Repository that constitutes the clinical usage record of the

124 G. Mouchakis et al.

Fig. 2. Services and interfaces required to execute bioinformatics benchmarks and
maintain the clinical pipelines.

infrastructure and also makes them available for annotation in a Variant Anno-
tation Environment . These environments initialize the annotation by accessing
databases of variants known to be significant for the specific condition and allow
the user to edit these initial annotations. These manual annotations are also
added to the Results Repository, available both for reporting and for medical
research.

Bioinformatics usage (Fig. 2) ensures the efficacy and efficiency of the pre-
configured processing made available to clinicians. Following standard practice in
bioinformatics, this processing is organized as the application to the input data
of a workflow that is the composition of several tools. A Workflow Orchestrator
reads the definition of the workflow and then ensures that each tool referenced
in the definition is given as input the output of the previous step in the pipeline
and is appropriately parameterized and invoked. The software that implements
each step is retrieved from a Software Repository and inputs and outputs are
retrieved from and stored to a Data Repository .

Bioinformaticians update and evaluate reference data (effectively, inputs that
are the same for all runs), bioinformatics tools, and workflows. Testing is per-
formed by applying alternative workflows on benchmark data and on previous
clinical data, so the infrastructure needs to clearly distinguish between clini-
cal and experimental workflow execution. The former are restricted to the pre-
configured workflow and write their output to the Results Repository; There is
only one such output associated with each input. The latter are unrestricted
computational experiments, are not meant to be used for any medical purposes,
and there will be multiple runs and outputs for each input.

A Cloud-Native NGS Data Processing and Annotation Platform 125

Fig. 3. Services and interfaces required for medical research.

Bioinformaticians have access to several components that are internal from
the perspective of clinicians: They can directly access the data repository to pro-
vide benchmark and reference data, they can add and update the bioinformatics
tools and workflows in the Software Repository, and they can read detailed
Operational Logs from the execution of workflows so that they can debug and
benchmark tools and workflows.

It should be noted at this point that the data in the platform does not consti-
tute personally identifiable information (PII) either by itself or when combined
with other information: The number of variants needed for precision medicine
purposes is too small to identify individuals. Furthermore, NGS data, VCF data,
and annotations are internally linked by a unique key, but this key is created by
infrastructure and unrelated to any external PII or key.

Medical research users need to combine access to external data with access to
the platform’s Results Repository to extract statistics about how variants corre-
late with clinical and, possibly, other data (Fig. 3). This is facilitated by foresee-
ing linking the internal index used by the platform with an external index, such
as a medical exam referral number. Medical research users who are authorized
to access clinical and other sensitive PII can use this link to join variants with
the clinical or personal data, without having to store PII in this platform.

126 G. Mouchakis et al.

3 Platform Description

The abstract architecture shaped by our functional requirements draws a land-
scape where a large number of different services, addressing the needs of dif-
ferent users, cluster around the core functionality of applying variant calling
workflows. Accordingly, we will start by establishing how this core functional-
ity will be implemented and then use this to drive the elicitation of technical
requirements and the decisions on concrete software systems that implement the
abstract components in Fig. 3.

As discussed in Sect. 1, the bioinformatics community has converged to orga-
nizing processing in pipelines of tools. Containerization technologies allow both
the pipeline orchestrator and the individual tools to be deployed in Cloud comput-
ing infrastructures and to scale up or down the allocated computational resources.
At the same time, Cromwell4 is a well-supported and ubiquitously-used orchestra-
tor of containerized tools. Cromwell also supports the CWL workflow description
language, the de facto standard in the bioinformatics community.

On the other hand, the Kubernetes container deployment, scaling, and man-
agement system5 and the various tools developed around it are the dominant
open-source ecosystem for Cloud-native applications. Although Cromwell is not
developed as a Cloud-native application, it offers the extremely useful abstrac-
tion of task execution schemas (TES)6 that specify how Cromwell can deploy
batch execution tasks. Although not officially supported by Cromwell, TESK7

implements the TES API on Kubernetes.

3.1 Variant Calling

The entry point of the Variant Calling sub-system is the REST API. Through
this API a user can submit pipelines, either provided by the system and stored in
platform’s software repository or custom pipelines defined by them. Either way
the pipelines should be defined in CWL. The REST API is also the interface of
the metadata subsystem so users can be informed about the status of pipelines
submitted by them or their group and retrieve other pipeline metadata such as
the exact pipeline inputs, the location of the output files in the object store, and
pipelines logs.

Upon pipeline submission, the REST API submits the pipeline to Cromwell
which handles the workflow orchestration. The orchestrator reads the CWL def-
inition and starts the execution of every job defined there. Cromwell monitors
the health of every job and handles job failures by retrying failed jobs when-
ever appropriate. It also ensures that each job is given the appropriate inputs
from previous job outputs if needed. The metadata sub-system polls Cromwell to

4 Cf. https://cromwell.readthedocs.io.
5 cf. https://kubernetes.io.
6 https://github.com/ga4gh/task-execution-schemas.
7 Cf. https://github.com/elixir-cloud-aai/TESK.

https://cromwell.readthedocs.io
https://kubernetes.io
https://github.com/ga4gh/task-execution-schemas
https://github.com/elixir-cloud-aai/TESK

A Cloud-Native NGS Data Processing and Annotation Platform 127

Fig. 4. Systems and components integrated to realize the architecture.

retrieve information about the status of the workflow, workflow logs and output
files location in the object store (Fig. 4).

Task execution is handled by TESK. A task defines a set of input files, a set of
(Docker) containers and commands to run, a set of output files, and some other
logging and metadata. TESK implements TES on Kubernetes backends so each
task is executed in a Kubernetes pod. It handles task execution, failure recov-
ery, task resource assignments (CPU, RAM, block disk size), and housekeeping.
Every task is scheduled by Kubernetes on nodes with available resources, is
assigned block storage from NFS for temporary file storage and retrieves input
files and stores output files in the system’s object store.

Finally, we use an instance of Gitlab installed on our Kubernetes infrastruc-
ture8 as our software repository and identity server. By storing the platform’s
predefined pipelines on a Git server we support version control, branch access

8 Cf. https://docs.gitlab.com/charts.

https://docs.gitlab.com/charts

128 G. Mouchakis et al.

controls, merge reviews, and merge approvals. Pipeline definitions are fully spec-
ified and reproducible as they refer to specific container images, served by the
Gitlab Docker registry.

The sophisticated access control and software review mechanisms included in
Gitlab are used to ensure the appropriate access rights and reviews before com-
mitting to the branches that the system trusts as the correct pipeline definitions
and tool implementations for the clinical pipelines. The system is configured
to recognize certain repositories and branches as pertaining to clinical, non-
experimental usage, and to only write the VCF outputs from these pipelines to
the results database. Images for these branches are built and served automati-
cally using Gitlab CI/CD tools, so that updating the clinical pipelines amounts
to merging into the appropriate (protected) branches, without any further plat-
form administration actions. This approach facilitates using the infrastructure
to also carry out bioinformatics experimentation and benchmarking with the
data and tools that accumulate in the platform: Users can be given access to
repositories and groups that are not recognized by the system as clinical to sub-
mit arbitrary workloads; these workloads will yield results and benchmarking
measurements but will not update the clinical results database.

Besides enforcing access rights and review policies for tools and pipelines, Git-
lab is also the identity and role-based access service across the system. Access
from the internet goes through Keycloak/NGINX and the Kubernetes load bal-
ancer, which use Gitlab as an identity server. Roles that do not directly map to
repository access (such as accessing the results repository) are mapped to a hier-
archy of Gitlab groups that do not contain any repositories. Keycloak/NGINX
knows how to map membership in these special groups to internal services that
are made available or masked for each user. This allows extremely flexible admin-
istration as, for instance, a user can be made the administrator of the group that
maps to accessing the results database; that user can invite further members
without having to interact with the administration of the platform as a whole.

3.2 Variant Annotation

The Variant Annotation component of our platform automates and facilitates
gathering genomic annotation data from external databases and combining them
with VCF data coming from the Variant Calling step of the platform (Sect. 3.1).
The integrated results are then stored in the platform’s data space and they are
ready to be used both for the production of patient reports and for answering
research questions posed by medical researchers (see also Sect. 3.3).

In the core of this component, lies a deployment of the open-source Ensembl
Variant Effect Predictor (VEP) software [3]. This tool can be configured to make
use of data gathered from a set of desired external databases to analyse, annotate,
and prioritize genomic variants in coding and non-coding regions. In our case,
VEP is run with the default configuration that includes a variety of variant (e.g.,
COSMIC, dbSNP), protein (UniProt), algorithmic variant effect prediction (e.g.,
SIFT, Polyphen), variant allele frequency (e.g. gnomAD), clinical significance

A Cloud-Native NGS Data Processing and Annotation Platform 129

(ClinVar), and scientific literature (PubMed) databases.9 Further, we include
data from the LOVD variation database (using VEP’s LOVD plugin),10 as well
as variant nomenclature from HGVS. For efficiency reasons, the data of each
source are stored locally in our platform’s data space in the form of a collection
of annotation database cache files, which can optionally be installed alongside
VEP itself.

It is worth mentioning that for clinicians it is very crucial to have access to
the most recent information; the results of new research may identify previously
unknown variants or reveal and correct data for already studied ones. To make
sure that the most recent information is used during the annotation step, we
have developed a custom module which, at runtime, examines if the information
gathered from important external databases (like ClinVar) is up-to-date. This
module compares the cached version of the respective database to the most
recently published one and loads the more recent version in the platform’s data
space, if needed.

By default, the output of VEP is given in the form of an annotated VCF
file which contains integrated information from the input VCF and the selected
external databases. This file is stored by itself in the Results Repository, however,
to better support basic functionalities of the Variant Annotation component
the same information is also loaded into a relational database schema. This
database schema is a custom extension of LOVD [2], particularly tailored to
accommodate storing and indexing VCF annotation data. This is achieved by the
extension, modification, and addition of tables to the schema. For example, tables
storing individual patient data in the original LOVD schema, only store referral
numbers which correspond to particular NGS analyses in our version of LOVD
(as per the requirements of Sect. 2 regarding PII data). Further, our schema
extends LOVD with additional tables, e.g., for recording data from ClinVar,
data gathered from clinical analysis report forms, filled out by clinicians during
variant interpretation, etc.

The Variant Annotation component offers a functionality to browse the anno-
tated data through a basic user interface that retrieves data from the aforemen-
tioned database and displays them in a tabular form. This interface allows the
user to identify any variants of interest that should reported in the context of the
investigation of the case of a particular patient. Finally, the users are also able to
report newly identified links between variants and phenotypes, diseases, treat-
ments, etc. These special-purpose contributions are very important since they
may be related to particularities of the population being investigated by the lab
that owns the platform and may be a very valuable addition for investigating
research questions by medical researchers (see Sect. 3.3).

9 An exhaustive list of annotation databases used with VEP’s default configuration
can be found here:
https://www.ensembl.org/info/docs/tools/vep/script/VEP script documentation.
pdf.

10 This plugin retrieves LOVD variation data from http://www.lovd.nl.

https://www.ensembl.org/info/docs/tools/vep/script/VEP_script_documentation.pdf
https://www.ensembl.org/info/docs/tools/vep/script/VEP_script_documentation.pdf
http://www.lovd.nl

130 G. Mouchakis et al.

3.3 Knowledge Base

Our platform offers a Knowledge Base component which consists of the Results
Repository along with a graphical UI-enabled analytics query engine. This
knowledge base is intended for medical researchers and, hence, should not require
familiarity with any database and/or respective query language. To facilitate this
requirement, our platform uses metabase11 running on top of mariaDB.

Metabase is an open source tool that allows for querying databases through
user friendly UIs and without requiring users to be familiar with database query
languages, or the underlying database schemas. It offers automatic explorations
of the tables of databases it connects to, and allows for performing and saving
queries on their data. It is particularly tailored to performing statistical queries,
offering a variety of visualization options for the results, such as bar charts,
pie charts, etc. Metabase supports connecting to a variety of different database
management systems, such as MySQL, PostgreSQL, MongoDB, and others.

In the case of our platform’s knowledge base, we use MariaDB as the under-
lying RDBMS. The core of this database is a collection of clinical variant inter-
pretation data collected in a single table, alongside their connection to external
exam referral data links (see Sect. 2). The clinical interpretation data stored
originate from the Variant Annotation system of the platform, in particular,
data from clinical interpretation result forms provided by the tool. These data
concern the characterization of variants detected using the platform’s workflow
(i.e., pathogenic, uncertain/unknown significance), the genes on which they were
found, alongside data pertaining to the particular analysis (i.e., the frequency
and coverage of the variants).

Registered users of the platform may access the knowledge base through a
web interface provided by metabase. The web interface facilitates access to the
underlying database tables through an intuitive UI, through which users can ask
simple questions by applying filters on values of the selected table’s columns, and
summarizations (i.e., aggregation queries and/or grouping) on the data by click-
ing on buttons provided for each of these functions. Further options are provided
with regards to the display format of the results. By default these are shown in
table format, but users may choose more appropriate visualizations, such as bar
charts, or chronological time series, which are additionally customizable in terms
of display (user can change display colors, types of axes, texts in legends, etc.).

Researchers querying the data are given the option to save each performed
query. Saved queries, alongside their resulting visualizations, can be added to
dashboards, which are readily available to users when accessing metabase. Vari-
ous dashboards can focus on particular aspects of the data (e.g., statistical data
of variants based on each gene they were found on), allowing for a fine grained
organization and real time monitoring of the summary statistics recorded in the
knowledge base. Finally, the various dashboards and saved questions make up
a powerful tool that enables the sharing of results among different users of the
platform.

11 https://www.metabase.com.

https://www.metabase.com

A Cloud-Native NGS Data Processing and Annotation Platform 131

4 Scalability Experiments and Discussion

In order to test the scalability of the platform, we collected execution time
measurements from two different pipelines, with a different number of pipeline
instances (runs) executing concurrently. The experiment was carried out on an
installation of the system with 26 nodes. Each node has sufficient resources to
execute two tasks (pipeline steps) where each task is allocated 8 CPU threads
and 16 Gb RAM. Regarding storage, 8 nodes with a total of 36 Gb RAM are used
to serve 6 Tb of disk space, split between transient NFS space and longer-term
CEPH S3 space.

These resources suffice to execute the number of concurrent runs we show
in Table 1 without scheduling and without deploying multiple runs on the same
node. These execution times show that there is relatively small deviation between
execution times and, consequently, it does not make sense to invest in migrating
still-executing tasks to nodes where processing has finished and, in general, in
more dynamic scheduling.

We also observe that processing times scale well, and bigger batches do not
require linearly longer execution times. As discussed in the introduction, pro-
cessing takes place in batches of roughly identical runs as soon as FASTQ inputs
become available from an NGS engine. This motivates our approach of paral-
lelizing the execution of multiple, independent of each other, runs. Furthermore,
bioinformatics pipelines are computationally challenging and, subsequently, most
of the execution time is consumed in actual computation rather than network
and disk transfers. Having relatively small network and disk overhead means that
we expect (and actually observe in Table 1) a sub-linear relationship between the
number of runs in a batch and execution time for the batch.

However, some non-constant overhead and some noticeable execution time
deviation is still visible in the results. This is due to the fact that input files are
large and in our experiments (as foreseen by the use case) all runs are loaded
at the same time, so that network and hard disk access becomes a temporary
bottleneck at the beginning of the execution of each batch. The phenomenon

Table 1. Execution times (average, standard deviation, and maximum) for pipeline
runs executing concurrently. Batch size gives the number of concurrently executing
runs.

Pipeline Batch size Input size Execution time (min)

Avg Std dev Max

Solid tumors 2 970 Mb 137 8 142

4 138 2 141

8 161 7 170

Hematologic tum. 2 675 Mb 68 3 62

4 63 3 66

8 70 2 78

132 G. Mouchakis et al.

dampens after the first step, as it is highly unlikely that all runs terminate
their steps at exactly the same time. This observation motivated our devoting
to storage the considerable resources mentioned above.

5 Conclusions and Future Work

We presented the architecture and implementation of the end-to-end precision
medicine platform developed for the Greek National Precision Medicine Network
for Oncology. The architecture describes the platform as an ecosystem of Cloud-
native applications offering services over a backbone that executes variant calling
workflows. The platform is implemented using the Cromwell orchestrator and the
Kubernetes container deployment, scaling, and management system. Our tests
confirm that our architecture and our choices on which systems to integrate in
order to materialize the architecture are sound, and fit well with our use cases
and with the nature of bioinformatics pipelines.

Besides the focus on scalable Cloud deployment, another innovation is using
an internal Gitlab instance as the provider not only of container images, but also
of identity services and access right management. This maximally exploits the
flexibility of the Gitlab role-based access control system and its UI for managing
users and roles.

Future work includes defining a digital artifact that combines reference to
specific container image tags, reference data versions, and outputs. Such an arti-
fact will constitute a fully specified experiment that can be reliably reproduced
on any instance of our architecture.

Further work will look into interesting integrations with client applications
and external resources. This includes developing higher-level analytics interfaces,
such as in R or as Python Notebooks. Another useful integration is with clini-
cal databases that follow standard schemas such as the OHDSI Common Data
Model,12 facilitating the processing of medical research queries and analyses.

References

1. Fjukstad, B., Bongo, L.A.: A review of scalable bioinformatics pipelines. Data Sci.
Eng. 2, 245–251 (2017)

2. Fokkema, I.F., Taschner, P.E., Schaafsma, G.C., Celli, J., Laros, J.F., den Dunnen,
J.T.: LOVD v.2.0: the next generation in gene variant databases. Hum. Mutat.
32(5), 557–563 (2011)

3. McLaren, W., et al.: The ensembl variant effect predictor. Genome Biol. 17(1), 1–14
(2016)

12 Cf. https://www.ohdsi.org/data-standardization.

https://www.ohdsi.org/data-standardization

Administrative Health Data Representation
for Mortality and High Utilization Prediction

Negin Asadzadehzanjani(&) and Janusz Wojtusiak

George Mason University, Fairfax, VA 22030, USA
{nasadzad,jwojtusi}@gmu.edu

Abstract. Administrative data, including medical claims, are frequently used to
train machine learning-based models used for predicting patient outcomes.
Despite many efforts in using administrative data, little systematic work has
been done in understanding how the codes in such data should be represented
before model construction. Traditionally, the presence/absence of codes repre-
senting diagnoses or procedures (Binary representation) over a fixed period
(typically one year) is used. More recently, some studies included temporal
information into data representation, such as counting, calculating time from
diagnosis, and using multiple time windows. This paper investigates different
methods of administrative data representation and more specifically diagnoses
extracted from claims data before applying machine learning algorithms. Then
the study compares two data representations (Binary and Temporal Min-Max)
using two classification problems: one-year mortality prediction and high uti-
lization of medical services prediction. The results indicated that Temporal Min-
Max representation outperforms Binary representation in both predictive mod-
els. It was shown that the optimal way of representing the data is problem-
dependent, thus optimization of representation parameters is required as part of
the modeling.

Keywords: Medical claims � Data preprocessing � Supervised learning �
Temporal machine learning

1 Introduction

Administrative data is a broad term referring to data that is used to process and
document the registration and transactions for service delivery. Administrative data are
collected to document a variety of services including education, healthcare, housing,
taxation, etc. [1]. In healthcare, the most frequently used type of administrative data is
medical claims. Often the terms administrative data and claims data are used inter-
changeably. Claims are essentially bills for provided medical services and include
information required for the healthcare providers to receive payment. Therefore, the
information included in claims data is limited to what is required by payers and
typically corresponds to specific forms, such as CMS-1450 or CMS-1500 used by in
the United States by Medicare [2]. Health claims databases keep records of interactions
that occurred between healthcare providers and patients which include all the billing
information provided by hospitals, nursing homes, clinics, pharmacies, public and

© Springer Nature Switzerland AG 2021
E. K. Rezig et al. (Eds.): Poly 2021/DMAH 2021, LNCS 12921, pp. 133–150, 2021.
https://doi.org/10.1007/978-3-030-93663-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93663-1_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93663-1_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93663-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-93663-1_11

private insurance organizations such as Medicare/Medicaid and Blue Cross Blue Shield
[3]. Claims data are typically generated at every encounter of the patient, which could
be a procedure, a visit to doctors’ office, admission to a hospital, or prescription [4].

For most patients, claims span longitudinally and provide a comprehensive sum-
mary of provided services when integrated by one payer. However, in certain situa-
tions, claims are incomplete, i.e., for dual- or triple-eligible patients. For example,
Medicare beneficiaries may be also eligible for Medicaid and receive certain services
from the Veteran’s Affairs Health System for a military service-related disability. For
research purposes, claims data are typically acquired from a single payer. For example,
Medicare claims can be used to study populations 65 years and older in the United
States. Private-pay claims data are typically used to study populations covered by a
single insurer. In addition, it is sometimes possible to obtain integrated datasets from
multiple payers (so-called all-payer data), but such data are often very costly and come
with other types of limitations. Another reason for potential incompleteness of claims
data is the inclusion of only billable items, i.e., those tied to reimbursement, which may
miss additional services provided or the diagnosis that is not covered by insurance. In
contrast to claims used for billing purposes, the Electronic Health Record (EHR) data
are developed to store patient’s information for clinical documentation and healthcare
delivery. EHRs provide details not available in claims (i.e., lab values, vitals, clinical
notes), but are limited to a single provider such as practice or health system [5].
Therefore, in applications that require integrated longitudinal data, medical claims are
often the best choice in studying healthcare delivery and cost. Many studies have
focused on using claims data to predict health outcomes including but not limited to
mortality, readmissions, high utilization of services, disabilities. Depending on the
specific application and population considered, the quality of these models varies. For
example, the area under the Receiver-operator Curve (AUC) of the models for pre-
dicting mortality varies from 0.54 to 0.82 in different studies [6–8]. In predicting
hospital readmissions and utilization of healthcare services, the AUC varied from 0.5 to
0.79 [9–11] and from 0.78 to 0.88 [12–14], respectively. Among the most frequently
used methods to model outcomes from claims data are Random Forest, Logistic
Regression, Gradient Boosting, Support Vector Machines, and Neural Networks.
Beyond the prediction of outcomes, claims are frequently used in policy population-
level studies, typically using traditional statistical methods [15–18].

The presented study focuses on data preprocessing steps applied to transform raw
claims data into a final analytic file using ML methods. It is the authors’ experience that
data preprocessing and construction of the final analytic file is more important than
algorithm hyperparameter tuning or selection of specific ML methods. In fact, this
work considers data preprocessing steps as part of model tuning: the way data are
represented affects the performance of specific types of models. For example, the
representation of diagnoses not present in patient’s record affects the performance of
specific types of methods, but is irrelevant for other methods.

134 N. Asadzadehzanjani and J. Wojtusiak

2 Methods

2.1 Claims Data Preprocessing

Due to high-dimensionality, heterogeneity, noise, incompleteness, sparseness, and
errors in the data, modeling of health data, including claims, is difficult [19]. Therefore,
data preprocessing as an essential step in developing ML-based models is the remedy
to this problem. The reliability of the preprocessed data should be checked before
training the model as any errors made in constructing the data would impact the
accuracy of the models [20]. Data preprocessing refers to a number of steps required to
transform raw data into the appropriate format for analysis [21]. In another definition,
data preprocessing refers to the methods including constructing new attributes (attribute
construction), removing irrelevant attributes (attribute selection) and modifying the
attributes in which the initial representation space is improved [22]. In data prepro-
cessing, the goal is to reduce the complexity of the data and extract the relevant
attributes from the data, which can subsequently be used for analysis [23].

The types of information in claims data vary across different databases, but almost
all claims datasets include date of service, diagnosis and procedure codes, provider
information, site of service, charges and cost of healthcare delivery. They typically
include demographic information including age (or date of birth), sex, race, and eth-
nicity, and sometimes education and income [24]. The claims databases usually provide
a list of all variables in a dictionary, yet the information is often vague and requires
good understanding of coding systems and healthcare processes to correctly analyze
data. Claims data have information in the forms of code, date, text, symbols etc. each of
which requires special preprocessing steps for use in developing models. Claims data
are typically structured, meaning that the data are stored in organized format, with little
or no information provided as free text. This makes them suitable for data analysis and
interpretation. In this structured data, there are standard healthcare coding systems
(administrative codes) that are either universally or locally utilized by the healthcare
systems. These include International Classification of Diseases (ICD-9 or ICD-10)
codes, Current Procedural Terminology (CPT), Healthcare Common Procedure Coding
System (HCPCS) codes, etc. These codes refer to procedure or diagnosis codes that are
used to report diagnoses, encounters, injuries, morbidities etc. withing the healthcare
system. Diagnosis and procedure codes assigned to medical claims are known to
contain errors and inaccuracies. Despite these errors, they are popular source of
information in predictive modeling and there are many successful applications of these
administrative codes in predicting health outcomes. This manuscript focuses on the
preprocessing of these administrative codes.

Figure 1 shows how the raw claims data are transformed into an “analytic file” for
training and testing of classification and regression models. Claims data usually consist
of tables from multiple sources including inpatient files, outpatient files, carrier files etc.
collected over many years and stored in separate files. Different files/tables correspond
to types of claims and are separated because they include different fields. Depending on
the application, relevant information including administrative codes, demographic
information, patient IDs, claim IDs, various dates etc. is first extracted from claims.
Then one or more inclusion/exclusion criteria are applied to construct the targeted cohort

Administrative Health Data Representation 135

from data. After defining the prediction time, the observation and prediction windows
are defined in which input and output attributes are constructed, respectively. The
attributes are then processed in multiple steps including aggregation, discretization,
normalization, and handling missing and integrated if needed, resulting in creation of the
final analytic file. The analytic files are in the matrix format where rows represent
instances and columns represent constructed attributes in the data. A wide variety of
steps are defined for data preprocessing in the literature and depending on the appli-
cation and needs, some or all are used to prepare the final analytic table.

2.2 Methods of Representing Claims Data

Claims data, can be viewed as a sequence of claims that include one or more diagnosis
codes recorded over time. They are irregularity spaced in time. The data are also
potentially censored on both sides because of benefit eligibility and events such as
death. Since most machine learning (ML) algorithms cannot handle records with
variable number of attributes, some summary functions including Boolean represen-
tation and counting the occurrence of each event are used to aggregate the data and
remove temporality before applying ML algorithms. This is not different from other
health data such as EHRs.

The following sections describe increasingly complex approaches for representing
diagnoses extracted from claims data. While these sections focus on diagnoses, the
same methods can be applied to procedure codes.

Binary Representation. The simplest and most frequently used method is to represent
presence/absence of diagnosis codes with a set of binary attributes (dummies). Let
Codei be the administrative code representing a diagnosis code and C be the claim in
the patient’s record prior to the prediction time. Sometimes, the presence of codes
within a certain time window is used instead of entire patient record. Either looking

Fig. 1. An example process of transforming raw claims data into the final analytic file.

136 N. Asadzadehzanjani and J. Wojtusiak

into entire records or a specific time frame, the frame is called the observation window.
The administrative code (Codei) associated with “C” is represented as 1 if the Codei
belongs to claim C, 0 otherwise. The equation is given as follows:

Codei ¼
1 9C : Codei 2 C

0 Otherwise

�
ð1Þ

The above method however has the risk of information loss. Most health data collected
during patient care are longitudinal, meaning that the patients are observed over a
course of time. The health data have time-stamped entities, meaning that much of the
information such as emergency visit, hospitalization or blood test are recorded with
time. Moreover, the time each patient is tracked varies across all patients [25]. Also, the
sequences of the events are highly correlated; for instance, a diagnosis could be made
after a blood test result comes back [26]. The above Binary representation method
cannot capture the heterogeneity and hidden temporal information in the data i.e., the
severity of illness or the changes in prognosis of the disease over time. Therefore, there
has been a growing interest to leverage such information in constructing the analytic
file. Studies have shown that the incorporation of temporal information would improve
the performance of the predictive models [27, 28]. Google has recently proposed a
method to learn temporal attributes from all attributes in EHRs using long short-term
memory (LSTM) and could improve the AUC of three health outcomes (mortality,
readmission and long hospital stay) by 10% [29]. Below, several methods used in the
literature to introduce temporal information into data representation are explained.

Binary Representation with Multiple Time Bins. Another standard method to
capture temporal attributes is to divide the observation window into multiple time bins
and apply binary representation for each bin separately. Assume “w” is the bin in an
observation window and t(C) is the time of claim. As shown, the administrative code
(Codei) associated with “C” at time window (bin) “w” is represented as 1 if the code
belongs to claim C and t(C) falls in bin “w”, 0 otherwise. The method works as follows:

Codewi ¼ 1 9C : Codei 2 C ^ t Cð Þ 2 w

0 Otherwise

�
ð2Þ

The advantage of such representation is that the approximate time of an event is
incorporated into the coding system and model. Such method was used in a study, in
which equal time intervals (yearly, quarterly, monthly) were constructed to predict the
number of hospitalization days in the upcoming year. It was observed that using
smaller bins would add more temporal information to the models and the yearly model
had significantly worse performance compared to other models [27].

Figure 2 graphically compares how the Binary representation method is applied
when single and multiple time bins are used. In single observation window, diagnosis
codes are extracted from raw data and then Binary representation is applied to create
separate column of each code shown as Code1, Code2, … , CodeN. The table shows six
records associated with three patients. The data is then aggregated resulting in the final
file with three records of three patients. However, when multiple time bins are used, the

Administrative Health Data Representation 137

observation window is divided into multiple time bins (w bins) and within each bin, the
Binary representation is applied. Therefore, the total number of attributes in the final
analytic file is “w” times more than the single window. It should be noted that these
time bins can have overlap or can be disjoint.

Enumeration Representation. Enumeration is another method in representing the
administrative codes. In this method, the number of times a code is present in patient’s
medical history within a predefined time window is counted. Therefore, instead of
using binary indicators, the present/non-present codes could be replaced by the number
of times they occurred. The formula to create these codes are given below. As shown,
each code (Codecnti) is represented as sum of present codes specific to claim C.

Codecnti ¼
X

c2claims

1

0

8<
:

9C if code i present on claim c

Otherwise
ð3Þ

This method of representing data clearly captures more information than simple Binary
representation. However, one needs to carefully plan for the specific type of classifier to
construct models, and specifically how to represent diagnoses that are not present in
patient’s record (see more discussion in Temporal Min-Max Representation section).
This approach was used to create a set of independent attributes that represent the total
number of admissions, and the total number of each CPT and diagnosis codes in
predicting readmissions [9]. In another study and in predicting high healthcare cost, the
number of comorbidities as well as diagnoses were used in developing models [30].

Temporal Min-Max Representation. Another approach to represent diagnoses is to
explicitly use time from when the diagnosis happened for the first time and most recently
[31]. This is possible as records in claims data are time-stamped helping us to understand
when an event occurred. The diagnoses codes could be represented by calculating the
number of days from the first known occurrence of the i-th, diagnosis code at time (ti) to

Fig. 2. Comparison of single vs. multiple time bins in Binary representation.

138 N. Asadzadehzanjani and J. Wojtusiak

the time of prediction (tp), named as Codemaxi , as well as last recorded occurrence of the
diagnosis code relative to the time of prediction, named as Codemini . Using this approach,
two copies of each administrative code is created and represented by the number of days.
Formulas used to generate these codes are given below:

Codemaxi ¼ max
ti

tp � ti
� � ð4Þ

Codemini ¼ min
ti

tp � ti
� � ð5Þ

This method provides information about how long a patient has a health condition,
which is important for chronic conditions. Also, it gives information about the last time
the condition was present in patient’s history, which is important for acute conditions
that affect patient’s health temporarily.

As the codes are represented using the number of days, special values need to be
assigned to indicate diagnoses that are not present in patients’ records. It is incorrect to
simply represent non-present diagnoses with “0”. One assumption to indicate non-
present codes is to use a relatively large value to represent the infinity in time.
Therefore, these codes could be represented with a very large positive and negative
values, like ±999999.0 (denoted as 6_9), ±99999.0 (denoted as 5_9), and ±9999.0
(denoted as 4_9) etc. Here, 10n−1 is represented as n_9, where ‘n’ is the number of
‘9’s. Also, positive and negative numbers are selected to represent the positive (max
columns) and negative (min columns) correlation between the number of days and
predicted outcome. The main reason for selecting 10n−1 as special values is that these
numbers are easily visible when performing manual inspection of the data. Also,
previous research indicated that the choice of value replacing these non-present codes
could have impact on the performance of the model and depends on the algorithm
being used [31].

Our group developed this method for the first time when predicting Activity of Daily
Living (ADL)s using patients’ diagnosis codes collected over ten years and demo-
graphic factors. In the study, non-present codes were replaced with ±999999.0 (6_9)
and the models were constructed using different algorithms including Random Forest,
Logistic Regression, Decision Tree and Naïve Bayes. It was shown that the method had
an overall better performance compared with Binary representation [31].

Additional Information and Derived Attributes. In addition to the methods that
represent individual attributes, combinations of multiple attributes are often derived
from the data. For example, the total number of claims within a time window, time
between hospitalizations, and the number of emergency care visits can be extracted
from claims data. Further, individual and derived attributes can be modified by
applying numerical transformations. For example, instead of considering time from the
onset of a chronic condition, one may consider log(time) to emphasize recent changes
and downplay small changes in distant past. Finally, global transformations such as
those based on kernel methods or principal component can be used to transform all
attributes in the space. These methods are beyond the scope of this paper, which
focuses on representation of individual attributes.

Administrative Health Data Representation 139

To the best of our knowledge, the above methods are being used in limited settings
and in some cases on a limited set of administrative codes. There is not any study that
has done systematic investigation of administrative code representation. It is our
understanding that the method of representing data could be impacted by many factors
including the type of algorithm, outcome, size of observation window, the type of
administrative code etc. In the next section, the Temporal Min-Max and simple Binary
representation methods are compared and evaluated using two classification problems.
In this study, the focus is on diagnosis codes grouped into 282 categories using
AHRQ’s Clinical Classification Software (CCS) [32]. This grouping is because the
total number of CCS codes are large enough to provide sufficient information about
patient’s medical history and small enough to prevent overfitting the models.

2.3 Evaluation of Claims Data Representation

Datasets and Prediction Problems. Two classification problems were defined for
predicting one-year mortality (Model 1) and predicting high utilization of medical
services (Model 2) defined as 90th percentile of the number of claims. In both models,
the outcomes were calculated in year 2013, and all inputs were calculated from data
prior to 2013. The data used to construct the models were 5% sample of Medicare
beneficiaries from the Surveillance, Epidemiology, and End Results (SEER)-Medicare
dataset between years 1995 and 2013. In this study, noncancer individuals who served
as the control group in SEER-Medicare files were used to construct the models. Despite
its limitations (i.e., data from SEER regions, male patients only), this dataset is suffi-
cient for the purpose of investigating data representation. The patient cohort included
those alive and at least 70 years old on January 1st, 2013. Excluding patients younger
than 70 years guarantees that there are at least 5 years of data available prior to the
prediction time as Medicare eligibility generally starts at 65.

For Model 1, a binary output/outcome was created with value 1 indicating that the
patient died in 2013, and value 0 showing that patient was alive at the end of 2013. In
Model 2, a binary output attribute was created to indicate high utilization in 2013. For
this purpose, a simple approach was used in which the patients were classified as high
utilizers when their total number of claims was above 90-th percentile in 2013.

In addition to the diagnosis codes that are the focus of this work, patient age and
race were included in the analysis. The ICD-9 diagnosis codes were combined from
multiple tables in the dataset: Medicare provider analysis and review (MedPAR),
outpatient, durable medical equipment (DME), carrier (NCH), home health agency
(HHA) and hospice. The ICD-9 codes were transformed into 282 AHRQ’s CCS codes.
The representation methods discussed in earlier sections were applied to the data,
resulting in 282 diagnosis codes for Binary representation and 564 codes for Temporal
Min-Max representation. The codes that were not present in medical history were
replaced with ±999999.0 (6_9).

The prediction time (t0) was January 1st, 2013 and a fixed one-year prediction
window was defined to construct the output attributes ending on December 31st, 2013.
The diagnosis codes were extracted in multiple time windows up to 1 year, 2 years, …
12 years as well as 18 years prior to the prediction time to allow for investigating the
impact of the amount of clinical information on model performance (see Fig. 3).

140 N. Asadzadehzanjani and J. Wojtusiak

Table 1 shows the characteristics of the data in the study population. The unit of
analysis in the two models was patient and the final dataset included 83,590 patients. The
distribution of the data within each outcome is also shown. As it can be seen, about 7% of
the cohort died in 2013 and about 10% of the population were high healthcare utilizers.
Most patients were white and the average age in the cohort was about 80 years old.

When the observation window size was 18 years, the average number of days to the
time of prediction across all CCS codes (CCStotal) was about 1846. The average
number of days across all CCS codes (both CCSmin and CCSmax attributes) was smaller
among positive examples (i.e., died or high utilizers). In addition, the average number
of present diagnosis codes in the cohort was about 48. It was also shown that the
number of present codes was higher among “Death” and “High Utilization” groups.

The models were developed using the standard model construction methodology.
The data was first split into 90% training set and 10% testing set. Ten-fold cross
validation within the training data was used to tune the models.

Fig. 3. Illustration of temporality in diagnosis codes extraction.

Table 1. Characteristics of the study population.

Model 1 Model 2
Total Death No death High Ut No high Ut

N 83590 6111 77477 8401 75189
% 7.32% 92.68% 10.05% 89.95%
Race White 82.67% 82.06% 82.71% 82.68% 82.67%

Black 6.96% 8.49% 6.84% 8.56% 6.87%
Asian 4.09% 4.02% 4.1% 3.58% 4.15%
Native 0.39% 0.54% 0.38% 0.39% 0.39%
Hispanic 2.83% 2.45% 2.86% 2.61% 2.85%
Unknown 3.05% 2.43% 3.1% 2.17% 3.15%

Age 79.72 82.6 79.5 80.3 79.7
CCStotal 1846.2 1693.9 1858 1612.7 1872.6
CCSmax 2312.4 2230.8 2318.8 2252.5 2319.3
CCSmin 1379.88 1157.0 1397.2 971.9 1426
Code 47.76 57.2 47.0 70.8 45.2

Administrative Health Data Representation 141

A number of machine learning classification algorithms including Random Forest
(RF), Gradient Boost (GB), Logistic Regression (LR) and Decision Tree (DT) were
utilized to construct the models. For each algorithm, default parameters provided by
scikit-learn (0.21.3) in Python 3 were used to develop the models. The quality of the
models was measured using standard machine learning measures including accuracy,
area under the curve (AUC; often referred to as C-statistic), precision, and recall.

3 Results

3.1 Model Performance

The first set of experiments was to compare the quality of the models when diagnoses
were constructed using standard Binary and Temporal Min-Max representations. For
this purpose, the observation window size was set to 18 years. Table 2 presents a
summary of the performance of the models in terms of AUC, accuracy (Acc), precision
(Prec), and recall (Rec). Two tailed t-test was used to determine the level of signifi-
cance (p < 0.05). As summarized, the performance of Temporal Min-Max represen-
tation was statistically significantly higher than Binary representation (p < 0.05) for
almost all four criteria except for accuracy and precision of LR algorithm in predicting
mortality and precision of LR in predicting high utilization, for which the difference
was not significant. From among the different types of algorithms in predicting mor-
tality, GB achieved the highest performance with the average AUC of 0.79. In pre-
dicting high utilization, the highest AUC of 0.85 was achieved in RF and GB-based
models. As shown, recall was low in the models due to imbalanced data. However, it
should be mentioned that the purpose of this study was not to develop the best models
with optimized parameters, but to systematically compare different diagnosis repre-
sentation methods for supervised learning. It is also possible that adding more attributes
to the data (i.e., provider information) could improve the results.

Table 2. Average AUC, accuracy, precision and recall of the two tested models.

Alg Temporal Binary
AUC Acc Prec Rec AUC Acc Prec Rec

Model 1 – Mortality
RF .767* .927* .605* .025* .735 .926 .312 .003
GB .794* .928* .579* .084* .767 .927 .467 .014
LR .765* .926 .436 .032* .759 .926 .415 .021
DT .575* .874* .183* .208* .550 .865 .140 .164
Model 2 – High Utilization
RF .845* .911* .748* .179* .787 .902 .656 .060
GB .853* .914* .682* .263* .803 .903 .603 .115
LR .821* .905* .595 .160* .801 .903 .578 .118
DT .628* .859* .315* .344* .574 .836 .221 .250
* Indicates significance (p < 0.05) of Temporal vs. Binary
representation.

142 N. Asadzadehzanjani and J. Wojtusiak

The following experiments aim at understanding individual differences between the
data representations. For this purpose, a detailed comparison was made on the actual
output probabilities of the models. Firstly, the average output probability was compared
from instances that are correctly classified by Temporal vs. Binary representation
methods. Then the probabilities were calculated when classified by true classes. As
shown in Table 3, the average output probability among Temporal Min-Max repre-
sentation cases is significantly higher than Binary representation across all algorithms
and for two predictive models, resulting in overall higher recall. When comparing
based on true classes, it was observed that the output probability was larger for
Temporal representation among true positive cases (Death and High Utilization) and
smaller among true negative cases (No Death and No High Utilization) for GB and LR
algorithms. For other algorithms, the results were only significant among true positive
cases (high utilization) using RF. Overall, the results suggest that Temporal repre-
sentation methods are more likely to correctly classify positive cases across the two
models. In other words, Temporal representation of diagnoses allows the algorithms to
pick more positive cases that are missed in Binary representation method.

Table 3. Comparison of output probability for Temporal Min-Max (Tem) vs. Binary
(Bin) representation. The results indicate higher probabilities for Temporal representation.

Model 1 – Mortality Model 2 – High Utilization

All Death No death All High Ut No high
Ut

Alg Tem Bin Tem Bin Tem Bin Tem Bin Tem Bin Tem Bin

RF .54* .34 .56 .71 .32 .30 .56* .39 .60* .55 .34 .35
GB .61* .31 .66* .58 .21* .28 .59* .36 .69* .60 .25* .30
LR .47* .42 .57* .54 .35* .40 .51* .45 .58* .56 .37* .41
DT .16* .13 1.0 1.0 .00 .00 .24* .18 1.0 1.0 .00 .00
*Indicates significance (p < 0.05) of Temporal vs. Binary representation.

RF GB LG
(a) (b) (c)

(d) (e) (f)

Fig. 4. Comparison of the output probability of Temporal vs. Binary representation that shows
weak correlation. Vertical and horizontal axis show Binary and Temporal representation,
respectively. Plots (a), (b) and (c) are for Model 1 and plots (d), (e), (f) for Model 2.

Administrative Health Data Representation 143

The data summarized in Table 3 are also shown graphically in Fig. 4 using scat-
terplots from 1000 randomly selected patients from the test set. Green points represent
negative cases (no death or no high utilization) and red represent positives (death or
high utilization) according to real labels. Values on axes represent output probabilities
from models (vertical Binary, horizontal Temporal Min-Max). The plots were created
for RF, GB, and LR algorithms which give outputs in the form of probabilities, thus are
not applicable to DT which is a symbolic classification method. The models showed an
overall medium or weak agreement between Binary and Temporal representations.
While overall agreement on negative cases (lower left part of the plots) was very high
(R2 � 1), there was little agreement within positive cases (R2 = 0.2 for Model 1 and
R2 = 0.1 for Model 2). For RF and GB models, there was a clear shift of values to the
right of the plots, indicating that the Temporal models output overall higher values.

Further, to determine how the number of present diagnosis codes impacts the pre-
diction, the average number of present CCS codes was compared for cases correctly
classified by the two representation methods. The comparison was made based on true
class of eachmodel and the results were shown in Table 4. In general, the number of codes
was larger or smaller depending on what is being predicted, algorithm, and true class. In
Model 1, the average number of CCS codes was significantly larger for Temporal rep-
resentation using RF and DT algorithms among true positive cases (Death) and smaller
among true negative cases (No Death). When analyzing true negative cases in GB and LR
models, the average number of codes was significantly larger for Temporal representation.
In Model 2, the number of codes was significantly larger for Binary representation among
true positive cases and smaller for true negative cases except for DT algorithm. The results
were more consistent in Model 2. Therefore, the larger number of present codes in pre-
dicting true positive cases of Model 2 suggests that sicker patients (more diagnosis codes)
are better predicted with Binary representation. Conversely, sicker patients are better
captured with Temporal representation in predicting true negative cases. These results can
be interpreted as when using the Binary representation in predicting true positive cases,
patients need to bemore severely sickwith larger number of conditions present. In general,
in Binary representation, each of the conditions present in a patient’s record provides an
incremental increase to the predicted probability. In contrast, in Temporal Min-Max
representation, individual diagnoses can have stronger impact as well as non-linear rela-
tionship with the predicted outcomes because of the time information available.

Table 4. Comparison of the number of present codes for Temporal Min-Max vs. Binary
representations. Higher average numbers of codes are present in temporal representation.

Model 1 – Mortality Model 2 – High Utilization

Death No death High Ut No high Ut
Alg Tem Bin Tem Bin Tem Bin Tem Bin

RF 83.0* 1.1 10.5* 77.3 85.3* 103.7 101.5* 88.9
GB 77.9 87.0 85.8* 78.5 79.7* 97.0 96.8* 80.8
LR 80.0 86.5 84.9* 78.8 85.8* 99.7 98.1* 85.6
DT 68.9* 65.0 57.8* 59.5 76.9* 78.6 63.6* 64.0
* Indicates significance (p < 0.05) of Temporal vs. Binary
representation.

144 N. Asadzadehzanjani and J. Wojtusiak

A similar experiment was conducted to compare the average number of days
between diagnosis occurrence and prediction time across all diagnosis codes between
Temporal and Binary representations. As shown in Table 5, the average number of
days was smaller for Temporal representation among true positive cases and larger
among true negative cases. The results were significant except for RF and GB used for
mortality prediction. This suggests that Temporal representation tends to correctly
classify positive cases who had health issues for a shorter period, while it tends to
correctly predict true negative cases who were sick longer. This is further investigated
in Sect. 3.2 in which the relationship between observation window sizes (history
length) and model performance is examined.

3.2 History Length (Back Window Size)

The second set of experiments was to investigate the impact of the observation window
size (length of patient history in constructing diagnoses) on the quality of models when
applying the Binary and Temporal Min-Max representations. Intuitively, longer win-
dows allow for inclusion of more diagnosis codes present in the patients’ history.
However, when Binary representation is used, large window size causes inclusion of
codes that are no longer relevant (i.e., acute conditions). In contrast, when Temporal
Min-Max representation is used, data with irrelevant timeframe can be adjusted by the
model itself. The presented work assumes fixed window size across all diagnoses.
However, initial results (out of scope of this paper) have shown that this assumption is
an over-simplification since period of relevance depends on specific diagnoses.

Figure 5 graphically shows the performance of the two constructed models across
different algorithms. The vertical axis refers to the AUC of the models and horizontal
axis represents the size of the observation window ranging from 18 years to 1 year.
Similar plots were generated for accuracy, precision, and recall, but they are not
included here due to space limitation. Red and black lines correspond to the changes in
AUC for Temporal vs. Binary methods. An interesting observation was that the
changes in observation window size affect the quality differently across the two models,
four algorithms and two representation methods. The results suggest that one needs to
carefully pick the optimal size of observation window with respect to the algorithm,
outcome, and the representation method to improve the quality of the models.

Table 5. Comparison of the average number of days for Temporal Min-Max vs. Binary
representations. Lower average numbers of days are present in temporal representation.

Model 1 – Mortality Model 2 – High Utilization

Death No feath High Ut No high Ut
Alg Tem Bin Tem Bin Tem Bin Tem Bin

RF 1259.6 2599.1 2405.3* 1243.4 1432.5* 1913.5 2070.2* 1555.0
GB 1353.6 1413.3 1898.0* 1380.5 1468.2* 1754.1 1834.7* 1525.5
LR 1181.7* 1906.9 2608.1* 1193.3 1184.2* 2195.7 2362.4* 1213.2
DT 1595.1* 1680.8 1981.4* 1838.6 1579.9* 1669.6 1944.5* 1754.2
* Indicates significance (p < 0.05) of Temporal vs. Binary representation.

Administrative Health Data Representation 145

The AUC of Model 1 varies between about 0.53 to 0.76, while it changes between 0.54
to 0.85 in Model 2.

In general, it was observed that Temporal Min-Max method outperforms Binary
method in most observation window sizes. The AUC change pattern was similar for RF
and GB across the two models. In predicting mortality, the accuracy of temporal-based
models increased with more amount of data achieving the highest AUC when the
window size was 18 years (the longest that can be constructed from available data).
This suggests that in predicting mortality, it is important to know what happened in
patient’s medical history long time ago and that “Max” columns should be more
important. In Model 2 however, it was observed that the accuracy of the models does
not depend on the amount of data as it was almost constant over the course of 18 years,
suggesting that the most recent diagnoses or “Min” columns should be more important.
Using Binary representation for these algorithms, the performance of the models
increased with less amount of data achieving the best performance by having about
three years of data in Model 1 and only one year in Model 2. Also, there was no
difference in the AUC of two representations with window size of 1 year in Model 1.
Using LR to predict mortality, the accuracy of each method increased with less amount
of data before reaching the peak between 2 to 4 years depending on the representation
method. In this model, Temporal representation outperformed Binary representation
when the observation window size ranged between 18 to 10.5 years after which the
trend was reversed. In predicting high utilization though, the AUC of Temporal rep-
resentation was higher than Binary representation up to 2 years after which there was
not difference between the two methods. For Decision Tree (DT), the accuracy dropped
with less amount of data for both Temporal and Binary representations. The decrease
was more consistent in Model 1, in which the AUC was constant from 18 to 5 years
before starting to decrease.

RF GB LR DT
(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Comparison of the Temporal (red) vs. Binary representation (black) for the two models.
Vertical and horizontal axis show AUC and observation window size, respectively. Plots (a), (b),
(c) and (d) correspond to Model 1 and plots (e), (f), (g) and (h) refer to Model 2. Different scales
on the sub-plots are irrelevant because the focus was on presenting shapes of the curves. (Color
figure online)

146 N. Asadzadehzanjani and J. Wojtusiak

3.3 Diagnosis Groupers

The original diagnoses are stored in claims data as ICD-9 or ICD-10 codes. When
modeling, these codes are often grouped to larger categories such as CCS, Elixhauser
[33] Charlson [34] etc. to reduce dimensionality of the representation space. This
experiment addresses the question that if the results described above are specific to
CCS codes or are generalizable to other coding systems (code groupings). More
specifically, a version of Elixhauser (Elix) code (version 3.0 or AHRQ-web ICD-9-CM
Elixhauser code) [35] was applied to map ICD-9 codes into 30 categories. Specifically,
CCS codes were mapped to Elix codes resulted in a total of 30 attributes for Binary and
60 attributes for Temporal Min-Max representation. The models were reconstructed
using Elix grouping and compared with CCS-based models discussed earlier in this
paper.

Figure 6 compares the AUC of the two models constructed using CCS and Elix
codes. The AUC of the models constructed on the Elix codes was lower than the CCS-
based models across all algorithms. This is reasonable as some information is lost when
mapping CCS codes to Elix grouper codes with smaller number of categories, resulting
in lower performance. A key observation was that the change in the AUC is inde-
pendent of the coding systems in both Temporal and Binary representations, which
suggests potential generalizability of the findings to other groupers.

RF GB LR DT

M
odel1

C
C

S
E

lix
M

odel 2
C

C
S

E
lix

Fig. 6. Comparison of the AUC of models on two different coding systems. Red and black lines
indicate Temporal vs. Binary representations, respectively. Shape of the curves indicate that
model performance depends on data representation but not on diagnosis groupers used. (Color
figure online)

Administrative Health Data Representation 147

4 Conclusion

The problem of representing data before applying machine learning methods has sig-
nificant impact on quality of the models applied in patient care and management of
health systems, as well as health policy and payment. It was previously observed that
ML methods perform similarly on health-related applications, specifically when claims
data are used [36]. The real difference in the model quality is in the extraction of
appropriate information from raw data, followed by the construction of proper repre-
sentation space. Despite wide use of administrative codes in predicting health out-
comes, the representation of these codes has not been systematically studied and the
literature provides only solution to ad-hoc modeling problems. The presented work
provided a partial remedy for this situation and benefit all modeling efforts that rely on
the use of medical claims and health data.

This manuscript evaluated and compared Temporal Min-Max and Binary repre-
sentation methods using a large-scale experimental evaluation. In this study, more
sophisticated representation schemas were used. These methods were applied on two
classification problems: predicting mortality and predicting high utilization of medical
services. The results indicated that Temporal Min-Max representation outperforms
Binary representation in most cases. However, the optimal data representation is highly
dependent on the classification problem, observation window size, model representa-
tion, learning algorithm and the predicted outcome.

The current manuscript is the beginning of the efforts in designing a systematic
study of using administrative codes in health data. Beyond the comparison presented
here, Temporal Min-Max representation has so far been applied to binary classification
problems including predicting Activities of Daily Living (ADLs) [31] and progression
of kidney disease. However, there is a need to further examine the representation issues
for multi-class classification, regression, and unsupervised learning. Also, the goal is to
investigate more details of claims data representation in which each diagnosis is
optimized individually. The limitation of the presented work is that it is applicable in
settings in which longitudinal information of patients are collected over multiple years.
Therefore, large and well-established databases of claims or EHRs data are required.
Further, the presented work does not take into consideration censoring of data based on
data availability (multiple payers, insurance eligibility, etc.).

Further, the presented work focuses on “traditional” machine learning algorithms
(GB, RF, LR and DT) and results are most likely generalizable to similar methods. In
contrast, deep learning methods and more specifically recurrent neural networks
(RNN), Long Short-Term Memory (LSTM) [37] and Gated Recurrent Units
(GRU) [38] are attractive alternatives. RNNs can be trained on the actual sequences of
claims rather than aggregated data within selected windows. It is also interesting to
apply data representation using RNNs.

Lastly, claims data are often expensive to purchase for research purposes, thus are
often limited to short periods of time. This work highlights the importance of longi-
tudinal data to create high quality models. It is the authors’ opinion that it is more
beneficial to use data collected over longer periods of time (even with smaller sample
sizes) when limited resources are available.

148 N. Asadzadehzanjani and J. Wojtusiak

References

1. Connelly, R., Playford, C., Gayle, V., Dibben, C.: The role of administrative data in the big
data revolution in social science research. Soc. Sci. Res. 59, 1–12 (2016)

2. CMS Forms List. https://www.cms.gov/Medicare/CMS-Forms/CMS-Forms/CMS-Forms-
List

3. Ferver, K., Burton, B., Jesilow, P.: The use of claims data in healthcare research. Open
Public Health J. 2, 11–24 (2009)

4. Cadarette, S.M., Wong, L.: An introduction to health care administrative data. Can.
J. Hosp. Pharm. 68, 232 (2015)

5. Wilson, J., Bock, A.: https://www.optum.com/content/dam/optum/resources/whitePapers/
Benefits-of-using-both-claims-and-EMR-data-in-HC-analysis-WhitePaper-ACS.pdf

6. Berg, G.D., Gurley, V.F.: Development and validation of 15-month mortality prediction
models: a retrospective observational comparison of machine-learning techniques in a
national sample of Medicare recipients. BMJ Open 9, 7 (2019)

7. Makar, M., et al.: Short-term mortality prediction for elderly patients using medicare claims
data. Int. J. Mach. Learn. Comput. 5(3), 192–197 (2015)

8. Desai, R.J., et al.: Comparison of machine learning methods with traditional models for use
of administrative claims with electronic medical records to predict heart failure outcomes.
JAMA Netw. Open 3, 1 (2020)

9. He, D., et al.: Mining high-dimensional administrative claims data to predict early hospital
readmissions. J. Am. Med. Inform. Assoc. 21(2), 272–279 (2014)

10. Min, X., Yu, B., Wang, F.: Predictive modeling of the hospital readmission risk from
patients’ claims data using machine learning: a case study on COPD. Sci. Rep. 9, 1–10
(2019)

11. Morel, D., et al.: Predicting hospital readmission in patients with mental or substance use
disorders: a machine learning approach. Int. J. Med. Inform. 139, 104136 (2020)

12. Osawa, I., et al.: Machine-learning-based prediction models for high-need high-cost patients
using nationwide clinical and claims data. NPJ Digit. Med. 3, 1 (2020)

13. Luo, L., et al.: Using machine learning approaches to predict high-cost chronic obstructive
pulmonary disease patients in China. Health Informatics J. 26(3), 1577–1598 (2019)

14. Chen, S., et al.: Using applied machine learning to predict healthcare utilization based on
socioeconomic determinants of care. Am. J. Manag. Care 26(1), 26–31 (2020)

15. Davis, M.M., et al.: Geographic and population-level disparities in colorectal cancer testing:
a multilevel analysis of Medicaid and commercial claims data. Prev. Med. 101, 44–52
(2017)

16. Singh, J.A., et al.: Trends in and disparities for acute myocardial infarction: an analysis of
Medicare claims data from 1992 to 2010. BMC Med. 12, 1 (2014)

17. Inguva, S., et al.: Factors influencing Human papillomavirus (HPV) vaccination series
completion in Mississippi Medicaid. Vaccine 38(8), 2051–2057 (2020)

18. Gray, S.E., et al.: Association between workers’ compensation claim processing times and
work disability duration: analysis of population level claims data. Health Policy 123(10),
982–991 (2019)

19. Miotto, R., et al.: Deep patient: an unsupervised representation to predict the future of
patients from the electronic health records. Sci. Rep. 6, 1 (2016)

20. Ngiam, K.Y., Khor, I.W.: Big data and machine learning algorithms for health-care delivery.
Lancet Oncol. 20, 5 (2019)

Administrative Health Data Representation 149

https://www.cms.gov/Medicare/CMS-Forms/CMS-Forms/CMS-Forms-List
https://www.cms.gov/Medicare/CMS-Forms/CMS-Forms/CMS-Forms-List
https://www.optum.com/content/dam/optum/resources/whitePapers/Benefits-of-using-both-claims-and-EMR-data-in-HC-analysis-WhitePaper-ACS.pdf
https://www.optum.com/content/dam/optum/resources/whitePapers/Benefits-of-using-both-claims-and-EMR-data-in-HC-analysis-WhitePaper-ACS.pdf

21. Malley, B., Ramazzotti, D., Wu, J.: Data prerocessing. In: Secondary Analysis of Electronic
Health Records, pp. 115–141. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
43742-2_12

22. Wojtusiak, J.: Data-driven constructive induction in the learnable evolution model. In:
Proceedings of the 16th International Conference Intelligent Information Systems (2008)

23. Castillo, S., et al.: Algorithms and tools for the preprocessing of LC–MS metabolomics data.
Chemom. Intell. Lab. Syst. 108(1), 23–32 (2011)

24. Stein, J.D., Lum, F., Lee, P.P., Rich, W.L., Coleman, A.L.: Use of health care claims data to
study patients with ophthalmologic conditions. Ophthalmology 121, 1134–1141 (2014)

25. Tran, T., et al.: A framework for feature extraction from hospital medical data with
applications in risk prediction. BMC Bioinform. 15, 1 (2014)

26. Liu, L., et al.: Learning the joint representation of heterogeneous temporal events for clinical
endpoint prediction, https://arxiv.org/abs/1803.04837

27. Xie, Y., et al.: Analyzing health insurance claims on different timescales to predict days in
hospital. J. Biomed. Inform. 60, 187–196 (2016)

28. Singh, A., et al.: Incorporating temporal EHR data in predictive models for risk stratification
of renal function deterioration. J. Biomed. Inform. 53, 220–228 (2015)

29. Rajkomar, A., et al.: Scalable and accurate deep learning with electronic health records. NPJ
Digit. Med. 1(1), 1–10 (2018)

30. Kim, Y.J., Park, H.: Improving prediction of high-cost health care users with medical check-
up data. Big Data. 7(3), 163–175 (2019)

31. Wojtusiak, J., et al.: Computational Barthel Index: an automated tool for assessing and
predicting activities of daily living among nursing home patients. BMC Med. Inform. Decis.
Mak. 21, 1 (2021)

32. Clinical Classifications Software (CCS) for ICD-9-CM. https://www.hcup-us.ahrq.gov/
toolssoftware/ccs/ccs.jsp. Accessed 14 May 2021

33. Elixhauser, A., et al.: Comorbidity measures for use with administrative data. Med. Care 36
(1), 8–27 (1998)

34. Charlson, M.E., et al.: A new method of classifying prognostic comorbidity in longitudinal
studies: development and validation. J. Chronic Dis. 40(5), 373–383 (1987)

35. Quan, H., et al.: Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10
administrative data. Med. Care 43, 1130–1139 (2005)

36. Lynam, A.L., et al.: Logistic regression has similar performance to optimised machine
learning algorithms in a clinical setting: application to the discrimination between type 1 and
type 2 diabetes in young adults. Diagn. Progn. Res. 4, 1 (2020)

37. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 8 (1997)
38. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical

machine translation (2014)

150 N. Asadzadehzanjani and J. Wojtusiak

https://doi.org/10.1007/978-3-319-43742-2_12
https://doi.org/10.1007/978-3-319-43742-2_12
https://arxiv.org/abs/1803.04837
https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp

Invited Paper

Generating Longitudinal Synthetic EHR Data
with Recurrent Autoencoders and Generative

Adversarial Networks

Siao Sun1(&), Fusheng Wang2,3, Sina Rashidian2, Tahsin Kurc3,
Kayley Abell-Hart3, Janos Hajagos3, Wei Zhu1, Mary Saltz3,

and Joel Saltz3

1 Department of Applied Mathematics and Statistics, Stony Brook University,
Stony Brook, NY, USA

siao.sun@stonybrook.edu
2 Department of Computer Science, Stony Brook University,

Stony Brook, NY, USA
3 Department of Biomedical Informatics, Renaissance School of Medicine

at Stony Brook University, Stony Brook, NY, USA

Abstract. Synthetic electronic health records (EHR) can facilitate effective use
of clinical data in software development, medical education, and medical
research without the concerns of data privacy. We propose a novel Generative
Adversarial Network (GAN) approach, called Longitudinal GAN (LongGAN),
that can generate synthetic longitudinal EHR data. LongGAN employs a
recurrent autoencoder and the Wasserstein GAN Gradient Penalty (WGAN-GP)
architecture with conditional inputs. We evaluate LongGAN with the task of
generating training data for machine/deep learning methods. Our experiments
show that predictive models trained with synthetic data from LongGAN achieve
comparable performance to those trained with real data. Moreover, these models
have up to 0.27 higher AUROC and up to 0.21 higher AUPRC values than
models trained with synthetic data from RCGAN and TimeGAN, the two most
relevant methods for longitudinal data generation. We also demonstrate that
LongGAN is able to preserve patient privacy in a given attribute disclosure
attack setting.

Keywords: Deep learning � Machine learning � Electronic health records �
Generative models � Synthetic data generation

1 Introduction

Electronic health record (EHR) systems capture vast amounts of digital data about
patients’ health status, their medical and treatment histories, and clinical outcomes.
These data provide opportunities to improve healthcare delivery, reduce medical costs
and, when integrated with genomic and imaging data, can enable the development of
strategies for personalized medicine. However, the use of EHR data in medical research
and software development is often impeded by the complexities of regulatory over-
sight. Because electronic health records contain patients’ information, data access and

© Springer Nature Switzerland AG 2021
E. K. Rezig et al. (Eds.): Poly 2021/DMAH 2021, LNCS 12921, pp. 153–165, 2021.
https://doi.org/10.1007/978-3-030-93663-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93663-1_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93663-1_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93663-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-93663-1_12

sharing are strictly controlled by rules and processes to protect patient privacy. Getting
approvals for access to de-identified clinical data can be time consuming. Approvals are
generally granted for specific subsets of data (new approvals are required, if a study
later needs additional data subsets) with limits on how the data can be shared within
and among research teams. Higher security requirements on computing and storage
infrastructure put additional burden on EHR based medical and informatics research.
The process of data de-identification is also time consuming and expensive, especially
for large EHR datasets. Moreover, de-identified data can still pose privacy and security
risks [1].

Realistic synthetic datasets that maintain the statistical properties of real datasets
can mitigate the complexities of clinical data access by eliminating (or significantly
reducing) privacy and security risks and can complement de-identified real clinical data
in informatics and medical research [2–11]. For instance, synthetic datasets can be used
for data analysis3 and cohort identification tasks [2]. They can also replace or augment
real data for a more efficient development and evaluation of computerized analysis
methods [4, 5]. Realistic synthetic EHR data can, in particular, benefit deep learning
analysis workflows, which often require large volumes of data to train accurate and
robust models. Large longitudinal EHR datasets, for example, are critical to the
development of reliable predictive models, which are generally based on recurrent
neural networks (RNN), such as long short-term memory [12] (LSTM) architectures.
However, there are challenges in generating realistic synthetic datasets. Data hetero-
geneity, large numbers of data elements and types, irregularities in data, and missing
values make it arduous to implement efficient methods that can produce realistic
synthetic data.

We propose a novel deep learning method, coined as Longitudinal GAN (Long-
GAN), for generating longitudinal synthetic EHR data. A trained LongGAN model
generates high-quality clinical data containing continuous laboratory and medication
values for given diseases for a time period of 72 h. It can be applied to any continuous-
valued longitudinal data for any reasonable time range given.

Deep learning has in recent years become the preferred method for data analysis in
a wide range of applications including analysis of clinical data for identification of
disease risk, outcome prediction, and the extraction and classification of clinical
information. For example, deep learning methods have been used to analyze EHR data
to identify the risk of opioid use disorder [13] and opioid overdose [14] in population
studies and to detect miscoded diabetes diagnosis codes for quality improvement [15].
Deep learning methods have also been successfully applied to synthetic data generation
in many application domains, such as text-to-image synthesis [16], video generation
[17], and music generation18. Most synthetic data methods employ the Generative
Adversarial Network [19] (GAN) architecture, which consists of a generator compo-
nent and a discriminator (or a critic) component. The generator produces synthetic data,
whereas the discriminator distinguishes between real and synthetic data. The adver-
sarial relationship between the generator and the discriminator forces the generator to
learn to produce realistic synthetic data. Several recent projects have employed GANs

154 S. Sun et al.

for synthetic EHR data generation [20–27]. Medical Generative Adversarial Network
(MedGAN) [20] implements a method for generating discrete data elements (medi-
cation codes and diagnosis codes). SMOOTH-GAN [21] demonstrated GANs would
generate more realistic synthetic data when binary labels are converted to continuous
values by using imperfect machine learning models as heuristic functions for gener-
ating laboratory values and medications as a snapshot of patients’ records. However,
most of the previous efforts have focused on producing non-longitudinal synthetic data
that represent a snapshot of a patient’s medical history. Applications of GANs for
synthetic time-series clinical data remain scarce, owing mainly to the fact that gener-
ating sequences requires the generated data to have not only similar overall distribution
of attributes, but also similar temporal dynamics to the real sequences. Some recent
efforts have resulted in methods for generating longitudinal synthetic data. Recurrent
Conditional Generative Adversarial Networks (RCGAN) [22] used a RNN architecture
for both the generator and the discriminator and took conditional input at each time
step. The authors evaluated the performance on the eICU Collaborative Research
Database with four selected regularly sampled features. Time-series Generative
Adversarial Networks (TimeGAN) [23] introduced supervised loss to enforce temporal
dynamic preservation and trained the generator and the discriminator in embedded
space. The authors of TimeGAN measured its success on a discrete-valued lung cancer
dataset. Dual Adversarial Autoencoder (DAAE) [24] made use of an inner GAN and an
outer GAN to learn set-valued sequences of medical entities such as diagnosis codes.

LongGAN takes advantage of recurrent autoencoders and the Wasserstein Gener-
ative Adversarial Network with Gradient Penalty [28] (WGAN-GP) architecture.
Recurrent autoencoders have been successfully applied to multivariate time series
analysis such as forecasting [29] and anomaly detection [30]. They can learn useful
representations of sequences while preserving temporal dynamics during the recon-
struction. LongGAN leverages this property of recurrent autoencoders and adapts it to
train an autoencoder model to generate realistic sequences. Our work differs from the
previous work as follows: 1) Unlike regularly sampled bedside data, our data are
irregularly sampled with many missing values. 2) Our data contains many features,
rather than only a few handcrafted features. 3) Conditions are combined to generate
realistic longitudinal data.

We evaluated the performance of LongGAN by training a logistic regression
model, a random forest model, and a two-layer long short-term memory (LSTM)
network model to predict acute kidney injury (AKI). These models represent examples
of linear models, nonlinear models, and deep learning models, respectively. The
experimental results show that predictive models trained with synthetic data from
LongGAN achieve comparable Area Under the Receiver Operating Characteristics
(AUROC) and Area Under the Precision Recall Curve (AUPRC) values to models
trained with real data. In addition, synthetic datasets from LongGAN lead to much
better models, with up to 0.27 higher AUROC and up to 0.21 higher AUPRC values,
compared with synthetic data from RCGAN and TimeGAN, the two most relevant
GAN-based methods for synthetic longitudinal data generation.

Generating Longitudinal Synthetic EHR Data 155

Beyond the realisticness of synthetic data, a key concern is protecting patient
privacy (i.e., an attacker should not be able to discover the identities of patients from a
synthetic dataset). We examined this aspect of LongGAN in the context of attribute
disclosure attacks. The experimental results show that an attacker, who has a subset of
attributes from the real dataset, could achieve a mean accuracy of 20% in predicting
missing attributes with k-nearest neighbors (KNN) estimation using the synthetic
dataset generated by LongGAN. This value is lower than the mean accuracy of 26%
that the attacker could achieve without access to the synthetic dataset using a popu-
lation median method.

2 Methods

2.1 Architecture of LongGAN

The proposed method consists of a recurrent autoencoder network and a GAN network
as is shown in Fig. 1. A recurrent autoencoder is a neural network trained to copy its
input sequence to its output sequence31. More specifically, it can be viewed as having
two parts: the encoder Enc takes sequential data X and maps it to a dense representation
h, then the decoder Dec takes h and tries to reconstruct the input from it. Here,
X ¼ ðs1; s2; . . .; sTÞ is a time-ordered sequence of vectors. Each vector si ¼
s1i ; s

2
i ; . . .; s

C
i

� �
; 1� i� T represents C features at the time pointi. In our implementa-

tion, the encoder and decoder both have three LSTM layers. We aim to minimize the
reconstruction loss, which is:

X
X2D

X � X 0j jj j2

where D is the dataset, and X 0 ¼ Dec hð Þ ¼ Dec Encð Þ Xð Þ is the reconstruction of X.

Fig. 1. Architecture of the proposed LongGAN model.

156 S. Sun et al.

The GAN network is based on the WGAN-GP architecture with conditional inputs.
A GAN consists of two components: a generator Gðz; hgÞ and a discriminator Dðh; hdÞ.
The generator takes random noise and tries to generate samples that follow the same
distribution of the real data. Meanwhile, the discriminator receives both real and
generated data, and tries to detect whether a sample is real or fake. Ideally, the optimal
generator G� would generate samples that are indistinguishable from real samples, and
the discriminator would be forced to make a random guess. Conditional GANs [32]
(cGANs) are extensions of GANs where the generator takes not only random noise but
also some auxiliary information such as labels, to help with the generation. The
objective of a conditional GAN is:

minGmaxDV hg; hd
� � ¼ Eh�Ph log D hjyð Þð Þ½ � þEz�Pz ½logð1� DðG zjyð ÞÞ�

Here h is the output of the pre-trained encoder, i.e. representation of real longitu-
dinal data, Ph represents the distribution of real representation, Pz is the distribution of
random noise (here we used Gaussian distribution), and y is the conditional input.
WGAN-GP is an extension of the basic GAN architecture that improves the stability
when training the model. Compared to the original GAN, it uses the Wasserstein
distance instead of the Jenson-Shannon (JS) divergence, replaces the discriminator with
a critic that scores the realness or fakeness of a given sample, and adds gradient penalty
to enforce Lipschitz constraints on the critic. The objective function of WGAN-GP is:

L ¼ E~h�Pg
D ~h
� �� �� Eh�Ph D hð Þ½ � þ kEbh �Pbh ½ðkrbhDðbhÞk2 � 1Þ2�

The synthetic representation ~h was fed to the pre-trained encoder to generate
synthetic longitudinal data:

~X ¼ Dec ~h
� � ¼ DecðG zjyð ÞÞ

In our method, the generator has two leakyRelu hidden layers with a = 0.2, each
followed by a batch normalization layer, and the output layer is tanh. The critic has two
leakyRelu hidden layers with a = 0.2. The output layer is linear.

2.2 Training LongGAN

We extracted inpatient encounter data for adults (18+) from the Cerner Health Facts
database [33–35], a large multi-institutional de-identified database derived from EHRs
and administrative systems. The extracted data were mapped to the OHDSI Common
Data Model (version 5.3) and vocabulary release (2/10/2018) [36]. We randomly chose
two facilities (131 and 143) from the 10 highest volume inpatient facilities and
extracted encounters from 1/1/2016 to 12/31/2017 for the experimental evaluation of
the proposed method.

Generating Longitudinal Synthetic EHR Data 157

Medications and laboratory tests with no less than 5% appearance rate by encounter
in both facilities were extracted, and the raw values were converted to quantiles. We
further extracted encounters with length of stay no less than 72 h and sampled one
medication/laboratory test per hour. If there were more than one measurement in an
hour, medians were computed. Diagnosis codes were mapped from the International
Classification of Diseases (ICD) codes to Systematized Nomenclature of Medicine
Clinical Terms (SNOMED CT). SNOMED codes and the descendant codes for Acute
Kidney Injury (AKI) were combined and used as labels for our study.

The extracted datasets were extremely sparse because not all patients have mea-
surements of all medications/laboratory tests every hour, and thus imputation was
necessary. There are many approaches to impute time-series data. Here we used the
interpolation part of the Interpolation-Prediction Network [37]. The Interpolation-
Prediction Network is a semi-parametric network designed for irregularly sampled
multivariate time series, taking into account correlations across all time series from
different dimensions.

After the preprocessing, we obtained multidimensional longitudinal data for every
patient, where each dimension represents the trajectory of a specific medication/
laboratory test measurement from the first 72 h of hospitalization. We then trained a
classifier to get smooth labels [21, 38] of AKI. More specifically, we trained a random
forest model on the training set of real longitudinal EHR data with AKI as labels to
assign probabilities of patients’ developing AKI, and then adjusted these probabilities
to obtain smooth labels. The adjustment is done as follows:

SmoothLabel Xprob, Xlabel
� � ¼

0:49; if Xprob [0:5 andXlabel ¼¼ 0

0:51; if Xprob\0:5 andXlabel ¼¼ 1

Xprob; otherwise

8><
>:

Here X_prob is the probability of getting AKI assigned by the trained classifier, and
X_label is the original binary valued label for AKI.

To train a synthetic data generation model, we first pre-trained the encoder and
decoder with the real EHR data with reconstruction loss. We then took the output of the
encoder, i.e., the representation of the input data, and trained the WGAN-GP to pro-
duce synthetic representations. The smooth labels of AKI were used as conditional
input for both the generator and the discriminator. Finally, the generated representa-
tions were input into the trained decoder to obtain synthetic longitudinal data.

The method was implemented in Python v3.6. The random forest and logistic
regression method were implemented using the scikit-learn package [39]. The recurrent
encoder network and the GAN network were developed using Tensorflow [40]. Other
libraries used include Python Numpy41, Python Pandas [42], and Python Scipy [43].
Training was performed on an NVIDIA Tesla V100 (16 GB RAM).

158 S. Sun et al.

3 Results

3.1 Evaluation of Realism

We have evaluated the performance of LongGAN by training traditional machine
learning models and RNNs to predict whether or not a patient will develop AKI based
on the medication and laboratory results from the first 72 h of hospitalization. In our
experiments we used logistic regression, random forest, and a two-layer LSTM net-
work as examples of linear models, nonlinear models, and neural networks, respec-
tively. In each case we trained two models, one using the real training dataset and the
other using the synthetic dataset, and then evaluated both models on a real test dataset.
This approach, called Train on Synthetic and Test on Real (TSTR), is a common
mechanism with which to evaluate the realism of synthetic data [21, 22]. Since logistic
regression and random forest are not designed for time-series data, we flattened the
sequence along the time dimension as input for these two algorithms. We measured the
performances of the models with AUROC and AUPRC as they are commonly used
metrics for TSTR [21, 22].

We compared our method with RCGAN and TimeGAN. Since TimeGAN is not
designed for conditional generation, we trained two TimeGAN models on positive
cases and negative cases separately to generate synthetic data with both cases. Table 1
shows the experimental evaluation results. Our results demonstrate that the models
trained on synthetic datasets generated by LongGAN have performances closer to those
trained on real datasets than other synthetic datasets generated by RCGAN and
TimeGAN. Models trained with synthetic data from LongGAN achieved up to 0.27
higher AUROC and up to 0.21 higher AUPRC values than models trained with data
from RCGAN and TimeGAN.

In the next set of experiments, we examined whether models trained with the
synthetic dataset selected a similar set of features for prediction compared with models
trained with the real dataset. To this end, we extracted the top 15 most important
features of the random forest models trained with the real and synthetic datasets.
Table 2 shows the list of features from each random forest model. Our experiments
show that 10 features overlap between the two models.

Table 1. Performance of trained predictive models on real and synthetic datasets.

Predictive model Metric Real RCGAN TimeGAN LongGAN

Logistic regression AUROC 0.80 0.57 0.61 0.74
AUPRC 0.57 0.34 0.36 0.51

Random forest AUROC 0.86 0.50 0.71 0.77
AUPRC 0.70 0.29 0.50 0.51

LSTM network AUROC 0.83 0.63 0.67 0.77
AUPRC 0.67 0.39 0.45 0.52

Generating Longitudinal Synthetic EHR Data 159

3.2 Evaluation of Privacy Preservation

A critical requirement for a synthetic EHR data generator is that it must preserve patient
privacy. In this section we evaluate this aspect of our method with respect to attribute
disclosure attacks. Attribute disclosure occurs when attackers can derive target attri-
butes about a patient based on key attributes that they already know about the patient
[8, 44]. This is a prominent issue for synthetic datasets as attackers might gain sensitive
knowledge of real patients based on similar records in a given synthetic dataset.

We assume the attacker has full access to the synthetic dataset and partial access to
the real dataset. This is a commonly adopted setting for evaluating the attribute dis-
closure risk [20, 45]. More specifically, we randomly sampled 1% of patients from the
real training set as the compromised records, flattened them along the time dimension,
and randomly masked 10% of the attributes as the set of target attributes that are
unknown to the attacker.

Table 2. Top 15 most important features of random forest model trained on real/synthetic
datasets.

Top 15 features from random forest model
trained on the real dataset

Top 15 features from random forest model
trained on the synthetic dataset

Creatinine [Mass/volume] in Serum or
Plasma

Creatinine [Mass/volume] in Serum or
Plasma

Creatinine [Mass/volume] in Urine Neutrophils/100 leukocytes in Blood by
Automated count

Chloride [Moles/volume] in Serum or
Plasma

Aspartate aminotransferase [Enzymatic
activity/volume] in Serum or Plasma

Ferritin [Mass/volume] in Serum or Plasma Respiratory rate
Phosphate [Mass/volume] in Serum or
Plasma

Phosphate [Mass/volume] in Serum or
Plasma

Respiratory rate Eosinophils/100 leukocytes in Blood by
Automated count

Sodium [Moles/volume] in Serum or Plasma Chloride [Moles/volume] in Serum or
Plasma

Iron [Mass/volume] in Serum or Plasma Ferritin [Mass/volume] in Serum or Plasma
Glasgow coma scale Protein [Mass/volume] in Serum or Plasma
Aspartate aminotransferase [Enzymatic
activity/volume] in Serum or Plasma

Diastolic blood pressure

Basophils/100 leukocytes in Blood by
Automated count

paracetamol

Glucose [Mass/volume] in Serum or Plasma Creatinine [Mass/volume] in Urine
Potassium [Moles/volume] in Serum or
Plasma

Iron [Mass/volume] in Serum or Plasma

Mean blood pressure Glucose [Mass/volume] in Serum or Plasma
Cholesterol [Mass/volume] in Serum or
Plasma

Basophils/100 leukocytes in Blood by
Automated count

160 S. Sun et al.

While there are different potential attack methods for synthetic dataset [20, 46, 47],
in this paper, due to space limitation, we focused on KNN estimation, a common
method considered for privacy preserving evaluation. For each compromised record,
we retrieved its k-nearest neighbors in the synthetic dataset based on the key attributes
and estimated the target attribute using the median of corresponding attributes of these
k neighbors. We call an estimation accurate, if the relative error of the estimation is
below 5%. We used a dummy baseline where the attacker simply guesses the median
value in the population. Here it is 0.5 since our data are in quantile. This simulates the
attacker’s behavior when they have no knowledge of the original dataset or the syn-
thetic dataset and have to make estimations uniformly at random [46].

The idea is that a privacy-preserving synthetic dataset should avoid providing the
attacker with additional knowledge for better estimation of target attributes, in order to
minimize the risk of attribute disclosure. We repeated the experiment for 30 times, with
different records of patients randomly selected and different attributes randomly
masked and mean accuracy computed for all masked attributes. The experiments
showed that with the KNN estimation the attacker on average achieved a mean
accuracy of 20%, while with the estimation of the population median the mean
accuracy was 26%. The paired samples t-test of the mean accuracies from different
experiments resulted in a p-value of 7.12e−23. This indicates that the mean accuracy
from the KNN estimation was significantly smaller than that of random guess, sug-
gesting that in the given scenario, an attacker using KNN estimation cannot do better
than random guess.

4 Discussion

Generating synthetic clinical data has great potential for researchers to conduct com-
petitive and reproducible research with electronic health records without privacy
concerns. However, very few works have tackled the problems of generating contin-
uous time-series clinical data. We have proposed a model that combines a recurrent
autoencoder and WGAN-GP to generate realistic time-series data containing continu-
ous laboratory and medication values for given diseases. While we focused on a
specific disease (AKI) in our experimental evaluation, the methodology is universal and
can be applied in the context of other diseases.

4.1 Comparison with Previous Work

In Esteban’s work on RCGAN, they used RNNs (LSTM) as the generator and the
discriminator, and the labels were fed to the generator and the discriminator at every
time step [22]. In Yoon’s work on TimeGAN, they used RNNs as embedding and
recovery functions to provide mappings between feature space and latent space, and
then trained the GAN within the latent space [23]. The GAN aspect of TimeGAN also
utilized the RNNs as both the generator and the discriminator. In addition, another
RNN (called supervisor in the paper) was added to enforce the generated longitudinal
data having similar temporal relationships to the real longitudinal data.

Generating Longitudinal Synthetic EHR Data 161

GANs and RNNs can both be hard to train [28, 48], and using the RNN structures
in GANs would intuitively introduce instability in training. Compared with previous
studies, the key difference of our study is that we managed to bypass the RNN structure
in the GAN. We accomplished this by taking advantage of a pre-trained recurrent
autoencoder and transformed the problem of generating sequences to the problem of
generating dense representations of sequences. Since the generated representations are
input to the decoder, which was trained on real longitudinal data, the generated lon-
gitudinal data would maintain similar temporal dynamics to the real dataset. Our model
also differs from previous work in that we took advantage of WGAN-GP and smooth
labels, which made the training more stable. Moreover, our model requires minimal
domain knowledge to make hand-crafted features, rendering it more generalizable.

Our model achieved much better AUROC and AUPRC values than the baseline
models in predictive modeling tasks. The significant overlap of top features between
models trained with synthetic data and those trained with real data suggests LongGAN
can generate realistic synthetic data which can in turn be used to complement or replace
real data for training machine learning models. The experiments on attribute disclosure
demonstrated that an attacker cannot reliably obtain additional information about real
patients with help of our generated dataset, which minimizes the concerns for privacy
issues.

4.2 Limitations

The datasets extracted from the Health Facts database contain many missing values,
because not all patients have measurements of all medications/laboratory tests every
hour. We performed imputation to obtain fixed-length longitudinal data to fit the
model. However, in this process we also eliminated any patterns of the missing data
itself, which could contain useful information about patients [49]. While our method
generates synthetic data that are similar to the imputed data, it does not have patterns of
missing data like the original datasets do.

5 Conclusion and Future Work

LongGAN is a new approach to generating synthetic longitudinal EHR data. It can
produce synthetic datasets that enable training of machine/deep learning models with
comparable predictive performances to those of models trained with real data. For
future work, we shall investigate how to combine the transformer [50] architecture with
GAN and implement extensions to produce synthetic data on demographics and pre-
serve patterns of missing data. Transformer networks have achieved great success in
natural language processing tasks [51, 52] and have been shown to be powerful tools
for extracting useful features of sequences [53, 54]. We will also explore other aspects
of privacy attack and preservation and differentially private training methods [55, 56],
in order to further minimize or eliminate the risk of information leakage.

162 S. Sun et al.

References

1. Rothstein, M.A.: Is deidentification sufficient to protect health privacy in research? Am J
Bioeth. 10(9), 3–11 (2010)

2. Foraker, R.E., Yu, S.C., Gupta, A., Michelson, A.P., Pineda Soto, J.A., Colvin, R., et al.:
Spot the difference: Comparing results of analyses from real patient data and synthetic
derivatives. JAMIA Open. 3(4), 557–566 (2020)

3. Benaim, A.R., et al.: Analyzing medical research results based on synthetic data and their
relation to real data results: Systematic comparison from five observational studies. JMIR
Med. Inform. 8(2), e16492 (2020)

4. Guo, A., Foraker, R.E., MacGregor, R.M., Masood, F.M., Cupps, B.P., Pasque, M.K.: The
use of synthetic electronic health record data and deep learning to improve timing of high-
risk heart failure surgical intervention by predicting proximity to catastrophic decompen-
sation. Front. Digit. Health 44 (2020)

5. Che, Z., Cheng, Y., Zhai, S., Sun, Z., Liu, Y.: Boosting deep learning risk prediction with
generative adversarial networks for electronic health records. In: 2017 IEEE International
Conference on Data Mining (ICDM), pp. 787–92 (2017)

6. Walonoski, J.A., Kramer, M., Nichols, J., Quina, A., Moesel, C., Hall, D., et al.: Synthea: an
approach, method, and software mechanism for generating synthetic patients and the
synthetic electronic health care record. J. Am. Med. Inf. Assoc. JAMIA. 25, 230–238 (2018)

7. Dube, K., Gallagher, T.: Approach and Method for Generating Realistic Synthetic Electronic
Healthcare Records for Secondary Use. In: Gibbons, J., MacCaull, W. (eds.) FHIES 2013.
LNCS, vol. 8315, pp. 69–86. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-53956-5_6

8. Goncalves, A., Ray, P., Soper, B., Stevens, J., Coyle, L., Sales, A.P.: Generation and
evaluation of synthetic patient data. BMC Med. Res. Method. 20(1), 1–40 (2020)

9. McLachlan, S., Dube, K., Gallagher, T., Simmonds, J.A., Fenton, N.: Realistic Synthetic
Data Generation: The ATEN Framework. In: Cliquet Jr., A., et al. (eds.) BIOSTEC 2018.
CCIS, vol. 1024, pp. 497–523. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
29196-9_25

10. Pollack, A.H., Simon, T.D., Snyder, J., Pratt, W.: Creating synthetic patient data to support
the design and evaluation of novel health information technology. J. Biomed. Inf. 95,
103201 (2019)

11. Walonoski, J., et al.: Synthe‚ novel coronavirus (covid-19) model and synthetic data set.
Intell. Based Med. 1, 100007 (2020)

12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780
(1997)

13. Dong X, et al.: Identifying risk of opioid use disorder for patients taking opioid medications
with deep learning. arXiv preprint arXiv:201004589 (2020)

14. Dong, X., et al.: Predicting opioid overdose risk of patients with opioid prescriptions using
electronic health records based on temporal deep learning. J. Biomed. Inf. 116, 103725
(2021)

15. Rashidian, S., et al.: Detecting miscoded diabetes diagnosis codes in electronic health
records for quality improvement: temporal deep learning approach. JMIR Med. Inform. 8
(12), e22649 (2020)

16. Tao, M., Tang, H., Wu, S., Sebe, N., Wu, F., Jing, X.: Df-gan: deep fusion generative
adversarial networks for text-to-image synthesis. ArXiv. abs/2008.05865 (2020)

17. Clark, A., Donahue, J., Simonyan, K.: Adversarial video generation on complex datasets.
arXiv: Computer Vision and Pattern Recognition (2019)

Generating Longitudinal Synthetic EHR Data 163

https://doi.org/10.1007/978-3-642-53956-5_6
https://doi.org/10.1007/978-3-642-53956-5_6
https://doi.org/10.1007/978-3-030-29196-9_25
https://doi.org/10.1007/978-3-030-29196-9_25
http://arxiv.org/abs/201004589

18. Engel, J., Agrawal, K.K., Chen, S., Gulrajani, I., Donahue, C., Roberts, A.: Gansynth:
adversarial neural audio synthesis. ArXiv; abs/1902.08710 (2019)

19. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014).
20. Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W., Sun, J.: Generating multi-label

discrete electronic health records using generative adversarial networks. ArXiv;
abs/1703.06490 (2017)

21. Rashidian, S., et al.: SMOOTH-GAN: towards sharp and smooth synthetic ehr data
generation. In: Michalowski, M., Moskovitch, R. (eds.) Artificial Intelligence in Medicine.
AIME 2020. Lecture Notes in Computer Science, vol. 12299. Springer, Cham (2020)

22. Esteban, C., Hyland, S.L., Rätsch, G.: Real-valued (medical) time series generation with
recurrent conditional GANs. ArXiv. abs/1706.02633 (2017)

23. Yoon, J., Jarrett, D., Schaar, M.V.D.: Time-series generative adversarial networks. In:
NeurIPS (2019)

24. Lee, D., Yu, H., Jiang, X., Rogith, D., Gudala, M., Tejani, M., et al.: Generating sequential
electronic health records using dual adversarial autoencoder. J. Am. Med. Inform. Assoc. 27
(9), 1411–1419 (2020)

25. Jordon, J., Yoon, J., Schaar, M.V.D.: Pate-gan: generating synthetic data with differential
privacy guarantees. In: ICLR (2019)

26. Baowaly, M.K., Lin, C., Liu, C.-L., Chen, K.-T.: Synthesizing electronic health records
using improved generative adversarial networks. J. Am. Med. Inform. Assoc. 26(228), 41
(2019)

27. Yoon, J., Drumright, L.N., Van Der Schaar, M.: Anonymization through data synthesis
using generative adversarial networks (ads-gan). IEEE J. Biomed. Health Informatics. 24(8),
2378–2388

28. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of
wasserstein gans. In: NIPS (2017)

29. Nguyen, H.D., Tran, K.P., Thomassey, S., Hamad, M.: Forecasting and anomaly detection
approaches using LSTM and LSTM autoencoder techniques with the applications in supply
chain management. Int. J. Inf. Manag. 57, 102282 (2021)

30. Chawla, A., Lee, B., Jacob, P., Fallon, S.: Bidirectional LSTM autoencoder for sequence
based anomaly detection in cyber security. Int. J. Simulation: Syst., Sci. Technol. (2019)

31. Wong, T., Luo, Z.: Recurrent auto-encoder model for multidimensional time series
representation (2018)

32. Mirza, M, Osindero, S.: Conditional generative adversarial nets. ArXiv. abs/1411.1784
(2014)

33. Al-Shawwa, B., Glynn, E., Hoffman, M.A., Ehsan, Z., Ingram, D.G.: Outpatient health care
utilization for sleep disorders in the cerner health facts database. J. Clin. Sleep Med. 17(2),
203–209 (2021)

34. Petrick, J.L., Nguyen, T., Cook, M.B.: Temporal trends of esophageal disorders by age in the
cerner health facts database. Ann. Epidemiol. 26(2), 151–4.e4 (2016)

35. DeShazo, J.P., Hoffman, M.: A comparison of a multistate inpatient ehr database to the hcup
nationwide inpatient sample. BMC Health Services Res. 15(1), 1–8 (2015)

36. Hripcsak, G., Ryan, P.B., Duke, J.D., Shah, N.H., Park, R.W., Huser, V., et al.:
Characterizing treatment pathways at scale using the ohdsi network. Proc Natl Acad Sci U S
A. 113(27), 7329–7336 (2016)

37. Shukla, S.N., Marlin, B.M.: Interpolation-prediction networks for irregularly sampled time
series. ArXiv ;abs/1909.07782 (2019)

38. Müller, R., Kornblith, S., Hinton, G.E.: When does label smoothing help? In: NeurIPS
(2019)

164 S. Sun et al.

39. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.: Scikit-
learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

40. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI (2016)
41. Oliphant, T.E.: Guide to NumPy (2015)
42. McKinney, W.: Data structures for statistical computing in python (2010)
43. Virtanen, P., et al.: Scipy 1.0: fundamental algorithms for scientific computing in python.

Nat. Method. 17(3), 261–272 (2020).
44. Matwin, S., Nin, J., Sehatkar, M., Szapiro, T.: A review of attribute disclosure control. In:

Navarro-Arribas G., Torra V. (eds.) Advanced Research in Data Privacy. Studies in
Computational Intelligence, vol. 567. Springer, Cham (2015)

45. Surendra, H., MohanH, S.: A review of synthetic data generation methods for privacy
preserving data publishing. Int. J. Sci. Technol. Res. 6, 95–101 (2017)

46. Hittmeir, M., Mayer, R., Ekelhart, A.: A baseline for attribute disclosure risk in synthetic
data. In: Proceedings of the Tenth ACM Conference on Data and Application Security and
Privacy (2020)

47. Stadler, T., Oprisanu, B., Troncoso, C.: Synthetic data - a privacy mirage. ArXiv.
abs/2011.07018 (2020)

48. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks.
In: ICML (2013)

49. García-Laencina, P.J., Sancho-Gómez, J., Figueiras-Vidal, A.R.: Pattern classification with
missing data: A review. Neural Comput. Appl. 19, 263–282 (2009)

50. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., et al.: Attention
is all you need. ArXiv. abs/1706.03762 (2017)

51. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., et al.: Roberta: a robustly optimized
bert pretraining approach. ArXiv. abs/1907.11692 (2019)

52. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional
transformers for language understanding. In: NAACL-HLT (2019)

53. Choi, K., Hawthorne, C., Simon, I., Dinculescu, M., Engel, J.: Encoding musical style with
transformer autoencoders. In: ICML (2020)

54. Fang, L., Zeng, T., Liu, C.C., Bo, L., Dong, W., Chen, C.: Transformer-based conditional
variational autoencoder for controllable story generation. ArXiv abs/2101.00828 (2021)

55. Toreini, E., et al.: Technologies for trustworthy machine learning: A survey in a socio-
technical context. ArXiv. abs/2007.08911 (2020)

56. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found Trends
Theor. Comput. Sci. 9, 211–407 (2014)

Generating Longitudinal Synthetic EHR Data 165

TRACE: Early Detection of Chronic
Kidney Disease Onset with

Transformer-Enhanced Feature
Embedding

Yu Wang1 , Ziqiao Guan1 , Wei Hou2 , and Fusheng Wang1,3(B)

1 Department of Computer Science, Stony Brook University,
Stony Brook, NY 11794, USA

{yuwang4,ziguan}@cs.stonybrook.edu, fusheng.wang@stonybrook.edu
2 Department of Family, Population and Preventive Medicine,

Stony Brook University, Stony Brook, NY 11794, USA
wei.hou@stonybrookmedicine.edu

3 Department of Biomedical Informatics, Stony Brook University,
Stony Brook, NY 11794, USA

Abstract. Chronic kidney disease (CKD) has a poor prognosis due to
excessive risk factors and comorbidities associated with it. The early
detection of CKD faces challenges of insufficient medical histories of pos-
itive patients and complicated risk factors. In this paper, we propose the
TRACE (Transformer-RNN Autoencoder-enhanced CKD Detector) frame-
work, an end-to-end prediction model using patients’ medical history
data, to deal with these challenges. TRACE presents a comprehensive med-
ical history representation with a novel key component: a Transformer-
RNN autoencoder. The autoencoder jointly learns a medical concept
embedding via Transformer for each hospital visit, and a latent represen-
tation which summarizes a patient’s medical history across all the visits.
We compared TRACE with multiple state-of-the-art methods on a dataset
derived from real-world medical records. Our model has achieved 0.5708
AUPRC with a 2.31% relative improvement over the best-performing
method. We also validated the clinical meaning of the learned embed-
dings through visualizations and a case study, showing the potential of
TRACE to serve as a general disease prediction model.

Keywords: Chronic kidney disease prediction · Deep learning ·
Transformer · Electronic health records

1 Introduction

Chronic kidney disease (CKD) is a general term for many heterogeneous dis-
eases that irreversibly alter kidney structure or cause a chronic reduction in kid-
ney function [25]. It is defined by the presence of kidney damage, or decreased
kidney function, or both, for a minimum of three months. Diagnosis of CKD is
c© Springer Nature Switzerland AG 2021
E. K. Rezig et al. (Eds.): Poly 2021/DMAH 2021, LNCS 12921, pp. 166–182, 2021.
https://doi.org/10.1007/978-3-030-93663-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93663-1_13&domain=pdf
http://orcid.org/0000-0003-3991-9009
http://orcid.org/0000-0001-8376-5196
http://orcid.org/0000-0002-1658-8895
http://orcid.org/0000-0002-9369-9361
https://doi.org/10.1007/978-3-030-93663-1_13

Trasformer-Enhanced Early Detection of Chronic Kidney Disease Onset 167

often made after accidental findings from screening laboratory tests, or when the
symptom already becomes severe [42]. According to the US Centers for Disease
Control and Prevention, approximately 15% of US adults have CKD, but most
people may not feel ill or notice any symptoms until CKD is advanced [7]. Two
major causes of CKD are hypertension and diabetes. Kidney failure is the most
serious outcome of CKD and severe conditions can only be treated by dialysis
and transplantation, which are indications of end-stage kidney disease. CKD is
a well-known risk factor for cardiovascular disease and all-cause mortality [2,40].
However, less than 2% of CKD patients finally require renal replacement therapy,
because many of them die from cardiovascular causes before end-stage kidney
disease can occur [22].

CKD has a poor prognosis due to excessive risk factors and comorbidities
associated with it [24]. The early detection of CKD, for health benefits, is an even
more challenging task. For the purposes of early detection and control, a promis-
ing direction is to regularly monitor risk factors of CKD for high-risk patients.
It is also worth trying to focus the screening for CKD on younger, healthier
populations, although it is less likely to detect CKD in such cohorts [40]. In
short, early detection of CKD faces challenges of insufficient medical histories of
positive patients and complicated risk factors from a data standpoint. This calls
for more effective machine learning prediction models to address these issues.

To address the first challenge, we need a prediction model that can bet-
ter extract knowledge from the insufficient medical histories. In recent years,
deep learning has emerged as a powerful tool to gain insight into EHR data
[10,32,39,43]. Previous studies predicted heart failure onset with recurrent neu-
ral networks (RNNs) [16] and the reverse time attention mechanism [14]. These
models proposed different ideas for sequence modeling, but they did not per-
form very well in our experiments. Apart from sequence modeling, we also need
a better feature representation for the early detection of CKD onset. This ties
in with the second challenge – complicated risk factors.

Given how extensive the risk factors are when assessing a patient’s likeli-
hood of having CKD, it is critical to learn an embedding to measure the latent
similarity between these risk factors and CKD. An embedding maps discrete
medical concepts to a continuous latent space and summarizes the interactions
between medical concepts. Several models can learn embeddings of medical con-
cepts [12,17,18]. However, these models have yet to make the most of the sequen-
tial nature of EHR data because they only learned medical concept embeddings
for individual hospital visits. We can use a sequence aggregator, such as RNN
or 1-D convolutional neural networks (CNNs), to link a sequence of visits and
encode them to a patient-level representation.

Motivated by the challenges and the previous work, we propose the TRACE
(Transformer-RNN Autoencoder-enhanced CKD Detector) framework, which
combines ideas of both RNN autoencoder and Transformer [18,41]. TRACE jointly
learns the Transformer-encoded hidden structure of individual hospital visits
while predicting CKD onset with RNN. In this work, we used Cerner Health
Facts [21], a large database derived from EHR systems across the US, as our data

168 Y. Wang et al.

source. The database includes comprehensive patient-level details of diagnoses,
procedures, medications, and laboratory tests. The EHR data are structured
data without clinical notes and images. Our features include both medical codes
and non-medical code information. We summarize our contributions as follows:

– We propose a Transformer-RNN autoencoder architecture. This autoencoder
jointly learns a medical concept embedding via Transformer for individual
hospital visits, as well as a patient embedding via an RNN encoder-decoder
structure which summarizes the entire medical history of this patient.

– We adopt two pre-training processes to capture proper latent representa-
tions for patients’ conditions and hospital visit histories respectively. We
also demonstrated that TRACE successfully alleviated the aforementioned chal-
lenges by incorporating the pre-trained latent representations.

2 Related Work

2.1 Deep Learning in Healthcare Domain

Deep learning algorithms have become popular approaches for modeling dis-
ease progression [11,14,26,27], patient characterization [3,8], and generating
synthetic EHR data for research purposes [15].

The most common application of modeling disease progression is predicting
disease outcomes. Deep neural networks have very limited power when learning
disease trajectories from scratch, sometimes it is necessary to incorporate prior
medical knowledge [28,33] or supplement EHR data with inherent hierarchical
structure of medical ontologies [13]. Missing value is also a challenge is modeling
EHR data. [9] has demonstrated that RNNs are able to capture the long-term
dependency in time series and improve prediction performance.

Deep learning models anticipate a large volume of data to achieve satisfac-
tory results, which usually exceeds the capacity of most healthcare facilities. A
straightforward solution is to combine EHR data from multiple sources, but data
harmonization is a labor-intensive process. [34] recently proposed a representa-
tion of EHRs based on the Fast Healthcare Interoperability Resources (FHIR)
format for deep learning models without site-specific data harmonization. When
working on an imbalanced dataset with insufficient positive samples, data aug-
mentation techniques can benefit training. CONAN [19] incorporated generative
adversarial networks (GANs) to create candidate positive and negative samples
in rare disease detection. Pre-training and transfer learning [4,20] can also help
to solve this problem. G-BERT [38] used the pre-trained hospital visit represen-
tations for downstream predictive tasks. [35] trained a CNN on a large global
database with biomedical abstracts, and transferred the learned knowledge to
predict diagnosis codes for one medical center.

2.2 Representation Learning for Medical Concepts

Representation learning algorithms in healthcare domain are mainly borrowed
from natural language processing (NLP). The general idea is to encode discrete

Trasformer-Enhanced Early Detection of Chronic Kidney Disease Onset 169

medical concepts (e.g., medical codes) to one-hot vectors [5] and then apply
Word2Vec algorithms [30] to learn embeddings.

For example, Med2Vec [12] utilized skip-gram [31] to learn intra-visit medi-
cal code co-occurrences as well as inter-visit sequential information. The generic
skip-gram model is based on the assumption that a word can play different roles
at different positions in a sentence. However, this assumption doesn’t hold for
medical codes given their unordered nature. When we adopt NLP algorithms to
model medical concepts, we typically apply the algorithms to the feature dimen-
sion instead of the temporal dimension, and the order in which these medical
concepts occur is ignored.

MiME [17] leveraged the inherent structure of medical codes to learn a mul-
tilevel embedding of EHR data, but this model required the EHR data to con-
tain complete structure information between diagnoses and treatments. Recently,
GCT [18] has been proposed to solve this problem. GCT learned the graphical
structure of EHR data during training and proved that Transformer is a suit-
able model to learn such structure. Our work was motivated by GCT to use
Transformer to encode hospital visits.

3 Method

3.1 Problem Statement

We formulate this problem as a binary prediction task. Given a patient
whose medical history is in the form of a sequence of hospital visits P =
{V1,V2, · · · ,VT } in chronological order, where T ∈ N is the total number of
visits that the patient has. Each visit Vt (t ∈ {1, 2, · · · , T}) consists of a list of
medical codes, clinical observations and other information related to this patient.
We want to predict whether the patient will be diagnosed with CKD for the first
time in the following visit VT+1.

3.2 Vector Representations of EHRs

Figure 1 illustrates the vector representations of a patient’s hospital visit history
P, which contains both medical codes and non-medical code information. For
simplicity, all notations and algorithms in this paper are presented for a single
patient unless otherwise specified.

Medical Code Representations. Medical codes include diagnosis codes, pro-
cedure codes, and medication codes. Medical codes are the primary features for
our prediction task. We denote the set of medical codes in our EHR data by
C = {c1, c2, · · · , c|C|} with size |C|. All medical codes that occur at a hospi-
tal visit Vt are represented by a multi-hot vector xt ∈ {0, 1}|C| where the i-th
element is 1 if ci ∈ Vt.

170 Y. Wang et al.

Fig. 1. Vector representation of a patient’s EHR data. This patient had seven hospital
visits at time {t1, t2, · · · , t7}. We used the first six visits {t1, · · · , t6} to construct input
vectors to the model and predicted whether there would be a CKD onset at the seventh
visit.

Non-medical Code Information. Besides medical codes, we also included the
patient’s observations (e.g., lab tests, vital signs, etc.), age, race, gender, and the
timestamp of visit Vt. Observations are the secondary features in our dataset. Let
dt denote the vector representation of the non-medical code information, which
is a concatenation of multi-hot vector and numeric values. We will provide details
of theses non-medical code features in the “Dataset” section.

3.3 Model Architecture of TRACE

In this section, we describe TRACE in detail, with the following components: a
patient embedding from a pre-trained Transformer-RNN autoencoder, a medical
code history encoder, and a joint attention module. The overall architecture is
illustrated in Fig. 2.

Patient Embedding via Transformer-RNN Autoencoder. We pre-train
a Transformer-RNN autoencoder as a joint feature extractor for both feature
embedding and patient embedding. This design adopts a Transformer [18] for
computing self-correlation of all features at individual hospital visit level, and
a subsequent RNN autoencoder for learning a patient representation by recon-
structing the input sequence in an unsupervised fashion.

Trasformer-Enhanced Early Detection of Chronic Kidney Disease Onset 171

Fig. 2. End-to-end structure of TRACE. The model ingests a patient’s medical history in
the form of two sequences of vectors X = {x1,x2, · · · ,xT } and D = {d1,d2, · · · ,dT },
next propagates them to the encoder module of a pre-trained Transformer-RNN autoen-
coder for a patient embedding, then combines the patient embedding with the patient’s
medical code history to compute joint attention, and finally outputs a probability
score ŷ.

The autoencoder ingests a sequence of hospital visits in the form of {x′
t}T

t=1

where x′
t = [xt;dt] ∈ R

n×1 and n is the total number of features. The sequence
{x′

t}T
t=1 then runs through an encode-decoder structure to reconstruct itself.

– Encoder. We first map each x′
t (t ∈ {1, 2, · · · , T}) to a latent space with a

learnable embedding matrix Wx by Zt = Wx �x′
t ∈ R

n×dz . This extends the
raw input vector x′

t to a vector array for the Transformer to process. Since
Transformer has a quadratic time and space complexity and is expensive to
compute, we downsize the feature dimension from n to ñ (ñ � n) via a linear
transform Z̃t = W̃zZt ∈ R

ñ×dz . This improves scalability by reducing the
complexity to O(ñ2).
We learn an embedding for the downsized feature space using a Transformer
with one encoder block and a single attention head as follows,

Xt = Transformer(Z̃t), (1)

where Xt ∈ R
ñ×demb . Positional encoding is removed from our framework,

since the features are not ordered. Let W̃α ∈ R
ñ×ñ denote the learned atten-

tion weights for the downsized feature space, we compute attention weights
for the original feature space by

Wα = W̃zW̃αW̃�
z (2)

where Wα ∈ R
ñ×ñ is the desired attention weights for the original feature

space.
To aggregate the embedding of all features occurred at time t, we average-
pool Xt by the downsized feature dimension to obtain a single embedding

172 Y. Wang et al.

vector vt ∈ R
demb . Eventually, we feed the sequence {vt}T

t=1 in an encoding
RNN layer to encode the entire input sequence to a single-vector patient
embedding ep.

– Decoder. We propagate ep to a decoding RNN layer to obtain a decoded
sequence {hdec

t }T
t=1, then reconstruct the input sequence from {hdec

t }T
t=1.

Specifically, we add separate fully-connected layers on top of {hdec
t }T

t=1 to
reconstruct different types of features, and obtain a reconstructed sequence
{x̂′

t}T
t=1. The loss between the input sequence {x′

t}T
t=1 and the reconstructed

sequence {x̂′
t}T

t=1 is the sum of multiple losses. For multi-hot medical codes
and observations, we use softmax classifiers with cross entropy loss. For race
and gender, we apply sigmoid classifiers with cross entropy loss. For age and
timestamp, we apply linear transform and minimize mean squared errors.

– Patient Embedding for TRACE. To obtain a patient embedding for our
end-to-end prediction task, we feed the input sequence {[xt;dt]}T

t=1 in the
pre-trained encoder and compute the embedding vector ep for this patient
(Fig. 2).

Medical Code History Encoder. Considering that medical codes summa-
rize other non-medical code features to some extent, we separately encode the
patient’s medical code history for information gain in our model.

We first map the discrete medical code inputs xt to a continuous latent
embedding space mt as follows,

mt = Wmxt, (3)

where Wm ∈ R
|C|×dm is a word embedding lookup table pre-trained via

Med2Vec [12], and dm is the size of the embedding vector. To encode a sequence
of medical codes, we then apply an RNN layer on top of the medical code embed-
ding mt by

hm
t = RNNm(hm

t−1,mt) (4)

where hm
t is the hidden state of the RNN layer at time t.

Joint Attention. We want to further have the patient embedding interact with
the medical code history. Specifically, we compute interactions between ep and
each hm

t (t ∈ {1, 2, · · · , T}) as follows,

gt = [ep;hm
t], (5)

scoret = u� tanh(Wggt + bg), (6)

αt =
exp(scoret)

∑T
t=1 exp(scoret)

, (7)

where u is a learable weight, and αt is the attention weight assigned to visit Vt.
Then we obtain a context vector c for this patient by

c = [ep;
T∑

t=1

αtgt]. (8)

Trasformer-Enhanced Early Detection of Chronic Kidney Disease Onset 173

CKD Onset Prediction. We use the context vector c to predict the binary
label y ∈ {0, 1} as follows,

ŷ = σ(w�
y c + by), (9)

where ŷ is the predicted probability score for this patient. The training objective
is to use the predicted score ŷ and the true label y to minimize the following
binary cross entropy loss:

L = − 1
N

N∑

j=1

(yj log ŷj + (1 − yj) log(1 − ŷj)), (10)

where N is the total number of patients in our training set.

4 Experiments

4.1 Dataset

We collected our experimental dataset from two healthcare systems in Cerner
Health Facts, each healthcare system comprises multiple healthcare facilities.
This is a case-control study where negative patients were downsampled through
a statistical analysis, such that our model was trained to distinguish positive
and negative patients who were similar in terms of age, race and gender.

Features and Data Preprocessing. We extracted a patient’s diagnosis codes,
procedure codes, medication codes, observations, age, race, gender, and admis-
sion date for features of each hospital visit. Statistics of the features are available
in Table 1.

The raw diagnosis codes, procedure codes and medication codes in Cerner
Health Facts are respectively International Classification of Diseases (ICD), Cur-
rent Procedural Terminology (CPT) and generic drug names. We grouped ICD
diagnosis codes by the Clinical Classifications Software (CCS) to obtain higher-
level diagnosis codes for experiments, which reduced the number of diagnosis
codes from over 69,000 to 275. CKD diagnoses were identified by the CCS codes
and were excluded from the feature set. We did not consider hospital visits with-
out any diagnosis codes documented and removed medical codes that appeared
in less than 50 hospital visit records.

Apart from medical codes, we also included observations, age, race, gender,
and admission date to represent a hospital visit. Observations, race and gender
were categorical features encoded to a multi-hot vector (Fig. 1) for a hospital
visit. There were 1,261 distinct observations in our feature set. For the admission
date of a patient’s hospital visit, we converted it to a numeric timestamp by
calculating the duration in days from the patient’s first visit to this visit. We
took the logarithm of numeric features for model inputs.

174 Y. Wang et al.

Table 1. Statistics of datasets for our experiments and the pre-training using the
Med2Vec model.

Experiments Med2Vec

Total # of patients 147,791 1,155,450

of cases (positives) 21,113 N/A

of controls (negatives) 126,678 N/A

of patients for training 110,842 N/A

of patients for validation 14,778 N/A

of patients for testing 22,171 N/A

Total # of medical codes 1,679 3,884

of diagnosis codes 275 278

of procedure codes 662 2,449

of medication codes 742 1,157

Total # of observations 1,261 N/A

Total # of races and genders 10 N/A

Selection of Cases and Controls. We excluded hospital visits made by non-
adult patients because we aimed at predicting CKD onset for adults only. The
case/control selection criteria are as follows.

– Cases (positives) were patients who had at least one hospital visit prior to
CKD onset. The CKD onset was the positive class label for our prediction
task.

– Controls (negatives) were non-CKD patients who had at least two hospi-
tal visits in our dataset. Controls were identified for each case using the
propensity score-matching based on logistic regression [36] and the greedy
algorithm [6]. Matching variables include age, gender and race. Class labels
of control patients came from their latest hospital visit records and were neg-
ative labels.

Six controls were selected for each case to match the prevalence of CKD
in US adults (i.e., 1/7 ≈ 14.29%). Eventually, we extracted a total of 147,791
patients for experiments. The dataset was further split into training, validation
and test sets in a 75/10/15 ratio. The case/control ratio in each of the training,
validation and test sets was the same as the disease prevalence rate in the entire
experimental dataset. Table 1 provides details of the study cohort. Since 90% of
patients in the dataset had less than 30 hospital visits, we only kept up to 30
most recent hospital visits per patient to improve scalability.

4.2 Pre-training for Medical Concepts

There were two types of medical concepts in our dataset: medical codes and
observations. We performed two pre-training processes to get proper embeddings
for them.

Trasformer-Enhanced Early Detection of Chronic Kidney Disease Onset 175

Independent Pre-training. We pre-trained embedding weights for medical
codes1 using Med2Vec. The dataset for this pre-training task was extracted from
10 healthcare facilities in Cerner Health Facts, not including the two health-
care systems for our experiments. We trained the Med2Vec model on 1,155,450
patients with 15,115,251 hospital visits and obtained pre-trained embedding
weights for 3,884 distinct medical codes (Table 1). In our prediction task, we
treated medical codes outside the independent pre-training as out-of-vocabulary
(OOV) tokens and initialized embedding weights for OOV medical codes with
zeros.

Transformer-Encoded Embedding. We pre-trained the Transformer-RNN
autoencoder on our training set to encode all features, where only age, race,
gender, and timestamp were not medical concepts (Table 1). This means that
the Transformer-encoded feature embedding was a good latent representation of
medical concepts. The pre-trained feature embedding was built into TRACE as
part of the encoder module for fine-tuning (Fig. 2).

4.3 Baseline Models

For comparison, we implemented the following models with x′
t = [xt;dt] as the

input vector for a hospital visit.

– Logistic regression (LR). We counted the occurrences of each medical code
and each observation for a patient, all the other features were determined by
the patient’s last hospital visit in the inputs. A LR model was trained on the
resulting vectors.

– Multi-layer perceptron (MLP). We used the same approach to construct
model inputs as the LR model, but added a fully-connected layer with relu
activation between the input layer and the output layer.

– RNN and BiRNN. We used a fully-connected layer with relu activa-
tion to encode inputs and then propagated the resulting vectors to a for-
ward/bidirectional RNN layer. Logistic regression was applied to the last
hidden state of the RNN layer to predict CKD onset.

– RETAIN [14]. RETAIN model was designed to predicts heart failure onset
using backward RNN and two levels of attention weights. We used the same
architecture as the RNN baseline, but replaced the RNN layer with the
RETAIN module.

– Dipole [27]. Dipole model predicts multiple disease outcomes via a bidirec-
tional RNN layer and three different attention mechanisms. We used the same
structure as the RNN baseline, but replaced the RNN layer with the Dipole
module and trained it using each of the three attention mechanisms, i.e.,
Dipolel, Dipoleg and Dipolec.

1 We also trained Med2Vec to obtain an embedding for observations, but got very
poor results.

176 Y. Wang et al.

Table 2. Prediction performance of different models.

Category Model AUPRC Neg log likelihood

Non- LR 0.4527 0.3453

sequence MLP 0.5359 0.3067

CNN 1-D CNN 0.5475 0.3017

RNN 0.5574 0.2978

BiRNN 0.5510 0.2986

RNN RETAIN 0.5505 0.2986

Dipolel 0.5563 0.2969

Dipoleg 0.5579 0.2994

Dipolec 0.5515 0.2962

Ours TRACE 0.5708 0.2929

– 1-D CNN. A modification of AlexNet [23]. We replaced all 2-D convolutional
layers with 1-D convolutional layers, which served as a sequence aggregator
of individual hospital visits. We computed the mean of AlexNet’s outputs
across the temporal dimension and applied logistic regression on top of it to
generate predictions. The inputs were encoded in the same way as the RNN
baseline.

4.4 Evaluation Metrics

We measured the model performance on our test set by area under the precision-
recall curve (AUPRC). AUPRC can effectively evaluate the fraction of true pos-
itives among positive predictions [37], thus it is an appropriate metric when
evaluating binary classifiers on imbalanced datasets like ours. In addition to
AUPRC, we also calculated negative log likelihood by Eq. 10 to measure the
model loss on the test set.

4.5 Implementation Details

We implemented all models and calculated all evaluation metrics using Tensor-
Flow 2.2.0 [1]. For Med2Vec, we used the code provided by the authors2. The
dimension of the downsized feature space was ñ = 100. The sizes of all embed-
ding vectors and hidden layers were 128. The dropout rate for the feed-forward
layer of Transformer was 0.5. We used the Adadelta optimizer [44] and set the
learning rate as 1.0 to match the exact form in the paper. We trained each model
for 50 epochs with 100 patients per batch. All experiments were run on a 16 GB
NVIDIA Tesla V100 PCIe GPU.

2 https://github.com/mp2893/med2vec.

https://github.com/mp2893/med2vec

Trasformer-Enhanced Early Detection of Chronic Kidney Disease Onset 177

4.6 Results

Prediction Performance. We evaluated our model and all baselines on the
test set. Table 2 shows the AUPRC and negative log likelihood scores of the
test set. In general, sequential models (RNNs and 1-D CNN) outperformed non-
sequential models (LR and MLP). This is because sequential models were more
capable of capturing the underlying patterns in disease trajectories, while non-
sequential models only learned from aggregated information of medical histories.
In the real-world clinical practice, doctors need to carefully review a patient’s
medical histories and monitor the patient for a long time to decide whether
a chronic disease like CKD can be diagnosed. Occasional occurrences of some
symptoms related to CKD are insufficient to support the doctor’s decision.

It is noteworthy that all RNN-based baselines demonstrated comparable per-
formance in terms of both metrics, and increased model complexity failed to
surpass the simplest RNN model. This seems to indicate that training RNN
models from scratch is not suitable for our task. Both RETAIN and Dipole
computed attention scores with the outputs of RNN layers. The attention mech-
anism assigns a score to each hospital visit using the sequential information
learned from scratch, which is fine when detecting diseases in their original
tasks. However, CKD is quite different because its excessive risk factors could
be intertwined. It is hard to determine whether a patient has CKD simply by
the existence of several risk factors without extensive prior knowledge.

TRACE successfully alleviated this problem by introducing a pre-trained
Transformer-RNN autoencoder. The autoencoder produced a good patient
embedding which compressed information in the entire input sequence. With
this patient embedding as the prior knowledge, our end-to-end prediction model
was able to better discover the correlation between CKD diagnoses and past
medical records. TRACE achieved a 2.31% gain in AUPRC compared with the
best-performing baseline (i.e., Dipoleg).

Ablation Study. To understand how each major model component contributed
to the overall prediction performance, we compared TRACE with its several
variants.

– TRACE base. This is TRACE without the medical code history encoder and
the joint attention. We directly used the fine-tuned patient embedding to get
predictions.

– RACE. This is TRACE without Transformer-encoded feature embedding. In
the RNN autoencoder, we got a feature embedding through a fully-connected
layer with relu activation instead.

– RACE base. This is RACE without the medical code history encoder and
the joint attention. The fine-tuned patient embedding were directly used for
getting predictions.

We trained the three variants with the same set of hyperparameters as TRACE.
We note the AUPRC scores for the analyses here (Table 3). Overall, pre-trained

178 Y. Wang et al.

Table 3. Ablation study of TRACE.

Model AUPRC Neg log likelihood

RACE base 0.5649 0.2955

RACE 0.5631 0.2938

TRACE base 0.5696 0.2937

TRACE 0.5708 0.2929

RNN autoencoders provided richer patient-level information than raw input fea-
tures. Even the worst-performing model in Table 3 (i.e., RACE) achieved a 0.93%
relative improvement in AUPRC over the best-performing baseline in Table 2
(i.e., Dipoleg). Evidently, Transformer has demonstrated its superiority over
pure fully-connected layers in encoding medical concepts (RACE vs. TRACE and
RACE base vs. TRACE base). As we expected, there was slight information gain
after adding medical code histories and the joint attention, but the strength was
limited (RACE base vs. RACE and TRACE base vs. TRACE).

Patient Embedding Visualization. Figure 3 plots patient embeddings pro-
duced by TRACE and the baselines. We used the t-SNE [29] algorithm for dimen-
sionality reduction. Obviously, TRACE learned a better clustering of positive
patients. Given that this is a case-control study, TRACE met our expectation
to better distinguish cases and controls who were similar in terms of age, race
and gender. In general, positive patients were better clustered in the end-to-end
prediction tasks (RACE and TRACE). Patients were more scattered in the autoen-
coders (Fig. 3b and Fig. 3c) than in the end-to-end prediction models (Fig. 3e and
Fig. 3d). Comparing Transformer-RNN autoencoder (Fig. 3b) with the generic
RNN autoencoder (Fig. 3c), it is evident that the patient embedding generated
by the former is more gathered. This demonstrated the strength of Transformer
in encoding features.

Attention Visualization and Case Study. We visualize the attention behav-
ior of Transformer in the course of CKD onset prediction. Since TRACE computed
self-attention for the downsized feature space Z̃t, we need to back-propagate to
the original feature space by Eq. 2 to get desired attention weights. To improve
readability of the visualization, we randomly selected a CKD patient from the
test set, who had four hospital visits and at most 20 medical concepts per visit.

Figure 4 illustrates the attention behavior of medical concepts occurred at
each hospital visit for the selected patient, which also shows the patient’s dis-
ease trajectory. This patient had hypertension and diabetes – two major causes
of CKD that usually intertwine with other risk factors of CKD. No remarkable
attention behavior was present at the first hospital visit. At the second visit,
we noticed that esophageal disorders, diabetes and low diastolic blood pressure
were mutually attended. At the third visit, the high hemoglobin A1c level and

Trasformer-Enhanced Early Detection of Chronic Kidney Disease Onset 179

(a) RNN. (b) T-RNN AE. (c) RNN AE.

(d) RACE. (e)

Fig. 3. Different patient embeddings generated by pre-trained autoencoders and end-
to-end prediction models for the test set. T-RNN: Transformer-RNN, AE: autoen-
coder, orange dot: positive patient, blue dot: negative patient. Dimension reduced via
t-SNE. Overall, positive patients were better clustered by RACE and TRACE. Patients
were more scattered in the autoencoders than in the end-to-end prediction models.
The Transformer-RNN autoencoder produced a more gathered embedding for positive
patients than the generic RNN autoencoder. (Color figure online)

Fig. 4. Medical concept attentions produced by TRACE for a CKD patient in the test set.
The labels are the medical concepts occurred at each hospital visit. It illustrates how
medical concepts on the vertical axis attended to medical concepts on the horizontal
axis. “dx-”: diagnosis code (medical code), “lab-”: lab test (observation), “vs-”: vital
sign (observation), “other-”: observation other than lab test and vital sign, “BP”: blood
pressure. This patient got a 0.9198 prediction score with four hospital visits as inputs.

180 Y. Wang et al.

headache attended to each other, indicating a poor blood sugar control and a
higher risk of diabetes complications. Eventually, at the fourth visit, the patient
had a group of CKD risk factors tested, such as blood urea nitrogen, serum potas-
sium and serum creatinine. The abnormal test results all attended to diabetes,
which suggested the correlation between diabetes and CKD. The high serum
potassium level also attended to the high serum creatinine level. Moreover, this
patient got a true positive prediction with a 0.9198 prediction score.

5 Conclusion

In this work, we proposed the TRACE framework, a novel end-to-end prediction
model that incorporated a pre-trained Transformer-RNN autoencoder for early
detection of CKD onset. It is hard to predict CKD onset by training a model
from scratch due to the excessive risk factors and insufficient medical histories of
positive patients. TRACE alleviated this problem by introducing prior knowledge
learned by the autoencoder. Experimental analyses showed that TRACE outper-
formed all baselines and its several variants in predicting CKD onset. We also
validated the clinical meaning of the learned embeddings through visualizations
and a case study, which demonstrated the potential of TRACE to be generalized
to other disease prediction tasks. In the future, we plan to combine data aug-
mentation techniques like GAN to better address the data insufficiency. We will
also adopt more advanced NLP algorithms to train embeddings for patients and
features.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). https://www.tensorflow.org/

2. Abboud, H., Henrich, W.L.: Stage IV chronic kidney disease. New Engl. J. Med.
362(1), 56–65 (2010)

3. Baytas, I.M., Xiao, C., Zhang, X., Wang, F., Jain, A.K., Zhou, J.: Patient subtyp-
ing via time-aware LSTM networks. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 65–74
(2017)

4. Bengio, Y.: Deep learning of representations for unsupervised and transfer learning.
In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp.
17–36 (2012)

5. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

6. Bergstralh, E., Kosanke, J.: Computerized matching of controls: Section of bio-
statistics technical report 56. Rochester, MN, Mayo Foundation (1995)

7. CDC: Chronic Kidney Disease in the United States, Atlanta, GA: US Department
of Health and Human Services, Centers for Disease Control and Prevention (2019)

8. Che, Z., Kale, D., Li, W., Bahadori, M.T., Liu, Y.: Deep computational pheno-
typing. In: Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 507–516 (2015)

https://www.tensorflow.org/

Trasformer-Enhanced Early Detection of Chronic Kidney Disease Onset 181

9. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks
for multivariate time series with missing values. Sci. Rep. 8(1), 1–12 (2018)

10. Ching, T., et al.: Opportunities and obstacles for deep learning in biology and
medicine. J. R. Soc. Interface 15(141), 20170387 (2018)

11. Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F., Sun, J.: Doctor AI: pre-
dicting clinical events via recurrent neural networks. In: Machine Learning for
Healthcare Conference, pp. 301–318 (2016)

12. Choi, E., et al.: Multi-layer representation learning for medical concepts. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 1495–1504 (2016)

13. Choi, E., Bahadori, M.T., Song, L., Stewart, W.F., Sun, J.: Gram: graph-based
attention model for healthcare representation learning. In: Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 787–795 (2017)

14. Choi, E., Bahadori, M.T., Sun, J., Kulas, J., Schuetz, A., Stewart, W.: RETAIN: an
interpretable predictive model for healthcare using reverse time attention mech-
anism. In: Advances in Neural Information Processing Systems, pp. 3504–3512
(2016)

15. Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W.F., Sun, J.: Generating multi-
label discrete patient records using generative adversarial networks. In: Proceedings
of Machine Learning Research, vol. 68, pp. 286–305 (2017)

16. Choi, E., Schuetz, A., Stewart, W.F., Sun, J.: Using recurrent neural network
models for early detection of heart failure onset. J. Am. Med. Inform. Assoc. 24(2),
361–370 (2017)

17. Choi, E., Xiao, C., Stewart, W., Sun, J.: MIME: multilevel medical embedding of
electronic health records for predictive healthcare. In: Advances in Neural Infor-
mation Processing Systems, pp. 4547–4557 (2018)

18. Choi, E., et al.: Learning the graphical structure of electronic health records with
graph convolutional transformer. In: Proceedings of the AAAI Conference on Arti-
ficial Intelligence, pp. 606–613 (2020)

19. Cui, L., Biswal, S., Glass, L.M., Lever, G., Sun, J., Xiao, C.: CONAN: complemen-
tary pattern augmentation for rare disease detection. In: Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 614–621 (2020)

20. Dauphin, G.M.Y., et al.: Unsupervised and transfer learning challenge: a deep
learning approach. In: Proceedings of ICML Workshop on Unsupervised and Trans-
fer Learning, pp. 97–110 (2012)

21. DeShazo, J.P., Hoffman, M.A.: A comparison of a multistate inpatient EHR
database to the HCUP Nationwide inpatient sample. BMC Health Serv. Res. 15(1),
384 (2015)

22. Keith, D.S., Nichols, G.A., Gullion, C.M., Brown, J.B., Smith, D.H.: Longitudinal
follow-up and outcomes among a population with chronic kidney disease in a large
managed care organization. Arch. Intern. Med. 164(6), 659–663 (2004)

23. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

24. Kronenberg, F.: Emerging risk factors and markers of chronic kidney disease pro-
gression. Nat. Rev. Nephrol. 5(12), 677 (2009)

25. Levey, A.S., Coresh, J.: Chronic kidney disease. Lancet 379(9811), 165–180 (2012)
26. Lipton, Z.C., Kale, D.C., Elkan, C., Wetzel, R.C.: Learning to diagnose with LSTM

recurrent neural networks. In: 4th International Conference on Learning Represen-
tations (2016)

182 Y. Wang et al.

27. Ma, F., Chitta, R., Zhou, J., You, Q., Sun, T., Gao, J.: Dipole: diagnosis predic-
tion in healthcare via attention-based bidirectional recurrent neural networks. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1903–1911 (2017)

28. Ma, F., Gao, J., Suo, Q., You, Q., Zhou, J., Zhang, A.: Risk prediction on electronic
health records with prior medical knowledge. In: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1910–1919 (2018)

29. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9, 2579–2605 (2008)

30. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. In: 1st International Conference on Learning Represen-
tations (2013)

31. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

32. Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for health-
care: review, opportunities and challenges. Briefings Bioinform. 19(6), 1236–1246
(2018)

33. Pham, T., Tran, T., Phung, D., Venkatesh, S.: Predicting healthcare trajectories
from medical records: a deep learning approach. J. Biomed. Inform. 69, 218–229
(2017)

34. Rajkomar, A., et al.: Scalable and accurate deep learning with electronic health
records. NPJ Digit. Med. 1(1), 18 (2018)

35. Rios, A., Kavuluru, R.: Neural transfer learning for assigning diagnosis codes to
EMRs. Artif. Intell. Med. 96, 116–122 (2019)

36. Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in obser-
vational studies for causal effects. Biometrika 70(1), 41–55 (1983)

37. Saito, T., Rehmsmeier, M.: The precision-recall plot is more informative than the
ROC plot when evaluating binary classifiers on imbalanced datasets. PloS One
10(3), e0118432 (2015)

38. Shang, J., Ma, T., Xiao, C., Sun, J.: Pre-training of graph augmented Trans-
formers for medication recommendation. In: Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, pp. 5953–5959 (2019)

39. Shickel, B., Tighe, P.J., Bihorac, A., Rashidi, P.: Deep EHR: a survey of recent
advances in deep learning techniques for electronic health record (EHR) analysis.
IEEE J. Biomed. Health Inform. 22(5), 1589–1604 (2017)

40. Tonelli, M., et al.: Chronic kidney disease and mortality risk: a systematic review.
J. Am. Soc. Nephrol. 17(7), 2034–2047 (2006)

41. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

42. Webster, A.C., Nagler, E.V., Morton, R.L., Masson, P.: Chronic kidney disease.
Lancet 389(10075), 1238–1252 (2017)

43. Xiao, C., Choi, E., Sun, J.: Opportunities and challenges in developing deep learn-
ing models using electronic health records data: a systematic review. J. Am. Med.
Inform. Assoc. 25(10), 1419–1428 (2018)

44. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701 (2012)

http://arxiv.org/abs/1212.5701

Author Index

Abell-Hart, Kayley 153
Alonso, Ana Nunes 29
Asadzadehzanjani, Negin 133

Babayev, Rufat 103
Binnig, Carsten 60
Bottoni, Simone 85
Braghin, Stefano 85
Brisimi, Theodora 85

Cafarella, Michael 43
Carbone, Paris 70
Chatziantoniou, Damianos 3

Dalamagas, Thodoris 121

El-Hindi, Muhammad 60

Faria, Nuno 29

Geissmann, Isabel 65
Guan, Ziqiao 166

Hajagos, Janos 153
Haller, Philipp 70
Hansen, Nils 65
Hennemann, Marc 65
Hou, Wei 166

Kanellos, Ilias 121
Kantere, Verena 3
Konstantopoulos, Stasinos 121
Kostopoulos, Babis 121
Kraft, Peter 43
Kumar, Deeptaanshu 43
Kurc, Tahsin 153

Lengweiler, David 65
Li, Jason 43
Li, Qian 43
Lu, Jiaheng 14

Mendelin, Cédric 65
Mouchakis, Giannis 121

Pereira, José 29
Philipp, Sebastian 65

Rashidian, Sina 153

Saltz, Joel 153
Saltz, Mary 153
Schuldt, Heiko 65
Skiadopoulos, Athinagoras 43
Spenger, Jonas 70
Stonebraker, Michael 43
Sun, Siao 153
Suresh, Lalith 43

Trombetta, Alberto 85
Tzerefos, Anargiros 121

Uotila, Valter 14

Vergoulis, Thanasis 121
Vilaça, Ricardo 29
Vogt, Marco 65

Wang, Fusheng 153, 166
Wang, Yu 166
Wiese, Lena 103
Wojtusiak, Janusz 133

Zhao, Zheguang 60
Zhu, Wei 153

	 Preface
	 Organization
	 Friends Don’t Let Friends Deploy Black-Box Models: the Importance of Intelligibility and Explanation for Machine Learning in Healthcare (Keynote Talk)
	 Contents
	Privacy, Security and/or Policy Issues for Heterogenous Data
	Data Virtual Machines: Enabling Data Virtualization
	1 Introduction
	2 Data Virtualization
	2.1 Analytics Environments
	2.2 Goals of Data Virtualization Systems

	3 Data Virtual Machines
	4 Data Virtualization and DVMs
	4.1 Agile Schema Modeling
	4.2 Simple and Efficient Dataframing
	4.3 Any-Entity View, Model Polymorphism

	5 Conclusions
	References

	A Formal Category Theoretical Framework for Multi-model Data Transformations
	1 Introduction
	1.1 Related Work

	2 Prerequisites
	2.1 Categories
	2.2 Functors
	2.3 Natural Transformations
	2.4 Kan Lifts
	2.5 Graphs

	3 Functorial Instances and Databases
	3.1 Functorial Representation of Relational Data
	3.2 Functorial Representation of the Graph and Hierarchical Data

	4 Data Transformations Between Functorial Instances
	4.1 Intuition Behind Transformations Represented in Terms of Category Theory
	4.2 Data Transformation as Lifting Problem

	5 Conclusions and Future Work
	References

	Towards Generic Fine-Grained Transaction Isolation in Polystores
	1 Introduction
	2 Background and Assumptions
	2.1 Query Processing
	2.2 Versions and Snapshot Isolation
	2.3 Simplifying Assumptions

	3 Proof-of-Concept
	3.1 Version Representation
	3.2 Snapshot Reconstruction
	3.3 Execution Alternatives and Optimization
	3.4 Concurrent Updates

	4 Experiment
	5 Discussion
	References

	Data Governance in a Database Operating System (DBOS)
	1 Introduction
	2 DBOS Data Provenance
	2.1 Provenance Architecture
	2.2 Provenance Specification
	2.3 Provenance Database
	2.4 Provenance Queries
	2.5 Provenance Schema
	2.6 Provenance Query Processing

	3 Performance
	4 Polystore Implications
	5 Support for Data Catalogs
	6 Design Challenges
	6.1 Provenance Data Capture
	6.2 Application Integration

	7 Support for Capabilities Motivated by GDPR
	7.1 Personal Data
	7.2 Purposes
	7.3 The Right to be Forgotten

	8 Related Work
	9 Conclusions
	References

	ACID-V: Towards a New Class of DBMSs for Data Sharing
	1 Introduction
	2 From ACID to ACID-V
	2.1 Adding the V to ACID
	2.2 Verification Levels
	2.3 Handling Malicious Behavior

	3 Future Directions
	References

	Polystore Systems and DBMSs: Love Marriage or Marriage of Convenience?
	1 Introduction
	2 From Polystore Systems to ``PolyDBMSs''
	2.1 Storage of Data
	2.2 Retrieval and Update of Data
	2.3 Access Support from Remote Locations
	2.4 User Accessible Metadata Catalog or Data Dictionary
	2.5 Support for Transactions and Concurrency
	2.6 Facilities for Recovering the Database in Case of Damage
	2.7 Enforcing Constraints
	2.8 Support for Authorization of Access and Update of Data

	3 Conclusion
	References

	WIP: Pods: Privacy Compliant Scalable Decentralized Data Services
	1 Introduction
	2 Problem Scope and Challenges
	2.1 Privacy Regulation Preliminaries
	2.2 Problem Intuition
	2.3 Supporting Privacy on Dataflows: Challenges Overview

	3 Proposed Extensions to Dataflow Architecture
	3.1 Overview of the Pods Model
	3.2 Handling Privacy Requests and State Management
	3.3 Privacy Request Example
	3.4 Addressing the Outlined Privacy Dataflow Challenges

	4 Open Questions and Research Directions
	5 Related Work
	6 Conclusion
	References

	DMAH 2021
	Privacy-Preserving Distributed Support Vector Machines
	1 Introduction
	2 Federated Primal Dual Split Method
	3 Method
	3.1 Keys Generation and Encryption
	3.2 Protocol
	3.3 A Variation of the Protocol
	3.4 Security Considerations

	4 Experimental Evaluation
	4.1 Settings
	4.2 Datasource
	4.3 Metrics

	5 Results
	6 Discussion
	7 Conclusions and Future Work
	References

	Benchmarking Multi-instance Learning for Multivariate Time Series Analysis
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Multi-instance Learning
	3.2 Multivariate Time Series in the MIL Framework

	4 Empirical Evaluation
	4.1 Dataset and Task Description
	4.2 Machine Learning Approaches
	4.3 Multi-instance Learning Pipeline
	4.4 Experimental Setup
	4.5 Interpretation of Results

	5 Discussion
	5.1 The Other Multi-instance Learners
	5.2 Hyperparameters
	5.3 Future Work

	6 Conclusion
	6.1 Code Availability

	References

	A Cloud-Native NGS Data Processing and Annotation Platform
	1 Introduction
	2 Use Case-Driven Platform Design
	3 Platform Description
	3.1 Variant Calling
	3.2 Variant Annotation
	3.3 Knowledge Base

	4 Scalability Experiments and Discussion
	5 Conclusions and Future Work
	References

	Administrative Health Data Representation for Mortality and High Utilization Prediction
	Abstract
	1 Introduction
	2 Methods
	2.1 Claims Data Preprocessing
	2.2 Methods of Representing Claims Data
	2.3 Evaluation of Claims Data Representation

	3 Results
	3.1 Model Performance
	3.2 History Length (Back Window Size)
	3.3 Diagnosis Groupers

	4 Conclusion
	References

	Invited Paper
	Generating Longitudinal Synthetic EHR Data with Recurrent Autoencoders and Generative Adversarial Networks
	Abstract
	1 Introduction
	2 Methods
	2.1 Architecture of LongGAN
	2.2 Training LongGAN

	3 Results
	3.1 Evaluation of Realism
	3.2 Evaluation of Privacy Preservation

	4 Discussion
	4.1 Comparison with Previous Work
	4.2 Limitations

	5 Conclusion and Future Work
	References

	TRACE: Early Detection of Chronic Kidney Disease Onset with Transformer-Enhanced Feature Embedding
	1 Introduction
	2 Related Work
	2.1 Deep Learning in Healthcare Domain
	2.2 Representation Learning for Medical Concepts

	3 Method
	3.1 Problem Statement
	3.2 Vector Representations of EHRs
	3.3 Model Architecture of TRACE

	4 Experiments
	4.1 Dataset
	4.2 Pre-training for Medical Concepts
	4.3 Baseline Models
	4.4 Evaluation Metrics
	4.5 Implementation Details
	4.6 Results

	5 Conclusion
	References

	Author Index

