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Abstract In this chapterwediscuss the use ofgrossone and the newapproach
to infinitesimal and infinite proposed by Sergeyev in determining sparse solu-
tions for special classes of optimization problems. In fact, in various opti-
mization and regression problems, and in solving overdetermined systems
of linear equations it is often necessary to determine a sparse solution, that
is a solution with as many as possible zero components. Expanding on the
results in [16], we show how continuously differentiable concave approxima-
tions of the l0 pseudo–norm can be constructed using grossone, and discuss
the properties of some new approximations. Finally, we will conclude dis-
cussing some applications in elastic net regularization and Sparse Support
Vector Machines.

1 Introduction

In many optimization problems, in regression methods and when solving
over-determined systems of equations, it is often necessary to determine a
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sparse solution, that is, a solution with theminimum number of nonzero com-
ponents. This kind of problems are known as sparse approximation problems
and arise in different fields. InMachine Leaning, the Feature Extraction prob-
lem requires, for a given problem, to eliminate as many features as possible,
while stillmaintaining a good accuracy in solving the assigned task (for exam-
ple, a classification task). Sparse solutions are also required in signal/image
processing problem, for example in sparse approximation of signals, image
denoising, etc. [4, 12, 36].

In these cases the l0 pseudo-norm is utilized. This pseudo-norm counts the
number of nonzero elements of a vector. Problems utilizing the l0 pseudo-
norm have been considered by many researchers, but they seem “to pose
many conceptual challenges that have inhibited its widespread study and
application” [4]. Moreover, the resulting problem is NP–hard and, in order to
construct a more tractable problem, various continuously differentiable con-
cave approximations of the l0 pseudo-norm are used, or the l0 pseudo-norm
is replaced by the simpler to handle 1–norm. In [27] two smooth approxima-
tions of the l0 pseudo-norm are proposed in order to determine a vector that
has the minimum l0 pseudo-norm.

Recently, Sergeyev proposed a new approach to infinitesimals and infini-
ties1 based on the numeral ①, the number of elements of IN, the set of natural
numbers. It is crucial to note that ① is not a symbol and is not used to per-
form symbolic calculations. In fact, the ① is a natural number, and it has
both cardinal and ordinal properties, exactly as the “standard”, finite natu-
ral numbers. Moreover, the new proposed approach is different from non–
Standard Analysis, as demonstrated in [33]. A comprehensive description of
the grossone–based methodology can also be found in [32].

The use of ① and the new approach to infinite and infinitesimals has
been beneficial in several fields of pure and applied mathematics including
optimization [6–9, 14, 15, 17–19, 23], numerical differentiation [29], ODE
[1, 22, 34], hyperbolic geometry [25], infinite series and the Riemann zeta
function [28, 30], biology [31], and cellular automata [13].

Moreover, this new computational methodology has been also utilized in
the field ofMachine Learning allowing to construct new spherical separations
for classification problems [2], and novel sparse Support Vector Machines
(SSVMs) [16].

In this chapterwe discuss the use of① to obtain new approximations for the
l0 pseudo-norm, and two applications are considered in detail. More specifi-
cally, the chapter is organized as follows. In Sect. 2 some of the most utilized
smooth approximations of the l0 pseudo–norm proposed in the literature are

1 See Chap. 1 for an in–depth description of the properties of the new system and its
advantages
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discussed. Then, in the successive Sect. 3 it is shown how to utilize① for con-
structing approximations of the l0 pseudo-norm. Finally, in Sect. 4, mostly
based on [16], two relevant applications of the newly proposed approxima-
tion scheme for the l0 pseudo norm are discussed in detail: the elastic net
regulation problem and sparse Support Vector Machines.

We briefly describe our notation now. All vectors are column vectors and
will be indicatedwith lower caseLatin letter (i.e. x , y, . . .). Subscripts indicate
components of a vector, while superscripts are used to identify different
vectors. Matrices will be indicated with upper case Roman letter (i.e. A, B,
. . .). The set of natural and real numbers will be denoted, respectively, by IN
and IR. The space of the n–dimensional vectors with real components will
be indicated by IRn . Superscript T indicates transpose. The scalar product of
two vectors x and y in IRn will be denoted by xT y. Instead, for a generic
Hilbert space, the scalar product of two elements x and y will be indicated by
〈x, y〉. The Euclidean norm of a vector x will be denoted by ‖x‖. The space
of the m × n matrices with real components will be indicated by IRm×n . For
a m × n matrix A, Ai j is the element in the i th row, j th column.

In the new positional numeral system with base ①, a gross-scalar (or
gross–number) C has the following representation:

C = C (pm )①pm + · · · + C (p1)①p1 + C (p0)①p0 + C (p−1)①p−1 + · · · + C (p−k )①p−k ,

(1)
wherem, k ∈ IN, for i = −k, −k + 1, . . . , −1, 0, 1, . . . ,m − 1,m, the quan-
tities C (pi ) are floating-point numbers and pi are gross-numbers such that

pm > pm−1 > · · · > p1 > p0 = 0 > p−1 > · · · > p−k+1 > p−k . (2)

Ifm = k = 0 the gross-numberC is called finite; ifm > 0 it is called infinite;
if m = 0, C (p0) = 0 and k > 0 it is called infinitesimal; the exponents pi ,
i = −k, −k + 1, . . . , −1, 0, 1, . . . ,m − 1,m, are called gross-powers.

2 The l0 Pseudo-norm in Optimization Problems

Given a vector x = (x1, x2, . . . , xn)T ∈ IRn , the l0 pseudo-norm of x is
defined as the number of its components different from zero, that is:

‖x‖0 = number of nonzero components of x =
n∑

i=1

1xi , (3)
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where 1a is the characteristic (indicator) function, that is, the function which
is equal to 1 if a �= 0 and zero otherwise.

Note that ‖·‖0 is not a norm and hence is called, more properly, pseudo-
norm. In fact, for a non zero vector x ∈ IRn , and a not null constant λ ∈ IR,
we have:

‖λx‖0 = ‖x‖0 .

Consequently ‖λx‖0 = |λ| ‖x‖0, λ ∈ IR, if and only if |λ| = 1.
The l0 pseudo-norm plays an important role in several numerical analysis

and optimization problems, where it is important to get a vector with as few
non-zero components as possible. For example, this pseudo-norm has impor-
tant applications in elastic-net regularization, pattern recognition, machine
learning, signal processing, subset selection problem in regression and port-
folio optimization. For example, in signal and image processing many media
types can be sparsely represented using transform-domainmethods, and spar-
sity of the representation is fundamental in many highly used techniques of
compression (see [4] and references therein). In [20, 26] the cardinality-
constrained optimization problem is studied and opportunely reformulated.
In [5] the general optimization problem with cardinality constraints has been
reformulated as a smooth optimization problem.

The l0 pseudo-norm is strongly related to the l p norms. Given a vector
x = (x1, x2, . . . , xn)T ∈ IRn , the l p norm of x is defined as

‖x‖p :=
(

n∑

i=1

|xi |p
) 1

p

.

It is not too difficult to show that

‖x‖0 = lim
p→0

‖x‖p
p = lim

p→0

n∑

i=1

|xi |p .

In Fig. 1 the behavior of |σ |p (σ ∈ IR) for different values of p is shown (see
also [4]). Note that, as the figure suggests, for 0 < p < 1, the function ‖x‖p
is a concave function.

It must be noted that the use of ‖x‖0 makes the problems extremely com-
plicated to solve, and various approximations of the l0 pseudo-norm have
been proposed in the scientific literature, For example, in [27] two smooth
approximations of the l0 pseudo-norm are proposed in order to determine a
particular vector that has the minimum l0 pseudo-norm.

In [24], in the framework of elastic net regularization, the following
approximation of ‖x‖0 is studied:
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Fig. 1 The value of |σ |p
for different values of p

‖x‖0,δ :=
n∑

i=1

x2i
x2i + δ

, (4)

where δ ∈ IR, δ > 0, and a small δ is suggested in order to provide a better
approximation of ‖x‖0.

Instead, in the context of Machine Learning and Feature Selection [3], the
following approximation of ‖x‖0:

‖x‖0,α :=
n∑

i=1

(
1 − e−α|xi |

)
, (5)

where α ∈ IR, α > 0, is proposed, and the value α = 5 is recommended.
By using ①, in [16] a new approximation of ‖x‖0 has been suggested. In

the next section we discuss in detail this approximation and we also propose
other approximations that use the newnumeral system based on①.Moreover,
we provide the connections between ‖x‖0 and the new approximations.

Note that the approximation introduced in [16] has been used in connection
to two different applications. The first application is an elastic net regulariza-
tion. The second application concerns classification problems using sparse
Support Vector Machines. These two applications are extensively reviewed
in Sect. 4.
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3 Some Approximations of the l0 Pseudo-norm
Using ①

The first approximation of the l0 pseudo-norm in terms of ① was proposed
in [16], where, following the idea suggested in [24] of approximating the l0
pseudo-norm
by (4), the following approximation has been suggested:

‖x‖0,①,1 :=
n∑

i=1

x2i
x2i + ①−1 . (6)

In this case, we have that

‖x‖0,①,1 = ‖x‖0 + C①−1, (7)

for some gross-number C which includes only finite and infinitesimal terms.
Therefore, the finite parts of ‖x‖0 and ‖x‖0,①,1 coincide.

To this scope, let

ψ1(t) = t2

t2 + ①−1 , t ∈ IR. (8)

We have that ψ1(0) = 0 and ψ1(t) = 1 − ①−1S, when t �= 0, where S is a
gross-number such that

0 < S = 1

t2 + ①−1 <
1

t2
.

Therefore, S has only finite and infinitesimal terms. Moreover,

n∑

i=1

x2i
x2i + ①−1 =

n∑

i=1

ψ1(xi ) =
n∑

i=1,xi �=0

ψ1(xi ) = ‖x‖0 + C①−1, (9)

where

C =

⎧
⎪⎪⎨

⎪⎪⎩

−
n∑

i=1,xi �=0

Si , when ‖x‖0 �= 0,

0, otherwise,

and Si is a gross-number such that



The Use of Infinities and Infinitesimals for Sparse Classification Problems 157

0 < Si = 1

x2i + ①−1 <
1

x2i
, xi �= 0, i = 1, . . . , n.

Hence C is a gross-number with only finite and infinitesimal terms and the
finite part of of ‖x‖0 and ‖x‖0,①,1 are the same.

A different proof of this result is provided in [16]. For i = 1, . . . , n, let
assume that

xi = x (0)
i + Ri①

−1,

where Ri includes only finite and infinitesimal terms.
When x (0)

i = 0:

ψ1(xi ) = R2
i ①−2

R2
i ①−2 + ①−1 = ①−1 R2

i

R2
i ①−1 + 1

= 0 ①0 + R′
i①

−1,

where R′
i includes only finite and infinitesimal terms.

When, instead, x (0)
i �= 0:

ψ1(xi ) =
(
x (0)
i + Ri①

−1
)2

(
x (0)
i + Ri①

−1
)2 + ①−1

= 1 − ①−1

(
x (0)
i + Ri①

−1
)2 + ①−1

= 1 + R′
i①

−1,

where, again, R′
i includes only finite and infinitesimal terms. Therefore,

‖x‖0,①,1 =
n∑

i=1

ψ1(xi ) = ‖x‖0 + S①−1

where S includes only finite and infinitesimal terms and hence ‖x‖0,①,1 and‖x‖0 coincide in their finite part.
Following the idea suggested in [3], we now propose three novel approx-

imation schemes of the l0 pseudo-norm all based on the use of ①. In [3] the
authors proposed to approximate the l0 pseudo-norm using (5) and suggest
to take a fixed value for α, i.e. α = 5, or an increasing sequence of values of
α.

Based on this idea, we propose the following approximation formula for
‖x‖0:

‖x‖0,①,2 :=
n∑

i=1

(
1 − ①−α|xi |

)
, α > 0. (10)
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Also in this case, the finite parts of ‖x‖0 and ‖x‖0,①,2 coincide. More pre-
cisely, let us show that

‖x‖0,①,2 = ‖x‖0 − ①−αmxC, (11)

where

mx =
{
min

{
|xi | : xi �= 0

}
, when x �= 0,

0, otherwise,
(12)

and C is a gross-number which is null when ‖x‖0 = 0 and, otherwise,
includes only finite and infinitesimal terms.

Let us define

ψ2(t) = 1 − ①−α|t |, t ∈ IR. (13)

Since ψ2(0) = 0, we have:

‖x‖0,①,2 =
n∑

i=1

(
1 − ①−α|xi |

)
=

=
n∑

i=1

ψ2(xi ) =
n∑

i=1,xi �=0

ψ2(xi ) =

= ||x ||0 −
n∑

i=1,xi �=0

①−α|xi | = ||x ||0 − ①−αmxC. (14)

It is easy to see that C = 0 when ‖x‖0 = 0. Instead, if ‖x‖0 �= 0 then C
has only finite and infinitesimal terms. This shows that ‖x‖0 and ‖x‖0,①,2
coincide in their finite part.

Another approximation of the l0 pseudo–norm is given by:

‖x‖0 ≈ ‖x‖0,①,3 :=
n∑

i=1

(
1 − e−①|xi |

)
. (15)

In this case, it is possible to show that

‖x‖0,①,3 = ‖x‖0 − e−①mxC, (16)

where, as in the previous cases, C is a gross-number which includes only
finite and infinitesimal terms and is null when ‖x‖0 = 0. Hence, also in this
case we have that the finite parts of ‖x‖0 and ‖x‖0,①,3 coincide.
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To prove the above result, let

ψ3(t) = 1 − e−①|t |, t ∈ IR. (17)

Since ψ3(0) = 0, we have:

‖x‖0,①,3 =
n∑

i=1

(
1 − e−①|xi |

)
=

=
n∑

i=1

ψ3(xi ) =
n∑

i=1,xi �=0

ψ3(xi ) =

= ||x ||0 −
n∑

i=1,xi �=0

e−①|xi | = ||x ||0 − e−①mxC, (18)

where mx is defined in (12) and C is a gross-number with only finite and
infinitesimal terms. Moreover, C is null when ‖x‖0 = 0.

Finally, another approximation of the l0 pseudo–norm, always in the spirit
of (5), is given by:

‖x‖0,①,4 :=
n∑

i=1

(
1 − ①−①|xi |

)
. (19)

In this last case, let

ψ4(t) = 1 − ①−①|t |, t ∈ IR. (20)

Since even in this circumstance ψ4(0) = 0, we have:

‖x‖0,①,4 =
n∑

i=1

(
1 − ①−①|xi |

)
=

=
n∑

i=1

ψ4(xi ) =
n∑

i=1,xi �=0

ψ4(xi ) =

= ||x ||0 −
n∑

i=1,xi �=0

①−①|xi | = ||x ||0 − ①−①mxC, (21)

where mx is again defined in (12) and C is a gross-number with only finite
and infinitesimal terms that is null when ||x ||0 = 0. As in the previous cases
we have that
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‖x‖0,①,4 = ‖x‖0 − ①−①mxC, (22)

and, therefore, the finite parts of ‖x‖0 and ‖x‖0,①,4 coincide.
We have presented a number of different approximation schemes for the

l0 pseudo-norm. We want to stress that in all the cases the value of ‖x‖0
and its approximation coincide in their finite part and may only differ for
infinitesimals quantities.

In the next section we will discuss some utilization of these approximating
schemes in two extremely important problems: regularization and classifica-
tion.

4 Applications in Regularization and Classification
Problems

In this section we review some interesting uses of the proposed l0 pseudo–
norm approximations in two classes of optimization problems: elastic net
regularization problems and sparse Support Vector Machine classification
problems. These two applications are deeply studied in [16].

4.1 Elastic Net Regularization

There aremany important applicationswherewewant to determine a solution
x ∈ IRn of a given linear system Ax = b, A ∈ IRm×n , b ∈ IRm , such that x
has the smallest number of nonzero components, that is

min
x

‖x‖0 ,

subject to Ax = b.

To this problem it is possible to associate the following generalized elastic
net regularization:

min
x

1

2
‖Ax − b‖22 + λ0 ‖x‖0 + λ2

2
‖x‖22 , (23)

where λ0 > 0 and λ2 > 0 are two regularization parameters (see [24] for
details).
In [24] a suitable algorithm for the solution of Problem (23) with ‖x‖0,δ
(defined in (4)) instead of ‖x‖0 is proposed. The corresponding solution
approximates the solution of (23) and depends on the choice of δ > 0 in (4).
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Following the idea suggested in [24], we look for the solution of the fol-
lowing minimization problem:

min
x

f1(x), (24)

where

f1(x) := 1

2
‖Ax − b‖22 + λ0 ‖x‖0,①,1 + λ2

2
‖x‖22 . (25)

Note that Problem (24)–(25) is obtained fromProblem (23) by substituting
‖x‖0,①,1 to ‖x‖0.

In [16] we proved that the corresponding solution coincides with the solu-
tion of the original Problem (23) apart from infinitesimal terms. In particular,
in [16], the following iterative scheme for the solution of Problem (24)–(25)
has been proposed: given an initial value x0 ∈ IRn , for k = 0, 1, . . ., compute
xk+1 by solving

(
AT A + λ2 I + λ0D(xk)

)
xk+1 = AT b, (26)

where I ∈ IRn×n is the identity matrix and D ∈ IRn×n is the following diag-
onal matrix:

Dii (x) = 2①−1

(
(xi )2 + ①−1

)2 , Di j (x) = 0, i �= j. (27)

The convergence of the sequence {xk} to the solution of Problem (24)–
(25) is ensured by Theorem 1 in [16]. In particular, when L := {x : f1(x) ≤
f1(x0)} is a compact set, the above constructed sequence {xk}k has at least
one accumulation point, xk ∈ L for each k = 1, . . . , and each accumulation
point of {xk}k belongs to L and is a stationary point of f1.

In [24] a similar algorithm was proposed, where ‖x‖0 was substituted by
(4). However, in this latter case, the quality of the final solution (in terms
of being also a solution of Problem (24)–(25) strongly depends on the value
of δ that is utilized. In our approach, instead, taking into account that ‖x‖0
and our approximation with ① only differ for infinitesimal terms, the final
solution solves also Problem (24)–(25).

The results presented here are relative to the first of the four approximation
schemes for ‖x‖0 discussed in Sect. 3.

Considering the minimization of the following functions
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fi (x) := 1

2
‖Ax − b‖22 + λ0 ‖x‖0,①,i + λ2

2
‖x‖22 , (28)

with i = 2 or i = 3 or i = 4, and computing the corresponding first order
optimality conditions, new iterative schemes similar to (26) can be obtained
and studied.

4.2 Sparse Support Vector Machines

The grossone ① and the different approximations of l0-pseudo norm can be
also used in Sparse Support Vector Machines.

Given empirical data (training set) (xi , yi ), i = 1, . . . , l, with inputs xi ∈
IRn, and outputs yi ∈ {−1, 1}, i = 1, . . . , l, we want to compute a vector
w ∈ IRn and a scalar θ (and hence an hyperplane) such that:

wT xi + θ > 0 when yi = 1,

wT xi + θ < 0 when yi = −1.

The classification function is

h(x) = sign
(
wT x + θ

)
.

Given
φ : IRn �→ E,

where E is an Hilbert space with scalar product 〈·, ·〉, the optimal hyperplane
can be constructed by solving the following (primal) optimization problem
(see [10, 11, 35] and references therein for details):

min
w,θ,ξ

1
2 〈w, w〉 + CeT ξ,

subject to yi
(〈
w, φ(xi )

〉 + θ
) ≥ 1 − ξi , i = 1, . . . , l,

ξi ≥ 0, i = 1, . . . , l,

(29)

where e ∈ IRl is a vector with all elements equal to 1 and C is a positive
scalar.

The dual of (29) is

min
α

1
2α

T Qα − eTα,

subject to yTα = 0,
0 ≤ α ≤ Ce,

(30)
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where

Qi j = yi y j Ki j , Ki j = K (xi , x j ) :=
〈
φ(xi ), φ(x j )

〉
, i, j = 1, . . . , l,

and K : IRn × IRn → IR is the kernel function.
We note that, this dual problem and the classification function depend only

on Ki j = 〈
φ(xi ), φ(x j )

〉
. In fact, from the Karush–Kuhn–Tucker conditions

we have

w =
l∑

i=1

αi yiφ(xi ), (31)

and the classification function reduces to

h(x) = sign
(
〈w, φ(x)〉 + θ

)
= sign

(
l∑

i=1

αi yi
〈
φ(xi ), φ(x)

〉
+ θ

)
.

In [21], the authors consider an optimization problem based on (29) where
1
2 〈w, w〉 is replacedwith ‖α‖0 (and, then, this term is approximated by 1

2α
α

for opportune values of a diagonal matrix 
) and use the expansion (31) of
w in terms of α.

Furthermore, in [16] the quantity ‖α‖0 is replaced by ‖α‖0,①,1, and the
following ①–Sparse SVM problem is defined:

min
α,θ,ξ

①
2 ‖α‖0,①,1 + CeT ξ,

subject to yi
[
Ki.

Tα + θ
]

≥ 1 − ξi , i = 1, . . . , l,

ξ ≥ 0,

(32)

where Ki. denotes the column vector that corresponds to the i th row of the
matrix K .

The algorithmic scheme, originally proposed in [21] and revised in [16],
starting from λ0r = 1, r = 1, . . . , l, requires, at each iteration, the solution
of the following optimization problem:

min
α,θ,ξ

1

2

l∑

r=1

λkrα
2
r + CeT ξ,

subject to yi
[
Ki.

Tα + θ
]

≥ 1 − ξi , i = 1, . . . , l,

ξ ≥ 0,

(33)
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and then the update of λk with a suitable formula.
From the Karush–Kuhn–Tucker conditions for Problem (32), it follows

that
1

(
α2
r + ①−1

)2αr = K̄ T
r. β, r = 1, . . . , l, (34)

where K̄r. is the r–th row of the matrix K̄ with K̄r j = y j K jr , for r, j =
1, . . . , l.

The Conditions (34) above suggest the more natural updating formula:

λk+1
r = 1

(
α2
r + ①−1

)2 , r = 1, . . . , l. (35)

Moreover, by considering the expansion of the gross-number α, it is easy
to verify that formula (35) well mimics the updating formulas for λk proposed
in [21], also providing a more sound justification for the updating scheme.

We note that the algorithm proposed in [16], and briefly described here, is
based on the first of the approximations of ‖α‖0 discussed in Sect. 3.Using the
other different approximations introduced in the same section, new different
updating formulas for λk+1 can be obtained.

5 Conclusions

The use of the l0 pseudo–norm is pervasive in optimization and numerical
analysis, where a sparse solution is often required. Using the new approach to
infinitesimal and infinite proposedbySergeyev, four different approximations
of the l0 pseudo–norm are presented in this chapter. In all cases, we proved
that the finite value of the l0 pseudo–normand and its approximation coincide,
being different only for infinitesimal terms. The use of such approximations
is beneficial in many applications, where the discontinuity due to the use of
the l0 pseudo–norm is easily eliminated, by using one of the four proposed
approaches presented in this chapter.
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