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Abstract Exact penalty methods form an important class of methods for
solving constrained optimization problems.Using penalty functions, the orig-
inal constrained optimization problem can be transformed in an “equivalent”
unconstrained problem. In this chapter we show how grossone can be uti-
lized in constructing exact differentiable penalty functions for the case of only
equality constraints, the general case of equality and inequality constraints,
and quadratic problems. These new penalty functions allow to recover the
solution of the unconstrained problem from the finite term (in its grossone
expansion) of the optimal solution of the unconstrained problem. Moreover,
Lagrangian duals associated to the constraints are also automatically obtained
from the infinitesimal terms. Finally a new algorithmic scheme is presented.

1 Introduction

Penalty methods represent an important class of methods for solving con-
strained optimization problems. These functions, in their simplest form, are
composed of two parts: the original objective function and a penalty func-
tion, usually multiplied by a positive scalar called penalty parameter, which
penalize the violation of the constraints. Using penalty functions, the origi-
nal constrained optimization problem can be transformed in an “equivalent”
unconstrained problem. Two major issues must be taken into account when
constructing such penalty functions: exactness and differentiability. Roughly
speaking, exactness requires that the global or local solution of the uncon-
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strained problem or a stationary point of it, must correspond to a global or
local minimum of the constrained problem or to a point satisfying Karush–
Kuhn–Tucker conditions. Using the Euclidean norm, it is quite simple to
construct continuously differentiable, or at least differentiable penalty func-
tions, as long as the functions in the original problem are sufficiently smooth.
However, in these cases the penalty parameter must be driven to +∞, thus
generating numerical instability. Using the 1–norm, instead, it is possible to
construct penalty functions that are exact, that is they do not require that the
penalty parameter goes to +∞. The difficulty in this case arises from the
non–differentiability of the function.

Recently, Sergeyev introduced a new approach to infinite and infinitesi-
mals. The proposed numeral system is based on ①, the number of elements
of IN, the set of natural numbers. We refer the reader to Chap.1 for insights
on the arithmetic of infinity and the properties of ①. Here we want to stress
that ① is not a symbol and is not used to make symbolic calculation. In
fact, the new numeral ① is a natural number, and it has both cardinal and
ordinal properties, exactly as the “standard”, finite natural numbers. More-
over, the new proposed approach is far apart from non–Standard Analysis, as
clearly shown in [30]. A comprehensive description of the grossone–based
methodology can also be found in [29].

In this chapter we discuss the use of ① in constructing exact differentiable
penalty functions for the case of only equality constraints, the general cases of
equality and inequality constraints, and quadratic problems. Using this novel
penalty function, it is possible to recover the solution of the unconstrained
problem from the finite term (in its① expansion) of the optimal solution of the
unconstrained problem. Moreover, Lagrangian duals are also automatically
and at no additional cost obtained just considering the ①−1 grossdigits in
their expansion in term ①.

While this chapter only concentrates the attention on the use of① to define
novel exact penalty functions for constrained optimization problems, it must
be noted that the use of ① has been beneficial in many other areas in opti-
mization. Already in [8], the authors demonstrated how the classical simplex
method for linear programming can be modified, using ① to overcome the
difficulties due to degenerate steps. Along this line of research, more recently
in [4], the authors proposed the Infinitely-Big-M method, a re–visitation of
the Big–M method for the Infinity Computer. Various different optimization
problems have been successfully tackled using this new methodology: mul-
tiobjective optimization problems [3, 5, 6, 21], the use of negative curvature
directions in large-scale unconstrained optimization [11, 12], variable met-
ric methods in nonsmooth optimization [16]. Recently, this computational
methodology has also been also utilized in the field of Machine Learning
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allowing to construct new spherical separations for classification problems
[2], and novel sparse Support Vector Machines [10]. Furthermore, the use
of ① has given rise to a variety of applications in several fields of pure and
applied mathematics, providing new and alternative approaches. Here we
only mention numerical differentiation [26], ODE [1, 20, 31], hyperbolic
geometry [23], infinite series and the Riemann zeta function [25, 27], biol-
ogy [28], and cellular automata [7].

We briefly describe our notation now. All vectors are column vectors and
will be indicated with lower case Latin letter (x , y, . . .). Subscripts indicate
components of a vector, while superscripts are used to identify different vec-
tors. Matrices will be indicated with upper case roman letter (A, B, . . .). The
set of real numbers and the set of nonnegative real numbers will be denoted
by IR and IR+ respectively. The space of the n–dimensional vectors with real
components will be indicated by IRn . Superscript T indicates transpose. The
scalar product of two vectors x and y in IRn will be denoted by xT y. The
norm of a vector x will be indicated by ‖x‖. The space of them × n matrices
with real components will be indicated by IRm×n . Let f : S ⊆ IRn → IR, the
gradient ∇ f (x) of f : IRn → IR at a point x ∈ IRn is a column vector with
[∇ f (x)] j = ∂ f (x)

∂x j
.

For what is necessary in this chapter, in this new positional numeral system
with base ① a value C is expressed as

C = C (1)① + C (0) + C (−1)①−1C (−2)①−2 + · · ·
Here and throughout the symbols := and =: denote definition of the term on
the left and the right sides of each symbol, respectively.

2 Exact Penalty Methods

In this section we will utilize the novel approach to infinite and infinitesimal
numbers proposed by Sergeyev1 to construct exact differentiable penalty
functions for nonlinear optimization problems.

Consider the constrained optimization problem

1We refer the reader to Chap.1 for an in–depth description of this new applied approach
to infinite and infinitesimal quantities and the arithmetics of infinity.

http://dx.doi.org/10.1007/978-3-030-93642-6_1
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min
x

f (x)

subject to
ci (x) ≤ 0 i = 1, . . . ,m
ci (x) = 0 i = m + 1, . . . ,m + h

(1)

where f : IRn → IR is the objective function and ci : IRn → IR, i = 1, . . . ,m + h
are the constraints defining the feasible region X

X := {
x ∈ IRn : ci (x) ≤ 0, i = 1, . . . ,m and ci (x) = 0, i = m + 1, . . . ,m + h

}
.

For simplicity, we will assume that all the functions are at least twice con-
tinuously differentiable.

Let x̄ be a feasible point for the above problem. The set of active constraints
at x̄ is defined as

A (x̄) :=
{
i : 1 ≤ i ≤ m, ci (x̄) = 0

}
∪

{
m + 1, . . . ,m + h

}
.

In nonlinear optimization a key role is played by the Constraint Qualifi-
cation conditions that ensure that the tangent cone and the cone of linearized
feasible directions coincide and allow to express necessary and sufficient
optimality conditions in terms of the well known Karush–Kuhn–Tucker con-
ditions.2 For reader’s easiness we recall here the fundamental Linear Inde-
pendence Constraint Qualification that will be heavily utilized in this form
or in a modified form in this chapter.

Definition 1 Linear independence constraint qualification (LICQ) condition
is said to hold true at x̄ ∈ X if the gradients of the active constraints at x̄ are
linearly independent.

Note that weaker Constraint Qualification conditions can be imposed [32].
In [34] various Constraint Qualification conditions are stated and categorized
into four levels by their relative strengths from weakest (less stringent) to
strongest (more stringent, but easier to check).

The Lagrangian function associated to Problem (1) is given by

L(x, λ) := f (x) +
m+h∑

i=1

λi ci (x). (2)

Necessary and sufficient optimality conditions can be written in terms of
the Lagrangian function. If x∗ ∈ X is a local minimum of Problem (1) at
which LICQ condition holds true, then, there exist a vector λ∗ such that the
pair (x∗, λ∗) is a Karush–Kuhn–Tucker point.

2 For further details we refer the reader to Chap.2 and references therein.

http://dx.doi.org/10.1007/978-3-030-93642-6_2
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Different algorithms have been proposed in literature for finding a local
minimum of Problem (1). Among the most effective methods, penalty meth-
ods play a crucial role, obtaining the solution of the constrained problem by
solving a single or a sequence of unconstrained optimization problems.

Let δ : IRn → IR+ be a function, when possible continuously differentiable,
such that

δ(x)

{= 0 if x ∈ X
> 0 otherwise.

Then the constrained optimization problem (1) can be replaced by the
following unconstrained problem

min
x

ψ(x, μ). (3)

where
ψ(x, μ) := f (x) + μδ(x), (4)

andμ is a positive real number.Different choices for the function δ(x) conduct
to different penalty methods. A convenient, highly utilized, choice is

δ(x) = 1

2

m∑

i=1

max
{
ci (x), 0

}2 + 1

2

m+h∑

i=m+1

(ci (x))
2 (5)

which is differentiable but not twice differentiable. Therefore, this choice for
δ(x) does not allow to utilize some of the most effective algorithms available
for unconstrained optimization.

One key issue in exterior penalty methods is exactness. Roughly speaking,
the penalty function is exact if, for somefinite value of the parameterμ, a local
(global) minimum of it corresponds to a local (global) minimum point of the
constrainedproblem.Asnoted in [14] this characterization is satisfactory only
when both the constrained problemand the penalty function are convex,while
in the non–convex case a more precise definition of exactness is necessary
[13, 14].

Unfortunately, for the penalty function (5) this exactness property does not
hold, not even in the case of only equality constraints, that is whenm = 0. In
[15, p. 279] a simple 1–dimensional counter-example is reported, showing
that the solution of the constraint problem is only obtained when μ → +∞.
Exact penalty functions can be constructed using 1-norm instead of the 2-
norm utilized in (5) to penalize the violation of the constraints. However, in
these cases the resulting function is nondifferentiable, and ad-hoc methods
must be utilized for which convergence is often quite slow. Furthermore,
exact differentiable penalty functions can be constructed [13] by introducing
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Algorithm 1: Generic Sequential Minimization Algorithm

1 Choose x0 ∈ IRn . Let {μk} be a monotonically increasing sequence of positive real
values, Set k = 0, xμ0 = x0;

2 while δ(xμk ) > ε do
3 Set k = k + 1;
4 Compute xμk an optimal solution of the unconstrained differentiable problem

min
x

ψ(x, μk).

5 end

in the objective function additional terms related to first order optimality
conditions, thus making the objective function more complicate to manage.

Sequential penalty methods require to solve a sequence of minimization
problems with increasing values of the parameter μ as shown in Algorithm
1.

In the algorithm above, the point xμk obtained at iteration k can be used as
starting point for the minimization problem at iteration k + 1. Note that Step
4 cannot be, in general, completed in a finite number of steps and, hence, the
algorithm must be modified requiring to calculate, at each iteration, only an
approximation of the optimal solution.

In [8] a novel exact differentiable penalty method is introduced using
the numeral grossone. In the next three sections, the equality constraints,
the general equality and inequality constraints and quadratics case will be
discussed. Finally, a simple new non–monotone algorithmic scheme is also
proposed for the solution of penalty functions based on ①.

3 Equality Constraints Case

Consider the constrained optimization problemwith only equality constraints
(that is m = 0):

min
x

f (x)

subject to ci (x) = 0 i = 1, . . . , h.
(6)

Let

δ(x) = 1

2

h∑

i=1

(ci (x))
2
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and let ψ(x, μ) be given by (4). In this case, it is possible to show [15,
Theorem 12.1.1] that for the sequence constructed by Algorithm 1

1. {ψ(xμk , μk)} is monotonically non–decreasing,
2. {δ(xμk )} is monotonically non–increasing,
3. { f (xμk )} is monotonically non–decreasing.

Moreover, lim
k

ci (x
μk ) = 0, i = 1, . . . , h and each accumulation point x∗

of the sequence {xμk }k solves Problem (6).
For the equality constrained case, the penalty function proposed in [8] is

defined as follows:

min
x

ψ(x) := f (x) + ①

2

h∑

i=1

(ci (x))
2 . (7)

Under the hypothesis that any generic point x , the function value f (x),
and the generic constraint ci (x) as well as the gradient ∇ f (x) and ∇ci (x)
have a finite part (i.e., grossdigits corresponding to grosspower 0) and only
infinitesimal terms, it is possible to show that [8, Theorem 3.3] if x∗ is a sta-
tionary point for (7) then

(
x∗(0), λ∗) is a KKT point for (6), where x∗(0) is the

finite term in the representation of x∗, and for i = 1, . . . , h,λ∗
i = c(−1)

i (x∗(0))

where c(−1)
i (x∗) is the grossdigit corresponding to the grosspower -1 in the

representation of ci (x∗).
The above result strongly relies on the fact that at x∗ the LICQ condition

is satisfied. The proof is based on the observation that grossdigits “do not
mix”, that is, they are kept well separated in the computations. Therefore,
setting to 0 a grossnumber is equivalent to set to zero all grossdigits in its
representation.

The fundamental aspect of this result is that, by solving the unconstrained
optimization problem (where the objective function is twice continuously
differentiable), an optimal solution of the constrained problem is obtained.
Moreover, the multipliers associated to the equality constraints are automat-
ically recovered at no additional cost, just from the representation of ci (x∗)
in terms of powers of ①.

In [9] two simple examples are discussed, showing the importance of
constraint qualification conditions.Here,we propose a novel example, similar
in spirit to the first example discussed in [9]. The problem is originally studied
in [15, pp. 279–280] to show the effectiveness and weakness of sequential
penalty method.

Consider the problem
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Fig. 1 Feasible region
and optimal solution for
Problem (8)

min
x

−x1 − x2

subject to x21 + x22 − 1 = 0.
(8)

The feasible region and the optimal solution for this problem is shown in
Fig. 1.

The Lagrangian function is given by

L(x, λ) = −x1 − x2 + λ
(
x21 + x22 − 1

)

and the optimal solution is x∗ =
⎡

⎢
⎣

1√
2
1√
2

⎤

⎥
⎦. Moreover, it is not difficult to show

that the pair

(
x∗, λ∗ = 1√

2

)
satisfies the KKT conditions.

In Fig. 2 the contour plots for the function ψ(x, μ) for different values of
μ are shown.

The penalty function we construct is:

ψ (x, ①) := −x1 − x2 + ①

2

(
x21 + x22 − 1

)2
. (9)

The First–Order Optimality Conditions ∇ψ (x, ①) = 0 are:
⎧
⎨

⎩

−1 + 2①x1
(
x21 + x22 − 1

) = 0,

−1 + 2①x2
(
x21 + x22 − 1

) = 0.
(10)

By symmetry,

x∗
1 = x∗

2 = R = R(0) + ①−1R(−1) + ①−2R(−2) + . . .
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Fig. 2 Contour plots of ψ(x, μ) for μ = 0.1, 1, 5, 20

and from (10) we have that

− 1 + 4①R

[
R2 − 1

2

]
= 0. (11)

From (11), by equating the term of order ① to 0, we obtain:

4R(0)
[(

R(0)
)2 − 1

2

]
= 0

fromwhich either R(0) = 1√
2
or R(0) = − 1√

2
or R(0) = 0. The first choice for

R(0) corresponds to a minimum of the unconstrained problem (and also for
the constrained problem (8)), while the second corresponds to a maximum.
Finally, the third choice of R(0) corresponds to a spurious solution whose

presence is due to the fact that, for this point x̂ =
[
0
0

]
, LICQ are not satisfied.

In fact ∇h(x̂) =
[
0
0

]
. Fixing now R(0) = 1√

2
, and equating to 0 the finite

terms in (11), i.e., the term corresponding to ①0, we obtain:
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−1 + 4
1√
2
2

1√
2
R(−1) = 0,

from which R(−1) = 1
4 and hence

x∗
1 = x∗

2 = R = 1√
2

+ 1

4
①−1 + · · ·

where all remaining terms are infinitesimal of higher order.
Moreover,

(
x∗
1

)2 + (
x∗
2

)2 − 1 = 2R2 − 1 = 2

[
1

2
+ 2

4
√
2

①−1 + 1

16
①−2 + · · ·

]
− 1

= 1√
2

①−1 + · · ·

where again we neglect infinitesimal of higher order than ①−1.
As expected from the theory, the ①−1 terms in the representation of the

(unique) constraint provides automatically, and at no additional costs, the
value of the Lagrangian multiplier.

Here we want to stress the importance of Constraint Qualification condi-
tions that, when not satisfied, could bring to spurious results, as shown by
this example.

This situation is even better clarified in the second example from [9]:

min
x

x1 + x2

subject to
(
x21 + x22 − 2

)2 = 0.
(12)

Here the objective function and the feasible region are the same as in the

first example in [9] and the optimal solution is x∗ =
[−1

−1

]
with Lagrangian

multiplier λ∗ = 1
2 . However, in this case

∇c1(x) =
⎡

⎣
2x1

(
x21 + x22 − 2

)

2x1
(
x21 + x22 − 2

)

⎤

⎦

which, calculated at the optimal solution, gives:

∇c1

([−1
−1

])
=

[
0
0

]
.
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Therefore, the LICQ condition is not satisfied and the Karush–Kuhn–Tucker
conditions ⎧

⎨

⎩

1 − 4λx1
(
x21 + x22 − 2

) = 0
1 − 4λx2

(
x21 + x22 − 2

) = 0
(
x21 + x22 − 2

)2 = 0
(13)

have no solution. In this case (see [9]) the optimal solution x∗ =
[
c − 1
−1

]
of

Problem (12) cannot be recovered from the exact penalty function

ψ(x, ①) = x1 + x2 + ①

2

(
x21 + x22 − 2

)4

using first order optimality conditions.

4 Equality and Inequality Constraints Case

Consider now the more general nonlinear optimization problem (1) that
includes equality and inequality constraints. In this case, the exact penalty
function proposed in [8] is given by

ψ(x, ①) = f (x) + ①

2

m∑

i=1

max{0, ci (x)}2 + ①

2

m+h∑

i=m+1

ci (x)
2. (14)

In order to derive the correspondence between stationary points of (14)
and KKT points for Problem (1) a Modified LICQ condition is introduced in
[8].

Definition 2 Let x̄ ∈ IRn . The Modified LICQ (MLICQ) condition is said to
hold true at x̄ if the vectors
{
∇ci (x̄), i : 1 ≤ i ≤ m and ci (x̄) ≥ 0

}
∪

{
∇ci (x̄), i = m + 1, . . . ,m + h

}

are linearly independent.

If the above conditions are satisfied, and x∗ is a stationary point for the
unconstrained problem

min
x

ψ(x, ①)

then, it possible, again, to show [8, Theorem 3.4] that the pair
(
x∗(0), λ∗) is a

KKT point for Problem (1), where x∗(0) is the finite term in the representation
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of x∗, and for i = 1, . . . ,m + h, λ∗
i = c(−1)

i (x∗(0)) where c(−1)
i (x∗) is the

grossdigit corresponding to the grosspower -1 in the representation of ci (x∗).

5 Quadratic Case

In this section we apply the new exact penalty function to the quadratic
problem

min
x

1
2 x

T Mx + qT x

subject to Ax = b
x ≥ 0

(15)

where M ∈ IRn×n is positive definite, A ∈ IRm×n with rank(A) = m, q ∈ IRn ,
and b ∈ IRm . We assume that the feasible region is not empty.

For this linearly constrained problem, Constraint Qualification conditions
are always satisfied and the Karush–Kuhn–Tucker conditions [22] are:

Mx + q − AT u − v = 0,
Ax − b = 0,

x ≥ 0,
v ≥ 0,

xT v = 0.

(16)

For this quadratic problem, the new exact penalty function using① is given
by:

ψ(x, ①) := 1

2
xT Mx + qT x + ①

2
‖Ax − b‖22 + ①

2
‖max{0, −x}‖22 (17)

and the corresponding unconstrained problem is:

min
x

ψ(x, ①). (18)

The first order optimality conditions can be written as follows

0 = ∇ψ(x, ①) = Mx + q + ①AT (Ax − b) − ①max{0, −x}. (19)

Lemma 1 in [9] shows that the function

δ(x) = 1

2
‖Ax − b‖22 + 1

2
‖max{0, −x}‖22
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is convex, and ∇δ(x) = 0 if and only if Ax = b and x ≥ 0.
Based on this lemma it is possible to show that, if x∗ is a stationary point

for the unconstrained problem (18), then
(
x∗(0), π∗, μ∗) is a Karush–Kuhn–

Tucker points for Problem (15), where again x∗(0) is the finite term in the
representation of x∗, and, taking into account the linearity of the original
constraints,

• π∗ = Ax∗(−1) + b(−1), where x∗(−1) (resp. b(−1)) is the grossdigit corre-
sponding to the grossterm ①−1 in the representation of x∗ (resp. b), and

• μ∗
j = max{0, −x∗(−1)}.

Once again, the proof is based on the fact that during the computation
grossdigits do not mix. Then, the results follow from (19)

• by setting first to 0 the terms with grosspower ①, in this way the feasibility
of x∗(0) is provided (second and third Karush–Kuhn–Tucker conditions in
(16)),

• equating to zero the finite terms (that is the terms with grosspower ①0)
thus obtaining the first, fourth and last Karush–Kuhn–Tucker conditions in
(16).

6 A General Scheme for the New Exact Penalty
Function

In the previous sections, we have shown how the solution of the constrained
minimization problem (1) can be obtained by solving an unconstrained min-
imization problem that uses ①. Then, any standard optimization algorithm
can be utilized to obtain a stationary point for these problems from which
the solution of the constrained problems as well the multipliers can be easily
obtained.

In this section a simple novel general algorithmic scheme is proposed to
solve the unconstrained minimization problem arising from penalizing the
constraints using ①, as constructed in the previous sections. The algorithms
belongs to the class of non–monotone descend algorithms [17–19, 33, 35],
and does not require that the new calculated points be necessary better than
the current one. This property is necessary since for a descent algorithm,
when applied to determine the minimum of ψ(x, ①), once a feasible point is
obtained, then all remaining points generated by the algorithm should remain
feasible. This, in general, could be quite complicate to ensure in practice.

For simplicity, consider the generic minimization problem:
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min
x

f (x)

where f is continuously differentiable and

f (x) = ① f (1)(x) + f (0)(x) + ①−1 f (−1)(x) + . . . (20)

∇ f (x) = ①∇ f (1)(x) + ∇ f (0)(x) + ①−1∇ f (−1)(x) + . . . (21)

The proposed algorithm utilizes (as customary in non–monotone algo-
rithms) two sequences {tk}k and {lk}k of positive integers such that

t0 = 0, tk+1 ≤ max {tk + 1, T } ,

l0 = 0, lk+1 ≤ max {lk + 1, L} ,

where T and L are two fixed positive integers.
At the generic iteration k, having xk , it is necessary first to verify if the

stopping criterion

∇ f (1)(xk) = 0 and∇ f (0)(xk) = 0

is satisfied. Otherwise, the next iterate xk+1 is calculated in the following
way:

• if ∇ f (1)(xk) = 0, choose xk+1 such that

f (1)(xk+1) ≤ f (1)(xk) + σ
(∥∥∥∇ f (1)(xk)

∥∥∥
)

,

and
f (0)(xk+1) ≤ max

0≤ j≤lk
f (0)(xk− j ) + σ

(∥∥∥∇ f (0)(xk)
∥∥∥
)

;

• If ∇ f (1)(xk) = 0, choose xk+1 such that

f (0)(xk+1) ≤ f (0)(xk) + σ
(∥∥∥∇ f (0)(xk)

∥∥∥
)

,

f (1)(xk+1) ≤ max
0≤ j≤tk

f (1)(xk− j )

where σ(.) is a forcing function [24].
In other words, when ∇ f (1)(xk) = 0 the infinite term cannot grow more

than a quantity that depends on the norm of ∇ f (1)(xk). For the finite term,
instead, the new value f (0)(xk+1) cannot be bigger than the worst value of
f (0)(xk− j ) at lk previous steps plus a quantity that depends on the norm of
∇ f (0)(xk).
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Instead, when∇ f (1)(xk) = 0, the finite term f (0)(xk+1) cannot grow big-
ger than a quantity that depends on the norm of ∇ f (0)(xk), and the infi-
nite term f (1)(xk+1) must be better than the worst of the previous tk values
f (1)(xk− j ).
In order to demonstrate convergence of the above scheme, we need to

consider two different cases.

Case 1: there exists k̄ such that ∇ f (1)(xk) = 0, for all k ≥ k̄. Then

f (1)(xk+1) ≤ max
0≤ j≤tk

f (1)(xk− j ), k ≥ k̄.

Therefore, in this case:

max
0≤i≤T

f (1)(xk̄+T j+i ) ≤ max
0≤i≤T

f (1)(xk̄+T ( j−1)+i )

and the sequence

{
max
0≤i≤T

f (1)(xk̄+T j+i )

}

j
is monotonically decreasing.

Moreover,

f (0)(xk+1) ≤ f (0)(xk) + σ
(∥∥∥∇ f (0)(xk)

∥∥∥
)

, k ≥ k̄.

Assuming that the level sets for f (1)(x0) and f (0)(x0) are compact sets,

the sequence

{
max
0≤i≤T

f (1)(xk̄+T j+i )

}

j
has at least one accumulation point

x∗ and any accumulation point (according to the second condition) satisfies
∇ f (0)(x∗) = 0 in addition to ∇ f (1)(x∗) = 0.
Case 2: there exists a subsequence jk such that ∇ f (1)(x jk ) = 0.
In this case we have that

f (1)(x jk+1) ≤ f (1)(x jk ) + σ
(∥∥∥∇ f (1)(x jk )

∥∥∥
)

.

Again, taking into account that it is possible that for some index i bigger
than jk , ∇ f (1)(xi ) = 0

max
0≤i≤M

f (1)(x jk+T j+i ) ≤ max
0≤i≤M

f (1)(x jk+T ( j−1)+i ) + σ
(∥∥∥∇ f (1)(x jk )

∥∥∥
)

and hence, assuming again that the level sets for f (1)(x0) and f (0)(x0) are
compact sets, we have that ∇ f (1)(x jk ) goes to 0.
Moreover,
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max
0≤i≤L

f (0)(x jk+L j+i ) ≤ max
0≤i≤L

f (0)(x jk+L( j−1)+i ) + σ
(∥∥∥∇ f (0)(x jk )

∥∥∥
)

and hence also ∇ f (0)(x jk ) goes to 0.

7 Conclusions

Penalty methods are an important and widely studied class of algorithms in
nonlinear optimization. Using penalty functions the solution of the original
constrained optimization problem could be obtained by solving an uncon-
strained problem. The main issues with this class of methods are exactness
and differentiability. In this chapter we presented some recent development
on penalty functions based on the use of ①. The solution of the proposed
unconstrained problem provides not only the solution of the original prob-
lem but also the Lagrangian dual variables associated to the constraints at no
additional cost, from the expansion of the constraints in terms of ①. Some
simple examples are also reported, showing the effectiveness of the method.
Finally a general non–monotone scheme is presented for the minimization
of functions that include ① grossterms.
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