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Abstract In this chapter some of the most important results for uncon-
strained and constrained optimization problems are discussed. This chapter
does not claim to cover all the aspects in nonlinear optimization that will
require more than one complete book. We decided, instead, to concentrate
our attention on few fundamental topics that are also at the basis of the new
results in nonlinear optimization using grossone introduced in the successive
chapters.

1 Introduction

The aim of this chapter is to introduce the reader to the most important results
and algorithms in unconstrained and constrained optimization. However, it
would be impossible to discuss the wide range of results in this area. We
decided to concentrate the attention on few fundamental topics that are also at
the basis of the new results obtained using① and introduced in the successive
chapters. The interested reader can refer to various classical and recent books
to deepen his/her knowledge.We also omitted almost all proofs of the results,
but complete references are always provided.

After introducing the concepts of convex set and functions, in Sect. 3 opti-
mality conditions for unconstrained optimization are presented as well as the
most important algorithmic techniques: gradient method, conjugate gradient
method, Newton’s andQuasi-Newton’s methods. In the successive Sect. 4 we
concentrate the attention on optimality conditions for constrained optimiza-

R. De Leone (B)
School of Science and Technology, University of Camerino, Camerino (MC), Italy
e-mail: renato.deleone@unicam.it

© The Author(s), under exclusive license to Springer Nature Switzerland
AG 2022
Y. D. Sergeyev and R. De Leone (eds.), Numerical Infinities and Infinitesimals
in Optimization, Emergence, Complexity and Computation 43,
https://doi.org/10.1007/978-3-030-93642-6_2

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93642-6_2&domain=pdf
mailto:renato.deleone@unicam.it
https://doi.org/10.1007/978-3-030-93642-6_2


38 R. De Leone

tion and the construction of the dual of nonlinear optimization problems.
Finally, some important algorithms for constrained nonlinear optimization
problems are presented.

Three important aspects in optimization are not presented here: global
optimization, multi–objective optimization, and non–smooth optimization.
In this chapter we only discuss first and second order optimality conditions
for local optima, and all algorithms will compute a local minimum, or a sta-
tionary point (for the unconstrained case) or a Karush–Kuhn–Tucker point
(for the constrained case). Global optimization is an important area, theo-
retically and practically, for which several different approaches have been
suggested: space covering methods, trajectory methods, random sampling,
random search, etc. A basic reference on various aspects of global optimiza-
tion is [40], while practical applications are discussed in [51]. Finally, a
comprehensive archive of online information can be found at the web page
http://www.globaloptimization.org/.

Many optimization problems are multi–objective in nature, and different
techniques have been proposed to deal with this important aspect of opti-
mization. In general, due to the presence of conflicting objectives, there is no
single solution that simultaneously optimizes all the objectives, and, hence,
the aim is to determine non–dominated, Pareto optimal solutions [16, 23].
Two general approaches to multiple-objective optimization are present: com-
bine the individual objective functions into a single function, or move all but
one objective to the constraint set. More recently algorithms based on differ-
ent meta-heuristics have also been proposed in literature [41].

Non–smooth optimization problems arise in many important practical
applications. Here it is assumed that the function is continuous, but not differ-
entiable. The methods for non–smooth optimization can be roughly divided
into twomain classes: subgradientmethods and bundlemethods. Both classes
ofmethods are based on the assumption that, at each point, the objective func-
tion value and one subgradient can be computed. A classical book on this
topic is [43]. A survey on different numerical methods for non–smooth opti-
mization and the most recent developments presented in [5]. Finally, a recent
compact survey on non–smooth optimization can be found in [28].

We briefly describe our notation now. All vectors are column vectors and
will be indicated with lower case Latin letter (x , y, . . .). Subscripts indicate
components of a vector, while superscripts are used to identify different vec-
tors. Matrices will be indicated with upper case roman letter (A, B, . . .). For a
m × n matrix A, Ai j is the element in the i th row, j th column, A. j is the j–th
column of A, while Ai. is its i–th row. The set of real numbers and the set
of nonnegative real numbers will be denoted by IR and IR+ respectively. The
space of the n–dimensional vectors with real components will be indicated

http://www.globaloptimization.org/
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by IRn and IRn+ is an abbreviation for the nonnegative orthant in IRn . The
symbol ‖x‖ indicates the norm of the vector x . In particular, the Euclidean
norm is denoted by ‖x‖2, and ‖x‖22 = xT x . Superscript T indicates transpose.
The scalar product of two vectors x and y in IRn will be denoted by xT y.
The space of the m × n matrices with real components will be indicated by
IRm×n . The rank of a matrix A will be indicated by rankA. A square matrix
A ∈ IRn×n is positive semidefinite if xT Ax ≥ 0 for all x ∈ IRn and posi-
tive definite if xT Ax > 0 for all 0 �= x ∈ IRn . If f : S ⊆ IRn → IR∪{±∞},
dom f is the set of points x for which f (x) is defined and f (x) ∈ IR. The gra-
dient∇ f (x) of a continuously differentiable function f : IRn → IR at a point
x ∈ IRn is a column vector with components [∇ f (x)] j = ∂ f (x)

∂x j
. For a twice

differentiable function f : IRn → IR, the Hessian ∇2 f (x) belongs to IRn×n

and
[∇2 f (x)

]
i j = ∂2 f (x)

∂xi∂x j
. If F : IRn → IRm is a continuously differentiable

vector–valued function, then∇F(x) ∈ IRm×n denotes the Jacobian matrix of
F at x ∈ IRn . Here and throughout the symbols := and =: denote definition
of the term on the left and the right sides of each symbol, respectively.

2 Convex Sets and Functions

Definition 1 ([56]) A set C ⊆ IRn is a convex set if

x1, x2 ∈ C, λ ∈ [0, 1] =⇒ (1 − λ)x1 + λx2 ∈ C.

Therefore, for a convex set C the segment joining any two distinct points in
C is all contained in C .

Definition 2 A point x ∈ IRn is a convex combination of x1, x2, . . . , xk ∈
IRn if there exist scalars λ1, λ2, . . . , λk such that

x = λ1x
1 + λ2x

2 + . . . + λk x
k with λ1 + λ2 + . . . + λk = 1, λ j ≥ 0, j = 1, . . . , k.

The concept of convex hull of a set is extremely important in optimization.

Definition 3 ([46, Definition 3.1.16]) Given S ⊆ IRn the convex hull of S is
defined as

conv S :=

⎧
⎪⎪⎨

⎪⎪⎩

x ∈ IRn : x = λ1x1 + λ2x2 + . . . + λk xk

x1, . . . , xk ∈ S
λ j ∈ [0, 1], j = 1, . . . , k
λ1 + λ2 + . . . + λk = 1

⎫
⎪⎪⎬

⎪⎪⎭
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Clearly, if S is a convex set, then S = conv S.
Hyperplanes

H :=
{
x ∈ IRn : pT x = μ

}
,

and halfspaces

S :=
{
x ∈ IRn : pT x ≤ μ

}

are examples of convex sets (here 0 �= p ∈ IRn , and μ ∈ IR). The set of sym-
metric positive semidefinite matrices is a convex subsets of IRn×n the set of
square matrices of dimension n. Another interesting example of convex set
is the norm cone

C :=
{[

x
t

]
∈ IRn+1 : ‖x‖2 ≤ t

}
⊆ IRn+1.

Definition 4 ([46,Definition 4.1.1]) Let f : IRn → IR∪{+∞}, f is a convex
function if dom f is a convex set and

f
[
(1 − λ)x + λy

]
≤ (1 − λ) f (x) + λ f (y) ∀x, y ∈ dom f, λ ∈ [0, 1]

(1)

The following propositions provide necessary and sufficient conditions for
convexity for differentiable and twice differentiable functions.

Proposition 1 ([8, 3.1.3], [46, Theorem 6.1.2]) Let f : IRn → IR∪{+∞}
be a differentiable function. The function f is convex if and only if dom f is
convex and

f (y) ≥ f (x) + ∇ f (x)T (y − x) ∀x, y ∈ dom f. (2)

Proposition 2 ([8, 3.1.4], [46, Theorem 6.3.1]) Let f : IRn → IR∪{+∞},
be twice differentiable. The function f is convex if and only if dom f is convex
and ∇2 f (x) is positive semidefinite ∀x ∈ dom f .

Finally, let introduce two additional weaker classes of functions whose
importance will be clear when necessary optimality conditions for uncon-
strained optimization problems will be introduced.

Definition 5 ([46, Definition 9.3.1]) Let f : IRn → IR∪{+∞} be a differ-
entiable function. The function f is pseudo–convex if

x, y ∈ dom f, ∇ f (x)T (y − x) ≥ 0 ⇒ f (y) ≥ f (x)

A convex function is also pseudo–convex.
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Definition 6 ([8, 3.4.1], [46, Definition 9.1.1]) Let f : IRn → IR∪{+∞}.
The function f is quasi–convex if

x, y ∈ dom f, f
(
(1 − λ)x + λy

) ≤ max
{
f (x), f (y)

}
for λ ∈ [0, 1]

Clearly, a convex function is also quasi–convex.Moreover, a differentiable
pseudo-convex function is also quasi–convex. The opposite is not true.

For simplicity, in the sequel,wewill only consider functionswhose domain
is IRn .

3 Unconstrained Optimization

In this section we will present optimality conditions and algorithms for the
unconstrained optimization problems

min
x∈F

f (x) (3)

where f : IRn → IR is the objective function and the feasible set F ⊆ IRn is
an open subset of IRn (note that F may coincide with IRn).

First, let introduce the following definitions.

Definition 7 ([6, Definition 3.4.1]) Let x̄ ∈ F . The point x̄ is a global min-
imum of Problem (3) if

f (x̄) ≤ f (x), ∀x ∈ F .

The point x̄ is a strict global minimum of Problem (3) if

f (x̄) < f (x), ∀x ∈ F , x �= x̄ .

Definition 8 ([6, Definition 3.4.1]) Let x̄ ∈ F . The point x̄ is a local mini-
mum of Problem (3) if ∃ γ > 0 such that

f (x̄) ≤ f (x) ∀x ∈ F and ‖x − x̄‖ ≤ γ.

The point x̄ is a strict local minimum if ∃ γ > 0 such that

f (x̄) < f (x) ∀ x ∈ F : 0 < ‖x − x̄‖ ≤ γ.

The point x̄ is a strong or isolated local minimum if ∃ γ > 0 such that x̄ is
the only local minimum in {x ∈ IRn : ‖x − x̄‖ ≤ γ } ∩ F .
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If x̄ is a strong local minimum, then it is also a strict local minimum. On
the other hand, a strict local minimum may not be necessarily a strong local
minimum. For example, the function [7, p. 21]

f (x) =
{
x2
(√

2 − sin
(
4
3π − √

3 ln(x2)
))

if x �= 0

0 otherwise

has in x = 0 a strict local minimum that is not a strong (isolated) local mini-
mum. In the remaining of the section, without loss of generality, we assume
that F = IRn

3.1 Necessary and Sufficient Optimality Conditions

Consider the nonlinear optimization problem (3) where f : IRn → IR is a
continuously differentiable function. The directional derivatives [3, Chap. 8]
of f at x̄ along the direction d is given by

lim
t→0+

f (x̄ + td) − f (x̄)

t
= ∇ f (x̄)T d.

A direction d ∈ IRn is a descent direction for f (x) at x̄ if

∃ δ > 0 : f (x̄ + td) < f (x̄) ∀ 0 < t ≤ δ (4)

If f is continuously differentiable, then d is a descent direction at x̄ if and
only if ∇ f (x̄)T d < 0.

A point x∗ is a local minimum if at x∗ there are no descent directions.
The following theorems provide first and second order necessary optimality
conditions for a point x∗.

Theorem 1 Let f : IRn → IR be a continuously differentiable function and
let x∗ ∈ IRn. If x∗ is a local minimum then

∇ f (x∗) = 0. (5)

The above result can be easy proved by contradiction; in fact, if∇ f (x∗) �= 0,
then d = −∇ f (x∗) is a descent direction. This observation is the basis of
the most used technique for function minimization: the gradient method.

Theorem 2 ([35, Proposition 2.5]) Let f : IRn → IR be twice continuously
differentiable and let x∗ ∈ IRn. If x∗ is a local minimum then
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Algorithm 1: Generic Minimization Algorithm

1 Choose x0 ∈ IRn , Set k = 0;
2 if xk ∈ � then Stop;
3 Compute a search direction dk ∈ IRn ;
4 Compute a stepsize αk > 0 along dk ;
5 Set xk+1 = xk + αkdk , k = k + 1, return to 2;

∇ f (x∗) = 0 (6)

∇2 f (x∗) is positive semidefinite. (7)

The above conditions cannot exactly be reversed to obtain sufficiency
optimality conditions. In fact, positive definiteness of the Hessian matrix is
required to obtain a strict local minimum.

Theorem 3 ([35, Proposition 2.6]) Let f : IRn → IR be twice continuously
differentiable and let x∗ ∈ IRn. Suppose that:

∇ f (x∗) = 0 (8)

∇2 f (x∗) is positive definite. (9)

Then x∗ is a strict local minimum.

Conditions for global optima are much more complex to obtain. How-
ever, if f : IRn → IR is a differentiable pseudo–convex function, then a local
minimum is also a global minimum [46, Theorem 9.3.7].

3.2 Algoritms for Unconstrained Optimization

A very general minimization algorithm is presented in Algorithm 1 where

� := {x ∈ IRn : ∇ f (x) = 0
}

(10)

is the set of stationary points. The algorithm, starting from the initial point
x0, constructs either a finite sequence terminating in a stationary point or an
infinite sequence which, under adequate conditions, converges to a stationary
point, or, has at least an accumulation point that is also a stationary point.

Given the current point xk and a search direction dk , the new point xk+1

is obtained by moving along dk with a stepsize αk .
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The following general theorem establishes conditions on the direction dk

and the stepsize αk ensuring that, in the case an infinite sequence is obtained
by Algorithm 1, the sequence has at least one accumulation point and each
accumulation point is a stationary point. Before stating the theorem, it is
necessary to introduce the concept of forcing function.

Definition 9 ([50, Definition 14.2.1]) A function σ : IR+ → IR+ is a forcing
function if

∀ sequence {tk} ⊆ IR+

lim
k

σ(tk) = 0

⎫
⎪⎬

⎪⎭
=⇒ lim

k
tk = 0.

Note that any non–decreasing function σ : IR+ → IR+ such that σ(0) = 0
and σ(t) > 0 when t > 0 is a forcing function. The functions

σ(t) = t, σ (t) = ctq , with c > 0, q > 0

are examples of forcing functions.

Theorem 4 Let {xk} be obtained by Algorithm 1 and assume that

(i) the level set
L0 := {x ∈ IRn : f (x) ≤ f (x0)

}

is compact,
(ii) dk �= 0 when ∇ f (xk) �= 0,
(iii) f (xk+1) ≤ f (xk),
(iv) if ∇ f (xk) �= 0 for all k then

lim
k

∇ f (xk)
T
dk

∥
∥dk
∥
∥ = 0,

(v) when dk �= 0
|∇ f (xk)

T
dk |

∥∥dk
∥∥ ≥ σ

(∥∥
∥∇ f (xk)

∥∥
∥
)

for some forcing function σ .

Then, either the algorithm terminates after a finite number of iterations in
a stationary point or an infinite sequence {xk} is generated that satisfies the
following properties:

(a) the sequence {xk} remains inL0 and has at least one accumulation point;
(b) each accumulation point of {xk} belongs to L0;



Nonlinear Optimization: A Brief Overview 45

(c) the sequence of real numbers
{
f (xk)

}
converges;

(d) lim
k

∥
∥∥∇ f (xk)

∥
∥∥ = 0;

(e) each accumulation point x∗ of the sequence {xk} is a stationary point.
With reference to Theorem 4,

• Conditions (iii) and (v) can be guaranteed by choosing an opportune descent
direction dk and a line–search along this direction. In particular, using the
Euclidean norm and choosing σ(t) = ct (with c > 0), Condition (v) can
be written as

∇ f (xk)
T
dk ≤ −c

∥∥
∥dk
∥∥
∥
2

∥∥
∥∇ f (xk)

∥∥
∥
2
,

that is, when xk is not a stationary point, a direction dk must be chosen
such that

∇ f (xk)
T
dk

∥
∥dk
∥
∥
2

∥
∥∇ f (xk)

∥
∥
2

≤ −c.

Geometrically, the above condition requires that the cosine of the angle
between the direction dk and the direction −∇ f (xk) (the “antigradient”)
must be greater than a constant independent of k. This implies that dk and
the gradient direction cannot be orthogonal as k goes to infinity.
If σ(t) = ctq (with c > 0), Condition (v) becomes, instead,

∇ f (xk)
T
dk

∥∥dk
∥∥ ≤ −c

∥∥
∥∇ f (xk)

∥∥
∥
q
.

• Condition (iv) can be guaranteed using specific safeguard rules on the line–
search along the direction dk .

From the above considerations, it is clear the importance of inexact line–
search procedures for determining the stepsize αk .

A simple, but also very effective, line–search procedure is the Armijo
Backtracking method [4, 7, p. 29]. Given xk and a descent search direction
dk , the algorithm starts with a fixed large value of α and decreases it (that is,
the new values of α is obtained by multiplying the current value of α by a
constant δ < 1) until the stopping criterion

f (xk + αdk) ≤ f (xk) + γα∇ f (xk)
T
dk (11)

is satisfied, where γ ∈ (0, 1
2 ). In other words, the Armijo procedures chooses

as αk the maximum value of α in the set

S =
{
α : α = δlαinit, l = 0, 1, . . .

}
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for which Condition (11) holds.
The following proposition demonstrates that, if the search direction dk

is opportunely chosen, and the stepsize is obtained according to the Armijo
rule, then conditions (iii) and (iv) in Theorem 4 are automatically satisfied.

Proposition 3 Let f : IRn → IR be continuously differentiable. Suppose
that:

(i) L0 is a compact set;

(ii) ∇ f
(
xk
)T

dk < 0. ∀k;
(iii) there exists a forcing function σ : IR+ → IR+ such that

∥
∥
∥dk
∥
∥
∥ ≥ σ

(
|∇ f
(
xk
)T

dk |
∥
∥dk
∥
∥

)

.

Then, if αk is chosen according to the Armijo procedure, and xk+1 = xk +
αkdk

(a) f
(
xk+1
)

< f
(
xk
)
;

(b) lim
k

|∇ f
(
xk
)T

dk |
∥
∥dk
∥
∥ = 0.

A different line–search stopping criterion was proposed by Goldstein [31]
considering two lines

f (xk) + γ1α∇ f (xk)T dk = 0,

f (xk) + γ2α∇ f (xk)T dk = 0

where 0 < γ1 < γ2 < 1
2 . The chosen stepsize αk > 0 must satisfy, instead of

(11), the following conditions:

f (xk + αkd
k) ≤ f (xk) + γ1αk∇ f (xk)

T dk, (12a)

f (xk + αkd
k) ≥ f (xk) + γ2αk∇ f (xk)

T dk . (12b)

From a geometrical point of view, this corresponds to choose a value for
αk for which f (xk + αkdk) is between the two straight lines with slopes
γ1∇ f (xk)T dk and γ2∇ f (xk)T dk , and passing through the point (0, f (xk)).

Moreover, let γ1 and γ2 such that 0 < γ1 < γ2 < 1. The step length αk
satisfy the Wolfe conditions [62] if the following conditions are satisfied:

f (xk + αkd
k) ≤ f (xk) + γ1αk∇ f (xk)

T
dk, (13a)
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∇ f (xk + αkd
k)

T
dk ≥ γ2∇ f (xk)

T
dk . (13b)

It is possible to show that, when dk is an opportune descent direction, then
using both the Goldstein and the Wolfe line–search methods, similar results
to those in Proposition 3 can be obtained.

Various other line–search procedures have been proposed in literature,
including line–search procedures that do not use information on the gradient
of the function [15, 44] and/or non–monotone line–search procedures [33,
34, 63] for which themonotonicity of the objective function for the generated
sequence is not required.

3.3 The Gradient Method

In the gradientmethod (also known as the steepest descentmethod) the search
direction is given by

dk = −∇ f (xk). (14)

For this choice of the search direction, both Condition (iii) and Condi-
tion (v) in Theorem 4 are trivially satisfied with σ(t) = t and, therefore, the
method is globally convergent when one of line–search procedures outlined
in the previous subsection is applied. However, the gradient method, even
when applied to the minimization of a strictly convex quadratic function

min
x

1

2
xT Mx + qT x

(M ∈ IRn×n positive definite, and q ∈ IRn) and exact line–search is utilized,
exhibits linear rate of convergence.The theorembelowshows that the gradient
method has at least linear rate of convergence.

Theorem 5 ([45, Sect. 7.6, p. 218]) Let M ∈ IRn×n be a symmetric positive
definite matrix and let 0 < λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of M, let
q ∈ IRn and let f (x) := 1

2 x
T Mx + qT x. Let {xk} be obtained by the gradient

method with exact line–search:

xk+1 = xk −
(
Mxk + q

)T (
Mxk + q

)

(
Mxk + q

)T
M
(
Mxk + q

)
(
Mxk + q

)
.

Then1

1 Here ‖x‖2M := xT Mx .
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∥
∥∥xk+1 − x∗

∥
∥∥
M

≤ λn − λ1

λn + λ1

∥
∥∥xk − x∗

∥
∥∥
M

(15a)

and
∥
∥∥xk+1 − x∗

∥
∥∥
2

≤
(

λn

λ1

) 1
2 λn − λ1

λn + λ1

∥
∥∥xk − x∗

∥
∥∥
2

(15b)

where x∗ = −M−1q is the unique minimum point.

Moreover, it is not difficult to construct an examples (see [8, Example
9.3.2, p. 469]) of quadratic problems where the inequalities (15) above are
satisfied as equality, demonstrating that, in fact, the gradient method has
linear rate of convergence.

3.4 The Newton’s Method

As stated before the gradientmethod exhibits a slow rate of convergence.Here
we consider a method that, instead, has quadratic rate of convergence at the
expenses of a higher cost per iteration, requiring, in addition to calculate the
gradient at each point, also the calculation of the Hessian function.Moreover,
only local convergence can be established, that is convergence is guaranteed
only if the initial point x0 is chosen sufficiently close to the stationary point
x∗.

Let f : IRn → IR be twice continuously differentiable. From Taylor’s
series expansion we have that

f (x + s) = f (x) + ∇ f (x)T s + 1

2
sT∇2 f (x)s + β(x, s)

where

lim
s→0

β(x, s)

‖s‖2 = 0.

In Newton’s method, at each iteration a quadratic approximation of the func-
tion f around the current point xk is constructed:

qk(s) := f (xk) + ∇ f (xk)
T
s + 1

2
sT∇2 f (xk)s,

and the new point xk+1 is obtained as xk+1 = xk + sk where

sk ∈ argmin
s

qk(s).



Nonlinear Optimization: A Brief Overview 49

The following theorem provides conditions for local convergence of the
Newton’s method for minimization problems.

Theorem 6 ([25, Theorem 3.1.1] [35, Proposizione 7.2]) Let f : IRn → IR
be a twice continuously differentiable function, and assume that

(a) there exists x∗ ∈ IRn: ∇ f (x∗) = 0,
(b) ∇2 f (x∗) is non singular,
(c) ∇2 f (x) is a Lipschitz–continuous function, i.e.,

∃ L > 0 : ∀x, y ∈ IRn
∥∥∇2 f (x) − ∇2 f (y)

∥∥ ≤ L ‖x − y‖ .

Then, there exists B(x∗, ρ) := {x ∈ IRn : ‖x − x∗‖ ≤ ρ} with ρ > 0 such
that, if x0 ∈ B(x∗, ρ),

(i) the Newton’s iterate is well defined,
(ii) the sequence

{
xk
}
remains in B(x∗, ρ),

(iii) the sequence
{
xk
}
converges to x∗ with at least a quadratic rate of

convergence

∥
∥∥xk+1 − x∗

∥
∥∥ ≤ α

∥
∥∥xk − x∗

∥
∥∥
2
, for some α > 0.

3.5 The Conjugate Gradient Method

The slow convergence of the gradient method and the heavy requirements of
the fast converging Newton’s method where, at each iteration, it is necessary
to calculate the Hessian matrix, set the stage for new classes of methods that
only require to compute the gradient of the function to minimize, and, at the
same time, exhibit q–superlinear rate of convergence [50]. In this section the
important class of conjugate gradient methods is introduced, while the next
section is devoted to Quasi-Newton’s methods.

Definition 10 Let M ∈ IRn×n be a symmetric positive define matrix. The n
nonzero vectors d0, d1, . . . , dn−1 in IRn are conjugate directions with respect
to the matrix M if

di
T
Md j = 0 ∀ i, j = 0, 1, . . . , n − 1, i �= j. (16)

Consider the quadratic function

f (x) = 1

2
xT Mx + qT x (17)
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Algorithm 2: Generic Conjugate Direction Method for Quadratic Prob-
lems
1 Choose x0 ∈ IRn ;
2 Choose d0, d1, . . . , dn−1 nonzero conjugate directions with respect to M ;
3 for k=0 to n-1 do

4 Set αk = −(Mxk + q)
T
dk

dkT Mdk
;

5 Set xk+1 = xk + αkd
k

6 end

where M is a symmetric positive matrix, M ∈ IRn×n and q ∈ IRn; the follow-
ing algorithm utilizes n conjugate directions to determine the unique point
minimizing f (x).

One important result for this algorithm is that for quadratic strictly convex
problems, when conjugate directions are utilized as search directions, then
convergence is achieved in a finite number of iterations.

Theorem 7 Consider the quadratic function f (x) = 1
2 x

T Mx + qT x where
M is a symmetric positive matrix, M ∈ IRn×n and q ∈ IRn. Starting from any
x0 ∈ IRn apply Algorithm 2. Then xk+1 is the minimizer of f (x) over the
affine set

Sk :=
⎧
⎨

⎩
x ∈ IRn : x = x0 +

k∑

j=0

λ j d
j , λ j ∈ IR

⎫
⎬

⎭

for k = 0, 1, . . . , n − 1. Moreover, xn = −M−1q is the unique minimizers
of f (x) over IRn.

The above Algorithm 2 allows different choices for the set of conjugate
directions. A interesting choice is to link these conjugate directions to the
gradient of the function f (x). Algorithm 3 explores this possibility.

Theorem 8 ([25, Theorem 4.1.1]) Consider the quadratic function f (x) =
1
2 x

T Mx
+ qT x where M ∈ IRn×n is a symmetric positive matrix, and q ∈ IRn. The
Conjugate Gradient Algorithm 3 terminates after m < n iterations and for
all i = 0, . . . ,m

di
T
Md j = 0, j = 0, . . . , i − 1, (18a)
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Algorithm 3: Conjugate Gradient Algorithm
1 Choose x0 ∈ IRn , Set k = 0;
2 while xk /∈ � do
3 if k = 0 then
4 Set dk = −∇ f (xk);
5 else

6 Set βk−1 = ∇ f (xk)
T
Mdk−1

dk−1T Mdk−1
;

7 Set dk = −∇ f (xk) + βk−1dk−1;
8 end

9 Set αk = −∇ f (xk)
T
dk

dkT Mdk
;

10 Set xk+1 = xk + αkdk ;
11 Set k = k + 1;
12 end

∇ f (xi )
T∇ f (x j ) = 0, j = 0, . . . , i − 1, (18b)

∇ f (xi )
T
di = −∇ f (xi )

T∇ f (xi ). (18c)

The theorem above shows that the directions generated by Algorithm 3
are conjugate directions with respect to the matrix M , and, therefore, finite
termination of algorithm follows from Theorem 7.

It is important to note that

αk = −∇ f (xk)
T
dk1

dkT Mdk
= ∇ f (xk)

T∇ f (xk)

dkT Mdk
> 0. (19)

Moreover, from xk = xk−1 + αk−1dk−1 it follows that

αk−1Mdk−1 = Mxk − Mxk−1 = ∇ f (xk) − ∇ f (xk−1)

and hence

∇ f (xk)
T
Mdk−1 = 1

αk−1
∇ f (xk)

T
(
∇ f (xk) − ∇ f (xk−1

)
= 1

αk−1
∇ f (xk)

T∇ f (xk).

Now, from (19), αk−1dk−1T Mdk−1 = ∇ f (xk−1)
T∇ f (xk−1), and hence
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βk−1 = ∇ f (xk)
T
Mdk−1

dk−1T Mdk−1
= 1

αk−1

∇ f (xk)
T∇ f (xk)

dk−1T Mdk−1

= ∇ f (xk)
T∇ f (xk)

∇ f (xk−1)
T∇ f (xk−1)

=: βFR
k−1

(20)

This formula was first proposed by Fletcher and Reeves [27]. Alternative
choices, all equivalent in the case of strictly convex quadratic problems, for
βk−1 are

βPRP
k−1 =

∇ f (xk)
T
[
∇ f (xk) − ∇ f (xk−1)

]

∇ f (xk−1)
T∇ f (xk−1)

. (21a)

βHS
k−1 = −

∇ f (xk)
T
[
∇ f (xk) − ∇ f (xk−1)

]

dk−1T
[
∇ f (xk) − ∇ f (xk−1)

] (21b)

proposed, respectively, by Polak and Ribiére [52] and Polyak [53] and
Hestenes and Stiefel [39].

For general non–quadratic functions, there is no guarantee that the conju-
gate gradient method will terminate in a finite number of steps. Moreover, it
is extremely difficult to exactly solve the one–dimensional subproblem and
inexact line–search methods such as Armijo or Goldstein or Wolfe methods
must be utilized.Moreover, each n iterations or when a non–descent direction
is generated, a reset step should be performed using as search direction the
negative gradient direction. Computational results, however, show that the
use of a restarting procedure is not convenient and is better to opportunely
modify the formula for βk−1 and to choose specific line-search procedure to
globalize the overall scheme.

The first global convergence result of the Fletcher-Reeves method with
inexact line searchwas given byAl-Baali [2]. Under strongWolfe conditions,
he demonstrated that the method generates sufficient descent directions and,
therefore, global convergence can be established.

For the Polak-Ribiére-Polyak method the convergence for general non-
linear function is uncertain. While global convergence can be proved in the
case of strongly convex functions, there are examples of not strongly convex
functions, for which the method may not converge, even with an exact line
search. Instead, convergence can be proved when

βPRP+
k−1 = min{βPRP

k−1 , 0}
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is utilized [29]. Additional information on conjugate gradient method for
general nonlinear functions can be found in [35, 38, 54].

3.6 Quasi-Newton’s Methods

As already noted earlier, the Newton’s method is locally convergent at
quadratic rate and requires, at each iteration, to compute theHessian function.
On the other hand, the gradient method for which global convergence can be
established, only requires to compute the gradient of the function; however,
its convergence can be quite slow (at most linear, in some cases).

The aim of Quasi-Newton’s methods is to define procedures that

• will not require to compute the Hessian function,
• exhibits q–superlinear rate of convergence.

Two classes of Quasi–Newton methods have been studied in literature:

• direct methods for which
⎧
⎨

⎩

xk+1 = xk − [Bk
]−1 ∇ f (xk),

Bk+1 = Bk + �Bk, Bk+1 ≈ ∇2 f (xk+1);
• inverse methods where

⎧
⎨

⎩

xk+1 = xk − Hk∇ f (xk),

Hk+1 = Hk + �Hk, Hk+1 ≈ [∇2 f (xk+1)
]−1

.

In order to derive updating formulas for Bk and Hk , consider again the
quadratic function

f (x) = 1

2
xT Mx + qT x

whereM ∈ IRn×n is a symmetric positivematrix, andq ∈ IRn . Let now x, y ∈
IRn , then

∇ f (y) = ∇ f (x) + M(y − x)

or equivalently
M−1 (∇ f (y) − ∇ f (x)) = y − x .

Therefore, since Bk+1 (resp. Hk+1) must be an approximation of M (resp.
M−1), it is reasonable to require that
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Algorithm 4: Generic (Direct) Quasi–Newton Method
1 Choose x0 ∈ IRn , Choose B0 ∈ IRn×n , Set k = 0;
2 while xk /∈ � do
3 Set dk = − (Bk

)−1 ∇ f (xk);
4 Compute αk using a line–search procedure;
5 Set xk+1 = xk + αkdk ;
6 Compute Bk+1 = Bk + �Bk Set k = k + 1;
7 end

∇ f (xk+1) − ∇ f (xk) = Bk+1
(
xk+1 − xk

)
(22a)

or
Hk+1

(
∇ f (xk+1) − ∇ f (xk)

)
= xk+1 − xk . (22b)

After defining γ k := ∇ f (xk+1) − ∇ f (xk) and δk := xk+1 − xk the above
conditions become

γ k = Bk+1δk (23a)

and
Hk+1γ k = δk . (23b)

These conditions are known as “secant conditions”. Furthermore, it is
reasonable to require that Bk+1 (resp. Hk+1) be symmetric and as close as
possible to Bk (resp. Hk) imposing that Bk+1 (resp. Hk+1)) differs from
Bk (resp. Hk by a matrix of rank 1 or 2 and a minimality condition in some
norm, for example in Frobenius norm2[18]. The generic directQuasi–Newton
method is reported in Algorithm 4.

A similar algorithm can be easily constructed for a Quasi–Newton generic
inverse method.

2 For a matrix A ∈ IRm×n , the Frobenius norm ‖A‖F of A is defined as [48]

‖A‖F :=
√√√√

m∑

i=1

n∑

j=1

A2
i j =

√√√√
m∑

i=1

‖Ai.‖22 =
√√√√

n∑

j=1

∥∥A. j
∥∥2
2

=
√
trace

(
AT A
) =
√
trace

(
AAT
)
.
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In the sequel, unless strictly necessary we will drop the superscripts k and
k + 1; the current matrix will be indicated simply by B (resp. H ) while the
updated matrix will be indicated by B̄ (resp. H̄ ). A similar rule will be used
for γ k and δk .

The simplest updating direct formula for B is a rank-1 updating formula

B̄ = B + ρuvT (24)

where ρ ∈ IR and u, v ∈ IRn , u, v �= 0.
For the symmetric case (i.e., u = v), we have

B̄ = B + ρuuT (25)

and, imposing the secant condition B̄δ = γ either B̄ = B (which happens if
already Bδ = γ ) or, under the hypothesis that (γ − Bδ)T δ �= 0, the following
formula, known as Symmetric Rank-1 updating formula (SR1), is obtained

B̄ = B + (γ − Bδ) (γ − Bδ)T

(γ − Bδ)T δ
. (26)

This formula was first proposed by Davidon [14] and later rediscovered by
Broyden [10].

Using H = B−1 and the Sherman–Morrison–Woodbury [32, 37] formula,
it is possible to derive the inverse Symmetric Rank–1 updating scheme:

H̄ = H + (δ − Hγ )(δ − Hγ )T

(δ − Hγ )T γ
. (27)

Note that in this case the secant condition completely determines the updat-
ing formula under the hypothesis that (γ − Bδ)T δ �= 0 (resp. (Hγ − δ)T γ �=
0). However, it must be noticed that there is no guarantee that the search direc-
tion that is obtained is a descent direction.

The symmetric rank–1 updating formula (27) has a very interesting
behaviour when applied to a quadratic function.

Theorem 9 ([17, Theorem 7.1]) Let A ∈ IRn×n be symmetric and non-
singular. Let {s0, s1, . . . , sm} be m vectors spanning IRn and let yk =
Ask, k = 0, . . . ,m. Again, let H0 be a symmetric n × n real matrix and
for k = 0, . . . ,m let

Hk+1 = Hk +
(
sk − Hk yk

)(
sk − Hk yk

)T

(
sk − Hk yk

)T
yk
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assuming that
(
sk − Hk yk

)T
yk �= 0. Then

Hm+1 = A−1.

The theorem above shows that, given a nonsingular matrix A, the inverse
A−1 can be calculated using the SR1 formula which only involves matrix–
vector multiplications

For general nonlinear functions, under specific assumptions, including that
∣∣
∣∣
(
γ k − Bkδk

)T
δk
∣∣
∣∣ ≥ c

∥∥
∥γ k − Bkδk

∥∥
∥
2

∥∥
∥δk
∥∥
∥
2

and that the sequence {xk} has at least one accumulation point x∗, then [13,
Theorem 2]

lim
k

∥
∥∥Bk − ∇2 f (x∗)

∥
∥∥ = 0.

In the non–symmetric case (mostly utilized for solving systemof nonlinear
equations) the updating formula require to choose both vectors u and v and
the secant condition does not define uniquely both vectors. Therefore, the
new matrix B̄ is required to be as close as possible to the current matrix B.
The following lemma shows that a rank-1 updating formula is obtained when
the closest matrix (in Frobenius norm) to the current matrix B is calculated
among all matrices for which the secant condition is satisfied.

Theorem 10 ([17, Theorem 4.1], [18, Lemma 8.1.1]) Let B ∈ IRn×n and let
γ, δ ∈ IRn. Then, the solution of the minimization problem

min
A

‖A − B‖F
∗subject to γ = Aδ

(28)

is given by

B̄ = B + (γ − Bδ) δT

δT δ
. (29)

Using again the Sherman–Morrison–Woodbury formula, it possible (under
the hypothesis that γ T Hδ �= 0) to derive the inverse updating formula:

H̄ = H + (δ − Hγ ) δT H

δT Hγ
(30)

The updating formula (30) was first proposed by Broyden [9] in the con-
text of solving systems of nonlinear equations. Locally q–superlinear con-
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vergence for this method was then proved by Broyden, Dennis and Morè in
[12], see also [19, Theorem 3.3.3] and [19, Theorem 8.2.2].

The generic rank–2 updating formula is given by

B̄ = B + auuT + bvvT

where a, b ∈ IR and u, v ∈ IRn; similar rank–2 updating formulas can be
defined for H̄ .

The use of a rank–2 updating formula allows to imposes important con-
ditions, in addition to the secant property, on the updated matrix such as
symmetry and positive definiteness. Theorem 11 show that the closest matrix
to B for which symmetry and secant condition are satisfied can be obtained
via a rank–2modification. Here a weighted Frobenius norm is utilized, where
W is the weight matrix:

‖A − B‖W,F := ‖W (A − B)W‖F .

Theorem 11 ([17, Theorem 7.3]) Let B ∈ IRn×n be a symmetric matrix and
let c, δ, γ ∈ IRn with cT δ > 0. Let W ∈ Rn×n be a symmetric nonsingular
matrix such that Wc = W−1δ. Then, the unique solution of

min
A

‖A − B‖W,F
∗subject to Aδ = γ

A symmetric
(31)

is given by

B̄ = B + (γ − Bδ) cT + c (γ − Bδ)T

cT δ
− (γ − Bδ)T δ

(
cT δ
)2 ccT . (32)

The above theorem leaves space for opportune choices of the matrix W
and the vector c, which can be utilized to impose positive definiteness of the
updating formula, i.e., conditions that ensure that the matrix B̄ be positive
definite, provided that the same property holds for B. Positive definiteness of
the matrix B̄ ensures that the search direction utilized in the Quasi–Newton
method (see Algorithm 4) is a descent direction.

In view of the fact that B̄δ = γ , if B̄ is positive definite then 0 < δT B̄δ =
δT γ . It is not difficult to show that this condition is also necessary for the
positive definiteness of B̄ [17, Theorem 7.5].
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A simple, but extremely interesting, choice for the vector c is c = γ . This
specific choice leads to the updating formula

B̄ = B + (γ − Bδ) γ T + γ (γ − Bδ)T

γ T δ
− (γ − Bδ)T δ

(
γ T δ
)2 γ γ T . (33)

Again, using the Sherman–Morrison–Woodbury formula, it is possible to
compute the corresponding inverse updating formula (here H = B−1 and
H̄ = B̄−1)

H̄ = H + δδT

γ T δ
− Hγ γ T H

γ T Hγ
. (34)

These formulas, known as direct and inverse DFP formulas, were firstly
proposed by Davidon [14] and later rediscovered by Fletcher and Powell that
also clarified and improved them [26].

Moreover, it is also possible to construct updating formulas directly for H
similarly requiring that H̄ be symmetric, that the secant condition be satisfied
and H̄ be as close as possible to H in a specific norm as shown in the theorem
below, in a similar way as done for the direct updating formula.

Theorem 12 Let H ∈ IRn×n be a symmetric matrix and let d, δ, γ ∈ IRn

with dT γ > 0. Let W ∈ Rn×n be a symmetric nonsingular matrix such that
Wd = W−1γ . Then, the unique solution of

min
A

‖W (A − H)W‖F
∗subject to Aγ = δ

A symmetric
(35)

is given by

H̄ = H + (δ − Hγ ) dT + d (δ − Hγ )T

dT γ
− (δ − Hγ )T γ

(
dT γ
)2 ddT . (36)

Similarly to what done in the direct case, it is possible to impose that the
new matrix H̄ be positive definite. Moreover, the choice d = δ brings to the
following updating formula

H̄ = H + (δ − Hγ ) δT + δ (δ − Hγ )T

δT γ
− (δ − Hγ )T γ

(
δT γ
)2 δδT . (37)

Using theSherman–Morrison–Woodbury formula the correspondingdirect
updating formula can be obtained
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Algorithm 5: Quasi–Newton method (Broyden class updating scheme)

1 Choose x0 ∈ IRn , Choose H0 ∈ IRn×n , Set k = 0;
2 while xk /∈ � do
3 Set dk = −Hk∇ f (xk);
4 Compute αk using a line–search procedure;
5 Set xk+1 = xk + αkdk ;
6 Set δ = xk+1 − xk , γ = ∇ f (xk+1) − ∇ f (xk),

v =
(
γ T Hkγ

) 1
2
(

δ

γ T δ
− Hkγ

γ T Hkγ

)
;

7 Choose φk ≥ 0 ;

8 Compute Hk+1 = Hk + δδT

γ T δ
− Hkγ γ T Hk

γ T Hkγ
+ φkvv

T
;

9 Set k = k + 1;
10 end

B̄ = B + γ γ T

δT γ
− BδδT B

δT Bδ
. (38)

The above formulas are known as (inverse and direct) BFGS updating
formulas from Broyden [11], Fletcher [24], Goldfarb [30] and Shanno [57]
that discovered them.

Starting from the DFP and BFGS updating formulas a whole class (known
as Broyden class) of updating methods can be constructed:

H̄φ = (1 − φ)H̄DFP + φ H̄BFGS

where H̄DFP and H̄BFGS are given by (34) and (37) respectively, and φ ∈ IR.
Note that H̄φ can be easily rewritten as

H̄φ = H̄DFP + φvvT

where

v =
(
γ T Hγ

) 1
2
(

δ

γ T δ
− Hγ

γ T Hγ

)

clearly showing the relationship between H̄φ and H̄DFP.
The generic Quasi–Newton algorithm using the Broyden updating scheme

is reported in Algorithm 5 (here we return to use again the index k).

For quadratic strictly convex problems
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min f (x) := 1

2
xT Mx + qT x

where M ∈ IRn×n is a positive definite matrix and q ∈ IRn , finite termina-
tion is guaranteed when φk ≥ 0 and αk is obtained via exact line–search
[17, Theorem 8.1], [59, Theorem 5.2.1]. Finite termination follows from the
observation that for all k = 0, . . . , n

(
xk+1 − xk

)T
M
(
xi+1 − xi

)
= 0, ∀i < k

i.e., the directions δ0 = x1 − x0, δ1 = x2 − x1, . . . , δk=xk+1 − xk are M-
conjugate and xk+1 minimizes f (x) in the affine space the affine set

Sk :=
⎧
⎨

⎩
x ∈ IRn : x = x0 +

k∑

j=0

σ jδ
j , σ j ∈ IR

⎫
⎬

⎭

The following theorem, originally due to Powell, shows global conver-
gence for rank–2 symmetric updating schemes for generic convex optimiza-
tion problems.

Theorem 13 ([17, Theorem 8.2]) Let f : IRn → IR be twice differentiable
and convex. Let x0 ∈ IRn and assume the level set L0 be bounded. Let H0

be symmetric and positive definite and let {xk} be generated by Algorithm 5
with either

• φk = 0 (DFP updating formula) and exact line–search, or
• φk = 1 (BFGS updating formula) and inexact line–search satisfying the
Wolfe condition.

Then, for any ε > 0 there exists k such that
∥∥∇ f (xk)

∥∥ < ε.

Dixon [22] demonstrated that in case of exact line–search, the sequence {xk}
is independent of φk ≥ 0. Furthermore, in [24], it is shown that, for stability
reasons, it is better to choose φk ∈ [0, 1]. However, from a computational
point of view the choice φk = 1 appears better than φk = 0.

Finally,q–superlinear convergenceof rank–2updatingmethods is obtained
in the case φk = 0 or φk = 1 [17, Theorem 8.9] if the stepsize αk is chosen
according to the Wolfe rule (in which case it is possible to show that αk = 1

for k ≥ k0) provided that
+∞∑

k=1

∥∥
∥xk − x∗

∥∥
∥ < +∞.

We refer the interested reader to [35, 59] for additional insight on Quasi–
Newton methods.
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4 Constrained Optimization

In this section we concentrate our attention on the constrained optimization
problem

min
x

f (x)

∗subject to ci (x) ≤ 0 i = 1, . . . ,m
ci (x) = 0 i = m + 1, . . . ,m + h

(39)

where f : IRn → IR is the objective function and ci : IRn → IR, i = 1, . . . ,m + h
are the constraints defining the feasible region X

X := {x ∈ IRn : ci (x) ≤ 0, i = 1, . . . ,m and ci (x) = 0, i = m + 1, . . . ,m + h
}
.

For simplicity, we will always assume that all the functions are at least twice
continuously differentiable.

Definition 11 A feasible point x̄ is a local minimum if ∃ γ > 0 such that

f (x̄) ≤ f (x) ∀x ∈ X and ‖x − x̄‖ ≤ γ.

More generally, a point x̄ is a local minimum if ∃ I neighborhood of x̄ such
that

f (x̄) ≤ f (x) ∀ x ∈ X ∩ I.

A point x̄ is a strict local minimum if ∃ I neighborhood of x̄ such that

f (x̄) < f (x) ∀ x ∈ X ∩ I, x �= x̄ .

A point x̄ is a strong or isolated local minimum if ∃ I neighborhood of x̄
such that x̄ is the only local minimum in X ∩ I.

For the above minimization problem, the Lagrangian function is defined
as follows:

L(x, λ) := f (x) +
m+h∑

i=1

λi ci (x) (40)

where λ ∈ IRm+h . First and second order necessary and sufficient optimality
conditions will be expressed in terms of the above Lagrangian function.

Another important concept in constrained optimization is the concept of
active constraints.

Definition 12 Let x̄ be a feasible point for the constrained optimization prob-
lem (39), i.e., , x̄ ∈ X . The set of active constraints at x̄ is
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A (x̄) :=
{
i : 1 ≤ i ≤ m : ci (x̄) = 0

}
∪
{
m + 1, . . . ,m + h

}
.

4.1 Necessary and Sufficient Optimality Conditions

In order to derive optimality conditions for the constrained optimization prob-
lem (39), two sets must be introduced: the tangent cone and the set of lin-
earized feasible directions.

Definition 13 Let x̄ ∈ X . A direction d ∈ IRn is tangent to the set X at x̄ if
there exists a sequence

{
zk
} ⊆ X with limk zk = x̄ and a sequence {θk} of

positive scalars with limk θk = 0 such that

lim
k

zk − x̄

θk
= d. (41)

The set of all tangent vectors to X at x̄ is called the tangent cone at x̄ and
is denoted by TX (x̄).

Definition 14 Let x̄ ∈ X and let A (x̄) be the set of indices of active con-
straints. The set of linearized feasible directions F (x̄) is the set

F (x̄) :=
{
d ∈ IRn : ∇ci (x̄)T d ≤ 0, i = 1, . . . ,m, i ∈ A (x̄) ,

∇ci (x̄)T d = 0, i = m + 1, . . . ,m + h

}
.

Clearly, if d ∈ F (x̄) also αd ∈ F (x̄) for all nonnegative α and hence also
the set F (x̄) is a cone.

These two sets can be viewed as local approximations of the feasible region
X around x̄ .

Note that, while the tangent cone only depends on the geometry of the
feasible region, the set of linearized feasible directions depends on the specific
formulation of the constraints utilized to define the feasible region.Moreover,
for all x̄ ∈ X , TX (x̄) ⊆ F (x̄).

A fundamental question is under which conditions the two sets coincide,
that is TX (x̄) = F (x̄) or, to be more precise, under which conditions the
dual cones of the two sets coincide.3 Since the seminal work of Kuhn and
Tucker [42], a number of different (inter–related) Constraint Qualification

3 Give a cone K , the dual cone of K is the set

K ∗ :=
{
d ∈ IRn : dT x ≥ 0,∀ x ∈ K

}
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conditions have been proposed in literature both for the case of only inequality
constraints and for the more general case of equality of inequality constraints
(see [60] and references therein, including the two schemes showing the
relationships between the different Constraint Qualification conditions, and
[46]).

In [60] the various Constraint Qualification conditions are partitioned in
4 different levels with weakest (less stringent) conditions being at level 1
and strongest (more stingent) conditions at level 4. In the following, we state
some of the most common Constraint Qualification conditions.

Definition 15 (Guignard’s Constraint Qualification, GCQ) [36] Let x̄ ∈ X .
The Guignard’s Constraint Qualification conditions are satisfied at x̄ if
F (x̄) = cl
(conv (TX (x̄))).4

The GCQ is considered the weakest possible Constraint Qualification.

Definition 16 (Abadie’s Constraint Qualification, ACQ) [1] Let x̄ ∈ X . The
Abadie’s Constraint Qualification conditions are satisfied at x̄ if TX (x̄) =
F (x̄).

The Abadie’s Constraint Qualification requires that TX (x̄) be a convex
cone. Hence this condition is stronger than Guignard’s Constraint Qualifica-
tion.

Definition 17 (Slater’s Constraint Qualification, SCQ) [58] Let x̄ ∈ X . The
Slater’s Constraint Qualification conditions are satisfied at x̄ if

• ci (x) is pseudo–convex at x̄ for all 1 ≤ i ≤ m and i ∈ A (x̄),
• ci (x) is both quasi–convex and quasi–concave5 at x̄ for all m + 1 ≤ i ≤
m + h,

• the vectors
{∇ci (x̄) , m + 1 ≤ i ≤ m + h

}
are linearly independent,

• there exists x̂ such that ci
(
x̂
)

< 0, for all 1 ≤ i ≤ m and i ∈ A (x̄) and
ci
(
x̂
) = 0 for all m + 1 ≤ i ≤ m + h.

Definition 18 (Mangasarian–Fromovitz’sConstraintQualification,MFCQ)
[47, 3.4–3.6] Let x̄ ∈ X . The Mangasarian–Fromovitz’s Constraint Qualifi-
cation conditions are satisfied at x̄ if

• the vectors
{∇ci (x̄) , m + 1 ≤ i ≤ m + h

}
are linearly independent,

• there exists d such that ∇ci (x̄)T d < 0, for all 1 ≤ i ≤ m and i ∈ A (x̄)
and ∇ci (x̄)T d = 0 for all m + 1 ≤ i ≤ m + h.

4 For a set S, cl (S) indicates its closure.
5 A generic function g is quasi–concave if and only if −g is quasi–convex.
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Definition 19 (Linear Independence Constraint Qualification, LICQ) [60,
5.4.6] Let x̄ ∈ X . Linear Independence Constraint Qualification (LICQ) con-
ditions are satisfied at x̄ if the vectors
{
∇ci (x̄) , 1 ≤ i ≤ m, i ∈ A (x̄)

}
∪
{
∇ci (x̄) ,m + 1 ≤ i ≤ m + h

}

are linearly independent.

Both LICQ and SCQ imply MFCQ. Moreover, MFCQ implies ACQ.
Therefore, if any of these Constraint Qualification conditions hold at a fea-
sible point x̄ , then TX (x̄) = F (x̄).

The following lemma provides necessary conditions for a local optimal
solution.

Lemma 1 Let x∗ be a local optimal solution of Problem (39). Then

∇ f (x∗)T d ≥ 0 ∀ d ∈ TX
(
x∗) (42)

Proof Suppose, by contradiction, that at x∗ there is a direction d ∈ TX (x∗)
such that

∇ f (x∗)T d < 0.

Then, there exists a sequence
{
dk
}
converging to d and a sequence {θk}

of positive scalars converging to zero with zk = x∗ + θkdk ∈ X for all k.
Therefore,

f (zk) = f (x∗ + θkd
k) = f (x∗) + ∇ f (x∗)T

(
zk − x∗)+ o

(∥∥∥zk − x∗
∥
∥∥
)

= f (x∗) + θk∇ f (x∗)T dk + o(θk).

But
lim
k

∇ f (x∗)T dk = ∇ f (x∗)T d < 0,

and hence
f (zk) − f (x∗) = θk∇ f (x∗)T dk + o(θk) < 0

for k sufficiently large. Therefore, for each neighborhood of x∗, there exists a
sufficiently large index k such that the point zk belongs to such neighborhood
and, hence, x∗ is not a local minimum.

In case that Constraint Qualification conditions are satisfied, the necessary
optimality conditions can be expressed in a more convenient way, in terms of
theKarush–Kuhn–Tucker conditions. This results utilizesMotzkin’s theorem
of the alternative, see [46, Chap. 2].
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Theorem 14 ([46, 7.3.7][49, Theorem 12.1]) Let x∗ be a local minimum for
the constrained optimization Problem (39) and assume that at x∗ some Con-
straint Qualification conditions are satisfied. Then there exists a Lagrange
multiplier vector λ∗ such that the following conditions, known as Karush–
Kuhn–Tucker (or KKT) conditions, hold:

∇x L(x∗, λ∗) = 0, (43a)

ci (x
∗) ≤ 0 ∀i = 1, . . . ,m, (43b)

ci (x
∗) = 0 ∀i = m + 1, . . . ,m + h, (43c)

λ∗
i ≥ 0 ∀i = 1, . . . ,m, (43d)

λ∗
i ci (x

∗) = 0 ∀i = 1, . . . ,m, (43e)

where L(., .) is the Lagrangian function (40).

Note that Condition 43a can be rewritten as

∇ f (x∗) +
m+h∑

i=1

λ∗
i ∇ci (x

∗) = 0.

Conditions (43e) are called complementarity conditions and they impose
that for all i = 1, . . . ,m either λ∗

i = 0 or ci (x∗) = 0 or both.
In order to derive second order necessary and sufficient conditions, we

need to introduce first the concept of critical cone.

Definition 20 Let x∗ be a local minimum for the constrained optimization
Problem (39) and suppose that the pair (x∗, λ∗) satisfies the Karush–Kuhn–
Tucker conditions (43) for some λ∗ ∈ IRm+h . The Critical Cone is defined
as:

C (x∗, λ∗) :=
{
d ∈ F (x∗) : ∇ci (x∗)T d = 0,

for all i = 1, . . . ,m, i ∈ A (x̄) with λ∗
i > 0

}
.

(44)

Equivalently, d ∈ C (x∗, λ∗) if only if

∇ci (x
∗)T d = 0 i = 1, . . . ,m, i ∈ A (x̄) with λ∗

i > 0 (45a)

∇ci (x
∗)T d ≤ 0 i = 1, . . . ,m, i ∈ A (x̄) with λ∗

i = 0 (45b)

∇ci (x
∗)T d = 0 i = m + 1, . . . ,m + h (45c)

Note that the Hessian of the Lagrangian function L (x, λ) is given by
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∇2
xx L (x, λ) = ∇2 f (x) +

m+h∑

i=1

λi∇2ci (x).

This Hessian is of fundamental importance in the second order necessary and
sufficient conditions.

Theorem 15 ([25, Theorem 9.3.1] [49, Theorem 12.5]) Let x∗ be a local
minimum for the constrained optimization Problem (39) and assume that
at x∗ some Constrained Qualification Conditions are satisfied. Then, there
exists a Lagrange multiplier vector λ∗ such that the Karush–Kuhn–Tucker
conditions (43) are satisfied and

dT∇2
xx L
(
x∗, λ∗) d ≥ 0, for all d ∈ C

(
x∗, λ∗) . (46)

Theorem 16 ([25, Theorem 9.3.2] [49, Theorem 12.6]) Let x∗ be a feasible
point for the constrained optimization Problem (39) and assume that there
exists a vector λ∗ such that the pait (x∗, λ∗) satifies the Karush–Kuhn–Tucker
conditions (43). Furthermore, suppose that

dT∇2
xx L
(
x∗, λ∗) d > 0, for all 0 �= d ∈ C

(
x∗, λ∗) . (47)

Then, x∗ is a strict local minimum of the constrained optimization Problem
(39)

As for the unconstrained case, also here there is a significative difference
between necessary and sufficient optimality conditions. In fact, for neces-
sary optimality condition the Hessian of the Lagrangian must be positive
semidefinite in the Critical Cone. Instead, for sufficient optimality condition,
the Hessian of the Lagrangian must be positive definite in the same Critical
Cone.

4.2 Duality in Constrained Optimization

The concept of duality is central in constrained optimization as well as in
other fields of Operations Research (e.g., in Linear programming) and, in
general, in mathematics. Let

f ∗ = inf
x∈X f (x). (48)

The dual function is given by
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q(λ) := inf
x

L(x, λ) (49)

where L(x, λ) is the Lagrangian function (40). Note that this dual function
is a concave function (i.e., −q(λ) is a convex function) and its domain D is
a convex set. The dual problem is defined as

max
λ

q(λ)

subject to λi ≥ 0, i = 1, . . . ,m.
(50)

Moreover, let
q∗ = sup

λ

q(λ)

λi ≥ 0, i = 1, . . . ,m.
. (51)

It is not difficult to show that (Weak Duality), if λ̄ ∈ IRm+h with λ̄i ≥ 0,
i = 1, . . . ,m (that is, λ̄ is dual feasible), and x̄ ∈ X (that is, x̄ is primal
feasible), then

q(λ̄) = inf
x

L(x, λ̄) ≤ L(x̄, λ̄) = f (x̄) +
m+h∑

i=1

λ̄i ci (x̄)

= f (x̄) +
m∑

i=1

λ̄i ci (x̄) ≤ f (x̄)

and hence

q∗ ≤ f ∗. (52)

A more convenient form for the dual problem can be derived for convex
problems. The theorem below shows the relationship between points sat-
isfying Karush–Kuhn–Tucker conditions and optimal solutions of the dual
problem. Moreover, it shows that in convex optimization there is no duality
gap.

Theorem 17 ([49, Theorem 12.12]) Let x∗ be an optimal solution of the con-
vex optimization problem (39) where f : IRn → IR and ci : IRn → IR, i =
1, . . . ,m are convex functions and ci : IRn → IR, i = m + 1, . . . ,m + h are
linear functions. Assume, further, that at x∗ some Constraint Qualification
conditions are satisfied. Then, there exists λ∗ such that the pair (x∗, λ∗) satis-
fies the Karush–Kuhn–Tucker conditions (43) and λ∗ solves the dual problem
(50), i.e.,
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q(λ∗) = max
λ

q(λ)

λi ≥ 0, i = 1, . . . ,m.
(53)

Moreover,
f ∗ = f (x∗) = L(x∗, λ∗) = q(λ∗) = q∗

In order to revert, at least partially, this condition, strict convexity is
required.

Theorem 18 ([49, Theorem 12.13]) Let x∗ be an optimal solution of the con-
vex optimization problem (39) where f : IRn → IR and ci : IRn → IR, i =
1, . . . ,m are convex functions and ci : IRn → IR, i = m + 1, . . . ,m + h are
linear functions. Assume, further, that at x∗ some Constraint Qualification
conditions are satisfied. Moreover, suppose that λ̄ is a solution of the dual
problem (50) and that the function L(x, λ̄) is strict convex in x and

L(x̄, λ̄) = inf
x

L(x, λ̄).

Then x∗ = x̄ and f (x∗) = L(x∗, λ̄).

The two theorems above are the basis for a different, more convenient,
form for the dual problem, known as Wolfe dual [61]:

max
x,λ

L(x, λ)

subject to ∇x L(x, λ) = 0
λi ≥ 0, i = 1, . . . ,m.

(54)

For this dual optimization problem it is possible to show that, if x∗ is
a local minimum at which Constraint Qualification conditions are satisfied,
there existsλ∗ ∈ IRm+h such that the pair (x∗, λ∗) satisfies theKarush–Kuhn–
Tucker conditions (43) and, furthermore, solves theWolfe dual problem (54).

4.3 Penalty and Augmented Lagrangian Methods

An important and well studied class of methods for solving nonlinear opti-
mization problems is based on the idea of replacing the original constrained
problem by a single or a sequence of unconstrained problems. For these prob-
lems the new objective function will contain terms penalizing the violation
of the original constraints.

An important issue, both from a theoretical and a practical point of view,
is to determine if the minimizer of the penalty function and the solution of
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the original optimization problem coincide. This property is called exactness
of the penalty function [20].

The simplest approach is to use a quadratic term to penalize the violation
of the constraints. For the constrained problem (39), the quadratic penalty
function is given by

ψ(x, μ) := f (x) + μ

[ m∑

i=1

max{0, ci (x)}2 +
m+h∑

i=m+1

ci (x)
2
]
, (55)

where μ > 0 is the penalty parameter. If the original functions f (x) and
ci (x), i = 1, . . . ,m + h are sufficiently smooth, the function ψ(x, μ) is
differentiable (and continuously differentiable, if m = 0, i.e., there are only
equality constraints) and, hence, standard algorithms for unconstrained min-
imization can be applied to calculate its minimizer.

However, when quadratic penalty terms are utilized, it is necessary to drive
the penalty term to +∞. A general scheme require to:

• choose a priori a sequence {μk} → +∞,
• for each value of μk , calculate xμk , a minimizer of ψ(x, μk).

The procedure terminates when the violation of the constraints at xμk is
sufficiently small.

For this simple scheme it is possible to show [25, Theorem 12.1.1] [49,
Theorem 17.1] that

1. {ψ(xμk , μk)} is non–decreasing,
2. { f (xμk )} is non–increasing,
3. the constraints violation is non–increasing,
4. every accumulation point x∗ of the sequence {xμk } is a solution of Problem

(39).

Another widely used penalty function is the 1–norm penalty function
defined as

φ(x, μ) := f (x) + μ

[ m∑

i=1

max{0, ci (x)} +
m+h∑

i=m+1

|ci (x)|
]
. (56)

This penalty function is exact in the sense that there exists a finite μ∗ > 0
such that for all values of μ ≥ μ∗, if x∗ is a strict local solution of the
nonlinear problem (39) at which first-order necessary optimality conditions
are satisfied, then x∗ is a local minimizer of φ(x, μ) [49, Theorem 17.3].
However, the 1–norm penalty function is non–smooth and, therefore, specific
algorithms must be utilized and convergence is in many cases quite slow.
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Continuously differentiable exact penalty functions can also be con-
structed [20] by using an Augmented Lagrangian function that includes addi-
tional terms penalizing the violation of the Karush–Kuhn–Tucker conditions.
Under specific assumptions, stationary point, local and global minimizers of
the Augmented Lagrangian function exactly correspond to Karush–Kuhn–
Tucker points, local and global solutions of the constrained problem [21].

4.4 Sequential Quadratic Programming

A very effective method for solving constrained optimization problems is
based on sequentially solving quadratic subproblems (Sequential Quadratic
Programming, SQP). The idea behind the SQP approach is to construct, at
each iteration, a quadratic approximation of Problem (39) around the current
point xk , and then use the minimizer of this subproblem as the new iterate
xk+1 [49, Chap. 18].

More specifically, at the current point xk we construct a quadratic approxi-
mation of the problemby a quadratic approximation for the objective function
using the Hessian of the Lagrangian function with respect to the x variables
and linear approximation of the constraints:

min
d

f (xk) + ∇ f (xk)
T
d + 1

2d
T∇2

xx L(xk, λk)d

∗subject to ∇ci (xk)
T
d + ci (xk) ≤ 0, i = 1, . . . ,m

∇ci (xk)
T
d + ci (xk) = 0, i = m + 1, . . . ,m + h.

(57)
Very fast and efficient algorithms exist for solving the above problem that

produce the vector dk , multipliers associated to the linearized constraints
λk+1, and an estimate of the active constraints.6 Then the newpoint is obtained
as xk+1 = xk + dk .

Under specific assumptions, it is possible to show that if x∗ is a local solu-
tion of Problem (39), if, at x∗ and some λ∗, Karush–Kuhn–Tucker conditions
are satisfied, and if (xk, λk is sufficiently close to (x∗, λ∗), then there is a local
solution of the subproblem (57) whose active set is the same as the active set
of the nonlinear optimization problem (39) at x∗ [55].

6 One of the most important technique for solving convex quadratic programming prob-
lems with equality and inequality constraints is based on Active Set strategy where, at
each iteration, some of the inequality constraints, and all the equality constraints, are
imposed as equalities (the “Working Set”) and a simpler quadratic problem with only
equality constraints is solved. Then the Working Set is update and a new iteration is
performed. For further details refer to [25, 10.3] and [49, 16.5].
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The correct identification of the active constraints when xk is sufficiently
close to x∗ is at the basis of the proof of local convergence for the SQP
method.

Acknowledgements The author wants to express his gratitude to prof. Nadaniela Egidi
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