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Abstract We investigate the role played by the linear and spherical separa-
tions in binary supervised learning and in Multiple Instance Learning (MIL),
in connection with the use of the grossone-based numerical infinities. While
in the binary supervised learning the objective is to separate two sets of sam-
ples, a binary MIL problem consists in separating two different type of sets
(positive and negative), each of them constituted by a finite number of sam-
ples. We remind that using the spherical separation in classification problems
provides an advantage especially in terms of computational time, since, when
the center of the separating sphere is (judiciously) fixed in advance, the corre-
sponding optimization problem reduces to a structured linear program, easily
solvable by an ad hoc algorithm. In particular, by embedding the grossone
idea, here we analyze the case where the center of the sphere is selected far
from both the two sets, obtaining in this way a kind of linear separation. This
approach is easily extensible to themargin concept (of the type adopted in the
Support Vector Machine technique) and to MIL problems. Some numerical
results are reported on classical binary datasets drawn from the literature.
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1 Introduction

Classification problems in mathematical programming concern separation of
sample sets by means of an appropriate surface. This field, entered by many
researchers in optimization community in the last years, is a part of the more
general machine learning area, aimed at providing automated systems able
to learn from human experiences.

The objective of pattern classification is to categorize samples into differ-
ent classes on the basis of their similarities. More formally, given a set of
labelled and unlabelled samples, characterized by some features, for each of
them we want to express a particular feature, the class label, as a function of
the remaining ones. This is done by constructing a prediction function, by
means of which wewould like to predict the class of each sample. In machine
learning literature many approaches [14] have been indeed devised for auto-
matically distinguishing among different samples on the basis of their pat-
terns: approaches of supervised, unsupervised and semi-supervised learning,
and more recently approaches of Multiple Instance Learning. In particular,
in the supervised case most of the learning models apply the inductive infer-
ence concept, where the prediction function, derived only from the labelled
input data, is used to predict the label of any future object. A well established
supervised technique is the Support Vector Machine (SVM) [33, 58], which
has revealed a powerful classification tool in many application areas.

A widely adopted alternative to supervised classification is the unsuper-
vised one, where all the objects are unlabelled: as a consequence, in such
case, the prediction function is constructed by clustering the data on the
basis of their similarities [22, 28]. In the middle we find the semisupervised
techniques [29], that apply the transductive inference concept: the prediction
function is derived from the information concerning all the available data
(both labelled and unlabelled samples). This function is not aimed at predict-
ing the class label of newly incoming samples, but only at making a decision
about the currently available unlabelled objects. Some useful references are
[5, 30], the latter being a semisupervised version of the SVM technique.

A more recent classification framework is constituted by the Multiple
Instance Learning (MIL) [42], whose main difference with respect to the
traditional supervised learning scenario resides in the nature of the learning
samples. In fact, each sample is not represented by a fixed-length vector of
features but by a bag of feature vectors that are referred to as instances. The
classification labels are only provided for the entire training bags whereas the
labels of the instances inside them are unknown. The task is to learn a model
that predicts the labels of the new incoming bags, possibly together with the
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labels of the instances inside them. A seminal SVM-type MIL paper is [1],
while some recent articles are [11–13, 15, 17, 21, 24, 40, 49].

In this work, strictly connected with [7], starting from the spherical
binary supervised classification approach reported in [16], we introduce
some spherical separation models for both supervised learning and Multiple
Instance Learning. Such models are obtained by embedding the grossone-
based numerical methodology [53], which allows to select the center of the
sphere far from both the two sets (of samples or of bags), providing a kind
of linear separation.

Spherical separation falls into the class of the nonlinear separation surfaces
[10, 14], differently, for example, from the well known supervised learning
SVM technique [33, 58], where a classifier is constructed by generating a
hyperplane far away from the points of the two sets. Also the SVM approach
allows to obtain general nonlinear classifiers by adopting kernel transforma-
tions. In this case the basic idea is to map the data into a higher dimensional
space (the feature space) and to separate the two transformed sets by means
of a hyperplane, that corresponds to a nonlinear surface in the original input
space. The main advantage of spherical separation is that, once the center of
the sphere is heuristically fixed in advance, the optimal radius can be found
quite effectively by means of simple sorting algorithms such as those ones
reported in [9, 16]. No analogous simplification strategy is apparently avail-
able if one adopts the SVMapproach.Moreover, another advantage is towork
directly in the input space. In fact to keep, whenever possible, the data in the
original space seems appealing in order to stay close to the real life modeled
processes. Of course kernel methods are characterized by high flexibility,
even if sometimes they provide results which are hard to be interpreted in the
original input space, differently from the nonlinear classifiers acting directly
in such space (see for example [19, 20]).

The chapter is organized in the following way. In the next section we focus
on supervised classification, distinguishing between linear and spherical sep-
aration, the latter suitable for grossone application (see [7]). In Sect. 3 we dis-
cuss the possibility to extend the grossone spherical separation to Multiple
Instance Learning, while in Sect. 4 we comment the numerical results pub-
lished in [7], which confirm the practical applicability of the grossone-based
numerical infinities in classification problems. Finally some conclusions are
drawn in Sect. 5.
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2 Linear and Spherical Separability for Supervised
Classification

Let
A = {a1, . . . , am}, with ai ∈ IRn, i = 1, . . . ,m

and
B = {b1, . . . , bk}, with bl ∈ IRn, l = 1, . . . , k,

be the two finite sets of samples (points in IRn). The classical binary classi-
fication problem consists in discriminating betweenA and B by means of a
separating surface, obtained byminimizing any classification error. Such sur-
face can be a hyperplane (linear separation) or a nonlinear surface, such as a
sphere (spherical separation). A seminal paper on linear separation appeared
in 1965 by Mangasarian [47], while the first approach for pattern classifica-
tion based on a minimum volume sphere dates back to 1999 by Tax and Duin
[56].

2.1 Linear Separation

The two sets A and B are linearly separable if and only if there exists a
hyperplane

H(w, γ ) = {x ∈ IRn | wT x = γ }, with w ∈ IRn and γ ∈ IR,

such that
wT ai ≤ γ − 1 i = 1, . . . ,m

and
wT bl ≥ γ + 1 l = 1, . . . , k.

A geometrical characterization of linear separability is that A and B are
linearly separable if and only if their convex hulls do not intersect, i.e.

conv(A) ∩ conv(B) = ∅,

as depicted in Fig. 1,where the two cases of linearly separable and inseparable
sets are considered.

The problem of finding a separating hyperplane can be formulated as a
linear program [23], but several other approaches have been proposed, such
as the SVM technique [33, 58], where the idea is to generate a separation
hyperplane far away from the objects of both the two sets. This is done by
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Fig. 1 Linear separation: a A and B are separable since conv(A) ∩ conv(B) = ∅; b A
and B are not separable since conv(A) ∩ conv(B) �= ∅

maximizing the margin (i.e. the distance between two parallel hyperplanes
supporting the sets), representing a measure of the generalization capability,
i.e. the ability of the classifier to correctly classify any new sample (see
Fig. 2). In particular, from the mathematical point of view, the SVM provides
a separating hyperplane H(w, γ ) byminimizing the following error function:

min
w,γ

1

2
‖w‖2 + C

m∑

i=1

max{0, aTi w − γ + 1} + C
k∑

l=1

max{0, −bTl w + γ + 1},
(1)

where the minimization of first term corresponds to the maximization of
the margin, and the last two terms represent the misclassification errors in
correspondence to the two point sets A and B, respectively. The parameter
C is a positive constant giving the tradeoff between these two objectives. We
conclude this subsection, reminding that the above nonsmooth minimization
problem can be easily rewritten as a smooth quadratic programming problem.

2.2 Spherical Separation

In the spherical separation the idea is to find a sphere

S(x0, R) = {x ∈ IRn | ‖x − x0‖2 = R2},
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Fig. 2 Among all the separating hyperplanes, the SVM approach selects that one with
the largest margin

with center x0 ∈ IRn and radius R, enclosing all points of A and no points
of B.

2.2.1 Spherical Separation Without Margin

The setA is spherically separable from the set B if and only if there exists a
sphere S(x0, R) such that

‖ai − x0‖2 ≤ R2 i = 1, . . . ,m

and
‖bl − x0‖2 ≥ R2 l = 1, . . . , k.

We observe that, in this case, the role played by the two sets is not symmet-
ric; in fact a necessary (but not sufficient) condition for the existence of a
separation sphere is the following (see Fig. 3):

conv(A) ∩ B = ∅.

Based on the above spherical separability definition, the classification error
associated to any sphere S(x0, R) is

m∑

i=1

max{0, ‖ai − x0‖2 − R2} +
k∑

l=1

max{0, R2 − ‖bl − x0‖2}.
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Fig. 3 Spherical separation ofA from B: a A is separable from B and then conv(A) ∩
B = ∅; bA is not separable fromB even if conv(A) ∩ B = ∅; cA is not separable from
B since conv(A) ∩ B �= ∅

To take into account the generalization capability, in [16] the authors have
proposed to construct a minimal volume separation sphere by solving the
following problem:

min
x0,z

z + C
m∑

i=1

max{0, ‖ai − x0‖2 − z} + C
k∑

l=1

max{0, z − ‖bl − x0‖2},
(2)

with z
	= R2 ≥ 0 andC > 0 being the parameter tuning the tradeoff between

the minimization of the volume and the minimization of the classification
error.

Some works devoted to spherical separation are [2, 3, 8, 9, 16, 18, 44].
In particular, the approach presented in [16] assumes that the center x0 of the
sphere is fixed (for example, equal to the barycenter of A): in such case it
is easy to see that problem (2) reduces to a univariate, convex, nonsmooth
optimization problem and it is rewritable as a structured linear program,
whose dual can be solved in time O(p log p), where p is the cardinality of
the biggest set between A and B. In fact the optimal value of the variable z
(the square of the radius) is computable by simply comparing the distances,
preliminarly sorted, between the center x0 and each point in the two sets. For
further technical details on such approach we refer the reader directly to [16].

2.2.2 Spherical Separation with Margin

Now we consider a margin spherical separation, where we extend the SVM
concept of margin to the spherical case with the aim at providing a better
quality classifier. In particular the setA is strictly spherically separable from
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Fig. 4 Strict spherical
separation ofA from B

the set B if there exists a sphere S(x0, R) such that

‖ai − x0‖2 ≤ (R − M)2, i = 1, . . . ,m

and
‖bl − x0‖2 ≥ (R + M)2, l = 1, . . . , k,

for some margin M , 0 < M ≤ R (see Fig. 4).
Based on the above definition, the classification error becomes

m∑

i=1

max{0, ‖ai − x0‖2 − (R − M)2} +
k∑

l=1

max{0, (R + M)2 − ‖bl − x0‖2},

which, by setting z
	= R2 + M2 and q

	= 2RM , can be rewritten as:

m∑

i=1

max{0, q − z + ‖ai − x0‖2} +
k∑

l=1

max{0, q + z − ‖bl − x0‖2}.

In [9] the authors have proposed to solve the following optimization prob-
lem:

min
x0,0≤q≤z

C

⎛

⎝
m∑

i=1

max{0, q − z + ‖ai − x0‖2} +
k∑

l=1

max{0, q + z − ‖bl − x0‖2}
⎞

⎠ − q,
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Fig. 5 A hyperplane can be interpreted as a sphere with an infinitely far center

where the objective of margin maximization is represented by the term −q,
while the tradeoff between classification error and margin is accounted by
the positive weighting parameter C .

In case the center x0 of the sphere is given, the above problem reduces
to the minimization of a nonsmooth and convex function [4, 37] in the two
variables z and q. Such problem can be easily put in the form of a structured
linear program, which is solvable by an extended version of the algorithm
presented in [16] (see [9] for the details).

2.3 Comparing Linear and Spherical Separation in the
Grossone Framework

From the mathematical point of view, both the linear and the spherical sepa-
rations are characterized by the same number of variables to be determined:
in fact a separation hyperplane is identified by the bias and the normal, while
a sphere is obtained by computing the center and the radius. In this perspec-
tive, a hyperplane can be viewed as a particular sphere where the center is
infinitely far (see Fig. 5).

Then a possible choice of the center x0 is to take a point far from both the
setsA and B, i.e.

x0 = xA0 + M
(
xA0 − xB0

)
, (3)
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Fig. 6 Spherical separation with a far center

where

xA0
	= 1

m

m∑

i=1

ai and xB0
	= 1

k

k∑

l=1

bl

are the barycenters of A and B, respectively, while M is a sufficiently large
positive parameter, commonly named “big M” (see for example [32]).

Formula (3) corresponds to computing x0 from xA0 along the direction
xA0 − xB0 with stepsize equal to M (see Fig. 6).

Notice that, in general, the “bigM” constant is not easy to bemanaged from
the numerical point of view, since indeed it is not evident how to quantify the
minimum threshold value such that M could be considered sufficiently big:
as a consequence, in the practical cases, the necessity to test many trial values
arises. A possible way to overcome this numerical difficulty is to obtain an
infinitely far center by exploiting the grossone theory [53], setting M equal
to ①, where the symbol ① denotes the new numeral grossone.
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Differently from [16], where various values of M in formula (3) have been
tested in order to obtain a good classification performance, a remarkable
advantage in using the grossone resides in avoiding the necessity to repeat
several tests with larger and larger values of M .

We conclude the subsection by highlighting that the new grossone-based
computational methodology, which is not related to the nonstandard analysis
[54], is applied in various fields, such as in optimization [31, 34–36, 41, 55],
in numerical differentiation [52], in ordinary differential equations [43] and
so on. To the best of our knowledge, it seems that the only machine learning
paper involving the grossone idea is [7]. Finally somemore theoretical works
are in logics and philosophy [45, 46, 50], in probability [27] and in fractals
analysis [25, 26].

3 Linear and Spherical Separability for Multiple
Instance Learning

Multiple Instance Learning (MIL) [42] is a machine learning paradigm, con-
sisting in classifying sets of samples: the samples are called instances and
the sets are called bags. The main peculiarity of a MIL problem stays in the
learning phase, where only the labels of the bags are known while the labels
of the instances are unknown.

The first MIL paper [38] has appeared in 1997: in such work a drug design
problem has been tackled, with the aim at discriminating between active and
non-active molecules. A drug molecule is active (i.e. it has the desired drug
effect) if one or more of its conformations binds to a particular target site
(typically a larger protein molecule): the peculiarity of the problem is that
it is not known a priori which conformation makes a molecule active, being
available only the label of the overall molecule. In the MIL perspective, each
molecule is a bag and the corresponding conformations are the instances.

We focus on binary MIL problems, aimed at discriminating between pos-
itive and negative bags, in the presence of only two classes of instances. We
adopt the so-called standard MIL assumption (very common in the litera-
ture), stating that a bag is positive if and only if it contains at least a positive
instance and it is negative otherwise.

Since the considerations reported in Sect. 2.3 for supervised classification
can be extended to MIL, in the sequel we first remind the SVM type model
for MIL introduced in [1] and, successively, we propose our modification of
such model based on the spherical separation.
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3.1 The SVM Type Model for MIL

The SVM typemodel proposed forMIL in [1] provides, in the instance space,
a separating hyperplane H(w, γ ) by solving the following optimization prob-
lem: ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
w,γ,y

1
2‖w‖2 + C

m∑

i=1

∑

j∈J+
i

max{0, y j (xTj w − γ ) + 1}

+ C
k∑

l=1

∑

j∈J−
l

max{0, −xTj w + γ + 1}
∑

j∈J+
i

y j + 1

2
≥ 1 i = 1, . . . ,m

yj ∈ {−1, +1} j ∈ J+
i , i = 1, . . . ,m,

(4)

wherem is the number of positive bags indexed by the sets J+
i , i = 1, . . . ,m,

k is the number of negative bags indexed by the sets J−
l , l = 1, . . . , k, x j is the

j th instance belonging to a bag and y j is the class label of the instance x j . The
m constraints involved in the above nonlinear mixed integer program impose
that at least one instance of each positive bag is labelled positively by y j =
+1, i.e. the satisfaction of the standard MIL assumption. A separating MIL
hyperplane is depicted in Fig. 7, where the two dashed polygons represent
the positive bags and the three continuous polygons are the negative bags.

Notice that in case each bag is a singleton and y j = 1 for any j , problem
(4) reduces to the classical SVM problem (1).

3.2 A Grossone MIL Spherical Model

In this subsection, in order to embed the grossone framework into the MIL
paradigm, we propose to modify problem (4) by substituting the hyperplane
for a sphere. We obtain the following nonlinear mixed integer optimization
problem:
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Fig. 7 MIL separating hyperplane: two positive bags (dashed polygons) and three neg-
ative bags (continuous polygons). The circles and the squares inside the bags represent
the instances

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x0,R,y

R2 + C
m∑

i=1

∑

j∈J+
i

max{0, y j (‖x j − x0‖2 − R2)}

+ C
k∑

l=1

∑

j∈J−
l

max{0, R2 − ‖x j − x0‖2}
∑

j∈J+
i

y j + 1

2
≥ 1 i = 1, . . . ,m

yj ∈ {−1, +1} j ∈ J+
i , i = 1, . . . ,m.

(5)

According to the concept of spherical separation reported in Sect. 2.2.1,
the above model takes into account the standard MIL assumption, which, in
case of a separating sphere, imposes that a bag is positive if at least one of its
instances is inside the sphere and it is negative otherwise (see Fig. 8, where
the represented bags are the same as in Fig. 7).

A possible approach to solve heuristically problem (5) could be to use
a BDC (Block Coordinate Descent) [57] type algorithm, consisting in the
alternation between the computation of the vector y when the couple (x0, R)

is fixed and, vice-versa, the computation of the couple (x0, R) when y is
fixed. In particular, when y is fixed, x0 could be set by adopting the following
formula (analogous to formula (3), with M substituted by ①):
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Fig. 8 MIL separating sphere: two positive bags (dashed polygons) and three negative
bags (continuous polygons). The circles and the squares inside the bags represent the
instances

x0 = x+
0 + ①(x+

0 − x−
0 ), (6)

where x+
0 and x−

0 are the barycenters of the currently positive and negative
instances, respectively. Once y is fixed and x0 is computed by formula (6),
the corresponding optimal radius of the sphere is obtainable by using the ad
hoc algorithm presented in [16].

4 Some Numerical Results

In [7] some numerical experiments have been performed to test the grossone
idea in the supervised spherical separation without margin. In fact the center
of the sphere has been chosen as follows:

x0 = xA0 + ①
(
xA0 − xB0

)
,

i.e. by setting M = ① in formula (3).
The code, named in [7] FC①, has been implemented in Matlab and it

has been tested on thirteen data sets drawn from the literature and listed in
Table1.
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Table 1 Data sets

Data set Dimension Points

Cancer 9 699

Diagnostic 30 569

Heart 13 297

Pima 9 769

Ionosphere 34 351

Sonar 60 208

Mushrooms 22 8124

Prognosis 32 110

Tic Tac Toe 9 958

Votes 16 435

Galaxy 14 4192

g50c 50 550

g10n 10 550

The first ten test problems have been taken from the UCI Machine Learn-
ing Repository [48], a collection of databases, domain theories, and data
generators that are used by the machine learning community. Galaxy is the
data set used in galaxy discrimination with neural networks [51], while an
accurate description of g50c and g10n is reported in [30].

In order to manage the grossone arithmetic operations, the authors have
used the Matlab Environment of the new Simulink-based solution of the
Infinity Computer [39], where an arithmetic C++ library is integrated within
a Matlab environment. In particular, given the two gross-numbers x and y,
from such library the following C++ subroutines have been used:

• TestGrossMatrix(x,y,’-’), returning the difference between x
and y;

• TestGrossMatrix(x,y,’+’), returning the sum of x and y;
• TestGrossMatrix(x,y,’*’), returning the product of x and y;
• GROSS_cmp(x,y), returning 1 if x > y, −1 if x < y and 0 if x = y.

Using the Matlab notation, any vector g of n gross-number elements (that in
the sequel, for the sake of simplicity, we call gross-vector) has been expressed
as a couple (G,fg), with

G = [g1;g2; . . . ;gn] and fg = [fg1 fg2 . . .fgn],
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where gj, j = 1, . . . , n, is an array of appropriate dimension representing
a gross-number. For each row of gj, the first element contains a gross-digit,
while the second one contains the corresponding gross-power. The scalar
fgj, j = 1, . . . , n, is necessary to provide the position in G of the last com-
ponent of gj.

To manage the gross-vectors, in [7] the following newMatlab subroutines
have been implemented:

• realToGrossone(r), returning a grossone representation (G,fg) of
a real vector r;

• extract(G,fg,i), returning the ith gross-number in the gross-vector
(G, fg);

• normGrossone(G,fg), computing the squared Euclidean norm of the
gross-vector (G,fg);

• scalProdG(G1,fg1,G2,fg2), computing the scalar product between
the two gross-vectors (G1,fg1) and (G2,fg2);

• BubbleSortGrossone(G,fg,sign), sorting the gross-vector (G,
fg) in the ascending order if sign = 1 and in the descending order if
sign = −1.

For each data set, in order to compute the best value of the parameter C ,
a bilevel cross-validation strategy [6] has been adopted, by varying C in the
grid {10−1, 100, 101, 102}: such choice of the grid has been suggested by the
necessity to obtain a nonzero optimal value of z, which in turn provides the
optimal value of the radius R, as shown in [16].

In Table2we report the results, provided byAlgorithmFC① and published
in [7], expressed in terms of average testing correctness. Such results have
been compared by the authors with those ones relative to the two following
fixed-center classical variants, obtained by setting

x0 = xA0 (Algorithm FCA)

and
x0 = xA0 + xB0 (Algorithm FCAB),

respectively, and with the results obtained by a variant of the standard linear
SVM (Algorithm SVM0), where, in order to have a fair comparison, the
margin termhas been dropped by setting, in thefitcsvmMatlab subroutine,
the penalty parameter BoxConstraint equal to 106. We recall in fact the
spherical approach implemented in [7] does not involve any margin concept.
In Table2, for each data set, the best result is underlined.

In comparison with FCA and FCAB, the choice of the infinitely far center
appears to be the best one: in fact Algorithm FC① outperforms the other two
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Table 2 Numerical results

Data set FCA FCAB FC① SVM0

Cancer 97.00 95.71 97.57 71.86

Diagnostic 83.86 53.33 89.65 92.11

Heart 74.33 55.00 87.33 68.67

Pima 69.35 66.23 61.43 61.82

Ionosphere 51.14 40.75 78.86 69.43

Sonar 59.05 52.86 65.71 75.24

Mushrooms 76.44 64.50 78.19 49.59

Prognosis 56.00 45.00 68.00 53.00

Tic Tac Toe 71.79 70.42 57.79 50.11

Votes 82.79 53.35 86.74 76.51

Galaxy 80.24 51.36 89.19 54.32

g50c 67.62 50.26 90.58 86.56

g10n 53.58 45.02 77.66 90.24

approaches on all the data sets except Pima and Tic Tac Toe, where the best
performance is got by fixing x0 as the barycenter of A. We note also that
choosing x0 as the barycenter of all the points is not a good strategy, since
the corresponding results are very poor on all the test problems, but Cancer
and Tic Tac Toe, where the testing correctnesses appear comparable.

Also with respect to SVM0, Algorithm FC① is characterized by a good
performance, except on Diagnostic, Sonar and g10n, while on Pima both the
approaches behave almost the same. These results were expected because,
even if taking the radius infinitely far makes the spherical separability tend
to the linear separability, the two approaches differ substantially. We recall in
fact that, if two sets are linearly separable, they are also spherical separable
(even taking a very large radius), but the vice-versa is not true.

5 Conclusions

In this work we have examined the main differences between linear and
spherical separation in the light of the grossone theory. In particular, we have
recalled the main observations reported in [7] for supervised classification,
extending them to the cases of the supervised spherical separationwithmargin
and of the Multiple Instance Learning.
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We have focused on the possibility to construct binary spherical classifiers
characterized by an infinitely far center. As shown by the preliminary numer-
ical results reported in [7], adopting the grossone theory allows to obtain a
good performance in terms of average testing correctness, managing very
easily the numerical computations, which do not require any tuning of the
“big M” parameter.

Future research could consist in extending such approach to the kernel
trick, which is well suitable in the fixed-center spherical separation, as shown
in [16], and to practically implement the grossone idea for solving MIL
problems.
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