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Abstract. The amount of data being produced at every epoch of second
is increasing every moment. Various sensors, cameras and smart gadgets
produce continuous data throughout its installation. Processing and ana-
lyzing raw data at a cloud server faces several challenges such as band-
width, congestion, latency, privacy and security. Fog computing brings
computational resources closer to IoT that addresses some of these issues.
These IoT devices have low computational capability, which is insufficient
to train machine learning. Mining hidden patterns and inferential rules
from continuously growing data is crucial for various applications. Due to
growing privacy concerns, privacy preserving machine learning is another
aspect that needs to be inculcated. In this paper, we have proposed a fog
enabled distributed training architecture for machine learning tasks using
resources constrained devices. The proposed architecture trains machine
learning model on rapidly changing data using online learning. The net-
work is inlined with privacy preserving federated learning training. Fur-
ther, the learning capability of architecture is tested on a real world IIoT
use case. We trained a neural network model for human position detection
in IIoT setup on rapidly changing data.

Keywords: Internet of Things · Decentralized learning · Fog
computing

1 Introduction

With advances in digital technology, Internet of Things (IoT) [6] devices are
prevailing everywhere. Multiple sensors, cameras, mobiles, and smart gadgets
are installed to provide support in decision making. As technology progresses,
the reliance on such devices is increasing day by day. Deployment of various IoT
devices has increased exponentially nowadays. The devices include simple sensors
to very sophisticated industrial tools that exchange data/information through
the internet. In the past few years, the number of IoT devices has increased
rapidly. Currently, there are more than 10 billion IoT devices available world-
wide, which is expected to be around 17 billion in 2025 and 26 billion by 2030 [8].
Every standalone device produces data which is shared with other devices for fur-
ther processing. The IoT devices placed at the edge layer are generally resource
c© Springer Nature Switzerland AG 2021
S. N. Srirama et al. (Eds.): BDA 2021, LNCS 13147, pp. 78–92, 2021.
https://doi.org/10.1007/978-3-030-93620-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93620-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-93620-4_7


Fog Enabled Distributed Training Architecture for Federated Learning 79

constrained. However, devices such as cameras or sensors generate continuous
data by sensing the environment. These devices have very crucial information
to mine that can be used to achieve a business goal. As the number of devices
increases, the velocity and volume of data increases significantly over time. Pro-
cessing and analysis of continuously generated data from resource constrained
remote devices is a challenging task. Training a machine learning(ML)model
on such large distributed data can be used to solve real world computational
problems.

In the conventional machine learning paradigm, the training is done at the
central server/cloud. The data is generated at the edge device, which is sent
to the cloud. The cloud stores all data and performs training. The cloud-IoT
architecture consumes large bandwidth while transferring raw data to the cloud
that also creates network congestion [4]. The high latency is an issue in the
cloud-IoT model that limits it for continuous learning. Additionally, data privacy
concern is another major challenge in the data collection at the server. Fog
computing [2,3] brings computational resources closer to the edge nodes that
can efficiently process the raw data. Various data generating devices closely
communicate with the nearest fog node for local computation. A fog node has
enough computational capacity to process periodically collected data. The fog
node can manoeuvre the associated IoT devices and directly communicates to the
central server for further knowledge discovery. The distributed machine learning
can be used to learn the hidden patterns from raw data efficiently. Federated
learning trains a machine learning model from distributed data without sharing
raw data to the server.

Distributed machine learning is a multi-node training paradigm where a par-
ticipating node trains its model and collaborates with each other or the server for
optimization. Federated learning [15] training proposed by McMahan et al. is a
decentralized machine learning technique that can train an artificial neural net-
work (ANN) without sending and storing raw data at the server. The algorithm
trains a global model in collaboration with various devices without sharing data.
Every participating device trains a model locally on their local data. The central
curator coordinates with all the devices to create a global model. The locally
trained model parameters such as weights and biases of ANN are shared with
the central server rather than raw data. The server further aggregates model
parameters from participating devices and creates a global model. This iterative
process continues till the convergence of the model. In the entire training, the
raw data is never shared with anyone that makes the system overall privacy
preserving. Federated learning is applied to various tasks such as smart city,
autonomous driving cars, industrial automation, etc. The data generating IoT
devices are resources constrained that cannot train a machine learning model on
the edge. Whereas, a fog computing paradigm brings computational efficiency
near to IoT devices that can directly participate in federated learning. A fog
enabled cloud-IoT model has the potential to quickly process continuous data.

In this paper, we have proposed an IoT-fog-cloud architecture to train a
neural network on continuously generated distributed data. The paper tries
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to combine fog computing and federated learning for model creation. This
addresses online training of continuously generating data using resource con-
strained devices. The proposed architecture is shown in Fig. 2. The IoT devices
at the edge layer generate continuous data and share it with the fog node. The
fog node is capable of online training that trains models in collaboration with
the central cloud. The central server applies federated learning with the fog
layer. The fog nodes capture periodic data from their associated IoT devices.
It performs local model training and communicates with the cloud for global
model optimization. The raw data generated at IoT devices are only shared
with the local/nearest fog node. The fog layer is equipped with finite compu-
tational and storage resources that can process the raw data. The continuous
data gets accumulated at fog layer/backup storage, whereas the training is done
on a periodic/recent dataset only. Once the data is used for single shot train-
ing, it is not used for further training. The data does not leave the premises
of fog architecture that makes the system more privacy sensitive. However, the
stored data can be used for future references or it can be sent to the server if
required by the application in performing long-term big data analytics. We have
simulated the proposed architecture to train a neural network for safe position
detection in real world Industrial Internet of Things (IIoT) setup using docker.
The contributions of the paper are summarized in the following:

– Proposed a fog enabled distributed training architecture for machine learning
tasks. A hybrid of Fog computing and Federated learning paradigm is used
for the model training.

– Online continuous training is done with rapidly changing/growing datasets.
The training includes only recent periodic data for modelling. The system
assures privacy by restricting the raw data to the fog level. In addition, by
not sharing raw data directly to the server, the system optimizes network
bandwidth and congestion.

– We simulated the proposed architecture with Docker container. To test the
learning capability of the model, we used radar data to train safe position
classification in Human Robot (HR) workspace.

Rest of the paper is organized as follows. Section 2 discusses existing related
articles. The proposed architecture and decentralized machine learning are dis-
cussed in 3. Experimental setup and numerical results are shown in Sect. 4.
Section 5 concludes the paper with scope for future work.

2 Related Work

Data processing and machine learning need huge computational and storage
resources to execute a specific task. Multiple IoT devices have generated and
continue to generate voluminous data. One of the efficient ways to achieve such
a task is to rent a cloud computing facility. With virtually infinite resources, the
cloud executes complex model training on big data. The cloud-IoT faces various
challenges such as Bandwidth, Latency, Uninterrupted, Resources-constraint and
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security [4]. The IoT devices are resource constraint which are connected through
a wireless network to the cloud. These shortcomings obstruct smooth execution
of the various tasks, specifically the real time processing. Fog computing proposes
an alternative to the cloud that brings resources closer to IoT devices. It ensures
low latency, network congestion, efficiency, agility and security [5]. This enabled
efficient data processing at the fog layer and opens door to various applications
such as smart cars, traffic control, smart buildings, real time security surveillance,
smart grid, and many more. The fog layer has sufficiently enough resources to
store and process raw data. This gives an advantage over a cloud to processing
and decision making locally.

Bonomi et al. [2] have discussed about the role of fog computing in IoT and
its applications. Fog computing provides localization that acted as a milestone
in delay sensitive and real time applications. Data analytics on real time data
have various applications based on context. Some of them, such as detection or
controlling, need quick response typically in milliseconds or sub seconds, whereas
other applications like report generation, global data mining tasks are long term
tasks. Fog computing and cloud computing can performs interplay operations
to achieve big data solutions. Fog responds to the real time processing task,
which can be geographically distributed, and cloud computing proceed with
big data analysis or knowledge consolidation. Due to proximity, fog computing
is beneficial for delay sensitive applications, but it may lose importance when
it gets congested. The number of jobs received at a particular fog node at a
specific time may be higher, which cannot be processed quickly due to limited
resources. Al-khafajiy et al. [1] have proposed a fog load balancing algorithm to
request offloading that can potentially improve network efficiency and minimize
latency of the services. The fog nodes communicate with each other to share their
load optimally, which improves the quality of services of the network. Similarly,
Srirama et al. [20], have studied utilizing fog nodes efficiently with distributed
execution frameworks such as Akka, based on Actor programming model. In
this context, it is also worth mentioning that scheduling of applications/tasks
in cloud and fog has been studied extensively in the last few years, which is
summarized in the related work of Hazra et al. [7].

The Cloud-fog computing paradigm is more efficient, scalable and privacy
preserving for machine learning model training. So edge centric computing frame-
work is needed to solve various real time operations. Munusamy et al. [16]
have designed a blockchain-enabled edge centric framework to analyze the real
time data in Maritime transportation systems. The framework ensures security
and privacy of the network and exhibits low latency and power consumption.
Distributed machine learning training offers parallel data processing over the
edge of the network. Kamath et al. [9] propose a decentralized stochastic gra-
dient descent method to learn linear regression on the edge of the network.
The work utilizes distributed environment to train regression model using SGD.
The method process data at device level and avoids sending it to the cloud.
Federated learning is another decentralized ML technique that trains models
using very large set of low resourced participating devices [10,15]. The proposed



82 A. Kumar and S. N. Srirama

federated method collaborates with various participating devices to create a
global ML model on decentralized data. Federated learning is done on low con-
straint devices that need efficient training strategies for uplink and down ink
communication. Konečný et al. [11], talks about efficient communication between
cloud and devices. The authors have suggested sketched and structured updates
for server communication that reduce the amount of data sent to the server.

The fog-cloud architecture is well suited for distributed machine learning
training. Li et al. [12] have used cloud-fog architecture for secure and privacy
preserving distributed deep learning training. The local training is given at the
fog layer then it coordinates with the cloud server for aggregation. Addition-
ally, it uses encrypted parameters and authentication of valid fog node to ensure
legit updates. The central node works like a master node for information con-
solidation. It synchronizes the training from various devices. Due to stragglers
or mobility of devices such as vehicles, drone the synchronous update creates
difficulty in training. Lu et al. [13] proposes asynchronous federated training
for mobile edge computing. The training is done similar to federated learning,
but global model aggregation is done asynchronously. To ensure the privacy and
security of the shared model, it adds noise to the parameters before sending it
to the server. Luo et al. [14] have proposed a hierarchical federated edge learn-
ing framework to train low latency and energy-efficient federated learning. The
framework introduces a middle layer that partially offloads cloud computational
work. The proposed 3-layered framework aggregates model parameters at both
fog layer and cloud layer while training is done at the remote device. Fog enabled
federated learning can facilitate distributed learning for delay-sensitive applica-
tions. Saha et al. [17] proposed fog assisted federated learning architecture for
delay-sensitive applications. The federated learning is done between edge and
fog layer, then the central node heuristically steps in for global model aggrega-
tion. This training is done on geographically distributed network that optimizes
communication latency by 92% and energy consumption by 85%. Most of the
research assumes that data generating IoT devices contain enough computa-
tional resources to train ML models. Additionally, these IoT devices participate
in distributed training with the complete dataset. Our proposed architecture is
a three layered network for machine learning training. The edge layer gener-
ates raw data only, and the cloud layer consolidates the global model. Whereas,
the fog layer participates in decentralized machine learning training with the
central server. The federated training is done on continuously changing dataset
generated by the edge layer.

3 Decentralized Federated Learning

Decentralized federated learning aggregates locally trained models on the central
server. A global model is created by combining multiple independently trained
models. The conventional machine learning approaches collect possible data D
to the server; then it learns a machine learning model M using a sophisticated
algorithm. In contrast, federated learning trains its model without collecting
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all possible data to the central server. It is a collaborative learning paradigm
where k number of participating devices trains a local model on their data Di.
Each participating device i contains their personal data Di. The total data set

is D =
k∑

i=1

Di. Here, Di is a collection of input data samples (xj , yj)nj=1 for

supervised learning. Where xj ∈ R
d is a d dimensional input data and yj ∈ R is

the associated label for input xj . The device data Di are remotely generated or
centrally distributed.

Fig. 1. Decentralized federated learning training paradigm

For every participating device, it is a machine learning task where it trains
local model parameters using its data Di. It takes input data (xj , yj)nj=1 to com-
pute local parameters i.e. weights and biases. The loss function of every devices

i for dataset Di is Fi(w) = 1
|Di|

n∑

j=1

f(h(w, xj), yj). Where f(h(w, xj), yj) is the

loss for jth sample from Di. The participating devices optimize the loss using an
optimizer to find optimal parameters. In the subsequent step, the locally trained
parameters (weights and biases) are shared with the central server for global
model creation. The central curator receives all k locally trained models param-
eters and performs aggregation operations on them. The weights and biases
(W, b) of respective layers of every model are aggregated. Thus, the aggregated
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model contains representation from all models, which is further fine-tuned in
the next iteration. The global model training paradigm is done in collaboration
with central serve as shown in Fig. 1. The aggregated/updated global parame-
ters (W, b) are pushed back to local devices for the next round of training. It is
an iterative process that optimizes global parameters using local model updates.

The global loss function for the system is F (w) = 1
|D|

k∑

i=1

|Di| ×Fi(w). The goal

of federated learning is to learn a global model by combining all local models.
This training cycle continues until convergence without accessing raw data as
shown in Fig. 1.

3.1 Architecture

Sending raw data to the server consumes large bandwidth and creates network
congestion. So it is not recommended for systems such as real time, delay-
sensitive. Further, it also has privacy concerns. Another way is to compute the
model on edge devices in collaboration with the cloud that suffers from high
latency. However, the IoT devices have low computational resources that can
not train machine learning model. To address this, we propose a fog enabled
cloud-IoT online training architecture to simulate a machine learning model
from continuously generated data by various IoT devices efficiently. The IoT
nodes generate continuous data and share it with the fog node. A fog node has
sufficient computational resources to train a machine learning model. It also has
storage capability to store historical data generated from IoT devices. The cloud
server facilitates global model creation by aggregating all participating devices
leanings. The proposed architecture is shown in Fig. 2.

The Edge layer contains a large number of resources constrained IoT devices
such as cameras, watches, GPS, bulbs, sensors, radars, etc. These devices contin-
uously generate raw data by sensing the surroundings but are limited in storage
and computations. The edge layer directly connects with the fog layer and share
their data to the associated fog node. With enough computational power, a fog
node trains a machine learning model in collaboration with the central server.
Although, a fog node stores historic data of associated devices but the training
is done on recently captured periodic data frames. This simulates online training
of continuously changing datasets. The Fog-Cloud layers participate in federated
learning for machine learning. Once local models are trained on the fog layer,
it is shared with the cloud layer. The cloud layer aggregates the local models
and creates a global model. The federated learning with fog-cloud architecture
is continued till the convergence of the global model. The proposed architecture
is used for machine learning model training on rapidly growing data on resource
constrained devices. The fog layer is responsible for data collection and feder-
ated learning training with a cloud node. While federated training fog layer only
shares learning parameters to the cloud for aggregations. The raw data is stored
at the fog layer, which is not shared with the central server. The proposed archi-
tecture simulates a distributed machine learning using computations of resource
constrained devices.
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Fig. 2. Distributed learning architecture

3.2 Online Training and Data Privacy

With the variety of digital devices, data proliferation is another challenge in
machine learning training. As discussed earlier, sending this data to the server
would not be an efficient way to mine it. Additionally, collecting, storing all
the data, and then applying machine learning training needs huge computa-
tional resources. The data’s velocity increases as the number of devices employed
increases. Consequently, it increases volume of the data with a variety of data
that lead to big data problems. To address this to some extent, a continuous
learning approach is applied while training a model. Rather than applying train-
ing on the complete dataset, online training is done on a subset of data. The
subset can be periodic data generated from a device over a fixed time interval.
Once the device learns the representation from current data, it shares represen-
tations with the central curator for global modelling. The curator aggregates
all the representations and creates a central model for all devices. In the next
round, every device generates a new set of datasets. Subsequently, in this round,
the global model is further fine-tuned with the next dataset. This is important
because IoT devices are low resources devices that are incapable of machine
learning training on a very large dataset. The devices continue to generate the
raw data and train the model. This can simulate a global model by exploiting
low constrained devices computations.

However, the IoT devices such as sensors, CCTV cameras, radars do not
have enough computation resources to run on-device machine learning. This
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work addresses this issue by deploying a fog node near IoT devices. All data
generating devices are connected to the associated fog node to share raw data.
With sufficient computational and storage capabilities, a fog node stores periodic
data and performs online machine learning training. The rapid growth of data
accumulates a large amount on a fog node. Due to the computational limitation
of a fog node, online training is done on recently captured data leaving historic
data aside. At the same time, the entire data is kept at the fog layer on backup
storage, which can be reproduced in future if required. Then fog node participates
in the federated learning process in collaboration with the central cloud server.

IoT devices contain private data, location information, sensitive data, bank
details, chat and personally identifiable data. Data privacy and security is
another major challenge in cloud-IoT computation. Nowadays, there are increas-
ing concerns for personal data sharing. The users are not comfortable in sharing
personal data such as photos or chat to the cloud. The raw data contains cru-
cial patterns that can be useful for various applications such as recommender
systems, security analyses, smart homes, safety predictions, etc. Additionally,
machine learning task has to follow strict data protection rules such as General
Data Protection Regulation (GDPR). To address the privacy concerns, we have
used a decentralized machine learning approach for model training. In the pro-
posed work, the data is stored at the fog layer and not shared with the cloud. Fog
node participates in machine learning training that only shares model parame-
ters, not raw data. This makes the system overall privacy preserving.

4 Evaluation and Results

This section describes evaluations and experimental results of the proposed
framework for machine learning model. The model training is done for radar data
in IIoT setup. We simulate the proposed architecture using Docker containers.
Then, training of a global model for safe distance detection is done for human
position in HR workspace. To show the efficiency of the proposed work, We
have trained the ANN model in distributed environments and achieved expected
results.

4.1 Docker Based Fog Federation Framework

We have used docker containers to simulate the distributed machine learning.
The docker engine facilitates multiple containers to run various programs inde-
pendently. A container provides a run time environment for program execution.
Additionally, docker creates a network of multiple containers that can commu-
nicate to others. With sufficient computational resources, we employed multiple
docker containers as a fog node. Every container runs a machine learning model
independently with their local data. We have used gRPC library for requests
and service calls between fog and central node. The federated learning is done
between cloud and fog nodes using docker containers with gRPC calls. The IoT
devices generate continuous data and share it with the fog node. Fog node stores
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historical data at backup devices and trains the model on recent data. To sim-
ulate the continuous data generation and online training, we used a fixed set
of data samples for local training. Every container has its personal data, and
machine learning is done on fixed periodic sequential training samples.

We have simulated the proposed architecture to train ANN based machine
learning model for human operator position detection in a human-robot
workspace. The dataset is recorded from multiple Frequency-Modulated Con-
tinuous Wave (FMCW) radars. The fog nodes compile one minute of data from
every device and complete one round of federating learning. We trained the
model on 60 frames assuming every radar is generating 1 frame/sec. The next
round of training is done on the next sequence of datasets. For this experiment,
we have taken 5 fog nodes for decentralized machine learning training. The fog
node trains fully connected ANN using tensorlow framework. The ANN model
contains a single hidden layer with 64 neurons. The input and output layers have
512 and 8 neurons, respectively, based on data dimension and output labels.

We have trained a shallow neural network with one hidden layer. The model is
a fully connected dense network with 64 units in the hidden layer. Input layer has
512 input neurons which is fully connected to the only hidden layer (dimension
512 × 64 + 64 bias) followed by a ReLu layer. The output layer has 8 neurons
which is densely connected to the hidden layer (dimension 64 × 8 + 8 bias). The
final output label is predicted based on sigmoid activation function at the output
layer. The local training on every device is done for 5 epochs to simulate low
computational resources. The network is trained by backpropogation algorithm
using categorical crossentropy loss function. Further, the ‘adam’ optimizer is
used with learning 0.001 as an optimizer to optimize the training error. The loss
value of the global model is calculated on test data. Also, we have traced the
accuracy performance of the global model on both personal and unknown test
datasets. The fog node participates in federated learning in collaboration with
a central node with its local data, where device local data is recently generated
one minute data. The simulation is done to show computational intelligence of
proposed work on continuously changing data.

4.2 FMCW Radar Dataset for Federated Learning

The proposed architecture is validated on a real world IIoT use case. The data
is generated from FMCW radars in a human-robot workspace. FMCW radars
are effective IIoT device in industrial setup for environment sensing, distance
measurement, etc. These radars are placed in a shared workspace of human
robot to capture human position in the environment. Detection of human posi-
tion in an industrial setup is crucial for worker’s safety. These radars contain
data to measure the distance and position of the human operator near it. The
data distribution of devices is non independent and identically Distributed(non-
IID), i.e. every device has its locally generated dataset. However, each partici-
pating devices have all classes samples. We used mentioned dataset to train a
machine learning model to classify human safe distance. The dataset is pub-
lished by Stefano Savazzi, which can be downloaded from IEEE Dataport [18].
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The radars output signals are preprocessed and converted into 512-point. The
detailed methodology and collection of data are given in this paper [19].

Table 1. FMCW radars dataset

Distance (m) Class Critical/Safe

<0.5 1 Critical

0.5 <= d <1.0 2 Critical

1.0 <= d <1.5 3 Critical

1.5 <= d <2.0 4 Safe

2.0 <= d <2.5 5 Safe

2.5 <= d <3.0 6 Safe

3.0 <= d <3.5 7 Safe

>= 3.5 0 Safe

The input sample contains 512 points with 8 labels. The labels are character-
ized by different distances of human operator and radar. The dataset contains a
total of 32,000 samples of FFT range measurements 521 points. The dataset is
already divided into training and testing samples of 16,000 × 512 shape. Addi-
tionally, the data sample is also randomly distributed over various devices for
federated learning simulation in the database. We have implemented the given
data distribution over 5 devices for federated learning to learn ANN model for
safe/unsafe position detection. The training is done for C = 8 classification of
the potential situation in human robot workspace. The label is an integer from
0 to 7, where Class 0 represents human distance >3.5 m which is also marked as
safe. Class 1 is represented as critical since the distance is <0.5 m. Other labels
are marked based on different distance measures between humans and radars.
Table 1 contains labels for various classes.

4.3 Results and Analysis

We trained an ANN model for human position classification in the shared HR
workspace. The online training is done with 60 frames at a time with 5 fog nodes.
From 16,000 training samples, every fog node receives 3200 independent samples.
The local model training is done with the current 60 samples for 5 epochs only.
Then central server performs aggregation of all learnt model parameters. This
completes one round of federated learning. In the next round, we use next 60
samples for training by skipping previous data points. We executed such 53
rounds that exhaust entire local dataset training. At every round, we assess the
model performance in terms of loss and accuracy. The global model is evaluated
on the test dataset. The training loss and accuracy of the model on test data
are shown in Fig. 3.
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(a) (b)

Fig. 3. Global model performance on test data Fig(a) is loss value and Fig (b) at every
training round

Fig. 4. Model performance on all devices

As training increases over the number of rounds, model improves its accuracy
significantly. The model optimizes loss value and stabilizes the training after
30 rounds. The proposed online training performed exceptionally well as the
test accuracy reached 99%. The local model is trained on multiple fog nodes
parallelly. The global model is combined learning of all local models. Figure 4
shows accuracy of the global model on various local data resides in fog devices.
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The accuracy of test data is averaged by cancelling the drift on various local
training data.

Training a machine learning model with a neural network is prone to overfit-
ting, specifically in online training mode. Comparatively, a large model with huge
parameters can memorize the data labels that tend to perform poorly on test
data. In our experiment, the amount of data passed at a particular instance is
relatively small (60 frames/iteration). The ANN model quickly learnt the sample
with very high accuracy (>90%) in fewer epochs. However, it failed to perform
similar results on global test data. This is because of possible model overfitting
on relatively small data. The federated learning consolidates such a few models
to combined learnt information. The combined output model is better general-
ized and reduces possible overfitting. With the varying number of participating
devices, federated learning prevents overfitting intrinsically. However, other gen-
eralization techniques such as dropout, normalization, regularization, etc. may
be applied at the architectural level. This type of learning paradigm can help in
creating a better generalized model that can be scope for future work.

5 Conclusions and Future Work

This work focuses on machine learning model training on decentralized data. We
have proposed fog enabled distributed training architecture to train ML model on
rapidly changing data. The architecture suitably uses decentralized algorithms
such as federated learning for model creation. The edge layer is responsible for
data generation. The cloud layer coordinates with computational nodes on the
fog layer for machine learning. Whereas, the fog layer participates in distributed
machine learning training with the central server. We have tested the proposed
architecture on real world IIoT use case. The simulation result of position detec-
tion model trained on changing dataset is significant. We will further investigate
the distributed architecture for communication and energy efficient training.
Moreover, we only share trainable parameters to the server, not raw data. How-
ever, trainable parameters are vulnerable to attack. The robust privacy sensitive
training could be another scope of work.
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