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Abstract. Molecular Dynamics (MD) simulations mimic the motion of
atoms. While simulations often require weeks to complete, the terabytes
of data generated in the process also present a challenge for analysis.
Recent studies discovered drug-receptor interactions with the cellular
environment. Comprising of hundreds of small and large molecules seen in
cells, such complex studies are necessary for improving drug design. Cur-
rent resources and techniques do not provide, in reasonable time, neces-
sary insights into such systems. In this study, we developed an algorithm
to identify molecules interacting with drug-receptor complexes. Using
first ever application of big data framework to MD studies, we demon-
strate that our approach enables rapid analysis of MD data. Finally, we
propose a cloud-based, Spark-enabled, self-tuning, scalable and respon-
sive framework to accomplish optimal MD studies for drug-development
within available resources.

Keywords: Big data · Cloud infrastructure · Molecular dynamics
simulations · Drug design · Spark

1 Introduction

Molecular Dynamics (MD) simulation is a powerful technique to study molecules
in atomistic detail. It models the movement of atoms, ions and molecules subject
to forces acting on them. Similar to a video capturing the motion with a series of
images, evolution of a molecular system too is captured as a sequence of frames.
A frame holds the necessary details of the system corresponding to the particular
time it represents. Analysis of the frames provides insights into the dynamics of
the system itself.

Standard software (e.g., AMBER [18]) are available to carry out MD simula-
tions on biomolecules. Such studies have been used to examine a variety of phe-
nomena such as protein folding [21], stability [14] and intermolecular interactions
[3]. In particular, they are of great value in drug design and drug discovery, pro-
viding vital inputs on ligand docking, virtual screening, dynamics of drug-bound
protein/receptor complexes, allosteric modulation and role of water molecules in
drug binding [4,17]. However, the length of a simulation (in terms of time) needs
to be adequate for meaningful interpretation of data. Smaller systems generally
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attain equilibrium faster and larger systems require longer simulations. This
places additional hurdles on simulating large systems, and often results in run-
times ranging from days to weeks. Unsurprisingly, longer simulations of larger
systems produce data running into terabytes.

Development of a new drug costs about a billion dollars [22]. While designing
a drug in silico in itself is not an expensive task, the final hurdle that besets the
acceptance of any drug involves clinical trials. The environment around the drug-
receptor complex inside human body is very different from the simple theoretical
models used for the drug design. Large number of detailed studies have consis-
tently highlighted the fact that cellular environment could drastically alter the
properties of biomolecules [9,15], and argued for the development of more real-
istic models in drug design [6,7]. A recent study simulated drug-bound enzyme
in presence of hundreds of molecules seen in cells [19]. The analysis of the data
required newer approach and is discussed here. Given the size of computations
and the volume of data, applying big data framework (through Apache Spark)
was a natural choice as it enables simultaneous loading of data from multiple
frames along with concurrent computations. However, none of the current tools,
including CPPTRAJ [16] and MDTraj [11], use big data frameworks (e.g., Spark
or MapReduce) for the analysis of data from MD simulations.

Given the motivation to study complex MD simulations, the primary goal
was to provide a scalable framework that could process voluminous data while
concurrently performing computationally intensive tasks. The other goal was to
design a more capable frame-work for drug design over Cloud infrastructure that
could mix scalability with given priorities and resources.

In this paper, we demonstrate the necessity for a new framework in the study
of MD simulations. Section 2 introduces the chosen simulated systems and the
parameters for study. Section 3 demonstrates that big data approach facilitates
rapid analysis of MD data. Based on this advance, we present a Spark-based
approach to Cloud that provides a self-tuning, flexible and scalable framework
to deliver speedy insights of immense value in drug design. Section 4 concludes
the paper.

2 Materials and Methods

Proteins are polymers made of 20 types of units called amino acids. To per-
form biologically meaningful activities, they take different shapes in 3-D space.
Certain calculations on proteins use only Cα atoms (see Fig. 1) to represent the
corresponding amino acids. Often two or more polymers of amino acids combine
to form a single functional protein.

Two systems based on a protein called Main protease (Mpro) of SARS-CoV-
2 virus were covered for the current study. The first system (called Mpro-free
hereafter) consisted of Mpro along with 10 different types metabolites present in
the cell, potassium ions and water molecules. The second system (called Mpro-
drug hereafter), had 3 different drugs (viz., Elbasvir, Glecaprevir and Ritonavir
[19]) bound to Mpro and crowder proteins to emulate large molecules seen in
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Fig. 1. Protein is a polymer made of 20 types of amino acids. Chemically, they differ
at Cα atoms shown as Ris. Hydrogen atoms are not shown.

cellular environment, in addition to the above molecules. For reasons beyond
the scope of this work, 5 units of these drugs were docked (i.e., bound) to Mpro.
A schematic diagram of Mpro-drug is shown in Fig. 2.

Fig. 2. A schematic model of Mpro system with 185,255 atoms. The more realistic
model for simulation involved not only system of interest (Mpro protein bound to 5
drugs of 3 types) but also the crowded environment. This environment consisted of
crowder proteins, metabolites seen in cells, ions and water. The second system, Mpro-
free, did not have crowder proteins and drugs.

While a docking study identifies where drugs may bind on a protein, MD
simulations help to identify if such a complex is viable. Analyzing the dynamics
of simulated system involves processing numerous frames of data generated by
MD simulation. Details of the system at a given time (such as coordinates and
sizes of the simulated box) are captured through a frame associated with it.
Sequence of frames thus reproduce evolution of system modelled by simulation.
While simulations run over hundreds of nanoseconds (ns), simulated data is
typically stored (as frames) at intervals of 1 picosecond (ps). In Mpro-drug, 8
protein GB1s (each with 56 amino acids) were used as protein crowders along
with metabolites of 10 different types. Details of the two chosen systems is given
in Table 1.
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Table 1. Composition of MD simulations of Mpro-free and Mpro-drug systems is given
below. Size of Mpro is given terms of amino acids (aa.). Crowders comprising of crowder
proteins (Cr. proteins), metabolites and ions were incorporated in the simulations.

Item Mpro-free Mpro-drug

Protein 608 a.a. 608 a.a.

Drugs 0 5

Cr. proteins 0 8

Metabolites 95 170

K+ ion 90 190

Total atoms 100,093 185,255

Frames 1,000,000 200,000

Data size of frames (GB) 1201 445

Apache Spark is a unified analytics engine, developed for big data applica-
tions analytics [8,24]. The Spark-based suite of programs, called SparkTraj, was
written in Scala language as proofs-of-concept implementation for scalable com-
putation on MD data. Three parameters were computed for the evaluation of
performance, viz., (a) radius of gyration (RoG), (b) molecular contacts (MCon),
and (c) water networks (WNw). CPPTRAJ [16] is the standard accompanying
tool of AMBER package. It was used as benchmark implementation for serial
version to compute radius of gyration (RoG) of Cα atoms. MCon is the total
pairs of atoms that are within a cutoff distance of 5 Å, with no equivalent serial
implementation. Ankush [20] is a program to find water networks. The param-
eters are defined below and are of interest for various reasons as discussed in
Sect. 3.1 under Parameter selection for benchmarking.

Radius of Gyration: The compactness of a protein can be measured using
radius of gyration, which would increase if the protein begins to unfold. In the
current work, this was equivalent to finding the root-mean-squared deviation of
Cα atoms. RoG of only the first chain of Mpro was computed.

RoG =

√
1
N

∑N

i=1
(r−r)2

Molecular Contacts: Typical MD simulations consider only biomolecule(s)
of interest apart water molecules and ions. Cellular environment comprises of
many other molecules that influence the dynamics of system of interest. Under
such circumstances, it would be necessary to find molecules (such as metabolites)
getting in proximity with protein of interest. As shown in Fig. 3, this information
was captured using MCon algorithm that finds the number of pairs of atoms
within a distance of 5 Å between two molecules.
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Fig. 3. Due to crowded environment within cells, molecules often bump into one
another. The number of pairs of atoms that are within a distance of 5 Å is called
as molecular contacts (MCon). MCon reflects proximity of molecules. The figure shows
a few such contacts between two molecules represented with dotted lines.

Water Networks: A water network is a set of polar atoms (oxygen/nitrogen
atoms of solute shown as Pi in Table 2) that are within 3.5 Å distance with a
common water molecule. As shown in Fig. 4, some networks such as {P1, P2} are
formed independently by different water atoms. Larger networks such as {Pa,
Pb, Pc, Pd} give rise to smaller networks such as {Pb, Pd} and {Pa, Pc, Pd}.
Occurrence (occ.) of a water network is defined as the number of frames in which
a given network is seen. From all observed water networks (WNwc in Table 2),
we selected for benchmarking water networks with a minimum occurrence of
40% (WNw in Table 2), though lesser cutoffs were used for the study. Trajectory
for each WNw, which shows its presence or the absence in each frame ordered
by time, was computed. Using trajectory, Maximum Residence Time (MRT),
defined as the highest number of sequential frames in which a particular WNw
continues to exist, was also computed.

Fig. 4. Two nodes (i.e., atoms) are connected if, (a) their distance is within 3.5 Å,
and (b) if least one node is oxygen of water. A water network is a set of 2 or more
nitrogen/oxygen atoms of solute connected to a common water molecule. The networks
seen here are {P1, P3}, {P2, P3}, {P1, P2, P3} through W1, {P1, P4}, {P2, P4}, {P1,
P2, P4} through W2, and {P1, P2} independently through W1 and W2.

It is necessary to not just process but also to read data in parallel to obtain
meaningful scaling of computation when size of data is large. To this end we used
Apache Spark (referred also as ‘Spark’) with Scala. Spark is an open-source dis-
tributed general purpose framework that is designed for large-scale data analysis
and offers implicit data parallelism with fault tolerance [8]. AMBER generates
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Table 2. From all candidate water networks (WNwc), only those networks with min-
imum occurrence (i.e., 40%) were filtered (WNw). Also see Fig. 4.

Item Mpro-free Mpro-drug

Polar atoms (Pi) 2,250 4,076

Water molecules (Wi) 29,593 54,968

WNwc 5,566,453 3,261,310

WNw 655 1,317

data in NetCDF format [10]. As Spark does not have native support for NetCDF
format, SciSpark was used to read the simulation data. SciSpark is a framework
developed by NASA and UCLA for applications in earth and space sciences [13].
The basic approach for computation we used was to read the MD data into SciS-
park’s Resilient Distributed Datasets (RDDs) [23] first, followed by computation
of necessary parameters through Spark Datasets and DataFrames. SciSpark sup-
ports HDFS [1] as well as native Linux file systems. In the next section, Spark’s
application to MD data analysis is discussed in detail.

NVIDIA Tesla V100 based GPU nodes were used for simulations. For bench-
marking, a cluster with 20 data nodes was used. GRIDScaler SFA7700X appli-
ance with 15 GB/s of throughput was the storage server for the two systems.
GPU nodes and data nodes of the cluster have two Xeon Gold 6148 CPUs with
384 GB of RAM. The big data cluster supported Apache Spark (ver. 2.3.0) and
Scala (ver. 2.11.8) for computations.

3 Results and Discussion

3.1 Spark-Based Processing of MD Simulation Data

AMBER18 [18] was used for simulating the chosen systems, which saves output
in one or more mdcrd files in NetCDF format. Based on the user input, one or
more frames can be written in each mdcrd file. NetCDF format allows parallel
reading of a single file. To work within the limitations of HDFS block size [2],
only a limited number of frames per file were stored. Each mdcrd file of Mpro-free
and Mpro-drug systems contained data 50 frames. AMBER stores the detailed
description of a simulated system (such as names of atoms, various molecules,
types of bonds, etc.) in a separate file called parmtop.

Apache Spark is a framework designed for massive in-memory data processing
with lazy evaluation. This framework was used to process the simulation data.
To implement efficient solutions, both Spark operations as well as sequence of
their application should be carefully chosen. Sub-optimal approach may lead to
significant delays due to data shuffling (i.e., movement of massive data across
nodes due to its redistribution). It may even lead to expensive recomputations of
Spark’s RDDs. Hence, we developed the solutions to circumvent these significant
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barriers. Another potential rate-limiting step avoided was the generation and use
of intermediate data on storage.

Parameter Selection for Benchmarking: Three carefully chosen parameters
shape the proof concept implementations. Radius of Gyration (RoG) is a trivial
calculation akin to finding root-mean-square deviation of less than 0.5% of atoms.
This computation allows to estimate the throughput of data available to Spark.
Computation of Molecular Contacts (MCons) requires examination of hundreds
of millions possible contacts in each frame. This is a straightforward computation
can be done using either an efficient User-Defined Function (UDF) or a Dataset
method. As each frame needs to be processed only once and results can be
collected with relative ease. Given the resilient nature of Spark RDDs and the
involvement of huge data across multiple phases, water networks demand careful
computations to avoid performance hazards such as data shuffling.

Radius of Gyration: CPPTRAJ [16] was used to compute the radius of gyra-
tion for benchmarking of serial variant. It is the standard accompanying software
for AMBER package and is used to compute a wide variety of parameters from
simulation data.

Algorithm 1: Calculation of Radius of Gyration

read topology from parmtop
create mdRDD from mdcrds
obtain time,RoG through:

flattening mdRDD into frRDD
creating Dataset using additional parameters
invoking Dataset’s method for RoG

sort RoG w.r.t. time

Algorithm 1 shows the approach used for the Spark version. One should first
note that if a system has N atoms, it has 3N coordinates (i.e., 3-D coordinates x1,
y1, z1, ..., xN , yN , zN ). Details of the system were read from the parmtop file (as
discussed in the previous section). Then, the mdcrd files were read parallelly into
a Resilient Distributed Dataset (RDD) called mdRDD loaded through SciSpark.
mdRDD was then flattened into another RDD, called frRDD, so that every
element was now a tuple that contained information of a particular frame in the
form of (timei, boxi,x, boxi,y, boxi,z, xi,1, xi,2, ... xi,3N ), where i is the frame
number. Then, a Spark Dataset, with a method to find RoG for a frame, was
created using frRDD. Invoking this method, RoGs of all frames were computed,
data was collected into a Scala list, and then sorted w.r.t. the time of the frames.
Sorting by time was not done using Spark itself in any of the implementations
for reasons discussed later in this section. Complexity of the computing RoG
within a frame in terms of the number of residues in the given chain (nres) is
O(nnres

). Additional parameters include parmtop and cutoff data.
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Fig. 5. The diamond shows the atom of interest, circles are other atoms, and only
those represented with filled circles have relevant contacts. If we discretize space into
squares with size cut-off distance (d) itself, examination of 9 squares is adequate to
find potential contacts of an atom. A hash data structure, with tuples made of its
discretized coordinates as key, can store all potential atoms that need to be examined
for any atom in a given square. The same approach can be extended to 3-D for speedy
computation of molecular contacts and water networks.

Molecular Contacts: Unlike the other two parameters, MCon could not be
benchmarked with serial version due to absence of equivalent implementation.
As shown in Algorithm 2, much of the procedure to compute molecular contacts
was similar to that of the radius of gyration, but with two differences. The output
from each frame was not a number (like RoG) but instead a string, which, when
split, gave triplets (ri, rj , cnt) where rks were residue numbers and cnt was
the number of contacts they shared. Also, unlike RoG, MCon requires finding
contacts between two large sets of atoms. Mpro-drug system, for instance, has
9,796 atoms for the Mpro-drug complex and crowder proteins and metabolites
constitute 10,364 atoms. This translates to over 101 million pairs of atoms.
Clearly, a brute force way of counting is prohibitively expensive. As explained
below, only potentially feasible pairs of atoms were scanned.

A 2-D illustration of the idea is shown in Fig. 5. First, we scanned every atom
from one set and placed them in all possible (i.e., 9) squares where they may
have contacts. Then, given an atom of interest from the other set, say x25, we
can immediately examine the list of atoms corresponding to the square. This
approach allows us to linearize the computation time to find MCon as physically
each square can only have a certain number of atoms at any time. The time
taken for calculating MCon was comparable to that of RoG, which is not very
surprising considering the overall complexity of finding MCon within a frame
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now being O(LxLyLz)+O(nsystemAt)+O(ncrowderAt)+O(nconactslog(nconacts))
where Lis are lengths of simulation box along x, y and z directions.

Algorithm 2: Calculation of Molecular Contacts

read topology from parmtop
create mdRDD from mdcrds
obtain time, {MCon} through:

flattening mdRDD into frRDD
creating Dataset using additional parameters
invoking Dataset’s method for MCon

sort MCon w.r.t. time

Water Networks: Water networks were benchmarked against the serial version
that works in two stages. In the first stage, it generates 2 files per frame; one
that contains the contacts between polar atoms and water molecules, and the
other between water molecules themselves. In the second stage, it processes
these files to determine water networks. The first stage uses a C++ program
and the second stage a Perl script. While this version worked well when it was
originally developed, currently it is too inefficient for large systems with hundreds
of thousands of frames. Hence, as shown in Algorithm 3, a Spark version was
developed to update it.

Algorithm 3: Water network calculations

read topology from parmtop
create mdRDD from mdcrds
create and cache nwDF through:

flattening mdRDD into frRDD
creating Dataset through additional parameters
obtaining time, {WNwc} through Dataset’s method

create {WNw} using nwDF and occ. cutoff
compute WNwTraj using WNw and nwDF

Unlike the previous two algorithms, the study of water networks involves
multiple phases. Phase 1 involves processing all frames to find all networks seen,
called candidate water networks (WNwc). The number of networks could be very
high. For example, Mpro-free simulation generated over 5.5 million networks. In
phase 2, the presence or absence of every network in each frame is used to
compute occurrence of networks, and only networks with a minimum occurrence
are selected (WNw). Finally, using the data available from phase 1, trajectory
of the selected networks are be computed. RDDs have a tendency to recompute.
Given the amount of data involved in every phase, a careful implementation is
necessary to avoid data shuffling and expensive recomputations by Spark.
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The approach we use is as follows. To prevent recomputations from slow-
ing down the process, we first find and cache all (candidate) water networks
seen in each frame {WNwc}. The occurrence of each network is then com-
puted, and only those networks of interest are selected based on occurrence
{WNw}. The trajectories (WNwTraj), consequently maximum residence times
(MRTs), are computed from the cached data. Network trajectories can be
stored if desired. However, we found that in general, it was adequate to have
the summary featuring occurrence, MRT, and the window in which MRT was
observed. As discussed in the case of MCon, the hash-list approach described
through Fig. 5 was applied to short-list the interacting polar atoms of each
water. First, all polar atoms are scanned and placed in lists corresponding to
cuboids where they may have contacts. Then, for each water, the correspond-
ing list of its hash are scanned. Once all connected atoms for any particu-
lar water are known, all subsets (i.e., networks) with at least 2 elements can
also be created. The complexity of finding water networks within a frame is
O(LxLyLz) + O(npolarAt) + O(nwaterAt) + O(nwnetlog(nwnet)).

A vital aspect of calculating distance between atoms involves taking into
account the periodic boundary condition (PBC) of the simulation box. It means
that during simulations a molecule does not face a wall at the edge of the box.
Instead, it can move transparently from one side, say from right in Fig. 2, and
appear from the left. (The rationale for PBC is beyond the scope of this work.)
Hence, the two metabolite clusters seen here are not far away but are much
closer. The size of the simulation box itself may change during simulation and
hence frame-wise box lengths are stored in mdcrd files.

3.2 Benchmarks and Insights

The two chosen systems for the proof-of-concept implementations (Mpro-free and
Mpro-drug) were benchmarked. Given the necessity for consistency and substan-
tial resource requirements, three variants were tested on the GPFS-based DDN
storage solution capable of 15 GBps throughput for both read and write oper-
ations. These were, (a) serial version (serial), (b) Spark-version with data on
native GPFS filesystem (gpfs), and (c) Spark-version with data on HDFS (hdfs)
filesystem. HDFS storage was available from the same GPFS server through a
connector. Times of completion for the three parameters are given in Table 3.

Table 3. Time taken for completion of any job in serial mode (serial) is the longest,
compared to Spark when input was read from native GPFS filesystem (gpfs) or HDFS
filesystems (hdfs). All times are in seconds and speedups are shown in parenthesis when
available.

Parameter Mpro-free Mpro-drug

serial gpfs hdfs serial gpfs hdfs

RoG 8,691 1,889 273 1,931 584 131

MCon – 1,928 735 – 584 176

WNw 667,000 1,953 619 251,010 614 218
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It is clear from Table 3 that performance differs significantly when the input
is read from HDFS, instead of the GPFS filesystem. In particular, speedup, as
defined in Eq. (1), shows that close to 5 times speedier computation can be done
if input is read from HDFS instead of GPFS filesystem.

speedup =
timeserial

timespark
(1)

Fig. 6. The radii of gyration for Mpros were stable, indicating that no unfolding of
these proteins happened during course of simulations. Shown here is the RoG of one
monomer.

The RoGs of the two systems are shown in Fig. 6. The values show that no
unfolding of proteins occurred during the simulation. Speedups over 1000 were
obtained for water network calculation. As the serial version could not be run
over the entire trajectory, after confirming with shorter runs (with up to 20% of
data), linear scaling was applied to estimate the time required for computations.
MCon, another important parameter that requires only a single pass over each
frame and is critical for the analysis of crowder-based simulations, performed
faster than WNw. While it could be argued that serial version for water network
could be improved, it is evident that the times for completion of MCon and WNw
are comparable to that of RoG; all three of them requiring just a few minutes to
complete their tasks. While CPPTRAJ required 8,691s to compute RoG, Spark
(hdfs) for WNw was completed within 619s. In other words, compared to RoG,
SparkTraj’s WNw was 14 times faster over 1.2 TB!

Interesting events were captured using MCon. As Fig. 7 shows, multiple
metabolites were seen interacting with drug R1. The most significant interac-
tions were seen with only two drugs, a Ritonavir and a Glecaprevir. With further
analysis based on this information, a cluster of 5 metabolites were identified that
were seen blocking the movement of this drug, perhaps for the first time in any
simulation. Ordinarily, such long-duration associations occur due to hydrogen
bonds, salt bridges, π-π interactions, etc. Here, no long-lasting hydrogen bonds
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were seen as these metabolites were mobile, though still in the vicinity of the
drug during the entire course of simulation. Such interactions need to be com-
puted, and a parameter such as MCon is very useful for the same. Detailed
insights and their significance obtained using SparkTraj is beyond the scope of
this work and is discussed elsewhere [19].

Fig. 7. MCon is useful to identify metabolites that are in proximity. Seen here is a
drug (Ritonavir R1) that had consistent interactions with a few metabolites.

As already discussed in Introduction, water networks (WNw), especially
those that stabilize drug binding to proteins and other receptors, are of inter-
est. With the current study, we have been able to quickly identify such water
networks. As shown in Fig. 8, they were also seen between drugs and Mpro.

Fig. 8. Water Network (WNw) present between a drug (GLC 612) and two amino acids
of Mpro.

Another crucial aspect of benchmarking software would be to find how the
time for completion scales with size of the data. Normally, processing time being
same for each frame, increasing number of frames should lead to an increased
time for completion by the same factor. For a large system of terabyte size such
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as Mpro-free, increasing input size by 10-fold matched the expected performance
where GPFS filesystem was used (see Table 4). In case of Mpro-drug system
(20K vs 200K frames), the escalations were smaller. It is very interesting that
the escalation of times were close to half in case of HDFS environment w.r.t.
GPFS filesystem.

Table 4. With a 10-fold increase in data size, escalation in times for completion was
almost by the same factor for the larger Mpro-free system when data was read from
GPFS filesystem, and by much less in case of HDFS. Mpro-drug had lesser increment.

Parameter Mpro-free Mpro-drug

gpfs hdfs gpfs hdfs

RoG 8.7 3.5 6.0 2.3

MCon 7.8 7.7 6.5 2.6

WNw 8.5 4.8 5.9 2.9

To improve the performance of Spark implementation, many variations were
considered and examined. For instance, sorting (by time) using Spark was less
efficient due to data shuffling. So the data was first collected and was sorted
directly using Scala. While we contemplated different ways to improve the per-
formance further, it was not pursued to avoid possible over-engineering; reckon
that time required to read mdcrds was at least 60% of the total runtime.

To appreciate the immense value and contribution of such studies, it would be
pertinent to reckon a few insights from the simulations of Mpro complex. Apart
from metabolites and metabolite clusters, identified initially through MCon, the
simulations in crowded environment yielded other fascinating insights as well.
They include, possible preference of certain metabolites to particular sites, move-
ment of a free amino acid in a probable (drug) binding site, and crawling of a
drug over the surface from one pocket to another in presence of crowders (both
proteins and metabolites).

3.3 Framework for Cloud-Based MD Simulation Service

The unique advantage of Cloud infrastructure over typical high-performance
computing servers is the ability to scale resources on demand. However, the
operating costs of Cloud infrastructure vary based on type, quantity and duration
[5,12]. We present a framework to expedite the best MD simulations studies
possible within the available resources.
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Fig. 9. Block diagram of the proposed framework for MD studies. Task-manager esti-
mates task size, generates an execution plan, and in concert with Resource-manager,
dynamically orchestrates tasks and resources. Periodic updates and final results are
sent to user for information and feedback.

As shown in Fig. 9, given the models to simulate and the accompanying rules
(such as given priorities and available funds), Task Estimator first runs sample
jobs to assess the time required on various platforms, determines the number,
types of servers, infrastructure, and services that could be acquired within given
constraints. Task Schedular then prepares a schedule of jobs to be submitted. In
certain cases there could more specific rules. For instance, consider screening of
drug-candidates. A user may require only those drug-candidates that retained
interactions with the target protein throughout the simulation(s). This could be
monitored by Task Controller that can preemptively terminate simulations in
which drugs lose interactions. Other reasons to pre-emptively discard a model
from simulation studies include extreme changes in RoG, insufficient binding
energy between drug and protein, etc. This ability to dynamically preempt sim-
ulations of poor drug-candidates allows users to channel the resulting savings
into examination of additional drug-candidates or to enhance infrastructure for
the computations. Task-manager updates Resource-manager on inputs, sched-
ules, and resources to be deployed. Resource-manager then acquires, manages
and frees appropriate software, services or (virtual) hardware from Cloud. The
necessary software and hardware resources for simulation, analysis, and storage
together form corresponding pools. As computations progress, Task-manager
updates user on the latest status of simulations/analysis (scheduled, underway,
completed, or terminated), available results, deployed resources, and the pro-
jected time for completion of the work. If required, the user may opt to inter-
vene and update inputs to alter or improvise the study undertaken, or expand
its scope and allocated funding.

This above framework can be implemented by the Cloud provider (First-
party API) or could be developed by third parties (Third-party API). Competent
clients may develop solutions through their own efforts and deploy them either
on public or private Clouds. In principle, it is of practical utility, and with
relative ease, the solution can be deployed by providers of Cloud infrastructure
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to identify even those drug-receptor candidates that may work well in aqueous
conditions but fail in physiological environment. This would definitely help in
containing both time and phenomenal costs involved in the development of new
drugs.

3.4 Limitations

Installing and using software designed for Apache Spark requires more expertise
compared to their serial counterparts. Further, we have studied different sys-
tems on the only state-of-the-art commercial storage that was available. It was
selected as the server provides access to both local as well as HDFS filesystems
on the same hardware, and was connected a dedicated big data server with 20
nodes. The performance gains may wary between different storage solutions. Like
for any distributed computing, a few issues are critical for performance. One is
the latency and bandwidth available to load the input files. The second is the
amount of time required for computation itself. For instance, latency and (data)
bandwidth could be significantly improved using more expensive solid-state stor-
age devices such as NVMe SSDs even on less expensive desktop systems. This
could improve the performance of parameters that have little computation, such
as RoG. However when a frame requires significant amount of computation,
then having higher core count, RAM and networking bandwidth would be more
useful. Nevertheless, the above proposed cloud framework could be designed to
select optimal storage and computational resources based on available funds.

SparkTraj is freely available for the interested researchers.

4 Conclusions

In this paper, using Apache Spark, we demonstrated that big data approach
provides substantial speedups in MD studies. This is especially needed in the
more cell-like environment involving a plethora of biomolecules. A responsive,
scalable, and self-tuning framework that pairs Spark with the flexibility of Cloud
infrastructure for the MD studies is presented. This framework enables users to
optimally utilize the available resources. Insights obtained using the proposed
approach were discussed. Complex MD studies, accompanied by such newer and
more versatile tools, would bridge the gap between theoretical modelling and
experimental observations. Such studies may soon become an imminent require-
ment in the capital intensive yet time-constrained pharmaceutical industry. The
relevance of such advances, especially in these pandemic times, cannot be over-
stated.
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