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Abstract. Dragonfly is a popular topology for current and future
high-speed interconnection networks. The concept of gathering topol-
ogy information to accelerate collective operations is a very hot research
field. All-reduce operations are often used in the research fields of
distributed machine learning (DML) and high-performance computing
(HPC), because All-reduce is the key collective communication algo-
rithm. The hierarchical characteristics of the dragonfly topology can be
used to take advantage of the low communication delay of adjacent nodes
to reduce the completion time of All-reduce operations. In this paper,
we propose g-PAARD, a general proximity-aware All-reduce communica-
tion on the Dragonfly network. We study the impact of different routing
mechanisms on the All-reduce algorithm, and their sensitivity to topol-
ogy size and message size. Our results show that the proposed topology-
aware algorithm can significantly reduce the communication delay, while
having little impact on the network topology.

Keywords: All-reduce operation · Dragonfly topology · Collective
communication

1 Introduction

Dragonfly are typically deployed in many high-performance computer systems,
including the Cray Cascade system [7], Titan [6] and Trinity [3]. The Cray Sling-
shot network is designed for continuous computation and also uses dragonfly
topology [14].

Recently, it is popular to continuously improve the performance of collective
operations so that it can run efficiently on various hardware and software plat-
forms. All-reduce aggregates the values of all processes and then sends the values
back to all nodes. All-reduce simplifies a complex set of point-to-point commu-
nications, making it easier for programmers to perform parallel and distributed
programming. In addition, All-reduce operations can effectively separate appli-
cation and interface developers, and contribute to the portability of functions
and performance between applications and interfaces.
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There are already many All-reduce implementation algorithms in the mpi
library. According to the number of processes and the size of the message,
different algorithm choices can speed up the efficiency of communication. The
most popular All-reduce algorithms are the ring algorithm and the halving and
doubling algorithm. Ring algorithm [15] is an algorithm that makes full use of
bandwidth. However, it is mainly suitable for tasks consisting of long messages
because the number of steps executed increases linearly as the number of pro-
cesses increases. Conversely, the halving and doubling algorithm [16] performs
the least communication steps and achieves the least delay. While delay-sensitive
and tasks consisting of small messages often use the halving and doubling algo-
rithm, it suffers from considerable bandwidth overhead. There are also several
hybrid methods, which complete the operations by combining different types of
sub-step operations, including reduce-scatter and All-gather, as well as reducing
and broadcasting [13].

G-PAARD is designed as a topology-aware algorithm to accelerate the All-
reduce communication. The communication mode of the existing acceleration
algorithm implemented in the dragonfly network may cause network congestion
and waste of link resources1. The key idea behind g-PAARD is to decompose All-
reduce operations into reduce-scatter and All-gather modes in a topology-aware
way. The All-reduce operation with g-PARRD can be completed in just 6 steps.
Therefore, g-PAARD utilizes local communication with neighbors to minimize
global communication and reduce overhead. Experimental results show that g-
PAARD is superior to these state-of-the-art solution in a particular context.

The main contributions of this design can be summarized as follows:

– We have shown that existing algorithms are not well suited for Dragonfly net-
works, resulting in poor performance and limited overall network throughput.

– We propose g-PAARD, which permits the scheduling of an end-to-end solu-
tion to alleviate congestion.

– A comprehensive evaluation of the proposed algorithm has been performed
and demonstrated that higher performance can be achieved in a particular
context.

2 Motivation

2.1 Dragonfly

Kim et al. [10] introduced Dragonfly networks, it has become one of the most
popular topologies in high cardinality HPC interconnect networks. Dragonfly
has the advantages of high scalability, small diameter and low cost. The stan-
dard Dragonfly topology employs a two-tier structure, as shown in the Fig. 1.

1 For example, using standard algorithms, both nodes require at least 3 hops, and in
some cases up to 6 hops, to facilitate communication at each step of the topology.
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The routers are interconnected using a fully connected intra-group topology to
create a group. A palmtree for a = 4 is included in Fig. 1. The number of links
connecting each router to the local compute node is p; the number of routers in
each group is a; the number of global links each router connects to routers in
other groups is h; and the number of groups be g.
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Fig. 1. An example Dragonfly topology
with 9 groups and each group contains
4 routers. DF(p = 2, a = 4, h = 2, g =
9)
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Fig. 2. Communication pattern of HD
for 32 nodes in DF(2,4,2) network.

In the dragonfly topology, data packets are routed along the minimum or
non-minimum path. The minimum path is any path from the source node to the
target node, and contains at most one global link. The smallest path takes one
hop in the source group (from the source switch to the switch with the global link
to the destination group), then travel through the global link to the destination
group, and finally selects the local link to the destination at the target group.
Depending on the source location and target location, the minimum path may
have fewer hops.

The Minimal routing (MIN) scheme routes packets only through minimal
paths, thus minimizing resource usage. MIN works well for traffic patterns
where the load can be evenly distributed, such as random uniform traffic. How-
ever, as the number of links between each pair of groups is small, MIN routing
performs poorly for adversarial traffic, particularly where most communication
arises between two groups.

Generally, the delay of the global link is greater than the delay of the local
link. In the dragonfly topology, there are some pairs of nodes connected by
global links between different groups. These node pairs can communicate at
the same time to maximize the utilization efficiency of the global link. In this
article, we will consider the characteristics of Dragonfly to design an efficient
All-reduce algorithm on the Dragonfly network. This can significantly reduce
communication time by coordinating communication between adjacent nodes
and completing the All-reduce operation.
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2.2 Existing All-Reduce Algorithms

– Ring Algorithm (Ring)

node1 node2 node3 node4

step1
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step3
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Fig. 3. Ring algorithm for all-reduce
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Fig. 4. Halving-doubling algorithm for
all-reduce

Figure 3 present a ring algorithm for All-reduce. Utilizing chunked data trans-
fer and reduction can optimize the ring algorithm. The entire ring process is
divided into two major steps: the first step is scatter-reduce, and the second
step is All-gather. First we have n nodes, then we divide the data (equal) on
each node into n blocks, and assign each node its left and right neighbors (the
left neighbor of node 1 is node 0, and the right neighbor is node 2...), and then
start to perform n− 1 operations. At the i-th operation, the node j will send its
(j − i)%n-th block of data to node j + 1, accept the (j − i− 1)%n block of data
from node j − 1, and perform a reduce operation on the received data. When
n−1 operations are completed, the first scatter-reduce step of ring-allreduce has
been completed. At this time, the (i+ 1)-th node of the i-th node % n blocks of
data have collected the (i + 1)%n block of all n nodes.

Then, perform All-gather again to complete the algorithm. The second phase
for All-gather is very simple. It is to pass the (i + 1)% n-th block of the i-th
node to other nodes through n − 1 passes, and it is also in the i-th pass. Node
j sends its (j − i − 1)%n-th block of data to the right neighbor, and accepts
the (j − i − 2)%n-th data of the left neighbor, but the received data does not
need to be like the first step to reduce, but directly replace its own data with
the received data.

The ring algorithm [15] can make full use of bandwidth and is suitable for
large message tasks. However, as the number of nodes increases, the number
of steps executed by the algorithm increases linearly. This greatly increases the
delay time of small message communication. In the dragonfly topology, each step
of the ring algorithm needs to use the global link for communication, which will
further increase the complete time.

– Halving-doubling Algorithm
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Figure 4 gives an example to show the All-reduce process of the HD algorithm.
The entire HD process is divided into two major steps, the first stage is scatter-
reduce, and the second stage is All-gather. In the first step, node 0 and the
node with a distance of 1 (node 1) exchange half of the data aggregated in the
previous step (the first step) and aggregate. In step log2P , node 0 and the node at
distance 2n−1 exchange half of the data aggregated in the previous step log2(P -
1) and aggregate. The second stage is the reverse process of the first stage. In
the first step, node 0 exchanges aggregated data with a node at a distance of
2n−1. In the second step, node 0 exchanges updated aggregated data with the
node at a distance of 2n−2. The node 0 and the node with a distance of 1 (node
1) exchange half of the aggregated data. Finally, all nodes get aggregated data,
and the Allreduce operation is completed.

The HD algorithm is suitable for small message tasks and the number of
nodes is a power of 2. At this time, the HD method greatly reduces the commu-
nication delay because of the few communication steps (2log2 P ). However, in
the dragonfly topology, since the distance between nodes may be 3 hops, each
step of communication will have additional global link delay overhead. This will
bring performance degradation. At the same time, the size of dragonfly topol-
ogy is usually not a power of 2, which will add an extra step of communication
overhead.

As shown in Fig. 2, it is a communication pattern of HD for 32 nodes in
DF(2,4,2) network. Horizontal axis represents the sending node, and the verti-
cal axis represents the receiving node. Different colors represent different steps.
Communications carried out at the same time has been marked with the same
color. It can be seen that nearly half of the communication is adversarial traffic,
where nodes in one group should communicate with nodes in another group.
These communications take multiple hops and add network contention.

3 The g-PAARD Design

3.1 g-PAARD Algorithm in Dragonfly

Notation: In the following we use the term global node to refer to the node
connecting with global link directly. We call the local node to refer to the node
connecting with global link indirectly.

Node Placement: The algorithms presented hereafter are based on the assump-
tion that some information about the topology and the node placement can be
obtained. Each node, router, and group is assigned a unique node, router, and
group id, respectively. Any process can have access to the node id of any other
process belonging to the same application.

g-PAARD Algorithm consist of six steps. First, the data of the node is
evenly divided into g(which is the size of group) parts. Local node send specific
1/g data to global node. Global node send specific 1/g data to other global node
and, Global node receive and reduce data from local node and other global node
simultaneously. In the second step, global node in different group communication
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with each other through the directly connected global link. Global node send
specific data to the pair global node. Simultaneously, every global node receive
and reduce the specific data. In the third step, the aggregation data in second
step is evenly divided into p × a (which is the size of nodes in a group) parts.
Nodes in the same group communicate with each other. Node send specific data
to other nodes in the same group. Simultaneously, every node receive and reduce
specific data from other nodes in the same group. After third step, every node
aggregate the 1

g×p×a (which is the number of all nodes). The reduce-scatter phase
is completed. The next three step is reversed to complete the All-gather phase.

a er
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a er
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ini al
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step4

a er
step5

a er
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Fig. 5. g-PAARD for a 32 nodes in DF(2,4,2) networks
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3.2 An Example of the g-PAARD Algorithm for 32 Nodes in
DF(2,4,2) Network

As shown in Fig. 5, it is an example of the g-PAARD algorithm for 32 nodes in
DF(2,4,2) network. We assume that 32 nodes are allocated in four groups, there
are 8 nodes in a group. And a global palmtree arrangement is deployed [4].

g-PAARD requires two processing phases, each with several communication
steps. As shown in 5, 8 columns per group represent data in 8 nodes, and 32
columns are given to represent 32 nodes. Due to the existence of four groups,
the data in each node is divided into four parts (marked as a first to fourth data
set). At first, each node n has its own local data.

In Fig. 5, we take nodes in g0 as an example to show the All-reduce process
of g-PAARD. In the first step, for sender, local node(data are marked as blank
square) sends the data set to global nodes(some data are marked as colored
square) in g0, and global nodes sends the data set to other global nodes in g0.
For the receiving end, the global nodes receive and aggregate data sets from all
other nodes simultaneously. Remarkably, this kind of communication between
nodes is direct and requires only one hop. After step 1, one quarter of the data
in each node has not been transferred because it will be aggregated in step 2.

In the second step, communication takes place between the global groups.
There are 6 global links between groups, so that 6 pairs of nodes can communi-
cate at the same time. These communications can be accomplished with only a
hop at the same time. Take the global nodes in g0, which sends aggregated data
after step 1 to their counterparts (data marked green in other groups). At the
same time, global nodes receive and aggregate data sets from their pairs. After
step 2, all four groups received their specific data. Therefore, another step needs
to be taken to complete the reduce-scatter phase.

Because there are eight nodes in a group, the data aggregated after step 2
can be divided into eight groups in step 3. Taking the node in g0 as an example
again, the first set of data for each node in g0 is divided into eight parts (1, i
(1∼8)), where node 1 sends (1, i) data to node i in g0. At the same time, node
1 receives and aggregates data from other nodes in g0. After the third stage,
the reduce-scatter phase of the data was completed, with 32 nodes collecting the
data respectively. The All-gather phase is similar to the process leading to the
final result. As a result, the g-PAARD algorithm reduces the dependent length
and hops per step compared to the Ring algorithm and the HD algorithm, as
shown in Table 1.

The next three step is a reversed phase to complete All-reduce operation.
In the fourth step, Taking nodes in g0 as an example again, node 1 sends the
aggregates data after step 3(marked as red) to other nodes in g0. Simultaneously,
node 1 receives the aggregated data from other nodes in g0. After step 4, every
node has 1/4 aggregated data.

In fifth step, global nodes in g0 send the aggregated data(marked as red) to
their pair in other group, simultaneously global nodes receive aggregated data
from global nodes in other group.

In sixth step, it is similar with step 1. Taking nodes in g0 as an example,
global nodes send the data received in step 5 to other nodes in g0. After step 6, all
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nodes get the completed aggregated data. The All-reduce operation finish. While
our example uses 32 nodes, the g-PAARD algorithm is applicable for arbitrary
nodes counts.

As shown in Fig. 6, it is communication pattern of g-PAARD for 32 nodes
in DF(2,4,2), horizontal axis represents the sending node, and the vertical axis
represents the receiving node. Different colors represent different steps. Commu-
nications carried out at the same time has been marked with the same color. All
the communication are proximity, most of communications occur in intra-group.
thus, it reduce the global link latency compare to HD algorithm. And, The com-
munications marked with blue occur in inter-group, and only take one hop. So,
it can alleviate the global link contention.

Table 1. g-PAARD achieves good tradeoffs by minimizing hops and length of depen-
dency

Algorithm Ring Halving doubling g-PAARD

Minimum hop 1 3 1

No. of dependant steps 2(P−1) 2logP 6
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Fig. 6. Communication pattern of g-PAARD for 32 nodes in DF(2,4,2) network

4 Evaluation

4.1 Evaluation Methods

Our simulator is based on the Booksim router model, which emphasizes the pre-
cise simulation of the cycle of hardware components. In our evaluation, the accu-
racy of network simulations was at the microchip level. We expanded Booksim
to support parallel distributed simulation for large scale networks to overcome
the drawbacks of Booksim serial execution. In addition, we extend it to support
parallel distributed emulation and model a complete MPI library (such as an
SST emulator) to evaluate the full emulation of the entire process from MPI
Call to generate network traffic.
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4.2 Evaluation Results

A. Node Allocation

(a) Message size = 1KB (b) Message size = 1MB

Fig. 7. Execution time when All-reduce 1 KB and 1 MB on a (3,6,3) 342 nodes Drag-
onfly network with minhop routing strategies. The job runs alone on the network

Figure 7 show the execution time when All-reduce 1 KB and 1 MB on a (3,6,3)342
nodes Dragonfly network with minhop routing strategies. When message size is
1 KB, g-PAARD perform better than HD and Ring algorithm. However, when
message size is 1 MB, g-PAARD perform worse in small group size. g-PAARD
relies more on a complete network to play its performance advantages. When
group size is small, the global link decrease. g-PAARD lost the advantage of
using all global links at the same time.

B. Router Algorithm

µ

(a) Execution time (b) Improvement

Fig. 8. Performance of three algorithms for 32 nodes in DF(2,4,2) 72 nodes

The performance of three algorithms is evaluated using minhop routing algo-
rithm and UGAL routing algorithm. The topological scale is 32 nodes of Drag-
onfly(2,4,2) 72 nodes, and the result is shown in Fig. 8. When the message size
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is between 1 k and 256 k, the performance of the g-PAARD algorithm is signifi-
cantly better than the HD algorithm or the ring algorithm, because link latency
has a greater weight in the total time cost. However, when the size of a mes-
sage is large, the gap decreases because communication latency becomes a major
factor in the overall time cost. For g-PAARD and HD algorithms, the choice of
routing algorithm also affects execution time, while UGAL routing algorithm is
beneficial to improve execution speed. This is because the side effects of network
congestion increase with the size of messages. Because of its long dependence
chain, the ring algorithm has the worst performance, which increases startup
delay.

C. Topology Scale

Fig. 9. Normalized time of three algorithm with minhop route algorithm in DF(4,8,4)
1056 nodes

Figure 9 illustrates the normalized time of the three algorithms using the minhop
route algorithm in DF(4,8,4) 1056 nodes. The data size was varied only from 2 K
to 1 MB in order to ensure the ring algorithm could be run. Figure 9 presents the
normalized time of the three algorithms. Here, the g-PAARD displays a 4.33×
speed increase over the halving-doubling algorithm at 4 kB and a 287.34× speed
increase over the ring algorithm at 2KB with the minhop route algorithm. As
compared with both the halving-doubling algorithm and the ring algorithm,
Fig. 9 illustrates the normalized time of three algorithms using minhop routing
in DF (4,8,4) 1056 nodes. The data size ranges from 2 K to 1 MB to ensure
that the ring algorithm can run. Figure 9 shows the normalized time of the
three algorithms. Here, g-PAARD shows accelerated growth 4.33× over recursive
doubling algorithm and 287.34× over ring. Compared to HD and ring algorithms,
g-PAARD reduces the time required more as the topology scale increases, as the
cost of link latency has a higher weight when node count is larger. Nevertheless,
when data sizes are particularly large, the performance of the three algorithms
becomes generally similar, as the communication cost has a higher weigh. When
the topology scale is larger, the lengthy of the dependency chain has greater
weight in terms of the cost.
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5 Related Works

The approach of gathering topology information and leveraging this knowledge
to design better algorithms has been applied to many systems in the past. For
example, HAN [11] build upon the existing collective communication infrastruc-
ture, reuse these existing algorithms as submodules, and combine them to per-
form efficient and hierarchical collective operations. MagPIe [9] is another MPI
system designed to construct collective operation trees in heterogeneous com-
munication environments. MPICH2 [1] groups processes by nodes to limit the
number of inter-node communication. Previous work [12] use trees that strat-
ify the network deeper than two layers for further optimization. In work [8],
it propose a topology-aware collective algorithms for large scale supercomput-
ing systems that are tightly coupled through inter-connects such as InfiniBand.
Work [2] propose a scalable network discovery service for InfiniBand available at
the user level. With this service, it design a network-topology-aware MPI library
to provide a topology aware mapping of the MPI processes. [5] address the appli-
cation of pipelining to optimize a blocking All-reduce, for very large messages,
of up to 1 GB, in the context of distributed DNN training on clusters of com-
puter nodes. However, we utilize locality in Dragonfly interconnect topology to
propose a topology-aware algorithm to minimize the communication latency in
computing All-reduce.

6 Conclusion

The scale of deployment of supercomputers has increased year by year. These
clusters provide a lot of computing resources for application developers. The
demand for topology-aware collective operations is also increasing. This paper
thus presented g-PAARD for use in Dragonfly systems. Essentially, g-PAARD
designs each step of peer-to-peer communication to create a six-step process,
regardless of node allocation. This ensures that at each step, each node com-
municates with its partner node through at most one hop. Therefore, gPAARD
achieves the goal of minimum hops and short dependency chain more effectively
than the previous All-reduce operation scheme. According to the simulation
results, compared with the halving and doubling algorithm and the ring algo-
rithm, the speed of g-PAARD is increased up to 4.33× and 287.34×. While,
With today’s supercomputer sizes and people relying more on group collectives,
optimization of communication in group can be further researched. And, strag-
gler processors is a potential performance bottleneck to collective operation, it
is interesting to explore the sensitivity of straggler processors.
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