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INFINIBAND NETWORK MONITORING:
CHALLENGES AND POSSIBILITIES

Kyle Hintze, Scott Graham, Stephen Dunlap and Patrick Sweeney

Abstract The InfiniBand architecture is among the leading interconnects that
support high performance computing. The high bandwidth and low la-
tency provided by InfiniBand are increasing its applications outside the
high performance computing domain. One of the important application
domains is the critical infrastructure.

However, InfiniBand is not immune to security risks. Previous re-
search has shown that common traffic analysis tools cannot effectively
monitor InfiniBand traffic transmitted between hosts. This is due to
the kernel bypass nature of the InfiniBand architecture and remote di-
rect memory access operations. However, if the Remote Direct Memory
Access over Converged Ethernet (RoCE) protocol is employed, it is
possible to restore traffic visibility in novel ways. This research demon-
strates that the approach, coupled with an InfiniBand-capable adapter,
enables common traffic analysis tools to be used to monitor InfiniBand
network traffic without sacrificing bandwidth and performance.
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1. Introduction
While the capabilities of modern computer processors continue to im-

prove by optimizing current architectures or introducing new architec-
tures, other computing technologies have been unable to keep pace. In
particular, the majority of industry-standard input/output bus systems
cannot keep up with the raw power of modern computer processors [3].

A promising solution is the InfiniBand architecture interconnect tech-
nology [4]. InfiniBand offers higher bandwidth and lower memory la-
tency than Ethernet, and is a powerful technology with promising capa-
bilities. According to the most recent Top 500 ranking [18], which tracks
the 500 most powerful supercomputers in the world, seven of the top ten
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supercomputers utilize the InfiniBand architecture. Network communi-
cations are key to the operation of critical infrastructure assets. As
InfiniBand is adopted in the critical infrastructure, serious evaluations
of its security issues are vital [6, 7, 15, 17, 19].

This research focuses on expanding the monitoring capability of the
InfiniBand architecture. In particular, it evaluates the efficacy of com-
mon traffic analyzers at capturing and monitoring Remote Direct Mem-
ory Access (RDMA) over Converged Ethernet (RoCE) protocol traffic in
InfiniBand networks. Several case studies are considered and the results
are intended to guide future research focused on securing InfiniBand
networks.

2. InfiniBand Architecture
InfiniBand is a network protocol similar to Ethernet that is quickly be-

coming the standard for high performance computing clusters and data
centers. While it is similar to the Ethernet protocol in several ways,
InfiniBand was designed to handle higher network bandwidths with sig-
nificantly reduced memory latency. This came as a direct response to
the inability of traditional input/output systems to provide the speeds
required to keep up with advancements in modern computing technol-
ogy. At a high level, by treating input/output as communications, using
point-to-point connections and transferring information between hosts
and devices via messages instead of memory operations, the InfiniBand
architecture is able to achieve the performance desired by the modern
computing industry [5]. Figure 1 shows a high-level view of a generic
InfiniBand network.

2.1 InfiniBand Hardware
An InfiniBand network has many of the components and connections

found in Ethernet networks. Network interface cards (NICs) connect to
workstations and processors handle certain workloads related to network
traffic. Fundamentally, InfiniBand is an interconnect that enables mul-
tiple processors, switches and other devices to communicate with each
another. In the InfiniBand architecture, channel adapters, switches and
subnet managers play crucial roles that differentiate InfiniBand networks
from their Ethernet counterparts.

Channel Adapter: A channel adapter (CA) connects InfiniBand
to other devices. A channel adapter can be a host channel adapter
(HCA) or a target channel adapter (TCA). Both types of channel
adapters generate and consume packets. A host channel adapter
supports the functions specified by InfiniBand verbs (described
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Figure 1. Generic InfiniBand network.

later) whereas a target channel adapter uses an implementation-
dependent interface to the transport layer.
What sets a channel adapter apart from a normal interconnect
interface (e.g., in Ethernet) is its ability to serve as a programmable
direct memory access engine. This enables direct memory access
operations to be made locally on hardware and independent of the
central processing unit (CPU). Additionally, to identify devices in
a network, a channel adapter is assigned a local identifier (LID)
by the subnet manager and a globally unique identifier (GUID) by
the manufacturer, analogous to the interface identifiers and media
access control (MAC) addresses used in Ethernet networks [4].
Channel adapters communicate via work queues that comprise
multiple sub-queues [4]. A work queue is initiated by the client
(sending network interface card) and the traffic to be sent is placed
in a sub-queue. After this is done, the channel adapter processes
the received information from the sub-queue and sends it to the
requesting device (receiving network interface card). After the in-
formation is received, the receiving network interface card returns
a status response to the sending network interface card via a com-
pletion queue. Multiple queues can exist at a time, enabling a
client to conduct other activities while transactions are being pro-
cessed by channel adapters [11].

Switch: As in the case of Ethernet, an InfiniBand network switch
is responsible for forwarding decisions, acting as the fundamen-
tal routing component for intra-subnet routing [4]. Data is for-
warded from one channel adapter to another based on the data link
layer addresses. Forwarding decisions are made based on channel
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adapter local identifiers (analogous to Ethernet MAC addresses)
and based on the forwarding table of the switch, which is config-
ured by the subnet manager at startup. InfiniBand switches also
allow for unicast and multicast packet forwarding, enabling the
network to support Internet Protocol (IP) applications.

Subnet Manager: A subnet manager is responsible for configur-
ing and managing all switches, routers and channel adapters in a
subnet [4, 10]. Multiple subnet managers can exist in an InfiniBand
network, one assuming the role of the master and the other serving
as a fallback in the event of master subnet manager failure. The
master subnet manager communicates with every switch, channel
adapter and slave subnet manager to ensure that all routing and
forwarding tables are correct.

The master subnet manager has four responsibilities: (i) discover-
ing the subnet topology, (ii) configuring each channel adapter port
with local identifiers, globally unique identifiers, subnet prefixes
and partition keys, (iii) configuring each switch with a local iden-
tifier, subnet prefix and forwarding database and (iv) maintaining
the end node and service databases for the subnet and providing
a globally unique identifier to local identifier resolution service.

2.2 InfiniBand Software Architecture
The InfiniBand architecture is compatible with all the major operating

systems. The architecture is abstracted away from user space to enable
consumers to interact with InfiniBand without any knowledge about the
processes executing in kernel space.

The InfiniBand software stack can be divided into the hardware, ker-
nel and application levels [11]. The hardware level comprises the physical
network components (i.e., input/output), which transmit electromag-
netic signals along copper or fiber waveguides. Connections are made
at the hardware level between multiple host devices in a variety of con-
figurations to provide network communications. As with Ethernet com-
munications, InfiniBand network traffic enters and exits through these
access points before moving into the host machine.

In kernel space, physical components (host channel adapters) are con-
trolled by input/output drivers to enable user space applications to di-
rectly control the hardware. An application is executed in user space
through which the device driver maps to an operation [1]. In doing so,
a user can leverage an array of InfiniBand capabilities.

In the next level of kernel space, core kernel modules provide the main
InfiniBand services. Important services such as the verbs application
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programming interface and subnet administrator client reside in this
level [11]. Indeed, these services distinguish InfiniBand from Ethernet.

Finally, upper layer protocols reside in the top level of kernel space.
These protocols enable user applications to leverage the InfiniBand ar-
chitecture.

2.3 InfiniBand Transport Services
While InfiniBand offers many transport services, this research focuses

primarily on its use of the RoCE and IP over InfiniBand (IPoIB) proto-
cols. In an Ethernet network, packets traverse the protocol stack, which
involves the host operating system kernel. The kernel processes packets
and determines where to send them, consuming many CPU clock cycles
in the worst case, leading to lower throughput.

The InfiniBand architecture avoids this limitation by using remote
direct memory access, the access of memory from one machine to an-
other without direct CPU involvement. This means that the operating
system kernel is bypassed, enabling data transfers to be done by ap-
plications directly from user space. User applications can move data
directly between virtual memory on different network nodes without op-
erating system intervention [9]. In the case of remote direct memory
access, the CPU initiates the communications channel, after which the
user application and hardware that perform message passing take con-
trol. Throughout the process, verbs are used to convey requests to the
hardware.

This study focuses on the RoCE v1 protocol, which replaces the phys-
ical and data link layers of the InfiniBand protocol stack with Ether-
net [9]. RoCE, which provides the same speed and low latency as remote
direct memory access, comes in two versions: (i) RoCE v1 that supports
communications between two hosts in the same Ethernet broadcast (link
layer protocol) and (ii) RoCE v2 that enables packets to be routed out-
side a local area network (network layer protocol).

Since RoCE employs Ethernet as its link layer protocol, it supports the
use of the IP over InfiniBand protocol [12]. This upper layer protocol
implements a network interface using the InfiniBand architecture. It
encapsulates IP datagrams over an InfiniBand transport service [15].
After the appropriate kernel modules are loaded, the service can be
enabled using standard Linux tools such as ifconfig and ip. The tools
provide standard IP addresses to the chosen interfaces. All applications
configured to use the IP over InfiniBand protocol traverse the Transport
Control Protocol/Internet Protocol (TCP/IP) stack in the kernel [15].
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3. Related Work
Due to the use of InfiniBand in high performance computing environ-

ments, early research was mainly directed at increasing bandwidth and
reducing latency. Until recently, limited research focused on InfiniBand
security.

Dandapanthula et al. [2] investigated the scalable monitoring and
analysis of InfiniBand networks. They developed the INAM tool for
monitoring an InfiniBand cluster in real time and querying subnet man-
agement entities. A web interface was provided for visualizing network
performance and the communications patterns of target applications.
The INAM tool provided a foundation for developing monitoring capa-
bilities for InfiniBand networks.

Mireles et al. [15] demonstrated that network packets crafted using In-
finiBand verbs could not be handled by standard networking monitoring
tools. Unlike Ethernet, InfiniBand traffic uses verb semantics to describe
operations between a host channel adapter and a consumer (receiver of
network traffic) [4, 9]. Traffic crafted with verbs bypasses the operating
system kernel to achieve high bandwidth and low latency via remote
direct memory access operations. However, this prevents modern traffic
analyzers from capturing and analyzing InfiniBand traffic because it by-
passes the TCP/IP stack in the kernel. Mireles and colleagues concluded
that hardware offloads are key to securing InfiniBand networks.

Lee et al. [7] focused on security enhancements to the InfiniBand ar-
chitecture. Their research highlighted the promising features provided
by InfiniBand for clusters and system area networks, but the lack of se-
curity features meant that InfiniBand networks could be exploited. The
most serious vulnerability involved network traffic authentication based
on the presence of plaintext keys in packets. Lee and colleagues proposed
a new authentication mechanism that treated the Invariant Circular Re-
dundancy Check (ICRC) field as an authentication tag, a solution that
is compatible with the current InfiniBand specification. Experiments re-
vealed that the new tag enhanced InfiniBand authentication capabilities
with marginal performance overhead.

4. Experimental Setup and Case Studies
This research sought to evaluate the ability of common network traffic

analyzers to monitor the RoCE protocol in InfiniBand networks. Three
experimental case studies were conducted to observe the capabilities of
monitoring tools in various configurations and identify an approach for
capturing the maximum amount of network traffic. This section de-
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Figure 2. Network configuration of RoCE 100 Gbps with ConnectX-5 adapters.

scribes the experimental setup and network monitoring tools employed,
the data collection metrics and the three case studies.

4.1 Experimental Setup
The experimental setup incorporated host workstations, network in-

terface cards and virtual multilayer switches:

Host Workstations: Two host workstations were employed in
the experiments. Each workstation was powered by an Intel Xeon
Silver 4114 processor (2.2 GHz, 10 cores and 20 logical processors)
with 126 GB RAM. The workstations ran Ubuntu 18.04 LTS 64-
bit, kernel version 5.0.4-56-generic.

Network Interface Cards: Each workstation was installed with
an Nvidia Mellanox Bluefield DPU Programmable SmartNIC [14].
The SmartNICs incorporated 16 ARMv8 A72 cores and 16 GB
RAM. Each SmartNIC used a ConnectX-5 adapter as the host
channel adapter to provide the physical network interface. Addi-
tionally, each SmartNIC ran Ubuntu 18.04 LTS 64-bit.
Figure 2 shows the network configuration used in the experiments.
The two ConnectX-5 adapters were connected in a “back-to-back”
manner using a 100 Gbps active optical cable. A switch was not
required for this configuration. Interconnect traffic adhered to the
RoCE protocol.
A SmartNIC has two modes of operation. In the default separated
host mode, the host workstation and SmartNIC operating systems
act as separated entities, communicating with each other or with
the network via the ConnectX-5 module of the SmartNIC. This
research employed the SmartNIC mode in which a host workstation
communicates with the network only through the SmartNIC ARM
cores [13].

Open vSwitches: Each SmartNIC has an Open vSwitch appli-
cation installed as part of its operating system. This multi-layer
software switch provides security, monitoring functionality, quality
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of service and automated control. However, its principal purpose
is to provide a switching stack for hardware virtualization envi-
ronments [8]. In the experiments, Open vSwitch enabled network
traffic from the host workstation to be directed through the ARM
cores of the SmartNIC and then out to the wire. This provided
an opportunity to directly monitor and manipulate traffic in an
out-of-band manner, along with other capabilities supported by a
software stack.

In addition to acting as a virtual switch, Open vSwitch provided
the high bandwidth attributed to the InfiniBand architecture via a
hardware offload. In a traditional network stack, all the incoming
packets are processed by the operating system kernel. This is very
CPU intensive and has low bandwidth because the CPU has to
inspect each packet before forwarding it to its destination. By
leveraging the Open vSwitch hardware offload, the ConnectX-5
adapter freed up the host workstation CPU and achieved higher
bandwidth.

In the configuration, a packet reached the Open vSwitch daemon
and kernel module within user and kernel space, respectively. Open
vSwitch then made the decision to offload all subsequent packets
to the InfiniBand hardware.

4.2 Network Monitoring Tools
InfiniBand network traffic was monitored using Wireshark/tshark,

tcpdump and ntopng. These open-source tools are commonly employed
for network traffic monitoring.

A network monitoring tool uses a packet capture library (such as
libpcap) to capture packets from live network devices or files. In gen-
eral, a packet capture library polls for suitable devices, gains control
of the devices and proceeds to filter and capture the incoming net-
work packets. In addition to libpcap, the ntopng tool also uses the
PF RING library, a newer network socket that dramatically improves
packet capture speed. New versions of PF RING provide packet cap-
ture speeds exceeding 10 Gbps (up to 100 Gbps is possible) on multiple
network adapters with low packet loss.

PF RING polls packets from the SmartNIC using the Linux NAPI,
which copies the packets from the hardware to a circular buffer. The in-
coming packets are then distributed to multiple rings simultaneously,
drastically improving the packet capture speed and reducing packet
loss [16].
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The iPerf tool was employed for traffic generation and bandwidth
testing. The tool reports multiple metrics related to network health,
including bandwidth, latency, jitter and datagram loss. In the simplest
setup, a server is created that opens up a socket to receive traffic and a
client is configured to send traffic at a specified interval and bandwidth.

4.3 Data Collection Metrics
The following data collection metrics were employed in the experi-

ments to analyze the effectiveness of the monitoring tools:

Bandwidth: The average bandwidth in each experimental trial
determines how much TCP/IP traffic was sent from a client to a
server, and the (potential) negative impact of a monitoring tool on
the network.

Packets Received: This metric measures the number of packets
received by a monitoring tool.

Packets Dropped: This metric measures the number of packets
dropped by a monitoring tool.

DataConsistency: Data consistency is measured using the mean,
standard deviation and coefficient of variation (CV) of the exper-
imental trials.

Additionally, a baseline was set using the Linux utility ip on the
server host machine. The ip utility reports many statistics, but the ex-
periments only used the packets received and packets dropped statistics.
While the utility does drop some packets, it captures 99% of all TCP/IP
traffic that enters and leaves a client host machine. This enabled the col-
lection of statistics pertaining to the numbers of packets dropped by the
monitoring tools due to their inability to handle high traffic flows.

4.4 Case Study 1
The first case study, involving host-based monitoring with hardware

offload enabled, was designed to evaluate the efficacy of applying network
monitoring tools in InfiniBand networks. The experiments used the
Wireshark and tcpdump tools.

Under typical conditions, an InfiniBand application using remote di-
rect memory access bypass the operating system kernel and would, there-
fore, be hidden from network monitors. Nvidia Mellanox adapters sup-
port the use of custom vendor tools such as the Offloaded Traffic Sniffer
to capture TCP/IP packets on desired interfaces [15]. However, because
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Ethernet was used as the link layer protocol in this research (along with
the RoCE protocol for direct memory access), network packets could
be captured without using custom tools on Nvidia Mellanox and other
vendor-specific hardware. In general, capturing network traffic using
remote direct memory access or RoCE is the same. Both use direct
memory access operations; the main difference is that either Ethernet
or InfiniBand is used as the link layer protocol for network communica-
tions. The main benefit of RoCE is that a custom tool is not needed
to monitor incoming traffic. Any common network monitoring tool can
see TCP/IP traffic on the network interface card interface with RoCE,
a benefit that stems from using Ethernet as the underlying link layer
protocol.

Case Study 1 employed InfiniBand/Ethernet 100 GbE with the Smart-
NIC ConnectX-5 adapter network configuration. iPerf was used to send
TCP/IP packets and report the average bandwidth. A total of 50 trials
were performed, five trials for each of five bandwidth levels (1, 3, 5, 10
and 25 Gbps) for each of the two monitoring tools. The trial durations
were 120 seconds and the average bandwidth was reported at one second
intervals throughout the trials. Hardware offload was enabled in the case
study. The goal was to determine whether the monitoring tools could
capture TCP/IP traffic at bandwidths of 1 Gbps or higher because large
volumes of packets are dropped at these bandwidths.

The experiments in Case Study 1 involved the following steps with
each monitoring tool:

Step 1: Configure the server and client host machines to enable
IPoIB so that network traffic can be sent on Layer 3.

Step 2: Run iPerf receiver on the server host at the desired band-
width level.

Step 3: Initiate the network monitoring tool on the server host
and specify the interface for packet capture.

Step 4: Run iPerf sender on the client host to send TCP/IP
packets to the receiver.

Step 5: Terminate the network monitoring tool after 120 seconds
of capture.

Step 6: Record the 120 samples captured during the trial.

Step 7: Repeat Steps 2 through 6 for the remaining bandwidth
levels.
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After all the trials were completed, the baseline numbers of received
and dropped packets were compared against the numbers of received
and dropped packets in Case Study 1. The number of dropped packets
reported by the ip tool was subtracted from the number of dropped
packets reported by each monitoring tool.

Next, the variation of the data collected during each bandwidth level
trial was computed. A statistical test of the mean, standard deviation
and coefficient of variation (CV) of the dropped packets was conducted
to evaluate data consistency. In this case study as well as the other
two case studies, a coefficient of variation less than 10% was assumed to
indicate that the collected data was consistent across all the bandwidth
level trials.

4.5 Case Study 2
The second case study, involving SmartNIC monitoring with hard-

ware offload disabled, was designed to evaluate the throughputs of the
network monitoring tools for InfiniBand applications at the SmartNIC
itself. In the case study, a degree of anonymity was gained because
network traffic was captured from the network interface card hardware
instead of the host workstation. The monitoring tools were configured
as in Case Study 1. However, because the SmartNIC only had a com-
mand line interface, the experiments were performed using tshark, the
command line equivalent of Wireshark.

The ntopng tool was selected to evaluate the efficacy of a flow-based
traffic analyzer, a capability that arose from the SmartNIC having the
Open vSwitch application in its Linux installation. In the experiments,
ntopng collected NetFlow records that were configured on and transmit-
ted by Open vSwitch running on the Smart NIC. NetFlow is a network
protocol for collecting IP traffic information and monitoring network
flows. The Open vSwitch application on the SmartNIC was configured
to send NetFlow records to a collector (ntopng) running on the server
host machine. The ntopng tool analyzed the flow and updated network
statistics for observation and analysis on a web browser on the client
host machine.

Case Study 2 employed InfiniBand/Ethernet 100 GbE with the Smart-
NIC ConnectX-5 adapter network configuration. iPerf was used to to
send TCP/IP packets and report the average bandwidth. A total of 45
trials were performed, five trials at each of three bandwidth levels (1, 3
and 5 Gbps) for each of the three monitoring tools; the maximum band-
width was 5 Gbps instead of 25 Gbps because TCP/IP traffic could not
be captured by the SmartNIC with hardware offload enabled. The trial
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durations were 120 seconds and the average bandwidth was reported at
one second intervals throughout the trial.

All the packets captured on the SmartNIC were related to RoCE op-
erations. This is because only the first packet reached the Open vSwitch
daemon, all subsequent packets were instructed to be offloaded to the
ConnectX-5 network interface card. The destinations of all the packets
(server host workstation) were observed. TCP/IP traffic was observed
in a parallel packet capture on the server host. This is why hardware
offloading had to be disabled to see traffic on the SmartNIC in the Case
Study 2.

The experiments in Case Study 2 involved the following steps with
each of the two monitoring tools:

Step 1: Configure the server and client host machines to enable
IPoIB so that network traffic can be sent on Layer 3.

Step 2: Run iPerf receiver on the server host at the desired band-
width level.

Step 3: Initiate the network monitoring tool on the SmartNIC
and specify the interface for packet capture.

Step 4: Run iPerf sender on the client host to send TCP/IP
packets to the receiver.

Step 5: Terminate the network monitoring tool after 120 seconds
of capture.

Step 6: Record the 120 samples captured during the trial.

Step 7: Repeat Steps 2 through 6 for the remaining bandwidth
levels.

As in Case Study 1, the numbers of dropped packets reported by the
ip utility were subtracted from the numbers of dropped packets reported
by the network monitoring tools. This was done to correct for the packets
that were not dropped by the monitoring tools themselves. Statistical
tests of the mean, standard deviation and coefficient of variation (CV)
of the dropped packets were conducted to evaluate data consistency. A
coefficient of variation less than 10% was assumed to indicate that the
collected data was consistent across all the bandwidth level trials.

4.6 Case Study 3
The third case study, involving SmartNIC monitoring with hardware

offload enabled, was designed to evaluate the throughputs of the network
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monitoring tools at the SmartNIC with the maximum bandwidth. The
monitoring tools and their configurations were similar to those in Case
Study 2, except that Open vSwitch was configured to allow for hard-
ware offload. Hardware offload enables network traffic to be handled by
the host channel adapter instead of having to traverse the host oper-
ating system kernel, reducing CPU intensive operations and improving
bandwidth.

With hardware offload enabled, the full bandwidth of the ConnectX-
5 adapter and InfiniBand applications can be achieved, and the effi-
cacy of the network monitoring tools for InfiniBand applications can be
evaluated. Case Study 3 employed InfiniBand/Ethernet 100 GbE with
the SmartNIC ConnectX-5 adapter network configuration. Once again,
iPerf was used to send TCP/IP traffic and report the average bandwidth.
However, since Case Study 3 only used the ntopng tool, a total of 25
trials were performed, five trials at each of the five bandwidth levels (1,
3, 5, 10 and 25 Gbps). Only ntopng was used because the two previ-
ous case studies revealed that Wireshark and tcpdump were incapable of
handling high bandwidths.

The experiments in Case Study 3 involved the following steps with
the ntopng monitoring tool:

Step 1: Configure the server and client host machines to enable
IPoIB that allows network traffic to be sent on Layer 3.

Step 2: Run iPerf receiver on the server host at the desired band-
width level.

Step 3: Initiate the ntopng network monitoring tool on the Smart-
NIC and specify the interface for packet capture.

Step 4: Run iPerf sender on the client host to send TCP/IP
packets to the receiver.

Step 5: Terminate the ntopng network monitoring tool after 120
seconds of capture.

Step 6: Record the 120 samples captured during the trial.

Step 7: Repeat Steps 2 through 6 for the remaining bandwidth
levels.

5. Results
This section presents the results of the three case studies and their

implications with regard to traffic monitoring in InfiniBand networks.
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Table 1. Baseline packet losses reported by the ip tool.

Case Study Bandwidth Packets Packets Percent
Received Dropped Dropped

Case Study 1 1Gbps 10,414,492 0 0.0%
3 Gbps 31,242,709 153 0.1%
5Gbps 52,070,648 193 0.0%
10 Gbps 104,137,417 5,212 0.5%
25 Gbps 225,989,529 10,987 0.5%

Case Study 2 1Gbps 10,414,521 0 0.0%
3Gbps 31,242,631 148 0.1%
5Gbps 52,070,535 199 0.0%

Case Study 3 1Gbps 10,414,537 0 0.0%
3Gbps 31,242,595 177 0.1%
5Gbps 52,070,499 201 0.0%
10 Gbps 104,136,650 5,170 0.5%
25 Gbps 260,115,117 11,086 0.4%

Before starting the experiments, a baseline of packets dropped by the
operating system kernel was determined using the Linux tool ip running
on the server host machine. Regardless of the network monitoring tool
used, some packets will be dropped by the operating systems of the server
hosts or by the hardware interfaces that receive packets. While many
factors contribute to packets being dropped, these commonly occur due
to hardware issues (e.g., faulty cables or hardware incapable of routing
effectively), software problems or insufficient bandwidth, among others.
Therefore, at the beginning of each case study, a test was conducted
using iPerf at each bandwidth level used in the case study. To normalize
the comparisons of monitoring tools, the number of packets dropped in
the bandwidth test was subtracted from the total number of dropped
packets reported by each monitoring tool.

Table 2 shows the baseline packet losses reported by the ip tool.
The results show that for every bandwidth level, less than 1% of the
packets during the test were dropped, which is well within the acceptable
standards. Applying this data to the network monitoring tool results in
the case studies makes it possible to make better claims about the effects
of using the monitoring tools, especially if they impose negative effects on
the network. While monitoring tools are expected to drop some packets
for any number of reasons, it would be highly undesirable if the tools
were to degrade the network.
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Figure 3. Dropped packets on the host workstation at various bandwidths.

5.1 Case Study 1 Results
The first case study was designed to explore the capabilities of com-

mon network monitoring tools in an InfiniBand network. The Wireshark
and tcpdump tools were used to capture packets at the server host ma-
chine (192.168.1.30). In all the experiments, the two tools were able
to capture TCP/IP traffic at the host workstations.

However, further analysis revealed that increasing the bandwidth re-
duced the ability to capture all the traffic. What started out as trivial
at 1 Gbps became overwhelming at the maximum bandwidth. Figure 3
shows that both monitoring tools begin to lose their effectiveness rapidly
beyond a bandwidth of 3 Gbps. Notably, Wireshark begins to drop off
dramatically at 5Gbps and is incapable of keeping up with traffic at
higher bandwidths. The tcpdump performs better than Wireshark above
3Gbps, but it still drops a large percentage of packets. A monitoring
tool drops packets when its packet capture library is slow, when packets
are copied between user and kernel space and/or when the buffer space
allocated by the operating system kernel fills up quickly.

Next, the statistics of the dropped packets at the various bandwidth
levels were used to provide estimates of collection accuracy. A total of 50
trials were performed, with five trials at each of the five bandwidth levels
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Table 2. Case Study 1: Packet loss – data variance.

Monitoring Bandwidth Mean of SD of CV of
Tool Packets Packets Packets

Dropped Dropped Dropped

Wireshark 1Gbps 3.1% 493.25 2.4%
3Gbps 33.3% 1,079.03 0.2%
5Gbps 54.9% 5,450.47 0.2%
10Gbps 76.5% 2,488.52 0.1%
25Gbps 90.0% 46,663.91 0.0%

tcpdump 1Gbps 7.4% 372.61 0.8%
3Gbps 35.5% 5,240.27 0.7%
5Gbps 43.6% 9,643.42 0.7%
10Gbps 53.0% 169,169.98 4.7%
25Gbps 70.8% 229,920.93 2.9%

for each of the two monitoring tools. The mean and standard deviation
(SD) of the dropped packets at each bandwidth level were computed.
The coefficient of variation (CV) was then computed by dividing the
standard deviation by the mean.

Table 2 shows that the coefficients of variation were all under 5%. The
coefficient of variation is a measure of the standard deviation relative to
the mean, which provides a dimensionless measure of the spread of the
collected data. The results imply that the data collected in Case Study 1
is generally consistent across all the trials and, barring possible outliers,
additional runs would likely produce similar results.

Two statements can made based on the overall packet losses of the
monitoring tools and the variations in the numbers of dropped packets.
First, network traffic created using Ethernet and RoCE operations can
be captured using common network monitoring tools; also, both mon-
itoring tools are capable of receiving the network traffic. Second, at
bandwidths above 1Gbps, the monitoring tools are ineffective at cap-
turing all the network traffic. Wireshark and tcpdump begin to drop
well over 30% of the incoming packets starting at 3 Gbps and the packet
dropping only becomes worse with increasing bandwidth. In summary,
while traffic capture is possible, common network monitoring tools are
ineffective at high bandwidths.

5.2 Case Study 2 Results
The second case study was designed to determine if the monitoring

tools used to capture InfiniBand traffic on the host workstation could
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Figure 4. Dropped packets on the SmartNIC at various bandwidths.

capture traffic on the SmartNIC. TCP/IP traffic could not be captured
on the SmartNIC when hardware offload was enabled. Therefore, the
hardware offload feature was disabled in the experiments.

Figure 4 shows that tshark and tcpdump were unable to capture all
the traffic. Specifically, tshark dropped a minimum of 65.7% of packets
and tcpdump essentially dropped all the packets. Interestingly, ntopng
incurred minimal packet loss. The ntopng tool also enables live captures
of packets at specified time intervals.

In order to confirm that the packet loss counts were accurate, the
numbers of packets reported by the monitoring tools were compared
with those reported by the Linux tool ethtool, which provides numer-
ous statistics about traffic received at an interface. The comparisons
confirmed that the packet loss counts of the monitoring tools were ac-
curate. The minimal packet loss incurred by ntopng was confirmed by
examining the PCAP files.

As in Case Study 1, the dropped packet statistics at various band-
width levels were compared. A total of 45 trials were performed, five
trials at each of the three bandwidth levels for each of the three moni-
toring tools. Note that trials were not performed at the 10 and 25 Gbps
levels due to bandwidth limitations imposed by the hardware offload
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Table 3. Case Study 2: Packet loss – data variance.

Monitoring Bandwidth Mean of SD of CV of
Tool Packets Packets Packets

Dropped Dropped Dropped

tshark 1Gbps 65.7% 2,043.18 0.4%
3Gbps 88.2% 19,554.85 0.9%
5Gbps 98.2% 90,484.81 2.8%

tcpdump 1Gbps 98.6% 10,687.54 1.5%
3Gbps 98.9% 31,744.95 1.3%
5Gbps 98.2% 16,916.16 0.5%

ntopng 1Gbps 1.3% 492.94 5.1%
3Gbps 1.3% 1,231.38 4.1%
5Gbps 1.4% 1,050.55 2.1%

feature. Table 3 shows that the coefficients of variation were all under
6%. Thus, it is safe to conclude that the collected data was consistent
across all the trials and, barring possible outliers, additional trials would
likely produce similar results.

Two statements can made based on the overall packet losses of the
monitoring tools and the variations in the numbers of dropped packets.
First, the hardware offloading feature of the SmartNIC is not available
when using the network monitoring tools; therefore, the ability to see
individual TCP/IP packet data is lost. Second, network traffic created
using Ethernet and RoCE operations can be captured using the network
monitoring tools on the SmartNIC with hardware offload is disabled,
albeit only at lower bandwidths.

Figure 4 and Table 3 show that tcpdump and ntopng are capable of
receiving network traffic. However, tshark and tcpdump are not effective
at capturing traffic. In fact, Figure 4 shows that tcpdump and tshark
drop more than 99% of the network packets at the maximum bandwidth.
Thus, another method is required to monitor network traffic.

Fortunately, the ntopng results are promising. At each bandwidth
level, only a small percentage of packets were dropped – a little over
1%. Note that dropped implies that the packets were not captured and
processed by the network interface. The consistency and efficacy of the
ntopng tool demonstrate that its flow-based traffic monitoring capability
is a promising alternative for InfiniBand networks.
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Figure 5. Dropped packets at various bandwidths at the host server using ntopng.

5.3 Case Study 3 Results
The third case study was designed to determine if the promising re-

sults obtained using ntopng to monitor InfiniBand traffic on the Smart-
NIC in Case Study 2 would persist at higher bandwidths. In the previous
case studies, all the other monitoring tools dropped significant percent-
ages of packets as bandwidth increased. This is likely due to the packet
capture library being slow, packets being copied between user and ker-
nel space and/or buffer space in the operating system kernel overflowing
quickly.

Case Study 2 demonstrated that ntopng, which is a flow-based mon-
itoring tool, captured InfiniBand traffic very effectively up to 5 Gbps.
In Case Study 3, ntopng executed on the server host workstation while
the flow data was configured on and sent from the SmartNIC via Open
vSwitch. Thus, it seemed possible that hardware offload could be lever-
aged, even at high bandwidths, to monitor traffic at the SmartNIC with-
out losing the ability to see packet data.

The experiments revealed that, not only were TCP/IP packets vis-
ible and captured at all bandwidths by ntopng, but very few packets
were dropped. Figure 5 shows ntopng only dropped between 1.3% to
2.6% of network packets at bandwidths from 1 Gbps up to 25 Gbps. To
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Table 4. Case Study 3: Packet loss – data variance.

Monitoring Bandwidth Mean of SD of CV of
Tool Packets Packets Packets

Dropped Dropped Dropped

ntopng 1Gbps 1.3% 466.00 5.0%
3Gbps 1.3% 1,040.50 3.7%
5Gbps 1.4% 347.24 0.7%
10 Gbps 1.4% 317.27 0.3%
25 Gbps 2.6% 1,765.02 0.4%

confirm that the packet loss counts were accurate, the numbers of pack-
ets reported by ntopng were compared with those reported by ethtool
running on the host server. The comparisons confirmed that ntopng
was seeing all the generated traffic and that its reported metrics were
accurate.

The dropped packet statistics at various bandwidth levels were also
compared. A total of 25 trials were performed, five at each of the five
bandwidth levels. Table 2 shows that the coefficients of variation were
all under 5%. Thus, it is safe to conclude that the collected data was
consistent across all the trials and, barring possible outliers, additional
trials would likely produce similar results.

In summary, network traffic created by RoCE operations even at high
bandwidths is effectively captured by ntopng on the SmartNIC. Specif-
ically, hardware offload could be enabled on the SmartNIC, allowing
for high network speeds; also, packet data was observable in the cap-
tured files. Second, the results in Figure 5 and Table 4 demonstrate
that ntopng and its packet capture library implementation in conjunc-
tion with the Nvidia Mellanox hardware drastically reduced packet loss.
The packet loss measured for ntopng at the maximum bandwidth was
reduced by more than 95% compared with Wireshark and tcpdump in
Case Study 1.

6. Conclusions
This research has attempted to evaluate the capabilities of modern

traffic monitoring tools ( Wireshark/tshark, tcpdump and ntopng) for
monitoring InfiniBand networks. The experimental results demonstrate
that the monitoring tools can capture InfiniBand traffic, but are limited
to lower bandwidths due to inefficiencies in their packet capture libraries
and/or limited buffer space in the operating system kernels. The exper-
imental results also reveal that positioning the monitoring tools on an
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InfiniBand network interface incurred significant packet loss except at
low bandwidths. In contrast, the ntopng flow-based monitoring tool,
due to its efficient packet capture library, had very low packet loss at
much higher bandwidths. The ntopng incurred minor packet loss even
at the maximum bandwidth of 25 Gbps, rendering it a viable option for
monitoring InfiniBand networks.

The case study results indicate that options exist for monitoring In-
finiBand networks. However, additional research is needed to determine
the optimal configurations to achieve low-cost, efficient and reliable In-
finiBand network monitoring solutions.

The views expressed in this chapter are those of the authors, and do
not reflect the official policy or position of the U.S. Air Force, U.S. De-
partment of Defense or U.S. Government. This document has been ap-
proved for public release, distribution unlimited (Case #88ABW-2020-
3829).
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