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DETECTING ANOMALOUS
PROGRAMMABLE LOGIC
CONTROLLER EVENTS
USING PROCESS MINING

Ken Yau, Kam-Pui Chow and Siu-Ming Yiu

Abstract  Programmable logic controllers that monitor and control industrial pro-
cesses are attractive targets for cyber attackers. Although techniques
and tools have been developed for detecting anomalous programmable
logic controller behavior, they rely heavily on knowledge of the complex
programmable logic controller control programs that perform process
monitoring and control. To address this limitation, this chapter de-
scribes an automated process mining methodology that relies on event
logs comprising programmable logic controller inputs and outputs. The
methodology discovers a process model of normal programmable logic
controller behavior, which is used to detect anomalous behavior and sup-
port forensic investigations. Experiments involving a popular Siemens
SIMATIC S7-1212C programmable logic controller and a simulated traf-
fic light system demonstrate the utility and effectiveness of the method-

ology.
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1. Introduction

Programmable logic controllers, which are widely used to monitor and
control industrial processes, are computer systems that are designed to
operate reliably under harsh industrial conditions such as extreme tem-
peratures, vigorous vibrations, humidity and/or dusty conditions [21].
Historically, programmable logic controllers were proprietary systems
that operated in isolation with no external network connections. How-
ever, modern programmable logic controllers use common embedded
system platforms and commercial off-the-shelf software [3]. Addition-
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ally, they are often networked using TCP /IP and wireless protocols and
may connect to vendor networks, corporate networks and even the In-
ternet [12]. The vital roles played by modern programmable logic con-
trollers in critical infrastructure assets make them attractive targets for
attackers. Their use of commodity hardware and software coupled with
their network connectivity significantly increase their exposure to cyber
threats. Securing programmable logic controllers from cyber attacks is
a priority [13].

Programmable logic controllers exhibit anomalous behavior in attack
scenarios as well as during malfunctions and error situations. Detecting
anomalous behavior is an important first step in securing programmable
logic controllers and mitigating the negative impacts on the industrial
processes they operate. However, anomaly detection is a challenging
problem because it demands detailed knowledge of the complex pro-
grammable logic controller control programs that monitor and control
industrial processes. Additionally, due to their real-time operation of
industrial processes, it is difficult to stop programmable logic controllers
to investigate anomalies [19].

To address these limitations, this chapter presents an automated pro-
cess mining methodology that relies on event logs comprising program-
mable logic controller inputs and outputs. The methodology discov-
ers a process model of normal programmable logic controller behavior,
which is used to detect anomalous behavior and support forensic in-
vestigations. Experiments involving a popular Siemens SIMATIC S7-
1212C programmable logic controller and a simulated traffic light sys-
tem demonstrate the utility and effectiveness of the automated process
mining methodology.

2. Related Work

Process mining techniques enable analysts to extract insights about
process operations from collections of event records or logs [1]. Process
mining has traditionally been used to analyze business processes. How-
ever, process mining is increasingly being applied to anomaly detection.

Van der Aalst and de Medeiros [14] advocate the use of process min-
ing to analyze audit trails for security violations. They demonstrate
how process mining can support security efforts ranging from low-level
intrusion detection to high-level fraud prevention. They also show how
process mining can be used to identify anomalous behavior in an online
shopping website.

Myers et al. [7] have investigated the application of process mining
discovery algorithms on control device log data to detect cyber attacks
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on industrial control systems. Their research shows that inductive miner
process discovery (without noise alteration) is most effective at discov-
ering process models for detecting cyber attacks on industrial control
systems.

Laftchiev et al. [6] have proposed an anomaly detection approach for
discrete manufacturing systems. They focus on detecting incorrect event
execution sequences in discrete manufacturing systems using output data
from programmable logic controllers. They employ process mining to
develop models of normal behavior and identify anomalous behavior as
event sequences that deviate from the modeled normal behavior.

The methodology presented in this chapter differs from related work
in that it attempts to detect anomalous behavior by monitoring and an-
alyzing programmable logic controller inputs and outputs, eliminating
the need to capture and engage detailed knowledge about the system
being controlled. Additionally, the programmable logic controller event
logs used for process mining can support post-incident forensic investi-
gations.

The Stuxnet attacks [4] stimulated research efforts on discovering vul-
nerabilities in programmable logic controllers and addressing potential
threats. Wu and Nurse [16] have shown that attacks on programmable
logic controllers can be detected by monitoring the values of memory ad-
dresses in control programs. They identify the memory addresses used
by control program code, and monitor and log the memory values to
capture normal programmable logic controller behavior. The normal
behavior serves as a reference to identify anomalous programmable logic
controller behavior.

Yau et al. [17, 18, 20] have focused on forensic approaches for pro-
grammable logic controllers. One approach detects and records anoma-
lous programmable logic controller events based on changes to the con-
trol program logic. Another approach captures the values of relevant
memory addresses of a running control program and applies machine
learning techniques to the captured data to create a model for recogniz-
ing anomalous programmable logic controller behavior.

Wu and Nurse [16] and Yau et al. [16-18, 20] have shown that anoma-
lous programmable logic controller behavior can be detected by checking
whether or not the control program logic has been changed. However,
the methods require the collection and analysis of numerous memory val-
ues used by control programs. In contrast, the methodology described in
this chapter detects anomalous programmable logic controller behavior
simply by monitoring programmable logic controller input and output
values.
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3. Process Mining

Process mining provides theoretical and practical foundations for dis-
covering process models from various types of event data [10]. Many
successful applications of process mining have been developed for busi-
ness process management, but the adoption of process mining in other
domains is limited.

Process mining seeks to discover, monitor and improve real processes
by extracting knowledge from event logs. The techniques include pro-
cess discovery, conformance checking and process enhancement [7]. This
research employs process discovery to learn a Petri net model of a pro-
grammable logic controller as it controls a traffic light system. The Petri
net model obtained by the process mining of event logs captures normal
programmable logic controller behavior. Programmable logic controller
behavior that does not match the expected behavior modeled by the
Petri net is deemed to be anomalous.

Several types of process models can be constructed using process min-
ing. The proposed methodology employs the Petri net formalism, which
is widely used in computer science and systems engineering. Petri nets
combine a mathematical theory with graphical representations of dy-
namic system behavior. The theory enables the precise modeling and
analysis of system behavior; the graphical representation provides visu-
alizations of modeled system states [15].

Definition. A Petri net is a five-tuple PN = (P,T,1,0, M) where P
is a finite set of places; T is a finite set of transitions where PUT # ¢
and PNT = ¢; I : P xT — N is an input function that defines directed
arcs from places to transitions where N is a set of non-negative integers;
O : T x P — Nis an output function that defines directed arcs from
transitions to places; and My : P — N is the initial Petri net marking.

A Petri net marking is an assignment of tokens to places. Tokens
reside in places. The numbers and positions of tokens may change during
Petri net execution. In fact, tokens are used to define Petri net execution.

The basic idea in Petri net modeling is to describe state changes in
a system using transitions that symbolize actions. A Petri net contains
places (circles) and transitions (boxes) that may be connected by di-
rected arcs (Figure 1). Places symbolize states, conditions or resources
that must be met or be available before an action can be carried out.
Places may contain tokens that move to other places by executing (fir-
ing) actions. A token in a place means that the corresponding condition
is fulfilled or that a resource is available. In the transition diagram in
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Figure 1. Petri net transition diagram.

Figure 1, the transition may fire when there are tokens in places S1 and
S3. Firing removes the tokens in S1 and S3 and puts new tokens in S2
and S4.
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Figure 2. Programmable logic controller.
4. Overview

A programmable logic controller uses programmable memory to store
instructions and implement functions such as logic, sequencing, timing,
counting and arithmetic for its monitoring and control tasks [2]. Figure 2
shows a schematic diagram of a programmable logic controller.

A programmable logic controller executes a control program that
changes the status of programmable logic controller outputs based on the
status of its inputs. Each input and output is identified by its address.
In the case of a Siemens SIMATIC S7-300 programming logic controller,
the addresses of the inputs and outputs are expressed in terms of byte
and bit numbers. For example, 10.1 is an input at bit 1 in byte 0 and
Q0.2 is an output at bit 2 in byte 0.
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Figure 3. TLIGHT traffic light system.

The experiments employed a Siemens S7-1212C controller loaded with
a TLIGHT traffic light simulation program to demonstrate the process-
mining-based anomaly detection methodology. TLIGHT is a sample pro-
gram that is provided with the Siemens SIMATIC S7-300 Programmable
Controller Quick Start User Guide [11]. Figure 3 shows the TLIGHT
traffic signal system controlling vehicle and pedestrian traffic at an in-
tersection.

5. Proposed Methodology

This section describes the methodology for detecting anomalous pro-
grammable logic controller behavior using process mining. The method-
ology involves the following steps:

A simulated traffic light system is set up using a Siemens pro-
grammable logic controller. The system is isolated from other net-
works.

Programmable logic controller activities (inputs and outputs) are
recorded every second to create an activity log that represents
normal programmable logic controller behavior.

Process mining is used to create a Petri net model from the activity
log.

An invalid state transition detector is created to identify anoma-
lous behavior based on the Petri net model.

The traffic light system is connected to a network and anomalous
traffic light system behavior is induced.

The accuracy of the invalid state transition detector is evaluated
based on its ability to identify anomalous programmable logic con-
troller behavior.
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Figure 4. Experimental setup.

5.1 Traffic Light System

Figure 4 shows the experimental setup. A Siemens S7-1212C pro-
grammable logic controller running the TLIGHT traffic light program
was employed. The simulated traffic light control system was created
by establishing the input and output associations. Specifically, the
programmable logic controller inputs 10.0 and 10.1 were connected to
switches associated with the two green light request buttons for pedes-
trians. The programmable logic controller outputs were connected as
follows: Q0.0 to the red light for pedestrians, Q0.1 to the green light for
pedestrians, Q0.3 to the red light for vehicles, Q0.4 to the yellow light
for vehicles and Q0.5 to the green light for vehicles.

The Ethernet port of the programmable logic controller was used
to establish a network connection for communicating with two periph-
eral devices, Snap7 [8] and the invalid state transition detector. Snap7
is an open-source, 32/64 bit, multi-platform Ethernet communications
suite for interfacing with Siemens S7 programmable logic controllers.
In the experiments, Snap7 was used to induce anomalous traffic light
behavior by altering certain memory values in the control program of
the programmable logic controller. The invalid state transition detec-
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Figure 5. Traffic light state sequences.

tor was employed to detect anomalous behavior and capture evidence
for forensic purposes. The detector was developed using libnodave,
an open-source communications library for SIMATIC S7 programmable
logic controllers [5]

The TLIGHT traffic light program controls vehicle and pedestrian
traffic at an intersection. Figure 5 shows the five traffic light states (S0,
S1, S2, S3 and S4) and their sequences (with timings).

5.2 Programmable Logic Controller Behavior

The 1ibnodave open-source library was also used to develop a logging
program. The values used by TLIGHT were stored at input/output
addresses 10.0, 10.1, QO0.0, Q0.1, QO0.3, Q0.4 and Q0.5. The logging
program monitored these programmable logic controller addresses over
the network and recorded the values along with their timestamps every
second.

The programmable logic controller inputs and outputs were trans-
formed to activities that manifested normal programmable logic con-
troller behavior. The input activities were 1-00 (10.0=0 and 10.1=0),
I-01, I-10 and I-11. The output activities corresponded to the traffic
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Case number EventID Activity Input Output Date/Time
20 S0 103 Q-10001 00 10001  7/6/2019 7:24:10 PM
21 104 110 10 10010  7/6/2019 7:24:11 PM
21 105 Q-10010 | 10 10010 7/6/2019 7:24:11 PM
21 S1 106 Q-10010 | 00 10010 7/6/2019 7:24:12 PM
21 107 Q-10010 00 10010  7/6/2019 7:24:13 PM
21 108 Q-01100 | 0O 01100 7/6/2019 7:24:14 PM
21 109 Q-01100 | 0O 01100 7/6/2019 7:24:15 PM
21 110 Q-01100 | 0O 01100 7/6/2019 7:24:16 PM
21 111 Q-01100 | 0O 01100 7/6/2019 7:24:17 PM
21 gp < 112 Q-01100 | 0O 01100 7/6/2019 7:24:18 PM
21 113 Q-01100 | 00 01100 7/6/2019 7:24:19 PM
21 114 Q-01100 | 0O 01100  7/6/2019 7:24:20 PM
21 115 Q-01100 | 0O 01100 7/6/2019 7:24:21 PM
21 116 Q-01100 | 0O 01100 7/6/2019 7:24:22 PM
21 : 117 Q-01100 | 0O 01100 7/6/2019 7:24:23 PM
21 118 Q-10100 | 0O 10100  7/6/2019 7:24:24 PM
21 119 Q-10100 | 0O 10100  7/6/2019 7:24:25 PM
21 S3 4 120 Q-10100 | 0O 10100  7/6/2019 7:24:26 PM
21 121 Q-10100 | 00 10100 7/6/2019 7:24:27 PM
21 122 Q-10100 | 00 10100 7/6/2019 7:24:28 PM
21 123 2-10100 | 00 10100  7/6/2019 7:24:29 PM
21 124 Q-10110 | 0O 10110 7/6/2019 7:24:30 PM
21 S4 125 Q-10110 | 00O 10110  7/6/2019 7:24:31 PM
21 126 Q-10110 | 00 10110  7/6/2019 7:24:32 PM
22 127 1-00 o0 10001 7/6/2019 7:24:33 PM

Figure 6. Programmable logic controller activity log.

light states: Q-10001 (S0), Q-10010 (S1), Q-01100 (S2), Q-10100 (S3)
and Q-10110 (S4). Figure 6 shows a portion of the programmable logic
controller activity log for normal traffic light operations.

Process mining requires data pertaining to a process, cases, events
and attributes. A process comprises cases. A case comprises events
(activities) where each event is related to precisely one case. Events
within a case are ordered. An event may have attributes such as resource
and timestamp.

The experimental data comprised one process, 7,832 cases and 34,956
events (activities). A case corresponded to a complete execution of the
TLIGHT traffic light system.
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Figure 7. Petri net model.

5.3 Petri Net Model

The ProM 6.6 process mining framework [9] was used to discover a
process model. This extensible framework supports a variety of process
mining techniques in the form of plug-ins. The function mine Petri net
with the inductive miner was applied to the dataset containing traffic
light activities over a four-hour period. Figure 7 shows the discovered
Petri net model.

To improve the Petri net model, the programmable logic controller
activity log was aggregated to obtain the duration of each state and this
data was added to the process model. Next, the Petri net model was
transformed to a finite state machine. A finite state machine is very
similar to a Petri net. In the case of the traffic light system, the trans-
formation rendered the state transitions more clear and understand-
able. Figure 8 shows the final finite state model that represents normal
TLIGHT operations (i.e., programmable logic controller behavior).

5.4 Invalid State Transition Detector

The invalid state transition detector, which was also developed using
libnodave, identifies anomalous programmable logic controller behav-
ior. Specifically, it used the finite state machine shown in Figure 8 to
detect two types of anomalous behavior:

Invalid states, i.e., states other than S0, S1, S2, S3 and S4.

Invalid time intervals between two consecutive states.

Instances of anomalous behavior raised alerts and the related evidence
was recorded for a forensic investigation.
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Figure 8. Finite state machine.

5.5 Anomalous Traffic Light Operations

Anomalous traffic light operations were induced using the Snap7 Eth-
ernet communications suite. Specifically, Snap7 induced anomalous traf-
fic light operations by flipping some memory values in the programmable
logic controller control program between 0 and 1 intermittently.

5.6 Anomalous Behavior Detection

The invalid state transition detector monitored the programmable
logic controller inputs and outputs as the S7 suite intermittently in-
duced anom- alous traffic light operations. The detector created a log
file of timestamped anomalous behavior transaction records containing
programmable logic controller input values, previous state, current state
and time intervals of state transitions.

Figure 9 shows a traffic light activity log with invalid states that start
at 4:48:21 PM on 7/7/2019. The state 10000 corresponds to a situation
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Date/Time Input Prevous State Current State Remarks
7/7/2019 4:48:21 PM 00 10000 10000 State 10000 is not valid
7/7/2019 4:48:22 PM 00 10000 10000 State 10000 is not valid
7/7/2019 4:48:23 PM 00 10000 10000 State 10000 is not valid
7/7/2019 4:48:24 PM 00 10000 10000 State 10000 is not valid
7/7/2019 4:48:25 PM 00 10000 10000 State 10000 is not valid
7/7/2019 4:48:26 PM 00 10000 10000 State 10000 is not valid
7/7/2019 4:48:27 PM 00 10000 10000 State 10000 is not valid
7/7/2019 4:48:28 PM 00 10000 10000 State 10000 is not valid
7/7/2019 4:48:29 PM 00 10000 10000 State 10000 is not valid
7/7/2019 4:48:30 PM 00 10000 10000 State 10000 is not valid
7/7/2019 4:48:31 PM 00 10000 10000 State 10000 is not valid
7/7/2019 4:48:32 PM 00 10000 10000 State 10000 is not valid
7/7/2019 4:48:34 PM 00 10000 10000 State 10000 is not valid
7/7/2019 4:48:35 PM 00 10000 10000 State 10000 is not valid
7/7/2019 4:48:36 PM 00 10000 10000 State 10000 is not valid

Figure 9. Traffic light log with invalid states.

where only one pedestrian red light is on and all the other traffic lights
are off. Clearly, this is anomalous.

Date/Time Input Prevous State Current State Remarks

7/14/20199:44:08 AM 10 01100 01100 S2

7/14/20199:44:09AM 10 01100 01100 S2

7/14/20199:44:10AM 10 01100 01100 S2

7/14/20199:44:11AM 10 01100 01100 S2

Z/14/20199:44:10 AM 10 01100 01100 S2

7/14/20199:44:13 AM 10 01100 10100 Error :invalid time for transition S2 ->S3 I
7/14/20199:44:14 AM 10 10100 10100 S3

7/14/20199:44:15AM 10 10100 10100 S3

7/14/20199:44:16 AM 10 10100 10100 S3

7/14/20199:44:17 AM 10 10100 10100 S3

7/14/20199:44:18 AM 10 10100 10100 S3

7/14/20199:44:19AM 10 10100 10110 Error :invalid time for transition $3 ->S4
7/14/20199:44:20AM 10 10110 10110 S4

7/14/20199:44:21 AM 10 10110 10110 S4

Figure 10. Traffic light log with invalid time interval between consecutive states.

Figure 10 shows a traffic light activity log with an invalid time inter-
val between consecutive states. The anomalous behavior was induced
by Snap7. In the log file, an invalid time interval exists between state
S2 and S3 at 9:44:13 AM on 7/14/2019. The programmable logic con-
troller inputs, outputs and traffic light system state transitions recorded
with timestamps in the log file constitute evidence of anomalies. How-
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ever, the log file alone may not be adequate in a forensic investigation
because it does not have information about how the anomalies were in-
duced, including if they were caused by attacks or malfunctions. On
the other hand, an invalid state transition detection log raises alerts and
provides information that would initiate a forensic investigation. In a
forensic investigation, it would also be necessary to obtain and analyze
supplementary log files such as network logs and the system logs of the
device used to program the programmable logic controller. The time-
stamps recorded by the invalid state transition detector would enable
investigators to filter relevant data from the supplementary log files and
narrow the scope of the forensic investigation.

The decision to focus on a Siemens SIMATIC S7 programmable logic
controller was motivated by its widespread use and the fact that it was
targeted by the Stuxnet malware [4]. However, the proposed method-
ology can be applied to other programmable logic controllers and other
control applications because the solution approach is not tied to specific
hardware, software and operating systems. Rather, it only considers
programmable logic controller inputs and outputs.

6. Conclusions

The automated process mining methodology presented in this chapter
produces a Petri net model from event logs comprising programmable
logic controller inputs and outputs. The Petri net model, which expresses
normal programmable logic controller behavior, serves as a reference to
detect anomalous behavior. The event logs with timestamped input and
output values are also useful in forensic investigations.

Experiments involving a popular Siemens SIMATIC S7-1212C pro-
grammable logic controller and a simulated traffic light system yielded
high accuracy. All the anomalies were detected because the simulated
traffic light system is simple and involves limited programmable logic
controller inputs/outputs, states and state transitions. The accuracy
would likely be lower for a physical system with large numbers of inputs,
outputs, states and state transitions. Nevertheless, the methodology
holds promise because it can detect anomalous behavior without rely-
ing on detailed system knowledge and a complicated control program.
Additionally, the methodology differs from other approaches because it
can detect anomalous programmable logic controller events simply by
monitoring programmable logic controller inputs and outputs instead of
monitoring numerous memory addresses.

This research is an initial step in developing protection and forensic
capabilities for programmable logic controllers based on process mining
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techniques. Future work will attempt to apply process mining techniques
to various industrial control system applications to support anomalous
behavior detection and forensic investigations in industrial control sys-
tems and civilian applications.
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