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ANOMALY DETECTION IN
AUTOMATION CONTROLLERS

Robert Mellish, Scott Graham, Stephen Dunlap and Patrick Sweeney

Abstract Cyber-physical systems incorporate powerful devices that are used to
monitor and control physical processes. These devices along with col-
lectable statistics can be leveraged as sensors for network-based and
host-based anomaly detection. Host-based anomaly detection can be
used in a defense-in-depth strategy to complement traditional network-
based anomaly detection systems as well in systems for which network-
based options are infeasible due to their operating environments.

This chapter discusses the development of an anomaly detection sys-
tem for a SEL-3505 RTAC programmable logic controller using the rec-
ommended IEC 61131 programming tools. The required device statis-
tics are harvested by creating a Modbus server on the test system and
polling the server to retrieve data. The collected data is used to create
a representative fingerprint for the associated task. When the measured
behavior differs from the fingerprint, an anomaly is detected and an
alarm is raised. This approach is flexible and easily implemented in
existing installations. The performance of the anomaly detection sys-
tem is evaluated against several network-based attacks across multiple
firmware revisions and project types. Recommendations are made to
improve anomaly detection performance.

Keywords: Anomaly detection, automation controllers

1. Introduction
The risks to industrial control systems have increased as their net-

works have become more interconnected with corporate networks and
the open Internet. While advances have been made to secure indus-
trial control networks by adapting traditional information technology
network security solutions and developing specialized solutions such as
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process-aware detection methods, much more needs to be done to bolster
the resilience and security of these vital assets.

This research explores the utilization of end devices such as pro-
grammable logic controllers as sensors for network intrusion detection
in addition to their traditional process monitoring and control roles.
Specifically, it examines the effects of network intrusions on the task
execution time of a SEL-3505 real-time automation controller (RTAC)
and the potential efficacy of an anomaly detection system (ADS) that
engages the task execution time as its data feature.

The research has three contributions. The first is the analysis of the
limitations of a real-time automation controller implementation that al-
low for network intrusions. The second is strong experimental evidence
of the ability to detect network anomalies by tracking task times. The
third is a data collection framework that evaluates discrimination strate-
gies with multiple data features for the real-time automation controller.

2. SEL-3505 RTAC Device
The SEL-3505 RTAC used in this research is produced by Schweitzer

Engineering Laboratories, a U.S. manufacturer of power protection and
automation equipment. Schweitzer Engineering Laboratories does not
provide information about the numbers of devices it has sold and in-
stalled. However, success stories posted on the company website [19]
reveal that its devices protect power systems in the countries of Geor-
gia and Grand Cayman, control microgrids in several U.S. universities,
mitigate arc flashes at North American mining companies and manage
power in refineries. A recent study of the worldwide protective relay
market ranks Schweitzer Engineering Laboratories as the number one
relay manufacturer in North America [18]. Although the exact numbers
are elusive, it is clear that Schweitzer Engineering Laboratories devices
are used throughout the global critical infrastructure.

The SEL-3505 RTAC is marketed as an electric substation controller.
It combines physical input/output (I/O) with flexible IEC 61331 con-
trol logic and provides several serial ports and dual Ethernet ports.
Schweitzer Engineering Laboratories provides communications libraries
that enable SEL-3505 RTAC devices to interact with numerous other
devices. A SEL-3505 RTAC can also be used as a data concentrator,
communicating with multiple legacy devices over serial protocols and
converting the data streams to Ethernet-based communications. These
features render SEL-3505 RTAC devices popular for use in industrial
control systems as well as attractive targets for attackers.
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A SEL-3505 RTAC incorporates an embedded Linux host with ap-
plications that provide programmable logic controller functionality. A
web server is provided for configuration and management. User accounts
can be created and diagnostics executed from a password-protected web
page. The diagnostics include checking the control logic status and per-
forming factory resets if necessary. The web interface uses a PostgreSQL
back-end that supports functions such as downloading new project files
and making changes to the device firewall. Project files are created
using proprietary Windows-based AcSELerator RTAC engineering soft-
ware. The AcSELerator software, which is undocumented, creates a
compiled binary that is executed by the widely-used CODESYS pro-
grammable logic controller framework [14]. The CODESYS runtime
IEC 61131 logic engine enables the Linux host to act as a generic pro-
grammable logic controller. Understanding these interfaces is crucial to
securing the devices and the networks in which they reside. Detecting
anomalies in their operation can help recognize potential intrusions as
they are taking place.

A SEL-3505 RTAC has several security features. These include ap-
plication whitelisting that protects against rootkits, built-in denial-of-
service detection, system priority readjustment and functionality that
enables all configured sequence of events data tags to be available in
a syslog client [8, 20]. Whitelisting prevents the execution of unau-
thorized processes and denial-of-service detection supports responses to
brute force attacks on the network stack. However, the SEL-3505 RTAC
does not provide detection functionality for identifying misuse or subtle
exploitation of authorized applications.

To address this limitation, this research proposes the addition of an
anomaly detection system to identify network intrusions. If the intrusion
detection system is implemented in IEC 61131 function blocks, it could
be generalized across other programmable logic controllers, providing
end-device protection in any number of industrial control networks.

3. Anomaly Detection System
At an abstract level, a host-based anomaly detection system can be

distilled into a workload, system outputs, system parameters and deci-
sion algorithm that work in concert with a data collector at the heart
of the anomaly detection system. Figure 1 shows an anomaly detection
system comprising these components.
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Figure 1. Anomaly detection system.

3.1 Workload
The workload encompasses actions that the hardware must complete

on a continual basis. When completing these actions, the hardware pro-
duces measurable responses that can be leveraged in anomaly detection.
Some actions are mandated by the manufacturer and are immutable and
transparent to end users. Other actions are created by end users to ful-
fill their process requirements. The final category of workload includes
the burden imposed on the hardware by the physical process it monitors
and controls, and the network traffic it receives.

The workload is created by the following components:

Operating System: While programmable logic controllers and
other industrial devices may be portrayed as user logic running
on bare metal, in practice there is firmware that handles the net-
work stack and communications needed to program the devices.
These firmware functions compete for resources and can slow down
process control tasks even if they still meet the real-time require-
ments. Popular operating systems include OS-9, VxWorks and
Linux. Modifications to an operating system, whether malicious
or manufacturer mandated, can cause changes to the workload.
Some workload changes have been shown to be detectible by cur-
rent anomaly detection methods [4, 6].

Control Logic: The control logic is implemented by user-created
functions that a programmable logic controller continuously ex-
ecutes to monitor and control its assigned physical process. The
control logic for a complex process often constitutes the bulk of the
workload. The detection of malicious control logic modifications
has been the subject of considerable research [4, 6].
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Network Traffic: The packets sent and received by a device im-
pose a workload on the device. Some devices act as communi-
cations gateways that connect to numerous devices with a single
upstream device. Others simply translate physical process infor-
mation to a digital representation that is displayed on a human-
machine interface. Engineering functions such as programming,
performing diagnostics and retrieving system logs impose addi-
tional workload. The effects of the workload can be seen in the
task times of devices that are under duress from network scans [13].
Network intrusions are anomalous actions that are the focus of
anomaly detection. An intrusion places additional burden on a
device by creating network traffic, executing additional processes
on the operating system and/or exfiltrating data. An anomaly de-
tection system must discern between the normal workload and the
burden imposed by intrusions through careful selection of features
and analysis tools.

Physical Input/Output: Programmable logic controllers are re-
sponsible for monitoring and controlling physical processes using
specialized sensors and actuators. In some programmable logic
controllers, input/output data processing has been shown to cause
no increases in task times [4] because inputs vary in frequency. This
may indicate that input/output is being handled by a scheduled
task or by a secondary processor. A SEL-3505 RTAC has a field
programmable gate array (FPGA) that conditions binary and ana-
log input and output data, offloading the task from the processor.
However, due to the limitations of monitoring field programmable
gate arrays, the effects of physical input/output variations on task
times are not explored in this research.

3.2 System Outputs
The outputs of an anomaly detection system are the algorithm deci-

sion and the confidence level associated with the decision. A common
set of performance metrics is required to compare different anomaly de-
tection systems. Historically, the following metrics have been used to
compare the performance of anomaly detection systems [4, 11]:

True Positive Rate (TPR): The true positive rate is the rate at
which an anomaly detection system correctly identifies an anomaly.

True Negative Rate (TNR): The true negative rate is the
rate at which an anomaly detection system correctly identifies a
normally-behaving system.
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False Positive Rate (FPR): The false positive rate is the rate at
which an anomaly detection system incorrectly identifies a normal-
ly-behaving system as an anomaly.

False Negative Rate (FNR): The false negative rate is the rate
at which an anomaly detection system fails to identify an anomaly.

The false positive rate is the type I error of an anomaly detection
system. If the rate is too high, alarms become a nuisance and may be
disregarded when true anomalies occur. The false negative rate expresses
the frequency at which anomalies go undetected. Keeping this rate low
is the principal objective when designing an anomaly detection system.

In addition to the error rates, the following factors must be considered
when designing an anomaly detection system:

Detection Latency: Although it may not be used frequently,
detection latency is an important metric for anomaly detection
systems. The detection latency is the length of time required to
detect an anomaly. Its infrequent use may be attributed to the
need for a more mature anomaly detection system than those typ-
ically discussed in the literature.

System Overhead: Industrial control devices have limited com-
putational and storage resources, and must meet strict real-time
operational constraints. Therefore, a deployed anomaly detection
system must be as lightweight as possible to eliminate negative
impacts on the controlled physical process. System overhead may
be measured as an increase in task time or processor burden per-
centage.

3.3 Tuning Parameters

Tuning parameters are properties of an anomaly detection system
that can be changed to increase its overall performance. The tun-
ing parameters are:

System Features: Depending on the privileges provided to an
anomaly detection system, there are variety of features to consider.
These include statistics such as task time, CPU burden, numbers
of network packets sent and received, system RAM in use, and
more. Certain features may lend themselves better to detecting
specific attacks and an anomaly detection system designer must
carefully identify, justify and defend the chosen features. Previ-
ous research efforts have used task time as a feature [4, 6]. This
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research seeks to understand the intrusions that can be discerned
using the previously-employed features.

Data Collection Rate: The data collection rate can directly
affect the sensitivity of an anomaly detection system. If attacks are
ephemeral, a slow polling rate could miss anomalies. If data polling
is too frequent, the burden on the device becomes significant and
the real-time operational requirements will not be met.

Number of Data Points: The number of consecutive data points
needed to make a decision and the data collection rate directly cor-
relate with detection latency. Depending on the time complexity
of the decision algorithm, an increase in the number of data points
could have an undesirable increase in detection latency.

3.4 Decision Algorithm
A decision algorithm is central to an anomaly detection system and is

paramount to its overall success. A decision algorithm uses the collected
data to make an assessment about the operation of the device of interest.
Several methods have been employed to detect anomalies. Depending
on the data features collected, different decision algorithms have been
adopted. Vargas et al. [23] have monitored RAM usage using simple
moving averages. Formby and Beyah [6] have used a cumulative sum
algorithm on task time to detect modifications to control logic. Dunlap
et al. [4] have also considered task time, but they selected a permutation
test to discern changes. Alves et al. [1] have leveraged an embedded ma-
chine learning intrusion detection system in conjunction with OpenPLC
to detect network anomalies by inspecting TCP headers. To facilitate
a portable solution that could be implemented using IEC 61131 con-
trol logic, this research engages statistical methods instead of machine
learning approaches.

4. Experimental Design
This section describes the experimental design, including the experi-

mental factors, data collection, discriminator selection and system eval-
uation.

4.1 Experimental Factors
The proposed anomaly detection system employs functions native

to the SEL-3505 RTAC as well as supplementary functions written in
Python that could be integrated by the manufacturer into a future SEL-
3505 RTAC firmware release or they could be programmed in the con-
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Table 1. Experimental factors.

Firmware Revision Project File Type Network Intrusion

R145 Low task time Baseline
R146 High task time ARP spoofing
R147 PostgreSQL queries

CODESYS connection

trol logic engine by a control engineer. In this research, an experimental
treatment comprises a firmware revision, control logic project file type
and network intrusion.

Table 1 shows the experimental factors. Selecting one factor from each
column yielded 24 (= 3 × 2 × 4) combinations. These variations were
intended to capture the effectiveness of an anomaly detection system
across various workloads and intrusions. Ten trials were conducted for
each experimental treatment, leading to 240 total trials. The order in
which trials were conducted was determined by creating a list of all the
trials and randomizing their order.

Firmware Revisions. Previous research has shown that monitoring
task times in programmable logic controllers can identify firmware mod-
ifications [4, 6]. To verify that this research could be generalized to the
SEL-3505 RTAC, three firmware revisions released by Schweitzer Engi-
neering Laboratories were considered, R145, R146 and R147.

SEL-3505 RTAC Project File Types. Two project files were con-
sidered, one a low task time project and the other a high task time
project. Project 1 was a limited-functionality project with an average
task time of approximately 1,300 μs. It contained only the control logic
needed for SEL-3505 RTAC operation along with a single Modbus server
for data collection. Such a project would be unlikely to be deployed in an
operational environment, because even a data concentrator would have
additional network connections and data mapping logic. Nevertheless,
the project realized the lowest possible task time while still providing
the data needed for anomaly detection.

Project 2 was much more complex with an average task time of ap-
proximately 9,000 μs. The long task time was realized by performing
numerous complex mathematical operations that used pseudorandom in-
puts provided by SEL-3505 RTAC’s SELRand library and time-varying
inputs such as the numbers of bytes sent and received by the Ethernet
ports.
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The two projects represent the extremes in task times. Future research
will examine the use of branching projects whose complexity varies based
on the current states of the processes being monitored.

Network Intrusions. In order to assess the viability of using task
time as a data feature for intrusion detection, a number of feasible
network intrusions or attacks had to be devised against the SEL-3505
RTAC. Therefore, the implementation details of the SEL-3505 RTAC
were carefully explored to understand features that attackers could ex-
ploit. Successful exploits result in potentially-detectible footholds; iden-
tifying the exploits and mechanisms that enable them is the purpose of
an anomaly detection system.

The following intrusion mechanisms were employed in the experiments
for their demonstrated viability as attack vectors or as manifestations of
established footholds:

Baseline: The baseline treatment used the network traffic neces-
sary to harvest anomaly detection system data. This provided an
experimental backdrop for detecting network intrusions. Repeated
baseline trials were evaluated against each other to determine the
false positive rate for each algorithm.

ARP Spoofing: ARP spoofing is a standard mechanism for per-
forming man-in-the-middle attacks that are often used to demon-
strate the vulnerabilities of industrial control devices and net-
works [5, 15, 16, 22]. The exploit leverages the lack of authen-
tication in the address resolution protocol (ARP) to send unso-
licited resolution responses containing false information about the
network topology. The false link layer information causes network
traffic to be misdirected to a network attacker.

Although the use of encrypted traffic would severely limit an at-
tacker’s ability to collect information or inject packets, common in-
dustrial control protocols still rely on legacy implementations and
their communications are largely in plaintext. This lack of security
enables a variety of modification attacks against common proto-
cols such as Modbus [15] and DNP3 [5]. The lack of encryption in
the configuration protocols of devices also poses security risks to
industrial control networks with regard to ARP spoofing [10, 21].

Improper configuration of a SEL-3505 RTAC can pose additional
risks. The device generates a self-signed certificate upon installing
a new firmware revision. The certificate is used to encrypt the
HTTPS connection for initial configuration as well as PostgreSQL
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traffic. If the certificate is not replaced, an adversary could perform
a man-in-the-middle attack and impersonate the SEL-3505 RTAC
using a previously-compromised certificate from another SEL-3505
RTAC. This would enable an attacker to harvest credentials from
the supposed secure connection and inject arbitrary modifications
into the system configuration or programming traffic.

PostgreSQL Queries: A SEL-3505 RTAC uses a PostgreSQL
database to manage the control logic on the device and to inter-
face with the operating system. Engineering functions are pro-
grammed as SQL queries that are callable from the web interface.
These functions include changing the IP address, testing network
connectivity by pinging other devices and reading system diag-
nostic information. As an open-source database, PostgreSQL vul-
nerabilities are typically discovered and patched relatively quickly
compared with programmable logic controller patching by manu-
facturers. However, a burden is placed on manufacturers to in-
corporate the most up-to-date database versions in their device
firmware and for end users to patch their own devices.
If the PostgreSQL database is exploited or database credentials
are compromised, an attacker can launch denial-of-service attacks
because a SEL-3505 RTAC can be restarted by a database query.
A system restart is an easily-detectible anomaly but subtler attacks
are also possible. The PostgreSQL queries employed for foothold
emulation during the experiments included reads of the control
logic project from the SEL-3505 RTAC. The exfiltration of the
control logic is a major reconnaissance activity by an attacker as
it provides in-depth knowledge of the physical process controlled
by the SEL-3505 RTAC as well as the devices that communicate
with the SEL-3505 RTAC.

CODESYS Connection: The CODESYS runtime application
executing on a SEL-3505 RTAC is responsible for industrial con-
trol protocol communications and control logic operation. It uses
the standard port 1217 for engineering functions. The functions
include uploading and downloading control logic programs, moni-
toring real-time control logic values, forcing control logic values for
debugging purposes, and stopping and starting control logic execu-
tion. If enabled, the connection also allows access to the SEL-3505
RTAC filesystem.
Vulnerabilities related to the use of CODESYS as a programmable
logic controller framework have been documented [14] and ex-
ploited to decompile the control logic [7]. While CODESYS has
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Figure 2. Experimental data collection system.

recently implemented an authentication mechanism to establish
connections, this feature is not activated in a SEL-3505 RTAC
and credentials are not required on port 1217 itself. Instead, TCP
connections to port 1217 are blocked by default and the port can
be opened and closed by accessing the PostgreSQL database.

SEL-3505 RTAC filesystem access is a concern because it uses
TLS 1.1 for PostgreSQL traffic and web server configuration. The
private server key used for encryption can be exfiltrated from a
SEL-3505 RTAC using a CODESYS connection and then used
to decrypt any communication and extract information such as a
username and password. Additionally, an attacker could insert or
modify SEL-3505 RTAC files that may enable further exploitation.

In order to emulate this network intrusion, a passive CODESYS
connection was kept active during data collection. The passive
connection had the minimum workload generated by a CODESYS
connection with no files being read from the SEL-3505 RTAC and
no process values changed from the engineering workstation.

4.2 Data Collection
A total of 30,000 task time samples were collected for each trial. The

data was collected by creating a Modbus server on the SEL-3505 RTAC
and polling the server via a Modbus client implemented in Python using
the pymodbus module. After receiving a response from the server, the
client waited 1ms before polling again. Task time was used as the data
feature due to its ability to detect logic and firmware modifications,
as well as its sensitivity to changes in network traffic as described in
previous research [4, 6, 13].

Each dataset was saved as a CSV file for future analysis using the
selected decision algorithms. Future research will focus on real-time
detection using a continual data collection technique and eventually em-
ploy a SEL-3505 RTAC function block that goes beyond Modbus data
collection. Figure 2 shows a notional data collection process and the
experimental factors.
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Figure 3. Scatter plot of task time distribution.

4.3 Discriminator Selection
Pilot studies confirmed previous research results that task times do

not have normal distributions [4, 13]. Figure 3 shows a scatter plot of
the sampled task times from a pilot study with no network intrusions.
Three distinct clusters are discernible and no apparent correlation exists
between when a sample was taken and its associated task time. The
three clusters are seen in more detail in the kernel density estimation
plot in Figure 4.

Because the task time population does not have a normal distribu-
tion, the following three non-parametric statistical tests were selected as
discriminators to evaluate the efficacy at detecting network intrusions
using task time:

Permutation Test: This re-sampling test investigates the proba-
bility that two sample populations are from the same distribution.
The test can be performed without making any assumptions about
the sample distributions [25]. It has been used to detect control
logic and firmware modifications [4]. The mlxtend Python module
was used to perform this test [17].

Mann-Whitney U Test: This non-parametric test explores the
null hypothesis that one population is stochastically larger than
the other [3, 9]. While it is commonly used in the behavioral sci-
ences, the test has been employed to evaluate statistical differences
in sampled and forecasted network traffic [2, 12]. The test was con-
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Figure 4. Kernel density estimation of task time.

ducted on task time data using the scipy.stats.mannwhitneyu
Python function [24].

Kolmogorov-Smirnov Test: This non-parametric goodness-of-
fit test probes the hypothesis that two independent samples are
drawn from the same distribution. The test has the advantage of
considering the entirety of a distribution function instead of just
the difference in a test statistic. For the test to be valid, the task
time distribution is assumed to be continuous. The Kolmogorov-
Smirnov test statistic is the maximum absolute difference between
two distribution functions [3] and has been used to detect con-
trol logic modifications [6]. The test was conducted using the
scipy.stats.kstest Python function [24].

4.4 System Evaluation
To test each discriminator, the datasets must be separated by firmware

revision and project type. This reduces the buoying effect that inflates
the true positive rate when testing a low task time dataset against a high
task time dataset. Next, each intrusion-free dataset is tested against all
the other datasets in its (firmware revision, project type) subset.

Figure 5 shows the experimental analysis process. The results of the
tests are used to compute the true positive and false positive rates for
each decision algorithm. The process is repeated, varying the decision
threshold to generate a receiver operating characteristic (ROC) curve
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Figure 5. Experimental analysis process.

for each algorithm. The ROC curve helps explore the trade-off between
the true and false positive rates [4]. Additionally, the area under the
curve metric helps compare the performance of multiple algorithms [26].

5. Experimental Results
This section presents the anomaly detection results and discusses

strategies for improving the anomaly detection rates.

5.1 Anomaly Detection Rates
The compiled results from the 240 experimental trials are presented.

Figure 6 shows the ROC curves for the three decision algorithms. The
area under the curve (AUC) is also displayed for each algorithm. An
ideal classifier would have an area under the curve of 1.0. The Mann-
Whitney U test has the highest area under the curve of 0.89. The
Kolmogorov-Smirnov test has a slightly lower value of 0.88. The permu-
tation test has a value of 0.80. The ROC curves were employed to select
decision thresholds for the algorithms to showcase their representative
performance.

Tables 2, 3 and 4 show the results of the permutation test, Mann-
Whitney U test and Kolmogorov-Smirnov test, respectively. Values
shown in bold do not meet the performance thresholds of less than 0.1
for the false positive rate or greater than 0.9 for the combined true pos-
itive rate. These performance thresholds are based on previous research
in anomaly detection systems [4]. Each (firmware revision, project type)
pair is shown to highlight when an algorithm performed poorly overall
or if a specific test case was more difficult to detect.

The permutation test failed to meet the false positive rate threshold,
but it performed well in detecting network intrusions, with two (firmware
revision, project type) pairs just missing the 0.9 cutoff. The Mann-
Whitney U test performed well with regard to the overall false positive
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(a) Permutation test (AUC = 0.80).

(b) Mann-Whitney U test (AUC = 0.89).

(c) Kolmogorov-Smirnov test (AUC = 0.88).

Figure 6. ROC curves.
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Table 2. Permutation test results (decision threshold = 0.0001).

Firmware Task FPR TPR
Revision Time Combined CODESYS ARP Spoof PostgreSQL

R145 Low 0.46 0.94 0.96 0.86 0.99
R146 Low 0.22 0.97 1.00 1.00 0.92
R147 Low 0.40 0.87 0.81 0.91 0.90
R145 High 0.20 1.00 1.00 1.00 1.00
R146 High 0.69 0.90 0.92 0.92 0.85
R147 High 0.17 0.98 0.98 1.00 0.95

Table 3. Mann-Whitney U test results (decision threshold = 1 × 10−14).

Firmware Task FPR TPR
Revision Time Combined CODESYS ARP Spoof PostgreSQL

R145 Low 0.09 0.96 0.99 0.97 0.91
R146 Low 0.00 0.96 1.00 0.90 0.99
R147 Low 0.09 0.81 0.81 0.81 0.81
R145 High 0.00 0.97 1.00 0.92 1.00
R146 High 0.67 0.70 0.70 0.73 0.67
R147 High 0.00 0.78 0.74 0.75 0.86

Table 4. Kolmogorov-Smirnov test results (decision threshold = 1 × 10−17).

Firmware Task FPR TPR
Revision Time Combined CODESYS ARP Spoof PostgreSQL

R145 Low 0.11 1.00 1.00 1.00 1.00
R146 Low 0.00 1.00 1.00 1.00 1.00
R147 Low 0.16 1.00 1.00 1.00 1.00
R145 High 0.22 1.00 1.00 1.00 1.00
R146 High 0.91 1.00 1.00 1.00 1.00
R147 High 0.00 1.00 1.00 1.00 1.00

rate, but it did not yield adequate true positive rates in half of the test
cases. The Kolmogorov-Smirnov test yielded true positive rates of 1.0
across all the test cases, but it struggled with false positive rates, failing
to meet the threshold for four of the six (firmware revision, project type)
pairs.

A potential outlier in the data is firmware revision R146 with a high
project task time. All the tests have markedly different false positive
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rates for this test case. This could be due to some unknown behavior in
the firmware revision or automated conversion process that renders an
RTAC AcSELerator project compatible with a new firmware revision.

Figure 7 shows the ROC curves for the three tests without the R146
outlier. The area under the curve values for the Mann-Whitney U test
and Kolmogorov-Smirnov test are boosted to 0.94 and 0.97, respectively.
However, the permutation test has a modest improvement to just 0.83.

5.2 Improving Detection Rates
The results presented above were collected using all 30,000 samples in

each dataset without performing any pre-test data treatments. Future
research will explore the effect of sample size on the performance of each
algorithm. Additionally, data conditioning methods such as removing
outliers or only using specific percentiles of sorted data for detection will
be employed. With a compiled dataset and data collection framework
in place, further discrimination strategies may be employed, including
multiple data features such as tracking memory use in addition to task
time. Since multi-dimensionality increases the computational complex-
ity, it should be balanced against the performance gain.

Candidate algorithms that are vetted should be implemented in the
CODESYS environment for deployment in a real-time SEL-3505 RTAC.
By offloading detection from a central system to the real-time automa-
tion controller itself, the burden of network traffic would be removed
and the potential for malicious tampering of data in transit would be
reduced. This would also enable integration with pre-existing capabili-
ties such as syslog to enable a single point of security auditing for the
SEL-3505 RTAC. With multiple detection tests implemented in discrete
function blocks, voting schemes could be used and tuned. Additionally,
a wider array of attack types could be evaluated to demonstrate the
robustness of the anomaly detection solution and provide detailed com-
parisons with anomaly detection strategies described in the literature.

6. Conclusions
This research has focused on the development of an anomaly detec-

tion system for a SEL-3505 RTAC using task time as the data feature.
The ability to detect network intrusions using task time data was eval-
uated using three statistical tests. While the permutation test has been
used previously to detect control logic and firmware modifications, the
experiments demonstrated that it was unable to discriminate between
normal variations in device behavior and the burden created by network
intrusions; specifically, the overall false positive rate was unacceptably
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(a) Permutation test (AUC = 0.83).

(b) Mann-Whitney U test (AUC = 0.94).

(c) Kolmogorov-Smirnov test (AUC = 0.97).

Figure 7. ROC curves without R146 data.
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high. In contrast, the Mann-Whitney U and Kolmogorov-Smirnov tests
yielded good anomaly detection results, failing to meet the performance
thresholds for only a few experimental treatments. The Kolmogorov-
Smirnov test was able to detect network intrusions in all the trials and,
when the performance associated with the outlier (firmware revision
R146 and high task time) was discounted, the test yielded only 44 false
positives out of 450 baseline-to-baseline comparisons, a strong showing
for a proof-of-concept test.

Future work will focus on improving anomaly detection performance
using data conditioning and exploring the effects of sample size. The
data collection framework also provides the flexibility to test future
strategies against many data features and project types.

The SEL-3505 RTAC has several security features, but it is not de-
signed to detect the network intrusions tested in this research. ARP
spoofing in the absence of a network-based intrusion detection system
goes undetected, exposing the industrial control system and the phys-
ical system it monitors and controls to disruption or damage. While
anomaly detection is not the only alternative, task time is a promis-
ing data feature for detecting network intrusions. Moreover, anomaly
detection can be implemented in existing installations without adding
new devices by deploying the detection functionality in programmable
logic controller function blocks. Future research will focus on identifying
vulnerabilities and mitigations for the SEL-3505 RTAC as well as other
Schweitzer Engineering Laboratories equipment.

The views expressed in this chapter are those of the authors, and do
not reflect the official policy or position of the U.S. Air Force, U.S. De-
partment of Defense or U.S. Government. This document has been ap-
proved for public release, distribution unlimited (Case #88ABW-2020-
3828).
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