®

Check for
updates

Chapter 4

ATTACKING THE IEC 61131 LOGIC
ENGINE IN PROGRAMMABLE LOGIC
CONTROLLERS

Syed Ali Qasim, Adeen Ayub, Jordan Johnson and Irfan Ahmed

Abstract Programmable logic controllers monitor and control physical processes
in critical infrastructure assets, including nuclear power plants, gas
pipelines and water treatment plants. They are equipped with con-
trol logic written in IEC 61131 languages such as ladder diagrams and
structured text that define how the physical processes are monitored
and controlled. Cyber attacks that seek to sabotage physical processes
typically target the control logic of programmable logic controllers.

Most of the attacks described in the literature inject malicious con-
trol logic into programmable logic controllers. This chapter presents
a new type of attack that targets the control logic engine that is re-
sponsible for executing the control logic. It demonstrates that a control
logic engine can be disabled by exploiting inherent features such as the
program mode and starting/stopping the engine. Case studies involv-
ing control logic engine attacks on real programmable logic controllers
are presented. The case studies present internal details of the logic
engine attacks to enable industry and the research community to un-
derstand the control logic engine attack vector. Additionally, control
engine attacks on power substation, conveyor belt and elevator testbeds
are presented to demonstrate their impacts on physical systems.

Keywords: Programmable logic controllers, IEC 61131 logic engine, attacks

1. Introduction

Industrial control systems monitor and control infrastructure assets
such as electric power grids, nuclear plants, water treatment facilities
and gas pipelines [2, 3, 14]. An industrial control system environment
comprises a control center and field sites. The control center houses
human-machine interfaces (HMIs) and engineering workstations, and

© IFIP International Federation for Information Processing 2022

Published by Springer Nature Switzerland AG 2022

J. Staggs and S. Shenoi (Eds.): Critical Infrastructure Protection XV, IFIP AICT 636, pp. 73-95, 2022.
https://doi.org/10.1007/978-3-030-93511-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93511-5_4&domain=pdf

74 CRITICAL INFRASTRUCTURE PROTECTION XV

the field sites house the actual industrial (physical) processes that are
monitored and controlled via sensors, actuators and programmable logic
controllers (PLCs). Programmable logic controllers are embedded de-
vices that monitor and control industrial processes [5]. They incorporate
control logic programs written in IEC 61131 languages such as ladder
diagrams, structured text and instruction lists that define how physical
processes are to be monitored and controlled.

The control logic of a programmable logic controller is typically tar-
geted by a cyber attack to sabotage a physical process [6]. Most control
logic attacks described in the literature inject malicious control logic into
programmable logic controllers over networks [4, 7, 13, 18, 19, 21, 25, 27,
28]. For example, the Stuxnet malware targeted Iran’s uranium-235 pro-
cessing facility by injecting control logic into Siemens Step 7 engineering
software and S7-300 programmable logic controllers [9].

This chapter presents a new type of control logic attack that targets
the control logic engine of a programmable logic controller, which exe-
cutes the control logic. It demonstrates that the control logic engine can
be disabled by exploiting inherent features such as the program mode
and starting/stopping the engine. Two case studies drawing on attacks
listed in the MITRE ATT&CK knowledge base [16], such as man-in-
the-middle, unauthorized command message, loss of availability, denial
of control and manipulation of control, are presented.

The first case study involves the Schweitzer Engineering Laboratory
SEL-3505 Real-Time Automation Controller (RTAC) that is equipped
with security features such as device access control and traffic encryp-
tion. The second case study involves three traditional programmable
logic controllers with no security features, Schneider Electric Modicon
M221, Allen-Bradley MicroLogix 1100 and 1400 programmable logic con-
trollers.

The two case studies present internal details of the logic engine at-
tacks, including proprietary programmable logic controller communica-
tions protocols to enable industry and the research community to un-
derstand the control logic engine attack vectors. Additionally, control
engine attacks on power substation, conveyor belt and elevator testbeds
are presented to demonstrate their impacts on physical systems.

2. Background and Related Work

This section provides an overview of industrial control systems and
discusses related research efforts.

Qasim, Ayub, Johnson & Ahmed 75

r-—""—-""—- a
Engineering |

HMI Workstation |

SR ER | l

I
| I |
| I |
|) [|
| | : A : Boiler :
— —_—— | I % I
Historian Control Server | : PLC :
e o o o — o — — — —— _.l L o — A
Control Center Field Site

Figure 1. Industrial control system.

2.1 Industrial Control Systems

Figure 1 shows an industrial control system that operates a steam
generation system. The industrial control system has a field site that
houses the physical steam generation process system and a control center
that operates the physical system in a safe and efficient manner. The
physical process is monitored and controlled using sensors, actuators and
a programmable logic controller. Water entering the boiler is converted
to steam, which is transported via a pipeline. The programmable logic
controller receives sensor data about parameters such as water level,
pressure and temperature in the boiler. It processes the sensor data
using control logic to adjust the parameter values by operating valves.
The programmable logic controller also sends process state data to the
control center over a network.

The control center has a human-machine interface, historian, con-
trol server and engineering workstation. The human-machine interface
shows operators the current state of the physical process. The historian
logs programmable controller inputs (sensor data) and outputs (control
actions) for analytic and forensic purposes. The control server commu-
nicates with the field site over a network. The engineering workstation
runs engineering software provided by the programmable logic controller
vendor to program, configure and maintain the programmable logic con-
troller remotely. A control engineer can create a control logic program
using the engineering software and proceed to download (write) it to the
programmable logic controller or upload (read) the code running on the

76 CRITICAL INFRASTRUCTURE PROTECTION XV

programmable logic controller. The IEC 61131-3 standard recommends
five control logic programming languages, ladder diagrams, sequential
function charts, function block diagrams, structured text and instruc-
tion lists, for writing control logic programs.

2.2 Related Work

Control logic attacks described in the research literature either tar-
get control logic code running on programmable logic controllers (also
referred to as control logic injection attacks) [12, 22, 26] or compromise
programmable logic controller firmware to manipulate control logic exe-
cution [10]. The attacks described in this chapter are novel in that they
target control logic engines instead of the control logic code in targeted
programmable logic controllers without modifying the programmable
logic controller firmware.

Senthival et al. [25] have presented three types of denial of engineer-
ing operations attacks. In the first type of attack, an attacker intercepts
network traffic between an engineering workstation and targeted pro-
grammable logic controller and replaces the original ladder diagram with
an infected diagram or vice versa when it is downloaded or uploaded,
respectively. In the second type of attack, an attacker with man-in-the-
middle access replaces part of the original ladder diagram with noise
when it is uploaded, causing the engineering software to crash. The
third type of attack, which also crashes the engineering software, only
requires the attacker to remotely download infected control logic to the
targeted programmable logic controller.

Kalle et al. [13] have presented a control logic injection attack that
involves four phases. The attack first compromises a programmable
logic controller and steals its control logic. The stolen binary is decom-
piled, following which malicious logic is injected and the modified code
is compiled and transferred to the programmable logic controller. The
malicious logic is hidden from the engineering software by employing a
virtual programmable logic controller that captures network traffic cor-
responding to the original logic and sends it to the engineering software
when it attempts to read the modified control logic in the programmable
logic controller.

McLaughlin and McDaniel [15] have presented a similar control logic
injection attack. The control logic bytecode of a targeted programmable
logic controller is downloaded and decompiled into a logical model in or-
der to find mappings between the devices connected to the programmable
logic controller and the variables in the control logic. The attack changes
the mappings arbitrarily and downloads the control logic to the pro-

Qasim, Ayub, Johnson € Ahmed 7

grammable logic controller to cause harm. This attack requires knowl-
edge about industrial control system operations.

Yoo and Ahmed [27] have presented two control logic injection at-
tacks, data execution, and fragmentation and noise padding. The data
execution attack exploits the fact that a programmable logic controller
does not enforce data execution prevention and transfers malicious con-
trol logic to its data blocks. The attack then changes the control flow
of the programmable logic controller to execute the logic in its data
blocks. In contrast, the fragmentation and noise padding attack sub-
verts deep packet inspection by sending write requests using malicious
control logic. Each write request packet contains one byte of the control
logic and the rest of the packet contains noise. Every subsequent write
request attempts to overwrite the memory region of the programmable
logic controller that was written with noise by the previous request.

Govil et al. [11] incorporated malware in a ladder logic bomb that is
inserted into the control logic of a programmable logic controller. Such a
logic bomb is difficult to detect by manually validating the control logic
in a programmable logic controller. The logic bomb is activated by a
trigger signal or it can execute autonomously to disrupt or damage the
physical system over time.

Garcia et al. [10] have developed a model-aware rootkit that was in-
corporated in programmable logic controller firmware using JTAG (Joint
Test Action Group) ports [20]. The rootkit generates fake, but seemingly
authentic, inputs from legitimate inputs. The programmable logic con-
troller processes the authentic inputs according to its control logic and
generates output commands to actuators. However, the rootkit blocks
the outputs of the programmable logic controller at the firmware level
and instead sends malicious outputs generated from the fake inputs to
the sensors. This deceives a control engineer who monitors the physical
process via the human-machine interface.

Schuett et al. [22] have evaluated the possibility of modifying pro-
grammable logic controller firmware to execute remotely-triggered at-
tacks. They reverse engineered programmable logic controller firmware,
introduced malicious modifications and repackaged and installed the
modified firmware in the programmable logic controller. The compro-
mised firmware enabled time-based and remotely-triggered denial-of-
service attacks on the programmable logic controller.

3. Attacking Control Logic Engines

This section describes the adversarial model and the attacks used in
the programmable logic controller case studies.

78 CRITICAL INFRASTRUCTURE PROTECTION XV

Table 1. Attacks executed in the case studies.

Programmable MITRE ATT&CK Knowledge Base Attacks
Logic Controller

SEL-3505 RTAC Network sniffing, man-in-the-middle, manipulation of control

Modicon M221 Network sniffing, unauthorized command message, loss of
availability, denial of control, manipulation of control

MicroLogix 1100 Network sniffing, unauthorized command message, denial of
control, manipulation of control, man-in-the-middle, denial
of view

MicroLogix 1400 Network sniffing, unauthorized command message, denial of
control, manipulation of control, man-in-the-middle, denial
of view

The adversarial model assumes that the attacker is in the industrial
control network and can communicate with the targeted programmable
logic controller to launch a control logic engine attack. The attacker
may use a common information technology system attack such as an
infected USB drive or vulnerable webserver to infiltrate the industrial
control network and proceed to execute the control logic attack on the
targeted programmable logic controller. The attacker has the following
capabilities in the industrial control network:

Reading communications between the targeted programmable logic
controller and engineering workstation.

Initiating connections with the targeted programmable logic con-
troller to send malicious messages remotely.

Dropping or modifying messages in communications by assuming
a man-in-the-middle position.

The two case studies demonstrate IEC 61131 control logic engine at-
tacks on four programmable logic controllers. A control logic engine
attack is defined as an attack that disrupts or impairs the normal func-
tioning of a control logic engine. The case studies focus on attacks that
stop control logic engines from executing control logic. Various subsets
of attacks listed in the MITRE ATT&CK knowledge base [16] are em-
ployed on the programmable logic controllers (Table 1). The attacks,
their MITRE ATT&CK knowledge base identifiers and descriptions are
as follows:

Qasim, Ayub, Johnson & Ahmed 79

Network Sniffing (T0842): The attack sniffs network traffic to
gain information about the physical process and its control strat-

egy.

Man-in-the-Middle (T0830): The attack intercepts, modifies
and/or drops packets transmitted between the engineering work-
station and programmable logic controller.

Unauthorized Command Message (T0855): Theattack sends
an unauthorized command message to an industrial control system
device to make it function incorrectly.

Loss of Availability (T0826): The attack disrupts an industrial
control system device to prevent the delivery of products and/or
services.

Denial of Control (T0813): The attack temporarily prevents
the control of the physical process.

Manipulation of Control (T0831): The attack manipulates
the control of the physical process.

Denial of View (T0815): The attacker disrupts or prevents an
operator from viewing the status of the physical process.

4. Case Study 1: SEL-3505 RTAC

The first case study focuses on a Schweitzer Engineering Laborato-
ries SEL-3505 Real-Time Automation Controller (RTAC) with security
features such as encrypted traffic and device-level access control. The
SEL-3505 RTAC incorporates a logic engine that executes its control
logic. The attack, which is launched from a man-in-the-middle position
between the engineering software and programmable logic controller,
prevents the controller from executing the control logic in one of two
ways — by modifying the packet that starts the logic engine or by drop-
ping the packet entirely. Note that the initial communications with
the controller are encrypted using transport layer security (TLS). Un-
encrypted communications begin only after a legitimate user has logged
in, which prevents a man-in-the-middle attack.

4.1 Controller Details

The SEL-3505 RTAC is equipped with an IEC 61131 control logic
engine. It has a web interface for monitoring and configuring the network
interface, system logs, user accounts and security settings. A control
engineer can write the control logic, configure communications protocols,

80 CRITICAL INFRASTRUCTURE PROTECTION XV

Message to start the SEL-3505 RTAC Logic Engine

2@ 5@ 2 Function SessionID @ c@ a8 @a 7@ c@ a8
ea 96 c.Cede:Start 39 35 2p\sc &b od 48 47 50 13

04 60 96 99 00\eo [06 e 0@ 15|20 @0 pe 89 cd 55
06 10 00 02 00][le][9a 5e B8a 2|60 06 00 Oc 00 60
92 00 81 01 88 8O 11 84 80 08/ da 5a 31 dd

Message to stop the SEL-3505 RTAC Logic Engine

8@ 5@ 2Function SessionID @ c@ a8 Ba 70 c@ a8
Pa 96 cCodeiStop | 39 35 24Nf4 6b od 4b 2b 50 18
83 fd 96 99 eelee 20 99 00 88 cd 55
00 10 00 02 00 80 60 60 0c 00 00
20 22 81 91 938 00 11 84 80 00/[da 5a 31 dd|

Unknown Static Field: Remains the same over different sessions
B unknown Dynamic Field : Varies over different sessions

Figure 2. Messages sent to the SEL-3505 RTAC to start and stop its logic engine.

read /write projects, and start or stop the logic engine using the SEL-
5033 AcSELerator RTAC software [23].

The SEL-3505 RTAC uses the ex-GUARD [17] system to control
task execution. All tasks that are not approved by the whitelist are
blocked [23]. The device communicates with the AcSELerator software
on port 5432. Most communications, including session establishment,
user authentication and reading/writing projects from/to the device,
are encrypted using TLS encryption. However, after a user logs in, the
SEL-3505 RTAC opens port 1217 and starts a second communications
channel for sharing its state in real time. Surprisingly, the communica-
tions on port 1217 are unencrypted.

4.2 Vulnerabilities and Attacks

Exploration of the SEL-3505 RTAC communications internals revealed
that it receives unencrypted commands on port 1217 to start and stop
the logic engine. Additionally, the packets carrying the commands could
be identified. Reverse engineering the commands enabled the under-
standing of function codes and other fields such as session IDs.

Figure 2 shows the two request packets sent by the AcSELerator soft-
ware to the SEL-3505 RTAC to start and stop its logic engine. The
session ID is incremented by three in each new session and the func-
tion codes for starting and stopping the logic engine are 0x10 and 0x11,
respectively. The other messages remain the same in different sessions

Qasim, Ayub, Johnson & Ahmed 81

Input: TCP Packet
1. if (packet_src == AcSELerator & packet_dst == RTAC & packet_port == 1217)
2. if (packet_payload_contains (static_fields))
3. Modify/Drop

Figure 3. Pseudocode for the Ettercap filters.

(identified as unknown static fields) and their semantics are not required
to launch attacks.

The following attacks listed in the MITRE ATT&CK knowledge base
were launched in the case study:

Network Sniffing (T0842): Network sniffing is the first step
in finding vulnerabilities to launch subsequent attacks. Since the
sniffer is in the same network as the engineering workstation and
programmable logic controller, network traffic can be captured and
subsequently analyzed to gain information needed to launch at-
tacks. The information includes the port on which unencrypted
communications are sent as well as specific message fields that are
used to design Ettercap filters [8].

Man-in-the-Middle (T0830): After sniffing the network traffic
and identifying the packets responsible for starting/stopping the
logic engine, Ettercap filters are used to poison the ARP caches
of the target machines and assume a man-in-the-middle position
between the AcSELerator software and SEL-3505 RTAC. The con-
tents of packets sent by the engineering software to the device are
then modified or the packets are simply dropped.

Manipulation of Control (T0831): The man-in-the-middle po-
sition is leveraged to stop the control logic engine of the SEL-3505
RTAC from executing its control logic, which impacts the control
of the physical process.

The information obtained via network sniffing was leveraged to cre-
ate two Ettercap filters (DropFilter and Start-StopFilter) that identify
messages containing the logic engine start and stop commands. The
commands in the packets sent to the SEL-3505 RTAC can be modified
(i.e., by converting start to stop and vice versa) and the packets trans-
mitted or the packets could be simply dropped to stop the logic engine
or prevent a control engineer from accessing the logic engine. Figure 3
shows pseudocode corresponding to the Ettercap filters.

82 CRITICAL INFRASTRUCTURE PROTECTION XV

The filters first identify messages sent between the AcSELerator soft-
ware and SEL-3505 RTAC using their IP address and port 1217, respec-
tively. As shown in Figure 2, large numbers of packets containing the
start and stop commands are the same in different sessions (termed as
unknown static fields). The filters search these static bytes in the TCP
payloads of the messages to identify the right messages. After correctly
identifying a message, DropFilter uses the drop() command to drop the
message. Similarly, Start-StopFilter changes the function code located
at index 15 in the TCP payload from start (0x10) to stop (0x11) and
vice versa.

4.3 Experimental Evaluation

The control logic engine attack was evaluated on a power substa-
tion testbed comprising an SEL-3505 RTAC connected to an engineering
workstation, circuit breaker and emulated voltage measurement device
designed to behave as a voltmeter. The SEL-3505 RTAC was configured
to open the circuit breaker when the voltmeter reports a voltage level
higher than a specified threshold. Expensive power equipment could
be damaged or destroyed if the circuit breaker does not open when the
voltage rises beyond the threshold.

The system is monitored from a human-machine interface as shown
in Figure 4(a). Note that vVRTAC shows the ground truth of the system
even when the SEL-3505 RTAC has failed. Specifically, it shows the
inconsistency between the true state and the state reported by the device
during the attack.

When the SEL-3505 RTAC starts up, it automatically enables the
logic engine, so the first step is to stop the logic engine. This is a typical
operation when system maintenance or reprogramming is performed.
At this point, ARP spoofing attacks are launched against the SEL-3505
RTAC and engineering workstation using the Ettercap packet filters.
When an operator sends the command to start the logic engine, it is
intercepted and the function code is modified or the packet is dropped
before it reaches the SEL-3505 RTAC.

Since the logic engine fails to start even after the operator sends mul-
tiple start commands, the device is unable to control or monitor the
power system. During this time, if the voltmeter detects a high voltage,
such as from a short circuit in the system, a controller is not in place to
open the circuit breaker. Therefore, power is allowed to flow and reach
critical transformers, potentially damaging or destroying them and caus-
ing a power outage. This state is shown in Figure 4(b). Specifically, the

Qasim, Ayub, Johnson & Ahmed

Breaker Status | Breaker Status

Qvervoltage e e Overvoltage
Protection & Protection
Threshold I Threshold

Breaker Status \
Overvoltage e = Overvoltage
Protection . Protection
Threshold Threshald

high!

(b)

BreakerStatws [| BreakerStaws |

Overvoltage g Overvoltage
Protection Protection
Threshold B Threshold

Voltage is too

(c)
Figure 4. Impact of the SEL-3505 RTAC control engine attack.

83

84 CRITICAL INFRASTRUCTURE PROTECTION XV

SEL-3505 RTAC no longer reports an up-to-date voltage value and the
breaker is not opened when the voltage rises above the threshold.

After the Ettercap attack ends, an operator can restart the SEL-3505
RTAC logic engine. The SEL-3505 RTAC is then able to detect the high
voltage from the voltmeter and the circuit breaker is opened. Figure 4(c)
shows the state after the logic engine is enabled. Although the breaker
is opened, the action would be too late to prevent equipment damage.

5. Case Study 2: Traditional Controllers

The second case study focuses on three traditional programmable logic
controllers without built-in security features: Schneider Electric Modi-
con M221 and Allen-Bradley MicroLogix 1100 and 1400 devices. The
three programmable logic controllers differ from the SEL-3505 RTAC
programmable logic controller used in the first case study in two ways.
First, the programmable logic controllers do not have separate logic en-
gines; instead, their processors assume the role. Depending on the pro-
grammable logic controller, it needs to be in the run mode or be given
a start controller command to execute the control logic. Second, unlike
the SEL-3505 RTAC, communications are not encrypted. The control
logic engine is attacked by crafting a malicious message that is sent to
the programmable logic controller to remotely change its state.

5.1 Case Study 2(a): Modicon M221

The Schneider Electric Modicon M221 device is a nano programmable
logic controller designed to control manufacturing processes. A control
engineer can write control logic, monitor a physical process and control
the state of the Modicon M221 device using the vendor-provided SoMa-
chine Basic engineering software. SoMachine Basic supports two IEC
61131 control logic languages, ladder diagrams and instruction lists. A
control engineer downloads the control logic program to an M221 device
by writing to its memory. The engineer can also start or stop the execu-
tion of control logic by the logic engine via SoMachine Basic. Commu-
nications between an M221 device and SoMachine Basic, which employ
a proprietary protocol on port 502, are not encrypted. The proprietary
protocol is encapsulated in Modbus/TCP. An M221 device only allows
one connection at a time.

Vulnerabilities and Attacks. The principal vulnerability is that
communications between an M221 device and its engineering software
are not encrypted. Two other vulnerabilities are that the M221 device
states that execute and disable the execution of the control logic pro-

Qasim, Ayub, Johnson & Ahmed 85

gram can be changed remotely via the engineering software and an M221
device can only have a single connection to the engineering software at
a time.

The following attacks listed in the MITRE ATT&CK knowledge base
were launched in the case study:

Network Sniffing (T0842): Network sniffing enables the com-
munications between the SoMachine Basic engineering software
and M221 device to be captured. Protocol information obtained
by analyzing the captured traffic can be leveraged in subsequent
attacks.

Unauthorized Command Message (T0855): Protocol infor-
mation obtained by analyzing the captured network traffic is used
to create a message that stops an M221 device from executing
its control logic program. Since the communications are not en-
crypted, any crafted message can be sent to an M221 device re-
motely.

Loss of Availability (T0826): An M221 device allows only a
single connection at a time. Therefore, an attack that does not
close the session that was established to send the crafted message,
could prevent a control engineer from connecting to and commu-
nicating with the targeted M221 device.

Denial of Control (T0813): An M221 device allows only a single
connection at a time. Therefore, an attack that does not close the
session that was established to send the crafted message, could
prevent a control engineer from using the targeted M221 device to
control the physical process.

Manipulation of Control (T0831): Stopping the control logic
engine of an M221 device from executing its control logic impacts
the control of the physical process.

Differential analysis as well as manual analysis were employed to re-
verse engineer the proprietary M221 device protocol and identify the
packets sent by the SoMachine Basic software to start and stop the logic
engine of an M221 device. Figures 5(a) and 5(b) show the packets. The
function codes 0x40 and 0x41 are used to start and stop an M221 logic
engine, respectively. As shown in Figure 5(c), an M221 device sends
a success message to the SoMachine Basic software to acknowledge its
change of state. This information was leveraged to write a Python script
that establishes a session with an M221 device and sends crafted mes-
sages to start and stop the execution of its control logic.

86 CRITICAL INFRASTRUCTURE PROTECTION XV

Start

~=.~-15 3c 40 00 80Functionoo ID 1 Request

Address ; 45 01 ¢ 6aCode ofis

03}6d 95 df 00 90 13 58 0@ 60 00 05 salsbla]
(a) Request message to start the Modicon M221 device.

Stop

00 80 f4 Pe 5b 39 veModbus 27 Session;Controller
~~.~-.95 46 49 00 seFunctionee 1D :Request

Address ; ,; 51 5 5aCode %ens
03Y65 95 df 00 00 13 21 00 00 00 O [golla1]
(b) Request message to stop the Modicon M221 device.

0@ 50 56 27 24 f7 @0 Modbus 2e Session, 2~ ar oo
@0 32 93 5f 00 00 40 Functionze ID Success

@a 67 01 f6 c5 46 4e Code ¥ 6a b5 8T°b 0\18
11 1c 47 54 €0 00 13 58 00 00 00 07 vr{a][8b][fe]
(c¢) Response message with success function code.

Figure 5. Messages sent to start and stop the Modicon M221 device.

Air Air o .
— Pressure Solenoid 1%5\7"‘ DC _
Meter . Valves Motor
¥09-N9%
1
Capacitive - = Inductive e

SeNSor e gonsor

FCOnveyor) 3 E!
Belt i : |

| (j—

Photoelectric
Cylinde Cylinder Sensor

www plccable

2. e le.o s g0\

Figure 6. Top view of the conveyor belt testbed.

Experimental Evaluation. The control logic engine attack was eval-
uated using the conveyor belt testbed shown in Figure 6. The conveyor

Qasim, Ayub, Johnson € Ahmed 87

belt, which sorts different types of objects with the help of sensors and
actuators, is controlled by an M221 device. The SoMachine Basic soft-
ware runs on a Windows 7 virtual machine while the attack scripts run
on an Ubuntu 16.04 virtual machine.

It is assumed that the attacker has infiltrated the network containing
the M221 device and engineering workstation. The attacker uses net-
work scanning to identify the IP address of the M221 device. Next, the
attacker initiates a Modbus protocol session with the M221 device and
sends it a stop controller request. Upon receiving the request, the M221
device stops executing its control logic, which halts the conveyor belt.
However, the attacker does not terminate the Modbus session. Because
the M221 device can only have one session at a time, a control engi-
neer is unable to communicate with the M221 device and issue a start
controller request to get the conveyor belt operational.

5.2 Case Study 2(b): MicroLogix 1100 and 1400

The Allen-Bradley MicroLogix 1100 and 1400 programmable logic
controllers belong to same family and have many similarities. Both
the devices are monitored and controlled via the RSLogix 500 engineer-
ing software and use the unencrypted PCCC protocol encapsulated in
EtherNet/IP to communicate with the RSLogix 500 software [24]. The
RSLogix 500 software supports ladder diagrams for writing control logic.
Upon connecting with a MicrolLogix device, a control engineer can up-
load the control logic (read the control logic on the device) or download
new control logic (write to device memory). The two MicroLogix de-
vices have three modes of operation, Run, Program and Remote, that
are set and changed using a command line interface. In the Run mode,
a device executes the control logic and controls a physical process. To
access or change the control logic, a control engineer places the device in
the Program mode, which also pauses the logic engine. For operational
ease, the device is often placed in the Remote mode, which enables a
control engineer to change the mode from Run to Program and vice
versa remotely using the engineering software.

Vulnerabilities and Attacks. The ability to change the operational
modes of MicroLogix 1100 and 1400 devices is exploited. Specifically,
changing the mode to Program pauses control logic execution and the
device waits for an operator to update its control logic and configuration.

88 CRITICAL INFRASTRUCTURE PROTECTION XV

The following attacks listed in the MITRE ATT&CK knowledge base
were launched in the case study:

Network Sniffing (T0842): Network sniffing provides valuable
information about the communications protocol used by the Mi-
croLogix devices and RSLogix 500 engineering software. Analy-
sis of the captured traffic helps identify the packets responsible
for changing the device state to the Program mode, which pauses
control logic execution.

Unauthorized Command Message (T0855): The information
obtained by network sniffing is leveraged to craft a message that
remotely changes the MicroLogix device state from the Run mode
to the Program mode.

Denial of Control (T0813): Pausing the control logic program
prevents a control engineer from controlling the physical process.

Manipulation of Control (TO831): Pausing the control logic
program impacts the control of the physical process.

Man-in-the-Middle (TO830): The change to the MicroLogix
device state is hidden from the control engineer by poisoning the
ARP caches of the engineering software and MicroLogix device
to achieve a man-in-the-middle position, following which the Mi-
croLogix device state is modified from Program to Run whenever
the engineering software requests the device state.

Denial of View (T0815): The man-in-the-middle attack de-
ceives the control engineer who assumes that the MicroLogix de-
vice is still in the Run mode and is controlling the physical process.

Manual reverse engineering was employed to identify the request mes-
sages sent by the RSLogix 500 software to change the device mode to
Remote-Run or Remote-Program. Figures 7(a) and 7(b) show the mes-
sages sent to place MicrolLogix devices in the Remote-Run and Remote-
Program modes. The function code 0x80 changes the mode, following
which the function codes 0x01 or 0x06 place the devices in the Remote-
Run or Remote-Program modes, respectively.

It was also determined that RSLogix 500 software periodically re-
quests the device status. Figure 8(a) shows that the function code (FC)
0x03 is used to request device status. Differential analysis of the re-
sponse messages for the Remote-Run and Remote-Program modes re-
vealed that a function code of 0x21 is used for the Remote-Run mode

Qasim, Ayub, Johnson & Ahmed 89

Request
Command
4c ¢l 00

&a
P60 00 00 40
20 06 00

RO AN A0 R0 D6 Q0 00 c@ a8
pccc FC: Change b a7 13 39 82
Transactlon‘Mm,‘e ¥ 17 00 66 fb
ID VY as \0 00

£C
oo ooloa @%; 00 81 ¢ 1
o0 o7 oglEelpil—"

(a) Request message to set device to the Remote-Run mode.

Pa 6
82 3

Remote 19
Run Mode

Request
Command
4c ¢l @0

Ea
20 00 00 A0
20 06 00

R1 40 A0 RA 06 00 00
PCCC

. FC:Change ’'b 6e bd
Transaction
‘Mode ’Remote-

ID 20 9B vy U3 Program
0050 00 @@‘@a 068/02 00 81 dmode
/

o [5_78][s0]ec]

(b) Request message to set device to the Remote-Program mode.

c@
39
66
[415]
a1

a8
82
b
[415]
91

@a 6
3t 8

Figure 7. Messages sent to change the mode of the MicroLogix devices.

Request
a8 Qa €
Command

82 81 ¢
EQ
[4]

tb 4c cl 00
91 0@ 05 oo [eg]

67 40 00 20 06
?h af 12 ¢1 9b
(FC: Status 10
2C @ v ag de
oz ooYea 00/02 00 31 00
06 [07_96][e3]

(a) Request message to device for current status.

0@ 00 co
ab 96 39
16 @@ 66
93 00 00
01 o0 o1

PCCC
Transaction

- 00 00 00 00

Response
Qa €
_Command

ar i

4c c1 e@Ea
00 00 00 Yo
00 1d oo [48]
2d 4c 45 43

db 90 20 80 06 8e 8d c@ a8

pccc) 2 cl 2b 39 82 82 60 cl %
Transaction ;- o5 on af ap 7= 60 ~A £h
ID 2c ¢PLC in Remote-Run Mode
(41%] @@‘@@ 04 B2 00 e 81 8ee 81 91
00 (08 08| 00 ee 43/9c 23 31 37 36 33
20 20 20 00 00 @@ ec 7c 30 fc 01

(b) Response message from device in the Remote-Run mode.

d8 00 00 80 V6 8e 90 c@ a8 @a

PCCC
;I'I;ansactlon 34
2c

oo peXeo o4
oo [07 99] o0
20 20 20 00

(c) Response message

2 cl 2b 39 82 81 9f cl1 9b ab

Response

00 00 6f 00 2e 00 66 b 4ccommand

'PLC in Remote-Program Mode 2¢ @@

vz vo P v vl wo vl 1 oo 1d B0
ee 43/9c 23 31 37 36 33 2d 4c 45 43
00 [26 oo ec

7c 30 fc @1
from device in the Remote-Program mode.

Figure 8. Status request to and response messages from the MicroLogix devices.

90 CRITICAL INFRASTRUCTURE PROTECTION XV

i &.'—'!!!’ "'[Main Motor

~ -
R S

Figure 9. Front view of the elevator testbed.

(Figure 8(b)) whereas 0x26 is used for the Remote-Program mode (Fig-
ure 8(c)). This information was used to create a program that initiates
a session with a targeted MicroLogix device and sends the mode change
messages to place in the device in the Remote-Program mode, which
pauses the execution of its control logic. Since the RSLogix 500 soft-
ware periodically requests device status, the change in the device mode
would be detected by an operator. To deceive the operator, an Etter-
cap filter was employed to detect the status response message, following
which the Remote-Program function code in the message is changed to
Remote-Run.

Experimental Evaluation. Since the MicroLogix 1100 and 1400 de-
vices use the same communications protocol and function codes, the
logic engine attack was only executed on a MicroLogix 1400 device. Fig-
ure 9 shows the elevator testbed used in the evaluation. The elevator
has four floors. An elevator user can select a floor from inside or out-

Qasim, Ayub, Johnson & Ahmed 91

side the elevator that is input to the MicroLogix 1400 device, which
moves the elevator to the selected floor. RSLogix 500 software running
on a Windows 7 virtual machine (engineering workstation) communi-
cates with the MicroLogix 1400 device. Attacks are launched from an
Ubuntu 18.04.3 LTS machine. As in the other case studies, the Mi-
croLogix 1400 programmable logic controller, engineering workstation
and attacker machine are in the same network.

The first attack step is to assume a man-in-the-middle position using
ARP poisoning. Following this, a session is established with the Mi-
croLogix 1400 device that controls the elevator. Next, a request message
is send to the MicroLogix 1400 device to change its mode to Remote-
Program, which causes the device to stop executing its control logic,
thereby halting elevator operation. An Ettercap filter is used to de-
tect a status response message sent by an elevator control operator and
change the Remote-Program function code in the message to Remote-
Run. Thus, the operator is unaware that the attack has rendered the
elevator non-operational.

6. Mitigation

The principal problem is the lack of encrypted communications. The
Modicon M221 and MicroLogix 1100 and 1400 programmable logic con-
trollers do not have encryption. Although the SEL-3505 RTAC employs
TLS encryption for most of its communications, the communications
that occur on port 1217 are not encrypted. This makes it easier for an
attacker to reverse engineer the protocol and launch a number of attacks.

The Modicon M221 and MicroLogix 1400 devices implement pass-
word authentication to prevent the control logic from being read and,
in some cases, written by unauthorized users. However, an attacker can
change the device state to prevent the control logic from running with-
out any authentication. Therefore, it is important to also use password
protection when issuing commands to change the device state.

The Modicon M221 device also has a default feature that enables users
to connect to it without any authentication. It allows a connection
to one user at a time, exposing itself to attacks that only require a
successful connection to the device. Specifically, the attacker connects
with the device, pauses the execution of its control logic and keeps the
session active to prevent a legitimate user from accessing the device.
Such attacks can be defeated by requiring a password to establish a
connection with the device.

92 CRITICAL INFRASTRUCTURE PROTECTION XV

Man-in-the-middle attacks on all the programmable logic controllers
considered in the case studies can be prevented using DHCP snooping
and ARP inspection [1].

7. Conclusions

Most of the attacks described in the literature inject malicious con-
trol logic into programmable logic controllers. In contrast, this chap-
ter has presented a novel type of attack that targets the control logic
engine that is responsible for running the control logic. These attacks
disable control logic engines by exploiting inherent features such as start-
ing and stopping the engines, and changing the operating modes of the
programmable logic controllers. Case studies involving control engine
attacks on programmable logic controllers that manage power substa-
tion, conveyor belt and elevator testbeds demonstrate the significance of
the control logic engine attack vector as well as the impacts of control
engine attacks on physical systems.

Acknowledgements

This chapter has been authored by UT-Battelle LLC under Contract
DE-AC05-000R22725 with the US Department of Energy (DOE). The
research was partially supported by the Virginia Commonwealth Cyber
Initiative.

References

[1] H. Adjei, T. Shunhua, G. Agordzo, Y. Li, G. Peprah and E.
Gyarteng, SSL stripping technique (DHCP snooping and ARP
spoofing inspection), Proceedings of the Twenty-Third International
Conference on Advanced Communications Technology, pp. 187-193,
2021.

[2] I. Ahmed, S. Obermeier, M. Naedele and G. Richard III, SCADA
systems: Challenges for forensic investigators, IEEE Computer, vol.
45(12), pp. 44-51, 2012.

[3] I. Ahmed, S. Obermeier, S. Sudhakaran and V. Roussev, Pro-
grammable logic controller forensics, IEEE Security and Privacy,
vol. 15(6), pp. 18-24, 2017.

[4] I. Ahmed, V. Roussev, W. Johnson, S. Senthivel and S. Sudhakaran,
A SCADA system testbed for cybersecurity and forensic research
and pedagogy, Proceedings of the Second Annual Industrial Control
System Security Workshop, pp. 1-9, 2016.

Qasim, Ayub, Johnson & Ahmed 93

[5]

[6]

[12]

[13]

[16]

A. Ayub, H. Yoo and I. Ahmed, Empirical study of PLC authen-
tication protocols in industrial control systems, Proceedings of the
IEEE Security and Privacy Workshops, pp. 383-397, 2021.

S. Bhatia, S. Behal and I. Ahmed, Distributed denial-of-service at-
tacks and defense mechanisms: Current landscape and future di-
rections, in Versatile Cybersecurity, M. Conti, G. Somani and R.
Poovendran (Eds.), Springer, Cham, Switzerland, pp. 55-97, 2018.

T. Chen and S. Abu-Nimeh, Lessons from Stuxnet, IEEE Computer,
vol. 44(4), pp. 91-93, 2011.

Ettercap Project, Ettercap (www.ettercap-project.org), 2021.

N. Falliere, L. O’Murchu and E. Chien, W32.Stuxnet Dossier, Ver-
sion 1.4, Symantec, Mountain View, California, 2011.

L. Garcia, F. Brasser, M. Cintuglu, A. Sadeghi, O. Mohammed and
S. Zonouz, Hey, my malware knows physics! Attacking PLCs with
a physical-model-aware rootkit, Proceedings of the Twenty-Fourth
Annual Network and Distributed System Security Symposium, 2017.

N. Govil, A. Agrawai and N. Tippenhauer, On ladder logic bombs
in industrial control systems, in Computer Security, S. Katsikas, F.
Cuppens, N. Cuppens, C. Lambrinoudakis, C. Kalloniatis, J. My-
lopoulos, A. Anton and S. Gritzalis (Eds.), Springer, Cham, Switzer-
land, pp. 110-126, 2018.

R. Johnson, Survey of SCADA security challenges and potential
attack vectors, Proceedings of the International Conference on In-
ternet Technology and Secured Transactions, 2010.

S. Kalle, N. Ameen, H. Yoo and I. Ahmed, CLIK on PLCs! Attack-
ing control logic with decompilation and virtual PLCs, Proceedings
of the Network and Distributed System Security Symposium Work-
shop on Binary Analysis Research, 2019.

N. Kush, E. Foo, E. Ahmed, I. Ahmed and A. Clark, Gap analy-
sis of intrusion detection in smart grids, Proceedings of the Second
International Cyber Resilience Conference, pp. 38—46, 2011.

S. McLaughlin and P. McDaniel, SABOT: Specification-based pay-
load generation for programmable logic controllers, Proceedings of
the ACM Conference on Computer and Communications Security,
pp. 439-449, 2012.

MITRE Corporation, ATT&CK for Industrial Control Systems,
Bedford, Massachusetts (collaborate.mitre.org/attackics/ind
ex.php/Main_Page), 2021.

94

[17]

[18]

[26]

[27]

CRITICAL INFRASTRUCTURE PROTECTION XV

Office of Electricity Delivery and Energy Reliability, exe-
GUARD, DOE/OE-0009, U.S. Department of Energy, Wash-
ington, DC (www.energy.gov/sites/prod/files/2017/04/£34/
SEL_Exe-guard_FactSheet.pdf), 2012.

S. Qasim, J. Lopez and I. Ahmed, Automated reconstruction of
control logic for programmable logic controller forensics, in Infor-
mation Security, Z. Lin, C. Papamanthou and M. Polychronakis
(Eds.), Springer, Cham, Switzerland, pp. 402-422, 2019.

S. Qasim, J. Smith and I. Ahmed, Control logic forensics framework
using a built-in decompiler of engineering software in industrial con-
trol systems, Forensic Science International: Digital Investigation,
vol. 33(S), article no. 301013, 2020.

M. Rais, R. Awad, J. Lopez and I. Ahmed, JTAG-based PLC mem-
ory acquisition framework for industrial control systems, Forensic
Science International: Digital Investigation, vol. 37(S), article no.
301196, 2021.

M. Rais, Y. Li and I. Ahmed, Spatiotemporal G-code modeling
for secure FDM-based 3D printing, Proceedings of the Tuwelfth
ACM/IEEE International Conference on Cyber-Physical Systems,
pp. 177-186, 2021.

C. Schuett, J. Butts and S. Dunlap, An evaluation of modification
attacks on programmable logic controllers, International Journal of
Critical Infrastructure Protection, vol. 7(1), pp. 61-68, 2014.

Schweitzer Engineering Laboratories, SEL-3505/SEL-3505-3 Real-
Time Automation Controller (RTAC), Pullman, Washington (sel
inc.com/products/3505), 2021.

S. Senthivel, I. Ahmed and V. Roussev, SCADA network forensics of
the PCCC protocol, Digital Investigation, vol. 22(S), pp. S57-S65,
2017.

S. Senthivel, S. Dhungana, H. Yoo, I. Ahmed and V. Roussev, De-
nial of engineering operations attacks on industrial control systems,
Proceedings of the Fighth ACM Conference on Data and Application
Security and Privacy, pp. 319-329, 2018.

R. Sun, A. Mera, L. Lu and D. Choffnes, SoK: Attacks on Indus-
trial Control Logic and Formal Verification-Based Defenses, arXiv:
2006.04806 (arxiv.org/abs/2006.04806), 2020.

H. Yoo and I. Ahmed, Control logic injection attacks on indus-
trial control systems, in ICT Systems Security and Privacy Protec-
tion, G. Dhillon, F. Karlsson, K. Hedstrom and A. Zuquete (Eds.),
Springer, Cham, Switzerland, pp. 33-48, 2019.

Qasim, Ayub, Johnson & Ahmed 95

[28] H. Yoo, S. Kalle, J. Smith and I. Ahmed, Overshadow PLC to detect
remote control logic injection attacks, in Detection of Intrusions and
Malware, and Vulnerability Assessment, R. Perdisci, C. Maurice, G.

Giacinto and M. Almgren (Eds.), Springer, Cham, Switzerland, pp.
109-132, 2019.

	4 ATTACKING THE IEC 61131 LOGIC ENGINE IN PROGRAMMABLE LOGIC CONTROLLERS
	1. Introduction
	2. Background and Related Work
	2.1 Industrial Control Systems
	2.2 Related Work

	3. Attacking Control Logic Engines
	4. Case Study 1: SEL-3505 RTAC
	4.1 Controller Details
	4.2 Vulnerabilities and Attacks
	4.3 Experimental Evaluation

	5. Case Study 2: Traditional Controllers
	5.1 Case Study 2(a): Modicon M221
	5.2 Case Study 2(b): MicroLogix 1100 and 1400

	6. Mitigation
	7. Conclusions
	Acknowledgements
	References

