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SECURITY ANALYSIS OF SOFTWARE
UPDATES FOR INDUSTRIAL ROBOTS

Chun-Fai Chan, Kam-Pui Chow and Tim Tang

Abstract Robots are widely deployed in industrial manufacturing environments.
Cyber compromises of industrial robots pose threats to products and
services, to the robots as well as to human workers. Previous security
studies of robots have focused on network service vulnerabilities and
privileged execution. However, research has not examined robot soft-
ware updates and their security features. This chapter investigates the
security features of software updates for a Universal Robots UR3 cobot,
one of the most commonly-used collaborative industrial robots.
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1. Introduction
Robots are widely deployed in industrial manufacturing environments.

Cyber compromises of industrial robots pose threats to products and
services, to the robots as well as to human workers. Security studies
of robots have focused on network service vulnerabilities and privileged
execution. However, research has not examined robot software updates
and their security features.

This chapter investigates the security features of software updates for
a Universal Robots UR3 cobot, one of the most commonly-used col-
laborative industrial robots. The security analysis reveals four hitherto
unknown vulnerabilities in the software update process that can lead to
total compromise of the cobot. Several recommendations for the cobot
manufacturer and cobot operators are presented to reduce or mitigate
the risks.
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Figure 1. Principal UR3 cobot components.

2. Collaborative Robot
Collaborative robots, called cobots, are designed to operate in a shared

space with human workers [2]. Universal Robots, based in Odense, Den-
mark, is a leading manufacturer of industrial cobots. The company sold
its first cobot in 2008 [14] and continues to dominate the cobot sector.
The industrial research firm, Interact Analysis [11], reports that Univer-
sal Robots had a global market share of almost 50% in 2017. In 2020,
Universal Robots sold its 50,000th cobot [3].

Figure 1 shows a UR3 cobot manufactured by Universal Robots. Its
principal components are a robot arm, human-robot interface and con-
trol box:

Robot Arm: The robot arm, made of extruded aluminum, com-
prises tubes and joints that can be controlled on three or more axes,
and moved flexibly according to pre-defined instructions [13]. The
wrist joints in the arm can rotate 360 degrees and the end joints
have infinite degrees of freedom.

Human-Robot Interface: The human-robot interface (HRI) is
a touchscreen device similar to a tablet with a wired connection



Chan, Chow & Tang 231

Figure 2. Control box lock and key.

to a cobot’s control box. The human-robot interface houses a
Polyscope graphical user interface, which enables a human opera-
tor to execute programs and monitor the status of the cobot.

Control Box: The control box of a cobot is enclosed in a chassis.
It contains the physical input/output ports and electronic compo-
nents that connect to the robot arm, human-robot interface and
other peripherals. The computer and communications systems for
the robot arm and human-robot interface are located in the con-
trol box. An operator powers on the control box before booting
and controlling the robot arm. Universal Robots provides software
resources that support human-robot interactions, cobot program-
ming and cobot movement visualization. These resources can be
downloaded from the Universal Robots website [14].

A UR3 cobot incorporates pre-installed safety and security features
to protect the cobot and human operators:

Physical Security: A physical lock on the control box prevents
tampering with the internal components of the cobot (Figure 2).
However, the control box key has only two simple teeth, enabling
the lock to be opened with a suitable screwdriver.

Software-DefinedSafety Settings: A humanoperator can spec-
ify safety planes that a cobot cannot breach. These safety settings
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Figure 3. Safety settings and safety settings modification checksum.

cannot be overwritten by other programmed actions, which reduces
the potential harm caused by the cobot.

Safety Settings Modification Checksum: The safety settings
are protected by a checksum that is computed automatically. The
checksum, which is circled in Figure 3, enables a human operator
to verify that the settings have not been changed. When an au-
thorized user modifies the safety settings, the checksum is changed
accordingly.

Human-Robot Interface Password Protection: In addition
to the Linux shell password, the Polyscope software has two addi-
tional password protection mechanisms. One is the system pass-
word, which a cobot operator is required to input before perform-
ing restricted operations such as changing the system settings and
programming the robot arm. The other is the safety password,
which protects the safety settings that restrict the locations and
movements of the robot arm from being modified. As shown in Fig-
ure 4, both the passwords cannot be changed without entering the
current passwords.

Encrypted Software Update: The cobot software update file
is available at the Universal Robots website. The software update
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Figure 4. System and safety passwords.

file, which is encrypted using 3TDES, contains the cobot joint
firmware update, Polyscope update and update scripts.

3. Previous Work
A growing body of research has focused on the security aspects of

industrial robot firmware. Quarta et al. [9] show how attackers can
gather information about robot firmware and develop attacks. Informa-
tion about robots can be obtained without having to purchase them.
Many vendors post official support materials on their websites and even
allow interested parties to download them free of charge. The most
common materials are manuals that provide general information about
robots. In the case of advanced robots, additional materials such as
software for controlling and simulating robots, as well as drivers and
firmware are available. For example, the RobotStudio suite for ABB
robots includes a portion of the firmware in the RobotWare distribu-
tion [1]. The suite also contains a simulator in the form of a shared
library with the entire codebase, which can be analyzed for vulnerabil-
ities. Additionally, platform-specific technical information is available
without purchasing a robot.
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Researchers have discussed firmware components and how firmware
attacks can be performed. Eclypsium [3] describes key firmware com-
ponents, including system firmware and boot firmware (BIOS, UEFI,
EFI and MBR), along with the system management mode and base-
board management controllers that are common components of digital
devices.

Rieck [10] discusses the reverse engineering of fitness tracker firmware.
The firmware protection mechanism in the fitness tracker analyzed by
Rieck is similar to that used by Universal Robotics for software update
protection. The fitness tracker firmware comprises two parts, a header
and content. The header part has a table checksum field whose value
is computed automatically from the content part to verify that no errors
occurred during firmware transmission. However, no mechanism is in
place to maintain the integrity of the header. Thus, an attacker with
access to the firmware can modify the firmware, generate the new check-
sum and store it in the firmware header. The manipulated firmware
can be installed successfully because the checksum and table checksum
match.

Shim et al. [12] leveraged Rieck’s research to access the firmware
of a mobile application that controls a wearable fitness tracker. The
firmware was disassembled using the IDA Pro reverse engineering tool.
The firmware code was shown to be modifiable by changing the bitmaps
of certain characters. The modified firmware was subsequently inserted
in the fitness tracker without any warnings or errors.

Apart from research on firmware vulnerabilities, a Robot Vulnerability
Database has been created for the public to submit vulnerabilities discov-
ered in industrial robots, which are subsequently verified by experts [7].
A total of 92 vulnerabilities relating to the Universal Robotics UR3
cobot are recorded in the database. Eighty-one vulnerabilities relate to
unpatched libraries or binaries in the Linux distribution and eleven re-
late to the software and firmware. Five of the eleven software/firmware
vulnerabilities relate to unauthenticated communications, two to buffer
overflows and four to unbounded local privilege execution. None of the
reported UR3 cobot vulnerabilities relate to software/firmware integrity.

4. Experiments and Results
A cobot simulation environment was created by downloading and in-

stalling Universal Robots offline simulators as virtual machines [15]. The
virtual machines were executed in VMWare under a Windows 10 Pro
operating system. Experiments were performed with Universal Robots
virtual machine CB version 3.14.3 on an i686 architecture running an
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Figure 5. URUP file structure.

Ubuntu 14.04.3 Linux distribution. In addition, experiments were con-
ducted with Universal Robots CB update file versions 3.5.4, 3.6.1, 3.12.1
and 3.14.3. The simulated results were then verified using a Universal
Robots UR3 cobot executing CB versions 3.5.1 and 3.5.4 on an i686
architecture with a Debian 7 Linux distribution.

4.1 Software Update File
The software update file (URUP) was examined with the Linux file

tool to determine if it matched a known file signature. The tool suggested
that the update file was a bash script. However, inspection of the update
file using a vim editor showed that it had bash script text and binary
data. Static analysis of the bash script and reverse engineering of the
Polyscope program (discussed below) revealed that the URUP update
file has the structure shown Figure 5.

A URUP file has three parts. The first part of the update file is a
bash script. The first line of the script is a typical bash script header
that indicates the bash interpreter file location. After the header line,
multiple variables are defined, which include the output TAR filename
and the info.xml file and extraction path locations. The info.xml file
content was extracted and read using the Polyscope software update
routine (described later).

The info.xml file contains its title and description, which are dis-
played on the human-robot interface screen. The XML file also contains
the software version of the URUP update file (which is checked against
the existing installed version) and the output TAR filename (same as
the TAR filename in the bash script variable definition). Additionally,
the XML file may contain flags such as debug and remote server flags
that could be used by the update routine, but they were not seen in the
URUP update file. Following the variable definitions is a function for
extracting info.xml from the URUP file and a function for extracting
and decrypting the encrypted binary data.
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The logic of the function for extracting and decrypting the encrypted
binary data is as follows:

Locate the end of script marker.

Pipe the remaining file content to a decryption program provided
by OpenSSL.

Decrypt the binary encrypted data using the 3TDES algorithm
and symmetric key stored in an environment variable.

Save the decrypted stream to a file.

Locate the encrypted data checksum in the update file.

Compute the MD5 hash of the decrypted file.

Compare the MD5 checksums.

Move the decrypted TAR file to a location specified in the input
argument.

The second part of the update file is a single line that stores the MD5
checksum of the data contained in the third part of the file.

The third and last part of the update file is a chunk of binary data.
According to its binary data header, it corresponds to salted encrypted
data. Analysis of the bash script decryption function revealed that the
data is encrypted using 3TDES in the CBC mode with a 24 byte key
and salt.

4.2 Symmetric Key
Armed with knowledge about the structure and execution flow of the

URUP update file, attempts were made to extract the encrypted data
in the last part of the update file using the same decryption parameters
in the bash script. However, the critical symmetric key was missing.
Analysis of the bash script indicated that the symmetric key should be
stored in an environment variable. However, examination of the bash
shell consoles in the physical and simulated environments did not reveal
the presence of the environment variable.

Since the Universal Robots documentation did not have any related
information, the only option was to reverse engineer the Polyscope soft-
ware that provides a graphical user interface to trigger the software
update process (Figure 6).

The Universal Robots Polyscope software was developed in Java. The
JD-GUI tool [4] was used to decompile the class files in the JAR files.
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Figure 6. Updating software via the Polyscope graphical user interface.

The decompiled source code was searched for a subroutine that triggers
the loading of the URUP update file – this revealed the location where
the environment variable is defined. It turned out that the variable is
defined just before the bash script is invoked, which is why it could
not be located in the bash shell console environment. Surprisingly, the
analysis revealed that the symmetric key is saved as a hardcoded string
in the Java program (Figure 7).

Multiple versions of the Universal Robots software (version 3.5.4 to
the latest version 3.14.3) were decompiled and analyzed. The analyses
revealed that all the versions have the same symmetric key saved as a
hardcoded string in their Java programs.

4.3 Software Update Process Flow
The decompiled Java source code and other custom system script files

were reverse engineered to determine the details of the software update
process. The general software update process flow was determined to be
as follows:
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BashScriptRunner bs = new BashScriptRunner("bash " + this.path +

" --unpack " + tmpDir.getCanonicalPath());

bs.addEnvVar("RUR", "XXXXXXXXXXXXXXXXXXXXXXXXXXX");

bs.execute();

Figure 7. Hardcoded symmetric key (masked) in the decompiled Polyscope JAR file.

After a USB drive is plugged into the human-robot interface, an
automount service mounts the USB drive to a folder with the prefix
(usbdisk*) under /programs.

When the Search button is pressed on the Polyscope software up-
date screen, the Java program searches all the URUP files in the
mounted folder.

For each URUP file, the bash script is executed to extract the
info.xml file content to a different temporary folder.

The related information of each info.xml file is displayed on the
human-robot interface screen.

When a file is selected and the Update button is clicked, the Java
program invokes the bash script of the file to extract, decrypt and
move the binary data to a temporary folder.

Major and minor software update versions are checked against the
current version and only the compatible version is permitted to be
updated.

The untarred files are saved to /root/update and a system reboot
is performed.

After the reboot, the post upgrade script post.sh is invoked to
copy the files to the appropriate locations.

5. Software Update Process Vulnerabilities
Insights gained from the URUP update file structure and software

update process flow supported the vulnerability discovery efforts. This
section describes four new vulnerabilities of the UR3 cobot software
update mechanism and their exploitation.
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Figure 8. Rogue software update file structure.

5.1 Malicious Software Update File Creation
Because the symmetric key is known and shared by multiple versions

of update files, malicious update files with encrypted content can be
created to masquerade as legitimate update files.

Two methods were attempted:

Method 1: The first method created an encrypted custom TAR
file using the symmetric key that was discovered. An MD5 check-
sum was computed for the TAR file. The original bash script,
new MD5 checksum and encrypted TAR file were concatenated to
produce a rogue update file with the structure shown in Figure 8.

Method 2: The second method rewrote the bash script in the
first part of the update file. This bypassed the decryption process
without needing the symmetric key. At a triggering point in the
update process, the content was dumped to a temporary folder
and the update process continued its execution.

Method 1 is stealthier than Method 2. Method 2 is easier to perform
than Method 1. Also, it enables other actions to be executed that lead
to another vulnerability discussed below.

Additionally, an update file with an arbitrary version number can
be created by modifying the variables in the bash script as shown in
Figure 9. This could mislead a cobot operator to believing that the
rogue file is actually a more recent update file. Since the UR3 cobot
does not permit software to be downgraded, once a new rogue version is
installed, the cobot cannot be rolled back to the previous official version.
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Figure 9. Arbitrary update file version.

Figure 10. Search function in the software update user interface.
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Figure 11. Arbitrary script execution after pressing the Search button.

5.2 Arbitrary Script Execution
The software update process flow analysis revealed that the Search

function attempts to locate all the URUP files at the USB mount point
(Figure 10). Following this, it tries to extract the info.xml files from
the URUP files.

However, the info.xml extraction function is also in the bash script in
the update file. Rewriting the extraction function in the bash script en-
ables the execution of an arbitrary script when a user presses the Search
button. Figure 11 shows an example of arbitrary script execution. In the
example, the extraction function was modified to dump the symmetric
key on the screen.

5.3 Password Integrity
Forensic analysis of the cobot system revealed that two files are mod-

ified when the system password and safety password are changed. Both
are hidden files with filenames starting with “.” and located in the root
directory. Each file has only one line corresponding to the encrypted
password string.

Experiments were conducted to change content by replacing the en-
crypted string with another encrypted string for which the plaintext
password was known. It was discovered that, after the user interface is
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reloaded, the system accepts the new password and permits changes to
all the system and safety settings without requiring the previous pass-
words to be entered. Even worse, when the password files were removed,
all the restrictions imposed by password protection vanished and any and
all settings could be changed. Leveraging this vulnerability along with
the arbitrary script execution vulnerability described above enabled the
creation and execution of a rogue update file that triggered the elimina-
tion of all the password restrictions on the cobot.

5.4 Arbitrary File Creation
The Polyscope software has an Expert Mode that provides advanced

features for users. The features include creating folders and editing
system files. A correct password has to be entered to access the Expert
Mode, but the password is available because it is hardcoded in the Java
program and is also listed in the user manual.

The vulnerability was exploited to create a fake USB mount point
directory and implant a rogue URUP update file in the directory. The
arbitrary script execution vulnerability described above was exploited to
write a script to execute arbitrary commands. Additionally, the pass-
word integrity vulnerability described above was leveraged to remove all
the password-imposed restrictions.

These exploits enable any user with physical access to the human-
robot interface screen to execute any command and change the system
and safety settings of the robot arm even when the USB and network
ports are blocked. The impacts are serious – potentially causing harm to
the cobot and its products and services as well as its human operators.

6. Discussion
In theory, a carefully-crafted rogue update file would leave minimal,

if any, traces in the cobot filesystem by removing and overwriting all its
intermediate files after execution. The digital forensic method proposed
by Gong et al. [5] may not be able to discover the execution of the rogue
script. This is because script execution does not require system login
and, therefore, no records exist in bash history and the system login
record. Additionally, a log would not be written in log history.txt
because it is not a Polyscope software operation.

Based on the severity of the vulnerabilities discovered in the software
update process, the following actions are recommended:

Authenticity checks should be enforced at multiple levels. First,
a software update file should not use a hardcoded symmetric key
to encrypt content; the cobot manufacturer should consider using
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public key cryptography to validate software update signatures
before installing the software update. Second, all human-robot
interface users should be authenticated before gaining access or
performing any operations, especially invoking functions that can
modify the filesystem.

The logic flow of the software update process should be reviewed
and modified with security in mind. For example, info.xml file ex-
traction and software update decryption should be implemented by
functions within Polyscope. Additionally, software updates should
not be trusted until their authenticity is verified.

The operating system and network services should be hardened to
minimize the attack surface.

Finally, physical access to the cobot should be restricted, including
blocking or locking USB ports and the human-robot interface until
users are authenticated and only if access is needed.

7. Conclusions
This chapter presents a security analysis of the software update pro-

tection mechanisms of the Universal Robots UR3 cobot, one of the most
popular industrial cobots. The security analysis has revealed four hith-
erto unknown vulnerabilities in the software update process that can
lead to total compromise of the cobot. Several recommendations for
the cobot manufacturer and cobot operators are presented to reduce or
mitigate the risks.

Future research will to employ digital forensic and reverse engineer-
ing techniques to identify new vulnerabilities that could be exploited
to cause harm to the cobot and its products and services as well as its
human operators.
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