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Abstract. We introduce a subclass of the commutative regular languages
that is characterized by the property that the state set of the minimal
deterministic automaton can be written as a certain Cartesian product.
This class behaves much better with respect to the state complexity of
the shuffle, for which we find the bound 2nm if the input languages have
state complexities n and m, and the upward and downward closure and
interior operations, for which we find the bound n. In general, only the
bounds (2nm)|Σ| and n|Σ| are known for these operations in the commu-
tative case. We prove different characterizations of this class and present
results to construct languages from this class. Lastly, in a slightly more
general setting of partial commutativity, we introduce other, related, lan-
guage classes and investigate the relations between them.

Keywords: Finite automaton · State complexity · Shuffle · Upward
closure · Downward closure · Commutative language · Product-form
minimal automaton · Partial commutation

1 Introduction

The state complexity, as used here, of a regular language L is the minimal number
of states needed in a complete deterministic automaton recognizing L. The state
complexity of an operation on regular languages is the greatest state complexity
of the result of this operation as a function of the (maximal) state complexities
of its arguments.

Investigating the state complexity of the result of a regularity-preserving
operation on regular languages, see [7] for a survey, was first initiated by Maslov
in [20] and systematically started by Yu, Zhuang and Salomaa in [27].

A language is called commutative, if for each word in the language, every
permutation of this word is also in the language. The class of commutative
automata, which recognize commutative regular languages, was introduced in [2].

The shuffle and iterated shuffle have been introduced and studied to under-
stand the semantics of parallel programs. This was undertaken, as it appears
to be, independently by Campbell and Habermann [3], by Mazurkiewicz [22]
and by Shaw [25]. They introduced flow expressions, which allow for sequential
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operators (catenation and iterated catenation) as well as for parallel operators
(shuffle and iterated shuffle) to specify sequential and parallel execution traces.

The shuffle operation as a binary operation, but not the iterated shuffle, is
regularity-preserving on all regular languages. The state complexity of the shuffle
operation in the general cases was investigated in [1] for complete deterministic
automata and in [4] for incomplete deterministic automata. The bound 2nm´1 `
2(m´1)(n´1)(2m´1 ´ 1)(2n´1 ´ 1) was obtained in the former case, which is not
known to be tight, and the tight bound 2nm ´ 1 in the latter case.

A word is a (scattered) subsequence of another word, if it can be obtained
from the latter word by deleting letters. This gives a partial order, and the
upward and downward closure and interior operations refer to this partial order.
The upward closures are also known as shuffle ideals. The state complexity of
these operations was investigated in [11–13,19,23]

The state complexity of the projection operation was investigated in
[17,18,26]. In [26], the tight upper bound 3 · 2n´2 ´ 1 was shown, and in [18]
the refined, and tight, bound 2n´1 ` 2n´m ´ 1 was shown, where m is related to
the number of unobservable transitions for the projection operator. Both results
were established for incomplete deterministic automata.

In [14–17] the state complexity of these operations was investigated for com-
mutative regular languages. The results are summarized in Table 1.

Table 1. Overview of results for commutative regular languages. The state complexities
of the input languages are n and m. Also, f(n, m) “ 2nm´1 ` 2(m´1)(n´1)(2m´1 ´
1)(2n´1 ´ 1) is the general bound for shuffle from [1] in case of complete automata.

Operation Upper bound Lower bound References

πΓ (U), Γ Ď Σ n n [14,17]

U V min{(2nm)|Σ|, f(n, m)} Ω (nm) [1,14,15]

ÒU n|Σ| Ω

((
n

|Σ|

)|Σ|)
[13,14,16]

ÓU n|Σ| n [14,16]

þU n|Σ| Ω

((
n

|Σ|

)|Σ|)
[14,16]

ßU n|Σ| n [14,16]

U Y V , U X V nm Tight for each Σ [14,15]

Table 2. State complexity results on the subclass of commutative languages with
product-form minimal automaton for input languages with state complexities n and m.

Operation Upper bound Lower bound Reference

πΓ (U), Γ Ď Σ n n Theorem 12

U V 2nm Ω (nm) Theorem 12

ÒU , ÓU , þU , ßU n n Theorem 12

U X V , U Y V nm Tight for each Σ Theorem 12
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In [8] the minimal commutative automaton was introduced, which can be
associated with every commutative regular language. This automaton played a
crucial role in [14,15] to derive the bounds mentioned in Table 1. Here, we will
investigate the subclass of those language for which the minimal commutative
automaton is in fact the smallest automaton recognizing a given commutative
language. For this language class, we will derive the following state complexity
bounds summarized in Table 2. Additionally, we will prove other characteriza-
tions and properties of the subclass considered and relate it with other subclasses,
in a more general setting, in the final chapter.

2 Preliminaries

In this section and Sect. 3, we assume that k � 0 denotes our alphabet size and
Σ “ {a1, . . . , ak} is our alphabet. We will also write a, b, c for a1, a2, a3 in case
of |Σ| � 3. The set Σ∗ denotes the set of all finite sequences over Σ, i.e., of all
words. The finite sequence of length zero, or the empty word, is denoted by ε.
For a given word we denote by |w| its length, and for a P Σ by |w|a the number
of occurrences of the symbol a in w. For a P Σ, we set a∗ “ {a}∗. A language is
a subset of Σ∗. For u P Σ∗, the left quotient is u´1L “ {v P Σ∗ | uv P L} and
the right quotient is Lu´1 “ {v P Σ∗ | vu P L}.

The shuffle operation, denoted by , is defined by

u v “ {w P Σ∗ | w “ x1y1x2y2 · · · xnyn for some words

x1, . . . , xn, y1, . . . , yn P Σ∗ such that u “ x1x2 · · · xn and v “ y1y2 · · · yn},

for u, v P Σ∗ and L1 L2 :“ ⋃
xPL1,yPL2

(x y) for L1, L2 Ď Σ∗. If L1, . . . , Ln Ď
Σ∗, we set n

i“1Li “ L1 . . . Ln.
Let Γ Ď Σ. The projection homomorphism πΓ : Σ∗ → Γ ∗ is given by πΓ (x) “

x for x P Γ and πΓ (x) “ ε for x /P Γ and extended to Σ∗ by πΓ (ε) “ ε and
πΓ (wx) “ πΓ (w)πΓ (x) for w P Σ∗ and x P Σ. As a shorthand, we set, with

respect to a given naming Σ “ {a1, . . . , ak}, πj “ π{aj}. Then πj(w) “ a
|w|aj

j .
A language L Ď Σ∗ is commutative, if, for u, v P Σ∗ such that |v|x “ |u|x

for every x P Σ, we have u P L if and only if v P L, i.e., L is closed under
permutation of letters in words from L.

A quintuple A “ (Σ,Q, δ, q0, F ) is a finite deterministic and complete
automaton (DFA), where Σ is the input alphabet, Q the finite set of states,
q0 P Q the start state, F Ď Q the set of final states and δ : Q ˆ Σ → Q is
the totally defined state transition function. Here, we do not consider incomplete
automata. The transition function δ : QˆΣ → Q extends to a transition function
on words δ∗ : QˆΣ∗ → Q by setting δ∗(q, ε) :“ q and δ∗(q, wa) :“ δ(δ∗(q, w), a)
for q P Q, a P Σ and w P Σ∗. In the remainder, we drop the distinction between
both functions and also denote this extension by δ. The language recognized
by an automaton A “ (Σ,Q, δ, q0, F ) is L(A) “ {w P Σ∗ | δ(q0, w) P F}. A
language L Ď Σ∗ is called regular if L “ L(A) for some finite automaton A.



54 S. Hoffmann

The Nerode right-congruence with respect to L Ď Σ∗ is defined, for u, v P Σ∗,
by u ”L v if and only if @x P Σ∗ : ux P L ô vx P L. The equivalence class
of w P Σ∗ is denoted by [w]”L

“ {x P Σ∗ | x ”L w}. A language is regular if
and only if the above right-congruence has finite index, and it can be used to
define the minimal deterministic automaton AL “ (Σ,QL, δL, [ε]”L

, FL) with
QL “ {[u]”L

| u P Σ∗}, δL([w]”L
, a) “ [wa]”L

and FL “ {[u]”L
| u P L}. Let

L Ď Σ∗ be regular with minimal automaton AL “ (Σ,QL, δL, [ε]”L
, FL). The

number |QL| is called the state complexity of L and denoted by sc(L). The state
complexity of a regularity-preserving operation on a class of regular languages is
the greatest state complexity of the result of this operation as a function of the
(maximal) state complexities for argument languages from the class.

Fig. 1. The minimal deterministic automaton (left) and the minimal commutative
automaton (right) of the language {w P Σ∗ | |w|a “ 0 or |w|b ą 0}.

Given two automata A “ (Σ,S, δ, s0, F ) and B “ (Σ,T, μ, t0, E), an automa-
ton homomorphism h : S → T is a map between the state sets such that for
each a P Σ and state s P S we have h(δ(s, a)) “ μ(h(s), a), h(s0) “ t0 and
h´1(E) “ F . If h : S → T is surjective, then L(B) “ L(A). A bijective homo-
morphism between automata A and B is called an isomorphism, and the two
automata are said to be isomorphic.

The minimal commutative automaton was introduced in [8] to investigate the
learnability of commutative languages. In [14,15] this construction was used to
define the index and period vector and in the derivation of the state complexity
bounds mentioned in Table 1.

Definition 1 (minimal commutative aut.). Let L Ď Σ∗ be regular. The
minimal commutative automaton for L is CL “ (Σ,S1 ˆ . . . ˆ Sk, δ, s0, F ) with

Sj “ {[am
j ]”L

: m � 0}, F “ {([π1(w)]”L
, . . . , [πk(w)]”L

) : w P L}

and δ((s1, . . . , sj , . . . , sk), aj) “ (s1, . . . , δj(sj , aj), . . . , sk) with one-letter transi-
tions δj([am

j ]”L
, aj) “ [am`1

j ]”L
for j “ 1, . . . , k and s0 “ ([ε]”L

, . . . , [ε]”L
).

In [8], the next result was shown.

Theorem 2 (Gómez and Alvarez [8]). Let L Ď Σ∗ be a commutative regular
language. Then, L “ L(CL).
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In general the minimal commutative automaton is not equal to the minimal
deterministic and complete automaton for a regular commutative language L,
see Example 1.

Example 1. For L “ {w P Σ∗ | |w|a “ 0 or |w|b ą 0} with Σ “ {a, b} the
minimal deterministic and complete automaton and the minimal commutative
automaton are not the same, see Fig. 1. This language is from [8]. In fact, the
difference can get quite large, as shown by Lp “ {w P Σ∗ | ∑k

j“1 j · |w|aj
” 0

(mod p)} for a prime p ą k. Here, sc(Lp) “ p, but CLp
has pk states.

The next definition from [14,15] generalizes the notion of a cyclic and non-
cyclic part for unary automata [24], and the notion of periodic language [6,14,15].

Definition 3 (index and period vector). The index vector (i1, . . . , ik) and
period vector (p1, . . . , pk) for a commutative regular language L Ď Σ∗ with min-
imal commutative automaton CL “ (Σ,S1 ˆ . . . ˆ Sk, δ, s0, F ) are the unique
minimal numbers such that δ(s0, a

ij

j ) “ δ(s0, a
ij`pj

j ) for all j P {1, . . . , k}.
Note that, in Definition 3, we have, for all j P {1, . . . , k}, |Sj | “ ij ` pj . Also

note that for unary languages, i.e., if |Σ| “ 1, CL equals AL and i1 ` p1 equals
the number of states of the minimal automaton.

Example 2. Let L “ (aa)∗ (bb)∗Y(aaaa)∗ b∗. Then (i1, i2) “ (0, 0), (p1, p2) “
(4, 2), π1(L) “ (aa)∗ and π2(L) “ b∗.

Let u, v P Σ∗. Then, u is a subsequence1 of v, denoted by u ď v, if and only if
v P u Σ∗. The thereby given order is called the subsequence order. Let L Ď Σ∗.
Then, we define (1) the upward closure ÒL “ L Σ∗ “ {u P Σ∗ : Dv P L : v ď u};
(2) the downward closure ÓL “ {u P Σ∗ : u Σ∗ X L �“ H} “ {u P Σ∗ : Dv P
L : u ď v}; (3) the upward interior, denoted by ßL, as the largest upward-
closed set in L, i.e. the largest subset U Ď L such that ÒU “ U and (4) the
downward interior, denoted by þL, as the largest downward-closed set in L, i.e.,
the largest subset U Ď L such that ÓU “ U . We have þL “ Σ∗z Ò(Σ∗zL) and
ßL “ Σ∗z Ó(Σ∗zL).

The following two results, which will be needed later, are from [14,15].

Theorem 4. Let U, V Ď Σ∗ be commutative regular languages with index and
period vectors (i1, . . . , ik), (j1, . . . , jk) and (p1, . . . , pk), (q1, . . . , qk). Then, the
index vector of U V is at most

(i1 ` j1 ` lcm(p1, q1) ´ 1, . . . , ik ` jk ` lcm(pk, qk) ´ 1)

and the period vector is at most (lcm(p1, q1), . . . , lcm(pk, qk)). So, sc(U V ) �
∏k

l“1(il ` jl ` 2 · lcm(pl, ql) ´ 1).

Theorem 5. Let Σ “ {a1, . . . , ak}. Suppose L Ď Σ∗ is commutative and regu-
lar with index vector (i1, . . . , ik) and period vector (p1, . . . , pk). Then, max{sc(Ò
L), sc(ÓL), sc(ßL), sc(þL)} �

∏k
j“1(ij ` pj).

1 Also called a scattered subword in the literature [11,19].
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3 Product-Form Minimal Automata

As shown in Example 1, the minimal automaton, in general, does not equal the
minimal commutative automaton. Here, we introduce the class of commutative
regular languages for which both are isomorphic. The corresponding commuta-
tive languages are called languages with a minimal automaton of product-form,
as the minimal commutative automaton is built with the Cartesian product.

Definition 6 (languages with product-form minimal automaton). A
commutative and regular language L Ď Σ∗ is said to have a minimal automaton
of product-form, if CL is isomorphic to AL.

If |Σ| “ 1, we see easily that CL is the minimal deterministic and complete
automaton.

Proposition 7. If |Σ| “ 1, then each commutative and regular L Ď Σ∗ has
a minimal automaton of product-form. More generally, if L Ď {a}∗, then L
(Σz{a})∗ has a minimal automaton of product-form.

Apart from the unary languages, we give another example of a language with
minimal automaton of product-form next.

Example 3. Let L “ (aa)∗ (bb)∗Y(aaa)∗ b(bb)∗ over Σ “ {a, b}. See Fig. 2 for
the minimal commutative automaton. Here, the minimal commutative automa-
ton equals the minimal automaton.

Fig. 2. CL for L “ (aa)∗ (bb)∗ Y (aaa)∗ b(bb)∗. Here CL is isomorphic to AL.

However, the next proposition gives a strong necessary criterion for a com-
mutative language to have a minimal automaton of product-form.

Proposition 8. If L Ď Σ∗ is commutative and regular with a minimal automa-
ton of product-form, then |{x P Σ | π{x}(L) is finite }| � 1. So, πΓ (L) is infinite
for |Γ | � 2, in particular no finite language over an at least binary alphabet is
in this class.
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For example, L “ {ε} over Σ does not have a minimal automaton of product-
form if |Σ| ą 1. Recall that the minimal automaton, as defined here, is always
complete. Note that the converse of Proposition 8 is not true, as shown by aa∗

over Σ “ {a, b}.
In the following statement, we give alternative characterizations for commu-

tative languages with minimal automata of product-form.

Theorem 9. Let L Ď Σ∗ be a commutative regular language with index vector
(i1, . . . , ik) and period vector (p1, . . . , pk). The following are equivalent:

1. the minimal automaton has product-form;
2. sc(L) “ ∏k

j“1(ij ` pj);
3. u ”L v implies @a P Σ : a|u|a ”L a|v|a ;
4. u ”L v if and only if @a P Σ : a|u|a ”L a|v|a .

Next, we give a way to construct commutative regular languages with mini-
mal automata of product-form.

Lemma 10. Let Σ “ {a1, . . . , ak} and, for j P {1, . . . , k}, Lj Ď {aj}∗ be regular

and infinite with index ij and period pj. Then, sc
(

k
j“1Lj

)
“ ∏k

j“1 sc(Lj) “
∏k

j“1(ij ` pj) and k
j“1Lj has index vector (i1, . . . , ik) and period vector

(p1, . . . , pk). With Theorem 9, k
j“1Lj has a product-form minimal automaton.

In the next theorem and the following remark, we investigate closure prop-
erties of the class in question.

Theorem 11. The class of commutative regular languages with minimal
automata of product-form is closed under left and right quotients and comple-
mentation. It is not closed under union, intersection and projection.

Remark 1. We have a b∗ Xa∗ b “ a b, showing, using Proposition 7 and 8,
that this class is not closed under intersection and by DeMorgan’s laws, as we
have closure under complementation, we also cannot have closure under union.
Also, L “ aa∗ bb∗ cc∗ Y bb∗ a∗ Y b∗ has a minimal automaton of product-
form, but π{a,b}(L) “ bb∗ a∗ Y b∗ is the language from Example 1. So, this
class is also not closed under projection.

Theorem 12. Let U, V Ď Σ∗ be commutative regular languages with product-
form minimal automata with sc(U) “ n and sc(V ) “ m.

1. We have sc(U V ) � 2nm if |Σ| ą 1 and sc(U V ) � nm if |Σ| “ 1.
Furthermore, for any Σ, there exist U, V as above such that nm � sc(U V ).

2. In the worst case, n states are sufficient and necessary for a DFA to recog-
nize ÒU . Similarly for the downward closure and interior operations.

3. In the worst case, n states are sufficient and necessary for a DFA to recognize
the projection of U .
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4. In the worst case, nm states are sufficient and necessary for a DFA to recog-
nize U X V or U Y V .

Remark 2. I do not know if the bound 2nm stated in Theorem 1 for the shuffle
operation is tight, but the next example shows that if we have a binary alpha-
bet, we can find commutative languages with state complexities n and m and
product-form minimal automata whose shuffle needs an automaton with strictly
more than nm states. A similar construction works for more than two letters. Let
p, q ą 11 be two coprime numbers. Set U “ a bp´1(bp)∗Yap´1(ap)∗ bbp´1(bp)∗

and V “ bq´1(bq)∗ Yaq´1(aq)∗ bbbq´1(bq)∗. Then, using that shuffle distributes
over union and a number-theoretical result from [27, Lemma 5.1], we find

U V “ a W Y ap´1(ap)∗ bWY
aq(aq)∗ bbW Y aq´1`p´1(ap)∗(aq)∗ bbbW,

where aq´1`p´1(ap)∗(aq)∗ “ F Yapq´1a∗ for some finite set F Ď {ε, a, . . . , apq´3}
and W “ E Y bpq´1b∗ for some E Ď {ε, b, . . . , bpq´3}. Note that by [27, Lemma
5.1] we have apq´2 bbbW XU V “ H. All languages involved have a product-
form minimal automaton. The minimal automaton for U has (2 ` p) · (1 ` p)
states, the minimal automaton for V has (1 ` q) · (q ` 2) states and that for
U V has 2pq · (pq ` 3) states. As (p ´ 11)(q ´ 11) ą 0 we can deduce (1 `
p)(2 ` p)(1 ` q)(2 ` q) ă 2(pq)2 ă 2pq(pq ` 3).

4 Partial Commutativity and Other Subclasses

A partial commutation on Σ is a symmetric and irreflexive relation I Ď Σ ˆ Σ,
often called the independence relation. Of interest is the congruence ∼I generated
on Σ∗ by the relation {(ab, ba) | (a, b) P I}. A language L Ď Σ∗ is closed under
I-commutation if u P L and u ∼I v implies v P L. If I “ {(a, b) P Σ ˆΣ | a �“ b},
then the languages closed under I-commutation are precisely the commutative
languages.

Languages closed under some partial commutation relation have been exten-
sively studied, see [10], also for further references, and in particular with relation
to (Mazurkiewicz) trace theory [5,10,21], a formalism to describe the execution
histories of concurrent programs.

Here, we will focus on the case that (Σ ˆ Σ)zI is transitive, i.e., if u �∼I v
and v �∼I w implies u �∼I w. In this case, (Σ ˆ Σ)zI is an equivalence relation
and we will write Σ1, . . . , Σk for the different equivalence classes.

The reason to focus on this particular generalization is, as we will see later,
that the definition of the minimal commutative automaton transfers to this more
general setting without much difficulty.

To ease the notation, if we have a partial commutation relation as above
with a corresponding partition Σ “ Σ1 Y . . . Σk of the alphabet, we also write
LΣ1,...,Σk

for the class of languages closed under this partial commutation. Then,
as is easily seen, we have L P LΣ1,...,Σk

if and only if, for x P Σi, y P Σj
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(i �“ j) and each u, v P Σ∗ we have uxyv P L ô uyxv P L. For example, L is
commutative if and only if L P L{a1},...,{ak} for Σ “ {a1, . . . , ak}.

4.1 The Canonical Automaton

Here, we generalize our notion of commutative minimal automaton, Definition 1,
to have uniform recognition devices for languages in LΣ1,...,Σk

.

Definition 13. Let Σ “ Σ1 Y . . . Y Σk be a partition and L Ď Σ∗. Set
CL,Σ1,...,Σk

“ (Σ,S1 ˆ . . .ˆSk, δ, s0, F ) with, for i P {1, . . . , k}, Si “ {[u]”L
| u P

Σ∗
i }, F “ {([πΣ1(u)]”L

, . . . , [πΣk
(u)]”L

) | u P L}, s0 “ ([ε]”L
, . . . , [ε]”L

) and,
for x P Σi,

δ(([u1]”L
, . . . , [ui]”L

, . . . , [uk]”L
), x) “ ([u1]”L

, . . . , [uix]”L
, . . . , [uk]”L

)

with words uj P Σ∗
j , j P {1, . . . , k}. This is called the canonical automaton for

the given L with respect to Σ “ Σ1 Y . . . Y Σk.

Next, we show that the canonical automata recognize precisely the languages
in LΣ1,...,Σk

. Note that we have dropped the assumption of regularity of L.

Theorem 14. Let L Ď Σ∗ and Σ “ Σ1 Y . . . Y Σk be a partition. Then,

1. L Ď L(CL,Σ1,...,Σk
) and L(CL,Σ1,...,Σk

) P LΣ1,...,Σk
.

2. L “ L(CL,Σ1,...,Σk
) ô L P LΣ1,...,Σk

.
3. Let L P LΣ1,...,Σk

. Then L is regular if and only if CL,Σ1,...,Σk
is finite.

Also, used in defining a subclass in the next subsection, we will derive a canon-
ical automaton for certain projected languages from CL,Σ1,...,Σk

. Essentially, the
next definition and proposition mean that if we only use one “coordinate” of
CL,Σ1,...,Σk

, then this recognizes a projection of L.

Definition 15. Let i P {1, . . . , k} and L P LΣ1,...,Σk
. The canonical projection

automaton (for Σi) is CL,Σi
“ (Σi, Si, δi, [ε]”L

, Fi) with Si “ {[u]”L
| u P Σ∗

i },
δi([u]”L

, x) “ [ux]”L
for x P Σi and Fi “ {[πΣi

(u)]”L
| u P L}.

Proposition 16. Let L P LΣ1,...,Σk
. Then, for i P {1, . . . , k}, πΣi

(L) “
L(CL,Σi

).

4.2 Subclasses in LΣ1,...,Σk

Here, we investigate several subclasses of LΣ1,...,Σk
. Recall that, for L Ď Σ∗, the

minimal automaton of L is denoted by AL.

Definition 17. Let Σ “ Σ1 Y . . .YΣk be a partition. Then, define the following
classes of languages.

L1 “ {L | CL,Σ1,...,Σk
has a single final state and L “ L(CL,Σ1,...,Σk

). },

L2 “
{

L | L “
k

i“1
πΣi

(L)

}

,

L3 “ {L | L “ L(CL,Σ1,...,Σk
), @i P {1, . . . , k} : AπΣi

(L) is isomorphic to CL,Σi
},

L4 “ {L | AL is isomorphic to CL,Σ1,...,Σk
}.



60 S. Hoffmann

First, we show that these are in fact subclasses of LΣ1,...,Σk
.

Proposition 18. Let Σ “ Σ1 Y . . . Y Σk be a partition. For each i P {1, 2, 3, 4}
we have Li Ď LΣ1,...,Σk

.

Remark 3. Regarding L1, note that there exist languages L “ L(CL,Σ1,...,Σk
)

such that the minimal automaton has a single final state, but CL,Σ1,...,Σk
has

more than one final state. For example, L “ {w P {a, b}∗ | |w|a ą 0 or |w|b ą 0}.
However, if CL,Σ1,...,Σk

has a single final state, then the minimal automata also
has only a single final state.

Example 4. Let Σ “ Σ1YΣ2 with Σ1 “ {a} and Σ2 “ {b}. Set L “ (aa(aaa)∗

bb(bbb)∗) Y (a(aaa)∗ b(bbb)∗). Then L P (L3 X L4)zL2.

Example 5. Set L “ (a(aaa)∗ b) Y aa(aaa)∗. Then L P L3zL4.

The languages in L1 arise in connection with the canonical automaton.

Proposition 19. Let L P LΣ1,...,Σk
and CL,Σ1,...,Σk

“ (Σ,S1ˆ. . .ˆSk, δ, s0, F ).
Then, for all s P S1 ˆ . . . ˆ Sk, {w P Σ∗ | δ(s0, w) “ s} P L1.

Next, we give alternative characterization for L2,L3 and L4.

Theorem 20. Let L P LΣ1,...,Σk
. Then,

1. L P L2 if and only if, for each w P Σ∗, the following is true:

w P L ô @i P {1, . . . , k} : πΣi
(w) P πΣi

(L);

2. L P L3 if and only if, for all i P {1, . . . , k} and u P Σ∗
i , we have

[u]”L
X Σ∗

i “ [u]”πΣi
(L) X Σ∗

i ;

3. L P L4 if and only if, for each u, v P Σ∗,

u ”L v ô @i P {1, . . . , k} : πΣi
(u) ”L πΣi

(v).

Example 6. Let L1 be the language from Example 3. Set L2 “ a1 a2 “
{a1a2, a2a1}. Both of their letters commute for the partition {a1, a2} “ {a1} Y
{a2}. Then, L1 P L4zL3 and L2 P L1zL4.

Finally, in Theorem 21, we establish inclusion relations, which are all proper,
between L1,L2 and L3, also see Fig. 3.

Theorem 21. We have L1 � L2 � L3.

Remark 4. Theorem 21 and Example 6 show that L4 is incomparable to each of
the other language classes with respect to inclusion.
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Fig. 3. Inclusion relations between the language classes.

5 Conclusion

The language class of commutative regular languages with minimal automata of
product-form behaves well with respect to the descriptional complexity measure
of state complexity for certain operations, see Table 2, and Lemma 10 allows us
to construct infinitely many commutative regular languages with product-form
minimal automaton. The investigation started could be carried out for other
operations and measures of descriptional complexity as well. Likewise, as done
in [8,9] for commutative and more general partial commutativity conditions, it
might be interesting if the learning algorithms given there could be improved for
the language class introduced.

Lastly, if the bound 2nm for shuffle is tight is an open problem. Remark 2
shows that the bound nm is not sufficient, however, giving an infinite family of
commutative regular languages with minimal automata of product-form attain-
ing the bound 2nm for shuffle is an open problem.
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In: Ćirić, M., Droste, M., Pin, J.É. (eds.) CAI 2019. LNCS, vol. 11545, pp. 151–163.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21363-3 13

16. Hoffmann, S.: State complexity investigations on commutative languages - the
upward and downward closure, commutative aperiodic and commutative group
languages. In: Han, Y.-S., Ko, S.-K. (eds.) DCFS 2021, LNCS 13037, pp. 64–75.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93489-7 6

17. Hoffmann, S.: State complexity of projection on languages recognized by permuta-
tion automata and commuting letters. In: Moreira, N., Reis, R. (eds.) DLT 2021.
LNCS, vol. 12811, pp. 192–203. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81508-0 16
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