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Abstract. It is shown that a two-way deterministic finite automaton
(2DFA) with n states over an alphabet Σ can be transformed to an
equivalent one-way automaton (1DFA) with |Σ| · F(n) + 1 states, where
F(n) = maxn

k=0 kn−k+1 ≤ (n + 1)n+1/(ln(n + 1) · e1−o(1))n+1.
This reflects the fact that, by keeping the last processed symbol in

memory, the simulating 1DFA needs to remember only the state from
which the 2DFA leaves the prefix read so far for the first time to the right
together with a function that maps some n − k states moving to the left
from the last processed symbol to some other k states moving to the
right from this symbol. This reduces the number of functions describing
the behaviour of the 2DFA on the prefix read so far.

A close lower bound of F(n) states is established using a 5-symbol
alphabet. The complexity of transforming a sweeping or a direction-
determinate 2DFA to a 1DFA is shown to be exactly F(n).

Keywords: Finite automata · Two-way automata · State complexity

1 Introduction

The state complexity of transforming two-way finite automata to one-way autom-
ata has received much attention in the literature. For deterministic (2DFA) and
nondeterministic (2NFA) automata, the exact complexity of transforming them
to deterministic and nondeterministic one-way automata (1DFA, 1NFA) was
determined by Kapoutsis [5]. Similar problems for related models were investi-
gated as well, and the state complexity of transformations involving sweeping
automata [14], complements of deterministic two-way automata [15], alternating
automata [4], unambiguous automata [11] was estimated. For the basic trans-
formations of 2DFA/2NFA to 1DFA/1NFA, the case of a unary alphabet has
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received special attention [2,7,9], and its complexity was shown to be much less
than in the general case studied by Kapoutsis [5].

Even though all four bounds by Kapoutsis [5] are precise, his lower bound
arguments rely on using alphabets of exponential size, and this leaves open the
state complexity of this transformation for small alphabets. As previously shown
by the authors [3], the 2DFA-to-1NFA transformation can in fact be improved
from

(
2n

n+1

)
to |Σ| · ( n

�n+1�
)

+ 1 states, and a close lower bound of
(

n
�n+1�

)
states

holds already for a 2-symbol alphabet. The purpose of this paper is to improve
the 2DFA-to-1DFA transformation in a similar way.

A transformation of 2DFA to 1DFA was known since the introduction of
two-way automata by Rabin and Scott [12]. Shepherdson [13] presented a trans-
formation of an n-state 2DFA to a 1DFA with ca. (n + 1)n+1 states. The lower
bound was given by Moore [10], who constructed an n-state 2DFA over a fixed
alphabet, for which the every 1DFA must have at least (n−5

2 )
n−5
2 states. Much

later, the precise succinctness tradeoff between 2DFA and 1DFA was determined
by Kapoutsis [5], who showed that K(n) = n(nn − (n − 1)n) + 1 states are suf-
ficient and in the worst case necessary, with the lower bound established over a
growing alphabet with around nn symbols.

This paper investigates the transformation of 2DFA to 1DFA for small alpha-
bets. Classical transformations, which are recalled in Sect. 3, compute the out-
comes of all computations of the 2DFA on the prefix read by the 1DFA. Accord-
ing to the new method, presented in Sect. 4, the constructed 1DFA addition-
ally remembers the last symbol read, and this allows it to store less information
on the computations: the resulting number of states is |Σ| · F(n) + 1, where
F(n) = maxn

k=0 kn−k+1. Then, provided that the alphabet is small, the overall
number of states is reduced.

As a side note, if the original 2DFAs are sweeping or direction-determinate,
the complexity of transforming them to 1DFAs is shown to be exactly F(n),
regardless of the size of the input alphabet.

The proposed construction for small alphabets is actually fairly close to opti-
mal. As shown in Sect. 5, already for a fixed 5-symbol alphabet, there exist
n-state 2DFA that require 1DFA with at least F(n) states.

The growth rate of the function F(n) is estimated in Sect. 6, and it is shown
that F(n) ≤ (n+1)n+1/(ln(n+1) · e1−o(1))n+1. Therefore, for every alphabet of
size subexponential in n, with |Σ| ≤ e−1

e2 · (ln(n+1) · e1−o(1))n+1, the proposed
transformation yields fewer states than the exact bound by Kapoutsis [5].

2 Two-Way Automata

Definition 1. A two-way deterministic finite automaton (2DFA) is a quintuple
A = (Σ,Q, q0, δ, F ), in which Σ is a finite alphabet, which does not contain two
special symbols: the left endmarker (�) and the right endmarker (�); Q is a finite
set of states; q0 ∈ Q is the initial state; δ : Q × (Σ × {�,�}) → Q × {−1,+1} is
a partially defined transition function; and F ⊆ Q is the set of accepting states,
effective at the right endmarker �.
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Given an input string w ∈ Σ∗, a 2DFA operates on a read-only tape con-
taining the string �w�. It begins its computation in the state q0, with the head
observing the left endmarker �. At every step of the computation, when A is in a
state q ∈ Q and observes a square of the tape containing a symbol a ∈ Σ∪{�,�},
the value δ(q, a) defines the next state and the direction of motion. The compu-
tation of A on w is defined uniquely; if A eventually reaches an accepting state
in F while at the right endmarker �, this computation is accepting; otherwise,
it either encounters an undefined transition or gets into an infinite loop. The set
of strings, on which the computation is accepting, is the language recognized by
the 2DFA, denoted by L(A).

Two-way automata of a special kind, which remember the direction of their
motion and can turn only on the endmarkers, are known as sweeping [14]. There
is also a larger class of direction-determinate automata [8] that remember the
direction in which they came to the current state, but may turn at any point.

Definition 2. A 2DFA is said to be direction-determinate, if there is a partition
Q = Q−1 	 Q+1, so that every transition δ(p, a) = (q, d) must satisfy q ∈ Qd.
The states in Q−1 are called left-bound, those in Q+1 right-bound.

A direction-determinate 2DFA is called sweeping, if δ(p, a) = (q, d) implies
p, q ∈ Qd, as long as a ∈ Σ (that is, the symbol a is not an endmarker).

One-way automata (1DFA) are a special case of 2DFA, which move to the
right after every transition. This makes the endmarkers unnecessary.

3 The Known Simulation of 2DFA by 1DFA

The new transformation of 2DFA to 1DFA presented in this paper is based
on the classical transformation by Shepherdson [13], with the refinements by
Kapoutsis [6] that made it optimal.

Theorem 1 (Kapoutsis [5,6]). For every n-state 2DFA, there exists a partial
1DFA with K(n) = n · (nn − (n − 1)n) states recognizing the same language.

Proof (a sketch). The idea is to precompute all computations of the 2DFA on the
processed prefix of the input string, and to remember their outcomes in the state
of the constructed 1DFA. These precomputed computations can later be joined
together into longer computations, and eventually the 1DFA can determine the
outcome of the single computation beginning in the initial configuration.

Let (Q,Σ, δ, q0, F ) be a 2DFA. The 1DFA has states of the form (q̂, f), where
q̂ ∈ Q is a state of the 2DFA and f : Q → Q is a function mapping states to
states. On an input string w ∈ Σ∗, the 1DFA reaches a state (q̂, f), for which

– in the computation of the 2DFA on �w, the first time it leaves the rightmost
symbol of �w to the right, it does so in the state q̂;

– if the 2DFA begins its computation at the rightmost symbol of �w in a state q,
then it eventually moves to the right of this rightmost symbol in the state f(q),
and if this computation of a 2DFA rejects or loops, then f(q) is defined as q̂:
this represents the behaviour of the 2DFA on this prefix.
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Fig. 1. The data collected by a 1DFA simulating a 2DFA: (i) in the construction by
Kapoutsis using states (q̂, f), with f : Q → Q; (ii) in the new construction using states

(a, q̂, f), with f :
←−
Qa → −→

Qa.

These conditions defining a state (q̂, f) are illustrated in Fig. 1(i). The image
of f must contain q̂, because this state must be reached from some state at the
previous position; this accounts for the term −(n − 1)n in the expression for the
number of states in the resulting 1DFA for L. The number of such pairs (q̂, f)
is exactly K(n) = n · (nn − (n − 1)n). 
�

It is interesting to note that the construction in Theorem 1 yields fewer states
on any direction-determinate 2DFA (hence, on any sweeping 2DFA).

Corollary 1. For every n-state direction-determinate 2DFA with |Q+1| = k,
there exists a partial 1DFA with kn−k+1 states recognizing the same language.

Proof. The idea is simple: in the automaton in Theorem 1, in a pair (q̂, f), the
function f needs to be defined only on arguments in Q−1 (its values on Q+1

are irrelevant for the construction), and all its values are in Q+1 by definition.
Furthermore, the state q̂ is also in Q+1 by definition. Then there are exactly
kn−k · k = kn−k+1 such pairs (q̂, f), where k = |Q+1|. 
�

The number of states thus depends on the value of k, and the maximum
number is F(n) = maxn

k=0 kn−k+1. It will be shown later in Sect. 6 that the
maximum is reached for k = (1 + o(1)) · n+1

ln(n+1) , and that the number F(n) is of
the order (n + 1)n+1/(ln(n + 1) · e1−o(1))n+1.

This improvement over Theorem 1 is obtained by reducing the domain and
the range of functions f . The new transformation for 2DFA of the general form
presented in the next section achieves a similar reduction by additionally remem-
bering one input symbol.

4 Efficient Transformation for Small Alphabets

The behaviour function f : Q → Q used in Theorem 1 maps states at the
last symbol read to states in the next position. The new construction is different
from the classical one in two respects. First, the 1DFA shall remember a different
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behaviour function, which traces computations beginning and ending at the last
symbol read, and q̂ shall also be positioned on the last symbol read. Second,
the 1DFA additionally remembers the last symbol read. Let a be this symbol.
Knowing it, the 1DFA also knows the transitions by a, and in particular, in
which direction they move the head. Let

←−
Qa be the set of all states q with

left-moving transitions δ(q, a) = (q′,−1), and let
−→
Qa consist of all states with

right-moving transitions δ(q, a) = (q′,+1). Then, the new behaviour function
can map states in

←−
Qa to states in

−→
Qa, as illustrated in Fig. 1(ii). And there are

fewer such functions than functions f : Q → Q, used in Theorem 1.
Let A = (Σ,Q, q0, δ, F ) be a 2DFA. For each symbol a ∈ Σ, let

←−
Qa = {q :

δ(q, a) ∈ Q × {−1}} be the set of states in which A moves to the left on a, and
similarly define

−→
Qa = {q : δ(q, a) ∈ Q × {+1}}.

Theorem 2. For every 2DFA A = (Σ,Q, q0, δ, F ), there exists a partial 1DFA
B = (Σ,Q′, q′

0, δ
′, F ′) that recognizes the same language and uses the following

set of states.

Q′ = {(a, q̂, f) : a ∈ Σ, q̂ ∈ −→
Qa, f :

←−
Qa → −→

Qa} ∪ {(�, q0, f0)} ,

where f0 is a trivial function with an empty domain, that is, f0 : Ø → Ø.

Proof. Each state (a, q̂, f) of B consists of three components: the last read input
symbol a ∈ Σ; the state q̂ ∈ −→

Qa, from which A first leaves the prefix read so far
to the right; and the function f :

←−
Qa → −→

Qa, describing the behaviour of A on
the prefix read so far, which maps states at the last symbol read to states at the
last symbol read, as in Fig. 1(ii).

Note that
←−
Q� = Ø, as A cannot move beyond the left endmarker. For this

reason, there is only one function mapping
←−
Q� to

−→
Q�, namely, f0 : Ø → Ø,

which is a trivial function with an empty domain. This leads to the following
initial state of B:

q′
0 = (�, q0, f0) .

This is the only state of B with an endmarker in the first component.
The transition in a state (a, q̂, f) by a symbol b ∈ Σ leads to a triple (b, r̂, g),

defined as follows. For every state q ∈ ←−
Qb, consider the uniquely defined sequence

of states s0, . . . , s�, s�+1 ∈ Q entered by the automaton at the symbol b, where
s0 = q, � ≥ 0, s0, . . . , s� ∈ ←−

Qb, s�+1 ∈ −→
Qb, and every two consecutive states

si, si+1 in this sequence are connected in one of the following two ways. Let
δ(si, b) = (t,−1). Then,

– either t ∈ −→
Qa, and then δ(t, a) = (si+1,+1),

– or t ∈ ←−
Qa, in which case δ(f(t), a) = (si+1,+1).

This exchange between a and b is illustrated in Fig. 2. Define g(q) := s�+1. How-
ever, if the construction of the above sequence reaches an undefined transition, if
the sequence is infinite, or if it reaches q̂, then let the value g(q) be temporarily
undefined—to be specified later.
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Fig. 2. New simulation of a 2DFA by a 1DFA: transition from a state (a, q̂, f) by a
symbol b to a state (b, r̂, g).

The state r̂ is set by first considering the transition δ(q̂, a) = (q′,+1): if
q′ ∈ −→

Qb, then r̂ := q′, and if q′ ∈ ←−
Qb, then r̂ := g(q′), provided that the value

g(q′) has been defined already. With r̂ specified, all values of g not defined yet
can be set equal to r̂.

Finally, let
δ′((a, q̂, f), b) := (b, r̂, g) .

However, if the above construction has left r̂ undefined, then let the whole tran-
sition δ′((a, q̂, f), b) be undefined.

The set F ′ of accepting states of B is defined similarly to transitions. A state
(a, q̂, f) is marked as accepting, if the following condition holds. Consider the
uniquely defined sequence of states s0, . . . , s�, . . . ∈ Q, finite or infinite, where
δ(q̂, a) = (s0,+1), and every two consecutive states si, si+1 in this sequence are
connected in one of the following two ways. Let δ(si,�) = (t,−1). Then,

– either t ∈ −→
Qa, and then δ(t, a) = (si+1,+1),

– or t ∈ ←−
Qa, in which case δ(f(t), a) = (si+1,+1).

If this sequence eventually reaches an accepting state s� ∈ F at the right end-
marker, then let the state (a, q̂, f) be accepting for B. In all other cases, i.e., if
the above sequence reaches an undefined transition or it is infinite, (a, q̂, f) /∈ F ′.

The correctness statement for the construction reads as follows.

Claim 1. Let (a, q̂, f) be the state reached by B after reading w ∈ Σ∗. Then:

– the last symbol of w is a (if w = ε, then a = �);
– the automaton A, having begun its computation on the tape �w at the left

endmarker in the state q0, eventually reaches the last symbol of w in the
state q̂;

– for each state q ∈ ←−
Qa, the automaton A, having begun its computation on

the tape �w at the last symbol of w in the state q, eventually reaches the last
symbol of w in the state f(q) ∈ −→

Qa; and if the latter computation rejects or
loops, then f(q) = q̂.
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Fig. 3. Transitions of the 2DFA A, defined in Lemma 1, for k = 3 and � = 4.

This can be proved by induction on the length of w; the proof is omitted due
to space constraints. 
�

How many states are there in such automaton? For each symbol a, the con-
struction produces |−→Qa||←−Qa|+1 states, which is at most F(n) = maxn

k=0 kn−k+1,
and Theorem 2 produces a 1DFA with at most |Σ| · F(n) states.

5 Lower Bound

The first lower bounds on the 2DFA to 1DFA transformation were given by
Barnes [1] and by Moore [10], the latter uses a sweeping 2DFA with half of
the states right-bound and the other half left-bound, so that the simulating
1DFA has to store an arbitrary function from right-bound states to left-bound
states, and therefore must have at least (n−5

2 )
n−5
2 states. This paper establishes

a stronger lower bound by using an optimal distribution between left-bound and
right-bound states. First, the lower bound is presented for a sweeping 2DFA with
k right-bound states and � left-bound states.

Lemma 1. For all � ≥ k ≥ 3, there exists a sweeping 2DFA with k + � states
over the alphabet Σ = {a, b, c, d, e}, such that every 1DFA recognizing the same
language must use at least k�+1 states.

Proof. Define a 2DFA A = (Σ,Q, r0, δ, F ) with Σ = {a, b, c, d, e} and with
the set of states Q = {r0, . . . , rk−1, p0, . . . , p�−1}. In the states r0, . . . , rk−1, the
automaton moves to the right until it reaches the right endmarker, and the states
p0, . . . , p�−1 are used for moving to the left without changing the direction.

The automaton begins its computation by the transition (see also Fig. 3)

δ(r0,�) = (r0,+1),

and then changes its direction of motion only at the endmarkers, using the
following transitions:

δ(pi,�) = (ri,+1), for i ∈ {0, . . . , k − 1},
δ(r0,�) = (p0,+1).
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At the right endmarker �, the automaton accepts in the state rk−1, that is,
F = {rk−1}. The transitions at the left endmarker � in the states pk, pk+1,
. . . , p�−1, as well as at the right endmarker � in the states r1, r2, . . . , rk−2 are
undefined, and some inputs are rejected in these configurations. The remaining
transitions at the endmarkers are undefined as well, but the automaton shall
never get into the corresponding configurations.

The symbols a and b do not affect the computation on the way from left
to right, and apply permutations to the states p0, . . . , p�−1 on the way back.
Specifically, a implements a circular permutation.

δ(ri, a) = (ri,+1), for i ∈ {0, . . . , k − 1},
δ(pi, a) = (p(i+1) mod �,+1), for i ∈ {0, . . . , � − 1}.

The symbol b swaps p0 with p1.

δ(ri, b) = (ri,+1), for i ∈ {0, . . . , k − 1},
δ(p0, b) = (p1,−1),
δ(p1, b) = (p0,−1),
δ(pi, b) = (pi,−1), for i ∈ {2, . . . , � − 1}.

Using a and b, one can generate an arbitrary permutation of the states
p0, . . . , p�−1. The next symbol c merges both states p0 and p1 into p0.

δ(ri, c) = (ri,+1), for i ∈ {0, . . . , k − 1},
δ(p0, c) = (p0,−1),
δ(p1, c) = (p0,−1),
δ(pi, c) = (pi,−1), for i ∈ {2, . . . , � − 1}.

This allows to implement all completely defined functions from {p0, . . . , p�−1}
to {p0, . . . , p�−1}, injective and non-injective.

The last two symbols d and e are used to permute the states r0, . . . , rk−1,
in the same way as a and b permute the second group of states. The symbol d
defines a circular permutation, and e exchanges the first two states:

δ(ri, d) = (r(i+1) mod k,+1), for i ∈ {0, . . . , k − 1},
δ(pi, d) = (pi,−1), for i ∈ {0, . . . , � − 1},
δ(r0, e) = (r1,+1),
δ(r1, e) = (r0,+1),
δ(ri, e) = (ri,+1), for i ∈ {2, . . . , k − 1},
δ(pi, e) = (pi,−1), for i ∈ {0, . . . , � − 1}.

Claim 2. For every complete function g : {p0, . . . , p�−1} → {p0, . . . , p�−1}, there
exists a string wg ∈ {a, b, c}∗, on which the automaton, having begun its com-
putation at the last symbol of wg in a state pi, eventually exits the string to the
left of its leftmost symbol in the state g(pi).

It is well-known that every complete function can be expressed as a com-
position of three generators: circular permutation ga, swapping of two ele-
ments gb, and merging of two elements gc. Let g = gσ1 ◦ . . . ◦ gσm

, where
σ1, . . . , σm ∈ {a, b, c}. Then wg := σ1 . . . σm is the desired string.
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Claim 3. For every state ri0 ∈ {r0, . . . , rk−1} and for every complete function
f : {p0, . . . , p�−1} → {r0, . . . , rk−1}, there exists a string uri0 ,f ∈ {a, b, c, d}∗,
such that the automaton, operating on the tape �uri0 ,f ,

– having begun its computation at the left endmarker � in the state r0, eventu-
ally exits the string to the right of its rightmost symbol in the state ri0 ;

– having begun its computation at the last symbol of uri0 ,f in a state pj, even-
tually reaches the left endmarker �, and then moves from there to the right
in the state f(pj).

Consider the function g : {p0, . . . , p�−1} → {p0, . . . , pk−1} defined as follows:
for every state pj , first take f(pj) = ri. Then define g(pj) := p(i−i0) mod k. Now,
let wg be the string defined for g in Claim 2, and define the string uri0 ,f as

uri0 ,f := wgd
i0 .

Then, having started on �wgd
i0 in the initial configuration, the automaton moves

all the way to the right: it remains in the state r0 while reading wg, and then
finishes reading di0 in the state ri0 , as desired. If the automaton begins its
computation at the last symbol of �wgd

i0 in a state pj , then it first moves all the
way to the left, arriving to the left endmarker in the state g(pj) = p(i−i0) mod k.
After that, it leaves this endmarker in the state r(i−i0) mod k and starts sweeping
back to the right. It remains in r(i−i0) mod k while reading wg, and then leaves
di0 in the state ri = f(pj). This proves Claim 3.

Claim 4. For every permutation π : {r0, . . . , rk−1} → {r0, . . . , rk−1}, there exists
a string xπ ∈ {d, e}∗, on which the automaton, beginning its computation at the
first symbol of xπ in a state ri, eventually exits the string to the right of its
rightmost symbol in the state π(ri).

This is a standard generation of a permutation using two generators.

Claim 5. For every two distinct states ri, rj ∈ {r0, . . . , rk−1} and for every two
complete functions f, g : {p0, . . . , p�−1} → {r0, . . . , rk−1} (not necessarily dis-
tinct), there exists a string v ∈ {d, e}∗, for which the string uri,fv is accepted
but the string urj ,gv is rejected.

Define a permutation π : {r0, . . . , rk−1} → {r0, . . . , rk−1} by setting π(ri) =
rk−1 and π(rj) = r1, while the rest of the values can be set arbitrarily. Set
v := xπ, where xπ ∈ {d, e}∗ is the string defined for π in Claim 4. On the input
uri,fxπ, the automaton accepts the string in one left-to-right traversal, entering
the state ri after reading uri,f , and then reaching the state π(ri) = rk−1 upon
reading xπ. On the other hand, on the input urj ,gxπ, the automaton is in the
state rj after urj ,g, and then it enters the state π(rj) = r1 by xπ, in which the
transition by the right endmarker is undefined, and thus the string is rejected.

Claim 6. For every state ri ∈ {r0, . . . , rk−1} and for every two distinct com-
plete functions f, g : {p0, . . . , p�−1} → {r0, . . . , rk−1}, there exists a string
v ∈ {a, d, e}∗, for which exactly one of the strings uri,fv and uri,gv is accepted
by the automaton.
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Let pj be any argument on which f and g assume different values. Then at
least one of f(pj) and g(pj) is different from ri; assume, without loss of generality,
that f(pj) = rt �= ri, and g(pj) �= rt. Define a permutation π : {r0, . . . , rk−1} →
{r0, . . . , rk−1} by π(ri) = r0 and π(rt) = rk−1, the rest of the values can be
anything. Let xπ ∈ {d, e}∗ be the string defined for π in Claim 4. Then the
promised string is defined by

v := xπaj .

The 2DFA accepts the string uri,fxπaj in two stages. In the first left-to-right
sweep, it enters the state ri after uri,f , then comes to the state r0 = π(ri) after
xπ, and stays in this state until it reaches the right endmarker �. Then it makes a
right-to-left sweep, first coming to the state pj after reading aj , then maintaining
this state while reading xπ, so that it enters the prefix �uri,f from the right in
the state pj . By Claim 3, the automaton eventually moves from the last symbol
of this prefix to the right in the state f(pj) = rt. The automaton continues by
moving to the right through the substring xπ, and finishes reading it in the state
π(rt) = rk−1. In this state, the automaton passes through aj and reaches the
right endmarker for the second time, accepting this time.

The computation on the string uri,gxπaj begins in the same way. Eventually,
the automaton enters the prefix �uri,g from the right in the state pj , and later
emerges from this prefix to the right in the state g(pj) �= rt. Next, the automaton
reads the substring xπ from left to right, and finishes reading it in a state that
is not rk−1. If the state is r0, then the automaton loops, and if it is neither r0
nor rk−1, it rejects at the right endmarker.

Now Lemma 1 is proved as follows. Assume that B is a 1DFA recognizing
the same language as the 2DFA A. Then, the states reached by B upon reading
different strings of the form uri,f must be pairwise distinct, for otherwise it
would not be able to accept one of them and reject the other upon reading a
string constructed in Claims 5 and 6. 
�
Theorem 3. For every n ≥ 6, there exists a language over a 5-symbol alphabet
recognized by an n-state sweeping 2DFA, such that every 1DFA recognizing that
language needs to have at least F(n) = maxn

k=0 kn−k+1 states.

Therefore, the state complexity of transforming a sweeping or a direction-
determinate 2DFA to a 1DFA is exactly F(n), whereas for 2DFA of the general
form it is between F(n) and |Σ| · F(n).

6 Estimation

Both the upper bound and the lower bound on the 2DFA to 1DFA tradeoff have
been expressed in terms of the function F(n) = maxn

k=0 kn−k+1. We are now
going to estimate the growth rate of this function.

Lemma 2. For each a ≥ 16, the maximum of the real function Ga(x) = xa−x

is reached for xa = (1+o(1)) · a
ln a , and this maximum accordingly is of order

Ga(xa) ≤ aa

(ln a)a · (e1−o(1))a
.
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Proof. First, it is quite easy to derive the following inequality, for a ≥ 3:

a ≤ (
a

ln a

)1+r1(a)
, where r1(a) = ln ln a

ln a − ln ln a . (1)

This follows from ln ln a
ln a − ln ln a ≤ r1(a). It should also be easily seen that r1(a) > 0

for a ≥ 3, and that lima→∞ r1(a) = 0.
Our next task is to find the maximum for Ga(x) = xa−x = eln x·(a−x). By

differentiating Ga(x), we get G′
a(x) = eln x·(a−x) · (a−x

x − ln x) and, by setting
G′

a(xa) = 0, we see that a−xa

xa
− ln xa = 0, which gives

xa ·ln xa = a−xa . (2)

To evaluate xa, we first derive the following inequalities, using (2) and (1),
under assumption that a ≥ 16:

a
ln a ·ln a

ln a + a
ln a = a

ln a ·(ln a
ln a + 1) < a

ln a ·(ln a
ln a + ln ln a)

= a
ln a ·ln( a

ln a ·ln a) = a
ln a ·ln a = a = xa ·ln xa + xa ,

xa ·ln xa = a−xa < a = a
ln a ·ln a ≤ a

ln a ·ln( a
ln a )1+r1(a)

= (1+r1(a))· a
ln a ·ln a

ln a ≤ (1+r1(a))· a
ln a ·ln((1+r1(a))· a

ln a ) .

Now, since both t·ln t + t and t·ln t are real functions monotone increasing in t,
we see that a

ln a < xa and xa < (1+r1(a))· a
ln a . Thus, the exact value xa can be

expressed in the form

xa = (1+r2(a))· a
ln a , with 0 < r2(a) < r1(a) . (3)

Since lima→∞ r1(a) = 0 by (1), we see that lima→∞ r2(a) = 0 as well.
It only remains to evaluate Ga(xa). Using (2) and (3), we get:

Ga(xa) = xa−xa
a = eln xa·(a−xa) = ea·ln xa − xa·ln xa = ea·ln xa − a+ xa

= ea·(ln(1+r2(a))+ln a−ln ln a)−a+(1+r2(a))·a/ ln a

= ea·ln(1+r2(a))+a·ln a−a·ln ln a−a+a/ ln a+r2(a)·a/ ln a

= ea·ln a−a·ln ln a−a · ea·(ln(1+r2(a))+1/ ln a+r2(a)/ ln a)

= aa

(ln a)a · ea · ea·r3(a) = aa

(ln a)a · (e1−r3(a))a
, where

r3(a) = ln(1+r2(a)) + 1
ln a + r2(a)

ln a .

Since r2(a) > 0 and lima→∞ r2(a) = 0, also r3(a) > 0 for a > 1 and, moreover,
lima→∞ r3(a) = 0. 
�

Using this lemma, the following estimation of F(n) can be obtained:

Theorem 4. F(n) = maxn
k=0 kn−k+1 ≤ (n+1)n+1

(ln(n+1))n+1 · (e1−o(1))n+1 .

Proof. F(n) = maxn
k=0 kn−k+1 = maxn

k=0 ka−k ≤ Ga(xa) = aa

(ln a)a · (e1−o(1))a

= (n+1)n+1

(ln(n+1))n+1 · (e1−o(1))n+1 , using substitution a = n+1. 
�

We are now ready to compare F(n) with K(n) = n · (nn − (n−1)n), the
standard tradeoff for 2DFA to 1DFA transformation, derived by Kapoutsis [5]:
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Theorem 5. supn→∞
F(n)
K(n) · e−1

e2 · (ln(n+1) · e1−o(1))n+1 ≤ 1.

This is based on the fact that limn→∞
(n+1)n+1

n·(nn−(n−1)n) = e2

e−1 (omitted due
to space constraints). Accordingly, the proposed 2DFA to 1DFA transformation
given in Theorem 2 improves over the construction by Kapoutsis [5] as long as
|Σ| < e−1

e2 · (ln(n+1) · e1−o(1))n+1.
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