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Abstract. Recently a disambiguation construction for weighted auto-
mata has been presented by Mohri and Riley. In this paper we extend these
results in two ways. First we generalize the underlying structure of the
automata from words to trees and second we show that these results hold
not only for the tropical semiring but also the arctic one.

Keywords: Weighted automata · Unambiguous automata · Tree
automata · Twins property

1 Introduction

Quantitative extensions of finite-state automata, called weighted automata (WA)
[20], as well as of finite-state tree automata, called weighted tree automata
(WTA) [9], have been proposed and thoroughly investigated. The weights are
usually taken from a semiring like the non-negative reals R≥0, the tropical semir-
ing T [21,22], or the related arctic semiring A.

Needless to say computational properties improve for deterministic devices.
In the unweighted case of finite-state automata and finite-state tree automata
the expressive power of their deterministic counterpart is equal [7,19]. For their
quantitative extensions however this equivalence does not hold [3]. Indeed given
that not every WTA can be determinised [4, Example 5.9], the research is headed
towards finding sufficient conditions for determinization.

Notable results include approaches for WA with set semantics [2,6] deal-
ing with sequentiality, a notion similar to determinism. Furthermore there are
determinization approaches of WA over the tropical semiring by Mohri [16] and a
maximal factorization approach that generalizes these results to extremal semir-
ings for WA [13] and WTA [5]. In addition approximate variants of Mohri’s result
have been proposed [1,8]. A powerful tool utilized in all of these approaches is the
so-called twins property, which ensures that similar loops have identical weights.
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Situated between deterministic and non-deterministic devices are devices
with limited ambiguity. While determinism requires a unique choice in each con-
figuration, limited ambiguity only requires a limited number of outputs for each
input. Unambiguous, finitely ambiguous and polynomially ambiguous devices for
instance, restrict the number of outputs per input by 1, by a uniform bound,
and by a polynomial, respectively [14,15]. Therefore a natural generalization of
determinism is unambiguity [14,18]. Unambiguous equivalents of WA and WTA
have however not been investigated as thoroughly.

Recently a disambiguation algorithm has been proposed by Mohri and Riley
[17] for weighted automata. They give a construction that with input of a WA,
outputs an equivalent unambiguous WA. Furthermore they give sufficient con-
ditions, most notably a weaker version of the twins property that only compares
states that are in a certain relation. This condition ensures the finiteness of the
construction for WA over the non-negative tropical semiring.

In the present paper we generalize the construction to WTA and give a
sufficient condition for finiteness for the tropical, arctic and non-negative tropical
semiring. We subsume the results of [17]. We will closely follow the results and
proofs by [17], dealing with issues specific to the structure of trees along the way.

More specifically in Sect. 2 we introduce some elementary technical machin-
ery, including the semiring properties we require. In Sect. 3 we present the uni-
formity construction that will, applied to a WTA T , output a WTA U that
has uniformity in the following sense. Each run on a tree t of U will have the
behavior of T as its weight, i.e. [[T ]](t). We then give sufficient conditions for
the finiteness of U for the tropical, arctic and non-negative tropical semiring
in Theorem 13 and gather some straightforward conditions in Proposition 14.
Finally in Sect. 4 we derive an unambiguous WTA V that is equivalent to T by
removing redundant transitions from U .

2 Preliminaries

Basic Notation. For every k ∈ N we use the subset [k] = {i ∈ N | 1 ≤ i ≤ k}.
For any set A the set of all finite words over A is A∗ =

⋃
k∈N

Ak, where we let
Ak = A × · · · × A containing k factors of A and A0 = {ε} contains just the
empty word ε. The length |w| of a word w = a1 · · · ak ∈ A∗ with a1, . . . , ak ∈ A
is |w| = k; i.e. the number of occurrences of symbols in w. Given words v, w ∈ A∗,
their concatenation is written v.w or simply vw. For two sets M,N we denote
the set of mappings from M to N by NM .

Trees and Contexts. A ranked alphabet (Σ, rk) is a pair consisting of a finite
set Σ and a mapping rk: Σ → N that assigns a rank to each symbol of Σ. If
there is no risk of confusion, we denote a ranked alphabet (Σ, rk) by just Σ.
Moreover, for every k ∈ N we let Σ(k) = {σ ∈ Σ | rk(σ) = k}. Given a ranked
alphabet Σ and a set Z, the set TΣ(Z) of Σ trees indexed by Z is the smallest
set T such that Z ⊆ T and σ(t1, . . . , tk) ∈ T for every k ∈ N, σ ∈ Σ(k), and
t1, . . . , tk ∈ T. We abbreviate TΣ(∅) by TΣ ; any L ⊆ TΣ is called tree language.
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Next, we recall some common notions for trees. Let t ∈ TΣ(Z) be a tree for
a ranked alphabet Σ and a set Z. The set pos(t) of positions of t is defined by
pos(z) = {ε}, z ∈ Z, and pos(σ(t1, . . . , tk)) = {ε} ∪ {iw | i ∈ [k], w ∈ pos(ti)}
for all k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ(Z). The height of t is given
as height(t) = maxw∈pos(t) |w|, and the size of t is size(t) = |pos(t)|. Given a
position w ∈ pos(t), the label t(w) of t at w and the subtree t|w of t at w are
given by z(ε) = z|ε = z for all z ∈ Z and

(
σ(t1, . . . , tk)

)
(w) =

{
σ if w = ε

ti(w′) if w = iw′ with i ∈ N and w′ ∈ pos(ti)

σ(t1, . . . , tk)|w =

{
σ(t1, . . . , tk) if w = ε

ti|w′ if w = iw′ with i ∈ N and w′ ∈ pos(ti)

for all k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ(Z). Finally, the replacement t[t′]w
of the subtree at position w ∈ pos(t) by a tree t′ ∈ TΣ(Z) is given by z[t′]ε = t′

for all z ∈ Z and

σ(t1, . . . , tk)[t′]w =

⎧
⎪⎨

⎪⎩

t′ if w = ε

σ(t1, . . . , ti−1, ti[t′]w′ , ti+1, . . . , tk) if w = iw′ with i ∈ N,

w′ ∈ pos(ti)

for every k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ(Z). For a set Y , the set of positions
of t labeled by elements in Y , is the set posY (t) = {w ∈ pos(t) | t(w) ∈ Y }.

We reserve the use of the special symbol �. A tree t ∈ TΣ({�}) is a context,
if there exists exactly one w ∈ pos(t) with t(w) = �; i.e. |pos�(t)| = 1. The
set of all such contexts is denoted by CΣ . Given a context C ∈ CΣ and a
tree t ∈ TΣ({�}), the substitution C[t] of t into C yields the tree C[t]w, where
w is the unique position w ∈ pos(C) with C(w) = �.

Semirings. A semiring [11,12] is a tuple (S,⊕,⊗, 0, 1) such that (S,⊕, 0) is
a commutative monoid and (S,⊗, 1) is a monoid, ⊗ distributes over ⊕ and
0 ⊗ s = s ⊗ 0 = 0 for all s ∈ S. We will refer to a semiring (S,⊕,⊗, 0, 1) by
its carrier set S. A semiring S is called commutative if (S,⊗, 1) is commutative.
It is said to be cancellative if s, s′, s′′ ∈ S with s′′ 
= 0 and s ⊗ s′′ = s′ ⊗ s′′

implies s = s′. We call it left divisible if for all s ∈ S \ {0} there exists s−1 ∈ S
such that s−1 ⊗ s = 1. It is said to be weakly left divisible if for s, s′ ∈ S with
s ⊕ s′ 
= 0 there exists s′′ ∈ S such that s = (s ⊕ s′) ⊗ s′′. If S is cancellative, s′′

is unique and has the form s′′ = (s ⊕ s′)−1 ⊗ s. Moreover, S is called zero-sum
free if s⊕ s′ = 0 implies s = 0 and s′ = 0. Throughout the rest of this paper each
considered semiring is assumed to be commutative, zero-sum free, cancellative,
and weakly left divisible. Considered examples include

– the semiring of non-negative real numbers (R≥0,+, ·, 0, 1),
– the tropical semiring T = (R ∪ {∞},min,+,∞, 0),
– the arctic semiring A = (R ∪ {−∞},max,+,−∞, 0), and
– the non-negative tropical semiring T

≥0 = (R≥0 ∪ {∞},min,+,∞, 0).
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Weighted Tree Automata. A weighted tree automaton (WTA) [10] over a
semiring S is a tuple T = (Q,Σ, μ, ν), where Q is a finite set of states, Σ
is a ranked alphabet, μ is a family (μ(σ) : Qk × Q → S | k ≥ 0, σ ∈ Σ(k))
of transition mappings and ν ∈ SQ is a root weight vector. We call a tuple
(q1, . . . , qk, σ, w, q) ∈ Qk × Σ × S × Q a transition whenever rk(σ) = k and
μ(σ)(q1, . . . , qk, q) = w. We sometimes denote a transition by σ(q1, . . . , qk) w→ q.
The set of all transitions with w 
= 0 is denoted by ΔT . A state q ∈ Q is called
final if ν(q) 
= 0.

For t ∈ TΣ and q ∈ Q we define the set of runs of T on t, assigning to the
root position the state q ∈ Q by RunT (t, q) = {r : pos(t) → Q | r(ε) = q}. For
C ∈ CΣ and for p, q ∈ Q we define the set of runs of T on C, assigning to the
position of � the state p ∈ Q and to the root position the state q ∈ Q by

RunT (p,C, q) = {r : pos(C) → Q | r(ε) = q ∧
∀w ∈ pos(C) : (C(w) = �) ⇒ r(w) = p}.

We set RunT (p,C) = ∪q∈QRunT (p,C, q) and RunT (t) = ∪q∈QRunT (t, q). In
case r(ε) = q for a run r ∈ RunT (t) we sometimes say t reaches q. Finally for
u ∈ TΣ ∪ CΣ define the weight of r ∈ RunT (u) by wtT (r) =

⊗
w∈pos(u) wt(r, w)

where wt(r, w) = μ(σ)(r(w1), . . . , r(wk), r(w)) if u(w) ∈ Σ(k) for k ≥ 0 and
wt(r, w) = 1 otherwise. We call a run r successful if wtT (r) ⊗ ν(r(ε)) 
= 0. For a
set U we let wtT (U) =

⊕
r∈U wtT (r). The semantics of a WTA T is defined for

a tree t ∈ TΣ by
[[T ]](t) =

⊕

r∈RunT (t)

wtT (r) ⊗ ν(r(ε))

and for each context C ∈ CΣ and state q ∈ Q by

[[T ]](q, C) =
⊕

r∈RunT (q,C)

wtT (r) ⊗ ν(r(ε)).

A tree t ∈ TΣ is accepted if there is some successful run for t. For zero-sum
free semirings this is equivalent to [[T ]](t) 
= 0. We call a WTA trim if for all
q ∈ Q there exist t ∈ TΣ , w ∈ pos(t) and r ∈ RunT (t) with wtT (r) 
= 0
and ν(r(ε)) 
= 0 such that r(w) = q. Note that we can always trim a WTA
by removing states that do not satisfy this condition, without changing the
semantics of it. A WTA is called unambiguous iff for each t ∈ TΣ there is
at most one successful run. Finally we call two WTA T and U equivalent if
[[T ]](t) = [[U ]](t) for all t ∈ TΣ . If not stated otherwise we assume any WTA T
to be trim, of the form T = (QT , Σ, μT , νT ) and over a semiring S; similarly
for WTA U and V.

Example 1 (running example). Consider the WTA T over R≥0 with state space
QT = {q1, q2, q3}, the transitions

α
2→ q2, α

3→ q1, σ(q1, q1)
5→ q3, σ(q1, q2)

4→ q3,

β
1→ q1, σ(q2, q2)

5→ q3, σ(q2, q1)
4→ q3,
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and root weights νT (q3) = 1 and νT (q1) = νT (q2) = 0. Let us examine the
semantics by considering runs of T on the tree σ(α, α) as depicted in Fig. 1. There
are 4 distinct runs r1, r2, r3, r4 ∈ RunT (σ(α, α)) with weights wtT (r1) = 45,
wtT (r2) = 24, wtT (r3) = 24 and wtT (r4) = 20. Adding these weights up we
get [[T ]](σ(α, α)) = 113. All trees accepted by T and their respective weights are
depicted in Fig. 2.

Fig. 1. Runs of T on the tree σ(α, α) from Example 1

Fig. 2. Trees accepted by T and their weights from Example 1

3 Uniformity Construction

Let us introduce the uniformity construction, which Mohri and Riley refer to as
pre-disambiguation algorithm. The construction will, applied to a WTA T over
a semiring S, output a WTA U that has uniformity in the following sense. Each
run on a tree t of U will have the behaviour of T as its weight, i.e. [[T ]](t). More
specifically for t ∈ TΣ and r ∈ RunU (t) it will hold that wtU (r) = wtT (RunT (t)).
The construction is similar to the factorization approach used for determiniza-
tion [16] and closely follows [17]. Each state of U will be generated by a tree
t ∈ TΣ and a pivot state p. The state itself, say u(t, p), is a vector in SQT .

The intuition is as follows. Each state u(t, p) will be primed with 2 informa-
tion. First, u(t, p) knows which states q ∈ QT are in the so-called common future
relation R with p. Roughly speaking R checks whether a final state is reachable
from both p and q with the same input tree. Evidently states that are in common
future relation are threats to the unambiguity of the automaton. Second, adding
up the entries of u(t, p) will equal 1. This is due to the fact that its entries give
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some sort of proportion as will be described below. This way, the states in the
constructed WTA U contain the required information about the semantics of T .

Let us now introduce the aforementioned common future relation R.

Definition 2 (common future relation). For two states q, q′ ∈ QT define the
common future relation RT by setting qRT q′ iff there exists a context C ∈ CΣ

such that [[T ]](q, C) 
= 0 and [[T ]](q′, C) 
= 0. We let RT (q) = {p ∈ QT | qRp}
and will omit the subscript if the WTA is clear from context.

Note that the relation RT is reflexive, symmetric and not transitive. Let us
now formally construct the WTA U . Let T = (QT , Σ, μT , νT ) be a WTA over
S. Define the WTA U = (QU , Σ, μU , νU ) over S resulting from the uniformity-
construction with input T as follows. Given a tree t ∈ TΣ and a state p ∈ QT ,
if wtT (RunT (t, p)) 
= 0 we define u(t, p) ∈ SQT via

u(t, p)q =

{( ⊕
q′∈R(p) wtT (RunT (t, q′))

)−1 ⊗ wtT (RunT (t, q)) if q ∈ R(p),
0 otherwise.

We mention that p ∈ R(p) implies that
⊕

q′∈R(p) wtT (RunT (t, q′)) 
= 0 since our
semiring is zero-sum free. The states of U are these vectors u(t, p), i.e.

QU = {u(t, p) ∈ SQT | t ∈ TΣ , p ∈ QT }.

Note that QU is not necessarily finite. Sufficient conditions will be discussed
later; for now let us assume that it is. We refer to the designated state p ∈ QT
of u(t, p) as its pivot and to the set {q ∈ QT | u(t, p)q 
= 0} as the support of the
state u(t, p) and denote it by supp(u(t, p)).

As mentioned earlier entries of a state u(t, p) ∈ QU give proportions of
weights. More specifically the entry u(t, p)q gives the sum of weights of all runs
on t reaching q, relative to the sum over all runs reaching a state in R(p).

Remark 3. Note that q ∈ supp(u(t, p)) iff wtT (RunT (t, q)) 
= 0 and q ∈ R(p).

For the definition of μU let u(t1, p1), . . . , u(tk, pk), u(t, p) ∈ QU with σ ∈ Σ(k)

and t = σ(t1, . . . , tk). We set

w =
⊕

(q1,...,qk)∈Qk
T

u(t1, p1)q1 ⊗ · · · ⊗ u(tk, pk)qk ⊗
⊕

q∈supp(u(t,p))

μT (σ)(q1, . . . , qk, q),

and consider for each q ∈ supp(u(t, p)) the conditions

u(t, p)q = w−1 ⊗
⊕

(q1,...,qk)∈Qk
T

u(t1, p1)q1 ⊗ · · · ⊗ u(tk, pk)qk ⊗ μT (σ)(q1, . . . , qk, q), (1)

and

μT (σ)(p1, . . . , pk, p) 
= 0. (2)
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Define the transition mapping μU by

μU (σ)(u(t1, p1), . . . , u(tk, pk), u(t, p)) =
{

w if (1)for q ∈ supp(u(t, p)) and (2),
0 otherwise.

Lastly, for each u(t, p) ∈ QU . we let

νU (u(t, p)) =
{⊕

q∈QT
u(t, p)q ⊗ νT (q) if νT (p) 
= 0,

0 otherwise.

Fig. 3. Runs of U on the tree σ(α, α) from Example 5

Remark 4. Given u(t, p) ∈ QU , t ∈ TΣ is not necessarily the only tree reaching
u(t, p), i.e. there might exist t′ ∈ TΣ with t 
= t′ and wtU (RunU (t′, u(t, p))) 
= 0.
On the other hand if for u ∈ QU we have wtU (RunU (t, u)) 
= 0 we can w.l.o.g.
assume that u = u(t, p) for some p ∈ QT .

Example 5 (running example). We return to Example 1 and consider the
WTA U returned by the uniformity construction of the WTA T . Let QU =
{u1, u2, u3, u4} with u1 := u(α, q1), u2 := u(α, q2), u3 := u(β, q1) and
u4 := u(σ(α, α), q3) which coincides with u(σ(α, β), q3), u(σ(β, α), q3), and
u(σ(β, β), q3). More specifically

u1 =

⎛

⎝
3/5
2/5
0

⎞

⎠ , u2 =

⎛

⎝
3/5
2/5
0

⎞

⎠ , u3 =

⎛

⎝
1
0
0

⎞

⎠ , u4 =

⎛

⎝
0
0
1

⎞

⎠ .

We have the transitions

α
5→ u1, β

1→ u3, σ(u3, x)
23/5→ u4 for x ∈ {u1, u2},

α
5→ u2, σ(u3, u3)

5→ u4, σ(x, u3)
23/5→ u4 for x ∈ {u1, u2},

σ(x, y)
113/25→ u4 for x, y ∈ {u1, u2},

and the root weight is νU (u4) = 1 and νU (u1) = νU (u2) = νU (u3) = 0. Let us
reconsider the runs on the tree σ(α, α) in order to understand the consequences
of the construction. The depiction in Fig. 3 shows that the number of runs on
σ(α, α) remains 4 but the weights of the runs are uniform. In fact the weight of
each run is equal to [[T ]](σ(α, α)). This is the case for every tree and run on it, as
we will establish in Corollary 7. Note that the WTA T and U are not equivalent.
Equivalence will only be achieved for idempotent semirings (Proposition 9).
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The following theorem summarizes the properties of our uniformity construc-
tion. More precisely, it shows that the weight assigned to each tree is the sum
of its weights in the processed WTA.

Theorem 6. Let U be the WTA returned by the uniformity construction for the
WTA T . Given a run r ∈ RunU (t, u(t, p)) with wtU (r) 
= 0 where t ∈ TΣ and
u(t, p) ∈ QU we have

1. wtU (r) =
⊕

q∈supp(u(t,p)) wtT (RunT (t, q)),
2. wtU (r) ⊗ u(t, p)q = wtT (RunT (t, q)) ∀q ∈ supp(u(t, p)).

As a simple corollary, we are now able to reconstruct [[T ]](t) for each tree
t ∈ TΣ in a straightforward way.

Corollary 7. Let U be the WTA returned by the uniformity construction for
the WTA T . Given a successful run r ∈ RunU (t, u(t, p)) where t ∈ TΣ and
u(t, p) ∈ QU we have

wtU (r) ⊗ νU (r(ε)) = [[T ]](t).

We have now established that the successful runs have the desired behavior.
Let us continue by showing that the same set of trees is accepted by T and the
WTA U returned by the uniformity construction.

Proposition 8. Let U be the WTA returned by the uniformity construction for
the WTA T . If [[T ]](t) 
= 0 for t ∈ TΣ, then there is a successful run on t for U .

As mentioned above the uniformity construction does in general not produce
a WTA equivalent to T . An exception is the case that the considered semiring S
is idempotent, i. e. for any s ∈ S it holds that s+s = s as stated in the following
result. Note that in particular the semirings T,A and T

≥0, for which we will
later give a sufficient condition for finiteness, are idempotent.

Proposition 9. Let T be a WTA over an idempotent semiring S and U the
WTA returned by the uniformity construction. For any tree t ∈ TΣ it holds that

[[T ]](t) = [[U ]](t).

Having collected the basic properties of our uniformity construction, our
goal is now to establish sufficient criteria for the finiteness of U . Besides rather
straightforward special cases, our most important result is based on ensuring
that certain loops in our WTA T generate the same weights. This is similar to
the so called twins property famously used for determinization of weighted finite
automata [13,16] and weighted tree automata [5]. We can however restrict it to
cases where the involved states share a common future. Let us define both the
twins property and our refined version.

Definition 10 (R-twins property). A WTA T satisfies the R-twins property
if for all p, q ∈ Q s.t. i) pRq and ii) there is some t ∈ TΣ which satisfies both
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wtT (RunT (t, q)) 
= 0 and wtT (RunT (t, p)) 
= 0, the following statement holds.
For each context C ∈ CΣ,

wtT (RunT (q, C, q)) 
= 0 and wtT (RunT (p,C, p)) 
= 0

implies wtT (RunT (q, C, q)) = wtT (RunT (p,C, p)). If the above is true for the
universal relation QT × QT instead of R, we say T satisfies the twins property.

In contrast to the twins property our R-twins property additionally requires
establishing sets of states that share a common future. This is however not a
computational limitation.

Proposition 11. Let T be a WTA over S ∈ {T,A,T≥0} and q, p ∈ QT . It is
decidable whether pRq.

Let us now compare the twins property and the R-twins property.

Example 12. Consider the WTA T over T with state space QT = {q1, q2, q3, qf},
the transitions

α
1→ q1, β

0→ q3, σ(x, x) 0→ x for x ∈ {q1, q2},

α
2→ q2, σ(q2, q3)

0→ qf , σ(x, q3)
0→ x for x ∈ {q1, q2},

σ(q3, q1)
0→ qf , σ(q3, x) 0→ x for x ∈ {q1, q2},

and root weight νT (qf ) = 0 and νT (q1) = νT (q2) = νT (q3) = ∞. It is straight-
forward to see that R(q1) = {q1, q3}, R(q2) = {q2, q3}, R(q3) = {q1, q2, q3} and
R(qf ) = {qf}. For any C ∈ CΣ we have

wtT (RunT (q1, C, q1)) = |posα(C)| and wtT (RunT (q2, C, q2)) = 2 · |posα(C)|

in contrast to the twins property. If however we consider the R-twins property
we may only compare states that have a common future. Particularly the states
q1 and q2 do not have a common future, which is the reason why the argument
from above does not hold for this case. In fact, one may easily verify that T does
satisfy the R-twins property.

The following main result states that U is finite for our primary semirings.

Theorem 13. Let T be a WTA over S ∈ {T,A,T≥0}. Let U be the WTA
returned by the uniformity construction for T . If T satisfies the R-twins property
then QU is finite.

Moreover, we also want to mention the following simple observations.

Proposition 14. Let T be a WTA and U be the WTA returned by the unifor-
mity construction. If one of the following conditions is satisfied QU is finite: i)
S is finite. ii) T is acyclic. iii) S ∈ {T,A,T≥0}, T satisfies the twins property.
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4 Disambiguation

So far, we have seen that our uniformity construction U is capable of simulating
[[T ]](t) in each single run on t ∈ TΣ (Theorem 6) and we found criteria ensuring
that the resulting WTA is finite (Theorem 13, Proposition 14). Recall however
that our main goal is to transform T into an unambiguous WTA which is of
course not yet achieved. Keeping Theorem 6 in mind, our strategy is as follows.
Roughly speaking we inspect our WTA, successively looking for redundant tran-
sitions in the following sense. If there are two runs for some tree t ∈ TΣ , then
at least one involved transition needs to be removed. We proceed in a specific
order which will ensure that in each step, all accepted trees are still accepted
even after the transition is removed. This is analogous to the approach in [17].

Let us come to the formal execution. For our WTA T , a tree t ∈ TΣ and
a state q ∈ QT we will write q ∈ δT (t) iff wtT (RunT (t, q)) 
= 0. We call two
tuples of states (q1, . . . , qk) , (q′

1, . . . , q
′
k) ∈ Qk

T co-reachable if there is a tuple of
trees (t1, . . . , tk) ∈ Tk

Σ such that qi ∈ δT (ti) and q′
i ∈ δT (ti) for each i ∈ [k].

Let QT = {p1, . . . , pm} and define the order of states by p1 < · · · < pm. For
u(t, p) ∈ QU and σ ∈ Σ(k) define the list of tuples of states that reach u(t, p) via
σ by

L(u(t, p), σ) =
((

u(t11, p
1
1), . . . , u(t1k, p1k)

)
, . . . ,

(
u(tn1 , pn

1 ), . . . , u(tnk , pn
k )

))
,

i.e. for each i ∈ [n] we have that
(
u(ti1, p

i
1), . . . , u(tik, pi

k)
)

∈ L(u(t, p), σ) if and
only if

(
u(ti1, p

i
1), . . . , u(tik, pi

k), σ, u(t, p)
)

∈ ΔU . We assume the list to be lex-
icographically ordered with respect to its states, i.e. we assume that we have
(p11, . . . , p

1
k) < · · · < (pn

1 , . . . , pn
k ). We process such a list by removing the tran-

sition
(
u(tj1, p

j
1), . . . , u(tjk, pj

k), σ, u(t, p)
)

∈ ΔU for j ≥ 2 iff there exists a co-
reachable tuple

(
u(ti1, p

i
1), . . . , u(tik, pi

k)
)

in L(u(t, p), σ) with 1 ≤ i < j that has
not yet been removed. Afterwards we trim the WTA in order to remove unnec-
essary states and further transitions. In particular the first tuple of a list is not
removed.

In a similar fashion we consider a list L(U) = {u1, . . . , um} containing all
states uj ∈ QU with νU (uj) 
= 0. We process this list analogously, by setting
νU (uj) = 0 whenever there is some ui < uj which is co-reachable with uj and
still satisfies νU (ui) 
= 0 after being processed.

The following result shows that processing the lists does not change the set
of accepted trees.

Lemma 15. Let T be a WTA, U the WTA resulting from the uniformity con-
struction and V be the WTA after processing L(u(t, p), σ) for u(t, p) ∈ QU or
L(U). Then the same set of trees is accepted by both U and V.

Hence, whenever U is finite we can process all lists L(u(t, p), σ) for u(t, p) ∈
QU and σ ∈ Σ and L(U), obtaining the unambiguous WTA V equivalent to T .
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Fig. 4. Unique runs of V on the trees t1 = σ(α, α), t2 = σ(α, β), t3 = σ(β, α) and
t4 = σ(β, β) from Example 16

Example 16 (running example). Recall the WTA U that resulted from the uni-
versality construction given in Example 5. We have QU = {u1, u2, u3, u4} and
the following transitions for x, y ∈ {u1, u2}

α
5→ u1, β

1→ u3, σ(u3, x)
23/5→ u4, σ(u3, u3)

5→ u4,

α
5→ u2, σ(x, u3)

23/5→ u4, σ(x, y)
113/25→ u4,

as well as the root weight νU (u4) = 1 and νU (u1) = νU (u2) = νU (u3) = 0. Let
us construct the WTA V resulting from processing

L(u4, σ) = {(u1, u1), (u1, u2), (u1, u3),
(u2, u1), (u2, u2), (u2, u3), (u3, u1), (u3, u2), (u3, u3)}.

In the following we will by abuse of notion talk about removing elements of
L(u4, σ), where in reality we are referring to the according transitions to u4

via σ. As it has the first position in the list (u1, u1) is not removed by default.
As (u1, u2), (u2, u1), (u2, u2) are all respectively co-reachable with (u1, u1) via
(α, α) we remove them. The tuple (u1, u3) is not removed because it is not co-
reachable by (u1, u1); (u2, u3) is removed as it is co-reachable with (u1, u3) via
(α, β); (u3, u1) is not removed because it is not co-reachable by neither (u1, u1)
nor (u1, u3); (u3, u2) is removed as it is co-reachable with (u3, u1) via (β, α).
Lastly (u3, u3) is not removed.

Note that all transitions from u2 to u4, the only state with νU 
= 0 have
been removed. This will result in u2 being removed when trimming the WTA.
The other lists L(u1, α) = {(u1)}, L(u3, β) = {(u3)} and L(U) contain only one
element and will therefore not remove any more states. The WTA resulting from
processing the list is unambiguous. Its unique runs are depicted in Fig. 4. One
may verify that the weight for a given tree on V is equal to the weight on T .

5 Conclusion

We have presented a uniformity construction that given a WTA T over a semiring
S will output a WTA U that accepts the same trees and each of whose runs has
the behaviour of T as its weight. We showed that the state space of U is finite
in the cases where i) S is finite, ii) T is acyclic, or iii) S is the tropical or arctic
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semiring and T satisfies the twins property. Most notably though we attain
finiteness in the case that S is the tropical or arctic semiring and T satisfies the
weaker R-twins property. Furthermore we proved that by removing transitions
from U in a specific manner we can derive an unambiguous WTA equivalent to
T , using arguments corresponding to those in [17].

We would like to conclude this paper by mentioning future research direc-
tions. Even though we did present sufficient conditions for the finiteness of the
uniformity construction for all commonly used extremal semirings, we do believe
a similar result can be shown for general extremal semirings. The proofs pre-
sented here will however not suffice for such an endeavour. Inspiration might be
drawn from [13].
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