
State Complexity of Partial Word Finite
Automata

Martin Kutrib(B) and Matthias Wendlandt

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{kutrib,matthias.wendlandt}@informatik.uni-giessen.de

Abstract. Partial word finite automata are deterministic finite automa-
ta that may have state transitions on a special symbol � which repre-
sents an unknown symbol or a hole in the word. Together with a subset
of the input alphabet that gives the symbols which may be substituted
for the �, a partial word finite automaton represents a regular language.
However, this substitution implies a certain form of limited nondetermin-
ism in the computations when the �-transitions are replaced by ordinary
transitions. In this paper we first reconsider the problem to prove the
minimality of partial word finite automata and present a method to uti-
lize minimal NFAs with certain properties for this purpose. Then we
study the operational state complexity of partial word finite automata
with respect to Boolean operations. It turns out that the upper and lower
bounds for all these operations are exponential. Moreover, we establish
a state complexity hierarchy on the number of productive �-transitions
that may appear in partial word finite automata. The levels of the hier-
archy are separated by exponential state costs.

1 Introduction

Partial words are strings where certain positions are not specified. These posi-
tions are often called holes or don’t cares and printed by a diamond symbol �.
Apart from theoretical reasons, the basic motivation for studying this mechanism
comes from the study of biological operations in connection with DNA strands.
In particular, DNA sequencing is a biological process to determine the base
sequence of a given DNA strand. To this end, the two DNA strands are separated
and cut into small pieces. Afterwards the small sequences are copied, multiplied,
and then detected. Subsequently, the complete strand has to be derived out of
the small pieces. This assembling can be done by aligning the fragments with
the help of gaps (holes) which leads to the definition of partial words. The first
time the idea of words with don’t cares has been investigated goes back to [7],
where they were considered in connection with string matching. The notation
partial word has firstly been defined in [2].

Partial words were mainly investigated in connection with combinatorics on
words. A survey can be found in [4]. An interesting motivation in theory for
this model is that ordinary languages can be compressed by the usage of holes.
Consider for example the language L over the ternary alphabet Σ = {a, b, c},
c© IFIP International Federation for Information Processing 2021
Published by Springer International Publishing AG 2021. All Rights Reserved
Y.-S. Han and S.-K. Ko (Eds.): DCFS 2021, LNCS 13037, pp. 113–124, 2021.
https://doi.org/10.1007/978-3-030-93489-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93489-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-93489-7_10

114 M. Kutrib and M. Wendlandt

L = {aaa, aba, aca}. It can be compressed by using a hole into L′ = {a � a}.
Simply by replacing the diamond by a, b, or c the original language L can be
achieved.

In 2012, partial words were studied in connection with families of formal
languages [6]. In particular, a regular language is represented by the image of
a partial language under a substitution that only replaces the hole symbols. In
connection with DFAs it turned out that the usage of holes can be somehow
seen as a limited nondeterminism, since it allows to define DFAs with outgoing
edges that are labeled with ordinary symbols and additionally with a diamond.
If some of the ordinary symbols may be substituted for the hole symbol as well,
the corresponding state allows a nondeterministic choice with respect to the tar-
get language. While in the original definition of partial words a hole represents
a placeholder for all letters of the underlying alphabet, in investigations in con-
nection with language families the substitution of the hole symbol can be an
arbitrary subset of the alphabet (see for example [1,6,10]).

The applications of defining language families by partial words via partial
word finite automata have also been investigated from a complexity point of
view. Concerning the descriptional complexity, in [1] it has been shown that the
state complexity for a DFA that simulates a partial word DFA is exponential
in general. Moreover also the state complexity of the simulation of an NFA by
a partial word DFA may become exponential. Concerning the computational
complexity, different problems as, for example, minimization have been studied
for partial word automata [5,10].

The main aim of this paper is to extend the investigations on the state
complexity of partial word automata. In connection with lower bounds on the
number of states necessary for an automaton to accept a given language, the
problem arises to prove the minimality of a given automaton. In Sect. 3 we
discuss this problem by referring to known results from the literature and provide
methods to prove the minimality of partial word DFAs by utilizing minimal NFAs
with certain properties. Section 4 considers the operational state complexity for
Boolean operations. It turns out that upper and lower bounds are exponential. In
the last section we consider the impact of the number of productive �-transitions
in a partial word finite automaton, where a transition is called productive, if it
does not lead to the rejecting sink state. It comes out that even the reduction of
one of these transitions may lead to an exponential state explosion, which leads
to a state complexity hierarchy dependent on the number of �-transitions.

2 Preliminaries

We denote the non-negative integers {0, 1, 2, . . . } by N. Let Σ∗ denote the set
of all words over the finite alphabet Σ. A subset L ⊆ Σ∗ is said to be a formal
language over Σ. We write L for the complement of L with respect to Σ, that
is for Σ∗ \ L. The empty word is denoted by λ and the reversal of a word w
by wR. For the length of w we write |w|. We use ⊆ for inclusions and ⊂ for strict
inclusions.

State Complexity of Partial Word Finite Automata 115

Setting Σ� = Σ ∪ {�}, where � /∈ Σ represents undefined positions or holes,
a partial word over Σ is a sequence of symbols from Σ�. Denoting the set of all
partial words over Σ by Σ∗

� , a partial language over Σ is a subset of Σ∗
� . Partial

languages can be transformed to (ordinary) languages by using �-substitutions
over Σ. A �-substitution σ : Σ∗

� → 2Σ∗
satisfies σ(a) = {a}, for all a ∈ Σ,

σ(�) ⊆ Σ, and σ(uv) = σ(u)σ(v), for u, v ∈ Σ∗
� . As a result, σ is fully defined by

σ(�), for example, if σ(�) = {a, b} and L = {�b, �c} then σ(L) = {ab, bb, ac, bc}.
So, applying σ to a partial language L ⊆ Σ∗

� results in a (ordinary) language
σ(L) ⊆ Σ∗.

A nondeterministic finite automaton (NFA) is a system M = 〈Q,Σ, δ, q0, F 〉,
where Q is the finite set of internal states, Σ is the finite set of input symbols,
q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states, and δ : Q×Σ → 2Q

is the transition function. In the forthcoming, we sometimes refer to δ as a
subset of Q × Σ × Q. A finite automaton M is deterministic (DFA) if and
only if |δ(q, a)| = 1, for all q ∈ Q and a ∈ Σ. In this case, we simply write
δ(q, a) = q′ for δ(q, a) = {q′} assuming that the transition function is a total
mapping δ : Q × Σ → Q. Note that here any DFA is complete, that is, the
transition function is total, whereas it may be a partial function for NFAs in
the sense that the transition function of nondeterministic machines may map
to the empty set. A finite automaton is said to be minimal if there is no finite
automaton of the same type with fewer states, accepting the same language. Note
that a rejecting sink state is counted for DFAs, since they are always complete,
whereas it is not counted for NFAs, since their transition function may map to
the empty set.

Generally speaking, a language L can be represented by a partial language L′

together with a �-substitution σ such that σ(L′) = L. In particular, for regular
languages, from the descriptional complexity point of view it is an interesting
question to what extent there are regular languages L′ such that the minimal
DFA accepting L′ has less states than the minimal DFA accepting L? In order to
distinguish between finite automata accepting (ordinary) languages from those
accepting partial languages, we refer to the latter as partial word deterministic
finite automata (�-DFA). Thus, �-DFAs treat the hole symbol � as an ordinary
input letter.

The number of states of the (complete) minimal DFA accepting a regular
language L is denoted by minDFA(L). Similarly, minNFA(L) denotes the minimal
number of states necessary for some NFA to accept L. For partial languages, we
write min�-DFA(L) to denote the minimal number of states of a �-DFA accepting
a language L′ such that there exists a �-substitution σ with σ(L′) = L.

3 Basic Constructions

In connection with lower bounds on the number of states necessary for an
automaton to accept a given language, the problem arises to prove the min-
imality of a given automaton. While a couple of techniques exist to prove the
minimality of DFAs, only a few techniques exist for NFAs. The situation is much

116 M. Kutrib and M. Wendlandt

worse for �-DFAs. Clearly, a �-DFA can be seen as a DFA over the alphabet Σ�.
But, in general, the minimization of a �-DFA M changes the language that it
represents, that is, σ(L(M)). It has been shown in [10] that the problem to find
a minimal �-DFA M ′ (together with a �-substitution) for a given regular lan-
guage is PSPACE-complete. The problem has been studied in more detail in [5],
where algorithms are given for the construction of minimal partial languages,
associated with some �-substitution, as well as approximation algorithms for the
construction of minimal �-DFAs. However, for particular languages that witness
certain lower bounds, their minimality has to be proved almost from scratch.
Here we continue with some observations that can nevertheless be applied in
lower bound proofs.

First, we briefly recall the so-called (extended) fooling set technique (see, for
example, [3,8,12]) that is widely used for proving lower bounds on the number
of states necessary for an NFA to accept a given language.

Theorem 1. Let L ⊆ Σ∗ be a regular language and suppose there exists a set
of pairs P = { (xi, yi) | 1 ≤ i ≤ n } such that (1) xiyi ∈ L, for 1 ≤ i ≤ n,
and (2) i �= j implies xiyj �∈ L or xjyi �∈ L, for 1 ≤ i, j ≤ n. Then any
nondeterministic finite automaton accepting L has at least n states. Here P is
called an (extended) fooling set for L.

Let M be a �-DFA = 〈Q,Σ�, δ, q0, F 〉 and σ be an associated �-substitution.
Then a minimal DFA M ′ that accepts the language σ(L(M)) can be constructed
as follows. First, modify M to the NFA M̂ = 〈Q,Σ, δ̂, q0, F 〉 by replacing any
transition δ(p, �) = q by the transitions { δ̂(p, a) = q | a ∈ σ(�) } and keeping
all other transitions from δ. Then determinize M̂ and minimize the outcome.
We call M ′ constructed in this way the canonical DFA for M and σ. This
construction is presented as Algorithm 1 in [1].

The intermediate NFA in the construction exhibits the limited nondetermin-
ism provided by �-DFAs. In fact, for each state of the NFA, there are at most
two outgoing transitions for each input symbol. This is a valuable hint for the
seek for suitable witness automata. For example, it is known that 2n−1 is a tight
bound on the number of states for a DFA that accepts the language σ(L(M)) of
an n-state �-DFA M with associated �-substitution [1]. In order to find further
witnesses for the lower bound it is sufficient to look for complete NFAs having
(i) the required form of limited nondeterminism for just one input symbol and
(ii) causing the maximal state blow-up of 2n −1 when determinized. An example
is depicted in Fig. 1.

In such an NFA M the nondeterminism can be removed by replacing one of
the two nondeterministic outgoing transitions by a transition on �, respectively,
and setting σ(�) = {x}, where x is the sole input symbol for which the nonde-
terminism occurs. Since M is complete, for all states of the resulting automaton
on which a �-transition is defined, transitions on all other input symbols are
defined as well. So, in order to make the resulting automaton complete, it is
sufficient to add a �-transition to the states for which no �-transition is defined
so far. This can safely be done by copying the transition on x. The transition

State Complexity of Partial Word Finite Automata 117

Fig. 1. A complete n-state NFA whose minimal equivalent DFA has 2n − 1 states.

on x must exist, since M is complete. Clearly, the resulting automaton M ′ is a
�-DFA with σ(L(M ′)) = L(M) (see Fig. 2 for a possible �-DFA obtained from
the NFA of Fig. 1). Since minNFA(L) ≤ min �-DFA(L) [6] and M ′ has the same
number of states as M has, the �-DFA M ′ is minimal, that is, even for any other
�-substitution no smaller equivalent �-DFA exists.

Fig. 2. A minimal �-DFA obtained from the NFA depicted in Fig. 1, σ(�) = {b}.

The example above dealt with the maximal state blow-up for “determiniza-
tion”. However, the method to prove the minimality of �-DFAs by utilizing
minimal NFAs with certain properties can be extended.

Lemma 1. Let M = 〈Q,Σ, δ, q0, F 〉 be a possibly incomplete DFA, S ⊆ Σ be
a fixed subset of input symbols, P ⊆ Q, and α : Q → Q be a total mapping.
Moreover, let M̂ = 〈Q,Σ, δ̂, q0, F 〉 be an NFA obtained from M by adding the
transitions {δ̂(p, a) = α(p) | p ∈ P, a ∈ S } to δ. Then min�-DFA(L(M̂)) ≤ |Q|
if M is complete and P = Q, and min�-DFA(L(M̂)) ≤ |Q| + 1 otherwise.

Proof. We set σ(�) = S and construct a �-DFA M ′ = 〈Q,Σ�, δ′, q0, F 〉 from
the given NFA M̂ . To this end, for any state p ∈ P , a set of transitions
{δ̂(p, a) = α(p) | a ∈ S } is replaced by the transition δ̂(p, �) = α(p). By the
construction of M̂ from the DFA M it follows that M ′ is deterministic. If M
is complete and P = Q, that is, for all states there is an outgoing �-transition
in M ′, then M ′ is complete. Otherwise, it is completed by adding missing tran-
sitions to a new rejecting sink state. This gives the transition function δ′. Since
the input alphabet of M ′ is Σ�, it is a �-DFA. Moreover, the canonical DFA

118 M. Kutrib and M. Wendlandt

for M ′ and σ is equivalent to M̂ . Since apart from a possible new sink state the
state set is the same for M ′ and M̂ , we conclude min�-DFA(L(M̂)) ≤ |Q| if M
is complete and P = Q. Otherwise, we have min�-DFA(L(M̂)) ≤ |Q| + 1. �

Let L = {aa, aaa, aaaa, aca, aaca, baca, baa, baaa} ⊂ {a, b, c}∗ be a finite lan-
guage. It has been shown in [5] that any �-DFA accepting L has at least seven
states if σ(�) = {a, b}, and at least eight states if σ(�) = {a, c}. In order to
show that any minimal NFA accepting L has five states, we apply Theorem 1 by
providing the set P = {(λ, a4), (b, a3), (ba, a2), (bac, a), (baca, λ)} whose fooling
set property for L is easily verified. A minimal NFA M accepting L is shown in
Fig. 3.

Fig. 3. A minimal NFA accepting a finite language.

This NFA M cannot serve as witness for the constructions from above because
there are three transitions on input symbol a defined for state 0. Moreover, let α
be the mapping of Lemma 1. Then, it can map state 0 to state 1 or to state 2 or to
state 3 to remove the nondeterminism. However, in any case the nondeterminism
is not removed entirely, when the transition δ(0, a) = α(0) is deleted. It is not
hard to show that any minimal NFA accepting L must have three a-transitions
from the initial state. So, changing to a possibly different but equivalent minimal
NFA does not help. Nevertheless, we can utilize M to show the minimality of a
�-DFA accepting the finite language L as follows.

By way of contradiction, assume that there is a 6-state �-DFA M ′ and a �-
substitution σ such that σ(L(M ′)) = L. Since M ′ is complete and, for example,
any input beginning with symbol c has to be rejected, M ′ has a rejecting sink
state. We remove this sink state and all transitions to it, and obtain an equivalent
incomplete 5-state �-DFA M ′′. Next, we construct an NFA M̂ from M ′′ as in the
construction of the canonical DFA. That is, M̂ is obtained from M ′′ by replacing
any transition δ(p, �) = q from M ′′ by the transitions { δ̂(p, a) = q | a ∈ σ(�) }
and keeping all other transitions from δ. So, M̂ has five states and is minimal. In
particular, it has at most two transitions on input symbol a from the initial state.
This is a contradiction, since any minimal NFA accepting L must have three a-
transitions from the initial state. We conclude that, for any �-substitution, a
minimal �-DFA accepting L has at least seven states.

State Complexity of Partial Word Finite Automata 119

In order to construct such a minimal �-DFA with σ(�) = {a}, we can resolve
the nondeterminism by replacing two a-transitions from the initial state by a
single a-transition to a new state 2, 3 which, in turn, has the outgoing transitions
of the states 2 and 3. The newly introduced nondeterminism for this state can
be removed by a �-transition as depicted in Fig. 4.

Fig. 4. A minimal �-DFA accepting a finite language, where σ(�) = {a}. The rejecting
sink state is not depicted.

4 Operational State Complexity

Let ◦ be a fixed operation on languages that preserves regularity. Then the
◦-language operation problem for �-DFAs is defined as follows:

– Given an n-state �-DFA M1 with �-substitution σ1 and an m-state �-DFA M2

with �-substitution σ2.
– How many states are sufficient and necessary in the worst case (in terms of n

and m) for a �-DFA M3 with some �-substitution σ3 such that

σ3(L(M3)) = σ1(L(M1)) ◦ σ2(L(M2))?

Obviously, this problem generalizes to unary language operations like, for
example, complementation or reversal.

We first consider the operation of complementation and show an upper bound
and a lower bound that is tight up to a constant factor. The result reveals that com-
plementation is an expensive operation from the state complexity point of view.

Proposition 1. Let n ≥ 1 be an integer and M1 be an n-state �-DFA with
�-substitution σ1. Then 2n −1 states are sufficient for a �-DFA M2 with some �-
substitution σ2 such that σ2(L(M2)) is the complement of σ1(L(M1)). Therefore,
we have min�-DFA(L) ≤ 2min�-DFA(L) − 1, for all regular languages L.

Theorem 2. Let n > 2 be an integer. There exists a minimal n-state �-DFA M1

with �-substitution σ1 such that any �-DFA M2 with any �-substitution σ2, where
σ2(L(M2)) is the complement of σ1(L(M1)), has at least 2n−3 states. Therefore,
we have min�-DFA(L) ≤ 2min�-DFA(L)−3, for infinitely many regular languages L.

Proof. We are going to utilize Lemma 1 to construct minimal witness automata.
To this end, consider the incomplete DFA M depicted in Fig. 5. We set S = {a},

120 M. Kutrib and M. Wendlandt

Fig. 5. An incomplete DFA.

P = {0}, and α to be the identity on the state set. After adding the required
transitions to M , we obtain the NFA M̂ depicted in Fig. 6.

Fig. 6. The NFA obtained from the DFA of Fig. 5.

So, for k ≥ 0, we consider the witness languages Lk = {a, b}∗a{a, b}kb{a, b}∗.
Now, by Lemma 1, we have min�-DFA(Lk) ≤ k + 4. On the other hand, it is not
hard to see that the NFA of Fig. 6 is minimal. Therefore, by minNFA(Lk) ≤
min�-DFA(Lk) we derive k + 3 ≤ min�-DFA(Lk) ≤ k + 4. Since a minimal �-DFA
M ′ with �-substitution σ′ such that σ′(L(M ′) = Lk is complete and, thus,
has a rejecting sink state which the NFA of Fig. 6 does not have, we conclude
min�-DFA(Lk) = k + 4.

Essentially, in order to accept the complement of Lk an NFA has to verify that
the input has no substring a{a, b}kb. Therefore, after reading a symbol a the NFA
must be able to remember the next k input symbols. Altogether this needs 2k+1

states. In fact, it has been shown in [11] that any NFA that accepts the complement
of Lk needs at least 2k+1 states. Again, by minNFA(Lk) ≤ min�-DFA(Lk), we derive
that any �-DFA M2 with any �-substitution σ2 where σ2(L(M2)) = Lk has at least
2k+1 states. Setting n = k + 4 shows the theorem. �

We continue with Boolean operations. In general, neither the union nor the
intersection of partial languages gives a partial language whose substitution is
the union or intersection of the substitutions of the given partial languages. So
a simple cross-product construction does not help. The idea for the union is to
take a �-DFA for one of the given partial languages and the canonical DFA for
the other one, and build their cross-product automaton to obtain a �-DFA for
the upper bound of the state costs. However, for the intersection, the idea does
not apply. The reason is that a � in the input that can be substituted by at least
two different symbols a1 and a2, must be treated by the canonical DFA as if the
input were a1 or a2 and both symbols lead to accepting computations.

State Complexity of Partial Word Finite Automata 121

So, currently the best general upper bound for the intersection is the trivial
one obtained by building the cross-product automaton of two canonical DFAs.
In particular, let m,n ≥ 1 be two integers, M1 be an m-state �-DFA with
�-substitution σ1, and M2 be an n-state �-DFA with �-substitution σ2. Then
(2m−1)·(2n−1) states are sufficient for a �-DFA M3 with some �-substitution σ3

such that σ3(L(M3)) = σ1(L(M1)) ∩ σ2(L(M2)). In fact, M3 is a DFA.
For the special case that one of the two involved �-substitutions is a singleton,

a much better upper bound can be shown, which turns out to be tight in the
order of magnitude.

Theorem 3. Let m,n ≥ 1 be two integers, M1 be an m-state �-DFA with
�-substitution σ1, where |σ1(�)| = 1, and M2 be an n-state �-DFA with �-
substitution σ2. Then m · (2n − 1) states are sufficient for a �-DFA M3 with
some �-substitution σ3 such that σ3(L(M3)) = σ1(L(M1)) ∩ σ2(L(M2)).

Proof. To construct M3, we take the �-DFA M1 with σ1 as it is. Then we build
the canonical DFA M ′

2 = 〈Q,Σ, δ, q0, F 〉 for M2 and σ2. Let σ1(�) = {a}. We add
a �-transition to each state of M ′

2 by copying the a-transition. More precisely, for
each state q ∈ Q, we define additionally δ(q, �) = δ(q, a). Finally, we construct
the cross-product automaton from M1 and M ′

2, call it M3, and set σ3(�) = {a}.
Now let w ∈ σ1(L(M1)) ∩ σ2(L(M2)). Then there is a word w′ ∈ σ−1

1 (w)
accepted by M1. Moreover, w is accepted by the canonical DFA for M2 and σ2.
Since σ1(�) = {a} and M ′

2 is this canonical DFA extended by a �-transition in
parallel to every a-transition, we derive that w′ is accepted by M ′

2 as well. So, w′

is accepted by M3 and, thus, w = σ3(w′) ∈ σ3(L(M3)).
Conversely, let w ∈ σ3(L(M3)). Then there is a word w′ ∈ σ−1

3 (w) accepted
by M3. Therefore, w′ is accepted by M1 and by M ′

2. Since σ1 = σ3, we have w =
σ3(w′) ∈ σ1(L(M1)). Furthermore, by construction, σ2(L(M2)) = σ3(L(M ′

2))
and, hence, w = σ3(w′) ∈ σ2(L(M2)). We conclude w ∈ σ1(L(M1)) ∩ σ2(L(M2))
and altogether have derived σ3(L(M3)) = σ1(L(M1)) ∩ σ2(L(M2)).

For the construction of M3 as cross-product automaton of M1 and M ′
2, a

number of states that is the product of the number of states of M1 and M ′
2, that

is m · (2n − 1), is sufficient. �
The proofs of the lower bounds are more involved, in a sense that the mini-

mality of a �-DFA accepting the intersection or union has to be shown.

Theorem 4. Let m ≥ n ≥ 1 be two positive integers. There exist a 2m-state
�-DFA M1 with �-substitution σ1, and an n-state �-DFA M2 with �-substitution
σ2, such that any �-DFA M3 with any �-substitution σ3 where σ3(L(M3)) =
σ1(L(M1))∩σ2(L(M2)) has at least (m+1) · (2n − 1) states. Therefore, we have

min�-DFA(L1 ∩ L2) ≥ (min�-DFA(L1)/2 + 1) · 2min�-DFA(L2) − 1,

for infinitely many regular languages L1 and infinitely many regular lan-
guages L2.

122 M. Kutrib and M. Wendlandt

The last Boolean operation we are looking at is the union. As mentioned
above, the idea for the upper bound is to take a �-DFA for one of the given
partial languages and the canonical DFA for the other one, and build their
cross-product automaton.

Theorem 5. Let m ≥ n ≥ 1 be two integers, M1 be an m-state �-DFA with
�-substitution σ1, and M2 be an n-state �-DFA with �-substitution σ2. Then
m · (2n − 1) states are sufficient for a �-DFA M3 with some �-substitution σ3

such that σ3(L(M3)) = σ1(L(M1)) ∪ σ2(L(M2)).

A lower bound for the union is shown in the next theorem. While it is expo-
nential, it does not match the upper bound, since it consists of the sum of the
number of states of the larger given automaton and two to the power of the
number of states of the smaller given automaton. The upper bound was given
by their product.

Theorem 6. Let m ≥ n ≥ 0 be two positive integers. There exist a (m + 1)-
state �-DFA M1 with �-substitution σ1, and an (n + 1)-state �-DFA M2 with
�-substitution σ2, such that any �-DFA M3 with any �-substitution σ3 where
σ3(L(M3)) = σ1(L(M1)) ∪ σ2(L(M2)) has at least m + 2n states. Therefore, we
have min�-DFA(L1 ∪ L2) ≥ (min�-DFA(L1) − 1) + 2min�-DFA(L2)−1, for infinitely
many regular languages L1 and infinitely many regular languages L2.

5 Hierarchy of �-Transitions
Here we turn to considering the number of productive �-transitions in a �-DFA.
Here a transition is called productive, if it does not lead to the rejecting sink
state. By the tight bound of 2n − 1 states for the �-DFA to DFA conversion, the
state costs for removing all �-transitions are already known. But this raises the
question for the state costs when only some of the productive �-transitions are
removed. In other words, we consider the following (k1, k2)-�-transition problem:

– Let k1 > k2 ≥ 0 be two integers.
– Given an n-state �-DFA M1 with �-substitution σ1 having at most k1 pro-

ductive �-transitions.
– How many states are sufficient and necessary in the worst case (in terms of n)

for a �-DFA M2 with some �-substitution σ2 having at most k2 productive
�-transitions such that σ2(L(M2)) = σ1(L(M1))?

Corollary 1. For any k1 > 0, the upper bound of the (k1, 0)-�-transition prob-
lem is 2n − 1.

Next, we generalize the problem and derive exponential lower bounds. In
particular, the lower bound for the (k1, k1 −1)-�-transition problem turns out to
be exponential in the order of magnitude. Moreover, for every further productive
�-transition that is removed, an exponential number of states is additionally
necessary in the worst case.

State Complexity of Partial Word Finite Automata 123

Theorem 7. Let k1 > k2 ≥ 0 be two constant integers. Then, for each � ≥ 2,
there exist a (5k1 + k1� − 1)-state �-DFA M1 with �-substitution σ1 having k1
productive �-transitions, such that any �-DFA M2 with any �-substitution σ2

having at most k2 productive �-transitions and σ2(L(M2)) = σ1(L(M1)) has at
least 2k1 + k2(� + 1) + (k1 − k2)2� − 1 states.

Proof. First, we construct a witness automaton. To this end, let � ≥ 2 be an
integer. We consider the (� + 1)-state �-DFA M̂ with σ1(�) = {a} as depicted
on the right-hand side of Fig. 7, where all transitions not depicted go into the
rejecting sink-state that is not depicted as well. Clearly, M̂ has exactly one
productive �-transition.

Fig. 7. A �-DFA with σ1(�) = {a} and 4 productive �-transitions. Four copies of M̂ are
plugged in as M̂i, 1 ≤ i ≤ 4. The common rejecting sink-state as well as the transitions
to it are not depicted.

Next, we use k1 copies M̂i, 1 ≤ i ≤ k1 of M̂ that are distinct except for
a common sink-state. Say the states are pi,j , for 1 ≤ i ≤ k1 and 0 ≤ j ≤
� − 1, and pe, for the sink-state. Finally, these copies are assembled into one
�-DFA M1 by selecting k1 different words z1, z2, . . . , zk1 of length �log(k1)� from
{a, b}∗. These words are processed from an initial state in a tree-like structure,
where the initial state is the root and each of the k1 leaves is connected to
and from one copy by $-transitions, where $ is a new symbol (see the left-
hand side of Fig. 7). In this way, each copy M̂i is selected by an individual

124 M. Kutrib and M. Wendlandt

prefix zi. Again, all missing transitions are directed to the common sink-state pe.
Let L(M̂) denote the language of words accepted by M̂ with initial state p0 and
sole accepting state p�−1. Then a word w is accepted by M1 if and only if it has
the form z($L(M̂)$)∗zR, where z ∈ {z1, z2, . . . , zk1} (see Fig. 7 for an example
with k1 = 4). In total, the �-DFA M1 has k1 productive �-transitions and at
most (2 · (2�log(k1)� − 1)) + k1 + k1� + 1 ≤ 5k1 + k1� − 1 states.

The rest of the proof is to show the claimed lower bound for the number of
states necessary for any �-DFA M2 with any �-substitution σ2 having at most k2
productive �-transitions and σ2(L(M2)) = σ1(L(M1)). �

References

1. Balkanski, E., Blanchet-Sadri, F., Kilgore, M., Wyatt, B.J.: On the state complex-
ity of partial word DFAs. Theor. Comput. Sci. 578, 2–12 (2015)

2. Berstel, J., Boasson, L.: Partial words and a theorem of Fine and Wilf. Theor.
Comput. Sci. 218, 135–141 (1999)

3. Birget, J.C.: Intersection and union of regular languages and state complexity.
Inform. Process. Lett. 43, 185–190 (1992)

4. Blanchet-Sadri, F.: Algorithmic Combinatorics on Partial Words. CRC Press, Boca
Raton (2008)

5. Blanchet-Sadri, F., Goldner, K., Shackleton, A.: Minimal partial languages and
automata. RAIRO Inform. Théor. 51, 99–119 (2017)

6. Dassow, J., Manea, F., Mercaş, R.: Regular languages of partial words. Inf. Sci.
268, 290–304 (2014)

7. Fischer, M.J., Paterson, M.S.: String-matching and other products. In: Karp, R.M.
(ed.) Complexity of Computation. SIAM-AMS Proceedings, vol. 7, pp. 113–125.
AMS, New Jersey (1974)

8. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic
finite automata. Inform. Process. Lett. 59, 75–77 (1996)

9. Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondeterminism in
regular languages. Inform. Comput. 86, 179–194 (1990)

10. Holzer, M., Jakobi, S., Wendlandt, M.: On the computational complexity of partial
word automata problems. Fund. Inform. 148, 267–289 (2016)

11. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. Int. J. Found. Comput. Sci. 14, 1087–1102 (2003)

12. Holzer, M., Kutrib, M.: Nondeterministic finite automata - recent results on the
descriptional and computational complexity. Int. J. Found. Comput. Sci. 20, 563–
580 (2009)

	State Complexity of Partial Word Finite Automata
	1 Introduction
	2 Preliminaries
	3 Basic Constructions
	4 Operational State Complexity
	5 Hierarchy of -Transitions
	References

