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Preface

This volume contains the papers accepted to DCFS 2021: 23rd International Conference
on Descriptional Complexity of Formal Systems. DCFS 2021 was planned to be held
in June 2021 in Seoul, South Korea. Unfortunately, due to the ongoing crisis caused by
COVID-19, the DCFS steering committee decided to cancel DCFS 2021 as an in-person
meeting and switched to proceedings only.

The DCFS conference series is an international venue for disseminating new results
related to all aspects of descriptional complexity—the costs of description of objects
in various computational models such as Turing machines, pushdown automata, finite
automata, or grammars. The topics of DCFS include, but are not limited to:

– Automata, grammars, languages and other formal systems; various modes of
operations and complexity measures.

– Succinctness of description of objects, including state-explosion-like phenomena.
– Circuit complexity of Boolean functions and related measures.
– Size complexity of formal systems.
– Structural complexity of formal systems.
– Trade-offs between computational models and mode of operation.
– Applications of formal systems—for instance in software and hardware testing, in
dialogue systems, in systems modeling, or in modeling natural languages—and their
complexity constraints.

– Co-operating formal systems.
– Size or structural complexity of formal systems for modeling natural languages.
– Complexity aspects related to the combinatorics of words.
– Descriptional complexity in resource-bounded or structure-bounded environments.
– Structural complexity as related to descriptional complexity.
– Frontiers between decidability and undecidability.
– Universality and reversibility.
– Nature-motivated (bio-inspired) architectures and unconventional models of comput-
ing.

– Blum Static (Kolmogorov/Chaitin) complexity and algorithmic information.

DCFS became an IFIP working conference in 2016, continuing the former Work-
shop on Descriptional Complexity of Formal Systems, which was a merger in 2002
of two other workshops: Formal Descriptions and Software Reliability (FDSR) and
Descriptional Complexity of Automata, Grammars and Related Structures (DCAGRS).
DCAGRS was previously held in Magdeburg, Germany (1999), London, UK (2000),
and Vienna, Austria (2001). FDSR was previously held in Paderborn, Germany (1998),
Boca Raton, USA (1999), and San Jose, USA (2000). Since 2002, DCFS has been suc-
cessively held in London, Ontario, Canada (2002), Budapest, Hungary (2003), London,
Ontario, Canada (2004), Como, Italy (2005), Las Cruces, New Mexico, USA (2006),
Nový Smokovec, High Tatras, Slovakia (2007), Charlottetown, Prince Edward Island,
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Canada (2008), Magdeburg, Germany (2009), Saskatoon, Canada (2010), Gießen, Ger-
many (2011), Braga, Portugal (2012), London, Ontario, Canada (2013), Turku, Finland
(2014), Waterloo, Ontario, Canada (2015), Bucharest, Romania (2016), Milan, Italy
(2017), Halifax, Nova Scotia, Canada (2018), and Košice, Slovakia (2019).

This year we received a lot of excellent submissions. After strict evaluation and
careful discussion, the Program Committee (PC) finally selected 16 papers out of 21
submissions. Each submission was reviewed by at least three PC members, except for
one submission which had only two reviews. We thank all authors who submitted their
works for consideration in this volume. We also thank the PC members and external
reviewers for their help in selecting the papers.

We would furthermore like to thank the editorial staff at Springer for their guidance
and help during the process of publishing this volume.

Unfortunately, we could not meet face-to-face this year. Nevertheless we hope that
this volume helps the DCFS community and inspires new research and collaborations.
We are all looking forward to DCFS 2022 in Debrecen, Hungary!

September 2021 Yo-Sub Han
Sang-Ki Ko
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Complexity Issues for the Iterated
h-Preorders

Pavel Alaev1 and Victor Selivanov2(B)

1 S.L. Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
alaev@math.nsc.ru

2 A.P. Ershov Institute of Informatics Systems SB RAS and S.L. Sobolev Institute
of Mathematics SB RAS, Novosibirsk, Russia

vseliv@iis.nsk.su

Abstract. We show that many natural structures related to the so
called homomorphic preorder (or h-preorder) on the iterated labeled
forests have isomorphic copies computable in polynomial time. More-
over, the polynomials in the upper bounds are of low degree which makes
the computational content of the whole theory feasible. We apply these
results to relevant questions of automata and computability theory.

Keywords: Preorder · Labeled forest · Iterated h-preorder ·
Structure · Polynomial-time presentation

1 Introduction

The h-preorder (Fk;≤h) on the finite k-labeled forests (where 2 ≤ k ≤ ω) was
introduced in [5] (where notation ≤0 is used instead of ≤h) to characterize a small
initial segment of the Wadge degrees of k-partitions of Baire space. Motivated by
some applications, the second author of the present paper developed this study
in several directions, including the study of arbitrary preorders Q in place of the
antichain with k-elements implicitly used in [5], the study of iterated versions
of the construction Q �→ FQ, introduction and study of natural operations and
relations on the resulting structures, the study of countable well founded forests
instead of the finite ones. See recent preprints [8,9] for a systematic account of
relevant notions and references to the source papers.

Since applications of the corresponding theory (say, to automata, computabil-
ity, and fine hierarchies) have a strong algorithmic flavour, the problem of finding
feasible presentations of structures arising from the aforementioned study seems
natural and even instructive. In [6] it was shown (among other results) that the
structure (Fk;≤h) is presentable in polynomial time (P-presentable, for short),
and some natural operations on this structure are P-computable.

The work is supported by Mathematical Center in Akademgorodok under agreement
No. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian
Federation.

c© IFIP International Federation for Information Processing 2021
Published by Springer International Publishing AG 2021. All Rights Reserved
Y.-S. Han and S.-K. Ko (Eds.): DCFS 2021, LNCS 13037, pp. 1–12, 2021.
https://doi.org/10.1007/978-3-030-93489-7_1
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http://orcid.org/0000-0003-4316-0859
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In this paper we develop the technique and extend the results from [6] con-
cerning ≤0 to most of the aforementioned generalizations of the h-preorder.
Surprisingly, the upper complexity bounds remain the same (up to multiplica-
tive constants) as in [6]. This concerns, in particular, the iterated h-preorder
itself which remains computable in cubic time due to a high uniformity of our
algorithms with respect to the chosen coding of trees and forests. Similar low
upper bounds are also established for other operations and relations which makes
the computational content of the whole theory feasible. We apply these results
to some questions of automata and computability theory recently discussed in
[8,9]. Some technical details and proofs are omitted because of the space bound.

2 Preliminaries

Here and below we subsequently recall basic notions on trees and forests from
[8,9] and describe their codings which develop the coding in [6].

Let ω∗ denote the set of words over the alphabet ω, including the empty
word ε. A number i ∈ ω is identified with the corresponding word from ω∗ of
length 1. If x, y ∈ ω∗, then xy denotes the concatenation of x and y, and x � y
denotes that x is a prefix of y. By a tree we mean any non-empty initial segment
of (ω∗,�). If A is a tree and x ∈ A, let A(x) denote the tree {y ∈ ω∗ | xy ∈ A}.
A tree A is normal if, for any x ∈ ω∗ and i ∈ ω, x(i+1) ∈ A implies that xi ∈ A.
In this paper we consider only finite normal trees, the set of which is denoted
by Tr. If A ∈ Tr and x ∈ A, then A(x) ∈ Tr. The rank of A ∈ Tr is the number
h + 1 where h is the length of a longest word in A.

Let (Q,�) be a preorder (usually denoted just by Q). A Q-labeled tree, or
just a Q-tree, is a pair A = (A, t) where A ∈ Tr and t : A → Q. Denote by Tr(Q)
the set of all Q-trees. If A = (A, t) is a Q-tree and x ∈ A, let A(x) denote the
Q-tree (A(x), tx) where tx(y) = t(xy). The cardinality |A| of a Q-tree A is the
cardinality |A| of A.

We introduce the relation �h on Tr(Q) as follows: (A, t) �h (B, v), if there
is a monotone function f : (A,�) → (B,�) such that t(x) � v(f(x)) for every
x ∈ A. This is clearly a preorder on Tr(Q), which is called the h-preorder. By
A ≡h B we denote the induced equivalence relation A �h B ∧ B �h A.

A forest is an initial segment D of (ω∗\{ε},�), including the empty segment.
Clearly, D ⊆ ω∗ \ {ε} is a forest iff D ∪ {ε} is a tree. The notion of a normal
forest is similar to that of a normal tree. Let Fr denote the set of all finite normal
forests. If D is a forest and x ∈ D then D(x) = {y ∈ ω∗ | xy ∈ D} is a tree. If
D ∈ Fr and x ∈ D then D(x) ∈ Tr. If D∩ω = [0, k−1] = {i ∈ ω | 0 � i � k−1}
then we say that the forest D consists of the trees D(0),D(1), . . . ,D(k − 1).

Similarly we can define the notion of a Q-forest: this is a pair D = (D, t)
where D ∈ Fr and t : D → Q. By Fr(Q) we denote the set of normal Q-forests.
The notation D(x) = (D(x), tx) is defined just as above. Repeating the definition
of �h for trees, we obtain the h-preorder �h on Fr(Q). We again set |D| = |D|.

Let us now define a coding of Q-trees by words. Let Σ be a finite alphabet
containing the left bracket (and the right bracket ), and let Σ0 = Σ \ {(, )}. Let
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Σ∗ be the set of words over Σ. In this context, we denote the empty word as ∅.
A word a is a subword of a word b, if b = b1ab2 for some words b1, b2. We call a
word a ∈ Σ∗ connected, if a �= ∅, the number of entries of the left bracket in a
is equal to that of the right bracket, and for any nonempty proper prefix b ≺ a
the number of left brackets is strictly larger than the number of right brackets.

Lemma 1. a) Any connected word has the form a = (b), for some b ∈ Σ∗;
b) every nonempty proper suffix of a connected word has more right brackets

than left brackets;
c) if a, b are connected words and a � b then a = b;
d) any entry of the left bracket in a connected word is the beginning of a

connected subword;
e) if b1, b2 are connected subwords of a connected word b and the first letter

of b1 occurs in b2, then b1 is a subword of b2.

Suppose that for the preorder Q some injective coding c : Q → Σ∗ \ {∅} is
given such that if q ∈ Q then c(q) ∈ Σ∗

0 or c(q) is a connected word. We denote
by the same symbol a new coding c : Tr(Q) → Σ∗ defined as follows: if A =
(A, t) ∈ Tr(Q) and A∩ω = [0, k−1], where k � 0, then c(A) = (vu0u1 . . . uk−1),
where v = c(t(ε)) and ui = c(A(i)) for i < k. In particular, if A = {ε} then
c(A) = (v). It can be proved that this new coding is injective.

Lemma 2. Let A ∈ Tr(Q) be a tree with n nodes. Then c(A) is a connected
word, and |c(A)| = 2n +

∑{|c(t(x))| | x ∈ A}.
The coding of Q-trees is naturally extended to a coding c′ : Fr(Q) → Σ∗. Let

D = (D, t) ∈ Fr(Q). If D is the empty forest then we set c′(D) = ∅ where ∅ is
a special new symbol. Let D �= ∅, D ∩ ω = [0, k − 1] where k � 1 and the forest
D consists of the trees D(0), . . . ,D(k − 1). We set c′(D) = u0u1 . . . uk−1 where
ui = c(D(i)) for i < k. If D consists of only one tree D(0) then c′(D) = c(D(0)).

Let p ∈ ω, p � 2. We define a function tp : ω2 → ω by tp(x, y) = xpy + xyp.
For p = 2 the next lemma was proved in [6].

Lemma 3. Let p � 2 and x = x1 + x2 + . . . + xk where k � 2 and xi � 1 for
i � k, and y � 1. Then tp(x, y) � tp(x1, y)+ tp(x2, y)+ . . .+ tp(xk, y)+ 2

3 (x+y).
Since tp(x, y) = tp(y, x), a similar inequality holds for the second argument.

Our basic computational model is a standard multi-tape Turing machine
described e.g. in Section 1.6 of [1]. The machine has an input tape for every
argument, the output tape for the result, and may have several working tapes.
Each tape has a leftmost cell and is infinite to the right.

3 Presenting Q-Trees and Forests

The next theorem was proved in [6] for the particular case when Q is an at most
countable antichain and p = 2. Although our proof uses a simple recursion on
trees, we write it down very carefully because some of its parts are also used in
more involved proofs below.
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Theorem 1. Suppose we have a Turing machine T0 which, starting with input
words c(q) and c(r), where q, r ∈ Q, outputs 1 if q � r, and outputs 0 otherwise,
and let it make this work in time O(xpy + xyp) where x = |c(q)|, y = |c(r)|, and
p � 2. Then there is a Turing machine T which, starting with input words c(D)
and c(E), where D,E ∈ Fr(Q), outputs 1 if D �h E, and outputs 0 otherwise.
Furthermore, it makes this work in time O(xpy + xyp) where x = |c(D)| and
y = |c(E)|.

Proof. Suppose that words c(D) and c(E) are given as input. First we recall
an informal algorithm (see e.g. p. 5 of [9]) to check the relation D �h E. If
D = ∅ then D �h E. If E = ∅ then D �h E ⇔ D = ∅. Further we assume
that D,E �= ∅, D consists of trees D(0), . . . ,D(k − 1) and E consists of trees
E(0), . . . ,E(n − 1) where k, n � 1. Consider the possible cases.

1) k � 2. Then D �h E ⇔ D′ �h E and D(k − 1) �h E where D′ consists of the
trees D(0), . . . ,D(k − 2) and D(k − 1) consists of the unique tree D(k − 1).

2) k = 1, n � 2. Then D �h E ⇔ D �h E′ or D �h E(n − 1) where E′ consists
of the trees E(0), . . . ,E(n − 2).

3) k = n = 1. Denote the tree D(0) by A = (A, t) and the tree E(0) by B =
(B, v). Let A ∩ ω = [0, k∗ − 1] and B ∩ ω = [0, n∗ − 1] where k∗, n∗ � 0. Let
A∗ denote the forest consisting of trees A(0), . . . ,A(k∗ − 1) and B∗ denote
the forest consisting of trees B(0), . . . ,B(n∗ − 1). If t(ε) � v(ε) then D �h

E ⇔ A∗ �h E. If t(ε) �� v(ε), then D �h E ⇔ D �h B∗.

To realize this algorithm on a Turing machine with finitely many tapes, we use
a stack and assume that the machine T0 concludes its work with deleting all
traces of the auxiliary computations. This may be achieved with multiplying its
working time by a fixed constant. The machine T will have three main working
tapes and a number of auxiliary ones. The content of any tape is a word RpR′

where RR′ are the tape symbols starting from the leftmost cell and p is the tape
head observing the first letter of the word R′. The word Rp means that the head
observes the first blank cell after R. The three main tapes will be described as
a configuration [R1pR′

1, R2pR′
2, R3pR′

3]. We add to the alphabet of T0 and Σ
three new separating symbols ⊥,&, ∨, and also symbols 0, 1.

We will use a machine T1 which is responsible for the main cycle of the
informal algorithm. The work of T is simple: starting with input words c(D)
and c(E), it creates the initial configuration [⊥⊥c(D)p,⊥⊥c(E)p,⊥p] and starts
the machine T1. After some cycle repetitions, T1 should stop at configuration of
the form [⊥p,⊥p,⊥βp] where β ∈ {0, 1} and β = 1 ⇔ D �h E. The following
four cases may happen during the work of T1.

Case 1. T1 starts with a configuration [R1⊥c(D)p, R2⊥c(E)p, R3p], where
R1, R2, R3 are arbitrary words. Its goal is to compute β ∈ {0, 1} such that
β = 1 ⇔ D �h E, arrive at [R1p, R2p, R3βp], and restart T1.

Case 2. T1 starts with [R1⊥p, R2⊥p, R3&β1β2p], where βi ∈ {0, 1} for i � 2.
It finds β = β1 &β2, arrives at [R1p, R2p, R3βp], and restarts T1.

Case 3. T1 starts with [R1⊥p, R2⊥p, R3 ∨β1β2p], where βi ∈ {0, 1} for i � 2.
It finds β = β1 ∨ β2, arrives at [R1p, R2p, R3βp], and restarts T1.
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Case 4. T1 starts with [R1⊥p, R2⊥p, R3⊥βp], where β ∈ {0, 1}. It arrives at
[R1p, R2p, R3p], outputs β as the result of the algorithm, and stops.

The machine’s work in cases 2–4 is clear. The heads on the first two tapes
move to the left and determine that one of the three cases holds, while the third
head moves to the left to determine precisely which of the three cases holds.

Now we describe the work of T1 in case 1. Let its starting configuration be
[R1⊥c(D)p, R2⊥c(E)p, R3p]. Moving the heads to the left, the machine comes
to [R1p⊥c(D), R2p⊥c(E), R3p] and simultaneously determines whether D or E

consists of only one tree, or is empty. How to do this, is explained below. Let,
as in cases 1)–3) of the informal algorithm, D consist of k trees and E consist of
n trees. If D = ∅ or E = ∅, we can immediately go to [R1p, R2p, R3βp] where
β is the correct answer, and start T1. Let D,E �= ∅ and consider variants 1)–3).

1) k � 2. T1 goes to [R1⊥⊥c(D′)⊥c(D(k − 1))p, R2⊥⊥c(E)⊥c(E)p, R3 & p] and
restarts T1. The forest D′ is described in case 1) of the informal algorithm.

2) k = 1, n � 2. T1 goes to [R1⊥⊥c(D)⊥c(D)p, R2⊥⊥c(E′)⊥c(E(n−1))p, R3∨p]
and restarts T1.

3) k = n = 1. Let D(0) = A = (A, t) and E(0) = B = (B, v), q = t(ε)
and r = v(ε). The machine extracts from c(D) and c(E) the words c(q)
and c(r), copies them to the input tapes of T0 and starts it, thus obtaining
β0 ∈ {0, 1} such that β0 = 1 ⇔ q � r. If β0 = 1 then the machine goes to
the configuration [R1⊥c(A∗)p, R2⊥c(E)p, R3p]. If β0 = 0 then it goes to the
configuration [R1⊥c(D)p, R2⊥c(B∗)p, R3p]. After that it restarts T1.

Now we describe how to decompose c(D) to its components. The word c(D)
has the form c1c2 . . . ck where ci are connected words for i � k. On a separate
tape, we organize a counter of the form 10tp0s where t + 1 is the difference of
the numbers of left and right brackets. Moving along c1, we move the counter
tape head to the right on the left bracket and to the left on the right bracket.
When it finds 1, the word c1 is read. Thus, in one run along c(D) we will find
the beginnings of all words c1, . . . , ck and the word c(D′) equal to c1c2 . . . ck−1.
Note that the connected words may also be recognized by reading them from
right to left, because their definition is symmetric. The word c(A) is of the form
(c1c2 . . . ck∗+1) where c1 is a connected word or c1 ∈ Σ∗

0 , and ci are connected
words for 2 � i � k∗ + 1. Furthermore, c(A∗) equals c2 . . . ck∗+1.

Let tp(x, y) = xpy+xyp and let T0 check the relation q � r in time C0tp(x, y)
where x = |c(q)| and y = |c(r)| and C0 is a constant not depending on x and y.
By induction on |D| + |E| we can prove the following.

Lemma 4. Let T1 start with a configuration of case 1. Then it really fulfils the
prescribed job in time C1tp(x, y) where x = |c(D)|, y = |c(E)|, and C1 is a
constant not depending on x and y.

4 Iterated Q-Trees and Forests

Let again (Q,�) be a fixed preorder and c its injective coding but now we
additionally assume that c : Q → Σ∗

0 \ {∅}, i.e. c(q) does not contain brackets
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for every q ∈ Q. Since (Tr(Q),�h) is again a preorder, we may consider the
sets Tr(Tr(Q)), Tr(Tr(Tr(Q))), and so on. Let Tr0(Q) = Q and Trn+1(Q) =
Tr(Trn(Q)) for n ∈ ω. If the preorder �h is already defined on Trn(Q) then we
can define �h on Trn+1(Q) according with the definition from Sect. 2. We will
think that �h is also defined on Tr0(Q) = Q (by identifying it with �).

Now we define a coding c : Trn(Q) → Σ∗ by induction on n where for n = 0
the coding c : Tr0(Q) → Σ∗

0 is given above. If c : Trn(Q) → Σ∗ is already defined
then we define c : Trn+1(Q) → Σ∗ precisely as it was done in the definition of
c : Tr(Q) → Σ∗ in Sect. 2. By induction we easily check the following:

Lemma 5. If A ∈ Trn(Q), n ∈ ω then (np is a prefix of c(A) where p ∈ Σ0.
Thus, n is determined uniquely from c(A).

For n � 1 let Frn(Q) denote Fr(Trn−1(Q)), i.e., the set of finite normal
forests the nodes of which are labeled by elements of Trn−1(Q). In particular,
Fr1(Q) = Fr(Q). The coding above is extended to such forests according to
the scheme of Sect. 2. Let D = (D, t) ∈ Frn(Q). If D is the empty forest then
c(D) = ∅. If D �= ∅ then D∩ω = [0, k−1] where k � 1. The forest D consists of
the trees D(0), . . . ,D(k−1), and we set c(D) = u0u1 . . . uk−1 where ui = c(D(i))
for i < k. In a series of papers (see e.g. [9]) the second author considered this
construction for Q = {0, 1, . . . , k − 1} or Q = ω. In the first case we set Σ0 = Q
and c(q) = q for q ∈ Q. In the second case we set Σ0 = {0, 1}, and let c(q) be the
binary expansion of q ∈ ω. In both cases, the preorder q � r on Q is the equality
relation q = r. Clearly, in both cases the relation q � r is checked in linear time
from given codes c(q), c(r). By Theorem 1, for any n � 1 the relation D �h E on
Frn(Q) may be checked from given c(D), c(E) in time Ct2(x, y) where x = |c(D)|
and y = |c(E)|. However, the constant C may increase if n increases. Also, the
number of tapes of the recognizing Turing machines increases.

In this section we show that there is a polynomial time algorithm which
computes �h simultaneously for all n. The algorithm is based on the fact that
for distinct n the relation �h and the codings on Frn(Q) are defined in the same
way, hence we can use a uniform recursion.

Theorem 2. Suppose that there is a Turing machine T0 which, for given inputs
c(q) and c(r) where q, r ∈ Q, outputs 1 if q � r, and outputs 0 otherwise. Let
this take time O(xpy + xyp) where x = |c(q)|, y = |c(r)|, and p � 2. Then
there is a Turing machine T which, for given inputs c(D) and c(E) such that
D,E ∈ Frm(Q) for some m � 1, outputs 1 if D �h E, and outputs 0 otherwise. Its
working time is also estimated as C(xpy + xyp) where x = |c(D)| and y = |c(E)|
and the constant C does not depend on m,x and y.

Proof. We use the machines T and T1 from the proof of Theorem 1 and discuss
modifications for the case 1. If k � 2 or n � 2, the scheme remains unchanged.
Let k = n = 1, A = (A, t), B = (B, v), q = t(ε), and r = v(ε). If q, r ∈ Q, i.e.
m = 1, then the relation q � r is checked using the machine T0. If m > 1 and
q, r ∈ Trm−1(Q) then we make a recursive call of the same machine T1 on words



Complexity Issues for the Iterated h-Preorders 7

c(q) and c(r). Now two kinds of recursion appear (on the number of nodes in the
forests, and on m) which complicate stack manipulations. We modify the work
of T1 by adding a new case 1′ to the case 1, a new separator symbol ∗ to the
alphabet, and a new case 5.

Case 1′. T1 starts with [R1⊥c(A)p, R2⊥c(B)p, R3pβ0], where β0 ∈ {0, 1},
A = (A, t), B = (B, v) ∈ Trm(Q), m � 1. Let q = t(ε) and r = v(ε). T1 assumes
that β0 satisfies β0 = 1 ⇔ q �h r. Based on this, it determines β ∈ {0, 1} such
that β = 1 ⇔ A �h B, goes to [R1p, R2p, R3βp], and restarts T1.

Case 5. T1 starts with [R1 ∗ p, R2 ∗ p, R3βp] where β ∈ {0, 1}. It goes to the
configuration [R1p, R2p, R3pβ] and restarts T1.

Case 5 needs no comment, so we only describe modifications for the case 1.
The algorithms for variants 1) and 2) remain unchanged. Consider the variant
3). Let D(0) = A = (A, t), E(0) = B = (B, v), and q = t(ε), r = v(ε). We extract
from the input data the words c(q) and c(r). If they are in Σ∗

0 , i.e. m = 1, then
T1 works just as in Theorem 1: it starts T0, finds β0 such that β0 = 1 ⇔ q � r,
and proceeds as in Theorem 1.

Let c(q), c(r) �∈ Σ∗
0 , i.e. m > 1. Then T1 goes to [R1⊥c(A)∗⊥c(q)p, R2⊥c(B)∗

⊥c(r)p, R3p] and restarts T1. Further steps lead to case 1′.
The work of T1 in case 1′ is the same as the work of T1 in the proof of

Theorem 1 in case 1 and variant 3), with the only exception that now there is no
need to bother about computing β0, which is given as parameter; we only have
to delete it from the third tape. As in the proof of Theorem 1, T1 starts with
[⊥⊥c(D)p,⊥⊥c(E)p,⊥p]. Let tp(x, y) = xpy + xyp. By induction on |c(D)| +
|c(E)| we prove a lemma which completes the proof of the theorem:

Lemma 6. Let D,E ∈ Frm(Q) where m � 1, and let T1 start working from the
configuration specified in case 1. Then it really behaves as described in this case,
and its working time is bounded by C1tp(x, y), where x = |c(D)|, y = |c(E)|, and
C1 is a constant not depending on m,x, and y.

In particular, the theorem tells us that for simple preorders Q (like the count-
able antichains) the testing of D �h E is doable in cubic time.

Lemma 7. Let n � 1. A word u ∈ Σ∗ equals to c(A) for some A ∈ Trn(Q) iff
it starts with a prefix (np where p ∈ Σ0, and the following conditions hold:

a) u is a connected word;
b) if u′ is a connected subword of u with prefix (kp, where k � 1 and p ∈ Σ0,

then it has the form u′ = (v0u1u2 . . . us) where v0 is either a connected word or
v0 = c(q), q ∈ Q, s � 0, and every ui, i � s is a connected word starting with
(kpi, where pi ∈ Σ0.

By induction one can also show that a word c(A), where A ∈ Trn(Q), does
not contain subwords (k for k > n. We denote {c(q) | q ∈ Q} by c(Q), {c(A) |
A ∈ ⋃

n�1 Trn(Q)} by Tω, and {c(D) | D ∈ ⋃
n�1 Frn(Q)} by Fω.

Proposition 1. If the set c(Q) is computable in time O(xp), where x is the
length of a non-empty input word and p � 2, then the sets Tω and Fω are also
computable in time O(xp).
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5 Operations on Trees and Forests

Here we discuss some operations on trees and forests from [8,9]. The simplest
operation is disjoint union of two forests D � E. If D ∈ Frm(Q) consists of trees
D(0), . . . ,D(k − 1), and E ∈ Frm(Q) consists of trees E(0), . . . ,E(n− 1) then the
forest D�E consists of trees D(0), . . . ,D(k−1), E(0), . . . ,E(n−1). Consequently,
c(D � E) = uv, where u = c(D) and v = c(E). If D = ∅ then D � E = E, and if
E = ∅ then D � E = D.

A more complex operation is multiplication of two forests. A leaf of a forest
D is a node x ∈ D such that xi �∈ D for i ∈ ω. Let D,E ∈ Frm(Q). Then D · E
is the forest obtained by adjoining a copy of E to every leaf of D. More formal
definition may be given by induction on the number of trees in D, and for a
forest with only one tree, by induction on the number of nodes.

Proposition 2. There is a Turing machine which, starting with input words
c(D) and c(E), where D,E ∈ Frm(Q) for some m � 1, outputs the word c(D · E)
in time Cxy, where x = |c(D)|, y = |c(E)|, and the constant C does not depend
on m,x, and y.

Another useful operation is the operation s : Trn(Q) → Trn+1(Q) for every
n � 0. It sends any q ∈ Q or A ∈ Trn(Q) to the singleton tree ({ε}, t), where
t(ε) = q or t(ε) = A. In terms of codes this means the conversion of a word u =
c(A) to the word (u). Clearly, A �h B ⇔ s(A) �h s(B), i.e. s is an isomorphic
embedding of (Trn(Q),�h) into (Trn+1(Q),�h). This operation may be extended
to the operation s : Frn(Q) → Frn+1(Q) for n � 1: if a forest D consists of trees
A1, . . . ,Ak, then s(D) consists of trees s(A1), . . . , s(Ak). If c(D) = u1u2 . . . uk,
where ui are connected words for i � k, then c(s(D)) = (u1)(u2) . . . (uk). This
operation is computed in linear time.

We also recall the operation r : Frn+1(Q) → Frn(Q), n � 1, which is in a
sense converse to s: if D = (D, t) ∈ Frn+1(Q) then r(D) ∈ Frn(Q) is a forest
consisting of the trees in {t(x) | x ∈ D}. To get also an order of these trees, we
define r(D) inductively. First define r(A) for a tree A ∈ Trn+1(Q) as follows:

1) if A = ({ε}, t) then r(A) is the forest consisting of only one tree t(ε);
2) if A = (A, t) and A ∩ ω = [0, k − 1], where k � 1, then r(A) equals

{t(ε)} � r(A(0)) � . . . � r(A(k − 1)).
If a forest D ∈ Frn+1(Q) consists of trees A0, . . . ,As−1, we define r(D) =

r(A0) � r(A1) � . . . � r(As−1).

Proposition 3. There is a Turing machine which, starting with an input word
c(D), where D ∈ Frm+1(Q) for some m � 1, outputs the word c(r(D)) in time
Cx, where x = |c(D)| and C is a constant not depending on m and x.

We can similarly extend the proof of Theorem 11 in [6] to show that with the
same complexity one can compute a forest of minimal cardinality h-equivalent
to a given forest from Frm(Q) (see Proposition 2 in [9] for details.)

Proposition 4. There is a Turing machine which, starting with an input word
c(D), where D ∈ Frm(Q) for some m � 1, outputs a word c(E) in time Cx3,
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where x = |c(D)|, C is a constant not depending on m and x, and E ∈ Frm(Q)
is a forest of minimal cardinality h-equivalent to D.

6 The Union of Iterated Trees and Forests

Let again (Q,�) be a fixed preorder. Above we have defined the sequence of pre-
orders {(Trn(Q),�h)}n∈ω. Now we define embeddings gn : Trn(Q) → Trn+1(Q).
If n = 0 and q ∈ Tr0(Q) = Q then g0(q) = s(q) = ({ε}, t), where t(ε) = q.
Suppose that gn is already defined and A ∈ Trn+1(Q). If A = (A, t), let
gn+1(A) = (A, gn ◦ t). By induction on n � 0 it is easy to show that
gn : Trn(Q) → Trn+1(Q) is injective and A �h B ⇔ gn(A) �h gn(B) for all
A,B ∈ Trn(Q). This means that gn is an isomorphic embedding of (Trn(Q),�h)
into (Trn+1(Q),�h). Denote by (Trω(Q),�h) the colimit (known also as direct
limit) of the sequence {Trn(Q), gn}n∈ω described in [9]. There are standard
embeddings g′

n : Trn(Q) → Trω(Q) such that g′
n+1 = gn◦g′

n and
⋃

n�0 ran(g′
n) =

Trω(Q). In the same way we can define embeddings gn : Frn(Q) → Frn+1(Q)
for n � 1, using the formula gn+1(D) = (D, gn ◦ t), where D = (D, t). We
get that gn is an embedding of (Frn(Q),�h) into (Frn+1(Q),�h), and we can
define (Frω(Q),�h) as the colimit of the sequence {Frn(Q), gn}n�1. Again, there
are standard embeddings g′

n : Frn(Q) → Frω(Q) such that g′
n+1 = gn ◦ g′

n and⋃
n�1 ran(g′

n) = Frω(Q).
We now define codings for the colimit structures. Since elements of Tr0(Q)

are not trees and our codings above are adjusted to trees, we exclude these
elements from our considerations since Trω(Q) may be defined without them.
Recall that for the construction of Trω(Q) we introduce on

⋃
n�1 Trn(Q) the

following equivalence relation: if A ∈ Trk(Q) and B ∈ Trn(Q), where k � n, then
A ≡ B ⇔ gk,n(A) = B, where gk,n = gn−1◦. . .◦gk+1◦gk, and gk,k = idTrk(Q). The
equivalence classes are the elements of the colimit. Note that in any equivalence
class we can choose a canonical representative. Call a tree A ∈ Trn(Q) basic,
if n = 1 or n � 2 and A cannot be represented as gn−1(A0) for some A0 ∈
Trn−1(Q). Then the elements of Trω(Q) may be identified with the basic trees,
so we think that Trω(Q) = {A ∈ ⋃

n�1 Trn(Q) | A is a basic tree}.
If A ∈ Trn(Q) then there is a unique pair (A0, k) such that k � n, A0 ∈

Trk(Q) is a basic tree, and gk,n(A0) = A. We denote A0 as λ(A). Similarly we
define the notion of a basic forest D ∈ Frn(Q): n = 1 or n � 2 and D cannot
be represented as gn−1(D0) for some D0 ∈ Frn−1(Q). The elements of Frω(Q)
may be identified with the basic forests and we can think that Frω(Q) = {D ∈⋃

n�1 Frn(Q) | D is a basic forest}. The forest λ(D) ∈ Frω(Q) is defined similarly.

Lemma 8. a) There is a Turing machine which, starting with input words c(A)
and 1y, where A ∈ Trn(Q) and y � 0, outputs the word c(gn,n+y(A)) in time
Cxy, where x = |c(A)| and C is a constant not depending on n and x; further-
more, |c(gn,n+y(A))| � 2xy;

b) The same holds, if we replace A ∈ Trn(Q) by A ∈ Frn(Q).

Let c(Trω(Q)) = {c(A) | A ∈ Trω(Q)} and c(Frω(Q)) = {c(D) | D ∈
Frω(Q)}.
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Proposition 5. a) Suppose that the set c(Q) is computable in time O(xp), where
p � 2. Then the sets c(Trω(Q)) and c(Frω(Q)) are also computable in time
O(xp);

b) The functions c(A) �→ c(λ(A)), A ∈ ⋃
n�1 Trn(Q), and c(D) �→ c(λ(D)),

D ∈ ⋃
n�1 Frn(Q), are computable in time O(x), where x = |c(A)| or x = |c(D)|,

respectively.

Since every (Frn(Q),�h) embeds in the colimit (Frω(Q),�h), we can define
the relation �h on the whole

⋃
n�1 Frn(Q): if D ∈ Frn(Q) and E ∈ Frk(Q) then

D �h E ⇔ gn,k(D) �h E for n � k, and D �h E ⇔ D �h gk,n(E) for n � k. The
same applies to other operations introduced above on Frn(Q): they “commute”
with the embedding gn and hence may naturally be transferred to Frω(Q). For
instance, if D,E ∈ Frn(Q), n � 1 then gn(D ·E) = gn(D) · gn(E). This enables to
define the operation · on Frω(Q) by the following formula: if D ∈ Frn(Q) and E ∈
Frk(Q), then D ·E = λ(gn,m(D) · gk,m(E)), where m = max{n, k}. This precisely
corresponds to the definition of the colimit of the sequence {(Frn(Q), ·), gn}n∈ω.
Observe that we can remove λ from the formula because if D,E are basic forests,
then the forest gn,m(D) · gk,m(E) is also basic.

If D,E ∈ Frn(Q), n � 1 then gn(D� E) = gn(D) � gn(E). The operation � is
transferred to Frω(Q) just as above.

Denote the operation s on Frn(Q) by sn : Frn(Q) → Frn+1(Q). If A ∈
Trn(Q), n � 1 then sn+1(gn(A)) = gn+1(sn(A)). Thus, if D ∈ Frn(Q), then
sn+1(gn(D)) = gn+1(sn(D)). This enables to define the operation s on Frω(Q)
by the formula: if D ∈ Frn(Q) then s(D) = λ(sn(D)).

Denote the operation r on Frn(Q) as rn : Frn(Q) → Frn−1(Q) for n � 2.
If D ∈ Frn(Q), n � 2 then gn−1(rn(D)) = rn+1(gn(D)). It enables to define
the operation r on Frω(Q) by the formula: if D ∈ Frn(Q), n � 2 then r(D) =
λ(rn(D)). It is not hard to check that if D is a basic forest then so is also rn(D).
Thus, the formula may be simplified to r(D) = rn(D).

Suppose that D = (D, t) ∈ Fr1(Q). To preserve the consistency with the
embeddings gn, we set r(D) = r2(g1(D)), i.e., r(D) =

⊔
x∈D{s(t(x))}.

As a result, we obtain the structure Fω(Q) = (Frω(Q),�h,�, ·, s, r). The cod-
ing c : Frω(Q) → Σ∗ is a bijection between Frω(Q) and c(Frω(Q)). Transferring
the relations and operations from Fω(Q) to c(Frω(Q)), we obtain the struc-
ture c(Fω(Q)) with the universe c(Frω(Q)) and the isomorphism c : Fω(Q) →
c(Fω(Q)). We are interested in the algorithmic properties of the latter structure.

Let S = (S,LS) be an arbitrary structure of a finite signature L, where
S ⊆ Σ∗ \ {∅}. We say that S is a structure computable in time O(xp), where
p ∈ ω, if the universe S and all operations and relations from LS are computable
on some Turing machines in time O(xp), where x is the maximum length of the
arguments of an operation or relation. We say that S is P-computable [4] if it is
computable in time O(xp) for some p ∈ ω.

Several facts on the computation complexity in c(Fω(Q)) were already estab-
lished above. Let D ∈ Frk(Q), E ∈ Frn(Q) be basic forests, k < n, D̄ = gk,n(D),
x = |c(D)|, and y = |c(E)|. Then n − k � n � y and, by Lemma 8 |c(D̄)| � 2xy.
Using Theorem 2, we obtain that, for a sufficiently simple preorder Q, the
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relation D �h E may be computed in time O(x2y3), i.e. in time O(max{x, y}5).
This estimate may be improved by modifying the proof of Theorem 1.

Corollary 1. Suppose that there is a Turing machine T0 which, starting with
input words c(q) and c(r), where q, r ∈ Q, outputs 1 if q � r, and outputs 0
otherwise. Let it does this in time O(xpy + xyp) where x = |c(q)|, y = |c(r)|,
and p � 2. Then there is a Turing machine T , which, starting with input words
c(D) and c(E), where D ∈ Frm(Q) and E ∈ Frl(Q) for some m, l � 1, outputs 1
if D �h E, and outputs 0 otherwise. It also works in time C(xpy + xyp), where
x = |c(D)|, y = |c(E)|, and C is a constant not depending on m, l, x, y.

Since c : Q → c(Q) is a bijection, we can transfer the preorder � from Q to
c(Q) and get a structure (c(Q),�) isomorphic to (Q,�).

Theorem 3. Suppose that the structure (c(Q),�) is computable in time O(xp)
where p � 2. Then the structure c(Fω(Q)) = (c(Frω(Q)),�h,�, ·, s, r) is com-
putable in time O(xp+1).

7 Two Applications

Here we deduce two corollaries of the results above for automata theory and
computability theory.

For any integer k ≥ 2, let Rk (resp. Ak) be the set of regular (regular
aperiodic) k-partitions of the set Xω of infinite words over a finite alpha-
bet X with at least two symbols. A partition is regular (regular aperiodic) if
every its component is a regular (regular aperiodic) ω-language. For k-partitions
A,B : Xω → {0, . . . , k − 1} = k̄, let A ≤W B mean that A = B ◦ f for some
continuous function f on Xω. Continuing a series of previous results, the sec-
ond author characterized the quotient-posets of (Rk;≤W ) and of (Ak;≤W ) by
showing them to be isomorphic to the quotient-poset of (Fr2(k̄);≤h) [7,8]. More-
over, the following extension was proved. Let Rk be the quotient-structure of
(Rk;≤W , I,⊕, ·, q0, . . . , qk−1) under ≡W where I is the unary relation true pre-
cisely on the join-irreducible elements, ⊕ is the binary operation of disjoint union,
and ·, q0, . . . , qk−1 are some natural operations coming from the Wadge theory.
Let the structure Ak be defined similarly but on the universe Ak. Let F2(k̄)
be the quotient-structure of (Fr2(k̄);≤h, I,�, ·, q0, . . . , qk−1) under ≡h where I
is defined similarly, and qi(F ) = s(i · r(F )) for every F ∈ Fr2(k̄) and i < k.
By Proposition 9 in [8], the structures Rk, Ak, and F2(k̄) are isomorphic. By
Theorem 3 and Proposition 4, the structure (Fr2(k̄);≤h, I,�, ·, q0, . . . , qk−1) is
P-presentable. Since the structure F2(k̄) is finitely generated, from Theorem 2
in [3] we obtain the following.

Theorem 4. The structures Rk and Ak are P-presentable.

Fix k satisfying 2 ≤ k ≤ ω. Let ⊕ be the binary operation of disjoint union
on k̄ω where k̄ = {i | i < k}. We say that a function f on ω reduces A ∈ k̄ω

to B ∈ k̄ω if A = B ◦ f . For any n < ω, let ≤n be the binary relation on
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k̄ω where A ≤n B means that some function f computable in the n-th Turing
jump ∅

(n) of the empty set reduces A to B. These relations are popular in
computability theory (in particular, the relation ≤0 on 2̄ω coincides with the
many-one reducibility).

For any n < ω, let un be the universal partial function on ω computable in
∅

(n). We define the binary operation ·n on k̄ω as follows: if un(y) is defined then
(A ·n B)〈x, y〉 equals A(un(y)), otherwise it equals B(x). Here 〈 〉 is the usual
pairing function on ω. See Section 5 in [9] for arguments why these operations are
natural objects of computability theory. Let Ak be the subset of k̄ω generated
by these operations from the constant functions. For any n < ω, let In be the
unary relation on Ak true precisely on the elements which induce join-irreducible
elements in the quotient semilattice of (Ak;⊕,≤n).

In Section 2.3 of [9], binary relations ≤n and binary operations ·n on Frω(Q)
where defined by induction on n as follows: ≤0=≤h and F ≤n+1 G iff r(F ) ≤n

r(G); F ·0 G = F · G and F ·p+1 G = s(r(F ) ·p r(G)). Let also In be the unary
relation on Frω(Q) true precisely on the elements which induce join-irreducible
elements in the quotient semilattice of (Frω(Q);�,≤n). By the results in Sect. 6
of [9], the quotient-structure of (Ak;⊕, ·0, ·1, . . . , I0, I1, . . . ,≤0,≤1, . . .) under ≡0

is isomorphic to the quotient-structure of (Frω(k̄);�, ·0, ·1, . . . , I0, I1, . . . ,≤0,≤1

, . . .) under ≡0, and the quotient semilattice of (Ak;⊕,≤n) for every n is isomor-
phic to the quotient semilattice of (Frω(k̄);�,≤n) and to the quotient semilattice
of (Frω(k̄);�,≤0). These results, Proposition 4, and Theorem 3 imply:

Theorem 5. The structure (Ak;⊕, I0,≤0) has a P-presentation in which the
relations In,≤n and the operations ·n are P-computable for every n.
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Abstract. Although regular expressions do not correspond univocally
to regular languages, it is still worthwhile to study their properties and
algorithms. For the average case analysis one often relies on the uniform
random generation using a specific grammar for regular expressions, that
can represent regular languages with more or less redundancy. Generators
that are uniform on the set of expressions are not necessarily uniform on
the set of regular languages. Nevertheless, it is not straightforward that
asymptotic estimates obtained by considering the whole set of regular
expressions are different from those obtained using a more refined set that
avoids some large class of equivalent expressions. In this paper we study
a set of expressions that avoid a given absorbing pattern. It is shown
that, although this set is significantly smaller than the standard one, the
asymptotic average estimates for the size of the Glushkov automaton for
these expressions does not differ from the standard case.

1 Introduction

Average-case studies often rely on uniform random generation of inputs. In gen-
eral, those inputs correspond to trees, and generators are uniform on the set of
these trees, but not on the set that those inputs represent (such as languages
or boolean functions). Koechlin et al. [7,8] studied expressions that have subex-
pressions which are (semantically) absorbing for a given operator, calling them
absorbing patterns. For instance, (a + b)� is absorbing for the union of regular
expressions over the alphabet {a, b}, since α+(a+b)�, or (a+b)�+α, is equivalent
to (a + b)� for any expression α. After repeatedly applying the induced simpli-
fication, in the example above replacing α + (a + b)� by (a + b)�, the resulting
expression can be significantly smaller. For uniformly random generated expres-
sions of a given size, Koechlin et al. showed that the expression resulting from
this simplification has constant expected size. That result led the authors to the
conclusion that uniform random generated regular expressions lack expressive-
ness, and in particular that uniform distribution should not be used to study the
average case complexity in the context of regular languages. This conclusion is
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misleading in at least two aspects. First, as pointed out above, one is considering
regular expressions and not regular languages themselves. For instance, if one
wants to estimate the size of automata obtained from regular expressions, one
disregards whether they represent the same language or not. What is implied
by the results of Koechlin et al. is that, if one uniformly random generates reg-
ular expressions, one cannot expect to obtain, with a reasonable probability,
regular languages outside a constant set of languages. This means that a core
set of regular languages have so many regular expression representatives that
the remaining languages very scarcely appear. While neither regular expressions
(RE) nor nondeterministic finite automata (NFA) behave uniformly when repre-
senting regular languages, it is known that deterministic automata (DFA) are a
better choice, in the uniform model, as they are asymptotically minimal [10]. In
this sense, minimal DFAs are a perfect model for regular languages. However, in
practice, regular expressions are usually preferred as a representation of regular
languages, and are used in a non-necessarily simplified form. Moreover, all of
these objects (REs, NFAs, and DFAs) are combinatorial objects per se that can
have their behaviour, as well as of the algorithms having them as input, studied
on average and asymptotically. One should not confuse regular expressions by
themselves with the languages that they represent. Second, the results of Koech-
lin et al. do not imply that asymptotic estimates obtained by considering the
whole set of regular expressions are different from those obtained by using a more
refined set with less equivalent expressions. For instance, some results obtained
for expressions in strong star normal form coincide with the ones for standard
regular expressions [2]. In order to further sustain the above claim, in this paper
we consider the set R of regular expressions avoiding an absorbing pattern which
extends the pattern in the example above and was the one considered by Koech-
lin et al. It is shown that, although the set R is significantly smaller than the
set RE, the asymptotic estimates for the size of the Glushkov automaton on
these sets is the same. Given the complexity of the grammars expressing the
classes here studied, we had to deal with algebraic curves and polynomials of
degree depending on the size of the alphabet, k, which brought up challenges
that are new, as far as we know. Not only we had to use the techniques devel-
oped in our previous work [3], but also some non-trivial estimates using Stirling
approximation, and some asymptotic equivalence reductions in order to obtain
the asymptotic estimates, and their limits with k.

2 The Analytic Tools

Given some measure of the objects of a combinatorial class, A, for each non-
negative integer n ∈ N0, let an be the sum of the values of this measure for
all objects of size n. Now, let A(z) =

∑
n anzn be the corresponding generating

function (cf. [5]). We will use the notation [zn]A(z) for an. The generating func-
tion A(z) can be seen as a complex analytic function. When this function has
a unique dominant singularity ρ, the study of the behaviour of A(z) around it
gives us access to the asymptotic form of its coefficients. In particular, if A(z) is
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analytic in some indented disc neighbourhood of ρ, then one has the following
[5, Corol. VI.1, p. 392]:

Theorem 1. The coefficients of the series expansion of the complex function
f(z) ∼

z →ρ
λ

(
1 − z

ρ

)ν

, where ν ∈ C \N0, λ ∈ C, have the asymptotic approxima-

tion [zn]f(z) = λ
Γ(−ν) n−ν−1ρ−n+o

(
n−ν−1ρ−n

)
. Here Γ is, as usual, the Euler’s

gamma function and the notation f(z) ∼
z →z0

g(z) means that lim
z→z0

f(z)
g(z) = 1.

2.1 Regular Expressions

Given an alphabet Σ = {σ1, . . . , σk}, the set RE of (standard) regular expressions,
β, over Σ contains ∅ and the expressions defined by the following grammar:

β := ε | σ ∈ Σ | (β + β) | (β · β) | (β�). (1)

The language associated with β is denoted by L(β) and defined as usual (with ε
representing the empty word). Two expressions β1 and β2 are equivalent, β1 = β2,
if L(β1) = L(β2). The (tree-)size |β| of β ∈ RE is the number of symbols in β (dis-
regarding parentheses). The alphabetic size |β|Σ is the number of letters occur-
ring in β. The generating function of RE is Bk(z) =

∑
β∈RE z|β| =

∑
n>0 bnzn,

where bn is the number of expressions of size n, cf. [1,9]. From grammar (1) one
gets Bk(z) = (k + 1)z + 2zBk(z)2 + zBk(z). Considering the quadratic equation

this yields Bk(z) = 1−z−
√

1−2z−(7+8k)z2

4z . To use Theorem 1 one needs to obtain
the singularity, ρ, as well as the constants ν and λ. Following Broda et al. [1,3],

we have Bk(z) ∼
z →ρk

−
√

2−2ρk

4ρk

(
1 − z

ρk

) 1
2
, where the singularity ρk = 1

1+
√

8+8k

is the positive root of pk(z) = 1−2z−(7+8k)z2. Thus, applying Theorem 1 and
noting that Γ(− 1

2 ) =
√

π, the number of expressions of size n is asymptotically
given by

[zn]Bk(z) ∼
n

√
2 − 2ρk

8ρk
√

π
n− 3

2 ρ−n
k , (2)

where we use the notation ∼
n

instead of ∼
n→∞

.

3 Regular Expressions Without Σ� in Unions

We consider the set R of all regular expressions α such that Σ� does not occur in
an union. Here Σ� denotes any expression (σi1 + · · ·+σik

)� where σi1 , . . . , σik
is

a permutation of Σ. Note that Σ� represents an absorbing pattern in the sense
of [7], i.e. (α + Σ�) = (Σ� + α) = Σ�, and that R still generates all regular
languages over Σ. We first consider Σ = {a, b}, for which we have the following
grammar G2 for R.
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α := ε | a | b | (α · α) | (α�) | (αP + αP ) (3)
αP := ε | a | b | (α · α) | (α�

Σ) | (αP + αP )
αΣ := ε | a | b | (α · α) | (α�) | γ

γ := (αab + αab) | (αab + a) | (αab + b) | (a + αab) | (b + αab) | (a + a) | (b + b)
αab := ε | (α · α) | (α�

Σ) | (αP + αP ).

The set of expressions generated by the nonterminals of G2, are, respectively,

[[α ]] = R,

[[αP ]] = {α ∈ R | α �= (a + b)� ∧ α �= (b + a)� },

[[αΣ ]] = {α ∈ R | α �= (a + b) ∧ α �= (b + a) },

[[ γ ]] = { (α1 + α2) ∈ R | {α1, α2} �= {a, b} },

[[αab ]] = {α ∈ [[αP ]] | α �= a ∧ α �= b }.

Let R2(z) denote the generating function for the class R when |Σ| = 2. It
follows from (3) that R2(z) = 3z + zR2(z)2 + zR2(z)+ zRP (z)2, where RP (z) is
the generating function for the class of expressions generated by αP . Comparing
[[α ]] and [[αP ]], one observes that the only expressions not generated by αP are
(a + b)� and (b + a)�, which are both of size 4. Thus, RP (z) = R2(z) − 2z4.
In general, for an arbitrary alphabet Σ = {σ1, . . . , σk}, the expressions α ∈ R
satisfy the following grammar Gk

α := ε | σ1 | · · · | σk | (α · α) | (α�) | (αP + αP ), (4)

where [[αP ]] = {α ∈ R | α �= (σi1 + · · · + σik
)� ∧ {σi1 , . . . , σik

} = Σ }. As
before, we obtain the following two equations for the corresponding generating
functions, where (k−1)!

(
2k−2
k−1

)
denotes the number of expression (σi1 +· · ·+σik

)�

with {σi1 , . . . , σik
} = Σ, each of which has size 2k,

Rk(z) = (k + 1)z + zRk(z)2 + zRk(z) + zRP,k(z)2, (5)

RP,k(z) = Rk(z) − (k − 1)!
(

2k − 2
k − 1

)

z2k. (6)

In the next section, the asymptotic estimates of [zn]Rk(z) are computed.

3.1 Asymptotic Estimates for the Number of Expressions in R

The generating function Rk = Rk(z) satisfies the following equation:

2zR2
k − rkRk + zsk = 0, (7)

where

rk = rk(z) = 1 − z + 2z2k+1Ck,

sk = sk(z) = 1 + k + z4kC2
k ,

Ck =
(

2k − 2
k − 1

)

(k − 1)! =
(2k − 2)!
(k − 1)!

.
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The discriminant of Eq. (7) is Δk = Δk(z) = pk(z) + 4z2k+1Ckhk(z), where
pk = pk(z) = 1 − 2z − (7 + 8k)z2 and hk = hk(z) = 1 − z − Ck z2k+1. Thus,

Rk = Rk(z) =
rk − √

Δk

4z
, (8)

where the choice of the sign is determined by noticing that rk(0) = Δk(0) = 1.
Let us now show that Rk(z) has a unique determinant singularity in the interval
]0, 1[, for all k. The ideia is to use the fact that the polynomial pk(z) has only
one positive zero, namely ρk, use Rouché’s Theorem to show that, in the disk
|z| < 1√

8+8k
, the polynomial Δk(z) has exactly one root in that disk, and finally

show that unique root is real. We recall that Rouché’s Theorem states that, in
particular, for polynomials f(z) and g(z) such that |f(z)−g(z)| < |f(z)|+ |g(z)|
holds for all |z| = R, in the complex plane, then f(z) and g(z) have the same
number of roots, taking into account multiplicities, in the disk |z| < R [11,
Thm 3.3.4]. In order to estimate |Δk(z) − pk(z)|, we start by noticing that from
Stirling approximation,

√
2π nn+ 1

2 e−n ≤ n! ≤ nn+ 1
2 e1−n, valid for all n ∈ N, one

gets that, for all k ≥ 2,
√

2π (2k − 2)2k− 3
2 e2−2k

(k − 1)k− 1
2 e2−k

≤ Ck =
(2k − 2)!
(k − 1)!

≤ (2k − 2)2k− 3
2 e3−2k

√
2π (k − 1)k− 1

2 e1−k
,

i.e., √
2π 22k− 3

2 (k − 1)k−1

ek
≤ Ck ≤ 22k− 3

2 (k − 1)k−1

√
2π ek−2

. (9)

Therefore, for |z| = 1√
8+8k

,

|Δk(z) − pk(z)| ≤ 4Ck
1

(8 + 8k)k+ 1
2

|hk(z)|

≤ (k − 1)k−1

√
2π ek−2 2k+1(k + 1)k+ 1

2

(

1 − 1√
8 + 8k

− Ck

(8 + 8k)k+ 1
2

)

≤ 1.48
(2e)k(k − 1)

√
k + 1

(

1 − 1√
8 + 8k

− Ck

(8 + 8k)k+ 1
2

)

.

Noticing that, from (9), one has
√

2π (k − 1)k−1

ek2k+3(k + 1)k+ 1
2

≤ Ck

(8 + 8k)k+ 1
2

≤ (k − 1)k−1

√
2π ek−22k+3(k + 1)k+ 1

2
,

one concludes that lim
k→∞

|Δk(z) − pk(z)| = 0.

Let us now find the minimum of |pk(z)| on the circumference |z| = 1√
8+8k

=
R. Put z = Reiθ. One has
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|pk(z)|2 = |1 − 2Reiθ − (7 + 8k)R2e2iθ|2
= (1 − 2R cos θ − (7 + 8k)R2 cos 2θ)2 + (1 − 2R sin θ − (7 + 8k)R2 sin 2θ)2

= 2 + 4R2 + (7 + 8k)2R4 − 4R(cos θ + sin θ) − 2(7 + 8k)R2(cos 2θ + sin 2θ)

+ 4R3(7 + 8k)(cos θ cos 2θ + sin θ sin 2θ)

= 2 +
1

2 + 2k
+

(
7 + 8k

8 + 8k

)2

− 2(cos θ + sin θ)√
2 + 2k

− (7 + 8k)(cos 2θ + sin 2θ)

4 + 4k

+
(7 + 8k)(cos θ cos 2θ + sin θ sin 2θ)

4(k + 1)
√
2 + 2k

.

It follows that lim
k→∞

|pk(z)|2 = 3−2(cos 2θ+sin 2θ). Since max
θ

(cos θ+sin θ) =
√

2,

one concludes that lim
k→∞

|pk(z)|2 ≥ 3 − 2
√

2 > 0. From all this, one concludes

that |Δk(z) − pk(z)| < |pk(z)| for large enough values of k, and so Rouché’s
Theorem applies to show that the polynomial Δk(z) has exactly one root in the
open disk |z| < 1√

8+8k
.1 Since Δk(0) = 1, in order to show that root must be

real it suffices to show that one has Δk

(
1√

8+8k

)
< 0. This can be shown as

follows. Since

Δk

(
1√

8 + 8k

)

= 2−6k− 7
2 (k + 1)−2k−1

(
23k+2

(
4
√

k + 1 −
√

2
)

(k + 1)kCk

−4
√

2 C2
k − 64k

(
8
√

k + 1 −
√

2
)

(k + 1)2k
)

,

we want to show that

23k
(√

8k + 8 − 1
)

(k + 1)kCk < C2
k + 26k−2

(
2
√

8k + 8 − 1
)

(k + 1)2k.

Using (9), it is enough to show that

2kek+2
(√

8k + 8 − 1
)

√
π

< 22k
(
2
√

8k + 8 − 1
) (k + 1)k

(k − 1)k−1
e2k + π

(k − 1)k−1

(k + 1)k
,

that follows from this trivially true inequality
√

8k + 8 − 1√
π

< 2k
(
2
√

8k + 8 − 1
) (k + 1)k

(k − 1)k−1
ek−2.

The singularity of Rk(z) is therefore given by the unique root of Δk(z)
in the interval

]
0, 1√

8k+8

[
, which will henceforth denote by ηk. It also follows

from Rouché’s Theorem that this root has multiplicity one. Now, Δk(z) =(
1 − z

ηk

)
ψk(z), for some ψk(z) ∈ R[z]. Using L’Hôpital’s Rule, one has

ψk(ηk) = −ηkΔ′
k(ηk). (10)

Then, one has Rk(z) ∼
z →ηk

−rk(ηk)−
√

ψk(ηk)
(
1− z

ηk

) 1
2

4ηk
. By Theorem 1, one gets the

following asymptotic approximation for the number of regular expressions
1 It is actually true that |Δk(z) − pk(z)| < |pk(z)| for all |z| = 1√

8+8k
and k ≥ 2.
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Theorem 2. With the notation above, one has

[zn]Rk(z) ∼
n

√
ψk(ηk)

8ηk
√

π
n− 3

2 η−n
k .

Using (2), we have

Theorem 3. The asymptotic ratio of the number of expressions in R and the
number of expressions in RE is given by,

[zn]Rk(z)
[zn]Bk(z) ∼

n

√
ψk(ηk)

8ηk
√

π
n− 3

2 η−n
k√

2−2ρk

8ρk
√

π
n− 3

2 ρ−n
k

=

√
ψk(ηk)√
2 − 2ρk

(
ρk

ηk

)n+1

.

Since, as seen before, ηk > ρk, for all k, this yields that, for every k, this
ratio tends to 0 as n → ∞. As such, considering R instead of RE, actually
avoids a significant set of redundant expressions. Such an improvement, in the
sense of [7], might influence the results obtained by asymptotic studies. In the
following section we show that is not the case for the average asymptotic size of
the Glushkov automaton in terms of states and transitions [1,9].

4 Asymptotic Average Size of the Glushkov Automaton

The Glushkov automaton [6] is constructed from an equivalent regular expression
β using the set Pos(β) of positions of the letters in β, as the set of states (plus one
initial state). Let Pos(β) = {1, 2, . . . , |β|Σ}, Pos0(β) = Pos(β)∪{0} and β denote
the expression obtained from β by marking each letter with its position in β.
The construction is based on the position sets First(β) = { i | (∃w) σiw ∈ L(β) },
Last(β) = { i | (∃w) wσi ∈ L(β) }, and Follow(β) = { (i, j) | (∃u, v) uσiσjv ∈
L(β) }. The Glushkov automaton for β is APOS(β) = 〈Pos0(β), Σ, δPOS, 0, F 〉
with the set of transitions δPOS = { (0, σj , j) | j ∈ First(β) }∪{ (i, σj , j) | (i, j) ∈
Follow(β) } and the set of final states F = Last(β) ∪ {0} if ε ∈ L(β), and F =
Last(β), otherwise.

4.1 Estimates for the Number of Letters

The average number of letters in uniform random generated regular expressions
of a given size have been estimated for different kinds of expressions [3,9]. For
standard regular expressions that value is half the size of the expressions as the
size of the alphabet goes to ∞. In the following we obtain the same value for
expressions in R. To count the number of letters in all expressions of a given
size we use the bivariate generating function Lk(u, z) =

∑
n,i≥1 cn,iu

izn, where
cn,i is the number of regular expressions of size n with i letters. Therefore, the
total number of letters in all the regular expressions of size n is given by the
coefficients of the sum of the two series

Lk(z) =
∂Lk(u, z)

∂u

∣
∣
∣
∣
u=1

=
∑

n,i≥1

i cn,i zn.
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From grammar (4) the generating function Lk(z) satisfies the following.

Lk(z) = kz + 2zLk(z)Rk(z) + zLk(z) + 2zPk(z)RP (z), (11)

Pk(z) = Lk(z) − k!
(

2k − 2
k − 1

)

z2k. (12)

Using Eqs. (5), (6), (16), (12) and Buchberger’s algorithm [4] one obtains the
following equation, which is satisfied by the generating function Lk = Lk(z):

ΔkL2
k + r̄kLk − s̄k = 0, (13)

where

r̄k = kz2kCk Δk,

s̄k = kz2 + k2z2k+1 Ck

(
(z − 1)(1 + 2z4k+1C2

k) + 2Ck(2 + k) + 2z6k+1C3
k

)
.

The discriminant of Eq. (13) can be shown to be

Δ̄k(z) = z2k2Δk(z)gk(z)2, (14)

where
gk(z) = 2 − Ckz2k−1

(
hk(z) − Ckz2k−1

)
. (15)

Therefore,

Lk(z) =
kz2kCkΔk(z) ±

√
Δ̄k(z)

2Δk(z)
=

kz2kCk

2
± kzgk(z)

2
√

Δk(z)
.

Using the fact that we know L′
k(0) = k, one deduces that

Lk(z) =
kz2kCk

2
+

kzgk(z)
2
√

Δk(z)
. (16)

Now, applying the procedure described in Broda et al. [3] one obtains:

Theorem 4. With the same notation as above, where ηk is as defined in page 6,

[zn]Lk(z) ∼
n

k ηk gk(ηk)
2
√

π
√

ψk(ηk)
n− 1

2 η−n
k .

Therefore, from Theorems 2 and 4, one deduces:

Theorem 5. The asymptotic ratio of letters in the expressions in R is given by

[zn]Lk(z)
n[zn]Rk(z) ∼

n

4k η2
k gk(ηk)

ψk(ηk)
.
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Let us now see that
lim

k→∞
k η2

k =
1
8
. (17)

Since we know that Δk(0) = 1, and Δk(x) has exactly one real root in the
interval

[
0, 1√

8+8k

]
, in order to show that ηk > ρk for all k, it is enough to show

that:
Δk(ρk) = pk(ρk) + 4ρ2k+1

k Ckhk(ρk) > 0, i.e. hk(ρk) > 0.

Now, hk(ρk) > 0 ⇐⇒ 1 > ρk + Ckρ2k+1
k ⇐⇒ √

8 + 8k > Ck

(1+
√

8+8k)2k . From
(9) it follows that

Ck

(1 +
√

8 + 8k)2k
≤ 22k− 3

2 (k − 1)k−1

√
2π ek−2(1 +

√
8 + 8k)2k

.

It is therefore enough to show:

22k− 3
2 (k − 1)k−1

√
2π ek−2(1 +

√
8 + 8k)2k

<
√

8 + 8k,

which is equivalent to 22k− 3
2 (k−1)k−1 <

√
2π ek−2(1+

√
8 + 8k)2k

√
8 + 8k. This

is the same as
(

4
e

)k (k − 1)k−1 < 2
3
2

√
2π

e2 (1 +
√

8 + 8k)2k
√

8 + 8k, which follows

from:
(

4
e

)k (k − 1)k < 2
3
2

√
2π

e2 22k+1(2 + 2k)k+ 1
2 . That is obvious when rewritten

as
(

4
e

)k (k − 1)k <

(
2

3
2

√
2π

e2 2
)

4k(2 + 2k)k+ 1
2 . Thus, we conclude that

ρk =
1

1 +
√

8 + 8k
< ηk <

1√
8 + 8k

. (18)

From this it immediately follows that lim
k→∞

k η2
k = 1

8 , and then lim
k→∞

pk(ηk) = 0.

Using the right hand inequality in (9) together with (18), it is not hard to show
the following result.

Lemma 1. For all t, s ∈ R, one has limk→∞ Ckktη2k+s
k = 0.

From all this, and from (15) and (10), one easily gets lim
k→∞

gk(ηk) =

lim
k→∞

ψk(ηk) = 2, and thus:

lim
k→∞

4k η2
k gk(ηk)

ψk(ηk)
=

1
2
. (19)

Theorem 6. In regular expressions without Σ� in unions, the asymptotic ratio
of letters goes to 1

2 as k goes to ∞.
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4.2 Estimates for the Number of Transitions

The transitions of the Glushkov automaton are defined using the sets First, Last
and Follow. These sets can be inductively define for α ∈ R, as it is usually
done [1]. Let αε ∈ R be the set of expressions such that ε ∈ L(αε) and let αε

represent the set of expressions such that ε /∈ L(αε). We have

First(ε) = ∅,
First(σi) = {i},
First(α�) = First(α),

First(αP + α′
P ) = First(αP ) ∪ First(α′

P ),
First(αε · α) = First(αε) ∪ First(α),
First(αε · α) = First(αε).

The definition of Last is almost identical and differs only for the case of concate-
nation, which is Last(α · αε) = Last(α) ∪ Last(αε) and Last(α · αε) = Last(αε).
Following Broda et al. [1] the set Follow satisfies

Follow(ε) = Follow(σi) = ∅,

Follow(αP + α′
P ) = Follow(αP ) ∪ Follow(α′

P ),
Follow(α · α′) = Follow(α) ∪ Follow(α′) ∪ Last(α) × First(α′),

Follow(α�) = E�(α), where
E�(ε) = ∅, E�(σi) = {(i, i)}, E�(α�) = E�(α),

E�(αP + α′
P ) = E�(αP ) ∪ E�(α′

P ) ∪ Cross(αP , α′
P ),

E�(αε · α′
ε) = E�(αε) ∪ E�(α′

ε) ∪ Cross(αε, α
′
ε),

E�(αε · α′
ε) = Follow(αε) ∪ Follow�(α′

ε) ∪ Cross(αε, α
′
ε),

E�(αε · α′
ε) = Follow�(αε) ∪ Follow(α′

ε) ∪ Cross(αε, α
′
ε),

E�(αε · α′
ε) = Follow(αε) ∪ Follow(α′

ε) ∪ Cross(αε, α
′
ε),

with Cross(α, α′) = Last(α) × First(α′) ∪ Last(α′) × First(α). The function that
counts the cardinality of First(α) is f(α) and is defined as follows: f(σi) = 1,
f(αP +α′

P ) = f(αP )+f(α′
P ), f(αε ·α′) = f(αε)+f(α′), f(αε ·α′) = f(αε) and f(α�) =

f(α). Note that f((σi1 + · · · + σik
)�) = k for any permutation σi1 , . . . , σik

of Σ =
{σ1, . . . , σk}. The correspondent generating function Fk(z) =

∑
α f(α)z|α| = Fk

satisfies

Fk = kz + zFk + 2zFP,kRP,k + zFkRε,k + zFkRk,

FP,k = Fk − kCkz2k,

Rε,k = z + zRk + 2zRε,kRk + zC2
kz4k − 2zRkCkz2k,

where Rε,k = Rε,k(z) is the generating function for expressions αε ∈ R. Let
s(α) be the function that counts the cardinality of Last(α) and Sk(z) the cor-
respondent generating function. By symmetry we have that Sk(z) = Fk(z).
The functions counting the cardinalities of Follow(α) and E�(α) are e(α) and
e�(α), respectively. Those functions are defined as follows: e(σ) = e(ε) = 0,
e(αP +α′

P ) = e(αP )+ e(α′
P ), e(α ·α′) = e(α)+ e(α′)+ s(α) f(α′), e(α�) = e�(α);

e�(ε) = 0, e�(σ) = 1, e�(α�) = e�(α), e�(αP +α′
P ) = e�(αP )+e�(α′

P )+c(αP , α′
P ),

e�(αε ·α′
ε) = e�(αε)+ e�(α′

ε)+ c(αε, α
′
ε), e

�(αε ·α′
ε) = e�(αε)+ e(α′

ε)+ c(αε, α
′
ε),
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e�(αε ·α′
ε) = e(αε)+e�(α′

ε)+c(αε, α
′
ε), and e�(αε ·α′

ε) = e(αε)+e(α′
ε)+c(αε, α

′
ε),

with c(α, α′) = s(α) f(α′) + s(α′) f(α). From the above the corresponding gen-
erating functions Ek(z) =

∑
α e(α)z|α| = Ek and E�

k(z) =
∑

α e�(α)z|α| = E�
k ,

respectively, satisfy the following equations.

Ek = 2zEP,kRP,k + 2zEkRk + zF 2
k + zE�

k ,

E�
k = kz + 2zE�

P,kRP,k + 2zF 2
P,k + 2zE�

ε,kRε,k + 2zFε,kFε,k

+ zE�
ε,kRε,k + zEε,kRε,k + 2zFε,kFε,k + zEε,kRε,k

+ zE�
ε,kRε,k + 2zFε,kFε,k + 2zEε,kRε,k + 2zFε,kFε,k + zE�

k

= kz + 2zE�
P,kRP,k + 2zE�

kRε,k + 2zEk(Rk − Rε,k)

+ 2zF 2
P,k + 2zF 2

k + zE�
k ,

EP,k = Ek − k2Ckz2k,

E�
P,k = E�

k − k2Ckz2k.

The last two equations follow from the fact that e((σi1 + · · · + σik
)�) =

e�((σi1 + · · · + σik
)�) = k2, for any permutation σi1 , . . . , σik

of Σ. The cost
function t(α) = f(α) + e(α) computes the number of transitions in the Glushkov
automaton of α. The generating function associated to t is given by Tk(z) =
Fk(z) + Ek(z). Setting w = Tk(z), one has

c2w
2 + c1w + c0 = 0,

where the ci = ci(k, z). Therefore,

w =
−c1 ±

√
c2
1 − 4c0c2

2c2
.

Now, one can see that c1 = Δksk, c2 = Δkakb2
k and c2

1 − 4c0c2 = k2Δkq2
k, from

which it follows that
w = − sk

2akb2
k

± kqk

2akb2
k

√
Δk

.

With ηk as defined in p. 6, one can now deduce, as above, that

Tk(z) ∼
z → ηk

kqk(ηk)
2ak(ηk)bk(ηk)2

√
ψk(ηk)

(

1 − z

ηk

) 1
2

,

and therefore

[zn]Tk(z) ∼
n

kqk(ηk)
2
√

πak(ηk)bk(ηk)2
√

ψk(ηk)
η−n

k n− 1
2 .

From all this, one gets:

[zn]Tk(z)
[zn]Rk(z) ∼

n

4kηkqk(ηk)
ak(ηk)bk(ηk)2ψk(ηk)

n.
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With the help of a symbolic and numeric computing system one can explicitly
find out the polynomials2 ak, bk, qk, and then reducing them modulo Δk (which
has ηk as a root), and then using Lemma 1 and (17), one obtains:

ak(ηk) ∼
k

1
2
kηk ; bk(ηk) ∼

k

1
8
kηk ; qk(ηk) ∼

k

1
2048

k.

This yields

lim
k→∞

4kηkqk(ηk)
ak(ηk)bk(ηk)2ψk(ηk)

= 1.

We have thus obtained the following result.

Theorem 7. For expressions of size n over an alphabet of size k, the number
of transitions in the Glushkov automaton for regular expressions, without Σ� in
unions, is asymptotically, with respect to n, given by λkn, where lim

k→∞
λk = 1.

To grasp the progression of λk, observe that λ2 = 4.03, λ5 = 2.91, λ10 = 2.30,
λ10 = 1.89, λ50 = 1.54, λ100 = 1.38, λ10000 = 1.03. Theorems 6 and 7 show that
the size of the Glushkov automaton, both in states and transitions, is, on average
and asymptotically, independent of whether we consider all regular expressions
or the restricted set R mentioned by Koechlin et al.
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Abstract. It is shown that a two-way deterministic finite automaton
(2DFA) with n states over an alphabet Σ can be transformed to an
equivalent one-way automaton (1DFA) with |Σ| · F(n) + 1 states, where
F(n) = maxn

k=0 kn−k+1 ≤ (n + 1)n+1/(ln(n + 1) · e1−o(1))n+1.
This reflects the fact that, by keeping the last processed symbol in

memory, the simulating 1DFA needs to remember only the state from
which the 2DFA leaves the prefix read so far for the first time to the right
together with a function that maps some n − k states moving to the left
from the last processed symbol to some other k states moving to the
right from this symbol. This reduces the number of functions describing
the behaviour of the 2DFA on the prefix read so far.

A close lower bound of F(n) states is established using a 5-symbol
alphabet. The complexity of transforming a sweeping or a direction-
determinate 2DFA to a 1DFA is shown to be exactly F(n).

Keywords: Finite automata · Two-way automata · State complexity

1 Introduction

The state complexity of transforming two-way finite automata to one-way autom-
ata has received much attention in the literature. For deterministic (2DFA) and
nondeterministic (2NFA) automata, the exact complexity of transforming them
to deterministic and nondeterministic one-way automata (1DFA, 1NFA) was
determined by Kapoutsis [5]. Similar problems for related models were investi-
gated as well, and the state complexity of transformations involving sweeping
automata [14], complements of deterministic two-way automata [15], alternating
automata [4], unambiguous automata [11] was estimated. For the basic trans-
formations of 2DFA/2NFA to 1DFA/1NFA, the case of a unary alphabet has
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received special attention [2,7,9], and its complexity was shown to be much less
than in the general case studied by Kapoutsis [5].

Even though all four bounds by Kapoutsis [5] are precise, his lower bound
arguments rely on using alphabets of exponential size, and this leaves open the
state complexity of this transformation for small alphabets. As previously shown
by the authors [3], the 2DFA-to-1NFA transformation can in fact be improved
from

(
2n

n+1

)
to |Σ| · ( n

�n+1�
)

+ 1 states, and a close lower bound of
(

n
�n+1�

)
states

holds already for a 2-symbol alphabet. The purpose of this paper is to improve
the 2DFA-to-1DFA transformation in a similar way.

A transformation of 2DFA to 1DFA was known since the introduction of
two-way automata by Rabin and Scott [12]. Shepherdson [13] presented a trans-
formation of an n-state 2DFA to a 1DFA with ca. (n + 1)n+1 states. The lower
bound was given by Moore [10], who constructed an n-state 2DFA over a fixed
alphabet, for which the every 1DFA must have at least (n−5

2 )
n−5
2 states. Much

later, the precise succinctness tradeoff between 2DFA and 1DFA was determined
by Kapoutsis [5], who showed that K(n) = n(nn − (n − 1)n) + 1 states are suf-
ficient and in the worst case necessary, with the lower bound established over a
growing alphabet with around nn symbols.

This paper investigates the transformation of 2DFA to 1DFA for small alpha-
bets. Classical transformations, which are recalled in Sect. 3, compute the out-
comes of all computations of the 2DFA on the prefix read by the 1DFA. Accord-
ing to the new method, presented in Sect. 4, the constructed 1DFA addition-
ally remembers the last symbol read, and this allows it to store less information
on the computations: the resulting number of states is |Σ| · F(n) + 1, where
F(n) = maxn

k=0 kn−k+1. Then, provided that the alphabet is small, the overall
number of states is reduced.

As a side note, if the original 2DFAs are sweeping or direction-determinate,
the complexity of transforming them to 1DFAs is shown to be exactly F(n),
regardless of the size of the input alphabet.

The proposed construction for small alphabets is actually fairly close to opti-
mal. As shown in Sect. 5, already for a fixed 5-symbol alphabet, there exist
n-state 2DFA that require 1DFA with at least F(n) states.

The growth rate of the function F(n) is estimated in Sect. 6, and it is shown
that F(n) ≤ (n+1)n+1/(ln(n+1) · e1−o(1))n+1. Therefore, for every alphabet of
size subexponential in n, with |Σ| ≤ e−1

e2 · (ln(n+1) · e1−o(1))n+1, the proposed
transformation yields fewer states than the exact bound by Kapoutsis [5].

2 Two-Way Automata

Definition 1. A two-way deterministic finite automaton (2DFA) is a quintuple
A = (Σ,Q, q0, δ, F ), in which Σ is a finite alphabet, which does not contain two
special symbols: the left endmarker (�) and the right endmarker (�); Q is a finite
set of states; q0 ∈ Q is the initial state; δ : Q × (Σ × {�,�}) → Q × {−1,+1} is
a partially defined transition function; and F ⊆ Q is the set of accepting states,
effective at the right endmarker �.
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Given an input string w ∈ Σ∗, a 2DFA operates on a read-only tape con-
taining the string �w�. It begins its computation in the state q0, with the head
observing the left endmarker �. At every step of the computation, when A is in a
state q ∈ Q and observes a square of the tape containing a symbol a ∈ Σ∪{�,�},
the value δ(q, a) defines the next state and the direction of motion. The compu-
tation of A on w is defined uniquely; if A eventually reaches an accepting state
in F while at the right endmarker �, this computation is accepting; otherwise,
it either encounters an undefined transition or gets into an infinite loop. The set
of strings, on which the computation is accepting, is the language recognized by
the 2DFA, denoted by L(A).

Two-way automata of a special kind, which remember the direction of their
motion and can turn only on the endmarkers, are known as sweeping [14]. There
is also a larger class of direction-determinate automata [8] that remember the
direction in which they came to the current state, but may turn at any point.

Definition 2. A 2DFA is said to be direction-determinate, if there is a partition
Q = Q−1 	 Q+1, so that every transition δ(p, a) = (q, d) must satisfy q ∈ Qd.
The states in Q−1 are called left-bound, those in Q+1 right-bound.

A direction-determinate 2DFA is called sweeping, if δ(p, a) = (q, d) implies
p, q ∈ Qd, as long as a ∈ Σ (that is, the symbol a is not an endmarker).

One-way automata (1DFA) are a special case of 2DFA, which move to the
right after every transition. This makes the endmarkers unnecessary.

3 The Known Simulation of 2DFA by 1DFA

The new transformation of 2DFA to 1DFA presented in this paper is based
on the classical transformation by Shepherdson [13], with the refinements by
Kapoutsis [6] that made it optimal.

Theorem 1 (Kapoutsis [5,6]). For every n-state 2DFA, there exists a partial
1DFA with K(n) = n · (nn − (n − 1)n) states recognizing the same language.

Proof (a sketch). The idea is to precompute all computations of the 2DFA on the
processed prefix of the input string, and to remember their outcomes in the state
of the constructed 1DFA. These precomputed computations can later be joined
together into longer computations, and eventually the 1DFA can determine the
outcome of the single computation beginning in the initial configuration.

Let (Q,Σ, δ, q0, F ) be a 2DFA. The 1DFA has states of the form (q̂, f), where
q̂ ∈ Q is a state of the 2DFA and f : Q → Q is a function mapping states to
states. On an input string w ∈ Σ∗, the 1DFA reaches a state (q̂, f), for which

– in the computation of the 2DFA on �w, the first time it leaves the rightmost
symbol of �w to the right, it does so in the state q̂;

– if the 2DFA begins its computation at the rightmost symbol of �w in a state q,
then it eventually moves to the right of this rightmost symbol in the state f(q),
and if this computation of a 2DFA rejects or loops, then f(q) is defined as q̂:
this represents the behaviour of the 2DFA on this prefix.
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Fig. 1. The data collected by a 1DFA simulating a 2DFA: (i) in the construction by
Kapoutsis using states (q̂, f), with f : Q → Q; (ii) in the new construction using states

(a, q̂, f), with f :
←−
Qa → −→

Qa.

These conditions defining a state (q̂, f) are illustrated in Fig. 1(i). The image
of f must contain q̂, because this state must be reached from some state at the
previous position; this accounts for the term −(n − 1)n in the expression for the
number of states in the resulting 1DFA for L. The number of such pairs (q̂, f)
is exactly K(n) = n · (nn − (n − 1)n). 
�

It is interesting to note that the construction in Theorem 1 yields fewer states
on any direction-determinate 2DFA (hence, on any sweeping 2DFA).

Corollary 1. For every n-state direction-determinate 2DFA with |Q+1| = k,
there exists a partial 1DFA with kn−k+1 states recognizing the same language.

Proof. The idea is simple: in the automaton in Theorem 1, in a pair (q̂, f), the
function f needs to be defined only on arguments in Q−1 (its values on Q+1

are irrelevant for the construction), and all its values are in Q+1 by definition.
Furthermore, the state q̂ is also in Q+1 by definition. Then there are exactly
kn−k · k = kn−k+1 such pairs (q̂, f), where k = |Q+1|. 
�

The number of states thus depends on the value of k, and the maximum
number is F(n) = maxn

k=0 kn−k+1. It will be shown later in Sect. 6 that the
maximum is reached for k = (1 + o(1)) · n+1

ln(n+1) , and that the number F(n) is of
the order (n + 1)n+1/(ln(n + 1) · e1−o(1))n+1.

This improvement over Theorem 1 is obtained by reducing the domain and
the range of functions f . The new transformation for 2DFA of the general form
presented in the next section achieves a similar reduction by additionally remem-
bering one input symbol.

4 Efficient Transformation for Small Alphabets

The behaviour function f : Q → Q used in Theorem 1 maps states at the
last symbol read to states in the next position. The new construction is different
from the classical one in two respects. First, the 1DFA shall remember a different
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behaviour function, which traces computations beginning and ending at the last
symbol read, and q̂ shall also be positioned on the last symbol read. Second,
the 1DFA additionally remembers the last symbol read. Let a be this symbol.
Knowing it, the 1DFA also knows the transitions by a, and in particular, in
which direction they move the head. Let

←−
Qa be the set of all states q with

left-moving transitions δ(q, a) = (q′,−1), and let
−→
Qa consist of all states with

right-moving transitions δ(q, a) = (q′,+1). Then, the new behaviour function
can map states in

←−
Qa to states in

−→
Qa, as illustrated in Fig. 1(ii). And there are

fewer such functions than functions f : Q → Q, used in Theorem 1.
Let A = (Σ,Q, q0, δ, F ) be a 2DFA. For each symbol a ∈ Σ, let

←−
Qa = {q :

δ(q, a) ∈ Q × {−1}} be the set of states in which A moves to the left on a, and
similarly define

−→
Qa = {q : δ(q, a) ∈ Q × {+1}}.

Theorem 2. For every 2DFA A = (Σ,Q, q0, δ, F ), there exists a partial 1DFA
B = (Σ,Q′, q′

0, δ
′, F ′) that recognizes the same language and uses the following

set of states.

Q′ = {(a, q̂, f) : a ∈ Σ, q̂ ∈ −→
Qa, f :

←−
Qa → −→

Qa} ∪ {(�, q0, f0)} ,

where f0 is a trivial function with an empty domain, that is, f0 : Ø → Ø.

Proof. Each state (a, q̂, f) of B consists of three components: the last read input
symbol a ∈ Σ; the state q̂ ∈ −→

Qa, from which A first leaves the prefix read so far
to the right; and the function f :

←−
Qa → −→

Qa, describing the behaviour of A on
the prefix read so far, which maps states at the last symbol read to states at the
last symbol read, as in Fig. 1(ii).

Note that
←−
Q� = Ø, as A cannot move beyond the left endmarker. For this

reason, there is only one function mapping
←−
Q� to

−→
Q�, namely, f0 : Ø → Ø,

which is a trivial function with an empty domain. This leads to the following
initial state of B:

q′
0 = (�, q0, f0) .

This is the only state of B with an endmarker in the first component.
The transition in a state (a, q̂, f) by a symbol b ∈ Σ leads to a triple (b, r̂, g),

defined as follows. For every state q ∈ ←−
Qb, consider the uniquely defined sequence

of states s0, . . . , s�, s�+1 ∈ Q entered by the automaton at the symbol b, where
s0 = q, � ≥ 0, s0, . . . , s� ∈ ←−

Qb, s�+1 ∈ −→
Qb, and every two consecutive states

si, si+1 in this sequence are connected in one of the following two ways. Let
δ(si, b) = (t,−1). Then,

– either t ∈ −→
Qa, and then δ(t, a) = (si+1,+1),

– or t ∈ ←−
Qa, in which case δ(f(t), a) = (si+1,+1).

This exchange between a and b is illustrated in Fig. 2. Define g(q) := s�+1. How-
ever, if the construction of the above sequence reaches an undefined transition, if
the sequence is infinite, or if it reaches q̂, then let the value g(q) be temporarily
undefined—to be specified later.
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Fig. 2. New simulation of a 2DFA by a 1DFA: transition from a state (a, q̂, f) by a
symbol b to a state (b, r̂, g).

The state r̂ is set by first considering the transition δ(q̂, a) = (q′,+1): if
q′ ∈ −→

Qb, then r̂ := q′, and if q′ ∈ ←−
Qb, then r̂ := g(q′), provided that the value

g(q′) has been defined already. With r̂ specified, all values of g not defined yet
can be set equal to r̂.

Finally, let
δ′((a, q̂, f), b) := (b, r̂, g) .

However, if the above construction has left r̂ undefined, then let the whole tran-
sition δ′((a, q̂, f), b) be undefined.

The set F ′ of accepting states of B is defined similarly to transitions. A state
(a, q̂, f) is marked as accepting, if the following condition holds. Consider the
uniquely defined sequence of states s0, . . . , s�, . . . ∈ Q, finite or infinite, where
δ(q̂, a) = (s0,+1), and every two consecutive states si, si+1 in this sequence are
connected in one of the following two ways. Let δ(si,�) = (t,−1). Then,

– either t ∈ −→
Qa, and then δ(t, a) = (si+1,+1),

– or t ∈ ←−
Qa, in which case δ(f(t), a) = (si+1,+1).

If this sequence eventually reaches an accepting state s� ∈ F at the right end-
marker, then let the state (a, q̂, f) be accepting for B. In all other cases, i.e., if
the above sequence reaches an undefined transition or it is infinite, (a, q̂, f) /∈ F ′.

The correctness statement for the construction reads as follows.

Claim 1. Let (a, q̂, f) be the state reached by B after reading w ∈ Σ∗. Then:

– the last symbol of w is a (if w = ε, then a = �);
– the automaton A, having begun its computation on the tape �w at the left

endmarker in the state q0, eventually reaches the last symbol of w in the
state q̂;

– for each state q ∈ ←−
Qa, the automaton A, having begun its computation on

the tape �w at the last symbol of w in the state q, eventually reaches the last
symbol of w in the state f(q) ∈ −→

Qa; and if the latter computation rejects or
loops, then f(q) = q̂.
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Fig. 3. Transitions of the 2DFA A, defined in Lemma 1, for k = 3 and � = 4.

This can be proved by induction on the length of w; the proof is omitted due
to space constraints. 
�

How many states are there in such automaton? For each symbol a, the con-
struction produces |−→Qa||←−Qa|+1 states, which is at most F(n) = maxn

k=0 kn−k+1,
and Theorem 2 produces a 1DFA with at most |Σ| · F(n) states.

5 Lower Bound

The first lower bounds on the 2DFA to 1DFA transformation were given by
Barnes [1] and by Moore [10], the latter uses a sweeping 2DFA with half of
the states right-bound and the other half left-bound, so that the simulating
1DFA has to store an arbitrary function from right-bound states to left-bound
states, and therefore must have at least (n−5

2 )
n−5
2 states. This paper establishes

a stronger lower bound by using an optimal distribution between left-bound and
right-bound states. First, the lower bound is presented for a sweeping 2DFA with
k right-bound states and � left-bound states.

Lemma 1. For all � ≥ k ≥ 3, there exists a sweeping 2DFA with k + � states
over the alphabet Σ = {a, b, c, d, e}, such that every 1DFA recognizing the same
language must use at least k�+1 states.

Proof. Define a 2DFA A = (Σ,Q, r0, δ, F ) with Σ = {a, b, c, d, e} and with
the set of states Q = {r0, . . . , rk−1, p0, . . . , p�−1}. In the states r0, . . . , rk−1, the
automaton moves to the right until it reaches the right endmarker, and the states
p0, . . . , p�−1 are used for moving to the left without changing the direction.

The automaton begins its computation by the transition (see also Fig. 3)

δ(r0,�) = (r0,+1),

and then changes its direction of motion only at the endmarkers, using the
following transitions:

δ(pi,�) = (ri,+1), for i ∈ {0, . . . , k − 1},
δ(r0,�) = (p0,+1).
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At the right endmarker �, the automaton accepts in the state rk−1, that is,
F = {rk−1}. The transitions at the left endmarker � in the states pk, pk+1,
. . . , p�−1, as well as at the right endmarker � in the states r1, r2, . . . , rk−2 are
undefined, and some inputs are rejected in these configurations. The remaining
transitions at the endmarkers are undefined as well, but the automaton shall
never get into the corresponding configurations.

The symbols a and b do not affect the computation on the way from left
to right, and apply permutations to the states p0, . . . , p�−1 on the way back.
Specifically, a implements a circular permutation.

δ(ri, a) = (ri,+1), for i ∈ {0, . . . , k − 1},
δ(pi, a) = (p(i+1) mod �,+1), for i ∈ {0, . . . , � − 1}.

The symbol b swaps p0 with p1.

δ(ri, b) = (ri,+1), for i ∈ {0, . . . , k − 1},
δ(p0, b) = (p1,−1),
δ(p1, b) = (p0,−1),
δ(pi, b) = (pi,−1), for i ∈ {2, . . . , � − 1}.

Using a and b, one can generate an arbitrary permutation of the states
p0, . . . , p�−1. The next symbol c merges both states p0 and p1 into p0.

δ(ri, c) = (ri,+1), for i ∈ {0, . . . , k − 1},
δ(p0, c) = (p0,−1),
δ(p1, c) = (p0,−1),
δ(pi, c) = (pi,−1), for i ∈ {2, . . . , � − 1}.

This allows to implement all completely defined functions from {p0, . . . , p�−1}
to {p0, . . . , p�−1}, injective and non-injective.

The last two symbols d and e are used to permute the states r0, . . . , rk−1,
in the same way as a and b permute the second group of states. The symbol d
defines a circular permutation, and e exchanges the first two states:

δ(ri, d) = (r(i+1) mod k,+1), for i ∈ {0, . . . , k − 1},
δ(pi, d) = (pi,−1), for i ∈ {0, . . . , � − 1},
δ(r0, e) = (r1,+1),
δ(r1, e) = (r0,+1),
δ(ri, e) = (ri,+1), for i ∈ {2, . . . , k − 1},
δ(pi, e) = (pi,−1), for i ∈ {0, . . . , � − 1}.

Claim 2. For every complete function g : {p0, . . . , p�−1} → {p0, . . . , p�−1}, there
exists a string wg ∈ {a, b, c}∗, on which the automaton, having begun its com-
putation at the last symbol of wg in a state pi, eventually exits the string to the
left of its leftmost symbol in the state g(pi).

It is well-known that every complete function can be expressed as a com-
position of three generators: circular permutation ga, swapping of two ele-
ments gb, and merging of two elements gc. Let g = gσ1 ◦ . . . ◦ gσm

, where
σ1, . . . , σm ∈ {a, b, c}. Then wg := σ1 . . . σm is the desired string.
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Claim 3. For every state ri0 ∈ {r0, . . . , rk−1} and for every complete function
f : {p0, . . . , p�−1} → {r0, . . . , rk−1}, there exists a string uri0 ,f ∈ {a, b, c, d}∗,
such that the automaton, operating on the tape �uri0 ,f ,

– having begun its computation at the left endmarker � in the state r0, eventu-
ally exits the string to the right of its rightmost symbol in the state ri0 ;

– having begun its computation at the last symbol of uri0 ,f in a state pj, even-
tually reaches the left endmarker �, and then moves from there to the right
in the state f(pj).

Consider the function g : {p0, . . . , p�−1} → {p0, . . . , pk−1} defined as follows:
for every state pj , first take f(pj) = ri. Then define g(pj) := p(i−i0) mod k. Now,
let wg be the string defined for g in Claim 2, and define the string uri0 ,f as

uri0 ,f := wgd
i0 .

Then, having started on �wgd
i0 in the initial configuration, the automaton moves

all the way to the right: it remains in the state r0 while reading wg, and then
finishes reading di0 in the state ri0 , as desired. If the automaton begins its
computation at the last symbol of �wgd

i0 in a state pj , then it first moves all the
way to the left, arriving to the left endmarker in the state g(pj) = p(i−i0) mod k.
After that, it leaves this endmarker in the state r(i−i0) mod k and starts sweeping
back to the right. It remains in r(i−i0) mod k while reading wg, and then leaves
di0 in the state ri = f(pj). This proves Claim 3.

Claim 4. For every permutation π : {r0, . . . , rk−1} → {r0, . . . , rk−1}, there exists
a string xπ ∈ {d, e}∗, on which the automaton, beginning its computation at the
first symbol of xπ in a state ri, eventually exits the string to the right of its
rightmost symbol in the state π(ri).

This is a standard generation of a permutation using two generators.

Claim 5. For every two distinct states ri, rj ∈ {r0, . . . , rk−1} and for every two
complete functions f, g : {p0, . . . , p�−1} → {r0, . . . , rk−1} (not necessarily dis-
tinct), there exists a string v ∈ {d, e}∗, for which the string uri,fv is accepted
but the string urj ,gv is rejected.

Define a permutation π : {r0, . . . , rk−1} → {r0, . . . , rk−1} by setting π(ri) =
rk−1 and π(rj) = r1, while the rest of the values can be set arbitrarily. Set
v := xπ, where xπ ∈ {d, e}∗ is the string defined for π in Claim 4. On the input
uri,fxπ, the automaton accepts the string in one left-to-right traversal, entering
the state ri after reading uri,f , and then reaching the state π(ri) = rk−1 upon
reading xπ. On the other hand, on the input urj ,gxπ, the automaton is in the
state rj after urj ,g, and then it enters the state π(rj) = r1 by xπ, in which the
transition by the right endmarker is undefined, and thus the string is rejected.

Claim 6. For every state ri ∈ {r0, . . . , rk−1} and for every two distinct com-
plete functions f, g : {p0, . . . , p�−1} → {r0, . . . , rk−1}, there exists a string
v ∈ {a, d, e}∗, for which exactly one of the strings uri,fv and uri,gv is accepted
by the automaton.
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Let pj be any argument on which f and g assume different values. Then at
least one of f(pj) and g(pj) is different from ri; assume, without loss of generality,
that f(pj) = rt �= ri, and g(pj) �= rt. Define a permutation π : {r0, . . . , rk−1} →
{r0, . . . , rk−1} by π(ri) = r0 and π(rt) = rk−1, the rest of the values can be
anything. Let xπ ∈ {d, e}∗ be the string defined for π in Claim 4. Then the
promised string is defined by

v := xπaj .

The 2DFA accepts the string uri,fxπaj in two stages. In the first left-to-right
sweep, it enters the state ri after uri,f , then comes to the state r0 = π(ri) after
xπ, and stays in this state until it reaches the right endmarker �. Then it makes a
right-to-left sweep, first coming to the state pj after reading aj , then maintaining
this state while reading xπ, so that it enters the prefix �uri,f from the right in
the state pj . By Claim 3, the automaton eventually moves from the last symbol
of this prefix to the right in the state f(pj) = rt. The automaton continues by
moving to the right through the substring xπ, and finishes reading it in the state
π(rt) = rk−1. In this state, the automaton passes through aj and reaches the
right endmarker for the second time, accepting this time.

The computation on the string uri,gxπaj begins in the same way. Eventually,
the automaton enters the prefix �uri,g from the right in the state pj , and later
emerges from this prefix to the right in the state g(pj) �= rt. Next, the automaton
reads the substring xπ from left to right, and finishes reading it in a state that
is not rk−1. If the state is r0, then the automaton loops, and if it is neither r0
nor rk−1, it rejects at the right endmarker.

Now Lemma 1 is proved as follows. Assume that B is a 1DFA recognizing
the same language as the 2DFA A. Then, the states reached by B upon reading
different strings of the form uri,f must be pairwise distinct, for otherwise it
would not be able to accept one of them and reject the other upon reading a
string constructed in Claims 5 and 6. 
�
Theorem 3. For every n ≥ 6, there exists a language over a 5-symbol alphabet
recognized by an n-state sweeping 2DFA, such that every 1DFA recognizing that
language needs to have at least F(n) = maxn

k=0 kn−k+1 states.

Therefore, the state complexity of transforming a sweeping or a direction-
determinate 2DFA to a 1DFA is exactly F(n), whereas for 2DFA of the general
form it is between F(n) and |Σ| · F(n).

6 Estimation

Both the upper bound and the lower bound on the 2DFA to 1DFA tradeoff have
been expressed in terms of the function F(n) = maxn

k=0 kn−k+1. We are now
going to estimate the growth rate of this function.

Lemma 2. For each a ≥ 16, the maximum of the real function Ga(x) = xa−x

is reached for xa = (1+o(1)) · a
ln a , and this maximum accordingly is of order

Ga(xa) ≤ aa

(ln a)a · (e1−o(1))a
.
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Proof. First, it is quite easy to derive the following inequality, for a ≥ 3:

a ≤ (
a

ln a

)1+r1(a)
, where r1(a) = ln ln a

ln a − ln ln a . (1)

This follows from ln ln a
ln a − ln ln a ≤ r1(a). It should also be easily seen that r1(a) > 0

for a ≥ 3, and that lima→∞ r1(a) = 0.
Our next task is to find the maximum for Ga(x) = xa−x = eln x·(a−x). By

differentiating Ga(x), we get G′
a(x) = eln x·(a−x) · (a−x

x − ln x) and, by setting
G′

a(xa) = 0, we see that a−xa

xa
− ln xa = 0, which gives

xa ·ln xa = a−xa . (2)

To evaluate xa, we first derive the following inequalities, using (2) and (1),
under assumption that a ≥ 16:

a
ln a ·ln a

ln a + a
ln a = a

ln a ·(ln a
ln a + 1) < a

ln a ·(ln a
ln a + ln ln a)

= a
ln a ·ln( a

ln a ·ln a) = a
ln a ·ln a = a = xa ·ln xa + xa ,

xa ·ln xa = a−xa < a = a
ln a ·ln a ≤ a

ln a ·ln( a
ln a )1+r1(a)

= (1+r1(a))· a
ln a ·ln a

ln a ≤ (1+r1(a))· a
ln a ·ln((1+r1(a))· a

ln a ) .

Now, since both t·ln t + t and t·ln t are real functions monotone increasing in t,
we see that a

ln a < xa and xa < (1+r1(a))· a
ln a . Thus, the exact value xa can be

expressed in the form

xa = (1+r2(a))· a
ln a , with 0 < r2(a) < r1(a) . (3)

Since lima→∞ r1(a) = 0 by (1), we see that lima→∞ r2(a) = 0 as well.
It only remains to evaluate Ga(xa). Using (2) and (3), we get:

Ga(xa) = xa−xa
a = eln xa·(a−xa) = ea·ln xa − xa·ln xa = ea·ln xa − a+ xa

= ea·(ln(1+r2(a))+ln a−ln ln a)−a+(1+r2(a))·a/ ln a

= ea·ln(1+r2(a))+a·ln a−a·ln ln a−a+a/ ln a+r2(a)·a/ ln a

= ea·ln a−a·ln ln a−a · ea·(ln(1+r2(a))+1/ ln a+r2(a)/ ln a)

= aa

(ln a)a · ea · ea·r3(a) = aa

(ln a)a · (e1−r3(a))a
, where

r3(a) = ln(1+r2(a)) + 1
ln a + r2(a)

ln a .

Since r2(a) > 0 and lima→∞ r2(a) = 0, also r3(a) > 0 for a > 1 and, moreover,
lima→∞ r3(a) = 0. 
�

Using this lemma, the following estimation of F(n) can be obtained:

Theorem 4. F(n) = maxn
k=0 kn−k+1 ≤ (n+1)n+1

(ln(n+1))n+1 · (e1−o(1))n+1 .

Proof. F(n) = maxn
k=0 kn−k+1 = maxn

k=0 ka−k ≤ Ga(xa) = aa

(ln a)a · (e1−o(1))a

= (n+1)n+1

(ln(n+1))n+1 · (e1−o(1))n+1 , using substitution a = n+1. 
�

We are now ready to compare F(n) with K(n) = n · (nn − (n−1)n), the
standard tradeoff for 2DFA to 1DFA transformation, derived by Kapoutsis [5]:
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Theorem 5. supn→∞
F(n)
K(n) · e−1

e2 · (ln(n+1) · e1−o(1))n+1 ≤ 1.

This is based on the fact that limn→∞
(n+1)n+1

n·(nn−(n−1)n) = e2

e−1 (omitted due
to space constraints). Accordingly, the proposed 2DFA to 1DFA transformation
given in Theorem 2 improves over the construction by Kapoutsis [5] as long as
|Σ| < e−1

e2 · (ln(n+1) · e1−o(1))n+1.
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In: Jȩdrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp.
544–555. Springer, Heidelberg (2005). https://doi.org/10.1007/11549345 47

6. Kapoutsis, C.: Algorithms and lower bounds in finite automata size complexity.
Ph.D. thesis, Massachusetts Institute of Technology (2006)

7. Kunc, M., Okhotin, A.: Describing periodicity in two-way deterministic finite
automata using transformation semigroups. In: Mauri, G., Leporati, A. (eds.) DLT
2011. LNCS, vol. 6795, pp. 324–336. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22321-1 28

8. Kunc, M., Okhotin, A.: Reversibility of computations in graph-walking automata.
Inform. Comput. 275 (2020). Art. 104631

9. Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata.
SIAM J. Comput. 30, 1976–1992 (2001)

10. Moore, F.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata by deterministic
automata. IEEE Trans. Comput. C-20, 1211–1214 (1971)

11. Petrov, S., Okhotin, A.: On the transformation of two-way deterministic finite
automata to unambiguous finite automata. In: Leporati, A., Mart́ın-Vide, C.,
Shapira, D., Zandron, C. (eds.) LATA 2021. LNCS, vol. 12638, pp. 81–93. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-68195-1 7

12. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Develop. 3, 114–125 (1959)

13. Shepherdson, J.: The reduction of two-way automata to one-way automata. IBM
J. Res. Develop. 3, 198–200 (1959)

14. Sipser, M.: Lower bounds on the size of sweeping automata. In: Proceedings of the
ACM Symposium on Theory of Computing, pp. 360–364 (1979)

15. Vardi, M.: A note on the reduction of two-way automata to one-way automata.
Inform. Process. Lett. 30, 261–264 (1989)

https://doi.org/10.1007/978-3-662-44522-8_25
https://doi.org/10.1007/11549345_47
https://doi.org/10.1007/978-3-642-22321-1_28
https://doi.org/10.1007/978-3-642-22321-1_28
https://doi.org/10.1007/978-3-030-68195-1_7


Sync-Maximal Permutation Groups Equal
Primitive Permutation Groups

Stefan Hoffmann(B)

Informatikwissenschaften, FB IV, Universität Trier, Universitätsring 15,
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Abstract. The set of synchronizing words of a given n-state automa-
ton forms a regular language recognizable by an automaton with 2n ´ n
states. The size of a recognizing automaton for the set of synchronizing
words is linked to computational problems related to synchronization and
to the length of synchronizing words. Hence, it is natural to investigate
synchronizing automata extremal with this property, i.e., such that the
minimal deterministic automaton for the set of synchronizing words has
2n ´ n states. The sync-maximal permutation groups have been intro-
duced in [S. Hoffmann, Completely Reachable Automata, Primitive
Groups and the State Complexity of the Set of Synchronizing Words,
LATA 2021] by stipulating that an associated automaton to the group
and a non-permutation has this extremal property. The definition is in
analogy with the synchronizing groups and analog to a characterization
of primitivity obtained in the mentioned work. The precise relation to
other classes of groups was mentioned as an open problem. Here, we
solve this open problem by showing that the sync-maximal groups are
precisely the primitive groups. Our result gives a new characterization
of the primitive groups. Lastly, we explore an alternative and stronger
definition than sync-maximality.

Keywords: Finite automata · Synchronization · Set of synchronizing
words · Primitive permutation groups · Sync-Maximal groups

1 Introduction

An automaton is synchronizing if it admits a word that drives every state into
a single definite state. Synchronizing automata have a range of applications
in software testing, circuit synthesis, communication engineering and the like,
see [29,43,49]. The Černý conjecture states that the length of a shortest synchro-
nizing word for a deterministic complete automaton with n states has length at
most (n ´ 1)2 [13,14]. The best bound up to now is cubic [44]. This conjecture
is one of the most famous open problems in combinatorial automata theory [49].
More specifically, the following bounds have been established:
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2n ´ n ´ 1 (1964, Černý [13])
1
2n3 ´ 3

2n2 ` n ` 1 (1966, Starke [45])
1
2n3 ´ n2 ` n

2 (1970, Kohavi [29])
1
3n3 ´ n2 ´ 1

3n ` 6 (1970, Kfourny [28])
1
3n3 ´ 3

2n2 ` 25
6 n ´ 4 (1971, Černý et al. [14])

7
27n3 ´ 17

18n2 ` 17
6 n ´ 3 n ” 0 (mod 3) (1977, Pin [35])

(
1
2 ` π

36

)
n3 ` o(n3) (1981, Pin [37])

1
6n3 ´ 1

6n ´ 1 (1983, Pin/Frankl [21,38])
αn3 ` o(n3) α « 0.1664 (2018, Szyku�la [47])
αn3 ` o(n3) α � 0.1654 (2019, Shitov [44])

Furthermore, the Černý conjecture [13] has been confirmed for a variety of
classes of automata, just to name a few (without further explanation): circu-
lar automata [16,17,36], oriented or (generalized) monotonic automata [2,3,18],
automata with a sink state [39], solvable and commutative automata [20,39,40],
Eulerian automata [27], automata preserving a chain of partial orders [50],
automata whose transition monoid contains a QI-group [7,8], certain one-cluster
automata [46], automata that cannot recognize {a, b}˚ab{a, b}˚ [1], aperiodic
automata [48], certain aperiodically 1-contracting automata [15] and automata
having letters of a certain rank [9].

Černý [13] gave an infinite family of synchronizing n-state automata with
shortest synchronizing words of length (n ´ 1)2. Families of synchronizing
automata with shortest synchronizing words close to (n ´ 1)2 are called slowly
synchronizing. There are only a few families of slowly synchronizing automata
known, see [49].

The set of synchronizing words of an n-state automaton is a regular lan-
guage and can be recognized by an automaton of size 2n ´ n [13,32,45]. A
property shared by most families of slowly synchronizing automata is that for
them, every automaton for the set of synchronizing words needs exponentially
many states [25,32,33]. Note that, of course, by taking an automaton and adjoin-
ing a letter mapping every state to a single state, as the extremal property of
the set of synchronizing words is preserved by adding letters, automata whose
sets of synchronizing words have exponential state complexity in the number of
states are not necessarily slowly synchronizing. However, the evidence supports
the conjecture that slowly synchronizing automata have this extremal property.

Testing if an automaton is synchronizing is doable in polynomial time [13,49].
However, computing a shortest synchronizing word is hard, more precisely, the
decision variant of this problem is NP-complete [18,42], even for automata over
a fixed binary alphabet. Moreover, variants of the synchronization problem for
partial automata, or when restricting the set of allowed reset words, could even
be PSPACE-complete [19,31].

The size of a smallest automaton for the set of synchronizing words seems to
be also related to the difficulty to compute a shortest synchronizing word, or a
synchronizing word subject to certain constraints. A first result in this direction
was the realization that for commutative automata, i.e., where each permutation
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of an input word leads to the same state, and a fixed alphabet, we do not have
such an exponential blowup for the size of the minimal automaton for set of syn-
chronizing words [23,24]. As a consequence, the constrained synchronization prob-
lem for commutative input automata and a fixed constraint is always solvable in
polynomial time [23,24]. Note that for commutative input automata and a fixed
alphabet, computing a shortest synchronizing can be done in polynomial time [30]

So, it is natural to focus on synchronizing automata such that the smallest
automaton for the set of synchronizing words has maximal possible size.

After realizing that for certain special cases for which the Černý conjecture
was established [8,16,17,36,41], this was due to the reason that certain permuta-
tion groups were contained in the transformation monoid of the automaton, the
notion of synchronizing permutation groups was introduced [7,8]. These are per-
mutation groups with the property that if we adjoin a non-permutation to it, the
generated transformation monoid contains a constant map. It was shown that
these groups are contained strictly between the 2-transitive and the primitive
groups [7,34]. Meanwhile, a lot of related permutation groups have been intro-
duced or linked to the synchronizing groups, for example: spreading, separating,
QI-groups. See [7] for a good survey and definitions. Furthermore, permutation
groups in general have been investigated with respect to the properties of result-
ing transformation monoids if non-permutations were added [4–7].

The completely reachable automata have been introduced by Volkov & Bon-
dar [10,11]. This is a stronger notion than being synchronizing by stipulating
that, starting from the whole state set, not only some singleton set is reach-
able, but every non-empty subset of states is reachable by some word. In fact,
this property was also previously observed for many classes of synchronizing
automata [15,25,32,33].

It has been proven in [22] that a permutation group of degree n is primitive if
and only if in the transformation monoid generated by the group and an arbitrary
non-permutation with an image of size n ´ 1, there exists, for every non-empty
subset of the permutation domain, an element mapping the whole permutation
domain to this subset, or said differently that an associated automaton is com-
pletely reachable. In the same paper [22] the sync-maximal permutation groups
were introduced by stipulating that, for an associated n-state automaton, the
smallest automaton for the set of synchronizing words has size 2n ´ n. It was
shown that the sync-maximal permutation groups are contained between the
2-homogeneous and the primitive permutation groups, and it was posed as an
open problem if they are properly contained between them, and if so, what the
precise relation to other permutation groups is.

Here, we solve this open problem by showing that the sync-maximal permu-
tation groups are precisely the primitive permutation groups, which also yields
new characterizations of the primitive permutation groups.

2 Preliminaries

Let Σ be a finite set of symbols, called an alphabet. By Σ∗, we denote the set
of all finite sequences, i.e., of all words or strings. The empty word, i.e., the
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finite sequence of length zero, is denoted by ε. The subsets of Σ∗ are called
languages. For n ą 0, we set [n] “ {0, 1, . . . , n ´ 1} and [0] “ H. For a set
X, we denote the power set of X by P(X), i.e., the set of all subsets of X.
Every function f : X → Y induces a function f̂ : P(X) → P(Y ) by setting
f̂(Z) :“ {f(z) | z ∈ Z}. Here, we denote this extension also by f . Let k � 1. A
k-subset Y Ď X is a finite set of cardinality k. A 1-set is also called a singleton
set. For functions f : A → B and g : B → C, the functional composition
gf : A → C is the function (gf)(x) “ g(f(x)), i.e., the function on the right is
applied first1. A function f : X → X is called idempotent if f2 “ f .

A semi-automaton is a triple A “ (Σ,Q, δ) where Σ is the input alphabet,
Q the finite set of states and δ : Q ˆ Σ → Q the transition function. The
transition function δ : Q ˆ Σ → Q extends to a transition function on words
δ∗ : Q ˆ Σ∗ → Q by setting δ∗(s, ε) :“ s and δ∗(s, wa) :“ δ(δ∗(s, w), a) for
s ∈ Q, a ∈ Σ and w ∈ Σ∗. In the remainder we drop the distinction between
both functions and also denote this extension by δ. For S Ď Q and w ∈ Σ˚,
we write δ(S,w) “ {δ(s, w) | s ∈ S}. A state q ∈ Q is reachable from a state
p ∈ Q, if there exists w ∈ Σ˚ such that δ(p,w) “ q. The set of synchronizing
words is Syn(A) “ {w ∈ Σ˚ | |δ(Q,w)| “ 1}. A semi-automaton A “ (Σ,Q, δ)
is called synchronizing, if Syn(A) �“ H. We call A completely reachable, if for
each non-empty S Ď Q there exists a word w ∈ Σ˚ such that δ(Q,w) “ S. Note
that every completely reachable automaton is synchronizing.

A (finite) automaton is a quintuple A “ (Σ,Q, δ, q0, F ) where (Σ,Q, δ) is a
semi-automaton, q0 ∈ Q is the start state and F Ď Q the set of final states. The
languages recognized (by A) is L(A) “ {w ∈ Σ˚ | δ(q0, w) ∈ F}. An automaton
with a start state and a set of final states is used for the description of languages,
whereas, when we consider a semi-automaton, we are only concerned with the
transition structure of the automaton itself. When the context is clear, we also
call semi-automata simply automata and concepts and notions that do not use
the start state or the final state carry over from semi-automata to automata and
vice versa.

A language recognized by a finite automaton is called regular. An automaton
A has the least number of states to recognize a language [26], i.e., is a minimal
automaton, if and only if every state is reachable from the start state and every
two distinct states p, q ∈ Q are distinguishable, i.e., there exists w ∈ Σ˚ such that
precisely one of the states δ(p,w) and δ(q, w) is a final state, but not the other.
A minimal automaton is unique up to isomorphism [26], where two automata are
isomorphic if one can be obtained from the other by renaming of states. Hence,
we can speak about the minimal automaton.

If A “ (Σ,Q, δ) is a semi-automaton with a non-empty state set, then define
PA “ (Σ,P(Q)z{H}, δ̂, Q, F ) where δ̂ : P(Q) ˆ Σ → P(Q) is the extension
δ̂(S, u) “ {δ(s, u) | s ∈ S}, for S Ď Q and u ∈ Σ˚, of δ to subsets of states
and F “ {{q} | q ∈ Q}. As for functions f : X → Y introduced above, we
drop the distinction between δ and δ̂ and denote both functions by δ. We have,
1 In group theory, usually the other convention is adopted, but we stick to the con-

vention most often seen in formal language theory.
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Syn(A) “ {w ∈ Σ˚ | δ(Q,w) ∈ F}. The states in F can be merged to a single
state to get a recognizing automaton for Syn(A). So, Syn(A) is recognizable by
an automaton with 2|Q| ´ |Q| states.

Let n � 0. Denote by Sn the symmetric group on [n], i.e., the group of
all permutations of [n]. A permutation group (of degree n) is a subgroup of
Sn. A permutation group G over [n] is primitive, if it preserves no non-trivial
equivalence relation2 on [n], i.e., for no non-trivial equivalence relation ∼Ď [n]ˆ
[n] we have p ∼ q if and only if g(p) ∼ g(q) for all g ∈ G and p, q ∈ [n] (recall
that the elements of G are functions from [n] to [n]). Equivalently, a permutation
group is primitive if there does not exist a non-empty proper subset Δ Ď [n] with
|Δ| ą 1 such that, for every g ∈ G, we have g(Δ) “ Δ or g(Δ) X Δ “ H. A
permutation group G over [n] is called k -homogeneous for some k � 1, if for every
two k-subsets S, T of [n], there exists g ∈ G such that g(S) “ T . A transitive
permutation group is the same as a 1-homogeneous permutation group. Note
that here, all permutation groups with n � 2 are primitive, and for n ą 2 every
primitive group is transitive. Because of this, some authors exclude the trivial
group for n “ 2 from being primitive. A permutation group G over [n] is called
k-transitive for some k � 1, if for two k-tuples (p1, . . . , pk), (q1, . . . , qk) ∈ [n]k,
there exists g ∈ G such that (g(p1), . . . , g(pk)) “ (q1, . . . , gk).

By Tn, we denote the set of all maps on [n]. The elements of [n] are also called
points in this context. A submonoid of Tn for some n is called a transformation
monoid. If the set U is a submonoid (or a subgroup) of Tn (or Sn) we denote this
by U � Tn (or U � Sn). For a set A Ď Tn (or A Ď Sn), we denote by 〈A〉 the
submonoid (or the subgroup) generated by A. If A “ {a1, . . . , am} we also write
〈a1, . . . , am〉 “ 〈A〉. Let A “ (Σ,Q, δ) be a semi-automaton and for w ∈ Σ˚
define δw : Q → Q by δw(q) “ δ(q, w) for all q ∈ Q. Then, we can associate with
A the transformation monoid of the automaton TA “ {δw | w ∈ Σ˚}, where we
can identify Q with [n] for n “ |Q|. We have TA “ 〈{δx | x ∈ Σ}〉. The rank of
a map f : [n] → [n] is the cardinality of its image. For a given semi-automaton
A “ (Σ,Q, δ), the rank of a word w ∈ Σ˚ is the rank of δw. We call two sets
S, T Ď [n] distinguishable in a transformation monoid M � Tn if there exists
an element in M mapping precisely one of both sets to a singleton set and the
other to a non-singleton set.

The following implies that we can check if a given semi-automaton is syn-
chronizing by only looking at pairs of states [13,49]. The proof basically works
by repeatedly collapsing pairs of states to construct a synchronizing word [49].
It implies a polynomial time procedure to check synchronizability [49].

Theorem 1 Černý [13,49]. Let A “ (Σ,Q, δ). Then, A is synchronizing if
and only if for each p, q ∈ Q there exists w ∈ Σ˚ such that δ(p,w) “ δ(q, w).
Hence, a transformation monoid M � Tn contains a constant map if and only
if every two points can be mapped to a single point by elements in M .

The next result appears in [6,7] and despite it was never clearly spelled out
by Rystsov himself, it is implicitly present in arguments used in [41].
2 The trivial equivalence relations on [n] are [n] ˆ [n] and {(x, x) | x ∈ [n]}.
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Theorem 2 Rystsov [6,7,41]. A permutation group G on [n] is primitive if
and only if, for every map f : [n] → [n] of rank n´1, the transformation monoid
〈G Y {f}〉 contains a constant map.

In [22], the following characterization of the primitive permutation groups,
connecting them to completely reachable automata, was shown.

Theorem 3 Hoffmann [22]. Let G “ 〈g1, . . . , gk〉 � Sn. Then the following
are equivalent:

1. G is primitive;
2. for every transformation f : [n] → [n] of rank n ´ 1 and non-empty S Ď [n],

there exists g ∈ 〈G Y {f}〉 such that g([n]) “ S;
3. for every transformation f : [n] → [n] of rank n ´ 1, the semi-automaton

A “ (Σ,Q, δ), with Σ “ {g1, . . . , gk, f}, Q “ [n] and δ(m, g) “ g(m) for all
m ∈ [n] and all g ∈ Σ, is completely reachable.

In the same work [22], in analogy with Theorem 2 and 3, the sync-maximal
permutation groups were introduced.

Definition 4. A permutation group G “ 〈g1, . . . , gk〉 � Sn is called sync-
maximal, if for every map f : [n] → [n] of rank n ´ 1, for the automaton
A “ (Σ, [n], δ) with Σ “ {g1, . . . , gk, f} and δ(m, g) “ g(m) for m ∈ [n] and
g ∈ Σ, the minimal automaton of Syn(A) has 2n ´ n states.

This definition is independent of the choice of generators for G. In purely
combinatorial language, using the characterization of the minimal automaton,
applied to PA, this means the following.

Theorem 5. A permutation group G � Sn is sync-maximal if and only if for
every transformation f : [n] → [n] of rank n ´ 1, we have that (1) for every
non-empty subset S Ď [n] of size at least two3 there exists h ∈ 〈G Y {f}〉 such
that S “ h([n]), and (2) for two distinct non-empty and non-singleton subsets
of [n], there exists a transformation in 〈G Y {f}〉 mapping precisely one to a
singleton but not the other.

In [22] it was shown that every sync-maximal permutation groups is primitive.
The main result of the present work is that the converse implication holds true.

Proposition 6 [22]. Every sync-maximal permutation group is primitive.

In [22, Lemma 3.1] it was shown that distinguishability of all sets reduces
to distinguishablity of the 2-subsets. Formulated without reference to automata,
this gives the next result.

3 As f has rank n ´ 1, this also implies that at least one singleton set is reachable. In
fact, even more holds true, with [22, Lemma 4.1] we can deduce that G is transitive
and so for every non-empty S Ď [n] there exists h ∈ 〈G Y {f}〉 with S “ h([n]).
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Theorem 7 [22]. Let M � Tn be a transformation monoid. Then, for every two
distinct non-empty and non-singleton S, T Ď [n] there exists a transformation
in M mapping precisely one to a singleton but not the other if and only if this
condition holds true for every two distinct 2-subsets of [n].

The next lemma is obvious, as it basically states the definition of injectivity
for the restriction of a function to a subset, and stated for reference.

Lemma 8. Let f : [n] → [n] and S Ď [n]. Then, |S X f´1(x)| � 1 for each
x ∈ [n] if and only if f acts injective on S, i.e., |f(S)| “ |S|.

3 Sync-Maximal Permutation Groups Equal Primitive
Permutation Groups – The Proof

Here, we will prove the following theorem.

Theorem 9. Let G “ 〈g1, . . . , gk〉 � Sn. Then the following are equivalent:

1. G is primitive;
2. for every transformation f : [n] → [n] of rank n ´ 1 and {a, b}, {c, d} Ď [n]

with {a, b} �“ {c, d}, there exists g ∈ 〈G Y {f}〉 such that precisely one of the
subsets g({a, b}) and g({c, d}) is a singleton but not the other;

3. G is sync-maximal.

At the heart of our result is the following statement.

Proposition 10. Let G � Sn be a permutation group and f : [n] → [n] be an
idempotent map of rank n´1. Suppose 〈GY{f}〉 contains a constant map. Then,
for all {a, b}, {c, d} Ď [n] with {a, b} �“ {c, d} there exists a transformation in
〈G Y {f}〉 mapping precisely one set to a singleton but not the other.

Proof. Suppose G “ 〈g1, . . . , gk〉. Let {a, b}, {c, d} Ď [n] be two distinct 2-sets
and f : [n] → [n] being idempotent and of rank n´1. Without loss of generality,
we can suppose f(0) “ f(1) “ 1 and f(i) “ i for i ∈ {2, . . . , n ´ 1}. As 〈G Y
{f}〉 contains a constant map, we can map {a, b} to a singleton set. Choose
a transformation h ∈ 〈G Y {f}〉 represented by a shortest possible word in
the generators of G and f such that |h({a, b})| “ 1. Then, we can write h “
fumfum´1f · · · u2fu1 with ui ∈ G, m � 1. Note that, by the minimal choice,
the transformation f is applied at the end4. If h({c, d}) is not a singleton set,
we are done. So, suppose h({c, d}) is also a singleton set. For i ∈ {1, . . . ,m}, set
hi “ fuifui´1f · · · u2fu1. Then, h “ hm. By minimality of the representation
in the generators of G and f , for all i ∈ {1, . . . , m ´ 1} we have |hi({a, b})| “ 2.
Hence, if there exists i ∈ {1, . . . ,m ´ 1} such that hi({c, d}) is a singleton set,
we are also done. So, suppose this is not the case.

4 Recall that by our convention, the leftmost function is applied last.
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Set gi “ uifui´1f · · · u2fu1. Then, hi “ fgi. We must have 0 ∈ gi({a, b}) for
all i, for otherwise, as f acts as the identity on {1, . . . , n ´ 1}, we can leave f
out, i.e., gi({a, b}) “ hi({a, b}), in the expression for h and get a shorter repre-
senting word, contradicting the minimal choice of the expression representing h.
Similarly, 0 ∈ gi({c, d}) for all i, as otherwise we can leave a single instance of
f out again and have a word that maps {c, d} to a singleton, but not {a, b} by
the minimal choice of h in the length of a representing word.

Note that, as |gm({a, b})| “ |gm({c, d})| “ 2, |hm({a, b})| “ |hm({c, d})| “ 1
and hm “ fgm, we must have gm({a, b}) “ gm({c, d}) “ {0, 1}.

Next, we will show by induction on j ∈ {1, . . . , m} that gj({a, b}) “
gj({c, d}), where the base case is j “ m. Then, g1({a, b}) “ g1({c, d}) implies
{a, b} “ {c, d} as g1 “ u1 ∈ G is a permutation. However, this is a contradic-
tion as both 2-sets are assumed to be distinct. Hence, the case that hm maps
both to a singleton and hi for all i �“ m maps both to 2-sets is not possible. As
noted, for the base case we have gm({a, b}) “ gm({c, d}) “ {0, 1}. Now suppose
j ∈ {1, . . . , m ´ 1} and gj`1({a, b}) “ gj`1({c, d}). Then, as gj`1 “ uj`1fgj “
uj`1hj , we can deduce hj({a, b}) “ hj({c, d}) as they only differ by the applica-
tion of the permutation uj`1 ∈ G. As written above 0 ∈ gj({a, b}) X gj({c, d}).
This implies, as |hj({a, b})| “ |hj({c, d})| “ 2, that 1 /∈ gj({a, b}) Y gj({c, d}).
So, |f´1(x) X gj({a, b})| � 1 and |f´1(x) X gj({c, d})| � 1 for every x ∈ [n]. As
hj “ fgj , we can write f(gj({a, b})) “ f(gj({c, d})). Applying Lemma 8 then
yields gj({a, b}) “ gj({c, d}). �	

The following lemma allows us to assume the transformation of rank n ´ 1
in Theorem 9 is idempotent.

Lemma 11. Let G � Sn be a transitive permutation group and f : [n] → [n] be
a transformation of rank n´1. Then, there exists an idempotent transformation
h : [n] → [n] of rank n ´ 1 such that 〈G Y {h}〉 � 〈G Y {f}〉.

So, now we have everything together to prove Theorem 9.

Proof (Proof of Theorem 9). We can assume n ą 2, as we have not included the
assumption of transitivity in our definition of primitivity (which is implied for
n ą 2, see [12]) and so, for n � 2 every subgroup is primitive and also fulfills the
second condition vacuously, as then we cannot find two distinct 2-sets. Also, for
n � 2, every group is sync-maximal, as is easily seen by case analysis.

So first, let G “ 〈g1, . . . , gk〉 � Sn be primitive and suppose f : [n] → [n]
is a transformation of rank n ´ 1. By Lemma 11, there exists an idempotent
transformation f ′ ∈ 〈G Y {f}〉. By Theorem 2 in 〈G Y {f ′}〉 we find a constant
map. Then, by Proposition 10, for distinct 2-sets there exists an element in
〈G Y {f ′}〉 Ď 〈G Y {f}〉 mapping precisely one of both 2-sets to a singleton set.

Now, suppose the second condition holds true. First, note that the second
condition implies for n ą 2 and {a, b} Ď [n] that there must exist g ∈ G such
that g({a, b}) �“ {a, b}. Assume this is not the case. Then, for c /∈ {a, b}, we have

{g({a, c}), g({b, c})} X {{a, b}} “ H (1)
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for every g ∈ G and, more generally, we have {g({d, e}), g({d′, e′})} X {{a, b}} “
H for every g ∈ G and {d, e}, {d′, e′} not equal to {a, b}. Choose c ∈ [n]z{a, b}
and f ′ : [n] → [n] idempotent of rank n ´ 1 with f ′(a) “ f ′(b) “ b. Then, with
Eq. (1) we can deduce {h({a, c}), h({b, c})} X {{a, b}} “ H for h ∈ 〈G Y {f ′}〉.
So, it is not possible to map one of {a, c} and {b, c} to a singleton set. But this
is excluded by assumption, so there must exist an element in G mapping {a, b}
to a different 2-subset.

So, now let f : [n] → [n] be an arbitrary transformation of rank n ´ 1
and A “ (Σ,Q, δ) be the automaton with Σ “ {g1, . . . , gk, f}, Q “ [n] and
δ(i, x) “ x(i) for i ∈ [n] and x ∈ Σ. Then, the second condition precisely says
that all non-empty 2-sets are distinguishable in PA. With Theorem 7, then all
non-empty subsets with at least two elements are distinguishable in PA. So, we
only need to show that all non-empty subsets with at least two elements are
reachable and at least one singleton subset is reachable in A. In fact, we will
establish the stronger statement that A is completely reachable. Let {a, b} Ď [n]
be a 2-subset. As shown above, we can choose g ∈ G with g({a, b}) �“ {a, b}.
Then, by assumption, there exists h ∈ 〈G Y {f}〉 such that precisely one of
h({a, b}) or (hg)({a, b}) is a singleton set. By Theorem 1, as {a, b} was arbitrary,
〈G Y {f}〉 contains a constant map. As f : [n] → [n] was arbitrary of rank n ´ 1,
by Theorem 2 the group G is primitive and so, by Theorem 3, the automaton A
is completely reachable.

Finally, suppose the last condition is fulfilled, i.e., G is sync-maximal. Then,
by Proposition 6, G is primitive. �	

Note that, by Lemma 11, in the statements of Theorem 3 and 9 it is enough
if the mentioned conditions hold for idempotent transformations of rank n ´ 1
only.

With a little more work, we can show the following statement. By Lemma 11,
we can always restrict to idempotent transformations for the mentioned char-
acterizations5, hence every statement entails two statements: one for all trans-
formations of rank n ´ 1 and one for idempotent transformations of rank n ´ 1
only. Both formulations are put into a single statement by putting the word
“idempotent” in square brackets in Theorem 12.

Theorem 12. Let G � Sn be a permutation group and n � 5. Then the follow-
ing are equivalent:

(1) G is primitive;
(2) for every [idempotent] transformation f : [n] → [n] of rank n ´ 1, in the

transformation semigroup 〈G Y {f}〉 we find, for each non-empty S Ď [n],
an element g ∈ 〈G Y {f}〉 such that g([n]) “ S;

(3) for every [idempotent] transformation f : [n] → [n] of rank n ´ 1 and 2-
sets {a, b}, {c, d} Ď [n] with {a, b} �“ {c, d}, there exists a transformation in
〈G Y {f}〉 mapping precisely one to a singleton, but not the other;

5 In case of Theorem 3, which was proven in the conference version [22], this was
communicated to me, for which I am thankful, by an anonymous referee of [22].
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(4) for every [idempotent] transformation f : [n] → [n] of rank n ´ 1 and two
distinct non-empty and non-singleton subsets S, T Ď [n], there exists a trans-
formation in 〈G Y {f}〉 mapping one to a singleton but not the other;

(5) for every [idempotent] transformation f : [n] → [n] of rank n ´ 1 and two
distinct non-empty and non-singleton subsets S, T Ď [n], there exists a trans-
formation in 〈G Y {f}〉 mapping both to subsets of different cardinality;

(6) for every [idempotent] transformation f : [n] → [n] of rank n ´ 1 and two
disjoint non-empty 2-sets {a, b}, {c, d} Ď [n], there exists a transformation
in 〈G Y {f}〉 mapping precisely one to a singleton, but not the other.

4 Strongly Sync-Maximal Permutation Groups

As the sync-maximal groups turned out to be precisely the primitive permutation
groups, can we alter the definition to give us a new class of permutation groups
related to the size of the minimal automata for the set of synchronizing words?
One first approach might be to demand that, for each transformation of rank
n ´ k, if we add this to the group, in the resulting transformation monoid every
non-empty set of size at most n ´ k is reachable and two distinct non-empty
and non-singleton subsets S, T of states with |S|, |T | ∈ {m | m � n ´ k} Y {n}
can be mapped to sets of different cardinality. However, it is easy to show that
every such group is k-reachable as introduced in [22]. So, also with the results
from [22], for 6 � k � n ´ 6 this condition is only fulfilled by the symmetric or
the alternating groups.

So, in the following definition, we only demand the distinguishability con-
ditions, but not the reachability condition. Note that in the characterizations
of primitive groups given above, both conditions – either distinguishability or
reachability – are equivalent if we add a transformation of rank n ´ 1.

Definition 13. A permutation group G � Sn is called strongly sync-maximal
if for each transformation f : [n] → [n] of rank r with 2 � r � n´1 in 〈GY{f}〉
all 2-subsets are distinguishable.

Proposition 14. Every 4-transitive group is strongly sync-maximal and every
strongly sync-maximal group is primitive.

Whether the strongly sync-maximal groups are properly contained between
the above mentioned groups is an open problem. If so, the precise relation to
the synchronizing groups and other classes of groups is an open problem and
remains for future work.

Acknowledgement. I thank the anonymous referees for carefully reading through
the present work and pointing out unclear formulations and typos. I am also grateful
to the referee that pointed me to additional work I was not aware of. Unfortunately,
due to space, I could not discuss all of them, in particular the connections to decoders
and probabilistic investigations on the length of synchronizing words. The results of
this submission will be incorporated into the extended version of [22].
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Abstract. We introduce a subclass of the commutative regular languages
that is characterized by the property that the state set of the minimal
deterministic automaton can be written as a certain Cartesian product.
This class behaves much better with respect to the state complexity of
the shuffle, for which we find the bound 2nm if the input languages have
state complexities n and m, and the upward and downward closure and
interior operations, for which we find the bound n. In general, only the
bounds (2nm)|Σ| and n|Σ| are known for these operations in the commu-
tative case. We prove different characterizations of this class and present
results to construct languages from this class. Lastly, in a slightly more
general setting of partial commutativity, we introduce other, related, lan-
guage classes and investigate the relations between them.

Keywords: Finite automaton · State complexity · Shuffle · Upward
closure · Downward closure · Commutative language · Product-form
minimal automaton · Partial commutation

1 Introduction

The state complexity, as used here, of a regular language L is the minimal number
of states needed in a complete deterministic automaton recognizing L. The state
complexity of an operation on regular languages is the greatest state complexity
of the result of this operation as a function of the (maximal) state complexities
of its arguments.

Investigating the state complexity of the result of a regularity-preserving
operation on regular languages, see [7] for a survey, was first initiated by Maslov
in [20] and systematically started by Yu, Zhuang and Salomaa in [27].

A language is called commutative, if for each word in the language, every
permutation of this word is also in the language. The class of commutative
automata, which recognize commutative regular languages, was introduced in [2].

The shuffle and iterated shuffle have been introduced and studied to under-
stand the semantics of parallel programs. This was undertaken, as it appears
to be, independently by Campbell and Habermann [3], by Mazurkiewicz [22]
and by Shaw [25]. They introduced flow expressions, which allow for sequential
c© IFIP International Federation for Information Processing 2021
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operators (catenation and iterated catenation) as well as for parallel operators
(shuffle and iterated shuffle) to specify sequential and parallel execution traces.

The shuffle operation as a binary operation, but not the iterated shuffle, is
regularity-preserving on all regular languages. The state complexity of the shuffle
operation in the general cases was investigated in [1] for complete deterministic
automata and in [4] for incomplete deterministic automata. The bound 2nm´1 `
2(m´1)(n´1)(2m´1 ´ 1)(2n´1 ´ 1) was obtained in the former case, which is not
known to be tight, and the tight bound 2nm ´ 1 in the latter case.

A word is a (scattered) subsequence of another word, if it can be obtained
from the latter word by deleting letters. This gives a partial order, and the
upward and downward closure and interior operations refer to this partial order.
The upward closures are also known as shuffle ideals. The state complexity of
these operations was investigated in [11–13,19,23]

The state complexity of the projection operation was investigated in
[17,18,26]. In [26], the tight upper bound 3 · 2n´2 ´ 1 was shown, and in [18]
the refined, and tight, bound 2n´1 ` 2n´m ´ 1 was shown, where m is related to
the number of unobservable transitions for the projection operator. Both results
were established for incomplete deterministic automata.

In [14–17] the state complexity of these operations was investigated for com-
mutative regular languages. The results are summarized in Table 1.

Table 1. Overview of results for commutative regular languages. The state complexities
of the input languages are n and m. Also, f(n, m) “ 2nm´1 ` 2(m´1)(n´1)(2m´1 ´
1)(2n´1 ´ 1) is the general bound for shuffle from [1] in case of complete automata.

Operation Upper bound Lower bound References

πΓ (U), Γ Ď Σ n n [14,17]

U V min{(2nm)|Σ|, f(n, m)} Ω (nm) [1,14,15]

ÒU n|Σ| Ω

((
n

|Σ|

)|Σ|)
[13,14,16]

ÓU n|Σ| n [14,16]

þU n|Σ| Ω

((
n

|Σ|

)|Σ|)
[14,16]

ßU n|Σ| n [14,16]

U Y V , U X V nm Tight for each Σ [14,15]

Table 2. State complexity results on the subclass of commutative languages with
product-form minimal automaton for input languages with state complexities n and m.

Operation Upper bound Lower bound Reference

πΓ (U), Γ Ď Σ n n Theorem 12

U V 2nm Ω (nm) Theorem 12

ÒU , ÓU , þU , ßU n n Theorem 12

U X V , U Y V nm Tight for each Σ Theorem 12
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In [8] the minimal commutative automaton was introduced, which can be
associated with every commutative regular language. This automaton played a
crucial role in [14,15] to derive the bounds mentioned in Table 1. Here, we will
investigate the subclass of those language for which the minimal commutative
automaton is in fact the smallest automaton recognizing a given commutative
language. For this language class, we will derive the following state complexity
bounds summarized in Table 2. Additionally, we will prove other characteriza-
tions and properties of the subclass considered and relate it with other subclasses,
in a more general setting, in the final chapter.

2 Preliminaries

In this section and Sect. 3, we assume that k � 0 denotes our alphabet size and
Σ “ {a1, . . . , ak} is our alphabet. We will also write a, b, c for a1, a2, a3 in case
of |Σ| � 3. The set Σ∗ denotes the set of all finite sequences over Σ, i.e., of all
words. The finite sequence of length zero, or the empty word, is denoted by ε.
For a given word we denote by |w| its length, and for a P Σ by |w|a the number
of occurrences of the symbol a in w. For a P Σ, we set a∗ “ {a}∗. A language is
a subset of Σ∗. For u P Σ∗, the left quotient is u´1L “ {v P Σ∗ | uv P L} and
the right quotient is Lu´1 “ {v P Σ∗ | vu P L}.

The shuffle operation, denoted by , is defined by

u v “ {w P Σ∗ | w “ x1y1x2y2 · · · xnyn for some words

x1, . . . , xn, y1, . . . , yn P Σ∗ such that u “ x1x2 · · · xn and v “ y1y2 · · · yn},

for u, v P Σ∗ and L1 L2 :“ ⋃
xPL1,yPL2

(x y) for L1, L2 Ď Σ∗. If L1, . . . , Ln Ď
Σ∗, we set n

i“1Li “ L1 . . . Ln.
Let Γ Ď Σ. The projection homomorphism πΓ : Σ∗ → Γ ∗ is given by πΓ (x) “

x for x P Γ and πΓ (x) “ ε for x /P Γ and extended to Σ∗ by πΓ (ε) “ ε and
πΓ (wx) “ πΓ (w)πΓ (x) for w P Σ∗ and x P Σ. As a shorthand, we set, with

respect to a given naming Σ “ {a1, . . . , ak}, πj “ π{aj}. Then πj(w) “ a
|w|aj

j .
A language L Ď Σ∗ is commutative, if, for u, v P Σ∗ such that |v|x “ |u|x

for every x P Σ, we have u P L if and only if v P L, i.e., L is closed under
permutation of letters in words from L.

A quintuple A “ (Σ,Q, δ, q0, F ) is a finite deterministic and complete
automaton (DFA), where Σ is the input alphabet, Q the finite set of states,
q0 P Q the start state, F Ď Q the set of final states and δ : Q ˆ Σ → Q is
the totally defined state transition function. Here, we do not consider incomplete
automata. The transition function δ : QˆΣ → Q extends to a transition function
on words δ∗ : QˆΣ∗ → Q by setting δ∗(q, ε) :“ q and δ∗(q, wa) :“ δ(δ∗(q, w), a)
for q P Q, a P Σ and w P Σ∗. In the remainder, we drop the distinction between
both functions and also denote this extension by δ. The language recognized
by an automaton A “ (Σ,Q, δ, q0, F ) is L(A) “ {w P Σ∗ | δ(q0, w) P F}. A
language L Ď Σ∗ is called regular if L “ L(A) for some finite automaton A.
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The Nerode right-congruence with respect to L Ď Σ∗ is defined, for u, v P Σ∗,
by u ”L v if and only if @x P Σ∗ : ux P L ô vx P L. The equivalence class
of w P Σ∗ is denoted by [w]”L

“ {x P Σ∗ | x ”L w}. A language is regular if
and only if the above right-congruence has finite index, and it can be used to
define the minimal deterministic automaton AL “ (Σ,QL, δL, [ε]”L

, FL) with
QL “ {[u]”L

| u P Σ∗}, δL([w]”L
, a) “ [wa]”L

and FL “ {[u]”L
| u P L}. Let

L Ď Σ∗ be regular with minimal automaton AL “ (Σ,QL, δL, [ε]”L
, FL). The

number |QL| is called the state complexity of L and denoted by sc(L). The state
complexity of a regularity-preserving operation on a class of regular languages is
the greatest state complexity of the result of this operation as a function of the
(maximal) state complexities for argument languages from the class.

Fig. 1. The minimal deterministic automaton (left) and the minimal commutative
automaton (right) of the language {w P Σ∗ | |w|a “ 0 or |w|b ą 0}.

Given two automata A “ (Σ,S, δ, s0, F ) and B “ (Σ,T, μ, t0, E), an automa-
ton homomorphism h : S → T is a map between the state sets such that for
each a P Σ and state s P S we have h(δ(s, a)) “ μ(h(s), a), h(s0) “ t0 and
h´1(E) “ F . If h : S → T is surjective, then L(B) “ L(A). A bijective homo-
morphism between automata A and B is called an isomorphism, and the two
automata are said to be isomorphic.

The minimal commutative automaton was introduced in [8] to investigate the
learnability of commutative languages. In [14,15] this construction was used to
define the index and period vector and in the derivation of the state complexity
bounds mentioned in Table 1.

Definition 1 (minimal commutative aut.). Let L Ď Σ∗ be regular. The
minimal commutative automaton for L is CL “ (Σ,S1 ˆ . . . ˆ Sk, δ, s0, F ) with

Sj “ {[am
j ]”L

: m � 0}, F “ {([π1(w)]”L
, . . . , [πk(w)]”L

) : w P L}

and δ((s1, . . . , sj , . . . , sk), aj) “ (s1, . . . , δj(sj , aj), . . . , sk) with one-letter transi-
tions δj([am

j ]”L
, aj) “ [am`1

j ]”L
for j “ 1, . . . , k and s0 “ ([ε]”L

, . . . , [ε]”L
).

In [8], the next result was shown.

Theorem 2 (Gómez and Alvarez [8]). Let L Ď Σ∗ be a commutative regular
language. Then, L “ L(CL).
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In general the minimal commutative automaton is not equal to the minimal
deterministic and complete automaton for a regular commutative language L,
see Example 1.

Example 1. For L “ {w P Σ∗ | |w|a “ 0 or |w|b ą 0} with Σ “ {a, b} the
minimal deterministic and complete automaton and the minimal commutative
automaton are not the same, see Fig. 1. This language is from [8]. In fact, the
difference can get quite large, as shown by Lp “ {w P Σ∗ | ∑k

j“1 j · |w|aj
” 0

(mod p)} for a prime p ą k. Here, sc(Lp) “ p, but CLp
has pk states.

The next definition from [14,15] generalizes the notion of a cyclic and non-
cyclic part for unary automata [24], and the notion of periodic language [6,14,15].

Definition 3 (index and period vector). The index vector (i1, . . . , ik) and
period vector (p1, . . . , pk) for a commutative regular language L Ď Σ∗ with min-
imal commutative automaton CL “ (Σ,S1 ˆ . . . ˆ Sk, δ, s0, F ) are the unique
minimal numbers such that δ(s0, a

ij

j ) “ δ(s0, a
ij`pj

j ) for all j P {1, . . . , k}.
Note that, in Definition 3, we have, for all j P {1, . . . , k}, |Sj | “ ij ` pj . Also

note that for unary languages, i.e., if |Σ| “ 1, CL equals AL and i1 ` p1 equals
the number of states of the minimal automaton.

Example 2. Let L “ (aa)∗ (bb)∗Y(aaaa)∗ b∗. Then (i1, i2) “ (0, 0), (p1, p2) “
(4, 2), π1(L) “ (aa)∗ and π2(L) “ b∗.

Let u, v P Σ∗. Then, u is a subsequence1 of v, denoted by u ď v, if and only if
v P u Σ∗. The thereby given order is called the subsequence order. Let L Ď Σ∗.
Then, we define (1) the upward closure ÒL “ L Σ∗ “ {u P Σ∗ : Dv P L : v ď u};
(2) the downward closure ÓL “ {u P Σ∗ : u Σ∗ X L �“ H} “ {u P Σ∗ : Dv P
L : u ď v}; (3) the upward interior, denoted by ßL, as the largest upward-
closed set in L, i.e. the largest subset U Ď L such that ÒU “ U and (4) the
downward interior, denoted by þL, as the largest downward-closed set in L, i.e.,
the largest subset U Ď L such that ÓU “ U . We have þL “ Σ∗z Ò(Σ∗zL) and
ßL “ Σ∗z Ó(Σ∗zL).

The following two results, which will be needed later, are from [14,15].

Theorem 4. Let U, V Ď Σ∗ be commutative regular languages with index and
period vectors (i1, . . . , ik), (j1, . . . , jk) and (p1, . . . , pk), (q1, . . . , qk). Then, the
index vector of U V is at most

(i1 ` j1 ` lcm(p1, q1) ´ 1, . . . , ik ` jk ` lcm(pk, qk) ´ 1)

and the period vector is at most (lcm(p1, q1), . . . , lcm(pk, qk)). So, sc(U V ) �
∏k

l“1(il ` jl ` 2 · lcm(pl, ql) ´ 1).

Theorem 5. Let Σ “ {a1, . . . , ak}. Suppose L Ď Σ∗ is commutative and regu-
lar with index vector (i1, . . . , ik) and period vector (p1, . . . , pk). Then, max{sc(Ò
L), sc(ÓL), sc(ßL), sc(þL)} �

∏k
j“1(ij ` pj).

1 Also called a scattered subword in the literature [11,19].
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3 Product-Form Minimal Automata

As shown in Example 1, the minimal automaton, in general, does not equal the
minimal commutative automaton. Here, we introduce the class of commutative
regular languages for which both are isomorphic. The corresponding commuta-
tive languages are called languages with a minimal automaton of product-form,
as the minimal commutative automaton is built with the Cartesian product.

Definition 6 (languages with product-form minimal automaton). A
commutative and regular language L Ď Σ∗ is said to have a minimal automaton
of product-form, if CL is isomorphic to AL.

If |Σ| “ 1, we see easily that CL is the minimal deterministic and complete
automaton.

Proposition 7. If |Σ| “ 1, then each commutative and regular L Ď Σ∗ has
a minimal automaton of product-form. More generally, if L Ď {a}∗, then L
(Σz{a})∗ has a minimal automaton of product-form.

Apart from the unary languages, we give another example of a language with
minimal automaton of product-form next.

Example 3. Let L “ (aa)∗ (bb)∗Y(aaa)∗ b(bb)∗ over Σ “ {a, b}. See Fig. 2 for
the minimal commutative automaton. Here, the minimal commutative automa-
ton equals the minimal automaton.

Fig. 2. CL for L “ (aa)∗ (bb)∗ Y (aaa)∗ b(bb)∗. Here CL is isomorphic to AL.

However, the next proposition gives a strong necessary criterion for a com-
mutative language to have a minimal automaton of product-form.

Proposition 8. If L Ď Σ∗ is commutative and regular with a minimal automa-
ton of product-form, then |{x P Σ | π{x}(L) is finite }| � 1. So, πΓ (L) is infinite
for |Γ | � 2, in particular no finite language over an at least binary alphabet is
in this class.
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For example, L “ {ε} over Σ does not have a minimal automaton of product-
form if |Σ| ą 1. Recall that the minimal automaton, as defined here, is always
complete. Note that the converse of Proposition 8 is not true, as shown by aa∗

over Σ “ {a, b}.
In the following statement, we give alternative characterizations for commu-

tative languages with minimal automata of product-form.

Theorem 9. Let L Ď Σ∗ be a commutative regular language with index vector
(i1, . . . , ik) and period vector (p1, . . . , pk). The following are equivalent:

1. the minimal automaton has product-form;
2. sc(L) “ ∏k

j“1(ij ` pj);
3. u ”L v implies @a P Σ : a|u|a ”L a|v|a ;
4. u ”L v if and only if @a P Σ : a|u|a ”L a|v|a .

Next, we give a way to construct commutative regular languages with mini-
mal automata of product-form.

Lemma 10. Let Σ “ {a1, . . . , ak} and, for j P {1, . . . , k}, Lj Ď {aj}∗ be regular

and infinite with index ij and period pj. Then, sc
(

k
j“1Lj

)
“ ∏k

j“1 sc(Lj) “
∏k

j“1(ij ` pj) and k
j“1Lj has index vector (i1, . . . , ik) and period vector

(p1, . . . , pk). With Theorem 9, k
j“1Lj has a product-form minimal automaton.

In the next theorem and the following remark, we investigate closure prop-
erties of the class in question.

Theorem 11. The class of commutative regular languages with minimal
automata of product-form is closed under left and right quotients and comple-
mentation. It is not closed under union, intersection and projection.

Remark 1. We have a b∗ Xa∗ b “ a b, showing, using Proposition 7 and 8,
that this class is not closed under intersection and by DeMorgan’s laws, as we
have closure under complementation, we also cannot have closure under union.
Also, L “ aa∗ bb∗ cc∗ Y bb∗ a∗ Y b∗ has a minimal automaton of product-
form, but π{a,b}(L) “ bb∗ a∗ Y b∗ is the language from Example 1. So, this
class is also not closed under projection.

Theorem 12. Let U, V Ď Σ∗ be commutative regular languages with product-
form minimal automata with sc(U) “ n and sc(V ) “ m.

1. We have sc(U V ) � 2nm if |Σ| ą 1 and sc(U V ) � nm if |Σ| “ 1.
Furthermore, for any Σ, there exist U, V as above such that nm � sc(U V ).

2. In the worst case, n states are sufficient and necessary for a DFA to recog-
nize ÒU . Similarly for the downward closure and interior operations.

3. In the worst case, n states are sufficient and necessary for a DFA to recognize
the projection of U .
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4. In the worst case, nm states are sufficient and necessary for a DFA to recog-
nize U X V or U Y V .

Remark 2. I do not know if the bound 2nm stated in Theorem 1 for the shuffle
operation is tight, but the next example shows that if we have a binary alpha-
bet, we can find commutative languages with state complexities n and m and
product-form minimal automata whose shuffle needs an automaton with strictly
more than nm states. A similar construction works for more than two letters. Let
p, q ą 11 be two coprime numbers. Set U “ a bp´1(bp)∗Yap´1(ap)∗ bbp´1(bp)∗

and V “ bq´1(bq)∗ Yaq´1(aq)∗ bbbq´1(bq)∗. Then, using that shuffle distributes
over union and a number-theoretical result from [27, Lemma 5.1], we find

U V “ a W Y ap´1(ap)∗ bWY
aq(aq)∗ bbW Y aq´1`p´1(ap)∗(aq)∗ bbbW,

where aq´1`p´1(ap)∗(aq)∗ “ F Yapq´1a∗ for some finite set F Ď {ε, a, . . . , apq´3}
and W “ E Y bpq´1b∗ for some E Ď {ε, b, . . . , bpq´3}. Note that by [27, Lemma
5.1] we have apq´2 bbbW XU V “ H. All languages involved have a product-
form minimal automaton. The minimal automaton for U has (2 ` p) · (1 ` p)
states, the minimal automaton for V has (1 ` q) · (q ` 2) states and that for
U V has 2pq · (pq ` 3) states. As (p ´ 11)(q ´ 11) ą 0 we can deduce (1 `
p)(2 ` p)(1 ` q)(2 ` q) ă 2(pq)2 ă 2pq(pq ` 3).

4 Partial Commutativity and Other Subclasses

A partial commutation on Σ is a symmetric and irreflexive relation I Ď Σ ˆ Σ,
often called the independence relation. Of interest is the congruence ∼I generated
on Σ∗ by the relation {(ab, ba) | (a, b) P I}. A language L Ď Σ∗ is closed under
I-commutation if u P L and u ∼I v implies v P L. If I “ {(a, b) P Σ ˆΣ | a �“ b},
then the languages closed under I-commutation are precisely the commutative
languages.

Languages closed under some partial commutation relation have been exten-
sively studied, see [10], also for further references, and in particular with relation
to (Mazurkiewicz) trace theory [5,10,21], a formalism to describe the execution
histories of concurrent programs.

Here, we will focus on the case that (Σ ˆ Σ)zI is transitive, i.e., if u �∼I v
and v �∼I w implies u �∼I w. In this case, (Σ ˆ Σ)zI is an equivalence relation
and we will write Σ1, . . . , Σk for the different equivalence classes.

The reason to focus on this particular generalization is, as we will see later,
that the definition of the minimal commutative automaton transfers to this more
general setting without much difficulty.

To ease the notation, if we have a partial commutation relation as above
with a corresponding partition Σ “ Σ1 Y . . . Σk of the alphabet, we also write
LΣ1,...,Σk

for the class of languages closed under this partial commutation. Then,
as is easily seen, we have L P LΣ1,...,Σk

if and only if, for x P Σi, y P Σj
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(i �“ j) and each u, v P Σ∗ we have uxyv P L ô uyxv P L. For example, L is
commutative if and only if L P L{a1},...,{ak} for Σ “ {a1, . . . , ak}.

4.1 The Canonical Automaton

Here, we generalize our notion of commutative minimal automaton, Definition 1,
to have uniform recognition devices for languages in LΣ1,...,Σk

.

Definition 13. Let Σ “ Σ1 Y . . . Y Σk be a partition and L Ď Σ∗. Set
CL,Σ1,...,Σk

“ (Σ,S1 ˆ . . .ˆSk, δ, s0, F ) with, for i P {1, . . . , k}, Si “ {[u]”L
| u P

Σ∗
i }, F “ {([πΣ1(u)]”L

, . . . , [πΣk
(u)]”L

) | u P L}, s0 “ ([ε]”L
, . . . , [ε]”L

) and,
for x P Σi,

δ(([u1]”L
, . . . , [ui]”L

, . . . , [uk]”L
), x) “ ([u1]”L

, . . . , [uix]”L
, . . . , [uk]”L

)

with words uj P Σ∗
j , j P {1, . . . , k}. This is called the canonical automaton for

the given L with respect to Σ “ Σ1 Y . . . Y Σk.

Next, we show that the canonical automata recognize precisely the languages
in LΣ1,...,Σk

. Note that we have dropped the assumption of regularity of L.

Theorem 14. Let L Ď Σ∗ and Σ “ Σ1 Y . . . Y Σk be a partition. Then,

1. L Ď L(CL,Σ1,...,Σk
) and L(CL,Σ1,...,Σk

) P LΣ1,...,Σk
.

2. L “ L(CL,Σ1,...,Σk
) ô L P LΣ1,...,Σk

.
3. Let L P LΣ1,...,Σk

. Then L is regular if and only if CL,Σ1,...,Σk
is finite.

Also, used in defining a subclass in the next subsection, we will derive a canon-
ical automaton for certain projected languages from CL,Σ1,...,Σk

. Essentially, the
next definition and proposition mean that if we only use one “coordinate” of
CL,Σ1,...,Σk

, then this recognizes a projection of L.

Definition 15. Let i P {1, . . . , k} and L P LΣ1,...,Σk
. The canonical projection

automaton (for Σi) is CL,Σi
“ (Σi, Si, δi, [ε]”L

, Fi) with Si “ {[u]”L
| u P Σ∗

i },
δi([u]”L

, x) “ [ux]”L
for x P Σi and Fi “ {[πΣi

(u)]”L
| u P L}.

Proposition 16. Let L P LΣ1,...,Σk
. Then, for i P {1, . . . , k}, πΣi

(L) “
L(CL,Σi

).

4.2 Subclasses in LΣ1,...,Σk

Here, we investigate several subclasses of LΣ1,...,Σk
. Recall that, for L Ď Σ∗, the

minimal automaton of L is denoted by AL.

Definition 17. Let Σ “ Σ1 Y . . .YΣk be a partition. Then, define the following
classes of languages.

L1 “ {L | CL,Σ1,...,Σk
has a single final state and L “ L(CL,Σ1,...,Σk

). },

L2 “
{

L | L “
k

i“1
πΣi

(L)

}

,

L3 “ {L | L “ L(CL,Σ1,...,Σk
), @i P {1, . . . , k} : AπΣi

(L) is isomorphic to CL,Σi
},

L4 “ {L | AL is isomorphic to CL,Σ1,...,Σk
}.
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First, we show that these are in fact subclasses of LΣ1,...,Σk
.

Proposition 18. Let Σ “ Σ1 Y . . . Y Σk be a partition. For each i P {1, 2, 3, 4}
we have Li Ď LΣ1,...,Σk

.

Remark 3. Regarding L1, note that there exist languages L “ L(CL,Σ1,...,Σk
)

such that the minimal automaton has a single final state, but CL,Σ1,...,Σk
has

more than one final state. For example, L “ {w P {a, b}∗ | |w|a ą 0 or |w|b ą 0}.
However, if CL,Σ1,...,Σk

has a single final state, then the minimal automata also
has only a single final state.

Example 4. Let Σ “ Σ1YΣ2 with Σ1 “ {a} and Σ2 “ {b}. Set L “ (aa(aaa)∗

bb(bbb)∗) Y (a(aaa)∗ b(bbb)∗). Then L P (L3 X L4)zL2.

Example 5. Set L “ (a(aaa)∗ b) Y aa(aaa)∗. Then L P L3zL4.

The languages in L1 arise in connection with the canonical automaton.

Proposition 19. Let L P LΣ1,...,Σk
and CL,Σ1,...,Σk

“ (Σ,S1ˆ. . .ˆSk, δ, s0, F ).
Then, for all s P S1 ˆ . . . ˆ Sk, {w P Σ∗ | δ(s0, w) “ s} P L1.

Next, we give alternative characterization for L2,L3 and L4.

Theorem 20. Let L P LΣ1,...,Σk
. Then,

1. L P L2 if and only if, for each w P Σ∗, the following is true:

w P L ô @i P {1, . . . , k} : πΣi
(w) P πΣi

(L);

2. L P L3 if and only if, for all i P {1, . . . , k} and u P Σ∗
i , we have

[u]”L
X Σ∗

i “ [u]”πΣi
(L) X Σ∗

i ;

3. L P L4 if and only if, for each u, v P Σ∗,

u ”L v ô @i P {1, . . . , k} : πΣi
(u) ”L πΣi

(v).

Example 6. Let L1 be the language from Example 3. Set L2 “ a1 a2 “
{a1a2, a2a1}. Both of their letters commute for the partition {a1, a2} “ {a1} Y
{a2}. Then, L1 P L4zL3 and L2 P L1zL4.

Finally, in Theorem 21, we establish inclusion relations, which are all proper,
between L1,L2 and L3, also see Fig. 3.

Theorem 21. We have L1 � L2 � L3.

Remark 4. Theorem 21 and Example 6 show that L4 is incomparable to each of
the other language classes with respect to inclusion.
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Fig. 3. Inclusion relations between the language classes.

5 Conclusion

The language class of commutative regular languages with minimal automata of
product-form behaves well with respect to the descriptional complexity measure
of state complexity for certain operations, see Table 2, and Lemma 10 allows us
to construct infinitely many commutative regular languages with product-form
minimal automaton. The investigation started could be carried out for other
operations and measures of descriptional complexity as well. Likewise, as done
in [8,9] for commutative and more general partial commutativity conditions, it
might be interesting if the learning algorithms given there could be improved for
the language class introduced.

Lastly, if the bound 2nm for shuffle is tight is an open problem. Remark 2
shows that the bound nm is not sufficient, however, giving an infinite family of
commutative regular languages with minimal automata of product-form attain-
ing the bound 2nm for shuffle is an open problem.
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Abstract. We investigate the state complexity of the upward and down-
ward closure and interior operations on commutative regular languages.
Then, we systematically study the state complexity of these operations
and of the shuffle operation on commutative group languages and com-
mutative aperiodic (or star-free) languages.

Keywords: Finite automata · State complexity · Shuffle · Upward
and downward closure · Commutative languages · Group languages ·
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1 Introduction

The state complexity, as used here, of a regular language L is the minimal number
of states needed in a complete deterministic automaton recognizing L. The state
complexity of an operation on regular languages is the greatest state complexity
of the result of this operation as a function of the (maximal) state complexities
of its arguments.

Investigating the state complexity of the result of a regularity-preserving
operation on regular languages, see [7] for a survey, was first initiated by Maslov
in [21] and systematically started by Yu, Zhuang and Salomaa in [31].

A language is called commutative, if for any word in the language, every
permutation of this word is also in the language. The class of commutative
automata, which recognize commutative regular languages, was introduced in [3].

The shuffle operation has been introduced to understand the semantics of
parallel programs [4,22,28,30]. The shuffle operation is regularity-preserving on
all regular languages. The state complexity of the shuffle operation in the general
cases was investigated in [1] for complete deterministic automata and in [5]
for incomplete deterministic automata. The bound 2nm´1 ` 2(m´1)(n´1)(2m´1 ´
1)(2n´1 ´ 1) was obtained in the former case, which is not known to be tight in
case of complete automata, and the tight bound 2nm ´ 1 in the latter case.
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A word is a (scattered) subsequence of another word, if it can be obtained
from the latter word by deleting letters. This gives a partial order, and the
upward and downward closure and interior operations, denoted by ÒU , ÓU , þU
and ßU , refer to this partial order. Languages that result from upward clo-
sure operation are also known as shuffle ideals. The state complexity of these
operations was investigated in [9,10,12,19,24]

In [14–17] the state complexity of these operations was investigated in the
case of commutative regular languages. The results are summarized in Table 1.

Table 1. State complexity results on commutative regular languages, where n and
m denote the state complexities of the input languages. Also, f(n, m) “ 2nm´1 `
2(m´1)(n´1)(2m´1 ´ 1)(2n´1 ´ 1) is the general bound for shuffle from [1].

Operation Upper bound Lower bound Reference

πΓ (U), Γ Ď Σ n n [14,17]

U V min{(2nm)|Σ|, f(n, m)} nm [1,14,15]

ÒU min{n|Σ|, 2n´2 ` 1} Ω

((
n

|Σ|
)|Σ|)

Theorem 10 & [12,17,19]

ÓU min{n|Σ|, 2n´1} n Theorem 10 & [17,19]

þU min{n|Σ|, 2n´2 ` 1} Ω

((
n

|Σ|
)|Σ|)

Theorem 10 & [17,19]

ßU min{n|Σ|, 2n´1} n Theorem 10 & [17,19]

U Y V , U X V nm Sharp, for any Σ [14,17]

A group language is a language recognizable by an automaton where every
letter induces a permutation of the state set. The investigation of the state
complexity of these languages was started recently [18].

A star-free language is a language which can be written with an extended regu-
lar expression, i.e., an expression involving concatenation, the Boolean operations
and Kleene star, without using the Kleene star [23]. The class of star-free lan-
guages coincides with the class of aperiodic languages [29], i.e., those languages
recognizable by automata such that no subset of states is permuted by a word.

So, in this sense the aperiodic languages are as far away from the group lan-
guages as possible. In [14,15] it has been shown that every commutative and
regular language can be decomposed into commutative aperiodic and commuta-
tive group languages in the following way.

Theorem 1 ([14,15]). Suppose L Ď Σ∗ is commutative and regular. Then, L
is a finite union of languages of the form U V , where U is a commutative
aperiodic language and V is a commutative group language over a subalphabet1

of Σ.

1 Over the whole alphabet Σ, these languages are precisely the languages recognizable
by automata whose transition monoids are 0-groups, i.e., groups with a zero element
adjoined.
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Here, we will investigate the state complexity of operations considered in
[14,15] for general commutative regular languages for the commutative group
and the commutative aperiodic languages separately. Additionally, we will inves-
tigate four new operations – the upward and downward closure and interior
operations, denoted by ÒU , ÓU , þU and ßU – for which we first state a bound
on general commutative regular languages and then also bounds for commuta-
tive aperiodic and commutative group languages. See Table 1 and Table 2 for a
summary of the results.

2 Preliminaries

In the present work, we assume that k � 0 denotes our alphabet size and Σ “
{a1, . . . , ak}. We will also write a, b, c for a1, a2, a3 in case of |Σ| � 3. The set
Σ∗ denotes the set of all finite sequences, i.e., of all words. The finite sequence
of length zero, or the empty word, is denoted by ε. For a given word we denote
by |w| its length, and for a P Σ by |w|a the number of occurrences of the symbol
a in w. A language is a subset of Σ∗.

Table 2. The state complexity results for various operations for input languages of
state complexities n and m. The upper bound (�) and the best known lower bound (�)
are indicated for the group and the aperiodic commutative languages. Also, f(n, m) “
2nm´1`2(m´1)(n´1)(2m´1´1)(2n´1´1) is the general bound for shuffle from [1]. So, the
bound for shuffle is actually the minimum of the bound stated and f(n, m) as written
in Table 1 (this is left out to save horizontal space). For the lower bound for projection,
consider the group language (an)∗ Σz{a} and the aperiodic language {an´1} Σz{a}
and Γ Ď Σz{a}.

Group case Aperiodic case

Op. � � � � Reference

πΓ (U) n n n n [17]

U V (nm)|Σ| nm (n ` m ´ 1)|Σ|
{

Ω (nm) if |Σ| ą 1

n ` m ´ 1 if |Σ| “ 1
Theorem 13,
Proposition 14,
[2,14,15] &
Proposition 20

ÒU n|Σ| n min{n|Σ|, 2n´2 ` 1} Ω

((
n

|Σ|
)|Σ|)

Theorem 10,
Proposition 16,
Proposition 5 & [19]

ÓU 1 1 min{n|Σ|, 2n´1} n Theorem 10,
Proposition 15,
Proposition 19 & [19]

þU n|Σ| n min{n|Σ|, 2n´2 ` 1} Ω

((
n

|Σ|
)|Σ|)

Eq. (1)

ßU 1 1 min{n|Σ|, 2n´1} n Eq. (1)

U X V

U Y V

nm nm

{
nm |Σ| � 2

max{n, m} |Σ| “ 1

{
nm |Σ| � 2

max{n, m} |Σ| “ 1
Theorem 17 & [2]
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The shuffle operation, denoted by , is defined by

u v “ {w P Σ∗ | w “ x1y1x2y2 · · · xnyn for some words

x1, . . . , xn, y1, . . . , yn P Σ∗ such that u “ x1x2 · · · xn and v “ y1y2 · · · yn},

for u, v P Σ∗ and L1 L2 :“ ⋃
xPL1,yPL2

(x y) for L1, L2 Ď Σ∗. If L1, . . . , Ln Ď
Σ∗, we set n

i“1Li “ L1 . . . Ln.
Let Γ Ď Σ. The projection homomorphism πΓ : Σ∗ → Γ ∗ is the homomor-

phism given by πΓ (x) “ x for x P Γ , πΓ (x) “ ε otherwise and extended by
πΓ (ε) “ ε and πΓ (wx) “ πΓ (w)πΓ (x) for w P Σ∗ and x P Σ. As a shorthand,
we set, with respect to a given naming Σ “ {a1, . . . , ak}, πj “ π{aj}. Then

πj(w) “ a
|w|aj

j . For L Ď Σ∗, we set πΓ (L) “ {πΓ (u) | u P L}.
A quintuple A “ (Σ,Q, δ, q0, F ) is a finite deterministic and complete

automaton, where Σ is the input alphabet, Q the finite set of states, q0 P Q
the start state, F Ď Q the set of final states and δ : Q ˆ Σ → Q is the totally
defined state transition function. The transition function δ : QˆΣ → Q extends
to a transition function on words δ∗ : Q ˆ Σ∗ → Q by setting δ∗(q, ε) :“ q and
δ∗(q, wa) :“ δ(δ∗(q, w), a) for q P Q, a P Σ and w P Σ∗. In the remainder, we
drop the distinction between both functions and will also denote this extension
by δ. Here, we do not consider incomplete automata. The language recognized
by an automaton A “ (Σ,Q, δ, q0, F ) is L(A) “ {w P Σ∗ | δ(q0, w) P F}. A
language L Ď Σ∗ is called regular if L “ L(A) for some finite automaton A.

A language L Ď Σ∗ is a group language, if there exists a permutation automa-
ton A “ (Σ,Q, δ, q0, F ), i.e., an automaton such that the map q �→ δ(q, a) is a
permutation for each a P Σ, recognizing L. A language L Ď Σ∗ is an aperiodic
language, if there exists an automaton A “ (Σ,Q, δ, q0, F ) recognizing it such
that, for each w P Σ∗, q P Q and n � 1, if δ(q, wn) “ q, then δ(q, w) “ q.

The Nerode right-congruence with respect to L Ď Σ∗ is defined, for u, v P Σ∗,
by u ”L v if and only if @x P Σ∗ : ux P L ↔ vx P L. The equivalence class
of w P Σ∗ is denoted by [w]”L

“ {x P Σ∗ | x ”L w}. A language is regular if
and only if the above right-congruence has finite index, and it can be used to
define the minimal deterministic automaton AL “ (Σ,QL, δL, [ε]”L

, FL) with
QL “ {[u]”L

| u P Σ∗}, δL([w]”L
, a) “ [wa]”L

and FL “ {[u]”L
| u P L}.

Let L Ď Σ∗ be regular with minimal automaton AL “ (Σ,QL, δL, [ε]”L
, FL).

The number |QL| is called the state complexity of L Two words are said to
be distinguishable, if they denote different right-congruence classes for a given
language.

A language L Ď Σ∗ is commutative, if, for u, v P Σ∗ such that |v|x “ |u|x
for every x P Σ, we have u P L if and only if v P L. For commutative regular
languages we have the following normal form.

Theorem 2 ([14,15]). Let Σ “ {a1, . . . , ak} be our alphabet. A commutative
language L Ď Σ∗ is regular if and only if it can be written in the form L “
⋃n

i“1 U
(i)
1 . . . U

(i)
k with non-empty unary regular languages U

(i)
j Ď {aj}∗ for
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i P {1, . . . , n} and j P {1, . . . k} that can be recognized by unary automata with a
single final state.

Let L Ď Σ∗ be a commutative regular language. For each j P {1, . . . , k} let
ij � 0 and pj � 1 be the smallest numbers such that [aij

j ]”L
“ [aij`pj

j ]”L
. The

vectors (i1, . . . , ik) and (p1, . . . , pk) are then called the index and period vectors
of L. These notions where introduced in [8,14,15] and it was shown that they
can be used to bound the state complexity of L.

Theorem 3 ([8,14,15]). Let L Ď Σ∗ be a commutative regular language with
index vector (i1, . . . , ik) and period vector (p1, . . . , pk). Then, for any j P
{1, . . . , k}, we have ij ` pj � sc(L) �

∏k
r“1(ir ` pr).

Example 1. Let L “ (aa)∗ (bb)∗Y(aaaa)∗ b∗. Then (i1, i2) “ (0, 0), (p1, p2) “
(4, 2), π1(L) “ (aa)∗ and π2(L) “ b∗.

The following result from [14,15] connects the index and period vector with
the aperiodic and group languages.

Theorem 4. A commutative regular language is:

1. aperiodic iff its period vector equals (1, . . . , 1);
2. a group language iff its index vector equals (0, . . . , 0).

Let u, v P Σ∗. Then, u is a subsequence2 of v, denoted by u ď v, if and only if
v P u Σ∗. The thereby given order is called the subsequence order. Let L Ď Σ∗.
Then, we define:

1. the upward closure, by ÒL “ L Σ∗ “ {u P Σ∗ : Dv P L : v ď u};
2. the downward closure, by ÓL “ {u P Σ∗ : u Σ∗ X L �“ H} “ {u P Σ∗ : Dv P

L : u ď v};
3. the upward interior, denoted by ßL, as the largest upward-closed set in L,

i.e. the largest subset U Ď L such that ÒU “ U ;
4. the downward interior, denoted by þL, as the largest downward-closed set in

L, i.e., the largest subset U Ď L such that ÓU “ U .

The following equations are valid [19]:

þL “ Σ∗z Ò(Σ∗zL) ßL “ Σ∗z Ó(Σ∗zL). (1)

A remarkable fact is that for every language, the above closure operators
give regular languages. This is based on the fact that the subsequence order
is a well-order, i.e., any upward-closed set is generated by a finite subset of
words [11,13].

For general L Ď Σ∗, there is no way to compute a recognizing automaton for
the upward and downward operations. This is seen by an easy argument, due
to [9]. Let L Ď Σ∗ be a recursively enumerable language. Then, L is non-empty

2 Also called a scattered subword in the literature [9,19].
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if and only if ÒL is non-empty. However, the former problem is undecidable for
recursively enumerable languages, but decidable for regular languages. Hence, if
we can compute a recognizing automaton for ÒL, we can decide non-emptiness
for L, which is, in general, not possible. But for regular and context-free L,
recognizing automata for these operations are computable [9,20].

In [12], a lower bound for the state complexity of the upward closure was
established by using the language L “ ⋃

aPΣ{aN}, which is commutative and
finite. As every finite language is aperiodic and we are interested in this class,
let us highlight this fact with the next statement.

Proposition 5 (Héam [12]). Set

g(n) “ max{sc(ÒL) | sc(L) � n and L is finite and commutative}.

Then g(n) P Ω

((
n

|Σ|
)|Σ|)

.

The next is from [14,15].

Theorem 6. Let U, V Ď Σ∗ be aperiodic commutative languages with index
vectors (i1, . . . , ik) and (j1, . . . , jk). Then, U V has index vector component-
wise less than (i1 ` j1, . . . , ik ` jk) and period vector (1, . . . , 1). So, sc(U V ) �
∏k

l“1(il ` jl ` 1). Hence, Theorem 3 yields sc(U V ) � (sc(U) ` sc(V ) ´ 1)|Σ|.

As a corollary of Theorem 6 and Theorem 4, we also get, as the star-free and
aperiodic languages coincide [29], an old result by J.F. Perrot [6,25,27].

Corollary 7 (J.F. Perrot [25]). The shuffle of two commutative star-free lan-
guages is star-free.

3 The Upward and Downward Operations

In this section, we establish state complexity bounds for the upward and down-
ward closure and interior operations. The constructions also yield polynomial
time algorithms for computing those closures, if the alphabet is fixed and not
allowed to vary with the input.

Theorem 8. Let Σ “ {a1, . . . , ak}. Suppose L Ď Σ∗ is commutative and regular
with index vector (i1, . . . , ik) and period vector (p1, . . . , pk). Then,

max{sc(ÒL), sc(ÓL), sc(ßL), sc(þL)} �
k∏

j“1

(ij ` pj).

Proof (sketch). We only give a rough outline of the proof idea for the first
operation. For L, as shown in [8,14,15], we can construct an automaton of
size

∏k
j“1(ij ` pj) for L whose states can be put in correspondence with the

modulo and threshold counting for the different letters. More formally, it could
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be shown that there exists an automaton C “ (Σ,S1, ˆ . . . ˆ Sk, δ, s0, F ) with
Sj “ {0, . . . , ij ` pj ´ 1} for j P {1, . . . , k} recognizing L.

Construct automaton for ÒL: Set AÒ “ (Σ,S1 ˆ . . . ˆ Sk, δÒ, s0, FÒ) with

FÒ “ {(s1, . . . , sk) P S1 ˆ . . . ˆ Sk |
D(f1, . . . , fk) P F @j P {1, . . . , k} : fj � sj};

δÒ((s1, . . . , sk), aj) “
{

(s1, . . . , sk) if ij ` pj ´ 1 “ sj ;
δ((s1, . . . , sk), aj) otherwise,

for j P {1, . . . , k} and (s1, . . . , sk) P S1 ˆ . . . ˆ Sk. With a similar idea, an
automaton AÓ such that L(AÓ) “ ÓL can be constructed. See Example 2 for
concrete constructions. ��
Example 2. Let L “ bb(bb)∗ Y (b a(aa)∗). Then, ÒL “ bbb∗ Y (bb∗ aa∗),
ÓL “ b∗ Y (aa∗ {ε, b}), ßL “ H and þL “ H. The constructions of the
automata AÒ and AÓ with L(AÒ) “ ÒL and L(AÓ) “ ÓL from the proof sketch
of Theorem 8 are illustrated, for the example language L, in Fig. 1.

Fig. 1. Construction of automata for the upward and downward closure for the lan-
guage L “ bb(bb)∗ Y (b a(aa)∗) by starting from an automaton in a “rectangular”
normal form for L. The left-most automaton recognizes L, the automaton in the middle
recognized ÒL and the right-most automaton recognized ÓL. See Example 2 for details.

The constructions done in the proof of Theorem 8 can actually be performed
in polynomial time.

Corollary 9. Fix the alphabet Σ. Let L Ď Σ∗ be commutative and regular, given
by a finite recognizing automaton with n states. Then, recognizing automata for
ÒL, ÓL, þL and ßL are computable in polynomial time in n.
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With Theorem 3, we can derive the next bound from Theorem 8.

Theorem 10. Let L Ď Σ∗ be commutative and recognizable by an automaton
with n states. Then, the upward and downward closures and interiors of L are
recognizable by automata of size n|Σ|.

4 The Case of Commutative Group Languages

Before we investigate the state complexity of shuffle, union, intersection and
the closure and interior operations for commutative group languages, we give a
normal form theorem for commutative groups languages similar to Theorem 2.

Theorem 11. Let Σ “ {a1, . . . , ak} and L Ď Σ∗. Then, the following condi-
tions are equivalent:

1. L is a commutative group language;
2. L is a finite union of languages of the form U1 . . . Uk with Uj Ď {aj}∗

a group language recognizable by an automaton with a single final state;
3. L is a finite union of languages of the form U1 . . . Uk with Uj Ď {aj}∗

being group languages.

4.1 The Shuffle Operation

Here, we give a sharp bound for the state complexity of two commutative group
languages. However, in this case, we do not express the bound in terms of the
size of recognizing input automata, but in terms of the index and period vectors
of the input languages. The result generalizes a corresponding result from [26]
for unary group languages to commutative group languages.

Theorem 12. Let Σ “ {a1, . . . , ak}. For commutative group languages U, V Ď
Σ∗ with period vectors (p1, . . . , pk) and (q1, . . . , qk) their shuffle U V has index
vector (i1, . . . , ik) with ij “ lcm(pj , qj) ´ 1 for j P {1, . . . , k} and period vector
(gcd(p1, q1), . . . , gcd(pk, qk)). Hence, by Theorem 3,

sc(U V ) �
k∏

j“1

(gcd(pj , qj) ` lcm(pj , qj) ´ 1).

Furthermore, there exist commutative group languages such that a minimal
automaton recognizing their shuffle reaches the bound.

As for any two numbers n,m ą 0 we always have gcd(n,m)` lcm(n,m)´1 �
nm, we can deduce the next bound in terms of the size of recognizing automata.
The result improves the general bound (2nm)|Σ| from [14,15].

Theorem 13. Let U, V Ď Σ∗ be commutative group languages recognized by
automata with n and m states. Then, U V is recognizable by an automaton
with at most (nm)|Σ| states.
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We do not know if the last bound is sharp. The best lower bound we can give
is the next one, which essentially follows by the lower bound for concatenation
in case of unary languages, see [31, Theorem 5.4].

Proposition 14. Let n,m ą 0 be coprime numbers. Then, there exist commu-
tative group languages of states complexities n and m such that their shuffle has
state complexity nm.

4.2 The Upward and Downward Closure and Interior Operations

First, we will show that every word is contained in the downward closure of a
commutative group language.

Proposition 15. Let L Ď Σ∗ be a commutative group language. Then the down-
ward closure ÓL equals Σ∗.

This is not true for general commutative languages, see Proposition 19.

Proposition 16. Let n ą 0. There exists a commutative group language L Ď Σ∗

with period vector (n, 1, . . . , 1) such that sc(L) “ n and its upward closure has
state complexity n with index vector (n´1, 1, . . . , 1) and period vector (1, . . . , 1).

Proof. Let a P Σ and n ą 0. Set L “ {w P Σ∗ | |w|a ” n ´ 1 (mod n)} “
an´1(an)∗ (Σz{a})∗. Then, ÒL “ an´1a∗ (Σz{a})∗ and sc(ÒL) “ n. ��

4.3 Union and Intersection

Theorem 17. For any alphabet Σ and commutative group language of state com-
plexities n and m, the intersection and union is recognizable by an automaton with
nm states. Furthermore, there exists commutative group languages with state com-
plexities n and m such that every automaton for their union (intersection) needs
nm states.

Proof. The upper bound holds for regular languages in general [31]. Let a P Σ
and n,m ą 0 two coprime numbers. The languages for the lower bound are
similar to the ones given in [31], but also work for Σ “ {a} (in [31] |Σ| � 2
is assumed). Set U “ {w P Σ∗ | |w|a ” 0 (mod n)} “ (an)∗ (Σz{a})∗ and
V “ {w P Σ∗ | |w|a ” 0 (mod m)}. Then, sc(U X V ) “ sc(U Y V ) “ nm. ��

5 The Case of Commutative Aperiodic Languages

For shuffle (Theorem 6), union and intersection (see [31, Theorem 4.3]), we
already have upper bounds, see Table 2. Note that the lower bound construction
for Boolean operations given in [2, Theorem 1 & 8] over an at least binary
alphabet uses the commutative and aperiodic languages {w P Σ∗ | |w|a “ n´2}
and {w P Σ∗ | |w|b “ m´2} for n,m � 2. For the upward closure, Proposition 5
gives a lower bound. So, here, we handle the missing cases of the downward
closure and the shuffle operation.

But first, we give a similar normal form theorem for aperiodic commutative
languages as for group languages. The proof is essentially the same as in the
group case.
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Theorem 18. Let Σ “ {a1, . . . , ak} and L Ď Σ∗. Then, the following condi-
tions are equivalent:

1. L is a commutative and aperiodic language;
2. L is a finite union of languages of the form U1 . . . Uk with Uj Ď {aj}∗

aperiodic and recognizable by an automaton with a single final state;
3. L is a finite union of languages of the form U1 . . . Uk with Uj Ď {aj}∗

aperiodic.

Next, we state a lower bound for the downward closure. By Eq. (1), using
the complemented language, this implies the same lower bound for the upward
interior.

Proposition 19. Let a P Σ and n ą 0. Set L “ {an}. Then, ÓL “ {ε, a, . . . , an}
and so sc(ÓL) “ sc(L) “ n ` 2.

For concatenation it is known that the state complexity for unary languages
is nm [31, Theorem 5.4 & Theorem 5.5]. In fact, the witness languages for the
lower bound are group languages (see also Proposition 14). For unary aperiodic
languages, concatenation has state complexity n`m´1 [2, Theorem 8]. By using
these unary witness languages and introducing self-loops for additional letters,
and as in the unary case (and for the mentioned extension to more letters)
concatenation and shuffle coincide, this immediately gives lower bounds for the
shuffle operation on commutative languages as well.

However, in the next result, we show that we can do better for aperiodic
(even for finite) commutative languages.

Proposition 20. Let Σ be an at least binary alphabet. Then for each even
n,m ą 0 there exist commutative and finite languages U, V Ď Σ∗ with sc(U) “ n,
sc(V ) “ m such that sc(U V ) � nm

4 ` 1.

Proof. We give the construction for a binary alphabet, as for larger alphabets the
lower bound is implied by adding self-loops to the automaton for each additional
letter. Let Σ “ {a, b} and N,M � 0 with n “ |Σ|N ` 2 and m “ |Σ|M ` 2. Set
U “ {aN , bN} and V “ {aM , bM}. Then sc(U) “ n and sc(V ) “ m. Set

L “ U V “ {u P Σ∗ | (|u|a “ N ` M, |u|b “ 0) ∨ (|u|a “ N, |u|b “ M)
∨ (|u|a “ M, |u|b “ N) ∨ (|u|a “ 0, |u|b “ N ` M)}.

We show that the words aibj for i P {0, 1, . . . , N} and j P {0, 1, . . . ,M} are
pairwise inequivalent for the Nerode right-congruence. Let (n1, n2), (m1,m2) P
{0, 1, . . . , N} ˆ {0, 1, . . . ,M} with (n1, n2) �“ (m1,m2). First, suppose ni �“ 0 for
i P {0, 1} and mi �“ 0 for i P {0, 1}. Set u “ aN´n1bM´n2 . Then an1bn2u P L.
By the assumptions, am1bm2u P L if and only if (m1,m2) ` (N ´ n1,M ´ n2) “
(M,N). So, if this is not the case, then u distinguishes both words. Otherwise,
we must have (n1, n2) ` (N ´ m1,M ´ m2) �“ (M,N), for if not then M ´ N “
n1 ´ m1 “ m1 ´ n1. The last equality then gives n1 “ m1 and similarly we find
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n2 “ m2. So, in that case with v “ aN´m1bM´m2 we have am1bm2v P L but
an1bn2v /P L. Lastly, if at least one component is zero, we must distinguish more
cases as {aN`M , bN`M} Ď L, which are left out here due to space.

So, we have sc(L) � (N ` 1)(M ` 1) ` 1 (the additional one accounts for a
trap state necessary, as we measure the state complexity in terms of complete
automata). Hence, sc(L) � nm

4 ` 1. ��

6 Conclusion

As shown in Table 1 and Table 2, for shuffle and the upward and downward
closure and interior operations, it is not known if the given upper bounds are
tight. Hence, this is an open problem.
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Abstract. We investigate the descriptional complexity of the νi- and
αi-products with 0 ≤ i ≤ 2 of two automata, for reset, permutation,
permutation-reset, and finite automata in general. This is a continuation
of the recent studies on the state complexity of the well-known cascade
product undertaken in [7,8]. Here we show that in almost all cases, except
for the direct product (ν0) and the cascade product (α0) for certain types
of automata operands, the whole range of state complexities, namely the
interval [1, nm], where n is the state complexity of the left operand and m
that of the right one, is attainable. To this end we prove a simulation
result on products of automata that allows us to reduce the products
and automata in question to the ν0, α0, and a double sided α0-product.

1 Introduction

Recently the operational complexity of the cascade product on finite automata
was investigated in [7,8], that is, the question which state complexities of lan-
guages resulting from the cascade product of two minimal deterministic finite
automata with n and m states can be reached. It is obvious that nm is an upper
bound on the state complexity. This upper bound can be reached by the cascade
product of reset (RFA), permutation (PFA), permutation-reset (PRFA), and
finite automata in general (DFAs) or combinations thereof. The subtle differ-
ence of these products is, that, except for the cascade product of two PFAs, the
whole range [1, nm] of state complexities can be reached if the input alphabet
is at least binary. For the cascade product of two PFAs numbers in the interval
[1, nm] were identified that cannot be reached—following the work of [11] we call
these numbers “magic.” For unary automata the landscape of reachable state
complexities is more diverse, see [7]; numerous magic numbers were identified
there. These results are in line with research on other regularity preserving formal
language operations such as, e.g., intersection and union [10], concatenation [12],
square [4], star [3], reversal, and the cut operation [9].

The direct and cascade product are two manifestations of products of finitely
many component automata. The former one is well known from the intersection
and union construction from automata theory, while the latter product is the
main ingredient to the decomposition theorem of Krohn and Rhodes [2]. In gen-
eral, a product of automata is obtained by series (cascading), parallel, and/or
c© IFIP International Federation for Information Processing 2021
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feedback composition of automata. In the direct product there is no commu-
nication between the component automata, while in the cascade product the
second automaton receives along with the input letter also the state of the first
automaton. In the terminology of automata networks [5] the direct and cascade
product are referred to as the ν0- and α0-product, respectively, and thus belong
to hierarchies of automata products of increasing feedback dependencies—for
the product of two automata this results in the products ν0, α0, ν1, α1, ν2,
and α2, where a product can be simulated by any other product that is to the
right of it. Moreover it is easy to see, since we are only interested in products
of two automata, that the ν2- and α2-product coincide. Thus, we are left with
five different products. This immediately raises the question on the operational
complexity of the νi- and αi-products on finite state devices.

This is the starting point of this investigation. In the νi- and αi-products all
the involved automata read at least the letter from the alphabet Σ. In addition
an automaton may get its own state as input and/or the state of the other
automaton Thus, any product of two automata can be encode by a three letter
word as described at the beginning of Sect. 3—observe, that there are 2 · 4 ·
2 = 16 different encodings for products. Studying the magic number problem
for all these products for RFAs, PFAs, PRFAs, and DFAs we are left with at
most (2 · 4 · 2) · (4 · 4) = 256 cases, where 16, namely all cases for the α0-
product, were already investigated in [7,8] and one single case was studied for
the direct or ν0-product [10]. Still, we are left with more than two hundred
cases. By a close inspection of the simulation capabilities of the various products
we are able to reduce these cases to a few ones on loop-free products, namely
the direct or ν0-product, the cascade or α0-product, and a special variant of
the α1-product, where both automata transition functions depend crosswise on
the state sets, which we call α α0-product. This allows us to almost completely
classify the status of the magic number problem for all product types on the
various automata classes under investigation: There are no magic numbers, that
is, the whole range [1, nm] of state complexities can be obtained, where n (m,
respectively) is the state size of the left (right, respectively) operand of the
considered product. Notable exceptions are direct product (ν0) of two PFAs or
a PFA and a PRFA or two PRFAs and the cascade product (α0) of two PFAs.
While for the latter case numerous magic numbers were shown to exist [7,8], we
only identify at least one magic number for the former cases already for very
small operand automata. Computer search indicates that the magic number
cases for the ν0-product may be involved to be exactly solved, because it seems
that these cases heavily depend on the input alphabet size.

2 Preliminaries

We recall some definitions on finite automata as contained in [6]. A deterministic
finite automaton (DFA) is a quintuple A = (Q,Σ, · , q0, F ), where Q is the finite
set of states, Σ is the finite set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q
is the set of accepting states, and the transition function · maps Q × Σ to Q.
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The language accepted by the DFA A is defined as L(A) = {w ∈ Σ∗ | q0·w ∈ F },
where the transition function is recursively extended to a mapping Q×Σ∗ → Q
in the usual way. Obviously, every letter a ∈ Σ induces a mapping from the state
set Q to Q by q �→ q ·a, for every q ∈ Q. A DFA is unary if the input alphabet Σ
is a singleton set, that is, Σ = {a}, for some input symbol a. Moreover, a DFA is
said to be a permutation-reset automaton (PRFA) if every input letter induces
either a permutation or a constant mapping on the state set. If every letter of the
automaton induces only permutations on the state set, then we simply speak of
a permutation automaton (PFA). Finally, a DFA is said to be a reset automaton
(RFA) if every letter induces either the identity or a constant mapping on the
state set. The class of reset, permutation, permutation-reset, and deterministic
automata in general are referred to as RFA, PFA, PRFA, and FA, respectively.
It is obvious that the inclusions XFA ⊆ PRFA ⊆ FA, where X ∈ {P,R}, hold.
Moreover, it is not hard to see that the classes RFA and PFA are incomparable.

The two most famous products of automata are the direct and cascade prod-
uct [2], which are only special cases of the νi- and αi-products of automata [5].
Originally, these products are introduced for semi-automata, which are automata
with no initial nor final states. For our needs we enrich the product with initial and
final states and follow for the definition of the final states the lines of [1]. For any
product of two automata A and B, we say that A is the first automaton and B the
second automaton in the product. The α0-product, also known as the cascade prod-
uct, of two DFAs A = (QA, Σ, ·A , q0,A, FA) and B = (QB , QA ×Σ, ·B , q0,B , FB),
denoted by A ◦α0 B, is defined as the automaton

A ◦α0 B = (QA × QB , Σ, · , (q0,A, q0,B), FA × FB),

where the transition function is given by

(q, p) · a = (q ·A a, p ·B (q, a)),

for q ∈ QA, p ∈ QB , and a ∈ Σ. Observe, that the transitions of A depend
only on Σ, while the transitions of B depend on Σ and additionally on QA.
If we let the transitions of A also depend on QA and the transitions of B on
both QA and QB , respectively, besides Σ, we obtain the α1-product of two DFAs
A = (QA, QA × Σ, ·A , q0,A, FA) and B = (QB , QA × QB × Σ, ·B , q0,B , FB),
denoted by A ◦α1 B, which is defined as the automaton

A ◦α1 B = (QA × QB , Σ, · , (q0,A, q0,B), FA × FB),

where the transition function is given by

(q, p) · a = (q ·A (q, a), p ·B (q, p, a)),

for q ∈ QA, p ∈ QB , and a ∈ Σ. Finally, the α2-product of A and B all the
transitions of A and of B depend on QA, QB and Σ. Roughly speaking the
automaton A knows in which states A and B are and which input symbol has
to be processed. The α2-product is referred to as ◦α2 .
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A product of automata is said to be a νi-product if all transition functions
of the involved automata only depend on at most i state sets besides Σ. The νi-
product is referred to as ◦νi

. For instance, the α0-product is also a ν1-product,
but not a ν0-product. The only ν0-product is the direct product. In the next
section we develop a more abstract, refined, and general view on the products
of (two) automata.

In order to explain the notation we give an example.

Example 1. Consider the PRFA A = ({q0, q1, q2}, {a, b}, ·A , q0, {q0, q2}), where

q0 ·A a = q1,

q0 ·A b = q2,

q1 ·A a = q0,

q1 ·A b = q2,

q2 ·A a = q2,

q2 ·A b = q2.

Then assume that m is an arbitrary integer greater than or equal three and let

B = ({p0, p1, . . . , pm−1}, {q0, q1, q2} × {a, b}, ·B , p0, {p1}),

be the PFA, where

pi ·B (qj , b) = pi+1 mod m, for 0 ≤ j ≤ 1 and 0 ≤ i ≤ m − 1,
pi ·B (q2, a) = pi+1 mod 3, for 0 ≤ i ≤ 2,

and all other not explicitly stated transitions are self-loops. The automata A
and B, for m = 3, are depicted in Fig. 1 on the top and lower right, respectively.
It is easy to see that both automata are minimal.

By construction the α0-product of A and B is given by

A ◦α0 B = ({q0, q1, q2} × {p0, p1, . . . , pm−1}, {a, b}, · , (q0, p0), {q0, q2} × {p1}),

where the transitions of the initially reachable states

(q0, p0), (q1, p0), (q2, p0), (q2, p1), (q2, p2),

can be deduced from Fig. 1, too, on the lower left. Although the drawing is
only for automaton B with three states, the initially reachable part of A ◦α0 B
remains the same for larger B’s as defined. Observe, that A ◦α0 B is not a PRFA
and it is not minimal. By inspection the only equivalent states in A ◦α0 B are
(q0, p0) and (q1, p0). Hence, the minimal DFA accepting L(A ◦α0 B) has α = 4
states. �	

When considering the descriptional complexity of the product of two
automata, we limit ourselves to the case where the involved automata are non-
trivial, i.e., they have more than one state. Thus, in the following we only con-
sider non-trivial automata. It is easy to see that n · m states are sufficient for
any product of an n-state and m-state automaton.
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Fig. 1. The example automata A and B on the top and lower right, respectively. For
a better representability not all transitions of an automaton are shown. In particular,
this is the case for the automaton A ◦α0 B, where only the transitions of the initially
reachable states are shown. The α0-product A ◦α0 B is depicted on the lower left.
Additionally the index j is a placeholder for numbers 0 and 1. Note that self-loops will
be only depicted by dotted loops without letters.

3 Results

A more abstract and refined view on the product of automata, regardless whether
a νi- or αi-product is considered, is given next. By the definitions, we have seen
that the inputs, besides the letter, of the involved automata can be their own
state and/or the states of the other device. Hence, every product of two automata
can be characterized by an element from the set

{�,−} × {c, c−1, b,−} × {�,−},
where � refers to a loop, that is the automaton in addition to the letter also gets
his own state as input, c refers to a cascade from left to right, that is the second
automaton also gets the state of the first automaton as input besides the letter,
c−1 refers to a cascade from right to left, that is the first automaton also gets the
state of the second automaton as input in addition to the letter, and b refers to a
bidirectional cascade, that is the first automaton also gets the state of the second
automaton as input besides the letter and vice versa. The − acts as a filler of
a no-dependency in order to uniquely describe a certain product. For example,
the direct product is referred to as − − − and the ordinary cascade product
by −c−. A complete list of all possible combinations and their classification as
a νi- or αi-product is given in Table 1. A special variant of the α1-product is
the α α0-product, where both automata transition functions depend crosswise
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Table 1. A classification of the products of automata used throughout here. Encoding
where c−1 appears are not listed, since they can be lead back to the case c. For instance,
a product of the form �c−1− can be seen as a (−c�)-product, by switching the positions
of the automata appropriately. A gray shaded entry indicates that for the corresponding
product of automata magic numbers exist for certain cases.

Product of
α0

α1
α2

automata α α0

ν0 − − −

ν1

−c− −b− − − �

� − −
� − �

�c−

ν2

−c� −b�

�c� �b−
�b�

on the state sets. Hence the transition of A depends on QB and Σ and those of
the device B on QA and Σ. Here QA (QB , respectively) refers to the state set
of A (B, respectively). The α α0-product together with the direct and cascade
product are the only products under consideration that do not have an � (loop) in
their encodings. As we will see later, this is of significant importance. It is worth
mentioning that the encodings also uniquely determine the input alphabets to
both automata. For instance, a (�c−1−)-product needs a left automaton A with
input alphabet QA×QB ×Σ, while the right automaton B has input alphabet Σ
only—if this is the case, we speak of automata that are compatible with the
product.

Whenever we speak of a product ◦ of automata of the form u0u1u2 ∈
{�,−} × {c, c−1, b,−} × {�,−}, we simply write ◦u0u1u2 for the product oper-
ation in question. This obviously refines the previously used notation on the αi-
and νi-products. For instance, the notation ◦α0 and ◦−c− can be used inter-
changeably. Now we are ready for the next lemma, which describes a particular
simulation of different products by each other.

Lemma 1. Let ◦ be a product of automata of the form

−u1u2 ∈ {−} × {c, b,−} × {�,−}.

Let A and B two ◦-product compatible automata. Then there exists an RFA,
PFA, or PRFA A′ with the same number of states as A such that the initially
reachable part of the product of A′ and B w.r.t. the (�u1u2)-product is equal to
the initially reachable part of A ◦B. Additionally A′ is minimal if it has at most
two states or if it is a PFA or PRFA. A similar statement is valid for B if ◦
is a product of the form u0u1− ∈ {�,−} × {c, b,−} × {−}. Then the initially
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reachable part of the product of A and B′, for some RFA, PFA, or PRFA B′,
w.r.t. the (u0u1�)-product is equal to the initially reachable part of A ◦ B.

Proof. We show the lemma by constructing the automaton A′. Due to symmetry
and because it is very easy to adapt the construction for all cases we prove the
statement exemplary for the (−c−)-product. Let A = (QA, Σ, ·A , q0, FA) and
let B = (QB , QA × Σ, ·B , p0, FB). Let A′ = (QA, QA × Σ, ·A′ , q0, FA), where
we define

q ·A′ (q, a) = q′,

for every state q ∈ QA and every letter a ∈ Σ, if q ·A a = q′; note that here the
transition function is only partially defined. Because in the (�c−)-product the
mapping a is given by

(q, p) ·A ◦�c− B a = (q ·A′ (q, a), p ·B (q, a)) = (q ·A a, p ·B (q, a)) = (q, p) ·A ◦−c− B a

every image of the mapping (q, a) in A is irrelevant for the product automaton
except the image of q. So we can choose the other images in any way we want.
In particular we can choose them to let A′ be a RFA, PFA, or PRFA. We can
also make A′ minimal in the last two cases for every number of states. Since
all minimal RFAs have at most two states the minimality of A′ can only be
achieved if A′ has at most two states. As shown above the automata A′ ◦�c− B
and A ◦−c− B have the same initially reachable part the statement follows. �	

Lemma 1 implies that for the automata products

�u1u2 ∈ {�} × {c, c−1, b,−} × {�,−}

and
u0u1� ∈ {�,−} × {c, c−1, b,−} × {�}

at least the numbers are reachable which are reachable for the case the left (right,
respectively) automaton is an arbitrary DFA of the product −u1u2 (u0u1−,
respectively). So the products without loops are given a particularly important
role. These are the ν0-, α0-, and α α0-product. We investigate these products
in the forthcoming subsections and then apply the previous lemma in order to
obtain the main result of this paper, which reads as follows.

Theorem 1. Let ◦ be a product of automata of the form {�,−}×{c, b,−}×{�,−}
and X,Y ∈ {RFA,PFA,PRFA,FA} with {X,Y } 
= {PFA} and {X,Y } 
=
{PFA,PRFA} and {X,Y } 
= {PRFA}, if ◦ is of type − − −, and {X,Y } 
=
{PFA}, if ◦ is of type −c−. Moreover, let n,m ≥ 2, where n (m, respectively)
is restricted to 2 in case X = RFA (Y = RFA, respectively). Then for every α
with 1 ≤ α ≤ nm, there exists a minimal n-state automaton A of type X and a
minimal m-state automaton B of type Y , both compatible to the ◦-product, such
that the minimal DFA for the language L(A ◦ B) has α states.



More on the Descriptional Complexity of Products of Finite Automata 83

Roughly speaking, the theorem states that no magic numbers for the prod-
ucts of automata considered in the paper exists, except for the cases: (i) If both
devices are permutation automata and the direct or cascade product is con-
sidered or (ii) one device is a permutation automaton and the other one is a
permutation-reset device or both automata are permutation-reset devices and
the direct product is considered.

3.1 The Direct- or ν0-Product

The easiest product is the direct or ν0-product. For the most general case, namely
the product of two arbitrary DFAs, it was shown in [10] that for the ν0-product
no magic number exists. To our knowledge none of the other automata classes,
namely reset, permutation, and permutation-rest automata were considered as
inputs to the direct product. We close this gap in this subsection. Observe, that
although the statements to come on the ν0-product explicitly refer to left and
right automata of certain types, these types can be obviously commuted, since
in the direct product the order of the operand automata is not relevant to the
product automaton (up to isomorphism). First we consider the cases where a
RFA is involved in the direct product. Let us start with the direct product of
two RFAs.

Theorem 2. For every α with 1 ≤ α ≤ 4, there exists a binary minimal RFA A
and a binary minimal RFA B such that the minimal DFA accepting the lan-
guage L(A ◦ν0 B) has α states.

Proof. For α = 4 let A = ({q0, q1}, {a, b}, ·A , q0, {q1}) with

q0 ·A a = q1,

q0 ·A b = q0,

q1 ·A a = q1,

q1 ·A b = q1.

Additionally define B = ({p0, p1}, {a, b}, ·B , p0, {p1}) with

p0 ·B a = p0,

p0 ·B b = p1,

p1 ·B a = p0,

p1 ·B b = p1.

Clearly the RFAs A and B are minimal and by applying the definition of
the ν0-product we obtain that the transitions of A ◦ν0 B are

(q0, p0) · a = (q1, p0),
(q0, p0) · b = (q0, p1),
(q0, p1) · a = (q1, p0),
(q0, p1) · b = (q0, p1).

(q1, p0) · a = (q1, p0),
(q1, p0) · b = (q1, p1),
(q1, p1) · a = (q1, p0),
(q1, p1) · b = (q1, p1).

Therefore it is not hard to see that none of the four initially reachable states

(q0, p0), (q1, p0), (q0, p1), (q1, p1)

are equivalent.
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In case α = 3 we simply change the set of accepting states of A to be equal
to {q0}, which results in the equivalence of the states (q1, p0) and (q1, p1). Thus,
exactly three states remain in the direct product. Finally, for α ∈ {1, 2}, let A
and B be two unary minimal non-trivial two-state RFAs. It is not hard to see
that exactly two states are initially reachable in their product automaton. By
choosing the sets of accepting states of A and B appropriately the product
automaton has none or one accepting states which are initially reachable.

Thus, for all cases the minimal DFA accepting the language L(A ◦ν0 B) has α
states, which proves the stated claim. �	

We will now present a result from [8] since we will use it in the proofs of
theorems to come several times.

Lemma 2. Let A be a PFA with a sole accepting state with all states reachable
from the initial state. Then A is minimal. Minimality is preserved even if the
initial state is changed to any other state.

Next we investigate the direct product of an RFA with a PFA.

Theorem 3. Let m ≥ 2. Then for every α with 1 ≤ α ≤ 2m, there exists a
binary minimal RFA A and a binary minimal m-state PFA B such that the
minimal DFA for the language L(A ◦ν0 B) has α states.

Clearly this theorem implies that the minimal DFA accepting L(A ◦ν0 B) for
an n-state RFA A and a m-state automaton B can have every number of states in
the integer interval [1, nm] in case B is a minimal PRFA or a minimal arbitrary
DFA. This solves all cases of the direct product, where RFAs are involved.

Next we consider the direct products of PFAs, PRFAs and DFAs in general,
where in the product at least one PFA is involved. Indeed, the ν0-product of
two PFAs contains magic numbers, which directly follows from the fact that for
the α0-product of two PFAs numerous magic numbers were identified in [8] and
that the ν0-product is a special α0-product, which simulation does not change
the automata types. Therefore, every magic number for the α0-product of two
PFAs is magic for the ν0-product of two PFAs, too. When changing one of the
automata to become a PRFA, one might think that we are back to the case
that all numbers in the whole interval [1, nm] can be reached, because for the
α0-product no magic numbers exist. In fact, this is not the case. By running a
computer program we found out by exhaustive search that for n = m = 3 and an
alphabet size of at most three the number α = 2 is not attainable. Whether other
magic numbers exist in this case has to be left open. Thus, let us summarize our
findings in next theorem.

Theorem 4. There exist n,m ≥ 2 and α with 1 ≤ α ≤ nm such that there does
not exist a minimal n-state binary PFA A and a minimal m-state binary PFA or
PRFA B such that the minimal DFA for the language L(A ◦ν0 B) has α states. �	

Nevertheless, since magic numbers are related to the divisors of n and m in
the case we deal with PFAs and PRFAs lead us to the following conjecture.
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Conjecture 1. Let n,m ≥ 3 and let them be odd. Then there exists no minimal
n-state PFA A and no minimal PRFA B such that the minimal DFA for the
language L(A ◦ν0 B) has 2 states.

By allowing one of the two automata to be more powerful, in particular to
be an arbitrary DFA, we obtain that no magic numbers exist anymore.

Theorem 5. Let n,m ≥ 2. Then for every α with 1 ≤ α ≤ nm, there exists
a ternary minimal n-state PFA A and a ternary minimal DFA B such that the
minimal DFA for the language L(A ◦ν0 B) has α states.

Since every PFA is also a PRFA we obtain directly that for the ν0 product
of a PRFA and an arbitrary DFA no magic numbers exist.

Corollary 1. Let n,m ≥ 2. Then for every α with 1 ≤ α ≤ nm, there exists a
ternary minimal n-state PRFA A and a ternary minimal DFA B such that the
minimal DFA for the language L(A ◦ν0 B) has α states.

The only case that remains is the direct product of two PRFAs. An exhaustive
computer search on the direct product of small size PRFAs indicate that this
case may be involved to solve since we found that, e.g., the number α = 8 cannot
be obtained by two PRFAs with n = m = 3 and an alphabet of size of at most
three, but turns out to be attainable if the alphabet size is increased to at least
four. There is further circumstantial evidence, that the exact solution to the
magic number problem for the direct product of two PRFAs heavily depends on
the input alphabet size. Thus, the statement of Theorem 4 can be strengthened
to the case both operand automata are PRFAs. This completely exhausts all
possible cases of direct products we are interested in.

3.2 The Cascade- or α0-Product and the α α0-Product

The descriptional complexity of the cascade- or α0-product was recently studied
in [7,8]. There it was shown that for the cascade product of RFAs, PFAs, PRFAs,
and DFAs in general, where the left operand automaton has an alphabet of
size at least two, in all cases, except for the cascade product of two PFAs, the
whole range of state complexities, namely the interval [1, nm], where n is the
state complexity of the left operand and m that of the right one, is attainable.
Moreover, for the cascade product of two PFAs numerous magic numbers were
identified [7].

For the α α0-product we can inherit all non-magic number cases from the
cascade product by appropriately modifying the left automaton in the product.
This is seen as follows: let A = (QA, Σ, ·A , q0,A, FA) and B = (QB , QB ×
Σ, ·B , q0,B , FB) be the two automata from the cascade product. We define the
automaton A′ = (QA, QB × Σ, ·A′ , q0,A, FA), where the transition function is

q ·A′ (p, a) = q′,
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if q ·Aa = q′, for every state q ∈ QA and letter a ∈ Σ. Then the initially reachable
part of the α α0-product of A′ and B is isomorphic to the initially reachable part
of the cascade product of the automata A and B. By the construction it is easy
to see that A′ is from the same automata class under consideration as A, and
that the minimality of A induces the minimality of A′.

Hence it only remains to consider the α α0-product for PFAs in detail.

Theorem 6. Let n,m ≥ 2. Then for every α with 1 ≤ α ≤ nm, there exists a
minimal n-state PFA A and a minimal PFA B such that the minimal DFA for
the language L(A ◦α α0 B) has α states.

The result on the α α0-product reads as follows:

Theorem 7. Let X,Y ∈ {RFA,PFA,PRFA,FA} and let n,m ≥ 2, where n
(m, respectively) is restricted to 2 in case X = RFA (Y = RFA, respectively).
Then for every α with 1 ≤ α ≤ nm, there exists a minimal n-state automaton A
of type X and a minimal m-state automaton B of type Y , both compatible to the
α α0-product, such that the minimal DFA for the language L(A ◦α α0 B) has α
states. �	

3.3 Proof of the Main Theorem

Now we are ready to prove the main theorem of this paper, by using the results
on the descriptional complexity of the products of automata where no loops are
involved together with the simulation result presented in Lemma 1.

Proof. For the loop-free products, namely ν0, α0, and α α0, the statement of the
theorem follows for the

– ν0-product by the Theorems 2, 3, 4, and 5, for the
– α0-product by the results of [7], and for the
– α α0-product by Theorem 7.

Let ◦ by a product of automata of the form �u1u2 ∈ {�} × {c, b,−} × {�,−}
and we assume that the left operand is an automaton of type X and the right
one a finite state device of type Y , for X,Y ∈ {RFA,PFA,PRFA,FA}. By
the theorems mentioned above for every α ∈ [1, nm] there is a DFA A and an
automaton of type Y such that the minimal DFA accepting the language of
their ν0-product has α states. Lemma 1 gives a construction technique which
can be used to build an automaton A′ of type X such that the minimal DFA
accepting their (� − −)-product has α states, too. Since the (� − −)-product
is a special case of every product in {�} × {c, b,−} × {�,−} the statement of
the theorem under consideration follows for all the products in this set. Since
the arguments from above can be used analogously for the products in {�,−} ×
{c, b,−} × {�} this completes the proof. �	

We summarize the results of the main theorem in Table 2. For all other prod-
ucts no magic numbers exist for the automata classes studied in this paper. Thus,
besides a precise characterizations of the magic numbers that can be obtained for
certain automata types, we have completely solved the magic number problem
for products of automata.
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Table 2. The magic number problem for the ν0- and α0-product of automata. The entry
indicates whether magic numbers exist for the products of the appropriate automata
classes. A line entry determines the left automaton, while the column entry specifies
the right automaton of the automaton product. For other products of automata studied
in this paper no magic numbers exist at all.

ν0 RFA PFA PRFA DFA

RFA no no no no

PFA no yes yes no

PRFA no yes yes no

DFA no no no no

α0 RFA PFA PRFA DFA

RFA no no no no

PFA no yes no no

PRFA no no no no

DFA no no no no
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Abstract. We study the tree width, maximal existential width and
maximal universal width of AFAs, which, roughly speaking, count the
largest number of leaves, the largest number of existential choices, and
the largest number of universal branches in a computation tree. We give
polynomial-time algorithms deciding finiteness of an AFA’s tree width
and (under certain conditions) the finiteness of an AFA’s maximal exis-
tential width. We also show that the language of any m-state AFA with
finite maximal existential width can be recognized by O(m2) m-state
AFAs with no existential branching. Additionally, we give polynomial-
time algorithms deciding the growth rate of an AFA’s tree width, and
(under certain conditions) the growth rate of an AFA’s maximal univer-
sal width. Finally, we establish necessary and sufficient conditions for an
AFA to have exponential tree width, as well as sufficient conditions for
an AFA to have exponential maximal existential width or exponential
maximal universal width.

1 Introduction

Deterministic and nondeterministic automata (DFAs and NFAs) are well under-
stood models of computation that recognize exactly the regular languages. Alter-
nating finite automata (AFAs) also recognize exactly the regular languages, and
were first introduced by Chandra et al. [1], and by Ladner et al. [8]. AFAs are
an extension of NFAs, where states are denoted as existential , or universal , and
a computation is allowed to alternate between the two types of states. Much
like how NFAs can be exponentially more succinct than DFAs [10], AFAs can
also be exponentially more succinct than NFAs [2,4]. We have previously shown
that, for certain restricted classes of AFA, there is at most a polynomial blow-
up in the number of states required by an equivalent NFA [7]. Here we further
examine AFAs with restricted computations, and also study the growth rates
for measures of parallelism and existentiality. This work is analogous to existing
works on the growth rates for measures of nondeterminism [3,5,9,12], except in
the context of AFAs instead of NFAs. For a number of these results, we are even
able to reduce the problem on AFAs to the problem on NFAs.

The paper is organized as follows. Section 2 fixes the notation for AFAs, spec-
ifies how an AFA accepts or rejects strings, and defines the maximal universal
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width and the maximal existential width measures. Section 3 compares AFAs
having finite versus unbounded maximal existential width. Section 4 character-
izes the various possible growth rates for an AFA’s maximal existential width or
maximal universal width, and relates the exponential tree width of AFAs to the
exponential tree width of NFAs.

2 Preliminaries

An AFA is a 6-tuple, A = (Qe, Qu, Σ, δ, q0, F ) where Qe (the existential state set)
and Qu (the universal state set) are finite sets of states such that Qe ∩ Qu = ∅,
Σ is the input alphabet, δ : (Qe ∪ Qu) × Σ → 2Qe∪Qu is the transition function,
q0 ∈ Qe ∪ Qu is the initial state, and F ⊆ Qe ∪ Qu is the set of final states. We
use ε to mean the empty string, and Aq = (Qe, Qu, Σ, δ, q, F ) (that is, Aq is A
with a different specified starting state q ∈ Qe ∪ Qu).

We further define the language of an AFA, to account for the differences
caused by universal states. We do so by defining them bottom-up with respect
to their states.

Definition 1. Let A = (Qe, Qu, Σ, δ, q0, F ) be an AFA, q ∈ Qe∪Qu, and a ∈ Σ.
If q ∈ F , then ε ∈ L(Aq). Consider δ(q, a) = {p1, . . . , pn} for n ≥ 1, then for
w ∈ Σ∗, define:

– If q ∈ Qu, then aw ∈ L(Aq) if and only if w ∈ L(Api
) for all 1 ≤ i ≤ n.

– If q ∈ Qe, then aw ∈ L(Aq) if and only if w ∈ L(Api
) for some 1 ≤ i ≤ n.

If δ(q, a) = ∅, then aw /∈ L(Aq). The language of A is defined as L(A) = L(Aq0).

A computation tree of an AFA is a tree structure whose internal nodes are
labeled by a tuple (p, a), for p ∈ Qe ∪ Qu, a ∈ Σ (that is, each internal node
is labeled by a state and character), and whose leaves are labeled by (p, ε) or
the fail symbol ⊥. We call a node of the computation tree T labeled by (p, a) a
p-node of T , and the leaves of T labeled by (p, ε) are called state leaves.

The computation tree of an AFA A on ε from q ∈ Qe ∪ Qu, denoted TA,q,ε

is the singleton node (q, ε). The computation tree of an AFA A on cv from q,
denoted TA,q,cv, such that q ∈ Qe ∪ Qu, c ∈ Σ, v ∈ Σ∗ is defined inductively as
the tree where:

– the root is labeled by (q, c), and
– the trees rooted at the children of (q, c) are

• the computation trees (TA,p1,v, . . . , TA,pn,v), if δ(q, c) = {p1, . . . , pn}
• the failure node ⊥ if δ(q, c) = ∅

If a computation tree of an AFA A on a string w starts on the initial state of A,
then we omit the state label, and denote it as TA,w. If A is an NFA, this yields
the computation trees as considered in [3], since an NFA can be seen as an AFA
with no universal states.

For an AFA A = (Qe, Qu, Σ, δ, q0, F ) and a state q ∈ Qe ∪ Qu, a pruned
computation tree of TA,q,ε is the singleton node (q, ε). For a string cv, where
c ∈ Σ and v ∈ Σ∗, a pruned computation tree of A on cv from q ∈ Qe ∪ Qu is
obtained recursively from TA,q,cv, where δ(q, c) = {p1, . . . , pk}, as follows:
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i) If q is an existential state, then replace k − 1 of the children by a singleton
tree consisting of a node labeled by a new symbol ψ (representing a pruning
of that branch), and the final child TA,pi,v by a pruned computation tree of
TA,pi,v, for some 1 ≤ i ≤ k.

ii) If q is a universal state, then replace each child TA,pi,v by a pruned compu-
tation tree of TA,pi,v, for all 1 ≤ i ≤ k.

We note that each pruned computation tree represents one specific “run” in an
AFA. However, considering the pruned computation trees allows us to examine
the number of existential branches which are not followed in a particular run,
rather than only examining those branches which are followed. For more infor-
mation on the run-view versus the computation tree view, we point the reader
to a recent survey paper by Kapoutsis and Zakzok [4].

For a tree T , we use stateLeaves(T ) to denote the multiset of all of T ’s leaves
labeled by a state-ε pair, and failLeaves(T ) to denote the multiset of leaves of
T labeled by the fail symbol ⊥. We call leaves labeled by ψ cut leaves, and use
cutLeaves(T ) to denote the multiset of all cut leaves in a tree T .

The set of all pruned computation trees of a tree T is denoted �(T ). A
pruned computation tree is accepting if all of its state-ε leaves are labeled by
accepting states, and no leaves are labeled by the fail symbol ⊥. We denote the
set of all accepting pruned computations of a tree T as �

acc
(T ). Directly from

the definitions of an AFA’s language and the structure of pruned computation
trees, we get the following corollary.

Corollary 1. Let A = (Qe, Qu, Σ, δ, q0, F ) be an AFA. For any string w ∈ Σ∗,
w ∈ L(A) if and only if �

acc
(TA,w) �= ∅.

For an AFA A = (Qe, Qu, Σ, δ, q0, F ), we define the skeleton of A as follows:
A′ = (Qe ∪Qu, ∅, Σ, δ, q0, F ). That is, the skeleton of an AFA has the same state
set and transition structure, except all of the states are existential. Since the
skeleton of an AFA has only existential states, then it is an NFA. We note that
the language of an AFA’s skeleton is not usually the same as the original AFA’s
language.

For an AFA A = (Qe, Qu, Σ, δ, q0, F ), a state’s designation as existential or
universal affects the recognized language only if there are at least two outgoing
transitions on the same character. That is, if we have some qe ∈ Qe such that
|δ(qe, a)| ≤ 1 for all a ∈ Σ, then L(A) = L(A′) for the AFA A′ = (Qe \
{qe}, Qu∪{qe}, Σ, δ, q0, F ). The same also holds for universal states with at most
one outgoing transition on each character. For AFAs we use the term existential
branching to refer to existential states which have multiple outgoing transitions
on the same character. This can be seen as being like “nondeterminism in AFAs”,
as NFAs also have a form of existential branching. We use universal branching
analogously for universal states with multiple outgoing transitions on the same
character.

Let f(�) : N → N be some function for some � ∈ N. If f(�) ∈ Θ(�d) (for some
d ∈ N), then we say that f(�) has polynomial growth degree d. If f(�) ∈ 2Θ(�)

then we say that f(�) has exponential growth.
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2.1 Width Measures of Alternating Automata

The tree width of an AFA A on a string w, denoted tw(A,w), is the number of
state leaves and fail symbols in the computation tree TA,w [7]. If A is an NFA,
then our definition of tree width coincides with the tree width of NFAs [3,11].
Since there may be many pruned computation trees for a single alternating
computation tree, we define the notions of universal width and existential width
for pruned computation trees.

Definition 2. For an AFA A and a pruned computation tree T p of A, the uni-
versal width of T p, denoted uw(T p), is the number of leaves in T p labeled by a
state or fail symbol. Formally, this is:

uw(T p) = |stateLeaves(T p)| + |failLeaves(T p)|.
We extend the universal width for strings.

Definition 3. For an AFA A = (Qe, Qu, Σ, δ, q0, F ) and a string w ∈ Σ∗, the
maximal universal width of A on w, denoted uwmax(A,w), is the greatest number
of leaves in any pruned computation tree of TA,w. Formally, this is:

uwmax(A,w) = max{uw(T p) | T p ∈�(TA,w)}.

Intuitively, the maximal universal width of an AFA A on a string w measures
the amount of parallelism in the “worst” alternating computation over w.

We can also measure the amount of existential choices present in an alter-
nating computation.

Definition 4. For an AFA A and a pruned computation tree T p of A, the exis-
tential width of T p, denoted ew(T p), is the number of leaves labeled by the symbol
ψ. More formally, ew(T p) = |cutLeaves(T p)|.
Again, we extend the measure for strings.

Definition 5. For an AFA A = (Qe, Qu, Σ, δ, q0, F ) and a string w ∈ Σ∗,
the maximal existential width of A on w, denoted ewmax(A,w), is the largest
number of leaves labeled by the symbol ψ in any pruned computation tree of
TA,w. Formally, this is:

ewmax(A,w) = max{ew(T p) | T p ∈�(TA,w)}.

The maximal existential width of an AFA on a string w measures, roughly speak-
ing, the number of existential branches that are not followed by a particular
alternating computation on w. Using this measure, we can quantify the amount
of “redundancy” present in the existential transitions of an AFA.

We extend the tree width, maximal universal width, and maximal existential
width functions onto functions over the natural numbers and AFAs in the normal
manner. For f ∈ {tw,uwmax, ewmax}:

f(A, �) = max{f(A,w) | w ∈ Σ�}, and f(A) = sup
�∈N

{f(A, �)}. (1)
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If an AFA does not have any existential branching, then no branches are
removed during the pruning operation. This means that there will be exactly
one pruned computation tree for any string, and the maximal universal width
and tree width will coincide.

Lemma 1. Let A = (Qe, Qu, Σ, δ, q0, F ) be an AFA such that |δ(q, a)| ≤ 1 for
all q ∈ Qe and a ∈ Σ. Then for all w ∈ Σ∗, we have uwmax(A,w) = tw(A,w)
and �(TA,w) = {TA,w}.

3 Finite Universal and Existential Width

Throughout this paper, we use the term widget to describe subgraphs of
AFAs. More formally, an AFA A = (Qe, Qu, Σ, δ, q0, F ) has a widget W =
(Q′

e, Q
′
u, Σ′, δ′, F ′) if Q′

e ⊆ Qe, Q′
u ⊆ Qu, Σ′ ⊆ Σ, δ′ ⊆ δ, and F ′ ⊆ F .

In our figures, if a state q is universal (respectively, existential) then it is
labeled (q, u) (respectively, (q, e)). If a state is labeled e/u, then it does not
matter whether it is universal or existential.

For an m-state AFA A, if the tree width of A is finite, then tw(A) ≤ 2m−2

[6], and this follows from the corresponding upper bound for NFAs [11]. For any
AFA A and its skeleton A′, we have tw(A,w) = tw(A′, w) for any string w.

Since the tree width of an AFA is defined over unpruned computation trees,
we get that ewmax(A,w),uwmax(A,w) ≤ tw(A,w) for any string w. We know
that an AFA can only have unbounded maximal universal width if there exists
a widget (IUW), as shown in Fig. 1 [6]. For unbounded maximal existential
width, however, the number of cut leaves can grow unboundedly due to certain
structures on existential states or universal states.

Fig. 1. Widget (IUW), for a ∈ Σ, v ∈ Σ∗ [6]

Lemma 2. Let A = (Qe, Qu, Σ, δ, q0, F ) be an AFA where ewmax(A) /∈ O(1).
Then either

i) A has a cycle containing an existentially branching state, or
ii) For some strings u, v, w ∈ Σ∗, characters a, b ∈ Σ, and states q ∈ Qu,

q1, q2 ∈ Qe ∪ Qu, and p ∈ Qe, we have: q ∈ δ(q0, u), {q1, q2} ⊆ δ(q, a), q ∈
δ(q1, v), p ∈ δ(q2, w), |δ(p, b)| ≥ 2, and ew(TA,u(av)iwb) < ew(TA,u(av)i+1wb)
for some k ≥ 1 and all i ≥ k.

In the converse direction, we have a number of conditions sufficient to cause
the maximal existential width to be unbounded.
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Fig. 2. Widgets causing infinite ewmax(A), where a, b ∈ Σ, v, w ∈ Σ∗

Theorem 1. Let A be an AFA with at least one of the widgets from Fig. 2. Then
ewmax(A) /∈ O(1).

It is possible that there exist other structures involving cyclical universally
branching states which can also cause unbounded maximal existential width.

Question 1. Do there exist any widgets causing unbounded maximal existential
width not represented in Fig. 2?

3.1 Deciding Finiteness of Maximal Universal/Existential Width

The tree width of an NFA is unbounded if and only if there exists a state whose
nondeterministic transition is involved in a cycle [3], and we can decide whether
or not the tree width of an m-state NFA A = (Q,Σ, δ, q0, F ) is bounded in
O(m · |δ| · |Σ|) time [5]. Since the tree width of an AFA and the tree width of
its skeleton are the same, then deciding finiteness of an AFA’s tree width can be
reduced to the problem on NFAs.

Lemma 3. Let A be an m-state AFA. Then we can decide whether or not
tw(A) ∈ O(1) in O(m · |δ| · |Σ|) time.

Since the structure of (IUW) widgets matches closely to the structure of the
widgets causing unbounded tree width in NFAs, we can also decide finiteness
of an AFA’s maximal universal width using the same algorithm [7]. However,
unbounded maximal existential width in AFAs can result from a number of
different structures (cf. Fig. 2), and so we cannot use the same algorithm without
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modification. Since an AFA has unbounded tree width if and only if it has
unbounded maximal existential width or maximal universal width [7], then we
also get a polynomial time algorithm deciding finiteness of an AFA’s maximal
existential width, provided that the number of universal branches is guaranteed
to be finite.

Theorem 2. Let A be an m-state AFA such that uwmax(A) ∈ O(1). Then we
can decide whether or not ewmax(A) ∈ O(1) in O(m · |δ| · |Σ|) time.

With a more purpose-built algorithm, it is also possible that we can decide
whether or not the maximal existential width of an AFA is bounded, even if the
maximal universal width is unbounded. Since we can decide, in polynomial time,
whether or not the tree width or the maximal universal width of an AFA are
bounded, it seems reasonable to expect a polynomial-time algorithm deciding
whether or not the maximal existential width of an AFA is bounded.

Conjecture 1. Let A be an AFA. Then there exists a polynomial-time algorithm
deciding whether or not ewmax(A) ∈ O(1).

We know that, if the maximal existential width of an m-state NFA is finite,
then it is at most (m−1)·(m−2)

2 [7]. However, in AFAs the addition of universal
branches allows for the finite maximal existential width to be exponentially
larger than the number of states. More specifically, for m ≥ 6 there exist finite
maximal existential width AFAs Am such that ewmax(Am) = 5 · 2m−5 [7]. We
give an example of a 7-state AFA meeting this lower bound in Fig. 3. The general
form requires at least 1 universal state at the beginning of the chain, followed
by 5 existential states, where all states are maximally connected. We note that,
strictly speaking, the final two states can be existential or universal, since they
both have exactly one outgoing transition. We believe this to be the greatest
finite maximal existential width among m-state AFAs.

Conjecture 2. Let A be an m-state AFA such that ewmax(A) ∈ O(1). Then
ewmax(A) ≤ 5 · 2m−5.

3.2 Simulation of AFAs with Finite Maximal Existential Width

If an AFA has finite maximal existential width, then we can further bound the
maximum number of existentially branching states.

Lemma 4. Let A be an m-state AFA such that ewmax(A) ∈ O(1). Then there
are at most m − 2 existentially branching states.

By Lemma 1, the tree width and the maximal universal width coincide for
AFAs with no existential branching. If an AFA has finite maximal existential
width, then we can simulate it with polynomially many AFAs where each sim-
ulating AFA has the same number of states as the original but no existential
branching.
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Fig. 3. An AFA with 2 universal states, 5 existential states, and a maximal existential
width of 5 · 22. Dashed edges are labeled by a, b, and solid edges are labeled by a.

Theorem 3. Let A be an m-state AFA such that ewmax(A) ∈ O(1). Then there

exist O(m2) AFAs, B1, . . . , Bz, each having m states, such that L(A) =
z⋃

i=1

L(Bi)

and ewmax(Bi) = 0 for all 1 ≤ i ≤ z.

We note that the upper bound of the previous theorem is conservative and
could be improved by a more detailed analysis. We can also relate the pruned
computation trees of a finite maximal existential width AFA to the collection of
AFAs simulating it.

Corollary 2. Let A = (Qe, Qu, Σ, δ, q0, F ) be an m-state AFA such that
ewmax(A) ∈ O(1), and let B1, . . . , Bz be the O(m2) m-state AFAs as in

Theorem 3. Then for any w ∈ Σ∗, �(TA,w) =
z⋃

i=1
�(TBi,w).

4 Infinite Maximal Universal/Existential Width

We know that either the tree width of an NFA is finite, or it has polynomial
or exponential growth [3]. There exist widgets which cause polynomial or expo-
nential growth for the tree width of an NFA, and if an NFA has none of these
widgets, then the tree width will be finite [3,5].

Since an AFA and its skeleton have the same tree width, we can leverage
existing algorithms which decide the growth rate of an NFA’s tree width to
decide the growth rate of an AFA’s tree width.

Theorem 4. Let A = (Qe, Qu, Σ, δ, q0, F ) be an m-state AFA. Then we can
decide in O(m4 · |Σ|) time whether tw(A) is finite, or if it has polynomial or
exponential growth.

For AFAs with finite maximal existential width, we can use the transforma-
tion of Theorem 3 to simulate the existential choices, and decide the tree width’s
growth rate for each simulating AFA. By doing so, we can decide the maximal
universal width’s growth rate for the original AFA.
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Theorem 5. Let A = (Qe, Qu, Σ, δ, q0, F ) be an m-state AFA such that
ewmax(A) ∈ O(1). Then we can decide whether uwmax(A) is finite, polynomial,
or exponential in O(m6 · |Σ|) time.

4.1 Exponential Growth

The tree width of an NFA will grow exponentially if and only if there is some
widget (ECOMP) [5]. For an NFA, there is an (ECOMP) widget if, roughly
speaking, there exists a state involved in two cycles over the same string. More
formally, an NFA A = (Q,Σ, δ, q0, F ) has an (ECOMP) widget if there exists a
state q ∈ Q, a character a ∈ Σ, and a string w ∈ Σ∗ such that {q1, q2} ⊆ δ(q, a),
q ∈ δ(q1, w), and q ∈ δ(q2, w).

Recall that the structure of the widgets causing unbounded tree width for
NFAs and unbounded maximal universal width for AFAs is the same, except
that the latter requires the cyclical portion of the widget to be on a universal
state. The same idea holds when extending the (ECOMP) structure to AFAs.
By doing so, we get two new widgets, (EEW) and (EUW), as shown in Fig. 4.
Since the structure of (EEW) and (EUW) widgets is derived from (ECOMP),
we get necessary and sufficient conditions for an AFA to have exponential tree
width.

Fig. 4. Widgets for AFAs derived from (ECOMP), for a ∈ Σ, v ∈ Σ+

Theorem 6. Let A be an AFA. Then tw(A, �) ∈ 2Θ(�) if and only if A has an
(EUW) widget or A has an (EEW) widget.

Since the maximal universal width counts the number of parallel branches, the
presence of an (EUW) widget is sufficient to cause exponential growth.

Lemma 5. Let A be an AFA with an (EUW) widget. Then uwmax(A, �) ∈ 2Θ(�).

In addition to (EUW) widgets being sufficient to cause exponential maximal
universal width, we also believe that they are necessary.

Conjecture 3. Let A be an AFA such that uwmax(A, �) ∈ 2Θ(�). Then A has an
(EUW) widget.

Even though (EEW) widgets are sufficient to cause exponential tree width,
they do not necessarily cause exponential growth for the maximal existential
width. We demonstrate this with the following example.
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Example 1. Consider the AFA A = ({q1, q2}, ∅, {a}, δ, q1, {q1}), where δ is
defined as δ(q1, a) = {q1, q2} and δ(q2, a) = {q1}. Clearly, A is the smallest
AFA having an (EEW) widget. In the tree TA,a� , for any � ∈ N, every non-leaf
node labeled by q1 will have two children, and every non-leaf node labeled by q2
will have one child. Since there are no universal states in A, then any pruned tree
T p ∈ �(TA,a�) will have one branch. Since the branch consists of � + 1 nodes,
and each node has at most 1 cut leaf attached to it, then ew(TA,a�) ≤ �+1. Since
A is unary, then ewmax(A, a�) = ewmax(A, �), and therefore ewmax(A, �) ∈ O(�).

However, much like how (IUW) widgets are able to cause the maximal exis-
tential width to be unbounded (cf. Theorem 1), (EUW) widgets are also able
to cause exponential growth for the maximal existential width. We recall the
widgets of Fig. 2, and note that the (IEW)ζ widget has an (EUW) widget as
part of its structure, followed by an existentially branching state. We use this
fact to strengthen our result for the maximal existential width’s growth rate for
AFAs with (IEW)ζ widgets.

Lemma 6. Let A be an AFA with an (IEW)ζ widget. Then ewmax(A, �) ∈ 2Θ(�).

Since (EEW) widgets do not cause exponential growth for the maximal exis-
tential width, it seems plausible that any AFA having exponential maximal exis-
tential width must also have exponential maximal universal width.

Conjecture 4. Let A be an AFA. If ewmax(A, �) ∈ 2Θ(�), then uwmax(A, �) ∈
2Θ(�).

4.2 Polynomial Growth

We know that the maximal universal width of an AFA grows unboundedly if
and only if there exists an (IUW) widget [6]. The structure of (IUW) widgets is
exactly the same as the widget which causes unbounded tree width for NFAs,
except the former is over universal states and the latter is over existential states.
Since the presence of an (IUW) widget forces at least linear growth, and any
AFA with unbounded maximal universal width has an (IUW) widget, then there
are no growth rates for an AFA’s maximal universal width between finite and
linear.

Corollary 3. Let A be an AFA. If uwmax(A) /∈ O(1), then uwmax(A, �) ∈ Ω(�).

If the tree width of an NFA is bounded by a polynomial, then we can decide
what degree bounds that polynomial by, roughly speaking, determining how
many successive (IEW)α widgets over the same string can appear in any com-
putation tree [5]. (Strictly speaking, it is the number of consecutive “(ITW)”
widgets, since it is operating over NFAs.) However, for AFAs this process is not
so simple, as an (IUW) widget appearing before an (IEW)α widget will increase
the growth rate of the maximal existential width, but an (IEW)α widget appear-
ing before an (IUW) widget will not increase the growth rate of the maximal
universal width. We demonstrate this difference in the following example.
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Example 2. In Fig. 5, there are two AFAs, B1 and B2, each of which have an
(IUW) widget and an (IEW)α widget; the only difference is which one comes
first. Figure 5(a) has linear growth rate for both the maximal universal width
and the maximal existential width, whereas Fig. 5(b)’s ordering of these widgets
means that the number of pruned branches grows both because of the universally
branching cyclical state and because of the existentially branching state.

Fig. 5. Importance of widget ordering for polynomial growth

It seems plausible then that the maximal universal width of AFAs can have
polynomial growth in a similar fashion to the polynomial tree width of NFAs.
That is, an AFA with 1 ≤ d ≤ m consecutive universally branching cycles (and
also no (EUW) widgets) would have at most O(�d−1) universal branches in any
pruned computation tree over strings of length �.

Conjecture 5. Let A be an m-state AFA with no (EUW) widgets. Then
uwmax(A, �) ∈ O(�m−1).

Unfortunately, it is not exactly clear how to define the polynomial upper bound
for maximal universal/existential width in AFAs with interleaved (IUW) and
(IEW)α widgets. However, since interleaved (IUW) and (IEW)α widgets require
that the computation alternates between existential and universal states, it
seems likely that the polynomial growth rates of maximal universal/existential
width are related to the number of alternations an AFA is allowed to make, as
studied by Geffert [2].

5 Conclusion

We have characterized necessary and sufficient conditions for an AFA to have
unbounded or exponential tree width by reducing the problem onto NFAs. For
the maximal existential width of an AFA, we characterized necessary conditions
for unbounded growth, and sufficient conditions for exponential growth, but
the converse direction in each case remains open. Though we know that the
finite maximal existential width of an AFA can be exponentially larger than the
number of states, we were able to construct a transformation to simulate AFAs
with finite maximal existential width by only polynomially many AFAs, each
having the same number of states and no existential branching. The conditions
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causing polynomial growth for an AFA’s tree width, maximal existential width,
or maximal universal width remain unknown, though we have initiated their
study by examining some of the nuance imposed by the ordering of existential
and universal states.
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Abstract. The partial derivative automaton (APD) is an elegant simula-
tion of a regular expression. Although it is, in general, smaller than the
position automaton (APOS), the algorithms that build APD in quadratic
worst-case time, first compute APOS. Asymptotically, and on average for
the uniform distribution, the size of APD is half the size of APOS, being both
linear on the size of the expression. We address the construction of APD

efficiently, on average, avoiding the computation of APOS. The expression
and the set of its partial derivatives are represented by a directed acyclic
graph with shared common subexpressions. We develop an algorithm for
building APD’s from expressions in strong star normal form of size n that
runs in time O

(
n3/2 4

√
log(n)

)
and space O

(
n3/2/(log n)3/4

)
, on average.

Empirical results corroborate its good practical performance.

1 Introduction

The partial derivative automaton (APD) is an elegant construction to obtain
nondeterministic finite automata (without ε-transitions) from regular expres-
sions. The use of derivatives has several advantages: they are easily extended to
operations other than union, concatenation, and Kleene star; word membership
can be evaluated without the need to build the automaton; and the APD is a
quotient of the position (or Glushkov) automaton (APOS) [6,7]. In the worst-
case, for a standard regular expression of size n, both automata can have O(n)
states, O(n2) transitions, and can be computed in time O(n2). However, the
known algorithms to build APD in quadratic time first compute APOS and then
compute a right-invariant equivalence on the states of APOS [8,16]. For practi-
cal applications, the drawbacks of these methods are the need to build a larger
automaton (which is not easy to generalize for nonstandard operations) and the
computation of the equivalence relation on the set of APOS states. In particular,
Khorsi et al. [16] base their algorithm on the construction and minimization of
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two acyclic deterministic finite automata, which burdens the practical perfor-
mance of the algorithm, despite their linear worst-case time.

Asymptotically, and on average for the uniform distribution, the size of APD

(both in states and transitions) is half the size of APOS, being both linear on
the size of the expression [3,19]. Being smaller, in general, it is interesting to
know if the APD can be built efficiently without the computation of the APOS.
In this paper we address this problem considering regular expressions in strong
star normal form (ssnf). The star normal form was first defined to construct the
position automaton in time O(n2), for expressions of size n [6]. The conversion of
an expression to star normal form can be done in linear time (in both the worst
and average cases). This form was extended to strong star normal form (ssnf)
by Gruber and Gulan [14]. The average-case complexity of conversions from ssnf
expressions to other models was studied by Broda et al. [4]. Then Konstantinidis
et al. [17] considered the size of partial derivatives on the average case both for
standard and ssnf expressions. For the latter, asymptotically and on average, the
size of the largest partial derivative is O(n/2), n being the size of the expression,
while one has O(n3/2) for the standard. Any partial derivative of an expression is
a concatenation of some of its subexpressions. Thus, it is interesting to estimate
the number of new concatenations obtained, on average, when partial derivatives
are computed. By using a tree representation of a regular expression and its set
of partial derivatives, those concatenations correspond to the new nodes that
are added to the initial tree. Konstantinidis et al. showed that when computing
a partial derivative w.r.t. one symbol that number is asymptotically constant.

In this paper we attain asymptotic estimates for the number of new con-
catenations when computing the set of all partial derivatives. To represent a
regular expression and the set of its partial derivatives, instead of a tree, we
consider a directed acyclic graph (DAG) with shared common subexpressions.
Flajolet et al. [13] showed that a tree of size n has, in this compact form, an
expected size of O

(
n /

√
log n

)
. We present an algorithm that computes APD(α)

by constructing a DAG for α, and simultaneously builds the set of all partial
derivatives by adding new concatenation nodes to the DAG. Using the asymp-
totic estimates mentioned above we show that for ssnf expressions the algorithm
uses, on average, time O

(
n3/2 4

√
log(n)

)
and space O

(
n3/2/(log n)3/4

)
. Experi-

ments for uniformly randomly generated expressions, as well as for some extreme
expressions, suggest that the algorithm has a good practical performance.

2 Preliminaries

A nondeterministic finite automaton (NFA) is a five-tuple A = 〈Q,Σ, δ, I, F 〉
where Q is a finite set of states, Σ is a finite alphabet, I ⊆ Q is the set of initial
states, F ⊆ Q is the set of final states, and δ : Q × Σ → 2Q is the transition
function. The size of an NFA is its number of states plus its number of transitions.
The transition function can be extended to words and to sets of states in the
natural way. The language accepted by A is L(A) = {w ∈ Σ� | δ(I, w) ∩ F 	= ∅}.
Given an alphabet Σ = {σ1, σ2, . . . , σk} of size k ≥ 1, the set Rk of (standard)
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regular expressions α over Σ consists of ∅ and the expressions defined by the
following context-free grammar:

α := ε | σ1 | · · · | σk | (α + α) | (α � α) | (α�), (1)

where the symbol � is often omitted, and represents concatenation. The language
associated with α is denoted by L(α) and is defined as usual. If S ⊆ Rk, then
L(S) =

⋃
α∈S L(α). We say that α is nullable if ε ∈ L(α) and, in this case,

define ε(α) = ε, with ε(α) = ∅, otherwise. For the size of a regular expression
α, denoted by ‖α‖, we will consider the size of its syntactic tree, i.e. the number
of symbols in α, not counting parentheses. The alphabetic size of α, denoted by
|α|Σ , is the number of letters in α. The notions of language, nullability and of the
above measures extend in a natural way to sets of expressions. The set of letters
that occur in α is denoted by Σα. The partial derivative automaton of a regular
expression was introduced independently by Mirkin [18] and Antimirov [1]. For
α ∈ Rk, let the linear form (LF) of α, ϕ(α) ⊆ Σ ×Rk, be inductively defined by

ϕ(∅) = ϕ(ε) = ∅,

ϕ(σ) = {(σ, ε)},

ϕ(α�) = ϕ(α)α�,

ϕ(α + α′) = ϕ(α) ∪ ϕ(α′),

ϕ(αα′) =

{
ϕ(α)α′ ∪ ϕ(α′), if ε(α) = ε,

ϕ(α)α′ otherwise,

(2)

where, for any S ⊆ Σ × Rk, we define S∅ = ∅, Sε = S, and Sα′ = { (σ, αα′) |
(σ, α) ∈ S ∧ α 	= ε } ∪ { (σ, α′) | (σ, ε) ∈ S } for α′ 	= ∅, ε. For α ∈ Rk and σ ∈ Σ,
the set of partial derivatives of α w.r.t. σ is defined by ∂σ(α) = {α′ | (σ, α′) ∈
ϕ(α) }. Partial derivatives (PD) can be extended w.r.t. words in a natural way,
as well as w.r.t languages and, both, to sets of regular expressions. We have
L(∂w(α)) = {w′ | ww′ ∈ L(α) }, for w ∈ Σ∗. The set of all partial derivatives
of α w.r.t. nonnull words is denoted by ∂+(α), and satisfies the following.

Proposition 1 ([18]).

∂+(∅) = ∂+(ε) = ∅, ∂+(α + α′) = ∂+(α) ∪ ∂+(α′),

∂+(σ) = {ε}, ∂+(αα′) = ∂+(α)α′ ∪ ∂+(α′),

∂+(α�) = ∂+(α)α�, (3)

where, for any S ⊆ Rk, we define S∅ = ∅, Sε = S, and Sα′ = {αα′ | α ∈
S ∧ α 	= ε } ∪ {α′ | ε ∈ S } for α′ 	= ∅, ε.

The set of all partial derivatives of α w.r.t. words is denoted by PD(α) =
∂Σ�(α) = ∂+(α) ∪ {α}. The partial derivative automaton of α is

APD(α) =
〈
PD(α), Σ, δPD, {α}, {α′ ∈ PD(α) | ε(α′) = ε}〉, (4)

with δPD(α′, σ) = ∂σ(α′), for all α′ ∈ PD(α) and σ ∈ Σ.

Proposition 2 ([1], Theorem 3.4). For any regular expression α, |∂+(α)| ≤
|α|Σ.
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Proposition 3 ([1], Theorem 3.8). Given α ∈ Rk, a partial derivative of α
is either ε or a concatenation α1α2 · · · αn such that αi is a subexpression of α
and n − 1 is no greater than the number of occurrences of concatenations and
stars in α.

Corollary 1. For β ∈ ∂+(α), the size ‖β‖ is O(‖α‖2).

Proposition 4 ([1,18]). For α ∈ Rk, we have |ϕ(α)| ≤ |α|Σ and for (σ, α′) ∈
ϕ(α), the size ‖α′‖ is O(‖α‖2). Moreover, |δPD(α)| is O(|α|2Σ). If α contains no
subexpression of the form α�

1, then the size ‖α′‖ is O(‖α‖).

Example 1. Let αn = a�
1 · · · a�

n, with |α|Σ = n. Then ∂+(αn) = {a�
i · · · a�

n | 2 ≤
i ≤ n}, and |ϕ(αn)| = |αn|Σ = n. The largest partial derivative has size n − 1,
and |δPD(αn)| =

∑n−1
i=1 i = n(n+1)

2 .

Proposition 5 ([2,3,19]). Asymptotically in the size of the expression, and as
the alphabet size grows, the average sizes |α|Σ, |ϕ(α)|, |∂+(α)|, and |δPD(α)| are
‖α‖
2 , the constant 6, ‖α‖

4 , and ‖α‖
2 , respectively.

3 Strong Star Normal Form and Partial Derivatives

A regular expression is in strong star normal form (ssnf) if for any subexpression
of the form β� or β+ε, β is not nullable. Introducing the operator option,?, with
L(β?) = L(β)∪{ε}, one can define the set Sk of regular expressions in ssnf over
some alphabet Σ = {σ1, . . . , σk} by the following grammar:

β := ε | ∅ | βε | βε,

βε := (βε � βε) | (βε + βε) | (βε + βε) | (βε + βε) | (β�
ε ) | (β?

ε),
βε := σ1 | · · · | σk | (βε � βε) | (βε � βε) | (βε � βε) | (βε + βε),

(5)

where βε is for (nontrivial) nullable regular expressions, while βε is for the others.
In the remaining of the paper we will use β to denote either of βε and βε.
For β ∈ Sk, the linear form ϕ(β) is defined as in (2) for the base cases and
for the union. For the remaining cases we define: ϕ(βεβ) = ϕ(βε)β ∪ ϕ(β),
ϕ(βεβ) = ϕ(βε)β, ϕ(β�

ε ) = ϕ(βε)β�
ε , and ϕ(β?

ε) = ϕ(βε). The set ∂+(β) of all
partial derivatives of β ∈ Sk w.r.t. nonnull words satisfies Proposition 1 except
for the following cases: ∂+(β�

ε ) = ∂+(βε)β�
ε and ∂+(β?

ε) = ∂+(βε) [17]. In the
next section, using the analytic combinatorics framework, we derive asymptotic
estimates for the number of new concatenations obtained when computing ∂+(β)
for β ∈ Sk, and thus obtaining an average-case version of Proposition 3.

3.1 The Analytic Tools

Given some measure of the objects of a combinatorial class, A, for each n ∈ N0,
let an be the sum of the values of this measure for all objects of size n. Now,
let A(z) =

∑
n anzn be the corresponding generating function (cf. [12]). We will

use the notation [zn]A(z) for an. The generating function A(z) can be seen as
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a complex analytic function, and when it has a unique dominant singularity ρ,
the study of the behaviour of A(z) around it gives us access to the asymptotic
form of its coefficients. In particular, if A(z) is analytic in some indented disc
neighbourhood of ρ, then one can use the following [12, Corol. VI.1, p. 392]:

Theorem 1. The coefficients of the series expansion of the complex function
f(z) ∼

z →ρ

λ
(
1 − z

ρ

)ν

, where ν ∈ C \N0, λ ∈ C, have the asymptotic approxima-

tion [zn]f(z) = λ
Γ(−ν) n−ν−1ρ−n + o

(
n−ν−1ρ−n

)
. Here Γ is the Euler’s gamma

function and the notation f(z) ∼
z →z0

g(z) means that lim
z→z0

f(z)
g(z) = 1.

To use this, one needs to have a way to obtain ρ, ν and λ. Here we only
give a high level description of how this can be done, referring the reader to
Broda et al. [4,5]. First, from an unambiguous generating grammar, one obtains
a set of polynomial equations involving the generating functions for the objects
corresponding to the variables of the grammar, in particular the one whose coef-
ficients we want to asymptotically estimate. Then, either using Gröbner basis or
by other means [5], one gets an algebraic equation for that generating function
w = w(z), i.e., an equation of the form G(z, w) = 0, where G(z, w) ∈ Z[z, w]
of which w(z) is a root. Analysing the form of the curve G, and using its
partial derivatives, one can find an irreducible polynomial for the singularity
ρ, and, when limz→ρ w(z) = a ∈ R

+, an irreducible polynomial for a; when
limz→ρ w(z) = +∞, the irreducible polynomial for ρ is a factor of the lead-
ing coefficient of G(z, w) when seen as a polynomial in w [15, Theorem 12.2.1].
After making the change of variable s = 1 − z/ρ, one knows that w = w(s)
has a Puiseux series expansion at the singularity s = 0, i.e., there exists a slit
neighbourhood of that point in which w(s) has a representation as a power series
with fractional powers [15, Chap. 12],

Using the irreducible polynomial for ρ, and the one for a in the first case,
while in the second case one changes variables in order to replace +∞ with 0,
one decides which partial derivatives of G are nonzero, and uses that information
to draw a Newton polygon that yields the values of ν and λ. Then, Theorem 1
yields:

Theorem 2. With the notations and in the conditions above described, one
has

[zn]w(z) ∼
n→∞

⎧
⎪⎪⎨

⎪⎪⎩

−bG

Γ(−ν)
ρ−nn−ν−1, if limz→ρ w(z) ∈ R

+, (6)

1
cG Γ(ν)

ρ−nnν−1, if limz→ρ w(z) = +∞, (7)

where ρ and ν are as above, setting bG = −λ and cG = λ−1.

Let the generating functions for βε and βε regular expressions be, respectively,
Bk = Bk(z) =

∑
βε

z‖βε‖ =
∑

n bnzn and Bk = Bk(z) =
∑

βε
z‖βε‖ =

∑
n bnzn,

where bn and bn are the corresponding numbers of expressions of size n.
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From (5), one gets Bk = 2zB2
k +2zBkBk+2zBk and Bk = kz+2zBkBk+2zB

2

k.

Using Theorem 2, Broda et al. [4] obtained that [zn]Bk(z) ∼
n → ∞

bBk

2
√

π
η−n

k n− 3
2

and [zn]Bk(z) ∼
n → ∞

bBk

2
√

π
η−n

k n− 3
2 , where ηk is the unique dominant singular-

ity of Bk(z), which happens to be the same for Bk(z). It was also shown that
ηk ∼

k → ∞

1√
8k

, bBk ∼
k → ∞

√
8 and bBk ∼

k → ∞

√
k, which yields the asymptotic

behaviour of the size of βε and βε.

3.2 Average Number of New Concatenations in Partial Derivatives

In this section we consider the quantities |∂+(β)| and |∂+(β)|	 =
∑

α∈∂+(β) |α|	
which is the number of new concatenations when computing ∂+(β), and we
estimate the average value of |∂+(β)|	. Let �(β) be the function |∂+(β)| and
h(β) be the function of |∂+(β)|	, assuming that all computed partial derivatives
are distinct. Thus, � and h are upper bounds for those quantities in the general
case. Using the definition of ∂+ for β ∈ Sk, we have that those cost functions
(of the expressions) satisfy

h(ε) = h(σ) = 0,
h(β + β′) = h(β) + h(β′),

h(ββ′) = h(β) + �(β) + h(β′),
h(β�

ε ) = h(βε) + �(βε),
h(β?

ε) = h(βε),

�(ε) = 0, �(σ) = 1,
�(β + β′) = �(β) + �(β′),

�(ββ′) = �(β) + �(β′),
�(β�

ε ) = �(βε),
�(β?

ε) = �(βε).

In the computation of h(ββ′), the summand �(β) accounts for the number of
partial derivatives of β. Similarly for h(β�

ε ). For the special case of βε expressions,
h(σ) = 0, h(βε +β′

ε) = h(βε)+h(β′
ε), h(βεβε) = h(βε)+ �(βε)+h(βε), h(ββε) =

h(β) + �(β) + h(βε) and �(σ) = 1, �(βε + β′
ε) = �(βε) + �(β′

ε), �(βεβε) = �(βε) +
�(βε), �(ββε) = �(β) + �(βε). Let Hk = Hk(z) and Hk = Hk(z) be the cost
generating function for the measure h associated with the expressions β and βε,
respectively. Analogously, let Lk = Lk(z) and Lk = Lk(z) be the corresponding
ones for �. These coincide with the cost generating functions for the alphabetic
size, and that was calculated in Broda et al. [4]. One has, where Tk = Bk + Bk,

Hk = 4zHkTk + zLkTk + 2zHk + zLk,

Hk = 2zHkBk + 2zHkTk + zLkBk + zLkBk.

Bk = 2zB2
k + 2zBkBk + 2Bkz,

Bk = kz + 2zBkBk + 2zB
2

k,

Lk − Lk = 4zBk(Lk − Lk) + 2zBkLk + 2zBk(Lk − Lk) + 2zLk,

Lk = kz + 2zBkLk + 2zBk(Lk − Lk) + 4zBkLk.

Using Gröbner basis for the equations of Bk and Bk, and with the help of a
symbolic manipulator, one can find a polynomial in Q(z, w) for which w = Hk(z)
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is a zero, namely 16z2�k(z)2 w3 + 4k �k(z)p4(z)w2 + p8(z)w + kz2p6(z), where
the dominant singularity of Hk is only root in ]0, 1[ of

�k(z) = z3 +
9

2k + 27
z2 − 1

4(2k + 27)
z − 1

k(2k + 27)
,

and pi denotes a polynomial of degree i. Using the method described in [5], one
sees that this falls in the case (7) of Theorem 2, and computing the respective
constants, ρ, ν, c, one gets the following value for the asymptotic behaviour of
the coefficients of Hk(z):

[zn]Hk(z) ∼
n → ∞

1
cHk

η−n
k , (8)

where cHk
is a function of k with an expression too cumbersome to write here,

but that satisfies cHk ∼
k → ∞

16
√

2√
k

. From this one now gets

Theorem 3. The average value of the upper bound h considered above, for the
number of new concatenations in all the partial derivatives of a regular expression
in Sk is given by

[zn]Hk(z)
[zn](Bk(z) + Bk(z)) ∼

n → ∞

2
√

π

cGk
(bBk

+ bBk
)

n
3
2 ∼

k → ∞

√
π

128
n

3
2 . (9)

And also, knowing that [zn]Lk(z) ∼
√

k
4
√

π
η−n

k n−1/2 (see [4]), one obtains

Theorem 4. The average value of the upper bound h considered above, for the
number of new concatenations per partial derivative of a regular expression in
Sk is given by

[zn]Hk(z)
[zn]Lk(z) ∼

n, k → ∞

√
π

32
n

1
2 . (10)

Note that in the worst case the number of new concatenations is Θ(‖β‖2),
as illustrated by the following example. Let βn = a1a2 · · · an, for n ≥ 1, with
‖βn‖ = 2n − 1. We have ∂+(βn) = { ai · · · an | 2 ≤ i ≤ n } ∪ {ε} and the number
of new concatenations is |∂+(βn)|	 =

∑n
i=2(n − i) = (n2 − 3n + 2)/2.

4 DAG Representation and Partial Derivatives

Consider the (binary) tree representation of β ∈ Sk. Each node v of the tree is
labelled with an operator denoted by lab(v). Let βv be the subexpression rooted
at v. In what follows, we identify a node with its rooted subexpression. A node
v is an op-node if lab(v) = op, op ∈ {+, �, ?,�} ∪ Σ. Each node, except the
root, has exactly one parent node and can have zero, one or two children. For
β1 = (ab)�a + (ab)�, its tree is depicted in Fig. 1(a). One can see that there
are several identical subtrees (subexpressions). The identification of all common
subexpressions of β leads to a directed acyclic graph (DAG) representation of
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β. Let s be the number of distinct subexpressions of β. Each node of the DAG
corresponds exactly to a distinct subexpression of β and can be identified by an
index i ∈ {1, . . . , s}. The node with index 0 corresponds to ε.

In Algorithm 1, we present an algorithm to build the DAG for a regular
expression, as well as, to compute its APD. In this section we focus on the con-
struction of the DAG without constructing partial derivatives and thus APD.

The function getI constructs the DAG for an expression and for each type
of operator calls a function that builds a node, if it does not exist, and returns
its index. This function is inspired by Flajolet et al. [13], which is based on the
more general algorithms presented in Downey et al. [11].

Let IND be a structure that associates each index i with a unique node
(subexpression). Let last be the variable that counts the number of nodes already
in the DAG. The function node(i, op, C) creates a node with index i, label op
and children C, where C is a list of zero to two DAG indexes (which is omitted
if |C| = 0). To construct the DAG one needs to determine if for a node i, the
subtree βi is already there. That can be decided by analysing the parents of node
i and their labels, using the following functions. Let star(i) be the parent of i, in
the case it is a �-node, or Null, otherwise. Similarly define option(i). To uniquely
identify a �-node one needs to know its left and right children. If dot(i, j) is not
Null then a �-node with left child i and right child j exists. The same occurs for
+-node and plus(i, j). Finally, leaves(σ) is not Null, if the node i is a σ-node.

Depending on the data structures used, the construction of the DAG can be
achieved, in the worst-case, in quadratic time or, respectively, in linear time [11].
Using hash tables the running time is O(n), on average [13, Prop. 1]. Using the
result of Flajolet et al. [13], mentioned in Sect. 1, the expected size of the DAG of
β is O

(
‖β‖ /

√
log ‖β‖

)
. A DAG for β1 is depicted in Fig. 1(b). When building

the DAG, one can also compute for each node i, the functions ε(i) and ϕ(i). In
Algorithm 1, the function ewp is a Boolean function such that ewp(i) = True if
ε(i) = ε, and False otherwise. The computation of ϕ(i) can lead to the creation
of new �-nodes. For these nodes the computation of ϕ is delayed until the nodes
of all subexpressions of a given expression are computed. The final DAG is shown
in Fig. 1(c). Note that the indexes (numbers) given to nodes are different if one
computes simultaneously the DAG for β1 with or without the partial derivatives.
In the latter case, the partial derivatives are computed after the DAG for β1

is constructed (and that is what is assumed in Fig. 1). After constructing the
DAG with all partial derivatives (LF), the APD(β) can be easily obtained. The
automaton APD(β1) is shown in Fig. 1(d). In the next section, we detail the
algorithm to build the APD(β), as well as the overall complexity analysis.

5 Algorithm PDDAG

Given a regular expression β, we present an algorithm to compute the partial
derivative automaton APD(β). Although the algorithm also applies to standard
regular expressions, here, we assume expressions in ssnf. In Algorithm 1, the
function PDDAG implements the main procedure that constructs a DAG not
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Fig. 1. For β1 = (ab)�a+(ab)� we show (a) a tree representation where the root corre-
sponds to β1, (b) the (minimal) DAG identifying common subexpressions of α1, (c) DAG
with partial derivative nodes (LF), and (d) the resulting APD. In (c), new nodes created
during the computation of ∂+(β1) are presented by a square. The values of ewp(i) are
omitted. A (dark) zigzag directed edge between nodes i and j labelled by σ means that
j ∈ ∂σ(i) (those accessible from the root correspond to the transitions in APD).

only representing the expression but also all its partial derivatives. For each node,
the corresponding linear form is computed and for �-nodes or �-nodes special
attention is needed. In both cases, the function concLF can add new �-nodes to
the DAG. For those nodes the computation of their linear forms is delayed, as they
can depend on the linear forms of the nodes that gave them origin. Hence, the
function ConcI is called with the delay parameter as True (by default is False).
When the computation of the linear form of the creator node is finished, the
linear forms of the delayed nodes can safely be computed. Function doDelayed
computes the linear forms of the new �-nodes until no more delayed nodes exist.
When all nodes of all partial derivatives have been created, the APD(β) can be
constructed using definition (4), starting with the root node s corresponding to β.
The function makeNFA implements this construction (by space constraints, we
omit its description). In the following, we discuss the complexity of the algorithm.
We show that, on average for β ∈ Sk, the algorithm PDDAG(β) works in
time O

(‖β‖3/2 4
√

log ‖β‖)
. We make the ordinary assumption in formal language

algorithms that an integer occupies space O(1) and each basic integer arithmetic
operation takes time O(1) [10].

Lemma 1. Given the DAG of β with partial derivatives, for every node v and
σ ∈ Σ, |∂σ(βv)| ≤ |β|Σ.

Theorem 5. Algorithm PDDAG(β) can be implemented such that

(i) in the average case, it uses time O
(‖β‖3/2 4

√
log ‖β‖)

;
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Algorithm 1. Partial Derivative Automaton with DAG

1: function PDDAG(α)
2: IND[0] ←Node(0, ε)
3: last ← 1;Delayed ← ∅
4: s ← getI(α)
5: makeNFA()

6: function getI(α)
7: if α = σ then
8: return AtomI(σ)

9: else if α = α?
1 then

10: return OptionI(getI(α1))
11: else if α = α�

1 then
12: return StarI(getI(α1))
13: else if α = α1 + α2 then
14: return PlusI(getI(α1),getI(α2))
15: else if α = α1 	 α2 then
16: return ConcI(getI(α1),getI(α2))
17: else return 0
18: function AtomI(σ)
19: if leaves(σ) is Null then
20: i ← last; last ← last+1
21: IND[i] ← Node(i, σ)
22: ewp(i) ← False
23: ϕ(i) ← (σ, 0)
24: else
25: i ← leaves(σ)

26: return i
27: function StarI(i)
28: if star(i) is Null then
29: j ← last; last ← last+1
30: IND[j] ← Node(j, �, i)
31: ewp(j) ← True
32: ϕ(j) ← concLF(i, j)
33: doDelayed()
34: else
35: j ← star(i)

36: return j

37: function OptionI(i)
38: if option(i) is Null then
39: j ← last; last ← last+1
40: IND[j] ← Node(j, ?, i)
41: ewp(j) ← True
42: ϕ(j) ← ϕ(i)

43: else
44: j ← option(i)

45: return i
46: function PlusI(i, j)
47: if plus(i, j) is Null then
48: � ← last; last ← last+1
49: IND[�] ← Node(�, +, i, j)
50: ewp(�) ← ewp(i) ∨ ewp(j)
51: ϕ(�) ← ϕ(i) ∪ ϕ(j)
52: else
53: � ← plus(i, j)

54: return �
55: function ConcI(i, j, delay = False)
56: if i = 0 then return j

57: if j = 0 then return i

58: if dot(i, j) is Null then
59: � ← last; last ← last+1
60: IND[�] ← Node(�, 	, i, j)
61: ewp(�) ← ewp(i) ∧ ewp(j)
62: if delay = True then
63: add � to Delayed
64: else
65: ϕ(�) ← concLF(i, j)
66: if ewp(i) then
67: ϕ(�) ← ϕ(�) ∪ ϕ(j)

68: doDelayed()

69: else
70: � ← dot(i, j)

71: return �
72: function ConcLF(i, j)
73: F ← ∅
74: for all (σ, �) ∈ ϕ(i) do
75: add (σ,ConcI(�, j,True)) to F

76: return F
77: function doDelayed( )
78: while Delayed �= ∅ do
79: i ← Delayed.pop()
80: ϕ(i) ← ConcLF(left(i), right(i))
81: if ewp(left(i)) then
82: ϕ(i) ← ϕ(i) ∪ ϕ(right(i))

(ii) in the worst case, it uses time O
(|Σβ ||β|2Σ‖β‖ log ‖β‖) ;

(iii) in the average case, it uses space O
(‖β‖3/2 / (log ‖β‖)3/4

)
;

(iv) in the worst case, it uses space O
(|Σβ ||β|2Σ‖β‖).

Proof. As seen in Sect. 4, making the DAG for β can take time Θ(‖β‖) and the
number s of initial DAG nodes is O(‖β‖/

√
log ‖β‖) in the average case, and

Θ(‖β‖) in the worst case. All finite sets in the algorithm are implemented using
AVL-trees.The structure IND contains pairs (i, p) such that i is an index and p is
the DAG node with index i. The structure DOT contains triples (i, j, �) of integers
such that � is the index for a �-node with i = left(�) and j = right(�). The search
is based on the pairs (i, j) and works as in single integer comparisons. Function
dot(i, j) returns � when the triple (i, j, �) is in DOT, and Null otherwise. When
Node(�,�, i, j) is created the triple (i, j, �) is added to DOT. The structure
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PLUS is analogous to DOT for +-nodes and used by the function plus. The
structure Δ contains pairs (�, F ) such that F = ϕ(�). Specifically, F is an AVL-
tree containing pairs (σ, S) such that S = ∂σ(�). To access the set ∂σ(�), Δ is
searched on � to get the pair (�, F ), and then F is searched on σ to get the
set S = ∂σ(�). Let t be the number of new nodes created when computing the
linear forms. Each such node is a partial derivative of β or of a subexpression
of β. Let {β�}s

�=1 be the set of subexpressions of β, including β = βs. Then
t ≤ |⋃s

�=1 ∂+(�)| ≤ ∑s
�=1 |β�|Σ ≤ s|β|Σ . By Theorem 3 we have that, on average,

t = O(s3/2). In the worst-case, t = Θ(s|β|Σ). For each node �, the set ϕ(�) is
computed and stored as Δ[�]. Each |Δ[�]| is O(|Σβ ||β|Σ) in the worst case (by
Lemma 1), and O(1) in the average case [17,19]. Based on the above observations,
the algorithm’s space complexity is O

(|Σβ ||β|Σs|β|Σ
)

= O
(|Σβ ||β|2Σ‖β‖)

in the
worst case, and O(s3/2) = O

(‖β‖3/2 / (log ‖β‖)3/4
)

in the average case. We
turn now to the time complexity. The task to compute the set Δ[�], for each
node �, depends on lab(�) and the children of �. We only examine the time for
+-nodes and �-nodes, as the time for the others is not more significant. If �
is a +-node, then Δ[�] = Δ[left(�)] ∪ Δ[right(�)]. Thus, the cost for each +-
node � is O

(|Δ[�]| log |Δ[�]|). If � is a �-node with children i, j then the time
of ConcLF(i, j) is O

(|Δ[i]| log t + |Δ[�]| log |Δ[�]|), where log t accounts for the
cost of accessing DOT and |Δ[�]| log |Δ[�]| for making the set F (line 75). As
|Σβ |, |β|Σ ≤ ‖β‖, we have that log t = O(log ‖β‖).

Thus, the algorithm’s time complexity is O
(|Σβ ||β|2Σ‖β‖ log ‖β‖) in the

worst case, and O
(‖β‖3/2 (log ‖β‖)1/4

)
in the average case. �

Fig. 2. Running times (per expression) of the simulation of expressions in ssnf by NFA
using different algorithms: position (APOS), partial derivatives (APD) using, respectively,
PDDAG, KOZ, and a naive implementation, NAIVE.

6 Empirical Results and Conclusions

We implemented the algorithm pddag in Python within FAdo (https://pypi.
org/project/FAdo/). Instead of AVL-trees we used hash tables, as those are
Python’s natural data structures. In the experiments we uniformly random gen-
erated expressions β ∈ Sk, in prefix notation. For each expression size n ∈

https://pypi.org/project/FAdo/
https://pypi.org/project/FAdo/
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{100, 200, 300, 500, 1000, 2000, 3000, 4000}, and alphabet size k ∈ {2, 5, 10, 50},
samples of 10000 expressions were generated. This is sufficient to ensure a 95%
confidence level within a 1% error margin [9, p. 75]. In FAdo there is a naive
implementation of APD that recursively computes the linear forms with some
memoization (NAIVE), as well as implementations of the position automaton
APOS. The algorithm for APD by Khorsi et a. (koz) [16] was implemented using
FAdo methods for acyclic finite automata. The tests were performed in Python
2.7 with a 2.5 GHz Quad-Core i7 CPU and 16 GB memory. In Fig. 2, on the
left, we present the average running times of the algorithms per expression of
size n, and k = 2. On the right, we present the running times for expressions
βn = a?

1 · · · a?
n, over a growing alphabet Σ = {a1, . . . , an}, that attain the worst-

case size of APD. Both results suggest that the algorithm pddag has a good
practical performance.

Future research is the adaptation of the tools used here to the word mem-
bership problem without computing the automaton.
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Abstract. Partial word finite automata are deterministic finite automa-
ta that may have state transitions on a special symbol � which repre-
sents an unknown symbol or a hole in the word. Together with a subset
of the input alphabet that gives the symbols which may be substituted
for the �, a partial word finite automaton represents a regular language.
However, this substitution implies a certain form of limited nondetermin-
ism in the computations when the �-transitions are replaced by ordinary
transitions. In this paper we first reconsider the problem to prove the
minimality of partial word finite automata and present a method to uti-
lize minimal NFAs with certain properties for this purpose. Then we
study the operational state complexity of partial word finite automata
with respect to Boolean operations. It turns out that the upper and lower
bounds for all these operations are exponential. Moreover, we establish
a state complexity hierarchy on the number of productive �-transitions
that may appear in partial word finite automata. The levels of the hier-
archy are separated by exponential state costs.

1 Introduction

Partial words are strings where certain positions are not specified. These posi-
tions are often called holes or don’t cares and printed by a diamond symbol �.
Apart from theoretical reasons, the basic motivation for studying this mechanism
comes from the study of biological operations in connection with DNA strands.
In particular, DNA sequencing is a biological process to determine the base
sequence of a given DNA strand. To this end, the two DNA strands are separated
and cut into small pieces. Afterwards the small sequences are copied, multiplied,
and then detected. Subsequently, the complete strand has to be derived out of
the small pieces. This assembling can be done by aligning the fragments with
the help of gaps (holes) which leads to the definition of partial words. The first
time the idea of words with don’t cares has been investigated goes back to [7],
where they were considered in connection with string matching. The notation
partial word has firstly been defined in [2].

Partial words were mainly investigated in connection with combinatorics on
words. A survey can be found in [4]. An interesting motivation in theory for
this model is that ordinary languages can be compressed by the usage of holes.
Consider for example the language L over the ternary alphabet Σ = {a, b, c},
c© IFIP International Federation for Information Processing 2021
Published by Springer International Publishing AG 2021. All Rights Reserved
Y.-S. Han and S.-K. Ko (Eds.): DCFS 2021, LNCS 13037, pp. 113–124, 2021.
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L = {aaa, aba, aca}. It can be compressed by using a hole into L′ = {a � a}.
Simply by replacing the diamond by a, b, or c the original language L can be
achieved.

In 2012, partial words were studied in connection with families of formal
languages [6]. In particular, a regular language is represented by the image of
a partial language under a substitution that only replaces the hole symbols. In
connection with DFAs it turned out that the usage of holes can be somehow
seen as a limited nondeterminism, since it allows to define DFAs with outgoing
edges that are labeled with ordinary symbols and additionally with a diamond.
If some of the ordinary symbols may be substituted for the hole symbol as well,
the corresponding state allows a nondeterministic choice with respect to the tar-
get language. While in the original definition of partial words a hole represents
a placeholder for all letters of the underlying alphabet, in investigations in con-
nection with language families the substitution of the hole symbol can be an
arbitrary subset of the alphabet (see for example [1,6,10]).

The applications of defining language families by partial words via partial
word finite automata have also been investigated from a complexity point of
view. Concerning the descriptional complexity, in [1] it has been shown that the
state complexity for a DFA that simulates a partial word DFA is exponential
in general. Moreover also the state complexity of the simulation of an NFA by
a partial word DFA may become exponential. Concerning the computational
complexity, different problems as, for example, minimization have been studied
for partial word automata [5,10].

The main aim of this paper is to extend the investigations on the state
complexity of partial word automata. In connection with lower bounds on the
number of states necessary for an automaton to accept a given language, the
problem arises to prove the minimality of a given automaton. In Sect. 3 we
discuss this problem by referring to known results from the literature and provide
methods to prove the minimality of partial word DFAs by utilizing minimal NFAs
with certain properties. Section 4 considers the operational state complexity for
Boolean operations. It turns out that upper and lower bounds are exponential. In
the last section we consider the impact of the number of productive �-transitions
in a partial word finite automaton, where a transition is called productive, if it
does not lead to the rejecting sink state. It comes out that even the reduction of
one of these transitions may lead to an exponential state explosion, which leads
to a state complexity hierarchy dependent on the number of �-transitions.

2 Preliminaries

We denote the non-negative integers {0, 1, 2, . . . } by N. Let Σ∗ denote the set
of all words over the finite alphabet Σ. A subset L ⊆ Σ∗ is said to be a formal
language over Σ. We write L for the complement of L with respect to Σ, that
is for Σ∗ \ L. The empty word is denoted by λ and the reversal of a word w
by wR. For the length of w we write |w|. We use ⊆ for inclusions and ⊂ for strict
inclusions.
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Setting Σ� = Σ ∪ {�}, where � /∈ Σ represents undefined positions or holes,
a partial word over Σ is a sequence of symbols from Σ�. Denoting the set of all
partial words over Σ by Σ∗

� , a partial language over Σ is a subset of Σ∗
� . Partial

languages can be transformed to (ordinary) languages by using �-substitutions
over Σ. A �-substitution σ : Σ∗

� → 2Σ∗
satisfies σ(a) = {a}, for all a ∈ Σ,

σ(�) ⊆ Σ, and σ(uv) = σ(u)σ(v), for u, v ∈ Σ∗
� . As a result, σ is fully defined by

σ(�), for example, if σ(�) = {a, b} and L = {�b, �c} then σ(L) = {ab, bb, ac, bc}.
So, applying σ to a partial language L ⊆ Σ∗

� results in a (ordinary) language
σ(L) ⊆ Σ∗.

A nondeterministic finite automaton (NFA) is a system M = 〈Q,Σ, δ, q0, F 〉,
where Q is the finite set of internal states, Σ is the finite set of input symbols,
q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states, and δ : Q×Σ → 2Q

is the transition function. In the forthcoming, we sometimes refer to δ as a
subset of Q × Σ × Q. A finite automaton M is deterministic (DFA) if and
only if |δ(q, a)| = 1, for all q ∈ Q and a ∈ Σ. In this case, we simply write
δ(q, a) = q′ for δ(q, a) = {q′} assuming that the transition function is a total
mapping δ : Q × Σ → Q. Note that here any DFA is complete, that is, the
transition function is total, whereas it may be a partial function for NFAs in
the sense that the transition function of nondeterministic machines may map
to the empty set. A finite automaton is said to be minimal if there is no finite
automaton of the same type with fewer states, accepting the same language. Note
that a rejecting sink state is counted for DFAs, since they are always complete,
whereas it is not counted for NFAs, since their transition function may map to
the empty set.

Generally speaking, a language L can be represented by a partial language L′

together with a �-substitution σ such that σ(L′) = L. In particular, for regular
languages, from the descriptional complexity point of view it is an interesting
question to what extent there are regular languages L′ such that the minimal
DFA accepting L′ has less states than the minimal DFA accepting L? In order to
distinguish between finite automata accepting (ordinary) languages from those
accepting partial languages, we refer to the latter as partial word deterministic
finite automata (�-DFA). Thus, �-DFAs treat the hole symbol � as an ordinary
input letter.

The number of states of the (complete) minimal DFA accepting a regular
language L is denoted by minDFA(L). Similarly, minNFA(L) denotes the minimal
number of states necessary for some NFA to accept L. For partial languages, we
write min�-DFA(L) to denote the minimal number of states of a �-DFA accepting
a language L′ such that there exists a �-substitution σ with σ(L′) = L.

3 Basic Constructions

In connection with lower bounds on the number of states necessary for an
automaton to accept a given language, the problem arises to prove the min-
imality of a given automaton. While a couple of techniques exist to prove the
minimality of DFAs, only a few techniques exist for NFAs. The situation is much
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worse for �-DFAs. Clearly, a �-DFA can be seen as a DFA over the alphabet Σ�.
But, in general, the minimization of a �-DFA M changes the language that it
represents, that is, σ(L(M)). It has been shown in [10] that the problem to find
a minimal �-DFA M ′ (together with a �-substitution) for a given regular lan-
guage is PSPACE-complete. The problem has been studied in more detail in [5],
where algorithms are given for the construction of minimal partial languages,
associated with some �-substitution, as well as approximation algorithms for the
construction of minimal �-DFAs. However, for particular languages that witness
certain lower bounds, their minimality has to be proved almost from scratch.
Here we continue with some observations that can nevertheless be applied in
lower bound proofs.

First, we briefly recall the so-called (extended) fooling set technique (see, for
example, [3,8,12]) that is widely used for proving lower bounds on the number
of states necessary for an NFA to accept a given language.

Theorem 1. Let L ⊆ Σ∗ be a regular language and suppose there exists a set
of pairs P = { (xi, yi) | 1 ≤ i ≤ n } such that (1) xiyi ∈ L, for 1 ≤ i ≤ n,
and (2) i �= j implies xiyj �∈ L or xjyi �∈ L, for 1 ≤ i, j ≤ n. Then any
nondeterministic finite automaton accepting L has at least n states. Here P is
called an (extended) fooling set for L.

Let M be a �-DFA = 〈Q,Σ�, δ, q0, F 〉 and σ be an associated �-substitution.
Then a minimal DFA M ′ that accepts the language σ(L(M)) can be constructed
as follows. First, modify M to the NFA M̂ = 〈Q,Σ, δ̂, q0, F 〉 by replacing any
transition δ(p, �) = q by the transitions { δ̂(p, a) = q | a ∈ σ(�) } and keeping
all other transitions from δ. Then determinize M̂ and minimize the outcome.
We call M ′ constructed in this way the canonical DFA for M and σ. This
construction is presented as Algorithm 1 in [1].

The intermediate NFA in the construction exhibits the limited nondetermin-
ism provided by �-DFAs. In fact, for each state of the NFA, there are at most
two outgoing transitions for each input symbol. This is a valuable hint for the
seek for suitable witness automata. For example, it is known that 2n−1 is a tight
bound on the number of states for a DFA that accepts the language σ(L(M)) of
an n-state �-DFA M with associated �-substitution [1]. In order to find further
witnesses for the lower bound it is sufficient to look for complete NFAs having
(i) the required form of limited nondeterminism for just one input symbol and
(ii) causing the maximal state blow-up of 2n −1 when determinized. An example
is depicted in Fig. 1.

In such an NFA M the nondeterminism can be removed by replacing one of
the two nondeterministic outgoing transitions by a transition on �, respectively,
and setting σ(�) = {x}, where x is the sole input symbol for which the nonde-
terminism occurs. Since M is complete, for all states of the resulting automaton
on which a �-transition is defined, transitions on all other input symbols are
defined as well. So, in order to make the resulting automaton complete, it is
sufficient to add a �-transition to the states for which no �-transition is defined
so far. This can safely be done by copying the transition on x. The transition
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Fig. 1. A complete n-state NFA whose minimal equivalent DFA has 2n − 1 states.

on x must exist, since M is complete. Clearly, the resulting automaton M ′ is a
�-DFA with σ(L(M ′)) = L(M) (see Fig. 2 for a possible �-DFA obtained from
the NFA of Fig. 1). Since minNFA(L) ≤ min �-DFA(L) [6] and M ′ has the same
number of states as M has, the �-DFA M ′ is minimal, that is, even for any other
�-substitution no smaller equivalent �-DFA exists.

Fig. 2. A minimal �-DFA obtained from the NFA depicted in Fig. 1, σ(�) = {b}.

The example above dealt with the maximal state blow-up for “determiniza-
tion”. However, the method to prove the minimality of �-DFAs by utilizing
minimal NFAs with certain properties can be extended.

Lemma 1. Let M = 〈Q,Σ, δ, q0, F 〉 be a possibly incomplete DFA, S ⊆ Σ be
a fixed subset of input symbols, P ⊆ Q, and α : Q → Q be a total mapping.
Moreover, let M̂ = 〈Q,Σ, δ̂, q0, F 〉 be an NFA obtained from M by adding the
transitions {δ̂(p, a) = α(p) | p ∈ P, a ∈ S } to δ. Then min�-DFA(L(M̂)) ≤ |Q|
if M is complete and P = Q, and min�-DFA(L(M̂)) ≤ |Q| + 1 otherwise.

Proof. We set σ(�) = S and construct a �-DFA M ′ = 〈Q,Σ�, δ′, q0, F 〉 from
the given NFA M̂ . To this end, for any state p ∈ P , a set of transitions
{δ̂(p, a) = α(p) | a ∈ S } is replaced by the transition δ̂(p, �) = α(p). By the
construction of M̂ from the DFA M it follows that M ′ is deterministic. If M
is complete and P = Q, that is, for all states there is an outgoing �-transition
in M ′, then M ′ is complete. Otherwise, it is completed by adding missing tran-
sitions to a new rejecting sink state. This gives the transition function δ′. Since
the input alphabet of M ′ is Σ�, it is a �-DFA. Moreover, the canonical DFA
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for M ′ and σ is equivalent to M̂ . Since apart from a possible new sink state the
state set is the same for M ′ and M̂ , we conclude min�-DFA(L(M̂)) ≤ |Q| if M
is complete and P = Q. Otherwise, we have min�-DFA(L(M̂)) ≤ |Q| + 1. �


Let L = {aa, aaa, aaaa, aca, aaca, baca, baa, baaa} ⊂ {a, b, c}∗ be a finite lan-
guage. It has been shown in [5] that any �-DFA accepting L has at least seven
states if σ(�) = {a, b}, and at least eight states if σ(�) = {a, c}. In order to
show that any minimal NFA accepting L has five states, we apply Theorem 1 by
providing the set P = {(λ, a4), (b, a3), (ba, a2), (bac, a), (baca, λ)} whose fooling
set property for L is easily verified. A minimal NFA M accepting L is shown in
Fig. 3.

Fig. 3. A minimal NFA accepting a finite language.

This NFA M cannot serve as witness for the constructions from above because
there are three transitions on input symbol a defined for state 0. Moreover, let α
be the mapping of Lemma 1. Then, it can map state 0 to state 1 or to state 2 or to
state 3 to remove the nondeterminism. However, in any case the nondeterminism
is not removed entirely, when the transition δ(0, a) = α(0) is deleted. It is not
hard to show that any minimal NFA accepting L must have three a-transitions
from the initial state. So, changing to a possibly different but equivalent minimal
NFA does not help. Nevertheless, we can utilize M to show the minimality of a
�-DFA accepting the finite language L as follows.

By way of contradiction, assume that there is a 6-state �-DFA M ′ and a �-
substitution σ such that σ(L(M ′)) = L. Since M ′ is complete and, for example,
any input beginning with symbol c has to be rejected, M ′ has a rejecting sink
state. We remove this sink state and all transitions to it, and obtain an equivalent
incomplete 5-state �-DFA M ′′. Next, we construct an NFA M̂ from M ′′ as in the
construction of the canonical DFA. That is, M̂ is obtained from M ′′ by replacing
any transition δ(p, �) = q from M ′′ by the transitions { δ̂(p, a) = q | a ∈ σ(�) }
and keeping all other transitions from δ. So, M̂ has five states and is minimal. In
particular, it has at most two transitions on input symbol a from the initial state.
This is a contradiction, since any minimal NFA accepting L must have three a-
transitions from the initial state. We conclude that, for any �-substitution, a
minimal �-DFA accepting L has at least seven states.
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In order to construct such a minimal �-DFA with σ(�) = {a}, we can resolve
the nondeterminism by replacing two a-transitions from the initial state by a
single a-transition to a new state 2, 3 which, in turn, has the outgoing transitions
of the states 2 and 3. The newly introduced nondeterminism for this state can
be removed by a �-transition as depicted in Fig. 4.

Fig. 4. A minimal �-DFA accepting a finite language, where σ(�) = {a}. The rejecting
sink state is not depicted.

4 Operational State Complexity

Let ◦ be a fixed operation on languages that preserves regularity. Then the
◦-language operation problem for �-DFAs is defined as follows:

– Given an n-state �-DFA M1 with �-substitution σ1 and an m-state �-DFA M2

with �-substitution σ2.
– How many states are sufficient and necessary in the worst case (in terms of n

and m) for a �-DFA M3 with some �-substitution σ3 such that

σ3(L(M3)) = σ1(L(M1)) ◦ σ2(L(M2))?

Obviously, this problem generalizes to unary language operations like, for
example, complementation or reversal.

We first consider the operation of complementation and show an upper bound
and a lower bound that is tight up to a constant factor. The result reveals that com-
plementation is an expensive operation from the state complexity point of view.

Proposition 1. Let n ≥ 1 be an integer and M1 be an n-state �-DFA with
�-substitution σ1. Then 2n −1 states are sufficient for a �-DFA M2 with some �-
substitution σ2 such that σ2(L(M2)) is the complement of σ1(L(M1)). Therefore,
we have min�-DFA(L) ≤ 2min�-DFA(L) − 1, for all regular languages L.

Theorem 2. Let n > 2 be an integer. There exists a minimal n-state �-DFA M1

with �-substitution σ1 such that any �-DFA M2 with any �-substitution σ2, where
σ2(L(M2)) is the complement of σ1(L(M1)), has at least 2n−3 states. Therefore,
we have min�-DFA(L) ≤ 2min�-DFA(L)−3, for infinitely many regular languages L.

Proof. We are going to utilize Lemma 1 to construct minimal witness automata.
To this end, consider the incomplete DFA M depicted in Fig. 5. We set S = {a},
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Fig. 5. An incomplete DFA.

P = {0}, and α to be the identity on the state set. After adding the required
transitions to M , we obtain the NFA M̂ depicted in Fig. 6.

Fig. 6. The NFA obtained from the DFA of Fig. 5.

So, for k ≥ 0, we consider the witness languages Lk = {a, b}∗a{a, b}kb{a, b}∗.
Now, by Lemma 1, we have min�-DFA(Lk) ≤ k + 4. On the other hand, it is not
hard to see that the NFA of Fig. 6 is minimal. Therefore, by minNFA(Lk) ≤
min�-DFA(Lk) we derive k + 3 ≤ min�-DFA(Lk) ≤ k + 4. Since a minimal �-DFA
M ′ with �-substitution σ′ such that σ′(L(M ′) = Lk is complete and, thus,
has a rejecting sink state which the NFA of Fig. 6 does not have, we conclude
min�-DFA(Lk) = k + 4.

Essentially, in order to accept the complement of Lk an NFA has to verify that
the input has no substring a{a, b}kb. Therefore, after reading a symbol a the NFA
must be able to remember the next k input symbols. Altogether this needs 2k+1

states. In fact, it has been shown in [11] that any NFA that accepts the complement
of Lk needs at least 2k+1 states. Again, by minNFA(Lk) ≤ min�-DFA(Lk), we derive
that any �-DFA M2 with any �-substitution σ2 where σ2(L(M2)) = Lk has at least
2k+1 states. Setting n = k + 4 shows the theorem. �


We continue with Boolean operations. In general, neither the union nor the
intersection of partial languages gives a partial language whose substitution is
the union or intersection of the substitutions of the given partial languages. So
a simple cross-product construction does not help. The idea for the union is to
take a �-DFA for one of the given partial languages and the canonical DFA for
the other one, and build their cross-product automaton to obtain a �-DFA for
the upper bound of the state costs. However, for the intersection, the idea does
not apply. The reason is that a � in the input that can be substituted by at least
two different symbols a1 and a2, must be treated by the canonical DFA as if the
input were a1 or a2 and both symbols lead to accepting computations.
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So, currently the best general upper bound for the intersection is the trivial
one obtained by building the cross-product automaton of two canonical DFAs.
In particular, let m,n ≥ 1 be two integers, M1 be an m-state �-DFA with
�-substitution σ1, and M2 be an n-state �-DFA with �-substitution σ2. Then
(2m−1)·(2n−1) states are sufficient for a �-DFA M3 with some �-substitution σ3

such that σ3(L(M3)) = σ1(L(M1)) ∩ σ2(L(M2)). In fact, M3 is a DFA.
For the special case that one of the two involved �-substitutions is a singleton,

a much better upper bound can be shown, which turns out to be tight in the
order of magnitude.

Theorem 3. Let m,n ≥ 1 be two integers, M1 be an m-state �-DFA with
�-substitution σ1, where |σ1(�)| = 1, and M2 be an n-state �-DFA with �-
substitution σ2. Then m · (2n − 1) states are sufficient for a �-DFA M3 with
some �-substitution σ3 such that σ3(L(M3)) = σ1(L(M1)) ∩ σ2(L(M2)).

Proof. To construct M3, we take the �-DFA M1 with σ1 as it is. Then we build
the canonical DFA M ′

2 = 〈Q,Σ, δ, q0, F 〉 for M2 and σ2. Let σ1(�) = {a}. We add
a �-transition to each state of M ′

2 by copying the a-transition. More precisely, for
each state q ∈ Q, we define additionally δ(q, �) = δ(q, a). Finally, we construct
the cross-product automaton from M1 and M ′

2, call it M3, and set σ3(�) = {a}.
Now let w ∈ σ1(L(M1)) ∩ σ2(L(M2)). Then there is a word w′ ∈ σ−1

1 (w)
accepted by M1. Moreover, w is accepted by the canonical DFA for M2 and σ2.
Since σ1(�) = {a} and M ′

2 is this canonical DFA extended by a �-transition in
parallel to every a-transition, we derive that w′ is accepted by M ′

2 as well. So, w′

is accepted by M3 and, thus, w = σ3(w′) ∈ σ3(L(M3)).
Conversely, let w ∈ σ3(L(M3)). Then there is a word w′ ∈ σ−1

3 (w) accepted
by M3. Therefore, w′ is accepted by M1 and by M ′

2. Since σ1 = σ3, we have w =
σ3(w′) ∈ σ1(L(M1)). Furthermore, by construction, σ2(L(M2)) = σ3(L(M ′

2))
and, hence, w = σ3(w′) ∈ σ2(L(M2)). We conclude w ∈ σ1(L(M1)) ∩ σ2(L(M2))
and altogether have derived σ3(L(M3)) = σ1(L(M1)) ∩ σ2(L(M2)).

For the construction of M3 as cross-product automaton of M1 and M ′
2, a

number of states that is the product of the number of states of M1 and M ′
2, that

is m · (2n − 1), is sufficient. �

The proofs of the lower bounds are more involved, in a sense that the mini-

mality of a �-DFA accepting the intersection or union has to be shown.

Theorem 4. Let m ≥ n ≥ 1 be two positive integers. There exist a 2m-state
�-DFA M1 with �-substitution σ1, and an n-state �-DFA M2 with �-substitution
σ2, such that any �-DFA M3 with any �-substitution σ3 where σ3(L(M3)) =
σ1(L(M1))∩σ2(L(M2)) has at least (m+1) · (2n − 1) states. Therefore, we have

min�-DFA(L1 ∩ L2) ≥ (min�-DFA(L1)/2 + 1) · 2min�-DFA(L2) − 1,

for infinitely many regular languages L1 and infinitely many regular lan-
guages L2.
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The last Boolean operation we are looking at is the union. As mentioned
above, the idea for the upper bound is to take a �-DFA for one of the given
partial languages and the canonical DFA for the other one, and build their
cross-product automaton.

Theorem 5. Let m ≥ n ≥ 1 be two integers, M1 be an m-state �-DFA with
�-substitution σ1, and M2 be an n-state �-DFA with �-substitution σ2. Then
m · (2n − 1) states are sufficient for a �-DFA M3 with some �-substitution σ3

such that σ3(L(M3)) = σ1(L(M1)) ∪ σ2(L(M2)).

A lower bound for the union is shown in the next theorem. While it is expo-
nential, it does not match the upper bound, since it consists of the sum of the
number of states of the larger given automaton and two to the power of the
number of states of the smaller given automaton. The upper bound was given
by their product.

Theorem 6. Let m ≥ n ≥ 0 be two positive integers. There exist a (m + 1)-
state �-DFA M1 with �-substitution σ1, and an (n + 1)-state �-DFA M2 with
�-substitution σ2, such that any �-DFA M3 with any �-substitution σ3 where
σ3(L(M3)) = σ1(L(M1)) ∪ σ2(L(M2)) has at least m + 2n states. Therefore, we
have min�-DFA(L1 ∪ L2) ≥ (min�-DFA(L1) − 1) + 2min�-DFA(L2)−1, for infinitely
many regular languages L1 and infinitely many regular languages L2.

5 Hierarchy of �-Transitions
Here we turn to considering the number of productive �-transitions in a �-DFA.
Here a transition is called productive, if it does not lead to the rejecting sink
state. By the tight bound of 2n − 1 states for the �-DFA to DFA conversion, the
state costs for removing all �-transitions are already known. But this raises the
question for the state costs when only some of the productive �-transitions are
removed. In other words, we consider the following (k1, k2)-�-transition problem:

– Let k1 > k2 ≥ 0 be two integers.
– Given an n-state �-DFA M1 with �-substitution σ1 having at most k1 pro-

ductive �-transitions.
– How many states are sufficient and necessary in the worst case (in terms of n)

for a �-DFA M2 with some �-substitution σ2 having at most k2 productive
�-transitions such that σ2(L(M2)) = σ1(L(M1))?

Corollary 1. For any k1 > 0, the upper bound of the (k1, 0)-�-transition prob-
lem is 2n − 1.

Next, we generalize the problem and derive exponential lower bounds. In
particular, the lower bound for the (k1, k1 −1)-�-transition problem turns out to
be exponential in the order of magnitude. Moreover, for every further productive
�-transition that is removed, an exponential number of states is additionally
necessary in the worst case.
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Theorem 7. Let k1 > k2 ≥ 0 be two constant integers. Then, for each � ≥ 2,
there exist a (5k1 + k1� − 1)-state �-DFA M1 with �-substitution σ1 having k1
productive �-transitions, such that any �-DFA M2 with any �-substitution σ2

having at most k2 productive �-transitions and σ2(L(M2)) = σ1(L(M1)) has at
least 2k1 + k2(� + 1) + (k1 − k2)2� − 1 states.

Proof. First, we construct a witness automaton. To this end, let � ≥ 2 be an
integer. We consider the (� + 1)-state �-DFA M̂ with σ1(�) = {a} as depicted
on the right-hand side of Fig. 7, where all transitions not depicted go into the
rejecting sink-state that is not depicted as well. Clearly, M̂ has exactly one
productive �-transition.

Fig. 7. A �-DFA with σ1(�) = {a} and 4 productive �-transitions. Four copies of M̂ are
plugged in as M̂i, 1 ≤ i ≤ 4. The common rejecting sink-state as well as the transitions
to it are not depicted.

Next, we use k1 copies M̂i, 1 ≤ i ≤ k1 of M̂ that are distinct except for
a common sink-state. Say the states are pi,j , for 1 ≤ i ≤ k1 and 0 ≤ j ≤
� − 1, and pe, for the sink-state. Finally, these copies are assembled into one
�-DFA M1 by selecting k1 different words z1, z2, . . . , zk1 of length �log(k1)� from
{a, b}∗. These words are processed from an initial state in a tree-like structure,
where the initial state is the root and each of the k1 leaves is connected to
and from one copy by $-transitions, where $ is a new symbol (see the left-
hand side of Fig. 7). In this way, each copy M̂i is selected by an individual
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prefix zi. Again, all missing transitions are directed to the common sink-state pe.
Let L(M̂) denote the language of words accepted by M̂ with initial state p0 and
sole accepting state p�−1. Then a word w is accepted by M1 if and only if it has
the form z($L(M̂)$)∗zR, where z ∈ {z1, z2, . . . , zk1} (see Fig. 7 for an example
with k1 = 4). In total, the �-DFA M1 has k1 productive �-transitions and at
most (2 · (2�log(k1)� − 1)) + k1 + k1� + 1 ≤ 5k1 + k1� − 1 states.

The rest of the proof is to show the claimed lower bound for the number of
states necessary for any �-DFA M2 with any �-substitution σ2 having at most k2
productive �-transitions and σ2(L(M2)) = σ1(L(M1)). �
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Abstract. Finite automata traversing graphs by moving along their
edges are known as graph-walking automata (GWA). This paper inves-
tigates the state complexity of union and intersection for this model. It
is proved that the union of GWA with m and n states, with m � n,
operating on graphs with k labels of edge end-points, is representable by
a GWA with 2km + n + 1 states, and at least 2(k − 3)(m − 1) + n − 1
states are necessary in the worst case. For the intersection, the upper
bound is (2k + 1)m+ n and the lower bound is 2(k− 3)(m− 1) + n− 1.

1 Introduction

Graph-walking automata (GWA) operate on undirected graphs with labelled
nodes and edge end-points, moving along the edges using finitely many states.
The labels of edge end-points are called directions. The basic examples of
graph-walking automata are two-way finite automata (2DFA) and tree-walking
automata (TWA). A graph-walking automaton models, e.g., a robot in a maze.
There is a classical result by Budach [3] that for every GWA there exists a graph,
which this automaton cannot fully traverse, see a succinct proof by Fraigniaud
et al. [5]. Models with small but not finite memory, such as pebble automata,
are studied as well, see a recent result by Disser et al. [4].

Kunc and Okhotin [11] studied transformations of graph-walking automata to
several subclasses: to automata that halt on every input; to automata returning
to the initial node before acceptance; to reversible automata. It was proved
that every graph-walking automaton with n states operating on graphs with
k directions can be transformed to these classes: to a halting automaton with
6kn + 1 states, to a returning automaton with 3kn states, and to a reversible
and returning automaton with 6kn+1 states. In a recent paper, the authors [12]
have improved the constructions by Kunc and Okhotin, reducing the number
of states to 2kn + 1, 2kn + n and 4kn + 1, respectively, and also established
asymptotically close lower bounds that confirm that the constant factors 2, 2
and 4 are indeed optimal.
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The new lower bound method for graph-walking automata opens the way to
study the state complexity of operations for this model.

In this paper, Boolean operations on graph-walking automata are investi-
gated. Union, intersection and complementation of languages defined by graph-
walking automata can be recognized by a graph-walking automaton, for instance,
by first transforming one of the given automata to reversible [15]. This yields
some rough upper bounds on the number of states; but how many states are
indeed necessary?

The state complexity of Boolean operations has been studied for many
automaton models. For DFA, Maslov [13] showed that the state complexity for
both union and intersection is mn, where m and n is the number of states in
argument automata. For NFA, as shown by Holzer and Kutrib [9], the state com-
plexity of union is m+n+1, and mn for the intersection. Birget [1] proved that
the state complexity of complementing an NFA is 2n. Two-way finite automata
turned out to be harder to study. Geffert et al. [7] obtained an upper bound of
4n + 3 states for complementing 2DFA, but no lower bounds are known up to
date. Kunc and Okhotin [11] proved that the union of 2DFA requires at least
m + n and at most 4m + n + 4 states, while the state complexity of intersec-
tion is between m + n and m + n + 1. Also Kunc and Okhotin [10] established
the bounds for 2NFA: the precise state complexity m + n for the union, and
bounds between m + n and m + n + 1 for the intersection. As proved by Geffert
et al. [6], the complement of an 2AFA is representable by an automaton with
O(n7) states, and there is a lower bound Ω(n log n) [8]. Beyond finite automata,
the complexity of union and intersection for input-driven pushdown automata,
also known as visibly pushdown automata, was established as Θ(mn) by Piao
and Salomaa [16]. For tree-walking automata, complementation was first inves-
tigated by Muscholl et al. [14], and the current upper bound of 4kn + 2k + 1
states for k-ary trees was given by Kunc and Okhotin [11]. For nondeterministic
tree-walking automata, their closure under complementation remains open [2].

This paper establishes asymptotically tight bounds on the state complexity
of Boolean operations for graph-walking automata, using the recently introduced
lower bound methods for this model [12]. For two graph-walking automata with
m and n states, with m � n, operating on graphs with k directions, the bounds
shown for the union are: lower bound 2(k − 3)(m − 1) + n − 1 and upper bound
2km+1+n. For the intersection, the bounds are between 2(k−3)(m−1)+n−1
and 2km + m + n. For the complement of an n-state automaton, 2kn + 1 states
are enough, and at least 2(k − 3)(n − 1) are needed in the worst case.

2 Graph-Walking Automata and Their Subclasses

Formalizing the definition of graph-walking automata (GWA) requires a more
elaborate notation than for 2DFA and TWA. It begins with a generalization of
an alphabet to the case of graphs: a signature.
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Definition 1 (Kunc and Okhotin [11]). A signature S consists of

– A finite set D of directions, that is, labels attached to edge end-points;
– A bijection − : D → D providing an opposite direction, with −(−d) = d for

all d ∈ D;
– A finite set Σ of node labels;
– A non-empty subset Σ0 ⊆ Σ of possible labels of the initial node;
– A set of directions Da ⊆ D for every label a ∈ Σ. Every node labelled with a

must be of degree |Da|, with the incident edges corresponding to the elements
of Da.

Like strings are defined over an alphabet, graphs are defined over a signature.

Definition 2. A graph over a signature S = (D,−, Σ,Σ0, (Da)a∈Σ) is a
quadruple (V, v0,+, λ), where

– V is a finite set of nodes;
– v0 ∈ V is the initial node;
– +: V × D → V is a partial function, such that if v + d is defined, then

(v + d) + (−d) is defined and equals v; denote v − d = v + (−d);
– a total mapping λ : V → Σ, such that v+d is defined if and only if d ∈ Dλ(v),

and λ(v) ∈ Σ0 if and only if v = v0.

A graph-walking automaton is defined similarly to a 2DFA, with an input
graph instead of an input string.

Definition 3. A (deterministic) graph-walking automaton (GWA) over a sig-
nature S = (D,−, Σ,Σ0, (Da)a∈Σ) is a quadruple A = (Q, q0, F, δ), where

– Q is a finite set of states;
– q0 ∈ Q is the initial state;
– F ⊆ Q × Σ is a set of acceptance conditions;
– δ : (Q×Σ)\F → Q×D is a partial transition function, with δ(q, a) ∈ Q×Da

for all a and q where δ is defined.

A computation of a GWA on a graph (V, v0,+, λ) is a uniquely defined sequence
of configurations (q, v), with q ∈ Q and v ∈ V . It begins with (q0, v0) and proceeds
from (q, v) to (q′, v + d), where δ(q, λ(v)) = (q′, d). The automaton accepts by
reaching (q, v) with (q, λ(v)) ∈ F .

On each input graph, a GWA can accept, reject or loop. The language of
GWA A is a set of graphs, which A accepts. It is denoted by L(A).

There is a natural subclass of GWA that never loop.

Definition 4. A graph-walking automaton is said to be halting, if its computa-
tion on every input graph is finite.

Another property is getting back to the initial node before acceptance.

Definition 5. A graph-walking automaton A = (Q, q0, F, δ) over a signature
S = (D,−, Σ,Σ0, (Da)a∈Σ) is called returning, if F ⊆ Q × Σ0, which means
that it can accept only in the initial node.
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A returning automaton is free to reject in any node, and it may also loop,
that is, it need not be halting.

The next, more sophisticated property is reversibility, meaning that, for every
configuration, the configuration at the previous step can be uniquely recon-
structed. The first condition necessary for reversibility is that every state is
reachable from only one direction.

Definition 6 (Kunc and Okhotin [11, Defn. 4]). A graph-walking automaton
A = (Q, q0, F, δ) over a signature S = (D,−, Σ,Σ0, (Da)a∈Σ) is called direction-
determinate, if there is a function d : Q → D, such that, for all p ∈ Q and a ∈ Σ,
if δ(p, a) is defined, then δ(p, a) = (q, d(q)) for some q ∈ Q.

Denote the transitions by each label a by a partial function δa : Q → Q.

Every automaton can be made direction-determinate by remembering the
direction used in the last transition, using Q×D as the set of states [11, Lemma 1].

Definition 7. A graph-walking automaton A = (Q, q0, F, δ) over a signature
S = (D,−, Σ,Σ0, (Da)a∈Σ) is called reversible, if

– A is direction-determinate;
– for all a ∈ Σ and q ∈ Q, there is at most one state p, such that δ(p, a) =

(q, d(q)); in other words, knowing a state and a previous label, one can deter-
mine the previous state.

3 Upper Bounds

Now we will establish the upper bounds for Boolean operations with graph-
walking automata. The construction for intersection of two given automata is
obtained by making the smaller automaton returning.

Theorem 1. Let m � n. For every signature with k directions and for every
m-state automaton A and n-state automaton B over this signature, there exists
a (2km + m + n)-state automaton, which accepts a graph if and only if both A
and B accept this graph.

Proof. As was proved by the authors in an earlier paper [12, Thm 9], the automa-
ton A can be transformed to a returning automaton A′ with 2km + m states
(thus improving an earlier upper bound 3km by Kunc and Okhotin [11]).

Then the automata A′ and B are joined into the automaton C, which works
as A′ at first. And if it reaches the accepting configuration at the initial node,
then it continues as the automaton B.

If the automaton A rejects or loops, then A′ rejects or loops as well, and so
does C in its simulation of the automaton A′.

If A accepts, then A′ returns to the initial node and accepts, and C simulates
A′ to the accepting configuration and then continues from this configuration as
from the initial configuration of B, and proceeds with simulating B. If B accepts,
then C accepts; if B rejects or loops, then C rejects or loops.
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So the automaton C accepts the graph if and only if the graph is accepted
by A and by B. The set of states of C is comprised of the states of A′ and the
states of B, so C is a (2km + m + n)-state automaton. ��

The upper bound for union is generally similar, but the smaller automaton
is transformed so that it rejects at the initial node and accepts anywhere.

Theorem 2. For every n-state direction-determinate automaton A, there exists
a (2n+1)-state halting, direction-determinate and reversible (but not necessarily
returning) automaton A′ which recognizes the same set of graphs, and which can
reject only at the initial node.

The theorem is proved by adapting the construction of a reversible automaton
by Kunc and Okhotin [11, Lemma 6], which implements Sipser’s [17] idea of
traversing the tree of accepting computations. The construction is omitted due
to space constraints.

Theorem 3. Let m � n. Let S be a signature with k directions. Then for every
m-state automaton A and every n-state automaton B over the signature S, there
exists a (2km + 1 + n)-state automaton, which accepts a graph if and only if the
automaton A accepts this graph or B accepts it.

Proof. The automaton A can be made direction-determinate with km states,
and then, by Theorem 2, it can be transformed to a halting (2km + 1)-state
automaton A′, which rejects only at the initial node.

So it is possible to make a (2km + 1 + n)-state automaton C, which at first
works as A′, and accepts if A′ accepts; and if A′ rejects, this happens at the
initial node, prompting C to start the simulation of B from the initial node.

This automaton C recognizes the union of languages of A and B. ��
The upper bound for the complement is given by a straightforward applica-

tion of Theorem 2.

Theorem 4. For every n-state automaton A over a signature with k directions
there exists an (2kn + 1)-state automaton B, which recognizes the complement
of the language L(A). Furthermore, B is returning and halting.

Proof. The automaton A can be made direction-determinate with nk states and
then, by Theorem 2, it can be transformed into an (2kn+1)-state halting automa-
ton A′, which rejects only at the initial node.

Now let the automaton B work as A′, but reject in accepting configurations
of A′ and accept in rejecting configurations. This automaton B is halting and
returning, and it recognizes the complement of L(A). ��

4 Graphs Haccept
n,N and Hreject

n,N

Lower bounds for unions and intersections of languages recognized by GWA
are proved using the method introduced by the authors [12] in a recent paper.
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In particular, it was established that transforming an n-state graph-walking
automaton to a returning automaton requires at least 2(n − 1)(k − 3) states in
the worst case, where k is the number of directions in the signature. This method
shall now be adapted for the new arguments.

According to the general method [12], the first to be defined are families of
accepted and rejected graphs, parameterized by two integers n and N specifying
the length of certain chains. The number n represents the minimal required
number of states to reach a certain node, whereas N should be large enough to
ensure periodic behaviour. In this paper, those graphs are denoted by Haccept

n,N

and Hreject
n,N . The graph Haccept

n,N is introduced in Fig. 1; it is different from Hreject
n,N

only in the label of the node vdecisive.

Fig. 1. The graph Haccept
n,N .

The distance from v0 to the left (b,−b) “bridge” is n − 1, and this allows an
n-state automaton to measure this distance and reach vdecisive to check that the
label of the node vdecisive is cacc.

Lemma 1 [12, Sect. 5]. For each n, there is an automaton with n states that
accepts Haccept

n,N for all N , does not accept any graphs without the label cacc, and
never moves in the direction −a.

The number N is chosen to be large enough, that is, larger than the lower
bounds being proved. The original paper used the graphs Haccept

n,4kn and Hreject
n,4kn ,

because the number 4kn was large enough to prove the lower bounds [12]. How-
ever, the proofs of the main properties of these graphs hold for every N � 2,
and the earlier result remains true in the following form.

Lemma 2 [12, Lemma 17]. If an automaton with at most N states starts on a
graph Haccept

n,N or Hreject
n,N at the node vdecisive and arrives to the node v0, then

the automaton must enter at least n − 1 distinct states after a transition in the
direction −a.
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The idea of the proof is presented for completeness.
The automaton leaves vdecisive and moves towards the right bridge. Since

there are more than N steps, and all nodes besides the ends of the chains have
the same label, the automaton soon begins repeating some sequence of states and
directions periodically. This sequence has more directions −a than a, for other-
wise it would not move far from vdecisive. The distance between the two bridges,
N !, is divisible by the period length, and hence the automaton approaches both
bridges in the same phase of the period. Therefore, it behaves identically in the
vicinity of each bridge. If the automaton enters fewer than n − 1 states after
moving by −a, then, once it moves away from a bridge by n − 1 edges, it does
not return to that bridge anymore. This means that its trajectory near the left
bridge does not include v0. Then the result of passing by each of the bridges is
the same, and the automaton either remains on the upper chain while passing
by both bridges, or changes to the other chain each time. In either case, the
automaton ultimately remains on the upper chain and reaches the upper left
corner without visiting v0.

When leaving the upper left corner, the automaton similarly cannot reach v0
due to having too few states after a move by −a, and has to return to vdecisive.

The next lemma is generally symmetric to Lemma 2.

Lemma 3. If an automaton with fewer than N states starts on Haccept
n,N or on

Hreject
n,N at the node v0, and comes to the node vdecisive, then it enters at least

n − 1 distinct states after a transition by a.

The proof of this lemma is analogous to the proof of Lemma 2. If an automa-
ton has fewer than n − 1 different states after transitions by a, then it is bound
to move between the two ends of the lower chain, without ever visiting either
end of the upper chain, because the automaton’s actions on the two bridges are
identical.

5 Diodes and Their Properties

Lower bound arguments for graph-walking automata use special subgraphs called
diodes [12], which are easy to pass in one direction and hard to pass in the other.
They are also used in this paper, this section recalls their main properties and
adapts them for the new arguments.

Diodes are defined over signatures Sk, for all k � 4; the signature Sk has
k directions, including a,−a and b1,−b1. For each N � 2, the diode ΔN,k is
a subgraph over Sk without an initial node. Most of the nodes have the same
label, “black circle”.

The diode has two external edges in directions a and −a, by which it is con-
nected to the outside world. Then, one can define an edge-replacement homo-
morphism hN,k, which replaces every (a,−a)-edge in a graph with the diode
ΔN,k.

The following properties of the diodes are known. First, it easy to pass a diode
forward, in the direction a, as if by a single (a,−a)-edge. Every automaton that



132 O. Martynova and A. Okhotin

never moves in the direction −a can be reconstructed to pass through all diodes
this way, without increasing the number of states.

Lemma 4 [12, Lemma 13]. Let S be any signature containing directions a, −a,
which has no node labels from the signature Sk. Let A = (Q, q0, F, δ) be a GWA
over the signature S, which never moves in the direction −a. Then, there exists
a GWA A′ = (Q′, q′

0, F
′, δ′) over a joint signature S ∪ Sk, with |Q′| = |Q|, so

that A accepts a graph G if and only if A′ accepts the graph hN,k(G).

Conversely, if there is an automaton that works on graphs with diodes, then
it can be reconstructed to pass through (a,−a)-edges instead, again without any
extra states.

Lemma 5 [12, Lemma 14]. Let k � 4 and N � 2, denote h(G) = hN,k(G) for
brevity. Let S be a signature containing the directions a,−a and no node labels
from the diode’s signature Sk. Let A′ be a GWA over the signature S ∪Sk. Then
there exists an automaton A over the signature S, using the same set of states,
with the following properties.

– For every graph G over S, the automaton A accepts G if and only if A′ accepts
h(G).

– If A can enter a state q by a transition in the direction −a, then A′ can enter
the state q after traversing the diode backwards.

– If A can enter a state q by a transition in the direction a, then A′ can enter
the state q after traversing the diode forward.

The third claim of this lemma was not stated in the original paper [12], but
it can be proved similarly to the second claim.

The next lemma shows that moving through diodes in the reverse direction
requires many states.

Lemma 6 [12, Lemma 15]. Let A′ = (Q, q0, F, δ) be a GWA over a signature
that includes the diode’s signature Sk, with |Q| � N . Assume that A′, after
traversing the diode ΔN,k backwards, can leave the diode in any of h distinct
states. Then A′ has at least 2h(k−3) states, in which, at the label “black circle”,
it moves in a direction other than ±a.

The next lemma is new. It gives a modest lower bound on the number of states
after forward traversals; however, in this paper, those few states are necessary
to reach tight bounds.

Lemma 7. Let A′ = (Q, q0, F, δ) be a GWA over a signature that includes
diode’s signature Sk. Assume that A′, after traversing the diode ΔN,k forward,
can leave the diode in any of h distinct states. Then A′ has at least h distinct
states, in which, at the label “black circle”, it moves in the direction a or −a.

Note that neither of these h states may coincide with any of the 2h(k − 3)
states in Lemma 6, because they have different transitions at “black circles”.
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v1

b

c0,Av0
v2

c0,B

cacc cacc

–b

Hm,N
accept Hn,N

accept

Fig. 2. Graph (Haccept
m,N , Haccept

n,N ).

Proof. In the diode ΔN,k, there is a node v labelled with a “black circle”, which
the automaton must visit in every forward traversal of the diode, and which it
leaves in the direction a or −a. Since there are h traversals ending in different
states, these traversals must leave v in h distinct states. ��

6 Lower Bound for Intersection

Theorem 5. For all k � 4, there exists a signature with k directions, such
that, for all n � m � 2, there exist graph-walking automata A′ and B′ over
this signature, with m and n states, such that every automaton recognizing the
language L(A′) ∩ L(B′) must have at least N = 2(k − 3)(m − 1) + n − 1 states.

It is useful to begin with the graphs, on which these automata operate.
They are ultimately based on graphs of the form Haccept

n,N and Hreject
n,N , given in

Sect. 4. The latter graphs are defined over the signature ˜S, with four directions:
a,−a, b,−b. A new signature S is obtained from ˜S as follows: the initial label
c0 is replaced with two labels: an initial label c0,A with the set of directions
Dc0,A = {a, b}, and with a non-initial label c0,B with directions Dc0,B = {a,−b}.

Every two graphs G1 and G2 over the signature ˜S can be joined into a graph
(G1, G2) over the signature S, defined as follows. The initial node of G1, denoted
by v0 and originally labelled with c0, is relabelled with c0,A, and an extra edge
in the direction b is sent to the former initial node of G2, which is relabelled
with c0,B . The graphs are connected as in Fig. 2.

Now consider the graphs of the form (Hresult1
m,N ,Hresult2

n,N ), with result1,
result2 ∈ {accept, reject}. The automaton A is defined to accept such a graph if
result1 = accept: this can be done using m states, by working as the automaton
in Lemma 1 and ignoring the graph Hresult2

n,N . Similarly, B is defined to accept
a graph if result2 = accept: it uses n states and moves to Hresult2

n,N at the first
step, ignoring Hresult1

m,N .
The next lemma shows, what happens if the conditions on both graphs are

to be checked simultaneously.

Lemma 8. Let I be an automaton with at most N states, which recognizes the
set of graphs accepted both by A and by B. Then either it enters at least m − 1
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distinct states after moving by −a and at least n− 1 distinct states after moving
by a, or it enters at least n − 1 distinct states after moving by −a and at least
m − 1 distinct states after moving by a.

Proof. The automaton I accepts a graph (Hresult1
m,N ,Hresult2

n,N ) if and only
if result1 = result2 = accept. Consider its computation on the graph
(Haccept

m,N ,Haccept
n,N ), illustrated in Fig. 2. Denote the node vdecisive in the graph

Haccept
m,N by v1, and let v2 be vdecisive in Haccept

n,N . The automaton I must visit
both nodes to check that each of them is labelled with cacc.

If I first visits v1, then, in order to make the decision, it has to visit v2, and
for that it needs to get back from v1 to the initial node first. Then, by Lemma 2,
the automaton I enters at least m − 1 distinct states after transitions by −a.
Next, on the subgraph Haccept

n,N , it has to reach the node v2 from the initial node,
and hence, by Lemma 3, it enters at least n − 1 distinct states after transitions
by a.

And if I visits the node v2 first, then, similarly, it enters at least n−1 different
states after moving in the direction −a and at least m − 1 different states after
moving by a. ��
Proof (of Theorem 5). The automata A and B over the signature S are con-
structed as above. The desired automata A′ and B′ shall work like A and B,
but on the graphs with diodes substituted instead of (a,−a)-edges. Let hN,k be
a graph homomorphism that replaces every edge (a,−a) with the diode ΔN,k.

The automaton A′ is obtained out of A by Lemma 4, this is possible because
A never moves in the direction −a. The new automaton is defined over the
signature S ∪ Sk. The directions ±a are common for the signatures S and Sk,
and ±b in S are identified with ±b1 in Sk. Overall, there are k directions in
S ∪ Sk. The automaton A′ has m states, and it accepts a graph hN,k(G) if and
only if A accepts G. The n-state automaton B′ is defined analogously.

It remains to show that every automaton recognizing L(A′) ∩ L(B′), must
have at least N = 2(k−3)(m−1)+n−1 states. Suppose that some automaton I ′

recognizes this language and has fewer than N states. Then, by Lemma 5, there
exists an automaton I over the signature S with the same number of states as in
I ′, which accepts a graph G if and only if I ′ accepts hN,k(G). Then I recognizes
the intersection of L(A) and L(B). Therefore, by Lemma 8, the automaton I
enters at least m − 1 distinct states after transitions by −a, and at least n − 1
distinct states after transitions by a, or vice versa.

Consider the case of m−1 states after transitions by −a and n−1 states after
transitions by a. Then Lemma 5 asserts that I ′ enters at least m − 1 distinct
states after traversing a diode backwards, and at least n− 1 distinct states after
traversing a diode forward. These two groups of states may potentially overlap.

Then, by Lemma 6, the automaton I ′ has at least 2(k − 3)(m − 1) distinct
states, in which the transition at a “black circle” label is made not in the direc-
tions ±a. On the other hand, according to Lemma 7, the automaton I ′ has n−1
distinct states with the transitions at a “black circle” label made in the direc-
tions a or −a. All these states are thus pairwise disjoint, and I ′ has at least
2(k − 3)(m − 1) + n − 1 = N states.
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In the case of n − 1 states after moving by −a, and m − 1 states after moving
by a, the automaton I ′ must have at least 2(k − 3)(n − 1) + m − 1 � N states.
Overall, every automaton I ′ recognizing this intersection has at least N states. ��

The lower bound for the union is established by a similar argument. The proof
is different in replacing Lemma 8 with an analogous lemma for the union, which
is proved using the graph (Hreject

m,N ,Hreject
n,N ), cf. (Haccept

m,N ,Haccept
n,N ) in Lemma 8.

Theorem 6. For all k � 4 there is a signature with k directions, such that for all
n � m � 2 there is an m-state automaton A′ and an n-state automaton B′ over
that signature, such that every automaton recognizing the union L(A′) ∪ L(B′)
has at least N = 2(k − 3)(m − 1) + n − 1 states.

In addition, a lower bound on the state complexity of complementation
can be proved by a direct application of the lower bound method for halting
automata [12, Sect. 6].

Theorem 7. For every k � 4 and n � 2 there exist a signature with k direc-
tions and an n-state automaton such that every automaton, which recognizes the
complement of language of the original automaton, has at least 2(k − 3)(n − 1)
states.

The argument uses the same automaton A, and a graph obtained from Hreject
n,N

by merging both ends of the upper chain into a single node vjoint that is not
specifically labelled. An automaton recognizing the complement must accept this
graph, but unless it enters at least n−1 distinct states after transitions by −a, it
would end up looping through vjoint. The lower bound of 2(k − 3)(n − 1) states
then follows after inserting the diodes, as in the proof of Theorem 5.

7 Conclusion

The new bounds on the state complexity of Boolean operations for graph-walking
automata are asymptotically tight. Making them tighter would require more than
a slight refinement of the lower bound method [12], and it would be interesting
to achieve this improvement.

The authors’ method is also inapplicable to showing lower bounds on the state
complexity of union and complementation on tree-walking automata, because
both the graphs Hresult

n,N and the diode essentially use cycles. Obtaining lower
bounds using only trees is a challenging research problem. Proving tight bounds
on the state complexity of these operations on 2DFA would be even harder.

References

1. Birget, J.-C.: Partial orders on words, minimal elements of regular languages, and
state complexity. Theor. Comput. Sci. 119, 267–291 (1993). http://dx.doi.org/10.
1016/0304-3975(93)90160-U

http://dx.doi.org/10.1016/0304-3975(93)90160-U
http://dx.doi.org/10.1016/0304-3975(93)90160-U


136 O. Martynova and A. Okhotin
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Abstract. Given a word binary relation τ onto A∗ we define a τ -Gray
cycle over a finite language X ⊆ A∗ to be a permutation

(
w[i]

)
0≤i≤|X|−1

of X such that each word wi is an image of the previous word wi−1

by τ . We introduce the complexity measure λ(n), equal to the largest
cardinality of a language X having words of length at most n, and such
that some τ -Gray cycle over X exists. The present paper is concerned
with the relation τ = σk, the so-called k-character substitution, such that
(u, v) belongs to σk if, and only if, the Hamming distance of u and v is
k. We compute the bound λ(n) for all cases of the alphabet cardinality
and the argument n.

Keywords: Character · Complexity · Cycle · Gray · Substitution ·
Relation · Word

1 Introduction

In the framework of combinatorial algorithms, one of the most documented ques-
tions consists in the development of methods in order to generate, exactly once,
all the objects in some specific class [15]. Many topics are concerned by such a
problem: suffice it to mention sequence counting [1], signal encoding [16], and
data compression [18].

The so-called binary Gray codes first appeared in [10]: given a binary alpha-
bet A and some positive integer n, they referred to sequences with maximum
length of pairwise different n-tuples of characters (that is, words in An), provided
that any pair of consecutive items differ by exactly one character. Shortly after,
a similar study was drawn in the framework of non-binary alphabets [4,8]. With
regard to other famous combinatorial classes of objects, the term of combina-
torial Gray code, for its part, appeared in [11]: actually, the difference between
successive items, although being fixed, need not to be small [20]. Generating
all permutations of a given n-element set constitutes a noticeable example [7].
Subsets of fixed size are also concerned [6], as well as cross-bifix free words [2],
Debruijn sequences [9], set partitions [13], necklaces [19]: the list is far to be
exhaustive. Combinatorial Gray sequences are often needed to be cyclic [3], in
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the sense that the initial term itself can be retrieved as successor of the last one.
Such a condition justifies the terminology of Gray cycle [14, Sect. 7.2.1.1].

In view of some formal framework, we notice that each of the sequences
we mentioned above involves some word binary relation τ ⊆ A∗ × A∗, where A
stands for a finite alphabet, and A∗ for the free monoid it generates. For its part,
the combinatorial class of objects can be modelled by some finite language X ⊆
A∗. Given a sequence of words we denote in square brackets the corresponding
indices: this will allow us to make a difference from wi, the character in position
i in a given word w. We define a cyclic Gray sequence over X, with respect to τ
(for short: τ -Gray cycle over X) as every finite sequence of words

(
w[i]

)
i∈[0,|X|−1]

satisfying each of the three following conditions:

(G1) For every word x ∈ X, some i ∈ [0, |X| − 1] exists such that we have
x = w[i];

(G2) For every i ∈ [1, |X| − 1], we have w[i] ∈ τ
(
w[i−1]

)
; in addition, the condi-

tion w[0] ∈ τ
(
w[|X|−1]

)
holds;

(G3) For every pair i, j ∈ [0, |X| − 1], i �= j implies w[i] �= w[j].

With this definition, the set X need not to be uniform that is, in the Gray
cycle the terms may have a variable length. For instance, given the alphabet
A = {0, 1}, take for τ the word binary relation Λ1 which, with every word w
associates all the strings located within a Levenshtein distance of 1 from w (see
e.g. [17]); with such a relation, the sequence (0, 00, 01, 11, 10, 1) is a Λ1-Gray
cycle over X = A ∪ A2. Actually, in addition to the topics we mentioned above,
two other fields involved by those Gray cycles may be mentioned. Firstly, with
regard to graph theory, a τ -Gray cycle over X exists if, and only if, there is some
Hamiltonian circuit in the graph of the relation τ (see e.g. [20]). Secondly, given a
binary word relation τ ⊆ A∗×A∗, and given X ⊆ A∗, if some τ -Gray cycle exists
over X, then X is τ -closed [17] that is, the inclusion τ(X) ⊆ X holds, where
τ(X) stands for the set of the images of the words in X under the relation τ .
Such closed sets actually constitute a special subfamily in the famous dependence
systems [5,12]. Notice that, given a τ -closed set X ⊆ A∗, there do not necessarily
exist non-empty τ -Gray cycles over X. A typical example is provided by τ being
idA∗ , the identity over A∗, with respect to which every finite set X ⊆ A∗ is
closed; however non-empty τ -Gray cycle can exist only over singletons.

In the present paper, given a positive integer n, and denoting by A≤n the
set of the words with length not greater than n, we consider the family of all
sequences that can be a τ -Gray cycle over some subset X of A≤n. This is a natu-
ral question to study those sequences of maximum length which, of course, corre-
spond to subsets X of maximum cardinality; such a length, which we denote by
λA,τ (n), means introducing some complexity measure for the word binary rela-
tion τ . With regard to the preceding examples we have λ{0,1},Λ1(2) = 6; more-
over, for every alphabet A and positive integer n, the identity λA,idA∗ (n) = 1
holds. We focus on the case where τ is σk, the so-called k-character substitu-
tion: with every word with length at least k, say w, this relation associates all
the words w′, with |w′| = |w| and such that the character w′

i differs from wi
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in exactly k values of i ∈ [1, |w|]. As commented in [12,17], σk has noticeable
inference in the famous framework of error detection. On the other hand, by
definition, w′ ∈ σk(w) implies |w′| = |w| therefore, if there is some σk-Gray
cycle over X, then X is a uniform set. From this point of view, the classical
Gray codes, which allow to generate all n-tuples over A, correspond to σ1-Gray
cycles over An, furthermore we have λA,σ1(n) = |A|n. In addition, in the case
where A is a binary alphabet, it can be easily proved that, for every n ≥ 3, we
have λA,σ2(n) = 2n−1 [14, Exercise 8, p. 77]. However, in the most general case,
although an exhaustive description of σk-closed variable-length codes has been
provided in [17], the question of computing some σk-Gray cycle of maximum
length has remained open. In our paper we establish the following result:

Theorem. Let A be a finite alphabet, k ≥ 1, and n ≥ k. Then exactly one of the
following conditions holds:

(i) |A| ≥ 3, n ≥ k, and λA,σk
(n) = |A|n;

(ii) |A| = 2, n = k, and λA,σk
(n) = 2;

(iii) |A| = 2, n ≥ k + 1, k is odd and λA,σk
(n) = |A|n;

(iv) |A| = 2, n ≥ k + 1, k is even, and λA,σk
(n) = |A|n−1.

In addition, in each case some σk-Gray cycle of maximum length can be explicitly
computed.

We now shortly describe the contents of the paper. In Sect. 2, we recall the two
famous examples of the binary (resp., |A|-ary) reflected Gray code. By applying
some induction based methods, in Sect. 3 and Sect. 4, these sequences allow to
compute special families of σk-Gray cycles with maximum length. In Sect. 5, in
the case where A is a binary alphabet, and k an even positive integer, we also
compute a family of Gray cycles with maximum length; in addition some further
development is raised.

2 Preliminaries

Several definitions and notation have already been fixed. In the whole paper, A
stands for some finite alphabet, with |A| ≥ 2. Given a word w ∈ A∗, we denote
by |w| its length; in addition, for every a ∈ A, we denote by |w|a the number of
occurrences of the character a in w.

The Reflected Binary Gray Cycle
Let A = {0, 1}, and n ≥ 1. The most famous example of σ1-Gray cycle over An

is certainly the so-called reflected binary Gray code (see e.g. [10] or [14, p. 6]):
in the present paper we denote it by gn,1. It can be defined by the recurrent
sequence initialized with gn,1

[0] = 0n, and satisfying the following property: for
every i ∈ [1, |A|n − 1], a unique integer j ∈ [1, n] exists such that, in both words
gn,1
[i] and gn,1

[i−1] the corresponding characters in position j differ; in addition, the

position j is chosen to be maximum in such a way that gn,1
[i] /∈ {gn,1

[0] , · · · , gn,1
[i−1]}.



140 J. Néraud

Example 1. In what follows we provide a column representation of g2,1 and g3,1:

g2,1

︷︸︸︷

00
01
11
10

g3,1

︷︸︸︷

000
001
011
010
110
111
101
100

By construction, for every n ≥ 1, each of the following identities holds:

gn,1
[0] = 0n, gn,1

[1] = 0n−11, gn,1
[2n−2] = 10n−21, gn,1

[2n−1] = 10n−1 (1)

The |A|-ary Reflected Gray Cycle
The preceding construction can be extended in order to obtain the so-called |A|-
ary reflected Gray code [4,8], a σ1-Gray cycle over An, which we denote by hn,1.
Set A = {0, · · · , p−1} and denote by θ the cyclic permutation (0, 1, . . . p−1). The
sequence hn,1 is initialized with hn,1

[0] = 0n. In addition, for every i ∈ [1, |A|n −1],
a unique integer j exists such that c and d, the characters respectively in position
j in hn,1

[i−1] and hn,1
[i] , satisfy both the following conditions: (i) d = θ(c); (ii) j is

the greatest integer in [1, n] such that hn,1
[i] /∈ {hn,1

[0] , · · · , hn,1
[i−1]}.

Example 2. For A = {0, 1, 2} the sequence h3,1 is the concatenation in this order
of the three following subsequences:

h3,1

︷︸︸︷

000
001
002
012
010
011
021
022
020

120
121
122
102
100
101
111
112
110

210
211
212
222
220
221
201
202
200

3 The Case Where We Have k ≥ 1 and |A| ≥ 3

Let n ≥ k ≥ 1, p ≥ 3, and A = {0, 1, · · · , p−1}. We will indicate the construction
of a peculiar σk-Gray cycle over An, namely hn,k. This will be done by applying
some induction over k ≥ 1: in view of that we set n0 = n − k + 1. The starting
point corresponds to hn0,1, the p-ary reflected Gray code over An0 as reminded in
Sect. 2. For the induction stage, starting with some σk−1-Gray cycle over An−1,
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namely hn−1,k−1, we compute the sequence hn,k as indicated in what follows:
let i ∈ [0, pn − 1], and let q ∈ [0, p − 1], r ∈ [0, pn−1 − 1] be the unique pair of
non-negative integers such that i = qpn−1 + r. We set:

hn,k
[i] = hn,k

[qpn−1+r] = θq+r(0)hn−1,k−1
[r] (2)

As illustrated by Example 3, the resulting sequence hn,k is actually the con-
catenation in this order of p subsequences namely C0, . . . , Cp−1, with Cq =(
hn,k
[qpn−1+r]

)

0≤r≤pn−1−1
, for each q ∈ [0, p − 1]. Since θ is one-to-one, given a

pair of different integers q, q′ ∈ [0, p − 1], for every r ∈ [0, pn−1 − 1], in each of
the subsequences Cq, Cq′ , the words hn,k

[qpn−1+r] and hn,k
[q′pn−1+r] only differ in their

initial characters, which respectively are θq+r(0) and θq′+r(0). In addition, since
hn−1,k−1 is a σk−1-Gray cycle over An−1, we have

∣
∣hn,k

∣
∣ = p

∣
∣hn−1,k−1

∣
∣ = pn.

Example 3. Let A = {0, 1, 2}, n = 3, k = 2, thus p = 3, n0 = 2. By starting with
the sequence hn−1,k−1 = h2,1, hn,k is the concatenation of C0, C1, and C2 :

hn−1,k−1

︷︸︸︷

00
01
02
12
10
11
21
22
20

hn,k

︷︸︸︷

000
101
202
012
110
211
021
122
220

100
201
002
112
210
011
121
222
020

200
001
102
212
010
111
221
022
120

Proposition 1. hn,k is a σk-Gray cycle over An.

Proof. We argue by induction over k ≥ 1. With regard to the base case, as
indicated above hn0,1 is the |A|-ary reflected Gray sequence. In view of the
induction stage, we assume that the finite sequence hn−1,k−1 is a σk−1-Gray
cycle over An−1, for some k ≥ 2.

(i) We start by proving that hn,k satisfies Condition (G2). This will be done
through the three following steps:

(i.i) Firstly, we prove that, for each q ∈ [0, p − 1], in the subsequence Cq

two consecutive terms are necessarily in correspondence under σk. Given
r ∈ [0, pn−1 − 1], by definition, we have θr+q(0) ∈ σ1

(
θr+q−1(0)

)
. Since

hn−1,k−1 satisfies Condition (G2), we have hn−1,k−1
[r] ∈ σk−1

(
hn−1,k−1
[r−1]

)
.

We obtain θr+q(0)hn−1,k−1
[r] ∈ σk

(
θr+q−1(0)hn−1,k−1

[r−1]

)
, thus according to

(2): hn,k
[qpn−1+r] ∈ σk

(
hn,k
[qpn−1+r−1]

)
.
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(i.ii) Secondly, we prove that, for each q ∈ [1, p − 1], the last term of Cq−1

and the initial term of Cq are also connected by σk. Take r = 0 in Eq.
(2): it follows from θpn−1

= idA that we have hn,k
[qpn−1] = θq(0)hn−1,k−1

[0] =

θpn−1+q(0)hn−1,k−1
[0] . In (2) take r = pn−1 −1, moreover substitute q−1 ∈

[0, p − 2] to q ∈ [1, p − 1]: we obtain hn,k
[qpn−1−1] = θq+pn−1−2(0)hn−1,k−1

[pn−1−1].
It follows from p = |A| ≥ 3 that θ(0) �= θ−2(0): since θ is one-to-one this
implies θq+pn−1

(0) �= θq+pn−1−2(0), thus θq+pn−1
(0) ∈ σ1

(
θq+pn−1−2(0)

)
.

By induction we have hn−1,k−1
[0] = σk−1

(
hn−1,k−1
[pn−1−1]

)
, thus hn,k

[qpn−1] ∈
σk

(
θq+pn−1−2(0)hn−1,k−1

[qpn−1−1]

)
that is, hn,k

[qpn−1] ∈ σk

(
hn,k
[qpn−1−1]

)
.

(i.iii) At last, we prove that the first term of C0 is an image under σk of
the last term of Cp−1. In Eq. (2), take q = 0 and r = 0: we obtain
hn,k
[0] = 0hn−1,k−1

[0] . Similarly, by setting q = p − 1 and r = pn−1 − 1,

we obtain hn,k
[(p−1)pn−1+pn−1−1] = θpn−1+p−2(0)hn−1,k−1

[pn−1−1], thus hn,k
[pn−1] =

θ−2(0)hn−1,k−1
[pn−1−1]. Since hn−1,k−1 is a σk−1-Gray cycle over An−1, we have

hn−1,k−1
[0] ∈ σk−1

(
hn−1,k−1
[pn−1−1]

)
. In addition, it follows from p ≥ 3, that

θ−2(0) �= 0, thus 0 ∈ σ1

(
θ−2(0)

)
. We obtain hn,k

[0] ∈ σk

(
θ−2(0)hn−1,k−1

[pn−1−1]

)
,

thus hn,k
[0] ∈ σk

(
hn,k
[pn−1]

)
that is, the required property.

(ii) Now, we prove that, in the sequence hn,k all terms are pairwise different.
Let i, i′ ∈ [0, pn−1] such that hn,k

[i] = hn,k
[i′] and consider the unique 4-tuple of

integers q, q′ ∈ [0, p−1], r, r′ ∈ [0, pn−1−1] such that i = qpn−1+r and i′ =
q′pn−1 + r′. According to (2) we have θq+r(0)hn−1,k−1

[r] = θq′+r′
(0)hn−1,k−1

[r′] ,

thus θq+r(0) = θq′+r′
(0) ∈ A and hn−1,k−1

[r] = hn−1,k−1
[r′] . Since hn−1,k−1

satisfies (G3), the second equation implies r = r′, whence the first one
implies θq(0) = θq′

(0), thus q = q′ mod p. Since we have q, q′ ∈ [0, p − 1] we
obtain q = q′, thus i = i′.

(iii) Finally, since hn,k satisfies (G3), we have
∣
∣
∣
⋃

0≤i≤pn−1{hn,k
[i] }

∣
∣
∣ = pn, hence

hn,k satisfies Condition (G1). �

4 The Case Where A Is a Binary Alphabet, With k Odd

Let A = {0, 1} and n ≥ k. Classically, the cyclic permutation θ, which was intro-
duced in Sect. 2, can be extended into a one-to-one monoid homomorphism onto
A∗: in view of this, we set θ(ε) = ε and, for any non-empty n-tuple of charac-
ters a1, · · · , an ∈ A, θ(a1 · · · an) = θ(a1) · · · θ(an). Trivially, in the case where
we have n = k, if a non-empty σk-Gray code exists over X ⊆ An, then we have
X = {x, θ(x)}, for some x ∈ An. In the sequel of the paper, we assume n ≥ k + 1.
In what follows, we indicate the construction of a peculiar pair of σk-Gray cycles
over An, namely γn,k and ρn,k. This will be done by induction over k′, the unique
non-negative integer such that k = 2k′ + 1. Let n0 = n − 2k′ = n − k + 1.
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– For the base case, γn0,1 and ρn0,1 are computed by applying some reversal
(resp., shift) over the sequence gn0,1 from Sect. 2:

γn0,1
[0] = gn0,1

[0] and γn0,1
[i] = gn0,1

[2n0−i] (1 ≤ i ≤ 2n0 − 1); (3)

ρn0,k
[0] = gn0,1

[2n0−1] and ρn0,k
[i] = gn0,1

[i−1] (1 ≤ i ≤ 2n0 − 1). (4)

By construction, γn0,1 and ρn0,1 are σ1-Gray cycles over An0 . Moreover we have:

γn0,1
[0] = gn0,1

[0] = 0n0 and ρn0,1
[0] = gn0,1

[2n0−1] = 10n0−1; (5)

γn0,1
[2n0−1] = gn0,1

[1] = 0n0−11 and ρn0,1
[2n0−1] = gn0,1

[2n0−2] = 10n−21. (6)

Example 4. For n0 = 3 we obtain the following sequences:

g3,1

︷︸︸︷

000
001
011
010
110
111
101
100

γ3,1

︷︸︸︷

000
100
101
111
110
010
011
001

ρ3,1

︷︸︸︷

100
000
001
011
010
110
111
101

– In view of the induction step, we assume that we have computed the σk-Gray
cycles γn,k and ρn,k. Notice that we have n+2 = n0+2(k′ +1) = n0+(k+2)−1:
below we explain the construction of the two corresponding 2n+2-term sequences
γn+2,k+2 and ρn+2,k+2. Let i ∈ [0, 2n+2 − 1], and let q ∈ [0, 3], r ∈ [0, 2n − 1] be
the unique pair of integers such that i = q2n + r. Since we have r ∈ [0, 2n − 1],
taking for q the value q = 0 (resp., 1, 2, 3), we state the corresponding equation
(7a) (resp., (7b),(7c),(7d)):

γn+2,k+2
[r] = θr(00)γn,k

[r] ; (7a)

γn+2,k+2
[2n+r] = θr(01)ρn,k

[r] ; (7b)

γn+2,k+2
[2.2n+r] = θr(11)γn,k

[r] ; (7c)

γn+2,k+2
[3.2n+r] = θr(10)ρn,k

[r] . (7d)

Similarly the sequence ρn+2,k+2 is computed by substituting, in the preceding
equations, the 4-tuple (10, 11, 01, 00) to (00, 01, 11, 10):

ρn+2,k+2
[r] = θr(10)γn,k

[r] ; (8a)

ρn+2,k+2
[2n+r] = θr(11)ρn,k

[r] ; (8b)

ρn+2,k+2
[2.2n+r] = θr(01)γn,k

[r] ; (8c)

ρn+2,k+2
[3.2n+r] = θr(00)ρn,k

[r] . (8d)
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Example 5. (Example 4 continued) γ5,3 is the concatenation, in this order, of
the 4 following subsequences:

γ3,1

︷︸︸︷

00 000
11 100
00 101
11 111
00 110
11 010
00 011
11 001

ρ3,1

︷︸︸︷

01 100
10 000
01 001
10 011
01 010
10 110
01 111
10 101

γ3,1

︷︸︸︷

11 000
00 100
11 101
00 111
11 110
00 010
11 011
00 001

ρ3,1

︷︸︸︷

10 100
01 000
10 001
01 011
10 010
01 110
10 111
01 101

Lemma 1. γn,k and ρn,k satisfy both the conditions (G1) and (G3).

Proof. We argue by induction over k′ ≥ 0, with k = 2k′ + 1. the base case
corresponds to k′ = 0 that is, k = 1 and n = n0: as indicated above, γn0,1 and
ρn0,1 are σ1-Gray cycles over An. In view of the induction step we assume that,
for some k′ ≥ 0, both the sequences γn,k and ρn,k are σk-Gray cycles over An.

(i) In order to prove that γn+2,k+2 satisfies Condition (G3), let i, i′ ∈ [0, 2n+2−
1] such that γn+2,k+2

[i] = γn+2,k+2
[i′] , and q, q′ ∈ [0, 3], r, r′ ∈ [0, 2n − 1] such

that i = q2n+r, i′ = q′2n+r′. According to Eqs. (7a)–(7d), words x, x′ ∈ A2,
w,w′ ∈ An exist such that γn+2,k+2

[i] = θr(x)w and γn+2,k+2
[i′] = θr′

(x′)w′

that is, θr(x) = θr′
(x′) ∈ A2 and w = w′. By the definition of θ, this

implies either x, x′ ∈ {00, 11} or x, x′ ∈ {01, 10} that is, by construction,
either q, q′ ∈ {0, 2}, x, x′ ∈ {00, 11}, w = γn,k

[r] = γn,k
[r′] , or q, q′ ∈ {1, 3},

x, x′ ∈ {01, 10}, w = ρn,k
[r] = ρn,k

[r′] . Since γn,k and ρn,k satisfies (G3), in any
case we have r = r′. This implies θr(x) = θr(x′), thus x = x′. With regard to
Eqs. (7a)–(7d), this corresponds to q = q′, thus i = q2n + r = q′2n + r = i′,
therefore γn+2,k+2 satisfies Condition (G3).

(ii) By substituting (10, 11, 01, 00) to (00, 01, 11, 10), according to (8a)–(8d),
similar arguments prove that ρn+2,k+2

[i] = ρn+2,k+2
[i′] implies i = i′, thus

ρn+2,k+2 also satisfies (G3).
(iii) Since γn+2,k+2 satisfies (G3), we have

⋃
0≤i≤2n+2−1{γn+2,k+2

i } = An+2,
hence it satisfies (G1). Similarly, since ρn+2,k+2 satisfies (G3) it satisfies
(G1). �

In order to prove that our sequences satisfy (G2), we prove the following prop-
erty:

Lemma 2. We have γn,k
[0] ∈ σk+1

(
ρn,k
[2n−1]

)
and ρn,k

[0] ∈ σk+1

(
γn,k
[2n−1]

)
.

Proof. We argue by induction over the integer k′ ≥ 0. The case k′ = 0 corre-
sponds to k = 1 and n = n0: with such a condition, our property comes from the
identities (5) and (6). For the induction step, we assume that, for some k′ ≥ 0,
we have γn,k

[0] ∈ σk+1

(
ρn,k
[2n−1]

)
and ρn,k

[0] ∈ σk+1

(
γn,k
[2n−1]

)
.
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(i) In (7a), by taking r = 0 we obtain γn+2,k+2
[0] = 00γn,k

[0] , hence by induction:

γn+2,k+2
[0] ∈ 00σk+1

(
ρn,k
[2n−1]

)
⊆ σk+3

(
11ρn,k

[2n−1]

)
. By setting r = 2n − 1 in

(8d), we obtain ρn+2,k+2
[2n+2−1] = 11ρn,k

[2n−1], thus γn+2,k+2
[0] ∈ σk+3

(
ρn+2,k+2
[2n+2−1]

)
.

(ii) Similarly, by setting r = 0 in (8a), and by induction we have: ρn+2,k+2
[0] =

10γn,k
[0] ∈ σk+3

(
01ρn,k

[2n−1]

)
. By taking r = 2n − 1 in (7d) we obtain

γn+2,k+2
[2n+2−1] = 01ρn,k

[2n−1], thus ρn+2,k+2
[0] ∈ σk+3

(
γn+2,k+2
[2n+2−1]

)
.

�
Since Eqs. (7a)–(8d) look alike, one may be tempted to compress them thanks
to some unique generic formula. Based on our tests, such a formula needs to
introduce at least two additionnal technical parameters, which would make their
handling tedious. In the proof of the following result, we have opted to report
some case-by-case basis argumentation: this has the advantage of making use of
arguments which, although being similar, actually are easy to read.

Proposition 2. Both the sequences γn,k and ρn,k are σk-Gray cycles over An.

Proof sketch Once more we argue by induction over k′ ≥ 0. Since γn0,1 and
ρn0,1 are σ1-Gray cycles over An, the property holds for k′ = 0. In view of the
induction stage, we assume that, for some k′ ≥ 0 both the sequences γn,k and
ρn,k are σk-Gray cycles over An. According to Lemma 1, it remains to establish
that γn+2,k+2 and ρn+2,k+2 satisfy Condition (G2) that is:

(∀q ∈ {0, 1, 2, 3})(∀r ∈ [1, 2n − 1]) γn+2,k+2
[q2n+r] ∈ σk+2

(
γn+2,k+2
[q2n+r−1]

)
; (9)

(∀q ∈ {1, 2, 3}) γn+2,k+2
[q2n] ∈ σk+2

(
γn+2,k+2
[q2n−1]

)
; (10)

γn+2,k+2
[0] ∈ σk+2

(
γn+2,k+2
[2n+2−1]

)
. (11)

(∀q ∈ {0, 1, 2, 3})(∀r ∈ [1, 2n − 1]) ρn+2,k+2
[q2n+r] ∈ σk+2

(
ρn+2,k+2
[q2n+r−1]

)
; (12)

(∀q ∈ {1, 2, 3}) ρn+2,k+2
[q2n] ∈ σk+2

(
ρn+2,k+2
[q2n−1]

)
; (13)

ρn+2,k+2
[0] ∈ σk+2

(
ρn+2,k+2
[2n+2−1]

)
. (14)

Condition (9). (i) At first assume q = 0. According to (7a), and since γn,k satis-

fies (G2), we have γn+2,k+2
[r] = θr(00)γn,k

[r] ∈ θr(00)σk

(
γn,k
[r−1]

)
, thus γn+2,k+2

[r] ∈
σk+2

(
θr−1(00)γn,k

[r−1]

)
. In (7a), substitute r−1 to r (we have 0 ≤ r−1 ≤ 2n −2):

we obtain γn+2,k+2
[r−1] = θr−1(00)γn,k

[r−1], thus γn+2,k+2
[r] ∈ σk+2

(
γn+2,k+2
[r−1]

)
.

(ii) Now assume q = 1. According to (7b), and since ρn,k satisfies (G2), we have
γn+2,k+2
[2n+r] = θr(01)ρn,k

[r] ∈ σk+2

(
θr−1(01)ρn,k

[r−1]

)
. In (7b), substitute r − 1 to r:

we obtain γn+2,k+2
[2n+r−1] = θr−1(01)ρn,k

[r−1], thus γn+2,k+2
[2n+r] ∈ σk+2

(
γn+2,k+2
[2n+r−1]

)
.



146 J. Néraud

(iii) For q = 2, the arguments are similar to those applied in (i) by substituting
γn+2,k+2
[2·2n+r] to γn+2,k+2

[r] , Eq. (7c) to (7a), and 11 to 00.

(iv) Similarly, for q = 3 the proof is obtained by substituting in (ii) γn+2,k+2
[3·2n+r] to

γn+2,k+2
[2n+r] , (7d) to (7b), and 10 to 01.

Condition (10). (i) Assume q = 1 and take r = 0 in (7b). According to Lemma 2,

we obtain γn+2,k+2
[2n] = 01ρn,k

[0] ∈ 01σk+1

(
γn,k
[2n−1]

)
⊆ σk+2

(
11γn,k

[2n−1]

)
. Take r =

2n−1 in (7a): we obtain γn+2,k+2
[2n−1] = 11γn,k

[2n−1], thus γn+2,k+2
[2n] ∈ σk+2

(
γn+2,k+2
[2n−1]

)
.

(ii) Now, assume q = 2, and set r = 0 in Eq. (7c). According to Lemma 2 we have
γn+2,k+2
[2·2n] = 11γn,k

[0] ∈ 11σk+1

(
ρn,k
[2n−1]

)
⊆ σk+2

(
10ρn,k

[2n−1]

)
. By taking r = 2n −1

in (7b), we obtain γn+2,k+2
[2·2n−1)] = 10ρn,k

[2n−1], thus γn+2,k+2
[2·2n] ∈ σk+2

(
γn+2,k+2
[2·2n−1]

)
.

(iii) For q = 3, substitute in (i) γn+2,k+2
[3·2n] to γn+2,k+2

[2n] , Eq. (7d) to Eq. (7b),

(7c) to (7a), 10 to 01 and 00 to 11: similar arguments prove that γn+2,k+2
[3·2n] ∈

σk+2

(
γn+2,k+2
[3·2n−1]

)
.

Condition (11). Take r = 0 in (7a). According to Lemma 2, we have γn+2,k+2
[0] =

00γn,k
[0] ∈ 00σk+1

(
ρn,k
[2n−1]

)
⊆ σk+2

(
01ρn,k

[2n−1]

)
. By taking r = 2n − 1 in (7d) we

obtain γn,k
[2n+2−1] = 01ρn,k

[2n−1], thus γn+2,k+2
[0] ∈ σk+2

(
γn,k
[2n+2−1]

)
.

According to the structures of Eqs. (8a)–(8d), for proving the conditions (12)–
(13), the method consists in substituting the word ρn+2,k+2

[r] to γn+2,k+2
[r] , the

4-uple (10, 11, 01, 00) to (00, 01, 11, 10), and Eq. (8a) (resp., (8b), (8c), (8d)) to
Eq. (7a) (resp., (7b), (7c), (7d)). �

5 The Case Where We Have |A| = 2 and k Even

Beforehand, we recall some classical algebraic interpretation of the substitution
σk in the framework of the binary alphabet A = {0, 1}. Denote by ⊕ the addition
in the group Z/2Z with identity 0. Given a positive integer n, and w,w′ ∈
An, define w ⊕ w′ as the unique word of An such that, for each i ∈ [1, n]:
(w ⊕ w′)i = wi ⊕ w′

i. With this notation the sets An and (Z/2Z)n are in one-
to-one correspondence. Moreover we have w′ ∈ σk(w) if, and only if, some word
u ∈ An exists such that |u|1 = k and w = w′⊕u, therefore if k is even we have
|w|1 = |w′|1 mod 2. Consequently, given a σk-Gray cycle

(
α[i]

)
0≤i≤m

, for each
i ∈ [0,m] we have

∣
∣α[i]

∣
∣
1

=
∣
∣α[0]

∣
∣
1

mod 2. As a corollary, setting Evenn
1 = {w ∈

A∗ : |w|1 = 0 mod 2} and Oddn
1 = {w ∈ A∗ : |w|1 = 1 mod 2}:

Lemma 3. With the condition of Sect. 5, given a σk-Gray cycle α over X, either
we have X ⊆ Evenn

1 , or we have X ⊆ Oddn
1 .
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Since k − 1 is an odd integer, according to Proposition 2, the sequence γn−1,k−1

is a σk−1-Gray cycle over An−1. We set:

(∀i ∈ [0, 2n−1 − 1]) γn,k
[i] = θi(0)γn−1,k−1

[i] and γn,k
[i]

= θi(1)γn−1,k−1
[i] (15)

For instance, we have γ6,4
[0] = 000000, γ6,4

[0] = 100000, γ6,4
[1] = 111100.

Proposition 3. γn,k (resp., γn,k) is a σk-Gray cycle over Evenn
1 (resp., Oddn

1 ).

Proof. (i) According to Eq. (15), since γn−1,k−1 satisfies (G3), both the
sequences γn,k and γn,k also satisfy (G3).

(ii) By Lemma 3, we have
⋃

0≤i≤2n−1

{
γn,k

} ⊆ Evenn
1 and

⋃
0≤i≤2n−1

{
γn,k

} ⊆
Oddn

1 . In addition, according to (15), we have
∣
∣γn,k

∣
∣ =

∣
∣γn,k

∣
∣ =

∣
∣γn−1,k−1

∣
∣ =

2n−1. This implies
⋃

0≤i≤2n−1

{
γn,k

}
= Evenn

1 and
⋃

0≤i≤2n−1

{
γn,k

}
=

Oddn
1 that is, γn,k and γn,k satisfy (G1).

(iii) Let i ∈ [1, 2n−1 − 1]. Since γn−1,k−1 satisfies (G2), we have γn−1,k−1
[i] ∈

σk−1

(
γn−1,k−1
[i−1]

)
. According to (15), the initial characters of γn,k

[i] and γn,k
[i−1]

(resp., γn,k
[i] and γn,k

[i−1]) are different, hence we have γn,k
[i] ∈ σk

(
γn,k
[i−1]

)

and γn,k
[i] ∈ σk

(
γn,k
[i−1]

)
. In addition, once more according to (15) it

follows from γn−1,k−1
[0] ∈ σk−1

(
γn−1,k−1
[2n−1−1]

)
that γn,k

[0] = 0γn−1,k−1
[0] ∈

σk

(
1γn−1,k−1

[2n−1−1]

)
⊆ σk

(
γn,k
[2n−1−1]

)
, hence γn,k satisfies (G2). Similarly,

γn−1,k−1
[0] ∈ σk−1

(
γn−1,k−1
[2n−1−1]

)
implies γn,k

[0] ∈ σk

(
γn,k
[2n−1−1]

)
, hence γn,k sat-

isfies (G2).
�

The following statement provides the description of the complexity λA,τ :

Theorem 1. Given a finite alphabet A and n ≥ k ≥ 1, exactly one of the four
following properties holds:

(i) |A| ≥ 3, n ≥ k, and λA,σk
(n) = |A|n;

(ii) |A| = 2, n = k, and λA,σk
(n) = 2;

(iii) |A| = 2, n ≥ k + 1, k is odd and λA,σk
(n) = 2n;

(iv) |A| = 2, n ≥ k + 1, k is even, and λA,σk
(n) = 2n−1.

In addition, in each case some σk-Gray cycle of maximum length can be explicitly
computed.

Proof. Recall that if some σk-Gray cycle exists over X ⊆ A≤n, necessarily X
is a uniform set that is, X ⊆ Am holds for some m ≤ n; hence, in any case
we have λA,σk

(n) ≤ |A|n. According to Proposition 1, if we have |A| ≥ 3 and
n ≥ k, a σk-Gray cycle exists over An, hence Property (i) holds. Similarly, (iii)
comes from Proposition 2. As indicated in the preamble of Sect. 3, Property (ii)
trivially holds. Finally, according to Lemma 3, given a binary alphabet A, if k
is even we have λA,σk

(n) ≤ 2n−1, hence (iv) comes from Proposition 3. �
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Further Development. Since our Gray cycles were constructed by applying
recursive processes, it is legitimate to ask whether some method could exist for
computing γn,k

[i] by directly starting with γn,k
[i−1], as in the case of the classical

reflected Gray cycles. In view of some of our more recent studies, we strongly
believe that such algorithms can actually be devised: we hope to develop this
point in a further paper.

On the other hand, it could be of interest to study the behaviour of ΛA,τ in
the framework of other word binary relations τ , even in restraining to special
families of sets X ⊆ A∗, such as variable-length codes.
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Automata Equipped with Auxiliary Data
Structures and Regular Realizability

Problems

Alexander Rubtsov(B) and Mikhail Vyalyi

National Research University Higher School of Economics, Moscow, Russia

Abstract. We consider general computational models: one-way and two-
way finite automata, and logarithmic space Turing machines, all equipped
with an auxiliary data structure (ADS). The definition of an ADS is based
on the language of protocols of work with the ADS. We describe the
connection of automata-based models with “Balloon automata” that are
another general formalization of automata equipped with an ADS pre-
sented by Hopcroft and Ullman in 1967. This definition establishes the
connection between the non-emptiness problem for one-way automata
with ADS, languages recognizable by nondeterministic log-space Turing
machines equipped with the same ADS, and a regular realizability prob-
lem (NRR) for the language of ADS’ protocols. The NRR problem is to
verify whether the regular language on the input has a non-empty inter-
section with the language of protocols. The computational complexity of
these problems (and languages) is the same up to log-space reductions.

1 Introduction

Many computational models are derived from (one-way) finite automata (FAs)
via equipping them with an auxiliary data structure (ADS). The best-known
model of this kind is pushdown automata (PDAs), the deterministic version of
which is widely used in compilers. Other examples are k-counter automata, (k, r)-
reversal-bounded counter automata (equipped with k counters each of which
can switch between increasing and decreasing modes at most r times), stack
automata, nested stack automata, bag automata [3], set automata (SAs) [5] and
their another variant [6]; more examples can be found in [4].

During the investigation of balloon automata (BAs) [4], Hopcroft and Ull-
man connected the decidability of the membership and the emptiness problems
for one-way and two-way models; we denote them as M -xyBA and E-xyBA
respectively, where x = 1 denotes one-way and x = 2 denotes two-way models,
and y ∈ {D,N} stands for determinism or nondeterminism respectively. Equa-
tion (1) summarizes results on decidability questions from [4], where �T is a
Turing-reduction and {A,B} means that A�T B and B �T A.

{M-1DBA,M-2DBA} �T{E-1DBA,E-1NBA,M-1NBA,M-2NBA}�T

�T E-2DBA�T E-2NBA
(1)
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We remark that the relation E-1NBA�T E-1DBA was proved for the case of at
least a two-letter input alphabet.

While a lot of models can be described as BA, it is hard to invent such a model
with good computational properties. One of the reasons is that the equipment
of finite automata with a complex data structure (or with several simple data
structures) often leads to a universal computational model. For example, FAs
equipped with two pushdown stores are equivalent to Turing machines (TMs),
as well as FAs equipped with two non-restricted counters.

In this paper, we investigate the computational power of FAs equipped with
an ADS. We describe the model using the language of correct protocols of work
with the ADS. We provide a general approach to analyze the complexity of the
emptiness problem and prove that languages recognizable by nondeterministic
logarithmic space TMs (log-TMs, see the definition in [12]) equipped with the
same ADS are of the same complexity that the non-emptiness problem for FAs
with the ADS. Our key tool is a regular realizability problem (Definition 1).

1.1 Our Contribution

BAs were initially defined as automata with access to additional storage
of unspecified structure—the balloon. A rather general axioms were imposed
for the balloon and the interaction of the balloon and the automaton (see
Definition 4 below). In this paper, we propose another definition based on a
language of the ADS’ protocols that we denote as P, so we refer to the ADS as
BP. We prove that languages recognizable by 1NBPA form not just a rational
cone as in the case of 1NBA [4], but a principal rational cone generated by P
(we provide the definition in Sect. 2.2).

This reformulation guarantees good structural properties, some of them fol-
low from the connection with BA (Sect. 4), and provides the relation between
E-1NBPA and the nondeterministic regular realizability problem.

Definition 1. Fix a formal language F called a filter, the parameter of regular
realizability problems DRR(F ) and NRR(F ) that are the problems of verifying
non-emptiness of the intersection of the filter F with a regular language L(A)
described via the DFA or NFA A respectively. Formally,

NRR(F ) = {A | A is an NFA and L(A) ∩ F �= ∅}.

DRR(F ) = {A | A is a DFA and L(A) ∩ F �= ∅}.

RR problems have independently been studied under the name regular inter-
section emptiness problems [16,17].

In this paper we focus on the computational complexity, so we use the weakest
reduction suitable for our needs, the deterministic log-space reduction that we
denote as �log. If A�log B and B �log A we write A ∼log B and say that A and B
are log-space equivalent. Note that in our constructions, emptiness and member-
ship problems are the sets of instances’ descriptions with positive answers, i.e.,
E-xyBPA = {〈M〉 | L(M) = ∅}, M-xyBPA = {〈M,w〉 | w ∈ L(M)}, where M
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is a xyBPA and 〈x〉 is the description of x. So, E-xyBPA = {〈M〉 | L(M) �= ∅}.
We prove that E-1NBPA ∼log NRR(P).

We equip with ADS not only FAs but also log-TMs. We denote deterministic
and nondeterministic log-TMs equipped with an ADS BP as DBPlog-TM and
NBPlog-TM respectively. We prove that

NRR(P) ∼log L (NBPlog-TM) = {L | L�log NRR(P)}, (2)

hereinafter L (model) is the class of languages recognizable by the model. If
P is a problem (formal language) and S is a set of problems (class of formal
languages) the reductions mean as follows. P � S means that ∃P ′ ∈ S : P � P ′

and S � P means that ∀P ′ ∈ S : P ′ � P ; S ∼ P means (P � S) ∧ (S � P ).
It is easy to verify that in the original proofs in [4], Turing reductions in (1)

can be replaced by the log-space reductions provided we replace the emptiness
problems with non-emptiness ones. So, we obtain

{M-1DBPA,M-2DBPA}�log{E-1DBPA,E-1NBPA,M-1NBPA,M-2NBPA,

NRR(P),L (NBPlog-TM)}�log E-2DBA�log E-2NBA�log E-NBPlog-TM
(3)

These results combined with known facts imply assertions (4–7), where S
is the set data structure as in SA, S1 is the set data structure that supports
the insertion of at most one word, that cannot be removed further but can be
tested if a query-word in the set. In S1,|Γ |=1 the word in the set is over an unary
alphabet, PSPACE-c and NP-c are subclasses of complete languages.

P = L (NPDlog-TM), where PD is Pushdown store (4)
PSPACE ⊇ L (NSlog-TM),∃L ∈ L (NSlog-TM) : L ∈ PSPACE-c (5)
PSPACE ⊇ L (NS1log-TM),∃L ∈ L (NS1log-TM) : L ∈ PSPACE-c (6)
NP ⊇ L (NS1,|Γ |=1log-TM),∃L ∈ L (NS1,|Γ |=1log-TM) : L ∈ NP-c (7)

Assertion (4) is a well-known fact. Our technique here just shows a new
connection: (4) directly follows from the fact that the emptiness problem for PDA
is P-complete. Assertions (5–7) are new results to the best of our knowledge, we
prove them in Sect. 6. Assertions (6–7) lead to (3) for the corresponding classes
of automata. For (5), we have already obtained the result in [8] in the same way
and present in this paper the generalized technique.

2 Definitions

2.1 Notation on Binary Relations

We associate with a binary relation R ⊆ A × B the corresponding mappings
A → 2B and 2A → 2B that are denoted by the same letter R, so R(a) = {b : aRb}
and R(S) = ∪a∈SR(a). A relation R is the composition of the relations P ⊆ A×C
and Q ⊆ C × B if R = {(a, b) | ∃c : aPc ∧ cQb}; we denote the composition as
Q◦P . In the case of a set S ⊆ C we treat S as a binary relation S ⊆ C×{0, 1} in
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the composition S ◦ P = S′ that returns the set S′ ⊆ A. We denote the reflexive
and transitive closure of R ⊆ A × A by R∗; the symbol ∗ can also be placed
above the relation, e.g., �∗ . We denote by R−1 ⊆ B × A the inverse relation, i.e.,
aRb ⇐⇒ bR−1a.

2.2 Rational Transductions

Our technique is based on the connection of NRR problems with rational cones.
We recall the definitions borrowing them from the book [2]. A finite state trans-
ducer (FST) is a nondeterministic finite automaton with an output tape. Let T
be an FST; we also denote by T the corresponding relation, i.e., uTv iff there
exists a run of T on the input u from the initial state to a final state such that at
the end of the run the word v is written on the output tape. The rational domi-
nance relation A�rat B holds if there exists an FST T such that A = T (B), here
A and B are languages. The relations computable by FSTs are known as ratio-
nal relations. The following lemmata are algorithmic versions of well-known facts
(see [2], Chapter III), the first one is the algorithmic version of the Elgot-Mezei
theorem. The log-space algorithms follow from straight-forward constructions.

Lemma 2. For FSTs T1 and T2 such that T1 ⊆ Σ∗×Δ∗, T2 ⊆ Δ∗×Γ ∗, and FA
A such that L(A) ⊆ Δ∗, there exists an FST T such that T = T2 ◦T1 ⊆ Σ∗ ×Γ ∗,
and NFA B recognizing the language T−1

1 L(A). So, the relation �rat is transitive.
Moreover, T and B are constructible in logarithmic space. We denote FST T and
NFA B as T2 ◦ T1 and A ◦ T1 respectively.

Lemma 3. For each FST T there exists an FST T−1 that computes the inverse
relation of the relation T . FST T−1 is log-space constructible by FST T .

A rational cone is a family of languages C that is closed under the rational
dominance relation: A�rat B and B ∈ C imply A ∈ C. If there exists a language
F ∈ C such that L�rat F for any L ∈ C, then C is a principal rational cone
generated by F ; we denote it as C = T (F ).

Rational transductions for context-free languages were thoroughly investi-
gated in the 1970s, particularly by the French school. The main results of this
research were published in Berstel’s book [2]. As described in [2], it follows
from the Chomsky-Schützenberger theorem that CFL is a principal rational cone:
CFL = T (D2), where D2 is the Dyck language on two types of brackets.

2.3 Computational Models

Firstly, we define BA. We provide the definition that is equivalent to the original
definition from [4] but has technical differences, for the sake of convenience. Then
we provide the definitions of other models: the refined definition of Balloon
automata in terms of protocols and computational models based on log-TM
that are connected with NRR-problem as well as with 1NBPA.

As it said, the balloon is a storage medium of unspecified structure. Thus its
states are represented by (a subset of) positive integers. A BA can get limited
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information about the state of the balloon (the balloon information function
in the definition below) and can modify the states of the balloon (the balloon
control function). Here we need 1BAs only. So we give the definition for them.
The definitions for 2BAs are similar, they are provided in [4].

Definition 4. A 1-way balloon automaton (1BA) is defined by a tuple

〈S,Σ��, BS , BI , getBI
, updBS

, F, s0, δ〉

– S is the finite set of automaton states.
– Σ�� = Σ ∪ {�,�}, where Σ is the finite input alphabet and �,� are the

endmarkers. The input has the form �w�, w ∈ Σ.
– BS ⊆ Z>0 is the set of the balloon states.
– BI is the finite set of the balloon information states.
– getBI

: BS → BI is a total computable function (balloon information func-
tion).

– updBS
is a partially computable function from S × BS to BS (balloon control

function).
– F � S is the set of the final states.
– s0 ∈ S \ F is the initial state.
– δ is the transition relation (a partial function for deterministic automata)

defined as δ ⊆ (S × Σ��,ε × BI) × S.

Definition 5. A configuration of a 1BA is a triple (q, u, i) ∈ S × Σ∗
�� × BS,

where u is the unprocessed part of the input w so u is either � w � or a suffix
of w �. The initial configuration of 1BA is (s0,� w �, 1), a move of 1BA
is defined by the relation � on configurations as follows: (q, σu, i) � (p, u, j),
where σ ∈ Σ��,ε if j = updBS

(p, i), p ∈ δ(q, σ, getBI
(i)). A 1BA accepts the

input w if there exists a sequence of moves (computational path) such that after
processing of �w� the final state is reached, i.e., (s0,�w�, 1) �∗ (qf , ε, i), where
qf ∈ F, i ∈ BS.

It is not easy to define classes of balloon automata (like PDAs or SAs) since
one needs to define valid families of functions getBI

and updBS
. One can see an

example of PDAs definition in terms of BA in [4]. We suggest another approach
for the definition of BA classes in Sect. 4. The approach simplifies the definitions
since it is only needed to define a language of correct protocols to define an ADS.

We define a protocol as a sequence of triples pi = uiqiri of the query-word
ui, the query qi and the response ri on the query. Numerous extra conditions
are listed in the following formal definition.

Definition 6. Let Γwrite, Γquery, Γresp be finite disjoint alphabets such that
Γquery �= ∅, Γresp �= ∅. Let valid ⊆ Γquery × Γresp be a relation that provides
the correspondence between queries and possible responses. A protocol is a word
p such that p = p1 · · · pn, where n � 0, pi = uiqiri, ui ∈ Γ ∗

write, qi ∈ Γquery,
ri ∈ Γresp, and ri ∈ valid(qi). We call a word pi a query block. We say that a
language P ⊆ (Γ ∗

writeΓqueryΓresp)∗ is a language of correct protocols if the axioms
(i–v) hold:
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(i) ε ∈ P
(ii) ∀p ∈ P : p is a protocol
(iii) ∀p ∈ P : if p = p1p2 and p1 is a protocol, then p1 ∈ P
(iv) ∀p ∈ P ∀u ∈ Γ ∗

write ∀q ∈ Γquery ∃r ∈ Γresp : puqr ∈ P
(v) ∀puqr ∈ P : if p′ ∈ P and p′ = puqr′s, then r′ = r
(vi) ∃q ∈ Γquery, r ∈ Γresp ∀p1, p2 ∈ P : p1qrp2 ∈ P.

Axiom (vi) does not hold in the general case, e.g., for SAs and counter
automata without zero tests. It is needed to describe the connection of automata
with an ADS with BAs in Sect. 4.

A language of correct protocols P generates the corresponding class of lan-
guages, the principal rational cone T (P). All examples of BAs languages classes
in [4] can be presented as T (P). We provide here only two examples.

Example 7. It is well-known [2] that CFL = T (D2), where D2 is the Dyck lan-
guage with two types of parenthesis. It is also well-known that balanced paren-
thesis is a protocol of the stack. We transform the language D2 into a language
of protocols D2-PROT as follows.

We define the alphabets Γwrite = ∅, Γquery = {push(, push[, pop}, Γresp =
{(, ), [, ]}, valid = {(push[, [ ), (push(, ( ), (pop, ] ), (pop, ) )}. To define correct pro-
tocols we use an FST T that erases all symbols from Γquery of the input. So,
D2-PROT = {p | T (p) ∈ D2}.

By the definition D2 �rat D2-PROT, so we have that T (D2) ⊆ T (D2-PROT).
It is also easy to show that D2-PROT�rat D2, so T (D2-PROT) = T (D2) = CFL.

Note that we set here Γwrite = ∅ for the sake of simplicity. One can use another
variant: Γwrite = {(, [}, Γquery = {multipush, pop}, Γresp = {pushed, ), ]}. ��

The following example is a starting point for the generalization presented in
this paper.

Example 8. The data structure Set consists of the set S which is initially empty.
Set supports the following operations: in(x) : S → S ∪ {x}, out(x) : S →
S \ {x}, test(x) : x

?
∈ S. We define the protocol language SA-PROT consis-

tently with [7,8], so the elements of alphabets below are individual symbols
while they are words in [7,8]. Γwrite = {a, b}, Γquery = {#in,#out,#test}, Γresp =
{#,+#,−#}, valid = {(#in,#), (#out,#), (#test,+#), (#test,−#)}.

It was proved in [7] that L (1NSA) = T (SA-PROT). ��

Definition 9. Fix a language of correct protocols P. An automaton equipped
with auxiliary data structure BP (defined by P) is defined by a tuple

〈S,Σ��, Γwrite, Γquery, Γresp, F, s0, δ〉, where

– S, Σ��, F , s0 are the same as in Definition 4, so as Σ��,ε.
– S = Swrite ∪ Squery, Swrite ∩ Squery = ∅.
– P ⊆ (Γ ∗

writeΓqueryΓresp)∗.
– δ is the transition relation defined as
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δ ⊆ ([Swrite × Σ��,ε] × [Γ ∗
write × S]) ∪ (Squery × Γquery × Γresp × Swrite).

The automaton has a one-way write-only query tape. During the processing of
the input, it writes query-words ui ∈ Γ ∗

write on the query tape, performs queries
qi, and receives responses ri such that u1q1r1 · · · unqnrn ∈ P. After each query,
the query tape is erased.

A configuration of an ADS-automaton is a tuple

(s, v, u, p) ∈ S × Σ∗
�� × Γ ∗

write × (Γ ∗
writeΓqueryΓresp)∗,

where v is the unprocessed part of the input w, i.e., v is the suffix of � w �, u
is the content of the work tape, and p is the protocol of the automaton operating
with the data structure. A move of an automaton is defined via the relation � on
configurations which is defined as follows:

(s, av, u, p) � (s′, v, ux, p) if s ∈ Swrite, (s, a, x, s′) ∈ δ (8)
(s, v, u, p) � (s′, v, ε, puqr) if s ∈ Squery, (s, q, r, s′) ∈ δ, puqr ∈ P (9)

A configuration is initial if it has the form (s0,� w �, ε, ε), a configuration
is accepting if it has the form (sf , ε, ε, p), where sf ∈ F, p ∈ P. A word w
is accepted by an automaton with ADS if (s0,� w �, ε, ε) �∗ (sf , ε, ε, p). An
automaton is deterministic if for all configurations c, c1, c2 from c � c1 and
c � c2 follows c1 = c2.

For the next two models, we provide the definitions on the implementation
level only.

Definition 10. A DBPlog-TM (NBPlog-TM) is a deterministic (nondetermin-
istic) log-TM M equipped with an ADS defined by the language of correct proto-
cols P. I.e., M is equipped with an additional write-only one-way query tape that
is used to write down a query word ui and perform a query. After a query qi is
performed, the tape is erased and the finite state control of M receives the result
ri of the query qi. The query results are consistent with P, i.e., p1 · · · pn ∈ P,
pi = uiqiri.

A configuration of BPlog-TM is a triple (c, u, p) where c is the configuration
of log-TM-part, u is the word written on the query tape, and p ∈ P is the protocol
that is the result of all the performed queries. A BPlog-TM M accepts a word w
if (c0(w), ε, ε) �∗ (cf , ε, p), where c0(w) is the initial configuration of the log-TM-
part of M , cf is the accepting configuration of log-TM-part of M , and p ∈ P,
the relation � corresponds to the M ’s moves.

Definition 11. Let F be an arbitrary formal language (filter). A DAF log-TM
(NAF log-TM) is a deterministic (non-deterministic) log-space TM equipped with
a read-only one-way infinite tape called advice tape. At the beginning of the
computation, the advice tape contains a word yΛ∞, where y ∈ F and Λ is a
symbol that indicates empty cells.
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A configuration of an AF log-TM M is a pair (c, u) where c is the configura-
tion of the log-TM-part of M , u is the unprocessed part of y. M accepts a word
x if there exists y ∈ F such that (c0(x), y) �∗ (cf , ε), where c0(x) is the initial
configuration of the log-TM-part of M , cf is the accepting configuration of the
log-TM-part of M .

DAF log-TMs appeared in [13] and its journal version [15] under the name
“models of generalized nondeterminism (GNA)” and lead to the appearance of
the DRR(F ) problem. In this paper we repeat the steps of [13,15] to establish
the connection between NAF log-TM and NRR(F ) problem in Sect. 5 to prove
one of the main results of the paper (2).

3 Principle Rational Cones and the NRR-Problem

In this section, we provide the core of our technique. We prove that L (1NBPA)
is a principle rational cone generated by the language of correct protocols P, i.e.,
L (1NBPA) = T (P); it is the first main result of the section. This fact yields
structural results about the family L (1NBPA), as well as the results on the
complexity of the emptiness problem. We focus in this section on the connection
between the non-emptiness problem and the NRR(P) problem. We prove that
these problems are equivalent under log-space reductions, it is the second main
result of the section. It leads us to the main results of the paper in Sect. 5. We
provide in this section structural results that naturally arise in the proofs. Other
structural results are discussed in Sect. 4 since their relation to [4].

The results of this section directly generalize the results of [7, Section 3]; the
proofs could be found in the preprint [10] and/or in the full journal version [11].
In most cases, to get a generalized result, one should substitute SA protocols (see
Example 8) by general protocols as defined in Definition 6. So we omit the proofs
of most of the lemmata, just indicating the corresponding proof in [10], and pro-
vide a few proofs of key lemmata and theorems to make the main constructions
clear.

Lemma 12 (cf. Proposition 14 in [10]). There exists a 1NBPA MP recogniz-
ing P.

Lemma 13 (cf. Proposition 12(i) in [10]). For each language of correct
protocols P ⊆ (Γ ∗

writeΓqueryΓresp)∗ there exists a language of correct protocols
P{a,b} ⊆ ({a, b}∗ΓqueryΓresp)∗, provided (Γquery ∪ Γresp) ∩ {a, b} = ∅ such that
L (1NBPA) = L (1NBP{a,b}A). Moreover there exists an FST T such that
T (P) = P{a,b}.

Lemma 14. Let T be an FST with the input alphabet Δ and the output alphabet
Σ and M be a 1NBPA over the alphabet Σ. There exists a 1NBPA M ′ = M ◦ T
recognizing the language T−1(L(M)).

Lemma 14 follows immediately from Lemma 12 and the general construction
of an inversed transducer (see [2]).
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Lemma 15 (cf. Lemma 15 in [10]). Let M be a 1NBPA. There exists an FST
TM such that w ∈ L(M) ⇐⇒ TM (w)∩P �= ∅. Moreover, p ∈ TM (w) iff M has
a run on w such that (s0, w, ε, ε) �∗ (sf , ε, ε, p).

Definition 16. An FST TM from Lemma 15 called extractor (of protocols).

Theorem 17 (cf. Theorem 16 in [10]). L (1NBPA) = T (P)

Theorem 18. E-1NBPA�log NRR(P)�log E-1NBPA

Proof. Let M be the input of the non-emptiness problem E-1NBPA and TM be
the corresponding extractor. By Lemma 15, w ∈ L(M) ⇐⇒ TM (w) ∩ P �= ∅.
So, L(M) �= ∅ ⇐⇒ TM (Σ∗)∩P �= ∅. Construct an NFA A recognizing TM (Σ∗)
by Lemma 2 in log space. So,

L(M) �= ∅ ⇐⇒ L(A) ∩ P �= ∅
Def. 1⇐⇒ A ∈ NRR(P),

So we have proved E-1NBPA�log NRR(P).
The reduction NRR(P)�log E-1NBPA follows from Lemmata 12 and 14. We

construct by A on the input of NRR(P) the automaton M = MP ◦ T , where
xTy ⇐⇒ (x = y) ∧ (x ∈ L(A)). ��

4 Connection with Balloon Automata

We provide the high-level description of classes MB of BAs due to the space
limitations. The definition in a more formal style could be found in [4].

Definition 19. A class of BAs is defined by the classes of functions F (getBI
),

F (updBS
) that satisfy the following properties. (I.a) F (getBI

) contains all con-
stant functions, and (I.b) F (updBS

) contains functions f(s, i) such that for each
state s either f(s, i) = i for all i or f(s, i) = j for all i and some constant j. (II).
If A,B ∈ MB, fA, fB ∈ F (updBS

), gA, gB ∈ F (updBS
) are the corresponding

functions of A and B, then MB includes each automaton C such that fC and
gC are the functions that are obtained from the functions of A and B via finite
control, i.e., for each state s ∈ SC fC(s, i) equals to either fA(s, i) or fB(s, i) for
all i, for each i, j if gC(i) �= gC(j) then either gA(i) �= gA(j) or gB(i) �= gA(j).

The definition implies that F (updBS
) contains a function that resets any

state i of the balloon to the initial state 1. This property does not hold for SAs,
so there is no direct correspondence between classes of languages of BAs and
automata with an ADS in the general case.

Theorem 20. For each ADS BP there exists a balloon B such that classes
F (getBI

), F (updBS
) satisfy properties (I.a) and (II). If P has the reset opera-

tion (vi), then (I.b) is also satisfied.
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Proof Idea. A state of the balloon is an integer that is the encoding of pairs of
words (p, u), where p is the current protocol, i.e., the protocol of all previous
operations before the upcoming move, and u is the word on the query-tape.
So, the function updBS

simulates write operations and queries, and the function
getBI

: Z>0 → Γresp returns responses. ��

So all the results from [4] that do not rely on (I.b) hold for BP-automata.
We are most interested in (1) and its complexity analogue (3). Many structural
results from [4] follow from the fact that L (1NBPA) is a principle cone (Theo-
rem 17), namely, closure of L (1NBPA) over union and rational transductions1.
We shall also mention the closure over gsm inverse mappings proved in [4] for
all xyBA that implies the same closure for all xyBPA.

Lemma 21. If BP contains the reset operation then L (1NBPA) is closed over
concatenation and iteration.

The proof is omitted due to the space limitations.
The standard technique from [2] implies the following lemma.

Lemma 22. If P#P�rat P, # �∈ Γ , then L (1NBPA) is closed over concatena-
tion. If (P#)∗ �rat P, # �∈ Γ , then L (1NBPA) is closed over iteration.

Remark 23. We leave open the question of the reduction in the opposite direction.
I.e., does for each class of BAs exist a language of correct protocols P such that
BAs recognize the same class of languages as BP automata? The essence of the
problem is as follows. If axioms (I–II) for the class of BAs are satisfied, does it
imply that there exists a “universal” BA MU such that L (1NBA) = T (L(MU ))
and for each M ∈ 1NBA there exists an FST T such that L(M) = L(MU ◦ T )?

5 The NRR Problem and Log-TM Models

In this section, we establish the connection between log-TM models and the
NRR problem. This connection and Theorem 18 imply one of the main results
of the paper: Theorem 29.

Lemma 24 ([9]). F1 �rat F2 ⇒ NRR(F1)�log NRR(F2).

In the proofs below we prove log-space reductions �log via log space trans-
ducers that are log-TMs with one-way, write-only output tape, see [12] for the
details.

Lemma 25. NAF log-TM�log NRR(F ).

The proof repeats the arguments from [13,15].

1 Intersection and quotient with regular languages, gsm forward mapping are the par-
tial cases of rational transductions.
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Lemma 26. NRR(F )�log NAF log-TM. Moreover, there exists an NAF log-TM
MNRR that recognizes the problem NRR(F ).

Proof. The proof is straightforward. MNRR gets on the input an NFA A and
verifies whether A accepts the word y ∈ F written on the advice tape. If y ∈
L(A), MNRR nondeterministically guesses the A’s run on y. So, by Definition 11,
A ∈ L(MNRR) iff ∃y ∈ F : y ∈ L(A) ⇐⇒ A ∈ NRR(F ). ��

Theorem 27. L (NAF log-TM) = {L | L�log NRR(F )}.

Proof. By the definition of �log, L�log NRR(F ) iff there exists a log-TM trans-

ducer T that maps the input x of the problem x
?
∈ L to the input T (x) of

the problem NRR(F ). We construct an NAF log-TM M recognizing L via the
composition of T and NAF log-TM MNRR from Lemma 26.

So {L | L�log NRR(F )} ⊆ L (NAF log-TM); the opposite inclusion follows
from Lemma 25. ��

Lemma 28. NAPlog-TM ∼log NBPlog-TM.

We provide only the proof idea due to the space limitations. Let MA be a
NAPlog-TM, MB be a NBPlog-TM, and x be an input word. Since both kinds
of log-TMs are nondeterministic, MA can guess and verify MB ’s successful run
on x provided that MB ’s protocol is written on the advice tape; MB can guess
y ∈ P and a successful run of MA on (x, y), and verify it: the transitions on
configurations are simulated on log space and the fact y ∈ P is verified by
performing subsequently the queries from the sequence y.

The above results yield the main theorem of the section.

Theorem 29. NRR(P) ∼log L (NBPlog-TM) = {L | L�log NRR(P)}.

6 Applications

In this section we prove the applications (4–7) described in Sect. 1.1.

Theorem 30. Assertions (4–7) hold.

Proof. SA-PROT was defined in Example 8. It was proved in [8] that the prob-
lems E-1NSA ∼ log NRR(SA-PROT) are PSPACE-complete. So we obtain (5)
by applying Theorem 29. We prove (4) in the same way by combining the facts
D2-PROT ∼rat D2 (Example 7) and NRR(D2) is P-complete [9], and apply
Lemma 24 and Theorem 29.

To prove (6–7) we use facts about the filters Perk = {(w#)k | w ∈ Σk},
where Σk is a k-letter alphabet. The problem NRR(Per1) is NP-complete and
NRR(Perk), k > 1 is PSPACE-complete [1,14]. We construct set-protocols
based on these languages as follows. Γwrite = Σk, Γquery = {in, test}, Γresp =
{+,−}. The response to the in-query is positive only for the first query, test-
queries are the same as in Example 8. We denote the language of correct pro-
tocols with Γwrite = Σk as S1,kPROT. It is easy to see that Perk �rat S1,kPROT:



Automata equipped with Auxiliary Data Structures and RR Problems 161

an FST T maps words of the form win+wtest+ · · · wtest+ to w#w# · · · w# by
replacing queries and responses by #; the sequence of queries with responses
in+, test+, . . . , test+ is verifiable via a finite state control (the inputs with
invalid sequence are rejected by the FST), so NRR(Perk)�log NRR(S1,kPROT)
by Lemma 24.

Now we prove that S1,kPROT�rat Perk. The FST T takes on the input a
word (w#)n and acts as follows. In each block w# it has the following options:
(i) change at least one letter, (ii) erase at least one letter and maybe change
others, (iii) add at leas one letter and maybe change others, (iv) do not change w.
Until T has not write in, it replaces # by test− in the cases (i–iii), and either
by test− or by in+ in the case (iv). After T wrote in+, it replaces # by test+
in the case (iv) and either by test− or by in− in the cases (i–iii). It is easy to
see that T ((w#)n) consists of all correct protocols with either w first in-query
or without in-queries at all, and exactly n queries. So T (Perk) = S1,kPROT and
assertions (6–7) follows from Lemma 24 and Theorem 29. ��
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Abstract. Recently a disambiguation construction for weighted auto-
mata has been presented by Mohri and Riley. In this paper we extend these
results in two ways. First we generalize the underlying structure of the
automata from words to trees and second we show that these results hold
not only for the tropical semiring but also the arctic one.

Keywords: Weighted automata · Unambiguous automata · Tree
automata · Twins property

1 Introduction

Quantitative extensions of finite-state automata, called weighted automata (WA)
[20], as well as of finite-state tree automata, called weighted tree automata
(WTA) [9], have been proposed and thoroughly investigated. The weights are
usually taken from a semiring like the non-negative reals R≥0, the tropical semir-
ing T [21,22], or the related arctic semiring A.

Needless to say computational properties improve for deterministic devices.
In the unweighted case of finite-state automata and finite-state tree automata
the expressive power of their deterministic counterpart is equal [7,19]. For their
quantitative extensions however this equivalence does not hold [3]. Indeed given
that not every WTA can be determinised [4, Example 5.9], the research is headed
towards finding sufficient conditions for determinization.

Notable results include approaches for WA with set semantics [2,6] deal-
ing with sequentiality, a notion similar to determinism. Furthermore there are
determinization approaches of WA over the tropical semiring by Mohri [16] and a
maximal factorization approach that generalizes these results to extremal semir-
ings for WA [13] and WTA [5]. In addition approximate variants of Mohri’s result
have been proposed [1,8]. A powerful tool utilized in all of these approaches is the
so-called twins property, which ensures that similar loops have identical weights.
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Situated between deterministic and non-deterministic devices are devices
with limited ambiguity. While determinism requires a unique choice in each con-
figuration, limited ambiguity only requires a limited number of outputs for each
input. Unambiguous, finitely ambiguous and polynomially ambiguous devices for
instance, restrict the number of outputs per input by 1, by a uniform bound,
and by a polynomial, respectively [14,15]. Therefore a natural generalization of
determinism is unambiguity [14,18]. Unambiguous equivalents of WA and WTA
have however not been investigated as thoroughly.

Recently a disambiguation algorithm has been proposed by Mohri and Riley
[17] for weighted automata. They give a construction that with input of a WA,
outputs an equivalent unambiguous WA. Furthermore they give sufficient con-
ditions, most notably a weaker version of the twins property that only compares
states that are in a certain relation. This condition ensures the finiteness of the
construction for WA over the non-negative tropical semiring.

In the present paper we generalize the construction to WTA and give a
sufficient condition for finiteness for the tropical, arctic and non-negative tropical
semiring. We subsume the results of [17]. We will closely follow the results and
proofs by [17], dealing with issues specific to the structure of trees along the way.

More specifically in Sect. 2 we introduce some elementary technical machin-
ery, including the semiring properties we require. In Sect. 3 we present the uni-
formity construction that will, applied to a WTA T , output a WTA U that
has uniformity in the following sense. Each run on a tree t of U will have the
behavior of T as its weight, i.e. [[T ]](t). We then give sufficient conditions for
the finiteness of U for the tropical, arctic and non-negative tropical semiring
in Theorem 13 and gather some straightforward conditions in Proposition 14.
Finally in Sect. 4 we derive an unambiguous WTA V that is equivalent to T by
removing redundant transitions from U .

2 Preliminaries

Basic Notation. For every k ∈ N we use the subset [k] = {i ∈ N | 1 ≤ i ≤ k}.
For any set A the set of all finite words over A is A∗ =

⋃
k∈N

Ak, where we let
Ak = A × · · · × A containing k factors of A and A0 = {ε} contains just the
empty word ε. The length |w| of a word w = a1 · · · ak ∈ A∗ with a1, . . . , ak ∈ A
is |w| = k; i.e. the number of occurrences of symbols in w. Given words v, w ∈ A∗,
their concatenation is written v.w or simply vw. For two sets M,N we denote
the set of mappings from M to N by NM .

Trees and Contexts. A ranked alphabet (Σ, rk) is a pair consisting of a finite
set Σ and a mapping rk: Σ → N that assigns a rank to each symbol of Σ. If
there is no risk of confusion, we denote a ranked alphabet (Σ, rk) by just Σ.
Moreover, for every k ∈ N we let Σ(k) = {σ ∈ Σ | rk(σ) = k}. Given a ranked
alphabet Σ and a set Z, the set TΣ(Z) of Σ trees indexed by Z is the smallest
set T such that Z ⊆ T and σ(t1, . . . , tk) ∈ T for every k ∈ N, σ ∈ Σ(k), and
t1, . . . , tk ∈ T. We abbreviate TΣ(∅) by TΣ ; any L ⊆ TΣ is called tree language.
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Next, we recall some common notions for trees. Let t ∈ TΣ(Z) be a tree for
a ranked alphabet Σ and a set Z. The set pos(t) of positions of t is defined by
pos(z) = {ε}, z ∈ Z, and pos(σ(t1, . . . , tk)) = {ε} ∪ {iw | i ∈ [k], w ∈ pos(ti)}
for all k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ(Z). The height of t is given
as height(t) = maxw∈pos(t) |w|, and the size of t is size(t) = |pos(t)|. Given a
position w ∈ pos(t), the label t(w) of t at w and the subtree t|w of t at w are
given by z(ε) = z|ε = z for all z ∈ Z and

(
σ(t1, . . . , tk)

)
(w) =

{
σ if w = ε

ti(w′) if w = iw′ with i ∈ N and w′ ∈ pos(ti)

σ(t1, . . . , tk)|w =

{
σ(t1, . . . , tk) if w = ε

ti|w′ if w = iw′ with i ∈ N and w′ ∈ pos(ti)

for all k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ(Z). Finally, the replacement t[t′]w
of the subtree at position w ∈ pos(t) by a tree t′ ∈ TΣ(Z) is given by z[t′]ε = t′

for all z ∈ Z and

σ(t1, . . . , tk)[t′]w =

⎧
⎪⎨

⎪⎩

t′ if w = ε

σ(t1, . . . , ti−1, ti[t′]w′ , ti+1, . . . , tk) if w = iw′ with i ∈ N,

w′ ∈ pos(ti)

for every k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ(Z). For a set Y , the set of positions
of t labeled by elements in Y , is the set posY (t) = {w ∈ pos(t) | t(w) ∈ Y }.

We reserve the use of the special symbol �. A tree t ∈ TΣ({�}) is a context,
if there exists exactly one w ∈ pos(t) with t(w) = �; i.e. |pos�(t)| = 1. The
set of all such contexts is denoted by CΣ . Given a context C ∈ CΣ and a
tree t ∈ TΣ({�}), the substitution C[t] of t into C yields the tree C[t]w, where
w is the unique position w ∈ pos(C) with C(w) = �.

Semirings. A semiring [11,12] is a tuple (S,⊕,⊗, 0, 1) such that (S,⊕, 0) is
a commutative monoid and (S,⊗, 1) is a monoid, ⊗ distributes over ⊕ and
0 ⊗ s = s ⊗ 0 = 0 for all s ∈ S. We will refer to a semiring (S,⊕,⊗, 0, 1) by
its carrier set S. A semiring S is called commutative if (S,⊗, 1) is commutative.
It is said to be cancellative if s, s′, s′′ ∈ S with s′′ 
= 0 and s ⊗ s′′ = s′ ⊗ s′′

implies s = s′. We call it left divisible if for all s ∈ S \ {0} there exists s−1 ∈ S
such that s−1 ⊗ s = 1. It is said to be weakly left divisible if for s, s′ ∈ S with
s ⊕ s′ 
= 0 there exists s′′ ∈ S such that s = (s ⊕ s′) ⊗ s′′. If S is cancellative, s′′

is unique and has the form s′′ = (s ⊕ s′)−1 ⊗ s. Moreover, S is called zero-sum
free if s⊕ s′ = 0 implies s = 0 and s′ = 0. Throughout the rest of this paper each
considered semiring is assumed to be commutative, zero-sum free, cancellative,
and weakly left divisible. Considered examples include

– the semiring of non-negative real numbers (R≥0,+, ·, 0, 1),
– the tropical semiring T = (R ∪ {∞},min,+,∞, 0),
– the arctic semiring A = (R ∪ {−∞},max,+,−∞, 0), and
– the non-negative tropical semiring T

≥0 = (R≥0 ∪ {∞},min,+,∞, 0).
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Weighted Tree Automata. A weighted tree automaton (WTA) [10] over a
semiring S is a tuple T = (Q,Σ, μ, ν), where Q is a finite set of states, Σ
is a ranked alphabet, μ is a family (μ(σ) : Qk × Q → S | k ≥ 0, σ ∈ Σ(k))
of transition mappings and ν ∈ SQ is a root weight vector. We call a tuple
(q1, . . . , qk, σ, w, q) ∈ Qk × Σ × S × Q a transition whenever rk(σ) = k and
μ(σ)(q1, . . . , qk, q) = w. We sometimes denote a transition by σ(q1, . . . , qk) w→ q.
The set of all transitions with w 
= 0 is denoted by ΔT . A state q ∈ Q is called
final if ν(q) 
= 0.

For t ∈ TΣ and q ∈ Q we define the set of runs of T on t, assigning to the
root position the state q ∈ Q by RunT (t, q) = {r : pos(t) → Q | r(ε) = q}. For
C ∈ CΣ and for p, q ∈ Q we define the set of runs of T on C, assigning to the
position of � the state p ∈ Q and to the root position the state q ∈ Q by

RunT (p,C, q) = {r : pos(C) → Q | r(ε) = q ∧
∀w ∈ pos(C) : (C(w) = �) ⇒ r(w) = p}.

We set RunT (p,C) = ∪q∈QRunT (p,C, q) and RunT (t) = ∪q∈QRunT (t, q). In
case r(ε) = q for a run r ∈ RunT (t) we sometimes say t reaches q. Finally for
u ∈ TΣ ∪ CΣ define the weight of r ∈ RunT (u) by wtT (r) =

⊗
w∈pos(u) wt(r, w)

where wt(r, w) = μ(σ)(r(w1), . . . , r(wk), r(w)) if u(w) ∈ Σ(k) for k ≥ 0 and
wt(r, w) = 1 otherwise. We call a run r successful if wtT (r) ⊗ ν(r(ε)) 
= 0. For a
set U we let wtT (U) =

⊕
r∈U wtT (r). The semantics of a WTA T is defined for

a tree t ∈ TΣ by
[[T ]](t) =

⊕

r∈RunT (t)

wtT (r) ⊗ ν(r(ε))

and for each context C ∈ CΣ and state q ∈ Q by

[[T ]](q, C) =
⊕

r∈RunT (q,C)

wtT (r) ⊗ ν(r(ε)).

A tree t ∈ TΣ is accepted if there is some successful run for t. For zero-sum
free semirings this is equivalent to [[T ]](t) 
= 0. We call a WTA trim if for all
q ∈ Q there exist t ∈ TΣ , w ∈ pos(t) and r ∈ RunT (t) with wtT (r) 
= 0
and ν(r(ε)) 
= 0 such that r(w) = q. Note that we can always trim a WTA
by removing states that do not satisfy this condition, without changing the
semantics of it. A WTA is called unambiguous iff for each t ∈ TΣ there is
at most one successful run. Finally we call two WTA T and U equivalent if
[[T ]](t) = [[U ]](t) for all t ∈ TΣ . If not stated otherwise we assume any WTA T
to be trim, of the form T = (QT , Σ, μT , νT ) and over a semiring S; similarly
for WTA U and V.

Example 1 (running example). Consider the WTA T over R≥0 with state space
QT = {q1, q2, q3}, the transitions

α
2→ q2, α

3→ q1, σ(q1, q1)
5→ q3, σ(q1, q2)

4→ q3,

β
1→ q1, σ(q2, q2)

5→ q3, σ(q2, q1)
4→ q3,
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and root weights νT (q3) = 1 and νT (q1) = νT (q2) = 0. Let us examine the
semantics by considering runs of T on the tree σ(α, α) as depicted in Fig. 1. There
are 4 distinct runs r1, r2, r3, r4 ∈ RunT (σ(α, α)) with weights wtT (r1) = 45,
wtT (r2) = 24, wtT (r3) = 24 and wtT (r4) = 20. Adding these weights up we
get [[T ]](σ(α, α)) = 113. All trees accepted by T and their respective weights are
depicted in Fig. 2.

Fig. 1. Runs of T on the tree σ(α, α) from Example 1

Fig. 2. Trees accepted by T and their weights from Example 1

3 Uniformity Construction

Let us introduce the uniformity construction, which Mohri and Riley refer to as
pre-disambiguation algorithm. The construction will, applied to a WTA T over
a semiring S, output a WTA U that has uniformity in the following sense. Each
run on a tree t of U will have the behaviour of T as its weight, i.e. [[T ]](t). More
specifically for t ∈ TΣ and r ∈ RunU (t) it will hold that wtU (r) = wtT (RunT (t)).
The construction is similar to the factorization approach used for determiniza-
tion [16] and closely follows [17]. Each state of U will be generated by a tree
t ∈ TΣ and a pivot state p. The state itself, say u(t, p), is a vector in SQT .

The intuition is as follows. Each state u(t, p) will be primed with 2 informa-
tion. First, u(t, p) knows which states q ∈ QT are in the so-called common future
relation R with p. Roughly speaking R checks whether a final state is reachable
from both p and q with the same input tree. Evidently states that are in common
future relation are threats to the unambiguity of the automaton. Second, adding
up the entries of u(t, p) will equal 1. This is due to the fact that its entries give
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some sort of proportion as will be described below. This way, the states in the
constructed WTA U contain the required information about the semantics of T .

Let us now introduce the aforementioned common future relation R.

Definition 2 (common future relation). For two states q, q′ ∈ QT define the
common future relation RT by setting qRT q′ iff there exists a context C ∈ CΣ

such that [[T ]](q, C) 
= 0 and [[T ]](q′, C) 
= 0. We let RT (q) = {p ∈ QT | qRp}
and will omit the subscript if the WTA is clear from context.

Note that the relation RT is reflexive, symmetric and not transitive. Let us
now formally construct the WTA U . Let T = (QT , Σ, μT , νT ) be a WTA over
S. Define the WTA U = (QU , Σ, μU , νU ) over S resulting from the uniformity-
construction with input T as follows. Given a tree t ∈ TΣ and a state p ∈ QT ,
if wtT (RunT (t, p)) 
= 0 we define u(t, p) ∈ SQT via

u(t, p)q =

{( ⊕
q′∈R(p) wtT (RunT (t, q′))

)−1 ⊗ wtT (RunT (t, q)) if q ∈ R(p),
0 otherwise.

We mention that p ∈ R(p) implies that
⊕

q′∈R(p) wtT (RunT (t, q′)) 
= 0 since our
semiring is zero-sum free. The states of U are these vectors u(t, p), i.e.

QU = {u(t, p) ∈ SQT | t ∈ TΣ , p ∈ QT }.

Note that QU is not necessarily finite. Sufficient conditions will be discussed
later; for now let us assume that it is. We refer to the designated state p ∈ QT
of u(t, p) as its pivot and to the set {q ∈ QT | u(t, p)q 
= 0} as the support of the
state u(t, p) and denote it by supp(u(t, p)).

As mentioned earlier entries of a state u(t, p) ∈ QU give proportions of
weights. More specifically the entry u(t, p)q gives the sum of weights of all runs
on t reaching q, relative to the sum over all runs reaching a state in R(p).

Remark 3. Note that q ∈ supp(u(t, p)) iff wtT (RunT (t, q)) 
= 0 and q ∈ R(p).

For the definition of μU let u(t1, p1), . . . , u(tk, pk), u(t, p) ∈ QU with σ ∈ Σ(k)

and t = σ(t1, . . . , tk). We set

w =
⊕

(q1,...,qk)∈Qk
T

u(t1, p1)q1 ⊗ · · · ⊗ u(tk, pk)qk ⊗
⊕

q∈supp(u(t,p))

μT (σ)(q1, . . . , qk, q),

and consider for each q ∈ supp(u(t, p)) the conditions

u(t, p)q = w−1 ⊗
⊕

(q1,...,qk)∈Qk
T

u(t1, p1)q1 ⊗ · · · ⊗ u(tk, pk)qk ⊗ μT (σ)(q1, . . . , qk, q), (1)

and

μT (σ)(p1, . . . , pk, p) 
= 0. (2)
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Define the transition mapping μU by

μU (σ)(u(t1, p1), . . . , u(tk, pk), u(t, p)) =
{

w if (1)for q ∈ supp(u(t, p)) and (2),
0 otherwise.

Lastly, for each u(t, p) ∈ QU . we let

νU (u(t, p)) =
{⊕

q∈QT u(t, p)q ⊗ νT (q) if νT (p) 
= 0,

0 otherwise.

Fig. 3. Runs of U on the tree σ(α, α) from Example 5

Remark 4. Given u(t, p) ∈ QU , t ∈ TΣ is not necessarily the only tree reaching
u(t, p), i.e. there might exist t′ ∈ TΣ with t 
= t′ and wtU (RunU (t′, u(t, p))) 
= 0.
On the other hand if for u ∈ QU we have wtU (RunU (t, u)) 
= 0 we can w.l.o.g.
assume that u = u(t, p) for some p ∈ QT .

Example 5 (running example). We return to Example 1 and consider the
WTA U returned by the uniformity construction of the WTA T . Let QU =
{u1, u2, u3, u4} with u1 := u(α, q1), u2 := u(α, q2), u3 := u(β, q1) and
u4 := u(σ(α, α), q3) which coincides with u(σ(α, β), q3), u(σ(β, α), q3), and
u(σ(β, β), q3). More specifically

u1 =

⎛

⎝
3/5
2/5
0

⎞

⎠ , u2 =

⎛

⎝
3/5
2/5
0

⎞

⎠ , u3 =

⎛

⎝
1
0
0

⎞

⎠ , u4 =

⎛

⎝
0
0
1

⎞

⎠ .

We have the transitions

α
5→ u1, β

1→ u3, σ(u3, x)
23/5→ u4 for x ∈ {u1, u2},

α
5→ u2, σ(u3, u3)

5→ u4, σ(x, u3)
23/5→ u4 for x ∈ {u1, u2},

σ(x, y)
113/25→ u4 for x, y ∈ {u1, u2},

and the root weight is νU (u4) = 1 and νU (u1) = νU (u2) = νU (u3) = 0. Let us
reconsider the runs on the tree σ(α, α) in order to understand the consequences
of the construction. The depiction in Fig. 3 shows that the number of runs on
σ(α, α) remains 4 but the weights of the runs are uniform. In fact the weight of
each run is equal to [[T ]](σ(α, α)). This is the case for every tree and run on it, as
we will establish in Corollary 7. Note that the WTA T and U are not equivalent.
Equivalence will only be achieved for idempotent semirings (Proposition 9).
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The following theorem summarizes the properties of our uniformity construc-
tion. More precisely, it shows that the weight assigned to each tree is the sum
of its weights in the processed WTA.

Theorem 6. Let U be the WTA returned by the uniformity construction for the
WTA T . Given a run r ∈ RunU (t, u(t, p)) with wtU (r) 
= 0 where t ∈ TΣ and
u(t, p) ∈ QU we have

1. wtU (r) =
⊕

q∈supp(u(t,p)) wtT (RunT (t, q)),
2. wtU (r) ⊗ u(t, p)q = wtT (RunT (t, q)) ∀q ∈ supp(u(t, p)).

As a simple corollary, we are now able to reconstruct [[T ]](t) for each tree
t ∈ TΣ in a straightforward way.

Corollary 7. Let U be the WTA returned by the uniformity construction for
the WTA T . Given a successful run r ∈ RunU (t, u(t, p)) where t ∈ TΣ and
u(t, p) ∈ QU we have

wtU (r) ⊗ νU (r(ε)) = [[T ]](t).

We have now established that the successful runs have the desired behavior.
Let us continue by showing that the same set of trees is accepted by T and the
WTA U returned by the uniformity construction.

Proposition 8. Let U be the WTA returned by the uniformity construction for
the WTA T . If [[T ]](t) 
= 0 for t ∈ TΣ, then there is a successful run on t for U .

As mentioned above the uniformity construction does in general not produce
a WTA equivalent to T . An exception is the case that the considered semiring S
is idempotent, i. e. for any s ∈ S it holds that s+s = s as stated in the following
result. Note that in particular the semirings T,A and T

≥0, for which we will
later give a sufficient condition for finiteness, are idempotent.

Proposition 9. Let T be a WTA over an idempotent semiring S and U the
WTA returned by the uniformity construction. For any tree t ∈ TΣ it holds that

[[T ]](t) = [[U ]](t).

Having collected the basic properties of our uniformity construction, our
goal is now to establish sufficient criteria for the finiteness of U . Besides rather
straightforward special cases, our most important result is based on ensuring
that certain loops in our WTA T generate the same weights. This is similar to
the so called twins property famously used for determinization of weighted finite
automata [13,16] and weighted tree automata [5]. We can however restrict it to
cases where the involved states share a common future. Let us define both the
twins property and our refined version.

Definition 10 (R-twins property). A WTA T satisfies the R-twins property
if for all p, q ∈ Q s.t. i) pRq and ii) there is some t ∈ TΣ which satisfies both
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wtT (RunT (t, q)) 
= 0 and wtT (RunT (t, p)) 
= 0, the following statement holds.
For each context C ∈ CΣ,

wtT (RunT (q, C, q)) 
= 0 and wtT (RunT (p,C, p)) 
= 0

implies wtT (RunT (q, C, q)) = wtT (RunT (p,C, p)). If the above is true for the
universal relation QT × QT instead of R, we say T satisfies the twins property.

In contrast to the twins property our R-twins property additionally requires
establishing sets of states that share a common future. This is however not a
computational limitation.

Proposition 11. Let T be a WTA over S ∈ {T,A,T≥0} and q, p ∈ QT . It is
decidable whether pRq.

Let us now compare the twins property and the R-twins property.

Example 12. Consider the WTA T over T with state space QT = {q1, q2, q3, qf},
the transitions

α
1→ q1, β

0→ q3, σ(x, x) 0→ x for x ∈ {q1, q2},

α
2→ q2, σ(q2, q3)

0→ qf , σ(x, q3)
0→ x for x ∈ {q1, q2},

σ(q3, q1)
0→ qf , σ(q3, x) 0→ x for x ∈ {q1, q2},

and root weight νT (qf ) = 0 and νT (q1) = νT (q2) = νT (q3) = ∞. It is straight-
forward to see that R(q1) = {q1, q3}, R(q2) = {q2, q3}, R(q3) = {q1, q2, q3} and
R(qf ) = {qf}. For any C ∈ CΣ we have

wtT (RunT (q1, C, q1)) = |posα(C)| and wtT (RunT (q2, C, q2)) = 2 · |posα(C)|

in contrast to the twins property. If however we consider the R-twins property
we may only compare states that have a common future. Particularly the states
q1 and q2 do not have a common future, which is the reason why the argument
from above does not hold for this case. In fact, one may easily verify that T does
satisfy the R-twins property.

The following main result states that U is finite for our primary semirings.

Theorem 13. Let T be a WTA over S ∈ {T,A,T≥0}. Let U be the WTA
returned by the uniformity construction for T . If T satisfies the R-twins property
then QU is finite.

Moreover, we also want to mention the following simple observations.

Proposition 14. Let T be a WTA and U be the WTA returned by the unifor-
mity construction. If one of the following conditions is satisfied QU is finite: i)
S is finite. ii) T is acyclic. iii) S ∈ {T,A,T≥0}, T satisfies the twins property.
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4 Disambiguation

So far, we have seen that our uniformity construction U is capable of simulating
[[T ]](t) in each single run on t ∈ TΣ (Theorem 6) and we found criteria ensuring
that the resulting WTA is finite (Theorem 13, Proposition 14). Recall however
that our main goal is to transform T into an unambiguous WTA which is of
course not yet achieved. Keeping Theorem 6 in mind, our strategy is as follows.
Roughly speaking we inspect our WTA, successively looking for redundant tran-
sitions in the following sense. If there are two runs for some tree t ∈ TΣ , then
at least one involved transition needs to be removed. We proceed in a specific
order which will ensure that in each step, all accepted trees are still accepted
even after the transition is removed. This is analogous to the approach in [17].

Let us come to the formal execution. For our WTA T , a tree t ∈ TΣ and
a state q ∈ QT we will write q ∈ δT (t) iff wtT (RunT (t, q)) 
= 0. We call two
tuples of states (q1, . . . , qk) , (q′

1, . . . , q
′
k) ∈ Qk

T co-reachable if there is a tuple of
trees (t1, . . . , tk) ∈ Tk

Σ such that qi ∈ δT (ti) and q′
i ∈ δT (ti) for each i ∈ [k].

Let QT = {p1, . . . , pm} and define the order of states by p1 < · · · < pm. For
u(t, p) ∈ QU and σ ∈ Σ(k) define the list of tuples of states that reach u(t, p) via
σ by

L(u(t, p), σ) =
((

u(t11, p
1
1), . . . , u(t1k, p1k)

)
, . . . ,

(
u(tn1 , pn

1 ), . . . , u(tnk , pn
k )

))
,

i.e. for each i ∈ [n] we have that
(
u(ti1, p

i
1), . . . , u(tik, pi

k)
)

∈ L(u(t, p), σ) if and
only if

(
u(ti1, p

i
1), . . . , u(tik, pi

k), σ, u(t, p)
)

∈ ΔU . We assume the list to be lex-
icographically ordered with respect to its states, i.e. we assume that we have
(p11, . . . , p

1
k) < · · · < (pn

1 , . . . , pn
k ). We process such a list by removing the tran-

sition
(
u(tj1, p

j
1), . . . , u(tjk, pj

k), σ, u(t, p)
)

∈ ΔU for j ≥ 2 iff there exists a co-
reachable tuple

(
u(ti1, p

i
1), . . . , u(tik, pi

k)
)

in L(u(t, p), σ) with 1 ≤ i < j that has
not yet been removed. Afterwards we trim the WTA in order to remove unnec-
essary states and further transitions. In particular the first tuple of a list is not
removed.

In a similar fashion we consider a list L(U) = {u1, . . . , um} containing all
states uj ∈ QU with νU (uj) 
= 0. We process this list analogously, by setting
νU (uj) = 0 whenever there is some ui < uj which is co-reachable with uj and
still satisfies νU (ui) 
= 0 after being processed.

The following result shows that processing the lists does not change the set
of accepted trees.

Lemma 15. Let T be a WTA, U the WTA resulting from the uniformity con-
struction and V be the WTA after processing L(u(t, p), σ) for u(t, p) ∈ QU or
L(U). Then the same set of trees is accepted by both U and V.

Hence, whenever U is finite we can process all lists L(u(t, p), σ) for u(t, p) ∈
QU and σ ∈ Σ and L(U), obtaining the unambiguous WTA V equivalent to T .



Disambiguation of Weighted Tree Automata 173

Fig. 4. Unique runs of V on the trees t1 = σ(α, α), t2 = σ(α, β), t3 = σ(β, α) and
t4 = σ(β, β) from Example 16

Example 16 (running example). Recall the WTA U that resulted from the uni-
versality construction given in Example 5. We have QU = {u1, u2, u3, u4} and
the following transitions for x, y ∈ {u1, u2}

α
5→ u1, β

1→ u3, σ(u3, x)
23/5→ u4, σ(u3, u3)

5→ u4,

α
5→ u2, σ(x, u3)

23/5→ u4, σ(x, y)
113/25→ u4,

as well as the root weight νU (u4) = 1 and νU (u1) = νU (u2) = νU (u3) = 0. Let
us construct the WTA V resulting from processing

L(u4, σ) = {(u1, u1), (u1, u2), (u1, u3),
(u2, u1), (u2, u2), (u2, u3), (u3, u1), (u3, u2), (u3, u3)}.

In the following we will by abuse of notion talk about removing elements of
L(u4, σ), where in reality we are referring to the according transitions to u4

via σ. As it has the first position in the list (u1, u1) is not removed by default.
As (u1, u2), (u2, u1), (u2, u2) are all respectively co-reachable with (u1, u1) via
(α, α) we remove them. The tuple (u1, u3) is not removed because it is not co-
reachable by (u1, u1); (u2, u3) is removed as it is co-reachable with (u1, u3) via
(α, β); (u3, u1) is not removed because it is not co-reachable by neither (u1, u1)
nor (u1, u3); (u3, u2) is removed as it is co-reachable with (u3, u1) via (β, α).
Lastly (u3, u3) is not removed.

Note that all transitions from u2 to u4, the only state with νU 
= 0 have
been removed. This will result in u2 being removed when trimming the WTA.
The other lists L(u1, α) = {(u1)}, L(u3, β) = {(u3)} and L(U) contain only one
element and will therefore not remove any more states. The WTA resulting from
processing the list is unambiguous. Its unique runs are depicted in Fig. 4. One
may verify that the weight for a given tree on V is equal to the weight on T .

5 Conclusion

We have presented a uniformity construction that given a WTA T over a semiring
S will output a WTA U that accepts the same trees and each of whose runs has
the behaviour of T as its weight. We showed that the state space of U is finite
in the cases where i) S is finite, ii) T is acyclic, or iii) S is the tropical or arctic
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semiring and T satisfies the twins property. Most notably though we attain
finiteness in the case that S is the tropical or arctic semiring and T satisfies the
weaker R-twins property. Furthermore we proved that by removing transitions
from U in a specific manner we can derive an unambiguous WTA equivalent to
T , using arguments corresponding to those in [17].

We would like to conclude this paper by mentioning future research direc-
tions. Even though we did present sufficient conditions for the finiteness of the
uniformity construction for all commonly used extremal semirings, we do believe
a similar result can be shown for general extremal semirings. The proofs pre-
sented here will however not suffice for such an endeavour. Inspiration might be
drawn from [13].

References

1. Aminof, B., Kupferman, O., Lampert, R.: Rigorous approximated determinization
of weighted automata. Theoret. Comput. Sci. 480, 104–117 (2013)
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Abstract. We introduce a certain restriction of weighted automata
over the rationals, called image-binary automata. We show that such
automata accept the regular languages, can be exponentially more suc-
cinct than corresponding NFAs, and allow for polynomial complemen-
tation, union, and intersection. This compares favourably with unam-
biguous automata whose complementation requires a superpolynomial
state blowup. We also study an infinite-word version, image-binary Büchi
automata. We show that such automata are amenable to probabilistic
model checking, similarly to unambiguous Büchi automata. We provide
algorithms to translate k-ambiguous Büchi automata to image-binary
Büchi automata, leading to model-checking algorithms with optimal
computational complexity.

1 Introduction

A weighted automaton assigns weights to words; i.e., it defines mappings of the
form f : Σ∗ → D, where D is some domain of weights. Weighted automata are
well-studied. Many variations have been discussed, such as max-plus automata [7]
and probabilistic automata [21,22], both over finite words and over infinite words,
in the latter case often combined with ω-valuation monoids [8]. However, it has
been shown that many natural questions are undecidable for many kinds of
weighted automata [1,9], including inclusion and equivalence. These problems
become decidable for finitely ambiguous weighted automata [10].

In this paper we consider only numerical weights, where D is a subfield of
the reals. A language L ⊆ Σ∗ can be identified with its characteristic function
χL : Σ∗ → {0, 1}. We explore weighted automata that encode characteristic
functions of languages, i.e., weighted automata that map each word either to 0 or
to 1. We call such automata image-binary finite automata (IFAs) and view them
as acceptors of languages L ⊆ Σ∗. We do not require, however, that individual
transitions have weight 0 or 1. This makes IFAs a “semantic” class: it may not be
obvious from the transition weights whether a given weighted automaton over,
say, the rationals is image-binary. However, we will see that it can be checked
efficiently whether a given Q-weighted automaton is an IFA (Theorem 12).

An immediate question is on the expressive power of IFAs. Deterministic
finite automata (DFAs) can be viewed as IFAs. On the other hand, in Sect. 2.2
we show that all languages accepted by IFAs are regular. It follows that IFAs
accept exactly the regular languages. Moreover, IFAs are efficiently closed under
c© IFIP International Federation for Information Processing 2021
Published by Springer International Publishing AG 2021. All Rights Reserved
Y.-S. Han and S.-K. Ko (Eds.): DCFS 2021, LNCS 13037, pp. 176–187, 2021.
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Boolean operations; i.e., given two IFAs that accept L1, L2, respectively, one can
compute in polynomial time IFAs accepting L1 ∪ L2, L1 ∩ L2, and Σ∗ \ L1.

The latter feature, efficient closure under complement, might be viewed as
a key advantage of IFAs over unambiguous finite automata (UFAs). UFAs are
nondeterministic finite automata (NFAs) such that every word has either zero
or one accepting runs. UFAs can be viewed as a special case of IFAs. Whereas
we show that IFAs can be complemented in polynomial time, UFAs are known
to be not polynomially closed under complement [23].

The next question is then on the succinctness of IFAs, and on the complexity
of converting other types of finite automata to IFAs and vice versa. We study
such questions in Sect. 2.4. In Sect. 2.5, we also study the relationship of IFAs
to mod-2 multiplicity automata, which are weighted automata over GF (2), the
field {0, 1} where 1+1 = 0. Such automata [2] share various features with IFAs,
in particular efficient closure under complement.

In the second part of the paper we put IFAs “to work”. Specifically, we
consider an infinite-word version, which we call image-binary Büchi automata
(IBAs). Following the theme that image-binary automata naturally generalise
and relax unambiguous automata, we show that IBAs can be used for model
checking Markov chains in essentially the same way as unambiguous Büchi
automata (UBAs) [3]. Specifically, we show in Sect. 4 that given an IBA and
a Markov chain, one can compute in NC (hence in polynomial time) the prob-
ability that a random word produced by the Markov chain is accepted by the
IBA.

It was shown in [19] that a nondeterministic Büchi automaton (NBA) with
n states can be converted to an NBA with at most 3n states whose ambiguity
is bounded by n. Known conversions from NBAs to UBAs have a state blowup
of roughly nn, see, e.g., [16]. We show in Sect. 3.2 that NBAs with logarithmic
ambiguity (as produced by the construction from [19]) can be converted to IBAs
in polylogarithmic space. This suggests that in order to translate NBAs into
an automaton model suitable for probabilistic model checking (such as IBAs),
it is reasonable to first employ the partial disambiguation procedure from [19]
(which does most of the work). More specifically, by combining the partial dis-
ambiguation procedure from [19] with our translation to an IBA, we obtain a
PSPACE transducer (i.e., a Turing machine whose work tape is polynomially
bounded) that translates an NBA into an IBA. For example, combining that
with the mentioned probabilistic model checking procedure for IBAs we obtain
an (optimal) PSPACE procedure for model checking Markov chains against NBA
specifications.

A full version of this paper including proofs and figures is available at [17].

2 Image-Binary Finite Automata

2.1 Definitions

Let F be one of the fields Q or R (with ordinary addition and multiplication).
An F-weighted automaton A = (Q,Σ,M,α, η) consists of a set of states Q, a
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finite alphabet Σ, a map M : Σ → F
Q×Q, an initial (row) vector α ∈ F

Q, and
a final (column) vector η ∈ F

Q. Extend M to Σ∗ by setting M(a1 · · · ak) def=
M(a1) · · · M(ak). The language LA of an automaton A is the map LA : Σ∗ → F

with LA(w) = αM(w)η. Automata A,B over the same alphabet Σ are said to
be equivalent if LA = LB.

Let A = (Q,Σ,M,α, η) be a Q-weighted automaton. We call A an image-
binary (weighted) finite automaton (IFA) if LA(Σ∗) ⊆ {0, 1}, i.e., LA(w) ∈
{0, 1} holds for all w ∈ Σ∗. An R-IFA is defined like an IFA, but with Q replaced
by R. An (R)-IFA A defines a language L(A) := {w ∈ Σ∗ | LA(w) = 1}. Note
that we call both LA and L(A) the language of A; strictly speaking, the former
is the characteristic function of the latter.

If an IFA A = (Q,Σ,M,α, η) is such that α ∈ {0, 1}Q and η ∈ {0, 1}Q and
M(a) ∈ {0, 1}Q×Q for all a ∈ Σ, then A is called an unambiguous finite automa-
ton (UFA). Note that this definition of a UFA is essentially equivalent to the
classical one, which says that a UFA is an NFA (nondeterministic finite automa-
ton) where each word has at most 1 accepting run. Similarly, a deterministic
finite automaton (DFA) is essentially a special case of a UFA, and hence of an
IFA.

Example 1. Figure 1 shows an IFA and a UFA in a graphical notation. Formally,
the IFA on the left is A = (QA, Σ,MA, αA, ηA) with Q = {1, 2, 3} and Σ = {a, b}
and

MA(a) =

⎛
⎝

−1 1 0
0 0 1
0 0 1

⎞
⎠ and MA(b) =

⎛
⎝

0 0 0
0 0 0
0 0 1

⎞
⎠

and αA =
(
1 0 0

)
and ηA =

(
0 0 1

)T . Both automata recognise the language of
words that start in an even (positive) number of as.

Fig. 1. The IFA in (a) is a forward conjugate of, and hence equivalent to, the UFA in
(b). Unless indicated otherwise, edges in (a) have weight 1.

Let A = (Q,Σ,M,α, η) be an R-weighted automaton. We call
−→A :=

(
−→
Q,Σ,

−→
M,−→α , Fη) a forward conjugate of A with base F if F ∈ R

−→
Q×Q and
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FM(a) =
−→
M(a)F for all a ∈ Σ and α = −→α F . Such A and

−→A are equivalent:
indeed, let w ∈ Σ∗; by induction we have FM(w) =

−→
M(w)F and hence

LA(w) = αM(w)η = −→α FM(w)η = −→α −→
M(w)Fη = L−→A (w) .

A backward conjugate can be defined analogously.

Example 2. The IFA A on the left of Fig. 1 is a forward conjugate of the UFA
on the right with base

F =

⎛
⎝

1 0 0
1 1 0
1 1 1

⎞
⎠ .

Indeed, we have
(
1 0 0

)
F =

(
1 0 0

)
and

(
0 0 1

)T = F
(
0 0 1

)T , where �vT denotes
the transpose of a vector �v, and

F

⎛
⎝

0 1 0
1 0 1
0 0 0

⎞
⎠ =

⎛
⎝

0 1 0
1 1 1
1 1 1

⎞
⎠ =

⎛
⎝

−1 1 0
0 0 1
0 0 1

⎞
⎠ F and F

⎛
⎝

0 0 0
0 0 0
1 1 1

⎞
⎠ =

⎛
⎝

0 0 0
0 0 0
0 0 1

⎞
⎠ F.

For some proofs we need the following definition. Let L : Σ∗ → F, where F

is any field. Then the Hankel matrix of L is the infinite matrix HL ∈ F
Σ∗×Σ∗

with HL[x, y] = L(xy). It was shown by Carlyle and Paz [5] and Fliess [11] that
the rank of HL is equal to the number of states of the minimal (in number of
states) F-weighted automaton A with LA = L.

Proposition 3 [5,11]. Let L be an F-weighted regular language, i.e. a function
L : Σ∗ → F that can be represented by an F-weighted automaton. Let A =
(Q,Σ,M,α, η) be a minimal F-weighted automaton such that LA = L. Then
rankHL = |Q|.

2.2 Regularity

Since a DFA is an IFA, for each regular language there is an IFA that defines it.
Conversely, we show that the language of an IFA is regular:

Theorem 4. Let A = (Q,Σ,M,α, η) be an R-IFA. Then L(A) is regular, and
there is a DFA B with at most 2|Q| states and L(A) = L(B).

View Z2 = {0, 1} as the field with two elements. In the proof of Theorem 4 we
consider vector spaces over Z2, i.e., where the scalars are from Z2. In particular,
we will argue with the vector space Z

N
2

∼= Z
Σ∗
2 over Z2. We first show:

Lemma 5. Let V be a set of n vectors. Consider the vector space 〈V 〉 spanned
by V over Z2. Then |〈V 〉| ≤ 2n.

Proof. Let V = {v1, . . . , vn}. Then 〈V 〉 = {∑n
i=1 λivi | λi ∈ Z2}. ��

Corollary 6. Let V be a vector space over Z2. For any n ∈ N, if dimV ≤ n
then |V| ≤ 2n.
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The following two lemmas show that if an R-weighted automaton is image-
binary, then the rank over R of its Hankel matrix H is at least the rank of H
over Z2.

Lemma 7. Let V ⊆ {0, 1}N be a set of vectors. If V is linearly dependent over R
then V is linearly dependent over Q. Hence dim〈V 〉Q ≤ dim〈V 〉R.

Lemma 8. Let V ⊆ {0, 1}N be a set of vectors. If V is linearly dependent over Q
then V is linearly dependent over Z2. Hence dim〈V 〉Z2 ≤ dim〈V 〉Q.

Hence we can prove Theorem 4:

Proof (Proof sketch of Theorem 4). By Proposition 3 and Lemma 7 and 8, the
rank over Z2 of the Hankel matrix of LA is at most |Q|. Hence, by Corollary 6
the Hankel matrix has at most 2|Q| different rows and therefore there exists an
equivalent DFA with 2|Q| states. ��

2.3 Boolean Operations and Checking Image-Binariness

IFAs are polynomially closed under all boolean operations, by which we mean:

Theorem 9. Let A1,A2 be IFAs over Σ. One can compute in polynomial time
IFAs B¬,B∩,B∪ with L(B¬) = Σ∗ \ L(A1) and L(B∩) = L(A1) ∩ L(A2) and
L(B∪) = L(A1) ∪ L(A2).

By De Morgan’s laws it suffices to construct B¬ and B∩. Since B¬ and B∩ need
to satisfy only LB¬ = 1 + (−LA1) (where 1 : Σ∗ → {1} denotes the constant 1
function) and LB∩ = LA1 ·LA2 , it suffices to know that Q-weighted automata are
polynomially closed under negation and pointwise addition and multiplication:

Proposition 10 (see, e.g., [4, Chap. 1]). Let A1,A2 be Q-weighted automata.
One can compute in polynomial time Q-weighted automata B−,B+,B× with
LB− = −LA1 and LB+ = LA1 + LA2 and LB× = LA1 · LA2 .

While DFAs are also polynomially closed under complement (switch accept-
ing and non-accepting states), NFAs and UFAs are not. For NFAs, it was shown
in [13] that the (worst-case) blowup in the number n of states is Θ(2n). For
UFAs, it was shown recently:

Proposition 11 [23]. For any n ∈ N there exists a unary (i.e., on an alphabet
Σ with |Σ| = 1) UFA An with n states such that any NFA for the complement
language has at least n(log log log n)Θ(1)

states.

This super-polynomial blowup (even for unary alphabet and even if the output
automaton is allowed to be ambiguous) refuted a conjecture that it may be
possible to complement UFAs with a polynomial blowup [6]. An upper bound
(for general alphabets and requiring the output to be a UFA) of O(20.79n) was
shown in [15]; see also [14] for an (unpublished) improvement.

The authors believe Proposition 11 shows the strength of Theorem 9: while
UFAs cannot be complemented efficiently, the more general IFAs are polynomi-
ally closed under all boolean operations.

Proposition 10 can be used to show:
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Theorem 12. Given a Q-weighted automaton, one can check in polynomial
time if it is an IFA.

Proof. Let A be a Q-weighted automaton. By Proposition 10 one can compute in
polynomial time a Q-weighted automaton B with LB = LA · LA (pointwise mul-
tiplication). Then A is an IFA if and only if A and B are equivalent. Equivalence
of Q-weighted automata can be checked in polynomial time, see [25,26]. ��

2.4 Succinctness

It is known that UFAs can be exponentially more succinct than DFAs: for each
n ∈ N with n ≥ 3 there is a UFA with n states such that the smallest equivalent
DFA has 2n states, see [18, Theorem 1]. Since UFAs are IFAs, Theorem 4 is
optimal:

Corollary 13. For converting IFAs to DFAs, a state blowup of 2n is sufficient
and necessary.

It is also known from [18] that converting NFAs to UFAs can require 2n − 1
states. The argument carries over to IFAs:

Proposition 14. For converting NFAs to IFAs, a state blowup of Θ(2n) is suf-
ficient and necessary.

It follows from Theorem 9 and Proposition 11 that IFAs cannot be converted
to NFAs in polynomial time:

Proposition 15. Converting IFAs to NFAs requires a super-polynomial state
blowup.

2.5 Mod-2-Multiplicity Automata

We compare IFAs with the mod-2-multiplicity automata (mod-2-MAs) as intro-
duced in [2], which are weighted automata over the field Z2. Given a mod-2-MA
A and a word w, w is accepted iff A(w) = 1. Like with IFAs, mod-2-MAs are
exponentially more succinct than DFAs [2, Lemma 6]. Converting NFAs to mod-
2-MAs requires a super-polynomial state blowup [2, Lemma 10] while (under the
assumption that there are infinitely many Mersenne primes) converting mod-2-
MAs to NFAs requires an exponential blowup [2, Lemma 11].

We can convert IFAs to mod-2-MAs without incurring a blowup:

Proposition 16. For any IFA A with n states there exists a mod-2-MA A′ of
at most n states with LA = LA′ .

Proof. Let H be the Hankel matrix of LA. By Proposition 3, rankH ≤ n, where
the rank is taken over R. Invoking Lemma 7 and Lemma 8 then shows that
rankH ≤ n also when the rank is taken over Z2. Then by Proposition 3 there
exists a mod-2-MA with rankH ≤ n (over Z2) states that accepts the same
language as A. ��
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However, the converse requires an exponential blowup. Inspired by Angluin
et al.’s [2] proof that mod-2 automata can be exponentially more succinct than
NFAs, this proof makes use of shift register sequences. However, note that this
proof does not require the assumption that there are infinitely many Mersenne
primes. For further information on shift register sequences, see [12]. A shift reg-
ister sequence of dimension d is an infinite periodic sequence {an} of bits defined
by initial conditions ai = bi for i = 0, . . . , d − 1 and bi ∈ {0, 1}, and a linear
recurrence

an = c1an−1 + c2an−2 + . . . + cdan−d,

for all n ≥ d, where each ci ∈ {0, 1} and addition is done modulo 2. The minimum
period of a periodic sequence {an} is the lowest p ∈ N such that an = an mod p

for every n. The maximum possible minimum period of a shift register sequence
is 2d − 1, and it is known that for each positive integer d there are shift register
sequences of maximum period. These are known as maximal length or pseudo-
noise sequences [12].

Given d > 0, let an = c1an−1 + c2an−2 + . . . + cdan−d define a maximum
period shift register sequence. Let Ld be the language over a unary alphabet
{#} defined by #n ∈ Ld if and only if an = 1. We have the following:

Proposition 17. The language Ld is accepted by a mod-2-MA with d states,
but not by any IFA with fewer than 2d − 1 states.

3 Image-Binary Büchi Automata

3.1 Definitions

Let A = (Q,Σ,M,α) be like in a weighted automaton over a field F and let F
be a set of final states. We call A ultimately stable if for any q, q′ ∈ Q and a ∈ Σ
such that there exists a word w with M(w)q′,q �= 0 (i.e., there is a path from q′ to
q over some word w), M(a)q,q′ = 0 or M(a)q,q′ = 1, meaning that any edges in a
loop have weight 1. For any two sets A and B, let A ·B denote the concatenation
of elements in A and B, and let Aω denote the set of infinite words over A. For
any infinite word w = w0w1 . . . we call q0w0q1w1 . . . ∈ (Q · Σ)ω a path over w
if α(q0) �= 0 and for all i, M(wi)qi,qi+1 �= 0. We call q0w0q1w1 . . . a final path if
infinite(q0w0q1w2 . . .) ∩ F �= ∅, where infinite(q0w0q1w2 . . .) denotes the set of
states in Q that occur infinitely often in the path. We will write FinalPathsA(w)
to denote the set of final paths of an automaton A over a word w.

It is clear that for any path q0w0q1w1 . . . there exists an i such that for any j ≥
i, qj lies on a loop, and therefore we can define the weight of the path q0w0q1w1 . . .
to be limi→∞

∏
n≤i M(wn)qn,qn+1 , denoted by weight(q0w0q1w1 . . .). For any

word w with finitely many final paths, we define the weight of w to be the
sum of the weights of the final paths over w, denoted by LA(w). We call
A = (Q,Σ,M,α, F ) an image-binary (weighted) Büchi automaton (IBA) if it is
ultimately stable, there exists a bound N ∈ N such that |FinalPathsA(w)| ≤ N
for any word w, and LA(Σω) ⊆ {0, 1}, i.e. for all w ∈ Σω, LA(w) ∈ {0, 1}.
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If an IBA A is such that α ∈ {0, 1}Q and M(a) ∈ {0, 1}Q×Q for all a ∈ Σ,
then A is called an unambiguous Büchi automaton (UBA). Similarly to the finite
word case, we note that this definition of a UBA is essentially equivalent to the
classical one, which says that a UBA is an NBA (nondeterministic Büchi automa-
ton) where each word has at most 1 final path. We also see that a deterministic
Büchi automaton (DBA) essentially is a special case of a UBA, and hence of an
IBA.

We will use the following notation: given a finite sequence a = a1a2 . . . an, we
will write last(a) to denote an. Given a (possibly finite) sequence a = a1a2 . . .
and a character a0 we will write a0 · a to denote the concatenation a0a1a2 . . ..
We will write B to denote the two element set {⊥,�} and for any set S we will
write P≤k(S) to denote the set {S′ ⊆ S | |S′| ≤ k}.

3.2 IBAs and k-Ambiguous NBAs

In this section we introduce k-ambiguous NBAs (k-ABAs) and show that they
can be exponentially more concise than IBAs. We give a procedure to translate
a k-ABA into an equivalent IBA using a PSPACE transducer.

A non-deterministic Büchi automaton (NBA) is a tuple (Q,Σ, δ,Q0, F ) where
Q is a state set, Σ is an alphabet, δ : Q×Σ → Q is a transition relation, Q0 ⊆ Q
is a set of initial states, and F is a set of final states. For any infinite word
w = w0w1 . . . we call q0w0q1w1 . . . ∈ (Q ·Σ)ω a path over w if q0 ∈ Q0 and for all
i, qi+1 ∈ δ(qi, wi). We call q0w0q1w1 . . . a final path if infinite(q0w0q1w2 . . .)∩F �=
∅, where infinite(q0w0q1w2 . . .) denotes the set of states in Q that occur infinitely
often in the path. We will write FinalPathsA(w) to denote the set of final paths
of an automaton A over a word w. The language of an NBA is the set of those
words w such that FinalPathsA(w) �= ∅. A k-ABA is an NBA such that for every
word w, |FinalPathsA(w)| ≤ k. For the rest of the section, fix a k-ambiguous
NBA Ak = (Q,Σ, δ,Q0, F ).

We have that k-ABAs can be exponentially more succinct than equivalent
IBAs:

Lemma 18. Let A be a k-ABA with n states. The minimal IBA accepting the
same language as A may require at least 2n states, even if k = n.

The rest of this section will be dedicated to converting k-ABAs to equivalent
IBAs, resulting in an IBA with at most a singly exponential state set size blowup.

Let R be the set of final runs of Ak over a word w. By the binomial theorem,
(1 + x)n =

∑n
i=0

(
n
i

)
xi, and hence, setting x = −1, 1 = 1 − ∑n

i=0(−1)i
(
n
i

)
=

1 − (−1)0
(
n
0

) − ∑n
i=1(−1)i

(
n
i

)
=

∑n
i=1(−1)i−1

(
n
i

)
. Hence, for any set S,∑

S′∈P(S)\{∅}(−1)|S′|−1 =
∑|S|

i=1(−1)i−1
(|S|

i

)
= 1. We can design an (infinite

state) IBA A′
k = (Q′, Σ,Δ′, α, F ′) where final paths correspond to subsets of

R, and where for each R′ ⊆ R, the final path corresponding to R′ has weight
(−1)|R′|−1. This IBA is given as follows:
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– Q′ = P≤k(Q∗ × B) \ {∅},
– αP = (−1)|P |−1 for each P ∈ P(Q0 × {⊥}) \ {∅} and αP = 0 otherwise,
– F ′ = P(Q∗ × {�}), and
– for any P ∈ Q′, let b′′ = ⊥ if for all (r, b) ∈ P , b = �, and let b′′ = �

otherwise. Let P ′ be such that:
• For any (r, b) ∈ P , there exists (r′, b′) ∈ P ′ and q ∈ δ(last(r), a) such that

r′ = r · q and b′ = ((last(r) ∈ F ) ∨ b) ∧ b′′, and
• For any (r′, b′) ∈ P ′, there exists (r, b) ∈ P and q ∈ δ(last(r), a) such that

r′ = r · q and b′ = ((last(r) ∈ F ) ∨ b) ∧ b′′.
Then Δ(a)P,P ′ = (−1)|P ′|−|P |. For any other P ′, Δ(a)P,P ′ = 0.

Intuitively, the bit b in a (r, b)-tuple flips to true every time r reaches a final
state, and back to false every time all the prefixes have reached a final state.
This ensures that every sequence of prefixes in a final path of A′

k visits final states
infinitely often. This technique mirrors for instance Safra’s construction [24].

Lemma 19. A′
k is an infinite-state IBA equivalent to Ak.

We will construct a finite IBA called the k-disambiguation of Ak based on
A′

k that accepts the same language as Ak.
Let πlast : Q′ → [k]Q×B be defined as πlast(P )q,b = |{(r, b) ∈ P | last(r) =

q}|. We extend πlast over finite and infinite sequences of elements of Q′ in the
natural way, πlast(P1P2 . . .) = πlast(P1) · πlast(P2 . . .).

Lemma 20. Let ρ = ρ1ρ2 . . . ∈ (Q′)ω be a path of A′
k over a word w and let

ρ′
1ρ

′
2 . . . = πlast(ρ). Then ρ1ρ2 . . . is final if and only if for infinitely i, (ρ′

i)q,⊥ = 0
for all q ∈ Q.

Runs in our k-disambiguation will be sequences in ([k]Q×B)ω such that there
exist runs in A′

k that map to that sequence. However, there is generally not a
one-to-one correspondence between sequences over [k]Q×B and runs in A′

k.
Fix any �r, �r′ ∈ [k]Q×B and a ∈ Σ. Let P be any state in Q′ such that

πlast(P ) = �r. As it turns out, the number of states P ′ with πlast(P ′) = �r′ where
P ′ is an a-successor of P does not depend on P . We call this number w(�r, a, �r′).

Lemma 21. The number w(�r, a, �r′) is unique and at most exponential in k.

We define the IBA k-dis′(Ak) = (Q′′, Σ,Δ′′, α′, F ′′) where:

– Q′′ = ([k]Q×B) \ {�0},
– Δ′′(a)�r,�r′ = (−1)(

∑
i(

�r′)i−(�r)i)w(�r, a, �r′)

– α′
�r = (−1)(

∑
i vi)−1 for every �r with:

• �rq,b = 0 if q �∈ Q0 or b = �, and
• �rq,b ≤ 1 otherwise.

α′
�r = 0 otherwise.

– F ′′ = {�r ∈ Q′′ | ∀(q,⊥) ∈ Q′′ : �rq,⊥ = 0}.
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The IBA k-dis(Ak) (the k-disambiguation of Ak) is then defined as k-dis′(Ak)
restricted to those reachable states in Q′′ that can reach a loop over a final state.
This trimness condition helps the proofs later on, but could be omitted.

For a state �r ∈ Q′′ we will write size(�r) =
∑

(q,b) �rq,b to denote the size of �r.
The weights in k-dis(Ak) count the number of equivalent runs in A′

k, where two
runs ρ, ρ′ ∈ (Q′)ω are equivalent if πlast(ρ) = πlast(ρ′):

Lemma 22. Let ρ ∈ (Q′′)ω be a run in k-dis(Ak) over a word w. Let R
be the set of those runs ρ′ in A′

k over w such that πlast(ρ′) = ρ, and let
n = maxi

∑
(q,b)(ρi)q,b be the maximum size of states of ρ. Then weight(ρ) =

(−1)n−1|R|.
Since by Lemma 20, a run ρ in k-dis(Ak) is final whenever any run ρ′ in A′

k

with πlast(ρ′) = ρ is, this means Lk-dis(Ak) = LA′
k
. This proves the final result:

Theorem 23. k-dis(Ak) is an IBA that accepts the same language as Ak.

Theorem 24. Given a k-ambiguous automaton Ak with n states, the disam-
biguation k-dis(Ak) has at most k2n states. Moreover, k-dis(Ak) can be calcu-
lated using a PSPACE transducer.

Proof (sketch). The size of k-dis(Ak) follows from its definition. Note that k is
at most singly exponential in |Q|, which follows from for instance [27, Theorem
2.1]. Hence, we only incur a single exponential blowup. Apart from w(�r, a, �r′)
it is therefore obvious k-dis(Ak) can be calculated using a PSPACE transducer.
Calculating w(�r, a, �r′) in PSPACE requires a combinatorial argument presented
in the full version of this paper [17]. ��

By Lemma 18, we have an O(2n) lower bound even if k = n. From Theorem
24 we already have a 2O(n log n) upper bound, leaving only a small gap.

When the ambiguity is comparatively low, we can do even better:

Theorem 25. Given a k-ambiguous automaton Ak with n states where k =
O(log n), the disambiguation k-dis(Ak) has at most (2n)O(log n) states. Moreover,
k-dis(Ak) can be calculated using a POLYLOGSPACE transducer.

4 Model Checking IBA

In this section we will consider the problem of model checking IBAs against
Markov chains. A Markov chain (MC) is a pair (S,M) where S is the finite state
set, and M ∈ [0, 1]S×S is a stochastic matrix specifying transition probabilities.
Given an initial distribution ι, an MC M induces a probability measure PrM

ι

over infinite words. The model checking question asks, what is the probability
of the language accepted by an IBA?

We show that model checking IBAs against MCs can be done in NC using
a modified procedure for model checking UBAs from [3]. The algorithm is
described in the full version of this paper [17], in this section we discuss its
implications. This is the main theorem:
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Theorem 26. Let M be an MC and let A be an IBA. The probability that a
random word sampled from M is in LA can be computed in NC.

Corollary 27. Let M be an MC and let Ak be a k-ABA with n states, where
k = O(log n). The probability that a random word sampled from M is in LA can
be computed in POLYLOGSPACE.

Proof. This combines Theorem 25 and 26. Since NC is contained in POLY-
LOGSPACE [20], this proves the corollary. ��

Model checking k-ABAs is PSPACE-hard [17], we get PSPACE-completeness
by converting k-ABAs into IBAs and model checking.

Theorem 28. The model checking problem for k-ABAs is PSPACE-complete.

Corollary 29. Let M be an MC and let A be an NBA with n states. The
probability that a word in LA is accepted by M can be computed in PSPACE.

Proof. By Löding et al. [19], A can be converted in a k-ABA Ak with at most
3n states where k = n. Hence, using Corollary 27, we can calculate Pr(LAk

) =
Pr(LA) in POLYLOG(2n) = POLY(n) space. ��
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Abstract. Affine finite automata (AfAs) can be more succinct than
probabilistic and quantum finite automata when recognizing some regu-
lar languages with bounded error. In this paper, we improve previously
known succinct AFA constructions in three ways. First, we replace some
of the fixed error bounds with arbitrarily small error bounds. Second,
we present new constructions by using fewer states than the previous
constructions. Third, we show that any language recognized by a nonde-
terministic finite automaton (NFA) is also recognized by bounded-error
AfAs having one more state, and so, AfAs inherit all succinct results by
NFAs. As a special case, we also show that any language recognized by
an NFA is recognized by AfAs with zero error if the number of accepting
path(s) for each member is the same number.

Keywords: Succinctness · State complexity · Affine automata ·
Quantum automata · Probabilistic automata · Linear systems ·
Bounded error · One-sided error · Zero error

1 Introduction

Probabilistic finite automaton (PFA) [19,20] is a linear system implementing
non-negative transitions by preserving �1-norm where a probabilistic state is
represented as a non-negative real-valued column vector with entry summation
1. Similarly, quantum finite automaton (QFA) [4,21] is also a linear system but
it implements complex-valued transitions by preserving �2-norm where a (pure)
quantum state is represented as a complex-valued vector with length 1. Imple-
menting both positive and negative valued transitions creates interference and so
some transitions may disappear, which brings certain computational advantages
to QFAs over PFAs, e.g., bounded-error QFAs can be exponentially more suc-
cinct than bounded-error PFAs [1], or nondeterministic QFAs are more powerful
than nondeterministic finite automata (NFAs) [25].

One may ask whether it is possible to use interference1 classically. The idea
of using negative transition values for classical systems dates back to sixties.
1 We refer the reader to [8] for certain discussions about interference with historical

remarks.
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Turakainen [22] defined generalized automaton (GA) as a linear system imple-
menting real-valued transitions without any restrictions. The language recogni-
tion by GAs are defined based on cutpoints (and they were shown to be equivalent
to PFAs), and bounded-error language recognition has never been considered.

After reading the whole input, the final state of a GA is represented as a
column vector with real-valued entries. To calculate the accepting value, this
vector is multiplied with a pre-defined real-valued row vector (with the same
dimension). In other words, each state contributes to the accepting value by a
real-valued weight:

fG(x) = w · vf = (w1 w2 · · · wn) ·

⎛
⎜⎜⎜⎝

α1

α2

...
αn

⎞
⎟⎟⎟⎠ =

n∑
i=1

wi · αi,

where G is the GA, x is the input, fG(x) is the accepting value of G on x, w
is the pre-defined weights, and vf is the final state. Remark that for PFAs, w
contains only 0s and 1s, where 1s are corresponding to the accepting states.

In the above, fG(x) is in R. On the other hand, an accepting probability is in
[0, 1]. One way to observe each state with some probabilities when in vf (similar
to PFAs and QFAs) is making a normalization with respect to �1-norm. For
QFAs, some measurement operators are applied to the quantum state, and then,
the different outcomes are observed with some probabilities. In the classical case,
we define an operator called weighting [6], which produces the outcomes with
probabilities based on their normalized values in �1. Here we should remark that,
contrary to quantum measurement operators, weighting is a non-linear operator.

Affine finite automaton (AfA) is a new and quantum-like generalization of
PFA which evolves linearly followed by a non-linear weighting operator [6]. An
affine state can have arbitrary real numbers but the summation of them must be
1 similar to the probabilistic state. The computational power of AfAs and their
generalizations have been examined and compared with their probabilistic and
quantum counterparts in a series of papers [5,9–14,18,23,24].

The classes of languages recognized by PFAs and QFAs with bounded error
(resp., cutpoints) are identical: regular languages (resp., stochastic languages)
[16,17,20,27]. AfAs with bounded error (resp., cutpoints) can recognize some
nonregular (resp., non-stochastic) languages [6]. In the nondeterministic lan-
guage recognition mode (a member (resp., non-member) string is accepted with
nonzero (resp., zero) probability), QFAs and AfAs have the same computational
power [6], and PFAs are weaker, i.e., PFAs can be seen as nondeterministic finite
automata (NFAs), and so they recognize exactly regular languages; and, the class
of languages recognized by nondeterministic QFAs (or AfAs) is a superset of reg-
ular languages called exclusive stochastic languages [19,25].

Regarding the state complexity, the gap between deterministic finite
automata (DFAs) and bounded-error PFAs or between bounded-error PFAs and
bounded-error QFAs can be at most exponential [1,2,4]. On the other hand, the
gap between bounded-error QFAs and bounded-error AfAs is super-exponential
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[5,13,24]. A super-exponential gap is possible between DFAs and bounded-error
PFAs or between bounded-error PFAs and bounded-error QFAs but on promise
problems [3,7].

In this paper, we improve previously known succinct AFA constructions in
three ways. In the next section, we give the definitions and notations used
throughout the paper. In Sect. 3, we quickly review the simulations by AfAs
that we use in our proofs. In Sect. 4, we give our constructions for three-state
AfAs. In Sect. 5, we present our results on NFAs.

2 Preliminaries

We assume the reader familiar with the basics of automata theory. Throughout
the paper, we use the following notations. For a given matrix A, A[i, j] is its
entry at the i-th row and j-th column; and, for a given vector v, v[i] is its i-th
entry and ζ(v) is the summation of all entries. We denote the input alphabet as
Σ not including ¢ (the left end-marker) and $ (the right end-marker), and we
denote Σ∪{¢, $} as Σ̃. For a given input x ∈ Σ, x̃ denotes ¢x$. For a given string
x, |x| is its length; for a numeric value α, |α| is the absolute value of α; and, for
an n-dimensional vector v, |v| is �1-norm of v, which is |v| = v[1] + · · · + v[n].
For a non-empty string x, x[i] denotes its i-th symbol, where 1 ≤ i ≤ |x|. For an
automaton M and input string x, fM (x) is the accepting probability of M on x.

An affine state is a real-valued column vector with entry summation 1. An
affine operator is a real-valued square matrix where each column is an affine state.
If we use only non-negative values, then an affine state is a probabilistic state
(also called stochastic vector) and an affine operator is a probabilistic operator
(also called stochastic matrix).

An n-state affine finite automaton (AfA)2 M is a 5-tuple

M = (S,Σ, {Aσ | σ ∈ Σ̃}, sI , Sa),

where

– S = {s1, . . . , sn} is the set of states,
– Aσ is the affine operator when reading symbol σ ∈ Σ̃,
– sI ∈ S is the initial state, and
– Sa ⊆ S is the set of accepting state(s).

Let x ∈ Σ∗ be the input with length m. The automaton M starts in affine
state v0, which is the elementary basis eI in R

n. It uses the end-markers for
pre- and post-processing.3 If x is the empty string, then the final state is vf =
A$A¢v0. Otherwise, the final state is calculated as

vf = A$Ax[m]Ax[m−1] · · · Ax[1]A¢v0.

2 We use lowercase “f” to differentiate AfAs from PFAs or QFAs due to its non-linear
behavior.

3 See [11] for the details about using end-markers and generalized versions of AfAs.
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The input is accept with probability fM (x) =

∑
si∈Sa

|vf [i]|
|vf | .

If we use only non-negative transition values, then we obtain a probabilistic
finite automaton (PFA). If we use only 0s and 1s, then we obtain a deterministic
finite automaton (DFA).

A language L ⊆ Σ∗ is said to be recognized by an automaton M with error
bound ε < 1

2 if (i) for each x ∈ L, fM (x) ≥ 1 − ε and (ii) for each x /∈ L,
fM (x) ≤ ε.

A language L ⊆ Σ∗ is said to be recognized by an automaton M with positive
one-sided error bound ε < 1 if (i) for each x ∈ L, fM (x) ≥ 1− ε and (ii) for each
x /∈ L, fM (x) = 0.

A language L ⊆ Σ∗ is said to be recognized by an automaton M with negative
one-sided error bound ε < 1 if (i) for each x ∈ L, fM (x) = 1 and (ii) for each
x /∈ L, fM (x) < ε.

When ε = 0, then it is called zero error.
We call an automaton ((positive/negative) one-sided) bounded-error if it

recognizes its language in the specified error mode for some error bounds.

3 Simulations

We review the basic simulations by AfAs. We start with a generic case.

3.1 A Sequence of Matrix-Vector Multiplication

Let v0 be a real-valued n-dimensional column vector and let A1, . . . , Ak be some
(n × n)-dimensional real-valued linear operators. We define affine vector v′

0 and
affine operator A′

i (1 ≤ i ≤ k) as

v′
0 =

⎛
⎜⎜⎜⎝

v0[1]
...

v0[n]
1 − ζ(v0)

⎞
⎟⎟⎟⎠ and A′

i =

⎛
⎜⎜⎜⎝

c1[0] · · · cn[0] 0
...

. . .
...

...
c1[n] · · · cn[n] 0

1 − ζ(c1) · · · 1 − ζ(cn) 1

⎞
⎟⎟⎟⎠ ,

where cj is the j-th column of Ai (1 ≤ j ≤ n). Then, for vf = AkAk−1 · · · A1v0,
we have

v′
f = A′

kA′
k−1 · · · A′

1v
′
0 =

⎛
⎜⎜⎜⎝

vf [1]
...

vf [n]
1 − ζ(vf )

⎞
⎟⎟⎟⎠ .

3.2 Trivial Case for PFAs

It is trivial that any n-state PFA is an n-state AfA. So, PFAs and DFAs cannot
be more succinct than bounded-error AfAs.
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3.3 Rational Exclusive Stochastic Languages

Let L be a language defined by an n-state rational-valued PFA P with an exclu-
sive cutpoint λ ∈ [0, 1], i.e.,

L = {w | fP (w) �= λ}.

Based on the simulation given in Sect. 3.1, it was shown [24] that L is recognized
by an (n + 1)-state integer-valued AfA as follows:

– each x ∈ L is accepted by the AfA with probability no less than 1
3 , and,

– each x /∈ L is accepted by the AfA with zero probability.

3.4 Exact Simulation of QFAs

The computation of any given n-state QFA can be simulated by an (n2+1)-state
AfA [24]. The computation of a QFA on any input is linear. By tensoring the
state vector and transition matrices with themselves, the probabilities can be
directly accessed on the state vectors. Each complex number can be represented
by two real numbers, but the tensoring vectors have some redundancy and so
n2-dimensional real-valued vectors can be obtained from n-dimensional quantum
state. The rest of the proof is due to Sect. 3.1. If the QFA is real-valued, we still
do not know any better bound.

Bounded-error QFAs may be quadratically more succinct than bounded-error
AfAs, but it is open whether QFAs can be more succinct than AfAs or whether
any n-state QFA can be simulated by an Θ(n)-state or o(n)-state AfAs.

4 Three-State AfAs

In this section, we give our improved constructions of 3-state AfAs for some
unary languages.

We start with the well-known counting problem: COUNTm = {am} for m ≥ 0.
It was shown [24] that the language COUNTm is recognized by a 2-state AfA with
(negative) one-sided error bound 1

3 . We decrease the error bound arbitrarily by
using one more state.

Theorem 1. The language COUNTm is recognized by a 3-state AfA with (negative)
one-sided error bound 1

2t+1 for every t ∈ Z
+.

Proof. The affine states are s1, s2, and s3, where s1 is the initial and only
accepting state. The initial affine state is v0 = (1 0 0)T . After reading ¢, the
affine state is set to

v1 =

⎛
⎝

1
m

−m

⎞
⎠ =

⎛
⎝

1 0 0
m 1 0

−m 0 1

⎞
⎠

⎛
⎝

1
0
0

⎞
⎠ .
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For each symbol a, the value of e2 (resp., e3) is decreased (resp., increased) by
1 by using the following operator

Aa =

⎛
⎝

1 0 0
−1 1 0

1 0 1

⎞
⎠ , i.e.,

⎛
⎝

1
i − 1
1 − i

⎞
⎠ =

⎛
⎝

1 0 0
−1 1 0

1 0 1

⎞
⎠

⎛
⎝

1
i

−i

⎞
⎠ .

Let l be the length of the input. Then, the affine state before reading $ is

vl+1 =

⎛
⎝

1
m − l
l − m

⎞
⎠ .

After reading $ symbol, the values of e2 and e3 are multiplied by t:

vf =

⎛
⎝

1
t(m − l)
t(l − m)

⎞
⎠ =

⎛
⎝

1 1 − t 1 − t
0 t 0
0 0 t

⎞
⎠

⎛
⎝

1
m − l
l − m

⎞
⎠ .

If l = m, then vf = v0 and the input is accepted with probability 1. Otherwise,

|m − l| ≥ 1, and so, the accepting probability is at most
1

2t + 1
. �	

The number of states required by bounded-error PFAs and QFAs recognizing
COUNTm increases with m as the state gap between DFAs and PFAs (or QFAs)
can be at most exponential [4,20] and DFAs require at least m + 2 states to
recognize it. Similar to AfAs, two-way QFAs can recognize COUNTm with a few
states but in polynomial expected time in m [26].

We will continue with the language MODp = {aj·p | j ∈ N} for every
prime number p. This language is recognized by QFAs with O(log p) states and
bounded-error PFAs require at least p states [1]. Previously, the bound for AfA
was given by using the simulation given in Sect. 3.4 [24]. Here, we show that we
can indeed use only 3 states.

Theorem 2. The language MODp is recognized by a 3-state AfA with (negative)

one-sided error bound
cot(π/p)

t
for every t > 1.

Proof. We use the single qubit algorithm given for this problem [1]. By help of
one more state, we will trace the computation by affine states, which also helps
us to decrease the accepting probability arbitrarily for the non-members.

Let {s1, s2, s3} be our states and s1 be the only accepting state. Let θ = 2π
p

be our rotation angle. We start in affine state v0 = (1 0 0)T and we apply the
identity operator when reading symbol ¢. Then, for each symbol a, we apply the
following operator that implements the counter-clockwise rotation with angle θ
on the unit circle by using s1 and s2:

Aa =

⎛
⎝

cos θ − sin θ 0
sin θ cos θ 0
α1 α2 1

⎞
⎠ ,
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where α1 = 1 − cos θ − sin θ and α2 = 1 + sin θ − cos θ.
Let l be the length of input. Before reading $ symbol, the affine state is

vl+1 =

⎛
⎝

cos(lθ)
sin(lθ)

1 − cos(lθ) − sin(lθ)

⎞
⎠

After reading $ symbol, the final affine state is set to

vf =

⎛
⎝

cos(lθ)
t sin(lθ)

1 − cos(lθ) − t sin(lθ)

⎞
⎠ =

⎛
⎝

1 0 0
0 t 0
0 1 − t 1

⎞
⎠

⎛
⎝

cos(lθ)
sin(lθ)

1 − cos(lθ) − sin(lθ)

⎞
⎠ .

For members, vf = v0 and so the input is accepted with probability 1. For
non-members, the ratio

| cos(lθ)|
| sin(lθ)| ≥

cos(π
p )

sin(π
p )

= cot(
π

p
),

where the bound is obtained when

l ≡ p − 1
2

mod p or l ≡ p + 1
2

mod p,

i.e., the rotating vector is at its closest points to the x-axis. Thus, the accepting

probability is less than
cot(π/p)

t
. �	

We close this section with a promise problem given in [3]: For any k ∈ Z
+,

MOD2k = (0MOD2k, 1MOD2k),

where 0MOD2k = {aj·2k | j ≡ 0 mod 2} and 1MOD2k = {aj·2k | j ≡ 1 mod 2}.
This promise problem is solved by 2-state QFAs with zero error [3], and different
types of classical automata require 2k+1 states to solve it [7].

By using the simulation in Sect. 3.4, it was given in [24] that 5-state AfA can
solve this problem with zero error. We believe that 2-state AfAs cannot solve
this problem with zero/bounded error, i.e., preserving the summation of affine
states may require one extra auxiliary state. Here we give a 3-state AfAs with
zero error.

Theorem 3. For a given k ∈ Z
+, the promise problem MOD2k is solved by a

3-state AfA with zero error.

Proof. The 2-state QFA algorithm uses a rotation with angle
π

2k+1
on the unit

circle [3]:

(
1
0

)
2k symbols−−−−−−−→

(
0
1

)
2k symbols−−−−−−−→

(−1
0

)
2k symbols−−−−−−−→

(
0

−1

)
2k symbols−−−−−−−→

(
1
0

)
.
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Thus, the outcomes alternates between the states “0” or “1” for each block of

2k symbols. Remark that the measurement results for
(

1
0

)
and

(−1
0

)
are

the same. But, if we use the simulation given in Sect. 3.1, the affine states for
members of 0MOD2k will be

⎛
⎝

1
0
0

⎞
⎠ and

⎛
⎝

−1
0
2

⎞
⎠ ,

which are different from each other.
Instead of the rotating with angle

π

2k+1
, we use a rotation with angle

π

2k
.

Then, we will have the following cycle:
(

1
0

)
2k symbols−−−−−−−→

(−1
0

)
2k symbols−−−−−−−→

(
1
0

)
2k symbols−−−−−−−→

(−1
0

)
.

Quantumly, we visit two states having the same statistics (i.e., they are identical
and no measurement can separate them.). But, they are different vectors. Now,
we use the simulation given in Sect. 3.1, and so we have the following affine
states before reading $ symbol for the members of 0MOD2k and for the members
of 1MOD2k ⎛

⎝
1
0
0

⎞
⎠ and

⎛
⎝

−1
0
2

⎞
⎠ ,

respectively. After reading $ symbol, we half the value of s3 and add the other
half to the value of s1 (such trick was used before in [18]). Then, these two affine
states becomes ⎛

⎝
1
0
0

⎞
⎠ and

⎛
⎝

0
0
1

⎞
⎠ ,

respectively. We make s1 the only the accepting state, and so two different cases
can be separated with zero error. �	

5 Simulating NFAs

When the cutpoint is picked as 0, then the given PFA in Sect. 3.3 turns out to
be a NFA, where each non-zero probabilistic transition corresponds to a non-
deterministic choice (transition). Thus, any succinctness result for NFAs can be
obtained for AfAs having one more state with one-sided error bound 2

3 . (To
obtain a better error bound, we can tensor a few copies of the same automaton,
which increases the number of states polynomially.)

Here, we present a pedagogically easier construction and more importantly
with arbitrarily small error bounds without increasing the previous state bound.
We also show that if the number of accepting path(s) are the same (e.g., one)
for each member, then the error is zero.
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An NFA does not use end-markers but use ε-transition(s). By using the left
end-marker, all ε-transition(s) without reading any symbol at the beginning of
computation can be replaced with the transitions defined for the left end-marker.
All other ε-transition(s) can also be removed by defining new transitions (without
using any extra states). When using the right end-marker, NFAs may save at
most one state, since any NFA using the right end-marker can be simulated by a
NFA without using the right end-marker by using one extra state: each transition
going to an accepting state when reading the right end-marker goes to this new
state, which will be the single accepting state.

We represent the computation of an n-state NFA, say N , on a given input
x ∈ Σ∗ linearly, where |x| = l and n > 1. We assume that N does not have
any ε-transitions and it uses the left end-marker. We use integer-valued vectors
to represent the states of N and zero-one matrices to represent the transitions
of N .

We assume that the set of states of N is S = {s1, . . . , sn} and s1 is the initial
state. Let Sa ⊆ S be the set of accepting state(s). The vector v0 = (1 0 · · · 0)T

represents the initial “nondeterministic” state. For each symbol σ ∈ Σ ∪ {¢},
we define the “nondeterministic” operator Aσ where Aσ[j, i] is 1 if there is a
transition from si to sj when reading symbol σ, and it is 0, otherwise. Thus, the
final nondeterministic state of N on x can be calculated as

vl+1 = Ax[l] · · · Ax[1]A¢v0.

Here vl+1 contains non-negative integers. A nice property of this presentation is
that the value for si represents the number of nondeterministic path(s) ending
in si at the end. Remark that some paths may be terminated before, which will
not be counted on vl+1.

By using the construction in Sect. 3.1, we can design an (n+1)-state AfA M
such that its affine state before reading the right end-marker is

v′
l+1 =

⎛
⎜⎜⎜⎝

vl[1]
...

vl[n]
1 − ζ(vl)

⎞
⎟⎟⎟⎠ .

Let α =
∑

si∈Sa
vl[i], i.e., the summation of all entries corresponding to the

accepting state(s) of N . The AfA M maps v′
l+1 to

v′
f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

tα
−tα
1
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

after reading the right end-marker for t ∈ Z
+. The operator for $ has zeros

everywhere except the following entries: the third row is full of 1s and, for each
si ∈ Sa, the (1, i)-th entry is t and the (2, i)-th entry is −t.
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The accepting states of M are {s1, s2}. If x ∈ L, then α is a positive integer

and so x is accepted with probability no less than
2t

2t + 1
, which means that the

error can be at most
1

2t + 1
. If x /∈ L, then α = 0 and so it is accepted with

probability 0.

Theorem 4. Let L be a language recognized by an n-state NFA, where n > 1.
Then, L is also recognized by an (n+1)-state AfA with arbitrarily small (positive)
one-sided error bound.

Suppose that the NFA has a single accepting path for each member. Then,
α is 1 for the members and it is 0 for the non-members. Thus, we can design a
zero-error AfA by setting the final affine state as

v′
f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α
0

1 − α
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

after reading the right end-marker. The operator for $ has zeros everywhere
except the following entries: for the single accepting state, say si, the (1, i)-th
entry is 1 and the third row is full of 1s except the i-th column, which is 0. It is
easy to see that the accepting probability is 1 (resp., 0) for each member (resp.,
non-member).

Theorem 5. Let L be a language recognized by an n-state NFA such that each
member is accepted on exactly one nondeterministic path, where n > 1. Then, L
is also recognized by an (n + 1)-state AfA with zero error.

Corollary 1. Let L be a language recognized by an n-state NFA such that each
member is accepted on exactly k > 1 nondeterministic paths, where n > 1. Then,
L is also recognized by an (n + 1)-state AfA with zero error.

Proof. The only modification in the above proof is on the final state as

v′
f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α

k
0

1 − α

k
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

since
α

k
is 1 for the members, and 0, otherwise. The operator for $ has zeros

everywhere except the following entries: the first row has 1
k in the entries for the
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accepting states, and the third row has respectively 1 and 1 − 1
k in the entries

for non-accepting and accepting states. �	
Remark that zero-error PFAs and QFAs cannot be more succinct than DFAs

[15]. Thus, zero-error AfAs can be exponentially more succinct than zero-error
PFAs and QFAs due to the following witness languages.

The language MODXORk [13] is formed by the strings

{0, 1}tx1{0, 1}2k−1x2{0, 1}2k−1 · · · xm{0, 1}2k−1,

where t < 2k,m > 0, each xi ∈ {0, 1} for 1 ≤ i ≤ m, and
⊕m

i=1 xi = 1. It was
shown [13] that MODXORk for k > 0 is recognized by a (2k + 1)-state AfA with
zero error. Due to Theorem 5, the same results can also be obtained by designing
a 2k-state NFA, which accepts each member on a single path.

Compared to MODXORk, the language ENDn = {0, 1}∗1{0, 1}n−1 is much sim-
pler, and we know that it is recognized by an (n + 1)-state NFA, which accepts
each member on a single path, and any DFA (and so any zero-error QFA) requires
at least 2n states.

Corollary 2. The language ENDn is recognized by an (n+2)-state AfA with zero
error.
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